Sample records for bioactifs nanostructures elabores

  1. Revetements bioactifs a base de chondroitine sulfate et de facteurs de croissance pour applications vasculaires

    NASA Astrophysics Data System (ADS)

    Lequoy, Pauline

    Malgre des avancees technologiques indeniables, l'efficacite des implants biomedicaux est encore limitee par les biomateriaux synthetiques qui les composent, notamment en raison de leur incapacite a generer une reponse biologique adequate. En particulier, la guerison tissulaire autour des implants vasculaires reste problematique. Une etude de la litterature a montre que dans le cas des endoprotheses couvertes (tuyaux polymeriques utilises pour la reparation endovasculaire des anevrismes de l'aorte abdominale), le manque de guerison observe s'explique non seulement par l'inertie des biomateriaux utilises mais aussi par le fait que l'implant est insere dans un vaisseau malade favorisant la mort des cellules par apoptose et presentant une depletion cellulaire marquee. L'hypothese a la base de ce projet est qu'un revetement bioactif pourrait ameliorer la guerison et la colonisation de l'implant par les cellules vasculaires et ainsi favoriser l'attachement de l'implant dans le vaisseau malade afin de prevenir les complications a long terme. Dans ce contexte, deux molecules anti-apoptotiques ont ete selectionnees pour developper le revetement, la chondroitine sulfate (CS), un glycosaminoglycane de la matrice extracellulaire, et le facteur de croissance de l'epiderme (EGF) qui possede egalement un role important dans la guerison tissulaire. L'un des defis de ce projet est de preserver la bioactivite de ces molecules lors de leur immobilisation dans un revetement. Pour etablir une preuve de concept, nous avons demontre qu'un revetement CS+EGF obtenu par greffage covalent permet d'ameliorer significativement la survie des cellules vasculaires humaines (cellules musculaires lisses, CMLV, et fibroblastes) sur les materiaux realistes (PET, ePTFE). Apres avoir transfere ce revetement sur des implants commerciaux en ePTFE, des tests in vivo ont demontre une amelioration de la guerison grâce au revetement bioactif, cependant la guerison n'a pas ete totale dans la cavite

  2. Elaboration of Prussian Blue Analogue/Silica Nanocomposites: Towards Tailor-Made Nano-Scale Electronic Devices

    PubMed Central

    Fornasieri, Giulia; Aouadi, Merwen; Delahaye, Emilie; Beaunier, Patricia; Durand, Dominique; Rivière, Eric; Albouy, Pierre-Antoine; Brisset, François; Bleuzen, Anne

    2012-01-01

    The research of new molecular materials able to replace classical solid materials in electronics has attracted growing attention over the past decade. Among these compounds photoswitchable Prussian blue analogues (PBA) are particularly interesting for the elaboration of new optical memories. However these coordination polymers are generally synthesised as insoluble powders that cannot be integrated into a real device. Hence their successful integration into real applications depends on an additional processing step. Nanostructured oxides elaborated by sol-gel chemistry combined with surfactant micelle templating can be used as nanoreactors to confine PBA precipitation and organize the functional nano-objects in the three dimensions of space. In this work we present the elaboration of different CoFe PBA/silica nanocomposites. Our synthetic procedure fully controls the synthesis of PBA in the porosity of the silica matrix from the insertion of the precursors up to the formation of the photomagnetic compound. We present results on systems from the simplest to the most elaborate: from disordered xerogels to ordered nanostructured films passing through mesoporous monoliths. PMID:28817053

  3. Elaboration of nano-structured grafted polymeric surface.

    PubMed

    Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Vesel, Alenka; Kovac, Janez; Coudreuse, Arnaud; Legeay, Gilbert; Poncin-Epaillard, Fabienne

    2011-10-15

    The surface grafting of multi-polymeric materials can be achieved by grafting as components such as polymers poly(N-isopropylacrylamide) and/or surfactant molecules (hexatrimethylammonium bromide, polyoxyethylene sorbitan monolaurate). The chosen grafting techniques, i.e. plasma activation followed by coating, allow a large spectrum of functional groups that can be inserted on the surface controlling the surface properties like adhesion, wettability and biocompatibility. The grafted polypropylene surfaces were characterized by contact angle analyses, XPS and AFM analyses. The influence of He plasma activation, of the coating parameters such as concentrations of the various reactive agents are discussed in terms of hydrophilic character, chemical composition and morphologic surface heterogeneity. The plasma pre-activation was shown inevitable for a permanent polymeric grafting. PNIPAM was grafted alone or with a mixture of the surfactant molecules. Depending on the individual proportion of each component, the grafted surfaces are shown homogeneous or composed of small domains of one component leading to a nano-structuration of the grafted surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Improving Reasoning and Recall: The Differential Effects of Elaborative Interrogation and Mnemonic Elaboration.

    ERIC Educational Resources Information Center

    Scruggs, Thomas E.; And Others

    1993-01-01

    Fifty-three adolescents with learning disabilities or mild mental retardation were taught reasons for dinosaur extinction. Those taught in a mnemonic elaborative interrogation condition recalled more reasons than did students who received direct teaching. Students in elaborative interrogation and mnemonic elaborative interrogation groups recalled…

  5. The Effects of Verbal Elaboration and Visual Elaboration on Student Learning.

    ERIC Educational Resources Information Center

    Chanlin, Lih-Juan

    1997-01-01

    This study examined: (1) the effectiveness of integrating verbal elaboration (metaphors) and different visual presentation strategies (still and animated graphics) in learning biotechnology concepts; (2) whether the use of verbal elaboration with different visual presentation strategies facilitates cognitive processes; and (3) how students employ…

  6. PREFACE: Self-organized nanostructures

    NASA Astrophysics Data System (ADS)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by

  7. Functionalized nanostructures for enhanced photocatalytic performance under solar light.

    PubMed

    Guo, Liejin; Jing, Dengwei; Liu, Maochang; Chen, Yubin; Shen, Shaohua; Shi, Jinwen; Zhang, Kai

    2014-01-01

    Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology.

  8. Example Elaboration as a Neglected Instructional Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girill, T R

    Over the last decade an unfolding cognitive-psychology research program on how learners use examples to develop effective problem solving expertise has yielded well-established empirical findings. Chi et al., Renkl, Reimann, and Neubert (in various papers) have confirmed statistically significant differences in how good and poor learners inferentially elaborate (self explain) example steps as they study. Such example elaboration is highly relevant to software documentation and training, yet largely neglected in the current literature. This paper summarizes the neglected research on example use and puts its neglect in a disciplinary perspective. The author then shows that differences in support for examplemore » elaboration in commercial software documentation reveal previously over looked usability issues. These issues involve example summaries, using goals and goal structures to reinforce example elaborations, and prompting readers to recognize the role of example parts. Secondly, I show how these same example elaboration techniques can build cognitive maturity among underperforming high school students who study technical writing. Principle based elaborations, condition elaborations, and role recognition of example steps all have their place in innovative, high school level, technical writing exercises, and all promote far transfer problem solving. Finally, I use these studies to clarify the constructivist debate over what writers and readers contribute to text meaning. I argue that writers can influence how readers elaborate on examples, and that because of the great empirical differences in example study effectiveness (and reader choices) writers should do what they can (through within text design features) to encourage readers to elaborate examples in the most successful ways. Example elaboration is a uniquely effective way to learn from worked technical examples. This paper summarizes years of research that clarifies example elaboration. I then show how

  9. Orangutan pantomime: elaborating the message

    PubMed Central

    Russon, Anne; Andrews, Kristin

    2011-01-01

    We present an exploratory study of forest-living orangutan pantomiming, i.e. gesturing in which they act out their meaning, focusing on its occurrence, communicative functions, and complexities. Studies show that captive great apes may elaborate messages if communication fails, and isolated reports suggest that great apes occasionally pantomime. We predicted forest-living orangutans would pantomime spontaneously to communicate, especially to elaborate after communication failures. Mining existing databases on free-ranging rehabilitant orangutans' behaviour identified 18 salient pantomimes. These pantomimes most often functioned as elaborations of failed requests, but also as deceptions and declaratives. Complexities identified include multimodality, re-enactments of past events and several features of language (productivity, compositionality, systematicity). These findings confirm that free-ranging rehabilitant orangutans pantomime and use pantomime to elaborate on their messages. Further, they use pantomime for multiple functions and create complex pantomimes that can express propositionally structured content. Thus, orangutan pantomime serves as a medium for communication, not a particular function. Mining cases of complex great ape communication originally reported in functional terms may then yield more evidence of pantomime. PMID:20702451

  10. Opportunities offered by the interaction of plasma and droplets to elaborate nanostructured oxide materials

    NASA Astrophysics Data System (ADS)

    Nikravech, Mehrdad; Rahmani, Abdelkader

    2016-09-01

    The association of plasma and spray will permit to process materials where organometallic precursors are not available or economically non-reliable. The injection of aerosols in low pressure plasma results in the rapid evaporation of solvent and the rapid transformation of small amounts of precursors contained in each droplet leading to form nanoscale oxide particles. We developed two configurations of this technique: one is Spray Plasma that permits to deposit this layers on flat substrates; the second one is Fluidized Spray Plasma that permits to deposit thin layers on the surface of solid beads. The aim of this presentation is to describe the principles of this new technique together with several applications. The influence of experimental parameters to deposit various mixed metal oxides will be demonstrated: thin dense layers of nanostructured ZnO for photovoltaic applications, porous layers of LaxSr1-x MnO3 as the cathode for fuel cells, ZnO-Cu, NiO layers on solid pellets in fluidized bed for catalysis applications. Aknowledgement to Programme interdisciplinaire SPC Énergies de Demain.

  11. False Memories for Suggestions: The Impact of Conceptual Elaboration

    PubMed Central

    Zaragoza, Maria S.; Mitchell, Karen J.; Payment, Kristie; Drivdahl, Sarah

    2010-01-01

    Relatively little attention has been paid to the potential role that reflecting on the meaning and implications of suggested events (i.e., conceptual elaboration) might play in promoting the creation of false memories. Two experiments assessed whether encouraging repeated conceptual elaboration, would, like perceptual elaboration, increase false memory for suggested events. Results showed that conceptual elaboration of suggested events more often resulted in high confidence false memories (Experiment 1) and false memories that were accompanied by the phenomenal experience of remembering them (Experiment 2) than did surface-level processing. Moreover, conceptual elaboration consistently led to higher rates of false memory than did perceptual elaboration. The false memory effects that resulted from conceptual elaboration were highly dependent on the organization of the postevent interview questions, such that conceptual elaboration only increased false memory beyond surface level processing when participants evaluated both true and suggested information in relation to the same theme or dimension. PMID:21103451

  12. What Matters in Scientific Explanations: Effects of Elaboration and Content

    PubMed Central

    Rottman, Benjamin M.; Keil, Frank C.

    2011-01-01

    Given the breadth and depth of available information, determining which components of an explanation are most important is a crucial process for simplifying learning. Three experiments tested whether people believe that components of an explanation with more elaboration are more important. In Experiment 1, participants read separate and unstructured components that comprised explanations of real-world scientific phenomena, rated the components on their importance for understanding the explanations, and drew graphs depicting which components elaborated on which other components. Participants gave higher importance scores for components that they judged to be elaborated upon by other components. Experiment 2 demonstrated that experimentally increasing the amount of elaboration of a component increased the perceived importance of the elaborated component. Furthermore, Experiment 3 demonstrated that elaboration increases the importance of the elaborated information by providing insight into understanding the elaborated information; information that was too technical to provide insight into the elaborated component did not increase the importance of the elaborated component. While learning an explanation, people piece together the structure of elaboration relationships between components and use the insight provided by elaboration to identify important components. PMID:21924709

  13. Self-corrected elaboration and spacing effects in incidental memory.

    PubMed

    Toyota, Hiroshi

    2006-04-01

    The present study investigated the effect of self-corrected elaboration on incidental memory as a function of types of presentation (massed vs spaced) and sentence frames (image vs nonimage). The subjects were presented a target word and an incongruous sentence frame and asked to correct the target to make a common sentence in the self-corrected elaboration condition, whereas in the experimenter-corrected elaboration condition they were asked to rate the appropriateness of the congruous word presented, followed by free recall test. The superiority of the self-corrected elaboration to the experimenter-corrected elaboration was observed only in some situations of combinations by the types of presentation and sentence frames. These results were discussed in terms of the effectiveness of the self-corrected elaboration.

  14. Stable aesthetic standards delusion: changing 'artistic quality' by elaboration.

    PubMed

    Carbon, Claus-Christian; Hesslinger, Vera M

    2014-01-01

    The present study challenges the notion that judgments of artistic quality are based on stable aesthetic standards. We propose that such standards are a delusion and that judgments of artistic quality are the combined result of exposure, elaboration, and discourse. We ran two experiments using elaboration tasks based on the repeated evaluation technique in which different versions of the Mona Lisa had to be elaborated deeply. During the initial task either the version known from the Louvre or an alternative version owned by the Prado was elaborated; during the second task both versions were elaborated in a comparative fashion. After both tasks multiple blends of the two versions had to be evaluated concerning several aesthetic key variables. Judgments of artistic quality of the blends were significantly different depending on the initially elaborated version of the Mona Lisa, indicating experience-based aesthetic processing, which contradicts the notion of stable aesthetic standards.

  15. Microstructural and Optical Properties of Porous Alumina Elaborated on Glass Substrate

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, W.; Gaidi, M.; Chtourou, R.

    2013-03-01

    A transparent porous anodized aluminum oxide (AAO) nanostructure was formed on a glass substrate using the anodization of a highly pure evaporated aluminum layer. A parametric study was carried out in order to achieve a fine control of the microstructural and optical properties of the elaborated films. The microstructural and surface morphologies of the porous alumina films were characterized by x-ray diffraction and atomic force microscopy. Pore diameter, inter-pore separation, and the porous structure as a function of anodization conditions were investigated. It was then found that the pores density decreases with increasing the anodization time. Regular cylindrical porous AAO films with a flat bottom structure were formed by chemical etching and anodization. A high transmittance in the 300-900 nm range is reported, indicating a fulfilled growth of the transparent sample (alumina) from the aluminum metal. The data showed typical interference oscillations as a result of the transparent characteristics of the film throughout the visible spectral range. The thickness and the optical constants ( n and k) of the porous anodic alumina films, as a function of anodizing time, were obtained using spectroscopic ellipsometry in the ultraviolet-visible-near infrared (UV-vis-NIR) regions.

  16. False Memories for Suggestions: The Impact of Conceptual Elaboration

    ERIC Educational Resources Information Center

    Zaragoza, Maria S.; Mitchell, Karen J.; Payment, Kristie; Drivdahl, Sarah

    2011-01-01

    Relatively little attention has been paid to the potential role that reflecting on the meaning and implications of suggested events (i.e., conceptual elaboration) might play in promoting the creation of false memories. Two experiments assessed whether encouraging repeated conceptual elaboration, would, like perceptual elaboration, increase false…

  17. Changes across age groups in self-choice elaboration and incidental memory.

    PubMed

    Toyota, Hiroshi; Tatsumi, Tomoko

    2003-04-01

    This study investigated differences in the self-choice elaboration and an experimenter-provided elaboration on incidental memory of 7- to 12-yr.-olds. In a self-choice elaboration condition 34 second and 25 sixth graders were asked to choose one of the two sentence frames into which each target could fit more congruously, whereas in an experimenter-provided elaboration they were asked to judge the congruity of each target to each frame. In free recall, sixth graders recalled targets in bizarre sentence frames better than second graders for self-choice elaboration condition. An age difference was not found for the experimenter-provided elaboration. In cued recall self-choice elaboration led to better performance of sixth graders for recalling targets than an experimenter-provided elaboration in both bizarre and common sentence frames. However, the different types of elaboration did not alter the recall of second graders. These results were interpreted as showing that the effectiveness of a self-choice elaboration depends on the subjects' age and the type of sentence.

  18. Nutrition quality test of fermented waste vegetables by bioactivator local microorganisms (MOL) and effective microorganism (EM4)

    NASA Astrophysics Data System (ADS)

    Mirwandono, E.; Sitepu, M.; Wahyuni, T. H.; Hasnudi; Ginting, N.; Siregar, G. AW; Sembiring, I.

    2018-02-01

    Livestock feed mostly used waste which has low nutrition content and one way to improve feed content by fermentation. The objective of this study was to evaluate the effect of bioactifator types on fermented vegetables waste for animal feed.The research was conducted in Nutrition and Animal Feed Laboratory, Universitas Sumatera Utara from May until July 2016. The research was factorial completely randomized design of 3 x 3 with 3 replications. Factor I were bioactivator types which were control, local bioactivator and EM4 (Effective Microorganisms 4). Factor II were time of incubation 3, 5 and 7 days. Parameters were moisture content, ash, Nitrogen Free Extract (NFE) and Total Digestible Nutrient (TDN). The results showed that bioactivator types either local activator or EM4 has highly significantly different effect (P<0,01) on water content, NFE and TDN on vegetables waste while there was no different between local bioactifator with EM4 on all parameters. Time of incubation 7 days has highly significantly different effect (P<0,01) on NFE, TDN and significant different (P<0,05) on water content and ash. In conclusion local bioactifators could improve animal feed by fermenting vegetables waste and it is more available for livestockers.

  19. Superhydrophilic nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Samuel S; Zormpa, Vasileia; Chen, Xiaobo

    2015-05-12

    An embodiment of a superhydrophilic nanostructure includes nanoparticles. The nanoparticles are formed into porous clusters. The porous clusters are formed into aggregate clusters. An embodiment of an article of manufacture includes the superhydrophilic nanostructure on a substrate. An embodiment of a method of fabricating a superhydrophilic nanostructure includes applying a solution that includes nanoparticles to a substrate. The substrate is heated to form aggregate clusters of porous clusters of the nanoparticles.

  20. Nanostructured layers of thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermallymore » annealed.« less

  1. Large-scale one-dimensional Bi x O y I z nanostructures: synthesis, characterization, and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Liu, Chaohong; Zhang, Dun

    2015-03-01

    The performances of Bi x O y I z photofunctional materials are very sensitive to their composition and microstructures; however, the morphology evolution and crystallization process of one-dimensional Bi x O y I z nanostructures, the roles of experimental factors, and related reaction mechanisms remain poorly understood. In this work, large-scale one-dimensional Bi x O y I z nanostructures were fabricated using simple inorganic iodine source. By combing the results of X-ray diffraction and scanning electron microscope, the effect of volume ratios of water and ethanol, concentration of NaOH, and reaction time on the morphologies and crystal phases of Bi x O y I z were elaborated. On the basis of characterizations, a possible process for the growth of Bi5O7I nanobelts was proposed. The optical performances of Bi x O y I z nanostructures were evaluated by ultraviolet-visible-near infrared diffuse reflectance spectra as well as photocatalytic degradation of organic dye and corrosive bacteria. The as-prepared Bi5O7I/Bi2O2CO3/BiOI composite showed excellent photocatalytic activity over malachite green under visible light irradiation, which was deduced closely related to its heterojunction structures.

  2. Differentiation of subsequent memory effects between retrieval practice and elaborative study.

    PubMed

    Liu, Yi; Rosburg, Timm; Gao, Chuanji; Weber, Christine; Guo, Chunyan

    2017-07-01

    Retrieval practice enhances memory retention more than re-studying. The underlying mechanisms of this retrieval practice effect have remained widely unclear. According to the elaborative retrieval hypothesis, activation of elaborative information occurs to a larger extent during testing than re-studying. In contrast, the episodic context account has suggested that recollecting prior episodic information (especially the temporal context) contributes to memory retention. To adjudicate the distinction between these two accounts, the present study used the classical retrieval practice effect paradigm to compare retrieval practice and elaborative study. In an initial behavioral experiment, retrieval practice produced greater retention than elaboration and re-studying in a one-week delayed test. In a subsequent event-related potential (ERP) experiment, retrieval practice resulted in reliably superior accuracy in the delayed test compared to elaborative study. In the ERPs, a frontally distributed subsequent memory effect (SME), starting at 300ms, occurred in the elaborative study condition, but not in the retrieval practice condition. A parietal SME emerged in the retrieval practice condition from 500 to 700ms, but was absent in the elaborative study condition. After 700ms, a late SME was present in the retrieval practice condition, but not in the elaborative study condition. Moreover, SMEs lasted longer in retrieval practice than in elaboration. The frontal SME in the elaborative study condition might be related to semantic processing or working memory-based elaboration, whereas the parietal and widespread SME in the retrieval practice condition might be associated with episodic recollection processes. These findings contradict the elaborative retrieval theory, and suggest that contextual recollection rather than activation of semantic information contributes to the retrieval practice effect, supporting the episodic context account. Copyright © 2017. Published by

  3. Analysis and characterization of Cu2CdSnS4 quaternary alloy nanostructures deposited on GaN

    NASA Astrophysics Data System (ADS)

    Odeh, Ali Abu; Al-Douri, Y.; Ameri, M.; Bouhemadou, A.

    2018-06-01

    Through using spin coating technique, Cu2CdSnS4 (CCTS) quaternary alloy nanostructures were successfully deposited on GaN substrate using a wide range of spin coating speeds; 1500, 2000, 2500, 3000 and 3500 RPM at annealing temperature 300 °C. The optical properties were investigated through UV-vis which revealed the changing of energy band gap as the spin coating speed increases, in addition, to verify specific models of refractive index and optical dielectric constant. The structural properties were studied by X-ray diffraction which indicated that the number and intensity of the peaks were changed as the spin coating speed changes. The morphological and topographical studies of CCTS were elaborated by field emission-scanning electron microscopy and atomic force microscopy. The obtained results suggest that CCTS nanostructures deposited on GaN substrate are very suitable for optoelectronic applications, that are in accordance with the available theoretical and experimental data.

  4. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  5. Changes across age groups in self-choice elaboration effects on incidental memory.

    PubMed

    Toyota, Hiroshi; Konishi, Tomoko

    2004-08-01

    The present study investigated age differences in the effects of a self-choice elaboration and an experimenter-provided elaboration on incidental memory. Adults, sixth grade, and second grade subjects chose which of two sentence frames the target fit better in a self-choice elaboration condition. They then judged whether each target made sense in its sentence frame in the experimenter-provided elaboration, then did free recall tests. Only adults recalled better the targets with an image sentence with self-choice elaboration, rather than experimenter-provided elaboration. However, self-choice elaboration was far superior for the recall of targets with nonimage sentences only for second graders. Thus, the effects of self-choice elaboration were determined both by age and by type of sentence frame.

  6. The Effects of Elaboration on Self-Learning Procedures from Text.

    ERIC Educational Resources Information Center

    Yang, Fu-mei

    This study investigated the effects of augmenting and deleting elaborations in an existing self-instructional text for a micro-computer database application, "Microsoft Works User's Manual." A total of 60 undergraduate students were randomly assigned to the original, elaborated, or unelaborated text versions. The elaborated version…

  7. Deep-Elaborative Learning of Introductory Management Accounting for Business Students

    ERIC Educational Resources Information Center

    Choo, Freddie; Tan, Kim B.

    2005-01-01

    Research by Choo and Tan (1990; 1995) suggests that accounting students, who engage in deep-elaborative learning, have a better understanding of the course materials. The purposes of this paper are: (1) to describe a deep-elaborative instructional approach (hereafter DEIA) that promotes deep-elaborative learning of introductory management…

  8. The elaboration likelihood model and communication about food risks.

    PubMed

    Frewer, L J; Howard, C; Hedderley, D; Shepherd, R

    1997-12-01

    Factors such as hazard type and source credibility have been identified as important in the establishment of effective strategies for risk communication. The elaboration likelihood model was adapted to investigate the potential impact of hazard type, information source, and persuasive content of information on individual engagement in elaborative, or thoughtful, cognitions about risk messages. One hundred sixty respondents were allocated to one of eight experimental groups, and the effects of source credibility, persuasive content of information and hazard type were systematically varied. The impact of the different factors on beliefs about the information and elaborative processing examined. Low credibility was particularly important in reducing risk perceptions, although persuasive content and hazard type were also influential in determining whether elaborative processing occurred.

  9. Elaborating on Threshold Concepts

    ERIC Educational Resources Information Center

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-01-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account…

  10. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  11. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  12. Segmented metallic nanostructures, homogeneous metallic nanostructures and methods for producing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Stanislaus; Koenigsmann, Christopher

    The present invention includes a method of producing a segmented 1D nanostructure. The method includes providing a vessel containing a template wherein on one side of the template is a first metal reagent solution and on the other side of the template is a reducing agent solution, wherein the template comprises at least one pore; allowing a first segment of a 1D nanostructure to grow within a pore of the template until a desired length is reached; replacing the first metal reagent solution with a second metal reagent solution; allowing a second segment of a 1D nanostructure to grow frommore » the first segment until a desired length is reached, wherein a segmented 1D nanostructure is produced.« less

  13. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  14. Epitaxial growth of hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  15. Elaborated Metaphors Support Viable Inferences about Difficult Science Concepts

    ERIC Educational Resources Information Center

    Diehl, Virginia; Reese, Debbie Denise

    2010-01-01

    Instructional metaphors scaffold learning better when accompanied by an elaboration. Applying structure mapping theory, we developed and used an elaborated instructional metaphor (text and illustrations) for introductory chemistry concepts. In two studies (N[subscript 1] = 44, N[subscript 2] = 57), college students with little chemistry background…

  16. Depth and Elaboration of Processing in Relation to Age.

    ERIC Educational Resources Information Center

    Simon, Eileen

    1979-01-01

    The recall effectiveness of semantic and phonemic cues was compared to uncover the pattern of deep and elaborate processing in relation to age and experimental treatment. It was concluded that aging results in poor elaboration, especially in inefficient integration of word events with the context of presentation. (Author/CP)

  17. Elaborative Processing in the Korsakoff Syndrome: Context versus Habit

    ERIC Educational Resources Information Center

    Van Damme, Ilse; d'Ydewalle, Gery

    2008-01-01

    Using a procedure of Hay and Jacoby [Hay, J. F., & Jacoby, L. L. (1999). "Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness." "Psychology and Aging," 14, 122-134], Korsakoff patients' capacity to encode and retrieve elaborative, semantic information was investigated. Habits were…

  18. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  19. Magnetic Binary Silicide Nanostructures.

    PubMed

    Goldfarb, Ilan; Cesura, Federico; Dascalu, Matan

    2018-05-02

    In spite of numerous advantageous properties of silicides, magnetic properties are not among them. Here, the magnetic properties of epitaxial binary silicide nanostructures are discussed. The vast majority of binary transition-metal silicides lack ferromagnetic order in their bulk-size crystals. Silicides based on rare-earth metals are usually weak ferromagnets or antiferromagnets, yet both groups tend to exhibit increased magnetic ordering in low-dimensional nanostructures, in particular at low temperatures. The origin of this surprising phenomenon lies in undercoordinated atoms at the nanostructure extremities, such as 2D (surfaces/interfaces), 1D (edges), and 0D (corners) boundaries. Uncompensated superspins of edge atoms increase the nanostructure magnetic shape anisotropy to the extent where it prevails over its magnetocrystalline counterpart, thus providing a plausible route toward the design of a magnetic response from nanostructure arrays in Si-based devices, such as bit-patterned magnetic recording media and spin injectors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Effects of Levels of Elaboration on Learners' Strategic Processing of Text

    ERIC Educational Resources Information Center

    Dornisch, Michele; Sperling, Rayne A.; Zeruth, Jill A.

    2011-01-01

    In the current work, we examined learners' comprehension when engaged with elaborative processing strategies. In Experiment 1, we randomly assigned students to one of five elaborative processing conditions and addressed differences in learners' lower- and higher-order learning outcomes and ability to employ elaborative strategies. Findings…

  1. Controlled placement and orientation of nanostructures

    DOEpatents

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  2. The neural correlates of specific versus general autobiographical memory construction and elaboration

    PubMed Central

    Holland, Alisha C.; Addis, Donna Rose; Kensinger, Elizabeth A.

    2011-01-01

    We examined the neural correlates of specific (i.e., unique to time and place) and general (i.e., extended in or repeated over time) autobiographical memories (AMs) during their initial construction and later elaboration phases. The construction and elaboration of specific and general events engaged a widely distributed set of regions previously associated with AM recall. Specific (vs. general) event construction preferentially engaged prefrontal and medial temporal lobe regions known to be critical for memory search and retrieval processes. General event elaboration was differentiated from specific event elaboration by extensive right-lateralized prefrontal cortex (PFC) activity. Interaction analyses confirmed that PFC activity was disproportionately engaged by specific AMs during construction, and general AMs during elaboration; a similar pattern was evident in regions of the left lateral temporal lobe. These neural differences between specific and general AM construction and elaboration were largely unrelated to reported differences in the level of detail recalled about each type of event. PMID:21803063

  3. Preattentive processing, poststimulus elaboration, and memory for emotionally arousing stimuli.

    PubMed

    Migita, Mai; Otani, Hajime; Libkuman, Terry M; Sheffert, Sonya M

    2011-01-01

    Christianson (1992) proposed two mechanisms to explain emotionally enhanced memory: preattentive processing and poststimulus elaboration. Experiment 1 examined these processes by instructing participants to perform (1) a concurrent distractor task, (2) a continuous distractor task, or (3) both while viewing the negatively arousing, positively arousing, and neutral pictures. Recall of negatively arousing pictures showed a small decline in one of the distractor conditions, indicating that elaboration plays a minor role in remembering these pictures. Experiment 2 partially replicated Experiment 1 with an intentional learning instruction to investigate whether participants in Experiment 1 were anticipating a recall test. For all three picture types, recall declined in the continuous distractor task condition, indicating that elaboration played a role, even when the pictures were negatively arousing. Overall, these results were consistent with the notion that remembering negatively valenced stimuli is largely based on preattentive processing with a minor role played by poststimulus elaboration.

  4. Emotion processing in the aging brain is modulated by semantic elaboration

    PubMed Central

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M.; Cabeza, Roberto

    2010-01-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs’ capacity for controlled elaboration. However, the role of semantic elaboration in mediating valence effects in the aging brain has not yet been explicitly tested. In the present study, YAs and OAs were scanned while they viewed negative, neutral, and positive pictures during either a deep, elaborative task or a shallow, perceptual task. FMRI results reveal that emotion-related activity in the amygdala is preserved in aging and insensitive to elaboration demands. This study provides novel evidence that differences in valence processing are modulated by elaboration: relative to YAs, OAs show enhanced activity in the medial prefrontal cortex (PFC) and ventrolateral PFC in response to positive versus negative stimuli, but only during elaborative processing. These positive valence effects are predicted by individual differences in executive function in OAs for the deep but not shallow task. Finally, psychophysiological interaction analyses reveal age effects on valence-dependent functional connectivity between medial PFC and ventral striatum, as well as age and task effects on medial PFC-retrosplenial cortex interactions. Altogether, these findings provide support for the hypothesis that valence shifts in the aging brain are mediated by controlled processes such as semantic elaboration, self-referential processing, and emotion regulation. PMID:20869375

  5. Evaluating the Efficacy of Elaborative Strategies for Remembering Expository Text.

    ERIC Educational Resources Information Center

    Boudreau, Rhonda L.; Wood, Eileen; Willoughby, Teena; Specht, Jacqueline

    1999-01-01

    One hundred Canadian undergraduates read a lengthy expository text, used one of five study strategies for 50 minutes, and completed recall and multiple-choice tests. Students using self-study, repetition, or unsupported elaborative interrogation had difficulty recognizing the passage's main ideas. Elaborative interrogation's effectiveness was…

  6. Titanate and titania nanostructures and nanostructure assemblies, and methods of making same

    DOEpatents

    Wong, Stanislaus S.; Mao, Yuanbing

    2016-06-14

    The invention relates to nanomaterial's and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.

  7. Titanate and titania nanostructures and nanostructure assemblies, and methods of making same

    DOEpatents

    Wong, Stanislaus S; Mao, Yuanbing

    2013-05-14

    The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.

  8. Measuring and Visualizing Group Knowledge Elaboration in Online Collaborative Discussions

    ERIC Educational Resources Information Center

    Zheng, Yafeng; Xu, Chang; Li, Yanyan; Su, You

    2018-01-01

    Knowledge elaboration plays a critical role in promoting knowledge acquisition and facilitating the retention of target knowledge in online collaborative discussions. Adopting a key-term-based automated analysis approach, we proposed an indicator framework to measure the level of knowledge elaboration in terms of coverage, activation, and…

  9. Self-replication: Nanostructure evolution

    NASA Astrophysics Data System (ADS)

    Simmel, Friedrich C.

    2017-10-01

    DNA origami nanostructures were utilized to replicate a seed pattern that resulted in the growth of populations of nanostructures. Exponential growth could be controlled by environmental conditions depending on the preferential requirements of each population.

  10. Elaborative-Interrogation and Prior-Knowledge Effects on Learning of Facts.

    ERIC Educational Resources Information Center

    Woloshyn, Vera E.; And Others

    1992-01-01

    The differences among elaborative-interrogation, reading-to-understand, and no-exposure control conditions with familiar domain material in contrast to unfamiliar domain material were studied for 50 Canadian and 50 west German undergraduates. Results provide evidence of effects of both elaborative interrogation and prior knowledge on learning.…

  11. Emotion processing in the aging brain is modulated by semantic elaboration.

    PubMed

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M; Cabeza, Roberto

    2011-03-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs' capacity for controlled elaboration. However, the role of semantic elaboration in mediating valence effects in the aging brain has not yet been explicitly tested. In the present study, YAs and OAs were scanned while they viewed negative, neutral, and positive pictures during either a deep, elaborative task or a shallow, perceptual task. fMRI results reveal that emotion-related activity in the amygdala is preserved in aging and insensitive to elaboration demands. This study provides novel evidence that differences in valence processing are modulated by elaboration: relative to YAs, OAs show enhanced activity in the medial prefrontal cortex (PFC) and ventrolateral PFC in response to positive versus negative stimuli, but only during elaborative processing. These positive valence effects are predicted by individual differences in executive function in OAs for the deep but not shallow task. Finally, psychophysiological interaction analyses reveal age effects on valence-dependent functional connectivity between medial PFC and ventral striatum, as well as age and task effects on medial PFC-retrosplenial cortex interactions. Altogether, these findings provide support for the hypothesis that valence shifts in the aging brain are mediated by controlled processes such as semantic elaboration, self-referential processing, and emotion regulation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  13. Depth and elaboration of processing in relation to age.

    PubMed

    Simon, E

    1979-03-01

    Processing at encoding and retrieval was jointly manipulated, and then the retrieval effectiveness of different cues was directly compared to uncover the relative pattern of deep and elaborate processing in relation to both age and different experimental manipulations. In experiment 1 phonemic and semantic cues were effective retrieval aids for to-be-remembered words in the youngest group; with increasing age, semantic cues decreased in effectiveness more than phonemic cues. These data showed phonemic features to have an importance that is not recognized in the data generated by the typical levels paradigm. When elaboration of the words was induced in Experiment 2 by presenting them in sentences, semantic and context cues were most effective in the youngest group whereas phonemic cues were most effective in the oldest group. Since the pattern of cue effectiveness in the elderly was similar to that in Experiment 1, where the same words were presented alone, it was concluded that aging results in poor elaboration, in particular, in inefficient integration of word events with the context of presentation. These age effects were mimicked in young subjects in Experiment 3 by experimentally restricting encoding time. The present approach uses somewhat modified views of depth and elaboration.

  14. Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation.

    PubMed

    Wu, Fengxia; Lai, Jianping; Zhang, Ling; Niu, Wenxin; Lou, Baohua; Luque, Rafael; Xu, Guobao

    2018-05-08

    The rational construction of multi-dimensional layered noble metal nanostructures is a great challenge since noble metals are not layer-structured materials. Herein, we report a one-pot hydrothermal synthetic method for PtCu hierarchical concave layered triangular (HCLT) nanostructures using dl-carnitine, KI, poly(vinylpyrrolidone), CuCl2, and H2PtCl6. The PtCu HCLT nanostructure is comprised of multilayered triangular dendrites. Its layer number is tunable by changing dl-carnitine concentrations, and the concavity/convexity of the PtCu triangle nanostructures is tunable by changing the H2PtCl6/CuCl2 ratio or KI concentrations. Hierarchical trigonal bipyramid nanoframes are also obtained under certain conditions. Because of its advantageous nanostructure and bimetallic synergetic effect, the obtained PtCu HCLT nanostructure exhibits enhanced electrocatalytic activity and prolonged stability to formic acid oxidation compared to commercial Pt black, Pd/C and some other nanostructures.

  15. Mother and Child Narrative Elaborations during Booksharing in Low-Income Mexican-American Dyads

    ERIC Educational Resources Information Center

    Escobar, Kelly; Melzi, Gigliana; Tamis-LeMonda, Catherine S.

    2017-01-01

    Caregivers' narrative elaborations have been consistently shown to relate to language, literacy, and cognitive skills in children. However, research with Latinos yields mixed findings in terms of how much caregivers elaborate and the benefits of elaborations for Latino children's development, especially within booksharing contexts. Moreover,…

  16. Triblock copolymer-mediated synthesis of catalytically active gold nanostructures

    NASA Astrophysics Data System (ADS)

    Santos, Douglas C.; de Souza, Viviane C.; Vasconcelos, Diego A.; Andrade, George R. S.; Gimenez, Iara F.; Teixeira, Zaine

    2018-04-01

    The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate. [Figure not available: see fulltext.

  17. Nanostructures, systems, and methods for photocatalysis

    DOEpatents

    Reece, Steven Y.; Jarvi, Thomas D.

    2015-12-08

    The present invention generally relates to nanostructures and compositions comprising nanostructures, methods of making and using the nanostructures, and related systems. In some embodiments, a nanostructure comprises a first region and a second region, wherein a first photocatalytic reaction (e.g., an oxidation reaction) can be carried out at the first region and a second photocatalytic reaction (e.g., a reduction reaction) can be carried out at the second region. In some cases, the first photocatalytic reaction is the formation of oxygen gas from water and the second photocatalytic reaction is the formation of hydrogen gas from water. In some embodiments, a nanostructure comprises at least one semiconductor material, and, in some cases, at least one catalytic material and/or at least one photosensitizing agent.

  18. Nanostructuring of Palladium with Low-Temperature Helium Plasma

    PubMed Central

    Fiflis, P.; Christenson, M.P.; Connolly, N.; Ruzic, D.N.

    2015-01-01

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium. PMID:28347109

  19. Nanostructuring of Palladium with Low-Temperature Helium Plasma.

    PubMed

    Fiflis, P; Christenson, M P; Connolly, N; Ruzic, D N

    2015-11-25

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium.

  20. Using Elaborative Interrogation Enhanced Worked Examples to Improve Chemistry Problem Solving

    ERIC Educational Resources Information Center

    Pease, Rebecca Simpson

    2012-01-01

    Elaborative interrogation, which prompts students to answer why-questions placed strategically within informational text, has been shown to increase learning comprehension through reading. In this study, elaborative interrogation why-questions requested readers to explain why paraphrased statements taken from a reading were "true."…

  1. Is there a shift to "active nanostructures"?

    NASA Astrophysics Data System (ADS)

    Subramanian, Vrishali; Youtie, Jan; Porter, Alan L.; Shapira, Philip

    2010-01-01

    It has been suggested that an important transition in the long-run trajectory of nanotechnology development is a shift from passive to active nanostructures. Such a shift could present different or increased societal impacts and require new approaches for risk assessment. An active nanostructure "changes or evolves its state during its operation," according to the National Science Foundation's (2006) Active Nanostructures and Nanosystems grant solicitation. Active nanostructure examples include nanoelectromechanical systems (NEMS), nanomachines, self-healing materials, targeted drugs and chemicals, energy storage devices, and sensors. This article considers two questions: (a) Is there a "shift" to active nanostructures? (b) How can we characterize the prototypical areas into which active nanostructures may emerge? We build upon the NSF definition of active nanostructures to develop a research publication search strategy, with a particular intent to distinguish between passive and active nanotechnologies. We perform bibliometric analyses and describe the main publication trends from 1995 to 2008. We then describe the prototypes of research that emerge based on reading the abstracts and review papers encountered in our search. Preliminary results suggest that there is a sharp rise in active nanostructures publications in 2006, and this rise is maintained in 2007 and through to early 2008. We present a typology that can be used to describe the kind of active nanostructures that may be commercialized and regulated in the future.

  2. Silicon-embedded copper nanostructure network for high energy storage

    DOEpatents

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  3. Silicon-embedded copper nanostructure network for high energy storage

    DOEpatents

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  4. Engineering optical properties using plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth

    Plasmonic nanostructures can be engineered to take on unusual optical properties not found in natural materials. The optical responses of plasmonic materials are functions of the structural parameters and symmetry of the nanostructures, material parameters of the nanostructure and its surroundings and the incidence angle, frequency and polarization state of light. The scattering and hence the visibility of an object could be reduced by coating it with a plasmonic material. In this thesis, presented is an optical frequency scattering cancelation device composed of a silicon nanorod coated by a plasmonic gold nanostructure. The principle of operation was theoretically analyzed using Mie theory and the device design was verified by extensive numerical simulations. The device was fabricated using a combination of nanofabrication techniques such as electron beam lithography and focused ion beam milling. The optical responses of the scattering cancelation device and a control sample of bare silicon rod were directly visualized using near-field microscopy coupled with heterodyne interferometric detection. The experimental results were analyzed and found to match very well with theoretical prediction from numerical simulations thereby validating the design principles and our implementation. Plasmonic nanostructures could be engineered to exhibit unique optical properties such as Fano resonance characterized by narrow asymmetrical lineshape. We present dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano resonance was achieved by application of uniaxial mechanical stress. The design of the nanostructures was facilitated by extensive numerical simulations and the symmetry lowering was analyzed using group theoretical methods. The nanostructures were fabricated using electron beam lithography and optically characterized for various mechanical stress. The experimental results were in good

  5. REMARK checklist elaborated to improve tumor prognostician

    Cancer.gov

    Experts have elaborated on a previously published checklist of 20 items -- including descriptions of design, methods, and analysis -- that researchers should address when publishing studies of prognostic markers. These markers are indicators that enable d

  6. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  7. Use of Syntactic Elaboration Techniques to Enhance Comprehensibility of EST Texts

    ERIC Educational Resources Information Center

    Rahimi, Mohammad Ali; Rezaei, Amir

    2011-01-01

    The current study examined differential effects of two pre-modification types, syntactic elaboration and syntactic simplification (at the level of syntax and irrespective of problematic lexis), on EST students' reading comprehension. The purpose was to see whether a priori syntactic elaborative adjustment, given its advantages over simplification,…

  8. Elaborated contextual framing is necessary for action-based attitude acquisition.

    PubMed

    Laham, Simon M; Kashima, Yoshihisa; Dix, Jennifer; Wheeler, Melissa; Levis, Bianca

    2014-01-01

    Although arm flexion and extension have been implicated as conditioners of attitudes, recent work casts some doubt on the nature and strength of the coupling of these muscle contractions and stimulus evaluation. We propose that the elaborated contextual framing of flexion and extension actions is necessary for attitude acquisition. Results showed that when flexion and extension were disambiguated via elaborated contextual cues (i.e., framed as collect and discard within a foraging context), neutral stimuli processed under flexion were liked more than neutral stimuli processed under extension. However, when unelaborated framing was used (e.g., mere stimulus zooming effects), stimulus evaluation did not differ as a function of muscle contractions. These results suggest that neither arm contractions per se nor unelaborated framings are sufficient for action-based attitude acquisition, but that elaborated framings are necessary.

  9. Peptide nanostructures in biomedical technology.

    PubMed

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  10. Aggregate nanostructures of organic molecular materials.

    PubMed

    Liu, Huibiao; Xu, Jialiang; Li, Yongjun; Li, Yuliang

    2010-12-21

    Conjugated organic molecules are interesting materials because of their structures and their electronic, electrical, magnetic, optical, biological, and chemical properties. However, researchers continue to face great challenges in the construction of well-defined organic compounds that aggregate into larger molecular materials such as nanowires, tubes, rods, particles, walls, films, and other structural arrays. Such nanoscale materials could serve as direct device components. In this Account, we describe our recent progress in the construction of nanostructures formed through the aggregation of organic conjugated molecules and in the investigation of the optical, electrical, and electronic properties that depend on the size or morphology of these nanostructures. We have designed and synthesized functional conjugated organic molecules with structural features that favor assembly into aggregate nanostructures via weak intermolecular interactions. These large-area ordered molecular aggregate nanostructures are based on a variety of simpler structures such as fullerenes, perylenes, anthracenes, porphyrins, polydiacetylenes, and their derivatives. We have developed new methods to construct these larger structures including organic vapor-solid phase reaction, natural growth, association via self-polymerization and self-organization, and a combination of self-assembly and electrochemical growth. These methods are both facile and reliable, allowing us to produce ordered and aligned aggregate nanostructures, such as large-area arrays of nanowires, nanorods, and nanotubes. In addition, we can synthesize nanoscale materials with controlled properties. Large-area ordered aggregate nanostructures exhibit interesting electrical, optical, and optoelectronic properties. We also describe the preparation of large-area aggregate nanostructures of charge transfer (CT) complexes using an organic solid-phase reaction technique. By this process, we can finely control the morphologies and

  11. Socialization of Past Event Talk: Cultural Differences in Maternal Elaborative Reminiscing

    ERIC Educational Resources Information Center

    Tougu, Pirko; Tulviste, Tiia; Schroder, Lisa; Keller, Heidi; De Geer, Boel

    2011-01-01

    This study examines mother-child reminiscing conversations with respect to variation in use and function of mothers' elaborations, the nature of children's memory elaborations, and the connections between the two, in three Western middle-class cultures where autonomy is valued over relatedness. Mothers participated with their 4-year-old children…

  12. Insights into the enhanced photoelectrochemical performance of hydrothermally controlled hematite nanostructures for proficient solar water oxidation.

    PubMed

    Park, Jin Woo; Subramanian, Arunprabaharan; Mahadik, Mahadeo A; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk

    2018-03-28

    In this paper, we focus on the controlled growth mechanism of α-Fe 2 O 3 nanostructures via the hydrothermal method. The field emission scanning electron microscopy (FESEM) results reveal that at a lower hydrothermal time, the initial nucleation involves the formation of short and thin β-FeOOH nanorods. The subsequent increase in the hydrothermal time leads β-FeOOH to form thicker and longer nanorods. However, high-temperature quenching (HTQ) at 800 °C for 10 min causes the conversion of akaganeite to the hematite phase and activation of hematite by Sn 4+ diffusion from a FTO substrate. Sn 4+ diffusion from the FTO substrate to the hematite nanostructure was elaborated by X-ray photoelectron spectroscopy (XPS). An α-Fe 2 O 3 nanorod photoanode prepared by a hydrothermal reaction for 3 h and HTQ exhibits the highest photocurrent density of 1.04 mA cm -2 . The excellent photoelectrochemical performance could be ascribed to the synergistic effect of the optimum growth of α-Fe 2 O 3 nanorod arrays and Sn 4+ diffusion. Intensity modulated photovoltage spectroscopy (IMVS) studies revealed that the α-Fe 2 O 3 photoanodes prepared at 3 h and HTQ exhibited a long electron lifetime (132.69 ms), and contribute to the enhanced PEC performance. The results confirmed that the controlled growth of the β-FeOOH nanorods, as well as Sn 4+ diffusion, played a key role in charge transfer during the photoelectrochemical application. The charge transfer mechanisms in α-Fe 2 O 3 nanostructure photoanodes prepared at different hydrothermal times and high-temperature quenching are also investigated.

  13. Mechanical design of DNA nanostructures

    NASA Astrophysics Data System (ADS)

    Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua

    2015-03-01

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k

  14. Photonic effects in natural nanostructures

    NASA Astrophysics Data System (ADS)

    Rey GonzáLez, Rafael Ramón; Barrera Patiã+/-O, Claudia Patricia

    Nature exhibits a great variety of structures and nanostructures. In particular the interaction light-matter has a strong dependence with the shape of the nanostructures. In some cases, in the so called structural color, ordered arrays of nanostructures play a very critical role. One of the most interesting color effects is the iridescence, the angular dependence of the observed color in some species of butterflies, insects, plants, beetles, fishes, birds and even in minerals. In the last years, iridescence has been related with photonic properties. In the present work, we present a theoretical study of the photonic properties for different patterns that exist in natural nanostructures present in wings of butterflies that exhibit iridescence. The nanostructures observed in these cases present spatial variations of the dielectric constant that are possible to model them as 1D and 2D photonic crystal. Partial photonic gaps are found as function of lattice constant, dielectric contrast and geometrical configuration. Also, disordered effects are considered. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia.

  15. Porphyrin-Based Nanostructures for Photocatalytic Applications

    PubMed Central

    Chen, Yingzhi; Li, Aoxiang; Huang, Zheng-Hong; Wang, Lu-Ning; Kang, Feiyu

    2016-01-01

    Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed. PMID:28344308

  16. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  17. Physiological control of elaborate male courtship: Female choice for neuromuscular systems

    PubMed Central

    Fusani, Leonida; Barske, Julia; Day, Lainy D.; Fuxjager, Matthew J.; Schlinger, Barney A.

    2015-01-01

    Males of many animal species perform specialized courtship behaviours to gain copulations with females. Identifying physiological and anatomical specializations underlying performance of these behaviours helps clarify mechanisms through which sexual selection promotes the evolution of elaborate courtship. Our knowledge about neuromuscular specializations that support elaborate displays is limited to a few model species. In this review, we focus on the physiological control of the courtship of a tropical bird, the golden-collared manakin, which has been the focus of our research for nearly 20 years. Male manakins perform physically elaborate courtship displays that are quick, accurate and powerful. Females seem to choose males based on their motor skills suggesting that neuromuscular specializations possessed by these males are driven by female choice. Male courtship is activated by androgens and androgen receptors are expressed in qualitatively and quantitatively unconventional ways in manakin brain, spinal cord and skeletal muscles. We propose that in some species, females select males based on their neuromuscular capabilities and acquired skills and that elaborate steroid-dependent courtship displays evolve to signal these traits. PMID:25086380

  18. Attributional Retraining and Elaborative Learning: Improving Academic Development through Writing-Based Interventions

    ERIC Educational Resources Information Center

    Hall, Nathan C.; Perry, Raymond P.; Goetz, Thomas; Ruthig, Joelle C.; Stupnisky, Robert H.; Newall, Nancy E.

    2007-01-01

    Attributional retraining (AR) is a motivational intervention that consistently produces improved performance by encouraging controllable failure attributions. Research suggests that cognitively engaging AR methods are ideal for high-elaborating students, whereas affect-oriented techniques are better for low-elaborating students. College students'…

  19. The Development of Metal Oxide Chemical Sensing Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; VanderWal,R. L.; Xu, J. C.; Evans, L. J.; Berger, G. M.; Kulis, M. J.

    2008-01-01

    This paper discusses sensor development based on metal oxide nanostructures and microsystems technology. While nanostructures such as nanowires show significant potential as enabling materials for chemical sensors, a number of significant technical challenges remain. This paper discusses development to address each of these technical barriers: 1) Improved contact and integration of the nanostructured materials with microsystems in a sensor structure; 2) Control of nanostructure crystallinity to allow control of the detection mechanism; and 3) Widening the range of gases that can be detected by fabricating multiple nanostructured materials. A sensor structure composed of three nanostructured oxides aligned on a single microsensor has been fabricated and tested. Results of this testing are discussed and future development approaches are suggested. It is concluded that while this work lays the foundation for further development, these are the beginning steps towards realization of repeatable, controlled sensor systems using oxide based nanostructures.

  20. [Elaboration and critical evaluation of clinical guidelines].

    PubMed

    García Villar, C

    2015-11-01

    Clinical guidelines are documents to help professionals and patients select the best diagnostic or therapeutic option. Elaborating guidelines requires an efficient literature search and a critical evaluation of the articles found to select the most appropriate ones. After that, the recommendations are formulated and then must be externally evaluated before they can be disseminated. Even when the guidelines are very thorough and rigorous, it is important to know whether they fulfill all the methodological requisites before applying them. With this aim, various scales have been developed to critically appraise guidelines. Of these, the AGREE II instrument is currently the most widely used. This article explains the main steps in elaborating clinical guidelines and the main aspects that should be analyzed to know whether the guidelines are well written. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  1. Lateral and medial prefrontal contributions to emotion generation by semantic elaboration during episodic encoding.

    PubMed

    Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi

    2017-02-01

    Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.

  2. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  3. New Deformation-Induced Nanostructure in Silicon.

    PubMed

    Wang, Bo; Zhang, Zhenyu; Chang, Keke; Cui, Junfeng; Rosenkranz, Andreas; Yu, Jinhong; Lin, Cheng-Te; Chen, Guoxin; Zang, Ketao; Luo, Jun; Jiang, Nan; Guo, Dongming

    2018-06-18

    Nanostructures in silicon (Si) induced by phase transformations have been investigated during the past 50 years. Performances of nanostructures are improved compared to that of bulk counterparts. Nevertheless, the confinement and loading conditions are insufficient to machine and fabricate high-performance devices. As a consequence, nanostructures fabricated by nanoscale deformation at loading speeds of m/s have not been demonstrated yet. In this study, grinding or scratching at a speed of 40.2 m/s was performed on a custom-made setup by an especially designed diamond tip (calculated stress under the diamond tip in the order of 5.11 GPa). This leads to a novel approach for the fabrication of nanostructures by nanoscale deformation at loading speeds of m/s. A new deformation-induced nanostructure was observed by transmission electron microscopy (TEM), consisting of an amorphous phase, a new tetragonal phase, slip bands, twinning superlattices, and a single crystal. The formation mechanism of the new phase was elucidated by ab initio simulations at shear stress of about 2.16 GPa. This approach opens a new route for the fabrication of nanostructures by nanoscale deformation at speeds of m/s. Our findings provide new insights for potential applications in transistors, integrated circuits, diodes, solar cells, and energy storage systems.

  4. Training Mothers in Elaborative Reminiscing Enhances Children's Autobiographical Memory and Narrative

    ERIC Educational Resources Information Center

    Reese, Elaine; Newcombe, Rhiannon

    2007-01-01

    This longitudinal intervention assessed children's memory at 2-1/2 years (short-term posttest; N = 115) and their memory and narrative at 3-1/2 years (long-term posttest; N = 100) as a function of maternal training in elaborative reminiscing when children were 1-1/2 to 2-1/2 years. At both posttests, trained mothers were more elaborative in their…

  5. Interactions among Elaborative Interrogation, Knowledge, and Interest in the Process of Constructing Knowledge from Text

    ERIC Educational Resources Information Center

    Ozgungor, Sevgi; Guthrie, John T.

    2004-01-01

    The authors examined the impact of elaborative interrogation on knowledge construction during expository text reading, specifically, the interactions among elaborative interrogation, knowledge, and interest. Three measures of learning were taken: recall, inference, and coherence. Elaborative interrogation affected all aspects of learning measured,…

  6. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2015-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  7. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  8. Elaborations of Introductory Psychology Terms: Effects on Test Performance and Subjective Ratings

    ERIC Educational Resources Information Center

    Balch, William R.

    2005-01-01

    Undergraduate students participated in an experiment designed to evaluate different types of elaborations on definitions of 16 psychology terms. First, participants received booklets presenting the definition of each term, followed by 1 of several elaborations: an example, a mnemonic, a paraphrase, or a repeated definition (the nonelaborating…

  9. Precise replication of antireflective nanostructures from biotemplates

    NASA Astrophysics Data System (ADS)

    Gao, Hongjun; Liu, Zhongfan; Zhang, Jin; Zhang, Guoming; Xie, Guoyong

    2007-03-01

    The authors report herein a new type of nanonipple structures on the cicada's eye and the direct structural replication of the complex micro- and nanostructures for potential functional emulation. A two-step direct molding process is developed to replicate these natural micro- and nanostructures using epoxy resin with high fidelity, which demonstrates a general way of fabricating functional nanostructures by direct replication of natural biotemplates via a suitable physicochemical process. Measurements of spectral reflectance showed that this kind of replicated nanostructure has remarkable antireflective property, suggestive of its potential applications to optical devices.

  10. Elaborating Selected Statistical Concepts with Common Experience.

    ERIC Educational Resources Information Center

    Weaver, Kenneth A.

    1992-01-01

    Presents ways of elaborating statistical concepts so as to make course material more meaningful for students. Describes examples using exclamations, circus and cartoon characters, and falling leaves to illustrate variability, null hypothesis testing, and confidence interval. Concludes that the exercises increase student comprehension of the text…

  11. Manipulation of light via subwavelength nanostructures

    NASA Astrophysics Data System (ADS)

    Yinghong, Gu

    Subwavelength nanostructures have exhibited different and controllable optical characteristics from their original material, leading a way to artificial metamaterials and metasurfaces. These nanostructures interact with light with surface plasmon resonances, cavity and waveguide modes, scattering and diffractions and etc., so they can realize the manipulation of light, which has attracted enduring and fanatic research interest, ranging from visible light, infrared light, THz to microwaves. Nanostructures, which are welldesigned and patterned to control and engineer the resonances, have realized and improved the performance of numerous optical applications such as color printing, perfect absorption, waveplates, planar lens, holograms, cloaking, optical trapping and sensing. This thesis has presents several works on manipulating light with subwavelength nanostructures, which can be generalized into two main parts. In the first part our works are manipulating far-field characteristics of light by meta-surfaces, including the high resolution color printing and imaging with spectra manipulation, and quarter wave plate (QWP) with the phase and polarization manipulation. For the color generation applications, we have presented a comprehensive literature review on the recent developments of plasmonic colors, and then we reported our ultra-high resolution nonplasmonic color printing with ultra-narrow Si fin nanostructures and an efficient TMM calculation. For the quarter wave plate, we present a series works of plasmonic QWPs including active hybrid QWPs working at multi-wavelength in visible/near-infrared light, and in THz range based on similar mechanism. The other main part is the near-field manipulation of light by nanostructures including two aspects. One is the direct excited dark modes, and the other is the photoluminescence (PL) enhancement by nanostructures. We have proposed a new mechanism to directly excite dark modes by using an electrical shorting approach with

  12. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  13. Plasmonic nanostructures through DNA-assisted lithography

    PubMed Central

    Shen, Boxuan; Linko, Veikko; Tapio, Kosti; Pikker, Siim; Lemma, Tibebe; Gopinath, Ashwin; Gothelf, Kurt V.; Kostiainen, Mauri A.; Toppari, J. Jussi

    2018-01-01

    Programmable self-assembly of nucleic acids enables the fabrication of custom, precise objects with nanoscale dimensions. These structures can be further harnessed as templates to build novel materials such as metallic nanostructures, which are widely used and explored because of their unique optical properties and their potency to serve as components of novel metamaterials. However, approaches to transfer the spatial information of DNA constructions to metal nanostructures remain a challenge. We report a DNA-assisted lithography (DALI) method that combines the structural versatility of DNA origami with conventional lithography techniques to create discrete, well-defined, and entirely metallic nanostructures with designed plasmonic properties. DALI is a parallel, high-throughput fabrication method compatible with transparent substrates, thus providing an additional advantage for optical measurements, and yields structures with a feature size of ~10 nm. We demonstrate its feasibility by producing metal nanostructures with a chiral plasmonic response and bowtie-shaped nanoantennas for surface-enhanced Raman spectroscopy. We envisage that DALI can be generalized to large substrates, which would subsequently enable scale-up production of diverse metallic nanostructures with tailored plasmonic features. PMID:29423446

  14. Homo-endotaxial one-dimensional Si nanostructures

    DOE PAGES

    Song, Jiaming; Hudak, Bethany M.; Sims, Hunter; ...

    2017-11-29

    One-dimensional (1D) nanostructures are highly sought after, both for their novel electronic properties as well as for their improved functionality. However, due to their nanoscale dimensions, these properties are significantly affected by the environment in which they are embedded. Here in this paper, we report on the creation of 1D homo-endotaxial Si nanostructures, i.e. 1D Si nanostructures with a lattice structure that is uniquely different from the Si diamond lattice in which they are embedded. We use scanning tunneling microscopy and spectroscopy, scanning transmission electron microscopy, density functional theory, and conductive atomic force microscopy to elucidate their formation and properties.more » Depending on kinetic constraints during growth, they can be prepared as endotaxial 1D Si nanostructures completely embedded in crystalline Si, or underneath a stripe of amorphous Si containing a large concentration of Bi atoms. Lastly, these homo-endotaxial 1D Si nanostructures have the potential to be useful components in nanoelectronic devices based on the technologically mature Si platform.« less

  15. Measuring Knowledge Elaboration Based on a Computer-Assisted Knowledge Map Analytical Approach to Collaborative Learning

    ERIC Educational Resources Information Center

    Zheng, Lanqin; Huang, Ronghuai; Hwang, Gwo-Jen; Yang, Kaicheng

    2015-01-01

    The purpose of this study is to quantitatively measure the level of knowledge elaboration and explore the relationships between prior knowledge of a group, group performance, and knowledge elaboration in collaborative learning. Two experiments were conducted to investigate the level of knowledge elaboration. The collaborative learning objective in…

  16. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  17. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  18. Production improves memory equivalently following elaborative vs non-elaborative processing.

    PubMed

    Forrin, Noah D; Jonker, Tanya R; MacLeod, Colin M

    2014-01-01

    Words that are read aloud are better remembered than those read silently. Recent research has suggested that, rather than reflecting a benefit for produced items, this production effect may reflect a cost to reading silently in a list containing both aloud and silent items (Bodner, Taikh, & Fawcett, 2013). This cost is argued to occur because silent items are lazily read, receiving less attention than aloud items which require an overt response. We examined the possible role of lazy reading in the production effect by testing whether the effect would be reduced under elaborative encoding, which precludes lazy reading of silent items. Contrary to a lazy reading account, we found that production benefited generated words as much as read words (Experiment 1) and deeply imagined words as much as shallowly imagined words (Experiment 2). We conclude that production stands out as equally distinct-and consequently as equally memorable-regardless of whether it accompanies deep or shallow processing, evidence that is inconsistent with a lazy reading account.

  19. Periodic nanostructural materials for nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Choi, Dukhyun

    2017-02-01

    Nanoscale periodic material design and fabrication are essentially fundamental requirement for basic scientific researches and industrial applications of nanoscience and engineering. Innovative, effective, reproducible, large-area uniform, tunable and robust nanostructure/material syntheses are still challenging. Here, I would like to introduce the novel periodic nanostructural materials particularly with uniformly ordered nanoporous or nanoflower structures, which are fabricated by simple, cost-effective, and high-throughput wet chemical methods. I also report large-area periodic plasmonic nanostructures based on template-based nanolithography. The surface morphology and optical properties are characterized by SEM and UV-vis. spectroscopy. Furthermore, their enhancement factor is evaluated by using SERS signals.

  20. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  1. High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures

    DOE PAGES

    Nocua, José E.; Piazza, Fabrice; Weiner, Brad R.; ...

    2009-01-01

    Boron nimore » tride (BN) nanostructures are structural analogues of carbon nanostructures but have completely different bonding character and structural defects. They are chemically inert, electrically insulating, and potentially important in mechanical applications that include the strengthening of light structural materials. These applications require the reliable production of bulk amounts of pure BN nanostructures in order to be able to reinforce large quantities of structural materials, hence the need for the development of high-yield synthesis methods of pure BN nanostructures. Using borazine ( B 3 N 3 H 6 ) as chemical precursor and the hot-filament chemical vapor deposition (HFCVD) technique, pure BN nanostructures with cross-sectional sizes ranging between 20 and 50 nm were obtained, including nanoparticles and nanofibers. Their crystalline structure was characterized by (XRD), their morphology and nanostructure was examined by (SEM) and (TEM), while their chemical composition was studied by (EDS), (FTIR), (EELS), and (XPS). Taken altogether, the results indicate that all the material obtained is stoichiometric nanostructured BN with hexagonal and rhombohedral crystalline structure.« less

  2. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  3. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  4. Atomically Traceable Nanostructure Fabrication

    PubMed Central

    Ballard, Josh B.; Dick, Don D.; McDonnell, Stephen J.; Bischof, Maia; Fu, Joseph; Owen, James H. G.; Owen, William R.; Alexander, Justin D.; Jaeger, David L.; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J.; Wallace, Robert M.; Reidy, Richard; Silver, Richard M.; Randall, John N.; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  5. Dispersion and separation of nanostructured carbon in organic solvents

    NASA Technical Reports Server (NTRS)

    Evans, Christopher M. (Inventor); Ruf, Herbert J. (Inventor); Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  6. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  7. Elaborative Retrieval: Do Semantic Mediators Improve Memory?

    ERIC Educational Resources Information Center

    Lehman, Melissa; Karpicke, Jeffrey D.

    2016-01-01

    The elaborative retrieval account of retrieval-based learning proposes that retrieval enhances retention because the retrieval process produces the generation of semantic mediators that link cues to target information. We tested 2 assumptions that form the basis of this account: that semantic mediators are more likely to be generated during…

  8. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  9. Say More and Be More Coherent: How Text Elaboration and Cohesion Can Increase Writing Quality

    ERIC Educational Resources Information Center

    Crossley, Scott A.; McNamara, Danielle S.

    2016-01-01

    This study examines links between essay quality and text elaboration and text cohesion. For this study, 35 students wrote two essays (on two different prompts) and for each, were given 15 minutes to elaborate on their original text. An expert in discourse comprehension then modified the original and elaborated essays to increase cohesion,…

  10. Metal nanostructures: from clusters to nanocatalysis and sensors

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2017-12-01

    The properties of metal clusters and nanostructures composed of them are reviewed. Various existing methods for the generation of intense beams of metal clusters and their subsequent conversion into nanostructures are compared. Processes of the flow of a buffer gas with active molecules through a nanostructure are analyzed as a basis of using nanostructures for catalytic applications. The propagation of an electric signal through a nanostructure is studied by analogy with a macroscopic metal. An analysis is given of how a nanostructure changes its resistance as active molecules attach to its surface and are converted into negative ions. These negative ions induce the formation of positively charged vacancies inside the metal conductor and attract the vacancies to together change the resistance of the metal nanostructure. The physical basis is considered for using metal clusters and nanostructures composed of them to create new materials in the form of a porous metal film on the surface of an object. The fundamentals of nanocatalysis are reviewed. Semiconductor conductometric sensors consisting of bound nanoscale grains or fibers acting as a conductor are compared with metal sensors conducting via a percolation cluster, a fractal fiber, or a bunch of interwoven nanofibers formed in superfluid helium. It is shown that sensors on the basis of metal nanostructures are characterized by a higher sensitivity than semiconductor ones, but are not selective. Measurements using metal sensors involve two stages, one of which measures to high precision the attachment rate of active molecules to the sensor conductor, and in the other one the surface of metal nanostructures is cleaned from the attached molecules using a gas discharge plasma (in particular, capillary discharge) with a subsequent chromatography analysis for products of cleaning.

  11. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.

    PubMed

    Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun

    2018-06-04

    Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery.

  12. Reactor and method for production of nanostructures

    DOEpatents

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  13. Assembly of barcode-like nucleic acid nanostructures.

    PubMed

    Wang, Pengfei; Tian, Cheng; Li, Xiang; Mao, Chengde

    2014-10-15

    Barcode-like (BC) nanopatterns from programmed self-assembly of nucleic acids (DNA and RNA) are reported. BC nanostructures are generated by the introduction of open spaces at selected sites to an otherwise closely packed, plain, rectangle nucleic acid nanostructure. This strategy is applied to nanostructures assembled from both origami approach and single stranded tile approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interfacing nanostructures to biological cells

    DOEpatents

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  15. Mechanical design of DNA nanostructures.

    PubMed

    Castro, Carlos E; Su, Hai-Jun; Marras, Alexander E; Zhou, Lifeng; Johnson, Joshua

    2015-04-14

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.

  16. Investigation of the in-plane and out-of-plane electrical properties of metallic nanoparticles in dielectric matrix thin films elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Puyoo, E.; Le Berre, M.; Militaru, L.; Koneti, S.; Malchère, A.; Epicier, T.; Roiban, L.; Albertini, D.; Sabac, A.; Calmon, F.

    2017-11-01

    Pt nanoparticles in a Al2O3 dielectric matrix thin films are elaborated by means of atomic layer deposition. These nanostructured thin films are integrated in vertical and planar test structures in order to assess both their in-plane and out-of-plane electrical properties. A shadow edge evaporation process is used to develop planar devices with electrode separation distances in the range of 30 nm. Both vertical and planar test structures show a Poole-Frenkel conduction mechanism. Low trap energy levels (<0.1 eV) are identified for the two test structures which indicates that the Pt islands themselves are not acting as traps in the PF mechanism. Furthermore, a more than three order of magnitude current density difference is observed between the two geometries. This electrical anisotropy is attributed to a large electron mobility difference in the in-plane and out-of-plane directions which can be related to different trap distributions in both directions.

  17. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  18. Fabrication and structure characterization of te butterfly nanostructures.

    PubMed

    Wong, Tailun; She, Guangwei; Cheng, Chun; Li, Wei; Shi, Wensheng; Zhang, Xiaohong; Wang, Ning

    2011-12-01

    Te nanowires and butterfly nanostructures have been fabricated by template-free electrodeposition (TFED) in aqueous solution. By high-resolution transmission electron microscopy (HRTEM) study, the favored growth directions of the nanowires and the wings of the butterfly nanostructures were determined to be along the [0001] direction of trigonal Te, and the twinning plane of the butterfly nanostructures was (11-22). The cathodoluminescence measurements carried out at different positions of the butterfly nanostructure indicated that the twin boundaries influenced the photoemission efficiency.

  19. Optical Biosensors Based on Semiconductor Nanostructures

    PubMed Central

    Martín-Palma, Raúl J.; Manso, Miguel; Torres-Costa, Vicente

    2009-01-01

    The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented. PMID:22346691

  20. New approach to elaborate exfoliated starch-based nanobiocomposites.

    PubMed

    Chivrac, Frédéric; Pollet, Eric; Schmutz, Marc; Avérous, Luc

    2008-03-01

    The present paper reports the successful elaboration of exfoliated plasticized starch-based nanobiocomposites. This was made possible by using cationic starch as a new clay organomodifier to better match the polarity of the matrix and thus to facilitate the clay exfoliation process. To demonstrate the efficiency of this new approach, either natural (MMT-Na) or organomodified (OMMT-CS) montmorillonite were incorporated into the starch nanobiocomposites by a melt blending process. The morphological analyses (SAXD and TEM) showed that MMT-Na leads to the formation of intercalated nanobiocomposites. On the contrary, OMMT-CS allowed the elaboration of well-exfoliated nanobiocomposites. Tensile tests performed on the obtained nanobiocomposites showed that exfoliated nanobiocomposites display enhanced mechanical properties compared to those of the intercalated nanobiocomposites and neat matrix. These results clearly highlight the great interest in using OMMT-CS to obtain starch-based nanobiocomposites with improved properties.

  1. Further constraints on the Chauvet cave artwork elaboration.

    PubMed

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-05-22

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419-479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908-917]. The presented (36)Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution.

  2. Further constraints on the Chauvet cave artwork elaboration

    NASA Astrophysics Data System (ADS)

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L.; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-05-01

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419-479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908-917]. The presented 36Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution.

  3. Ceramic nanostructures and methods of fabrication

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  4. Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    DOEpatents

    Wang, Zhong L [Marietta, GA; Xu, Sheng [Atlanta, GA

    2011-08-23

    An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.

  5. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

    NASA Astrophysics Data System (ADS)

    Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.

    2017-06-01

    Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.

  6. Plasmonic Nanostructures for Nano-Scale Bio-Sensing

    PubMed Central

    Chung, Taerin; Lee, Seung-Yeol; Song, Eui Young; Chun, Honggu; Lee, Byoungho

    2011-01-01

    The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change. In this paper, we overview various plasmonic nanostructures as potential sensing components. The qualitative descriptions of plasmonic nanostructures are supported by the physical phenomena such as plasmonic hybridization and Fano resonance. We present guidelines for designing specific nanostructures with regard to wavelength range and target sensing materials. PMID:22346679

  7. A mobile precursor determines protein resistance on nanostructured surfaces.

    PubMed

    Wang, Kang; Chen, Ye; Gong, Xiangjun; Xia, Jianlong; Zhao, Junpeng; Shen, Lei

    2018-05-09

    Biomaterials are often engineered with nanostructured surfaces to control interactions with proteins and thus regulate their biofunctions. However, the mechanism of how nanostructured surfaces resist or attract proteins together with the underlying design rules remains poorly understood at a molecular level, greatly limiting attempts to develop high-performance biomaterials and devices through the rational design of nanostructures. Here, we study the dynamics of nonspecific protein adsorption on block copolymer nanostructures of varying adhesive domain areas in a resistant matrix. Using surface plasmon resonance and single molecule tracking techniques, we show that weakly adsorbed proteins with two-dimensional diffusivity are critical precursors to protein resistance on nanostructured surfaces. The adhesive domain areas must be more than tens or hundreds of times those of the protein footprints to slow down the 2D-mobility of the precursor proteins for their irreversible adsorption. This precursor model can be used to quantitatively analyze the kinetics of nonspecific protein adsorption on nanostructured surfaces. Our method is applicable to precisely manipulate protein adsorption and resistance on various nanostructured surfaces, e.g., amphiphilic, low-surface-energy, and charged nanostructures, for the design of protein-compatible materials.

  8. Metallic Nanostructures Based on DNA Nanoshapes

    PubMed Central

    Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A.; Toppari, Jari Jussi

    2016-01-01

    Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects. PMID:28335274

  9. Teaching Mathematical Modelling: Demonstrating Enrichment and Elaboration

    ERIC Educational Resources Information Center

    Warwick, Jon

    2015-01-01

    This paper uses a series of models to illustrate one of the fundamental processes of model building--that of enrichment and elaboration. The paper describes how a problem context is given which allows a series of models to be developed from a simple initial model using a queuing theory framework. The process encourages students to think about the…

  10. The Bidirectional Nature of Narrative Scaffolding: Latino Caregivers' Elaboration While Creating Stories from a Picture Book

    ERIC Educational Resources Information Center

    Schick, Adina R.; Melzi, Gigliana; Obregón, Javanna

    2017-01-01

    Although caregiver narrative elaboration is seen as a critical dimension for children's development of narrative skills, research has yet to show a predictive relation between caregiver elaboration and child outcomes for low-income Latino children. The present study explored whether specific types of narrative elaboration were predicted by and…

  11. Further constraints on the Chauvet cave artwork elaboration

    PubMed Central

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L.; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-01-01

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419–479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908–917]. The presented 36Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution. PMID:22566649

  12. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  13. Prospects of target nanostructuring for laser proton acceleration

    PubMed Central

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-01-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479

  14. Prospects of target nanostructuring for laser proton acceleration.

    PubMed

    Lübcke, Andrea; Andreev, Alexander A; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-14

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  15. Prospects of target nanostructuring for laser proton acceleration

    NASA Astrophysics Data System (ADS)

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  16. A digital acquisition and elaboration system for nuclear fast pulse detection

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Riva, M.; Marocco, D.; Kaschuck, Y.

    2007-03-01

    A new digital acquisition and elaboration system has been developed and assembled in ENEA-Frascati for the direct sampling of fast pulses from nuclear detectors such as scintillators and diamond detectors. The system is capable of performing the digital sampling of the pulses (200 MSamples/s, 14-bit) and the simultaneous (compressed) data transfer for further storage and software elaboration. The design (FPGA-based) is oriented to real-time applications and has been developed in order to allow acquisition with no loss of pulses and data storage for long-time intervals (tens of s at MHz pulse count rates) without the need of large on-board memory. A dedicated pulse analysis software, written in LabVIEWTM, performs the treatment of the acquired pulses, including pulse recognition, pile-up rejection, baseline removal, pulse shape particle separation and pulse height spectra analysis. The acquisition and pre-elaboration programs have been fully integrated with the analysis software.

  17. Complex and oriented ZnO nanostructures.

    PubMed

    Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang

    2003-12-01

    Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

  18. Synthesis and Characterization of Polymer-Metal Nanostructured Membranes

    DTIC Science & Technology

    ions creating unique polymer -metal nanostructured membranes. A comprehensive materials characterization study was performed to understand their...fluoropolymers were also investigated. First the polymer -metal nanostructure of Nafion with several counter-ions was studied upon supercritical fluid CO2...processing. Then, novel fluorinated block copolymers were synthesized using atom transfer radical polymerization (ATRP) and their resulting nanostructure was

  19. Temperature-feedback direct laser reshaping of silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Aouassa, M.; Mitsai, E.; Syubaev, S.; Pavlov, D.; Zhizhchenko, A.; Jadli, I.; Hassayoun, L.; Zograf, G.; Makarov, S.; Kuchmizhak, A.

    2017-12-01

    Direct laser reshaping of nanostructures is a cost-effective and fast approach to create or tune various designs for nanophotonics. However, the narrow range of required laser parameters along with the lack of in-situ temperature control during the nanostructure reshaping process limits its reproducibility and performance. Here, we present an approach for direct laser nanostructure reshaping with simultaneous temperature control. We employ thermally sensitive Raman spectroscopy during local laser melting of silicon pillar arrays prepared by self-assembly microsphere lithography. Our approach allows establishing the reshaping threshold of an individual nanostructure, resulting in clean laser processing without overheating of the surrounding area.

  20. Nanostructures for protein drug delivery.

    PubMed

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  1. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); Kang, Jin Ho (Inventor); Thibeault, Sheila A. (Inventor); Sauti, Godfrey (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  2. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds.

    PubMed

    Mason, Nicholas A; Shultz, Allison J; Burns, Kevin J

    2014-08-07

    The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the 'transfer hypothesis' is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Emerging advances in nanomedicine with engineered gold nanostructures.

    PubMed

    Webb, Joseph A; Bardhan, Rizia

    2014-03-07

    Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.

  4. Emerging advances in nanomedicine with engineered gold nanostructures

    NASA Astrophysics Data System (ADS)

    Webb, Joseph A.; Bardhan, Rizia

    2014-02-01

    Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.

  5. The Relation between Item Identification Difficulty and Elaborative Conceptual Processing for Children and Adults.

    ERIC Educational Resources Information Center

    Ackerman, Brian P.; And Others

    1990-01-01

    Results of four experiments show that developmental differences in elaborative conceptual processing at acquisition and retrieval contribute independently to developmental increases in recall. Item identification processes for both words and pictures constrain children's elaborative processing. The constraints are time limited. (RH)

  6. Supporting Students' Knowledge Construction and Self-Regulation through the Use of Elaborative Processing Strategies

    ERIC Educational Resources Information Center

    Sperling, Rayne A.; Ramsay, Crystal M.; Reeves, Philip M.; Follmer, D. Jake; Richmond, Aaron S.

    2016-01-01

    Theoretical and empirical support for the benefits of elaborative strategy instruction for middle level students is highlighted. Consistent with the "Keys of Educating Young Adolescents," teaching elaborative strategies enhances academic achievement, engages learners, and empowers students' future independent learning. A transactional…

  7. Functionalization of DNA Nanostructures for Cell Signaling Applications

    NASA Astrophysics Data System (ADS)

    Pedersen, Ronnie O.

    Transforming growth factor beta (TGF-beta) is an important cytokine responsible for a wide range of different cellular functions including extracellular matrix formation, angiogenesis and epithelial-mesenchymal transition. We have sought to use self-assembling DNA nanostructures to influence TGF-beta signaling. The predictable Watson Crick base pairing allows for designing self-assembling nanoscale structures using oligonucleotides. We have used the method of DNA origami to assemble structures functionalized with multiple peptides that bind TGF-beta receptors outside the ligand binding domain. This allows the nanostructures to cluster TGF-beta receptors and lower the energy barrier of ligand binding thus sensitizing the cells to TGF-beta stimulation. To prove efficacy of our nanostructures we have utilized immunofluorescent staining of Smad2/4 in order to monitor TGF-beta mediated translocation of Smad2/4 to the cell nucleus. We have also utilized Smad2/4 responsive luminescence constructs that allows us to quantify TGF-beta stimulation with and without nanostructures. To functionalize our nanostructures we relied on biotin-streptavidin linkages. This introduces a multivalency that is not necessarily desirable in all designs. Therefore we have investigated alternative means of functionalization. The first approach is based on targeting DNA nanostructure by using zinc finger binding proteins. Efficacy of zinc finger binding proteins was assayed by the use of enzyme-linked immunosorbent (ELISA) assay and atomic force microscopy (AFM). While ELISA indicated a relative specificity of zinc finger proteins for target DNA sequences AFM showed a high degree of non-specific binding and insufficient affinity. The second approach is based on using peptide nucleic acid (PNA) incorporated in the nanostructure through base pairing. PNA is a synthetic DNA analog consisting of a backbone of repeating N-(2-aminoethyl)-glycine units to which purine and pyrimidine bases are linked by

  8. Antireflective nanostructures for CPV

    NASA Astrophysics Data System (ADS)

    Buencuerpo, Jeronimo; Torne, Lorena; Alvaro, Raquel; Llorens, Jose Manuel; Dotor, María Luisa; Ripalda, Jose Maria

    2017-09-01

    We have optimized a periodic antireflective nanostructure. The optimal design has a theoretical broadband reflectivity of 0.54% on top of GaInP with an AlInP window layer. Preliminary fabrication attempts have been carried out on top of GaAs substrates. Due to the lack of a window layer, and the need to fine tune the fabrication process, the fabricated nanostructures have a reflectivity of 3.1%, but this is already significantly lower than the theoretical broadband reflectance of standard MgF2/ZnS bilayers (4.5%).

  9. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  10. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    NASA Astrophysics Data System (ADS)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-11-01

    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  11. Elaborative retrieval: Do semantic mediators improve memory?

    PubMed

    Lehman, Melissa; Karpicke, Jeffrey D

    2016-10-01

    The elaborative retrieval account of retrieval-based learning proposes that retrieval enhances retention because the retrieval process produces the generation of semantic mediators that link cues to target information. We tested 2 assumptions that form the basis of this account: that semantic mediators are more likely to be generated during retrieval than during restudy and that the generation of mediators facilitates later recall of targets. Although these assumptions are often discussed in the context of retrieval processes, we noted that there was little prior empirical evidence to support either assumption. We conducted a series of experiments to measure the generation of mediators during retrieval and restudy and to examine the effect of the generation of mediators on later target recall. Across 7 experiments, we found that the generation of mediators was not more likely during retrieval (and may be more likely during restudy), and that the activation of mediators was unrelated to subsequent free recall of targets and was negatively related to cued recall of targets. The results pose challenges for both assumptions of the elaborative retrieval account. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    PubMed

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    DOEpatents

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  14. Elaborative Talk during and after an Event: Conversational Style Influences Children's Memory Reports

    ERIC Educational Resources Information Center

    Hedrick, Amy M.; Haden, Catherine A.; Ornstein, Peter A.

    2009-01-01

    An experimental design was utilized to examine the effects of elaborative talk during and/or after an event on children's event memory reports. Sixty preschoolers were assigned randomly to one of four conditions that varied according to a researcher's use of high- or low- elaborative during- and/or post-event talk about a camping event. In a…

  15. One‐Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications

    PubMed Central

    Liang, Longyue; Kang, Xueliang

    2016-01-01

    One‐dimensional (1D) ferroelectric nanostructures, such as nanowires, nanorods, nanotubes, nanobelts, and nanofibers, have been studied with increasing intensity in recent years. Because of their excellent ferroelectric, ferroelastic, pyroelectric, piezoelectric, inverse piezoelectric, ferroelectric‐photovoltaic (FE‐PV), and other unique physical properties, 1D ferroelectric nanostructures have been widely used in energy‐harvesting devices, nonvolatile random access memory applications, nanoelectromechanical systems, advanced sensors, FE‐PV devices, and photocatalysis mechanisms. This review summarizes the current state of 1D ferroelectric nanostructures and provides an overview of the synthesis methods, properties, and practical applications of 1D nanostructures. Finally, the prospects for future investigations are outlined. PMID:27812477

  16. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths

    PubMed Central

    Symonds, Matthew RE; Johnson, Tamara L; Elgar, Mark A

    2012-01-01

    The males of some species of moths possess elaborate feathery antennae. It is widely assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically released in minute quantities. Accordingly, females of species in which males have elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce the smallest quantities of pheromone. Alternatively, antennal morphology may be associated with the chemical properties of the pheromone components, with elaborate antennae being associated with pheromones that diffuse more quickly (i.e., have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence more elaborate antennae. We conducted a phylogenetic comparative analysis to test these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing length), which suggests a biological cost that smaller moth species cannot bear. Body size is also positively correlated with pheromone titre and negatively correlated with population abundance (estimated by male abundance). Removing the effects of body size revealed no association between the shape of antennae and either pheromone titre, male abundance, or mean molecular weight of the pheromone components. However, among species with elaborate antennae, longer antennae were typically associated with lower male abundances and pheromone compounds with lower molecular weight, suggesting that male distribution and a more rapidly diffusing female sex pheromone may influence the size but not the general shape of male antennae. PMID:22408739

  17. Differential-associative processing or example elaboration: Which strategy is best for learning the definitions of related and unrelated concepts?

    PubMed

    Hannon, Brenda

    2012-10-01

    Definitions of related concepts (e.g., genotype - phenotype ) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts ( morpheme-fluid intelligence ), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts.

  18. Differential-associative processing or example elaboration: Which strategy is best for learning the definitions of related and unrelated concepts?

    PubMed Central

    Hannon, Brenda

    2013-01-01

    Definitions of related concepts (e.g., genotype–phenotype) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts (morpheme-fluid intelligence), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts. PMID:24347814

  19. Formation of organized nanostructures from unstable bilayers of thin metallic liquids

    NASA Astrophysics Data System (ADS)

    Khenner, Mikhail; Yadavali, Sagar; Kalyanaraman, Ramki

    2011-12-01

    Dewetting of pulsed-laser irradiated, thin (<20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.

  20. Antibacterial Au nanostructured surfaces.

    PubMed

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-07

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.

  1. Elaboration and Autonomy Support in Low-Income Mothers' Reminiscing: Links to Children's Autobiographical Narratives

    ERIC Educational Resources Information Center

    Leyva, Diana; Reese, Elaine; Grolnick, Wendy; Price, Carrie

    2008-01-01

    Maternal elaboration and autonomy support during reminiscing facilitate middle-class children's autobiographical narrative skills. In this study, low-income Hispanic, White, and Black mothers' elaboration and autonomy support in reminiscing were examined in relation to children's joint and independent autobiographical narratives and engagement.…

  2. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO(2 )and ZnO.

    PubMed

    Mershin, Andreas; Matsumoto, Kazuya; Kaiser, Liselotte; Yu, Daoyong; Vaughn, Michael; Nazeeruddin, Md K; Bruce, Barry D; Graetzel, Michael; Zhang, Shuguang

    2012-01-01

    The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth's energy cycle. It is the central molecule in the "Z-scheme" of photosynthesis, converting sunlight into the chemical energy of life. Commandeering this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally friendly solar power. We here report that dry PS-I stabilized by surfactant peptides functioned as both the light-harvester and charge separator in solar cells self-assembled on nanostructured semiconductors. Contrary to previous attempts at biophotovoltaics requiring elaborate surface chemistries, thin film deposition, and illumination concentrated into narrow wavelength ranges the devices described here are straightforward and inexpensive to fabricate and perform well under standard sunlight yielding open circuit photovoltage of 0.5 V, fill factor of 71%, electrical power density of 81 µW/cm(2) and photocurrent density of 362 µA/cm(2), over four orders of magnitude higher than any photosystem-based biophotovoltaic to date.

  3. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO

    PubMed Central

    Mershin, Andreas; Matsumoto, Kazuya; Kaiser, Liselotte; Yu, Daoyong; Vaughn, Michael; Nazeeruddin, Md. K.; Bruce, Barry D.; Graetzel, Michael; Zhang, Shuguang

    2012-01-01

    The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth’s energy cycle. It is the central molecule in the “Z-scheme” of photosynthesis, converting sunlight into the chemical energy of life. Commandeering this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally friendly solar power. We here report that dry PS-I stabilized by surfactant peptides functioned as both the light-harvester and charge separator in solar cells self-assembled on nanostructured semiconductors. Contrary to previous attempts at biophotovoltaics requiring elaborate surface chemistries, thin film deposition, and illumination concentrated into narrow wavelength ranges the devices described here are straightforward and inexpensive to fabricate and perform well under standard sunlight yielding open circuit photovoltage of 0.5 V, fill factor of 71%, electrical power density of 81 µW/cm2 and photocurrent density of 362 µA/cm2, over four orders of magnitude higher than any photosystem-based biophotovoltaic to date. PMID:22355747

  4. Melanin-templated rapid synthesis of silver nanostructures

    PubMed Central

    2014-01-01

    Background As a potent antimicrobial agent, silver nanostructures have been used in nanosensors and nanomaterial-based assays for the detection of food relevant analytes such as organic molecules, aroma, chemical contaminants, gases and food borne pathogens. In addition silver based nanocomposites act as an antimicrobial for food packaging materials. In this prospective, the food grade melanin pigment extracted from sponge associated actinobacterium Nocardiopsis alba MSA10 and melanin mediated synthesis of silver nanostructures were studied. Based on the present findings, antimicrobial nanostructures can be developed against food pathogens for food industrial applications. Results Briefly, the sponge associated actinobacterium N. alba MSA10 was screened and fermentation conditions were optimized for the production of melanin pigment. The Plackett-Burman design followed by a Box-Behnken design was developed to optimize the concentration of most significant factors for improved melanin yield. The antioxidant potential, reductive capabilities and physiochemical properties of Nocardiopsis melanin was characterized. The optimum production of melanin was attained with pH 7.5, temperature 35°C, salinity 2.5%, sucrose 25 g/L and tyrosine 12.5 g/L under submerged fermentation conditions. A highest melanin production of 3.4 mg/ml was reached with the optimization using Box-Behnken design. The purified melanin showed rapid reduction and stabilization of silver nanostructures. The melanin mediated process produced uniform and stable silver nanostructures with broad spectrum antimicrobial activity against food pathogens. Conclusions The melanin pigment produced by N. alba MSA10 can be used for environmentally benign synthesis of silver nanostructures and can be useful for food packaging materials. The characteristics of broad spectrum of activity against food pathogens of silver nanostructures gives an insight for their potential applicability in incorporation of food

  5. Hierarchically nanostructured materials for sustainable environmental applications

    PubMed Central

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  6. Measuring Strong Nanostructures

    ScienceCinema

    Andy Minor

    2017-12-09

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  7. Self-assembled bionanostructures: proteins following the lead of DNA nanostructures

    PubMed Central

    2014-01-01

    Natural polymers are able to self-assemble into versatile nanostructures based on the information encoded into their primary structure. The structural richness of biopolymer-based nanostructures depends on the information content of building blocks and the available biological machinery to assemble and decode polymers with a defined sequence. Natural polypeptides comprise 20 amino acids with very different properties in comparison to only 4 structurally similar nucleotides, building elements of nucleic acids. Nevertheless the ease of synthesizing polynucleotides with selected sequence and the ability to encode the nanostructural assembly based on the two specific nucleotide pairs underlay the development of techniques to self-assemble almost any selected three-dimensional nanostructure from polynucleotides. Despite more complex design rules, peptides were successfully used to assemble symmetric nanostructures, such as fibrils and spheres. While earlier designed protein-based nanostructures used linked natural oligomerizing domains, recent design of new oligomerizing interaction surfaces and introduction of the platform for topologically designed protein fold may enable polypeptide-based design to follow the track of DNA nanostructures. The advantages of protein-based nanostructures, such as the functional versatility and cost effective and sustainable production methods provide strong incentive for further development in this direction. PMID:24491139

  8. Nanostructured transparent conducting oxide electrochromic device

    DOEpatents

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  9. Adaptive genetic complementarity in mate choice coexists with selection for elaborate sexual traits

    PubMed Central

    Oh, Kevin P; Badyaev, Alexander V

    2006-01-01

    Choice of genetically unrelated mates is widely documented, yet it is not known how self-referential mate choice can co-occur with commonly observed directional selection on sexual displays. Across 10 breeding seasons in a wild bird population, we found strong fitness benefits of matings between genetically unrelated partners and show that self-referential choice of genetically unrelated mates alternates with sexual selection on elaborate plumage. Seasonal cycles of diminishing variation in ornamentation, caused by early pairing of the most elaborated males, and influx of increasingly genetically unrelated available mates caused by female-biased dispersal, lead to temporal fluctuations in the target of mate choice and enabled coexistence of directional selection for ornament elaboration with adaptive pairing of genetically unrelated partners. PMID:16822752

  10. The Physics and Applications of a 3D Plasmonic Nanostructure

    NASA Astrophysics Data System (ADS)

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  11. Microwave-Assisted Green Synthesis of Silver Nanostructures

    EPA Science Inventory

    This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...

  12. Effects of Emotion and Emotional Valence on the Neural Correlates of Episodic Memory Search and Elaboration

    PubMed Central

    Ford, Jaclyn H.; Morris, John A.; Kensinger, Elizabeth A.

    2015-01-01

    Successful retrieval of an event includes an initial search phase in which the information is accessed and a subsequent elaboration phase in which an individual expands on event details. Traditionally, functional neuroimaging studies examining episodic memory retrieval either have not made a distinction between these two phases or have focused on the initial search process. The current study used an extended retrieval trial to compare the neural correlates of search and elaboration and to examine the effects of emotion on each phase. Prior to scanning, participants encoded positive, negative, and neutral images paired with neutral titles. After a thirty-minute delay, participants engaged in a scanned recognition task in which they viewed the neutral titles and indicated whether the title had been presented with an image during the study phase. Retrieval was divided into an initial memory search and a subsequent five-second elaboration phase. The current study identified neural differences between the search and elaboration phases, with search being associated with widespread bilateral activations across the entire cortex and elaboration primarily being associated with increased activity in the medial prefrontal cortex. The emotionality of the retrieval target was more influential during search relative to elaboration. However, valence influenced when the effect of emotion was greatest, with search engaging many more regions for positive events than negative ones, but elaboration engaging the dorsomedial prefrontal cortex more for negative events than positive events. PMID:24283491

  13. Cue Strength as a Moderator of the Testing Effect: The Benefits of Elaborative Retrieval

    ERIC Educational Resources Information Center

    Carpenter, Shana K.

    2009-01-01

    The current study explored the elaborative retrieval hypothesis as an explanation for the testing effect: the tendency for a memory test to enhance retention more than restudying. In particular, the retrieval process during testing may activate elaborative information related to the target response, thereby increasing the chances that activation…

  14. Engineered Metallic Nanostructures: Fabrication, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Bohloul, Arash

    Metallic nanostructures have garnered a great deal of attention due to their fascinating optical properties, which differ from the bulk metal. They have been proven to exceed expectations in wide variety of applications including chemical and biological sensing. Nevertheless, high-throughput and low cost nanofabrication techniques are required to implant metallic nanostructures in widespread applications. With that vision, this thesis presents a versatile and reliable method for scalable fabrication of gold nanostructures. In this approach, a plasma-treated ordered array of polystyrene nanospheres acts as an initial mask. The key step in this process is the vapor-deposition of nickel as a sacrificial mask. Thereby, gold nanostructures are directly formed on the substrate through the nickel mask. This is an easy, powerful, and straightforward method that offers several degrees of freedom to precisely control the shape and size of nanostructures. We made a library of nanostructures including gold nanocrescents, double crescents, nanorings, and nanodisks with the ability to tune the size in the range of 150 to 650 nm. The fabricated nanostructures are highly packed and uniformly cover the centimeter scale substrate. The optical properties of metallic nanostructures were extensively studied by a combination of UV-Vis-NIR and Fourier transform infrared (FTIR) spectroscopies, and correlation between optical response and geometrical parameters were investigated. In the next part of this thesis, highly sensitive surface enhanced infrared absorption (SEIRA) analysis was demonstrated on gold nanocrescent arrays. Theoretical modeling was confirmed that these substrates provide highly dense and strong hot-spots over the substrate, which is required for surface enhanced spectroscopic studies. Gold nanocrescent arrays exhibit highly tunable plasmon resonance to cover desired molecular vibrational bands. These substrates experimentally illustrated 3 orders of magnitude

  15. Enhanced photoluminescence of Alq3 via patterned array silver dendritic nanostructures

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Hsiu; Hsieh, Ming-Hao; Lo, Shih-Shou

    2012-04-01

    Various silver nanostructures, semi-ball, jungle, and dendritic, are demonstrated by an electrical deposition process. The formation of silver nanostructures with various morphologies is studied by the mechanism of the diffusion limited aggregation (DLA) model. A array pattern of silver nanostructures can be obtained when the conductive substrate was used in a uniform electrical filed. A thickness 500 nm of Alq3 thin-film was covered on the silver nanostructure by thermal evaporation method. The strongest intensity of Alq3 green emission was observed when the pattern-array dendritic silver nanostructure was covered by Alq3. It can be explained with the plasmonic coupling due to the Alq3 and dendritic nanostructure. The result can help us to further application the patterned-array silver dendritic nanostructure for advanced opto-electronic device.

  16. Imagery Based Elaboration as an Index of EMR Children's Creativity and Incidental Associative Learning.

    ERIC Educational Resources Information Center

    Greeson, Larry E.; Vane, Raymond J.

    1986-01-01

    Educable mentally retarded (EMR) 13- to 15-year-olds (N=19) and matched mental-age comparison subjects (N=22) participated in an imagery-based, associative learning pictorial elaboration task, followed by a delayed test of incidental learning. Both groups were able to generate original elaborations, although fluency and incidental learning scores…

  17. Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices.

    PubMed

    Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong

    2016-05-01

    Integrating devices with nanostructures is considered a promising strategy to improve the performance of solar energy harvesting devices such as photovoltaic (PV) devices and photo-electrochemical (PEC) solar water splitting devices. Extensive efforts have been exerted to improve the power conversion efficiencies (PCE) of such devices by utilizing novel nanostructures to revolutionize device structural designs. The thicknesses of light absorber and material consumption can be substantially reduced because of light trapping with nanostructures. Meanwhile, the utilization of nanostructures can also result in more effective carrier collection by shortening the photogenerated carrier collection path length. Nevertheless, performance optimization of nanostructured solar energy harvesting devices requires a rational design of various aspects of the nanostructures, such as their shape, aspect ratio, periodicity, etc. Without this, the utilization of nanostructures can lead to compromised device performance as the incorporation of these structures can result in defects and additional carrier recombination. The design guidelines of solar energy harvesting devices are summarized, including thin film non-uniformity on nanostructures, surface recombination, parasitic absorption, and the importance of uniform distribution of photo-generated carriers. A systematic view of the design concerns will assist better understanding of device physics and benefit the fabrication of high performance devices in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  19. Maternal Elaborative Reminiscing Mediates the Effect of Child Maltreatment on Behavioral and Physiological Functioning

    PubMed Central

    Valentino, Kristin; Hibel, Leah C; Cummings, E. Mark; Nuttall, Amy K.; Comas, Michelle; McDonnell, Christina G.

    2016-01-01

    Theoretical and empirical evidence suggest that the way in which parents discuss everyday emotional experiences with their young children (i.e., elaborative reminiscing) has significant implications for child cognitive and socio-emotional functioning, and that maltreating parents have a particularly difficult time in engaging in this type of dialogue. This dyadic interactional exchange, therefore, has the potential to be an important process variable linking child maltreatment to developmental outcomes at multiple levels of analysis. The current investigation evaluated the role of maternal elaborative reminiscing in associations between maltreatment and child cognitive, emotional, and physiological functioning. Participants included 43 maltreated and 49 nonmaltreated children (aged 3–6) and their mothers. Dyads participated in a joint reminiscing task about four past emotional events, and children participated in assessments of receptive language and emotion knowledge. Child salivary cortisol was also collected from children three times a day (waking, midday, and bedtime) on two consecutive days to assess daily levels and diurnal decline. Results indicated that maltreating mothers engaged in significantly less elaborative reminiscing than nonmaltreating mothers. Maternal elaborative reminiscing mediated associations between child maltreatment and child receptive language and child emotion knowledge. Additionally, there was support for an indirect pathway between child maltreatment and child cortisol diurnal decline through maternal elaborative reminiscing. Directions for future research are discussed and potential clinical implications are addressed. PMID:26535941

  20. Electrode Nanostructures in Lithium-Based Batteries.

    PubMed

    Mahmood, Nasir; Hou, Yanglong

    2014-12-01

    Lithium-based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium-based (Li-ion, Li-air and Li-S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium-based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures.

  1. Nanostructured sensors for biomedical applications--a current perspective.

    PubMed

    Krishnamoorthy, Sivashankar

    2015-08-01

    Nanostructured sensors have unique capabilities that can be tailored to advantage in advancing the diagnosis, monitoring and cure of several diseases and health conditions. This report aims at providing a current perspective on, (a) the emerging clinical needs that defines the challenges to be addressed by nanostructured sensors, with specific emphasis on early stage diagnosis, drug-diagnostic combinations, and predictive models to design therapy, (b) the emerging industry trends in in vitro diagnostics, mobile health care, high-throughput molecular and cell-based diagnostic platforms, and (c) recent instances of nanostructured biosensors, including promising sensing concepts that can be enhanced using nanostructures that carry high promise towards catering to the emerging clinical needs, as well as the market/industry trends. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. PREFACE: Nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  3. Reconceptualizing Social Influence in Counseling: The Elaboration Likelihood Model.

    ERIC Educational Resources Information Center

    McNeill, Brian W.; Stoltenberg, Cal D.

    1989-01-01

    Presents Elaboration Likelihood Model (ELM) of persuasion (a reconceptualization of the social influence process) as alternative model of attitude change. Contends ELM unifies conflicting social psychology results and can potentially account for inconsistent research findings in counseling psychology. Provides guidelines on integrating…

  4. Stimulation of inorganic pyrophosphate elaboration by cultured cartilage and chondrocytes.

    PubMed

    Ryan, L M; Kurup, I; Rosenthal, A K; McCarty, D J

    1989-08-01

    Inorganic pyrophosphate elaboration by articular cartilage may favor calcium pyrophosphate dihydrate crystal deposition. Frequently crystal deposits form in persons affected with metabolic diseases. The cartilage organ culture system was used to model these metabolic conditions while measuring the influence on extracellular pyrophosphate elaboration. Alterations of ambient pH, thyroid stimulating hormone levels, and parathyroid hormone levels did not change pyrophosphate accumulation in the media. However, subphysiologic ambient calcium concentrations (25, 100, 500 microM) increased pyrophosphate accumulation about chondrocytes 3- to 10-fold. Low calcium also induced release of [14C]adenine-labeled nucleotides from chondrocytes, potential substrates for generation of extracellular pyrophosphate by ectoenzymes. Exposing cartilage to 10% fetal bovine serum also enhanced by 50% the egress of inorganic pyrophosphate from the tissue.

  5. Elaborative processing in the Korsakoff syndrome: context versus habit.

    PubMed

    Van Damme, Ilse; d'Ydewalle, Géry

    2008-07-01

    Using a procedure of Hay and Jacoby [Hay, J. F., & Jacoby, L. L. (1999). Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness. Psychology and Aging, 14, 122-134], Korsakoff patients' capacity to encode and retrieve elaborative, semantic information was investigated. Habits were created during initial training, whereupon cued-recall memory performance was examined, with habit opposing as well as facilitating recollection of earlier studied words. A first group of patients was instructed and tested in the same way as healthy controls and showed poor test performance. Nevertheless, when given more processing and response time, additional explanation, and explicit encouragement, a second group of patients performed similarly to healthy controls. The results suggest that, when given adequate support, Korsakoff patients are able to encode and make use of semantic, contextual, and sequential information. Word distinctiveness, however, only influenced performance of controls.

  6. DNA origami compliant nanostructures with tunable mechanical properties.

    PubMed

    Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E

    2014-01-28

    DNA origami enables fabrication of precise nanostructures by programming the self-assembly of DNA. While this approach has been used to make a variety of complex 2D and 3D objects, the mechanical functionality of these structures is limited due to their rigid nature. We explore the fabrication of deformable, or compliant, objects to establish a framework for mechanically functional nanostructures. This compliant design approach is used in macroscopic engineering to make devices including sensors, actuators, and robots. We build compliant nanostructures by utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles of double-stranded DNA into bent geometries whose curvature and mechanical properties can be tuned by controlling the length of ssDNA strands. We demonstrate an ability to achieve a wide range of geometries by adjusting a few strands in the nanostructure design. We further developed a mechanical model to predict both geometry and mechanical properties of our compliant nanostructures that agrees well with experiments. Our results provide a basis for the design of mechanically functional DNA origami devices and materials.

  7. Does the benefit of testing depend on lag, and if so, why? Evaluating the elaborative retrieval hypothesis.

    PubMed

    Rawson, Katherine A; Vaughn, Kalif E; Carpenter, Shana K

    2015-05-01

    Despite the voluminous literatures on testing effects and lag effects, surprisingly few studies have examined whether testing and lag effects interact, and no prior research has directly investigated why this might be the case. To this end, in the present research we evaluated the elaborative retrieval hypothesis (ERH) as a possible explanation for why testing effects depend on lag. Elaborative retrieval involves the activation of cue-related information during the long-term memory search for the target. If the target is successfully retrieved, this additional information is encoded with the cue-target pair to yield a more elaborated memory trace that enhances target access on a later memory test. The ERH states that the degree of elaborative retrieval during practice is greater when testing takes place after a long rather than a short lag (whereas elaborative retrieval during restudy is minimal at either lag). Across two experiments, final-test performance was greater following practice testing than following restudy only, and this memorial advantage was greater with long-lag than with short-lag practice. The final test also included novel cue conditions used to diagnose the degree of elaborative retrieval during practice. The overall pattern of performance in these conditions provided consistent evidence for the ERH, with more extensive elaborative retrieval during long- than during short-lag practice testing.

  8. Sulfated Glycopeptide Nanostructures for Multipotent Protein Activation

    PubMed Central

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp, Samuel I.

    2017-01-01

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with very different polysaccharide binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signaling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than expected. These super-bioactive nanostructures may enable many therapies in the horizon involving proteins. PMID:28650443

  9. Sulfated glycopeptide nanostructures for multipotent protein activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptidemore » nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.« less

  10. Controllable fabrication of copper phthalocyanine nanostructure crystals.

    PubMed

    Liu, Fangmei; Sun, Jia; Xiao, Si; Huang, Wenglong; Tao, Shaohua; Zhang, Yi; Gao, Yongli; Yang, Junliang

    2015-06-05

    Copper phthalocyanine (CuPc) nanostructure crystals, including nanoflower, nanoribbon, and nanowire, were controllably fabricated by temperature gradient physical vapor deposition (TG-PVD) through controlling the growth parameters. In a controllable growth system with carrier gas N2, nanoflower, nanoribbon, and nanowire crystals were formed in a high-temperature zone, medium-temperature zone, and low-temperature zone, respectively. They were proved to be β-phase, coexist of α-phase and β-phase, and α-phase respectively based on x-ray diffraction results. Furthermore, ultralong CuPc nanowires up to several millimeters could be fabricated by TG-PVD without carrier gas, and they were well-aligned to form large-area CuPc nanowire crystal arrays by the Langmuir-Blodgett method. The nanostructure crystals showed unusual optical absorption spectra from the ultraviolet-visible to near-infrared range, which was explained by the diffraction and scattering caused by the wavelength-sized nanostructures. These CuPc nanostructure crystals show potential applications in organic electronic and optoelectronic devices.

  11. ZnO Nanostructures for Tissue Engineering Applications

    PubMed Central

    Laurenti, Marco; Cauda, Valentina

    2017-01-01

    This review focuses on the most recent applications of zinc oxide (ZnO) nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair. PMID:29113133

  12. Biological activity and photostability of biflorin micellar nanostructures.

    PubMed

    Santana, Edson R B; Ferreira-Neto, João P; Yara, Ricardo; Sena, Kêsia X F R; Fontes, Adriana; Lima, Cláudia S A

    2015-05-13

    Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  13. The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation.

    PubMed

    Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus

    2018-03-19

    Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.

  14. Gold nanostructures and methods of use

    DOEpatents

    Zhang, Jin Z [Santa Cruz, CA; Schwartzberg, Adam [Santa Cruz, CA; Olson, Tammy Y [Santa Cruz, CA

    2012-03-20

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  15. Gold nanostructures and methods of use

    DOEpatents

    Zhang, Jin Z.; Schwartzberg, Adam; Olson, Tammy Y.

    2016-03-01

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  16. Learning from Science Text: Role of an Elaborate Analogy. Reading Research Report No. 71.

    ERIC Educational Resources Information Center

    Glynn, Shawn M.

    A study examined the role that an elaborate analogy can play when high school students learn a concept from a leading science textbook. The elaborate analogy had graphic and text components that integrated and mapped key features from the analogy (a factory) to the target concept (an animal cell). The target features were parts of the cell and, by…

  17. Electrode Nanostructures in Lithium‐Based Batteries

    PubMed Central

    Mahmood, Nasir

    2014-01-01

    Lithium‐based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium‐based (Li‐ion, Li‐air and Li‐S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium‐based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures. PMID:27980896

  18. Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices.

    PubMed

    Kumar, S; Dhar, A

    2016-07-20

    Organometal halide perovskite materials are presently some of the pacesetters for light harvesting in hybrid photovoltaic devices because of their excellent inherent electrical and optical properties. However, long-term durability of such perovskite materials remains a major bottleneck for their commercialization especially in countries with hot and humid climatic conditions, thus violating the international standards for photovoltaic technology. Albeit, TiO2 as an electron-transport layer has been well investigated for perovskite solar cells; the high-temperature processing makes it unsuitable for low-cost and large-scale roll-to-roll production of flexible photovoltaic devices. Herein, we have chosen low-temperature (<150 °C)-processable nanostructured ZnO as the electron-selective layer and used a two-step method for sensitizing ZnO nanorods with methylammonium lead iodide (MAPbI3) perovskite, which is viable for flexible photovoltaic devices. We have also elaborately addressed the effect of the annealing duration on the conversion of a precursor solution into the required perovskite phase on ZnO nanostructures. The investigations show that the presence of ZnO nanostructures accelerates the rate of degradation of MAPbI3 films under ambient annealing and thus requires proper optimization. The role of ZnO in enhancing the degradation kinetics of the perovskite layer has been investigated by X-ray photoelectron spectroscopy and a buffer layer passivation technique. The effect of the annealing duration of the MAPbI3 perovskite on the optical, morphological, and compositional behavior has been closely studied and correlated with the photovoltaic efficiency. The study captures the degradation behavior of the commercially interesting MAPbI3 perovskite on a ZnO electron-transport layer and thus can provide insight for developing alternative families of perovskite material with better thermal and environmental stability for application in low-cost flexible photovoltaic

  19. Theoretical investigation on the magnetostatic interaction between two wire-tube nanostructures

    NASA Astrophysics Data System (ADS)

    Riveros, A.; Salazar-Aravena, D.; Escrig, J.

    2017-04-01

    In this paper we have calculated analytically the magnetostatic interaction between two wire-tube nanostructures as a function of their magnetic and geometric parameters. As expected, the interaction energy increases as the nanostructures approach, but interestingly when the nanostructures are close enough, a non-monotonic behavior with the wire-tube portions is reported. Besides, we investigate the hysteresis loop for two interacting Ni81Fe19 wire-tube nanostructures by micromagnetic simulations in order to study how the interaction affects the magnetic properties of these nanostructures. This work allows for the study of magnetostatic interactions between wire-tube nanostructures that have been proposed as an interesting alternative to store information or even perform logic functions, because to their ability to pin a domain wall.

  20. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures.

    PubMed

    Xi, Guangcheng; Liu, Yankuan; Liu, Xiaoyan; Wang, Xiaoqing; Qian, Yitai

    2006-07-27

    In this article, a novel magnesium-catalyzed co-reduction route was developed for the large-scale synthesis of aligned beta-SiC one-dimensional (1D) nanostructures at relative lower temperature (600 degrees C). By carefully controlling the reagent concentrations, we could synthesize beta-SiC rodlike and needlelike nanostructures. The possible growth mechanism of the as-synthesized beta-SiC 1D nanostructures has been investigated. The structure and morphology of the as-synthesized beta-SiC nanostructures are characterized using X-ray diffraction, Fourier transform infrared absorption, and scanning and transmission electron microscopes. Raman and photoluminescence properties are also investigated at room temperature. The as-synthesized beta-SiC nanostructures exhibit strong shape-dependent field emission properties. Corresponding to their shapes, the as-synthesized nanorods and nanoneedles display the turn-on fields of 12, 8.4, and 1.8 V/microm, respectively.

  1. Integration of Nanostructures into Microsensor Devices on Whole Wafers

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin M.; Evans, Laura J.; Berger, Gordon M.; Hunter, Gary W.

    2015-01-01

    Chemical sensors are used in a wide variety of applications, such as environmental monitoring, fire detection, emission monitoring, and health monitoring. The fabrication of chemical sensors involving nanostructured materials holds the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently are limited in the ability to control their location on the sensor, which in turn hinders the progress for batch fabrication. This report discusses the advantages of using nanomaterials in sensor designs, some of the challenges encountered with the integration of nanostructures into microsensor / devices, and then briefly describes different methods attempted by other groups to address this issue. Finally, this report will describe how our approach for the controlled alignment of nanostructures onto a sensor platform was applied to demonstrate an approach for the mass production of sensors with nanostructures.

  2. Extraction of three-dimensional silver nanostructures with supercritical fluid

    NASA Astrophysics Data System (ADS)

    Taguchi, Natsuo; Takeyasu, Nobuyuki; Kawata, Satoshi

    2018-02-01

    In a previous report, a self-growing approach was proposed for fabricating complex silver nanostructures, where silver dendrites were grown at silver nanoseeds in silver ion solution owing to plasmonic heating with ultraviolet light. Structures were deformed or destroyed when they were extracted with acetone and dried in air. In this Letter, we discuss the use of supercritical carbon dioxide fluid for the nondestructive extraction of nanostructures. We show the experimental results and discuss the laser power dependence of resultant structures. Another experiment was performed for nanostructure growth inside an agarose gel as a matrix. Silver nanostructures were immobilized without damage in an agarose skeleton network.

  3. Tradeoff between robustness and elaboration in carotenoid networks produces cycles of avian color diversification.

    PubMed

    Badyaev, Alexander V; Morrison, Erin S; Belloni, Virginia; Sanderson, Michael J

    2015-08-20

    Resolution of the link between micro- and macroevolution calls for comparing both processes on the same deterministic landscape, such as genomic, metabolic or fitness networks. We apply this perspective to the evolution of carotenoid pigmentation that produces spectacular diversity in avian colors and show that basic structural properties of the underlying carotenoid metabolic network are reflected in global patterns of elaboration and diversification in color displays. Birds color themselves by consuming and metabolizing several dietary carotenoids from the environment. Such fundamental dependency on the most upstream external compounds should intrinsically constrain sustained evolutionary elongation of multi-step metabolic pathways needed for color elaboration unless the metabolic network gains robustness - the ability to synthesize the same carotenoid from an additional dietary starting point. We found that gains and losses of metabolic robustness were associated with evolutionary cycles of elaboration and stasis in expressed carotenoids in birds. Lack of metabolic robustness constrained lineage's metabolic explorations to the immediate biochemical vicinity of their ecologically distinct dietary carotenoids, whereas gains of robustness repeatedly resulted in sustained elongation of metabolic pathways on evolutionary time scales and corresponding color elaboration. The structural link between length and robustness in metabolic pathways may explain periodic convergence of phylogenetically distant and ecologically distinct species in expressed carotenoid pigmentation; account for stasis in carotenoid colors in some ecological lineages; and show how the connectivity of the underlying metabolic network provides a mechanistic link between microevolutionary elaboration and macroevolutionary diversification.

  4. Fabrication of Ordered Blue Nanostructure by Anodization of an Aluminum Plate

    NASA Astrophysics Data System (ADS)

    Kurashima, Yuichi; Yokota, Yoshihiko; Miyamoto, Iwao; Itatani, Taro

    2007-03-01

    Colors in organisms are created by chemical interactions of molecular pigments and by optical interactions of incident light with biological nanostructures. The latter classes are called structural colors and form an important component of the phenotypes of many animals and even some plants. In this paper, we report on the fabrication of an ordered blue nanostructure by the anodization of an Al plate. In the fabrication of such an ordered nanostructure by the anodization of an Al plate, ordered nanostructures with a pitch and an alumina thickness of approximately 100 nm were produced on the Al plate. The ordered nanostructures on the Al plate showed no colors. However, an ordered nanostructure deposited with a Pt thin film with a thickness of approximately 10 nm showed a blue reflection with a peak reflectivity of approximately 370 nm. We conclude that this blue nanostructure on the Al plate is caused by an interference between the Al surface and the Pt surface.

  5. Current Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication

    PubMed Central

    Chen, Cailing

    2016-01-01

    Along with the development of science and technology, lanthanide‐doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, such as weak background interference, long lifetime, low excitation energy, and strong tissue penetration. These interesting nanostructures can be applied in anticounterfeit, solar cell, detection, bioimaging, therapy, and so on. This review is focused on the current advances in lanthanide‐doped upconversion nanostructures, covering not only basic luminescence mechanism, synthesis, and modification methods but also the design and fabrication of upconversion nanostructures, like core–shell nanoparticles or nanocomposites. At last, this review emphasizes the application of upconversion nanostructure in detection and bioimaging and therapy. Learning more about the advances of upconversion nanostructures can help us better exploit their excellent performance and use them in practice. PMID:27840794

  6. Addressing the instability of DNA nanostructures in tissue culture.

    PubMed

    Hahn, Jaeseung; Wickham, Shelley F J; Shih, William M; Perrault, Steven D

    2014-09-23

    DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg(2+)-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg(2+) to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable

  7. Terminating DNA Tile Assembly with Nanostructured Caps.

    PubMed

    Agrawal, Deepak K; Jiang, Ruoyu; Reinhart, Seth; Mohammed, Abdul M; Jorgenson, Tyler D; Schulman, Rebecca

    2017-10-24

    Precise control over the nucleation, growth, and termination of self-assembly processes is a fundamental tool for controlling product yield and assembly dynamics. Mechanisms for altering these processes programmatically could allow the use of simple components to self-assemble complex final products or to design processes allowing for dynamic assembly or reconfiguration. Here we use DNA tile self-assembly to develop general design principles for building complexes that can bind to a growing biomolecular assembly and terminate its growth by systematically characterizing how different DNA origami nanostructures interact with the growing ends of DNA tile nanotubes. We find that nanostructures that present binding interfaces for all of the binding sites on a growing facet can bind selectively to growing ends and stop growth when these interfaces are presented on either a rigid or floppy scaffold. In contrast, nucleation of nanotubes requires the presentation of binding sites in an arrangement that matches the shape of the structure's facet. As a result, it is possible to build nanostructures that can terminate the growth of existing nanotubes but cannot nucleate a new structure. The resulting design principles for constructing structures that direct nucleation and termination of the growth of one-dimensional nanostructures can also serve as a starting point for programmatically directing two- and three-dimensional crystallization processes using nanostructure design.

  8. Team-Based Learning: Moderating Effects of Metacognitive Elaborative Rehearsal and Middle School History Content Recall

    ERIC Educational Resources Information Center

    Roberts, Greg; Scammacca, Nancy; Osman, David J.; Hall, Colby; Mohammed, Sarojani S.; Vaughn, Sharon

    2014-01-01

    Promoting Acceleration of Comprehension and Content through Text (PACT) and similar team-based models directly engage and support students in learning situations that require cognitive elaboration as part of the processing of new information. Elaboration is subject to metacognitive control, as well (Karpicke, "Journal of Experimental…

  9. The Effects of Elaboration and Rehearsal on Long-Term Retention of Shape Names by Kindergarteners

    ERIC Educational Resources Information Center

    Gallimore, Ronald; And Others

    1977-01-01

    Elaboration and overt rehearsal are compared as instructional paradigms for memory retention. Superior long-term retention was produced in the elaboration condition when the initial acquisition effects were statistically removed. Short-term data suggest acquisition was complexly affected by experimental condition, I.Q., and task. Elaboration…

  10. Fabrication of photocatalytically active vanadium oxide nanostructures via plasma route

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Yoshida, Tomoko; Ohno, Noriyasu; Ichino, Yusuke; Yoshida, Naoaki

    2018-05-01

    Plasma irradiation was used to create nanostructured vanadium oxide with potential commercial and industrial applications. Morphology changes were induced at the nano- and micro-meter scale, accompanied by the growth of helium nanobubbles. Micrometer-sized pillars, cube-shaped nanostructures, and fuzzy fiberform nanostructures were grown on the surface; the necessary conditions in terms of the incident ion energy and the surface temperature for those morphology changes were revealed. Hydrogen production experiments using a photocatalytic reaction with aqueous methanol solution were conducted on the fabricated samples. Enhanced H2 production was confirmed with the plasma irradiated nanostructured sample that had been oxidized in air atmosphere. Photocatalytically inactive vanadium oxide exhibited a high photocatalytic activity after nanostructurization of the surface by helium plasma irradiation.

  11. Formation of superhydrophobic/superhydrophilic patterns by combination of nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide for biological droplet generation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Shimizu, Kazunori; Kaizuma, Yoshihiro; Konishi, Satoshi

    2011-03-01

    In this letter, we report a technology for fabricating superhydrophobic/superhydrophilic patterns using a combination of a nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide. In our previous study, we used a combination of hydrophobic and superhydrophilic materials. However, it was difficult to split low-surface-tension liquids such as biological liquids into droplets solely using hydrophobic/hydrophilic patterns. In this study, the contact angle of the hydrophobic region was enhanced from 109.3° to 155.6° by performing nanostructure imprinting on a damage-reduced perfluoropolymer. The developed superhydrophobic/superhydrophilic patterns allowed the splitting of even those media that contained fetal bovine serum into droplets of a desired shape.

  12. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  13. Processing of Nanostructured Devices Using Microfabrication Techniques

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C (Inventor); Kulis, Michael H (Inventor); Berger, Gordon M (Inventor); Hunter, Gary W (Inventor); Vander Wal, Randall L (Inventor); Evans, Laura J (Inventor)

    2014-01-01

    Systems and methods that incorporate nanostructures into microdevices are discussed herein. These systems and methods can allow for standard microfabrication techniques to be extended to the field of nanotechnology. Sensors incorporating nanostructures can be fabricated as described herein, and can be used to reliably detect a range of gases with high response.

  14. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  15. One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues

    PubMed Central

    Choi, Kyoung Jin; Jang, Ho Won

    2010-01-01

    In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which were usually fabricated using electron-beam lithography, have been a platform technology for fundamental research. Recently, gas sensors with practical applicability were proposed, which were fabricated with an array of 1D nanostructures using scalable micro-fabrication tools. In the second part of the paper, some critical issues are pointed out including long-term stability, gas selectivity, and room-temperature operation of 1D-nanostructure-based metal-oxide gas sensors. PMID:22319343

  16. Method and apparatus for ion sequestration and a nanostructured metal phosphate

    DOEpatents

    Mattigod, Shas V [Richland, WA; Fryxell, Glen E [Kennewic, WA; Li, Xiaohong [Richland, WA; Parker, Kent E [Kennewick, WA; Wellman, Dawn M [West Richland, WA

    2010-04-06

    A nanostructured substance, a process for sequestration of ionic waste, and an ion-sequestration apparatus are disclosed in the specification. The nanostructured substance can comprise a Lewis acid transition metal bound to a phosphate, wherein the phosphate comprises a primary structural component of the substance and the Lewis acid transition metal is a reducing agent. The nanostructured substance has a Brunner-Emmet-Teller (BET) surface area greater than or equal to approximately 100 m.sup.2/g, and a distribution coefficient for an analyte, K.sub.d, greater than or equal to approximately 5000 ml/g. The process can comprise contacting a fluid and a nanostructured metal phosphate. The apparatus can comprise a vessel and a nanostructured metal phosphate. The vessel defines a volume wherein a fluid contacts the nanostructured metal phosphate.

  17. Antibacterial Carbon Nanotubes by Impregnation with Copper Nanostructures

    NASA Astrophysics Data System (ADS)

    Palza, Humberto; Saldias, Natalia; Arriagada, Paulo; Palma, Patricia; Sanchez, Jorge

    2017-08-01

    The addition of metal-based nanoparticles on carbon nanotubes (CNT) is a relevant method producing multifunctional materials. In this context, CNT were dispersed in an ethanol/water solution containing copper acetate for their impregnation with different copper nanostructures by either a non-thermal or a thermal post-synthesis treatment. Our simple method is based on pure CNT in an air atmosphere without any other reagents. Particles without thermal treatment were present as a well-dispersed layered copper hydroxide acetate nanostructures on CNT, as confirmed by scanning and transmission (TEM) electron microscopies, and showing a characteristic x-ray diffraction peak at 6.6°. On the other hand, by thermal post-synthesis treatment at 300°C, these layered nanostructures became Cu2O nanoparticles of around 20 nm supported on CNT, as confirmed by TEM images and x-ray diffraction peaks. These copper nanostructures present on the CNT surface rendered antibacterial behavior to the resulting hybrid materials against both Staphylococcus aureus and Escherichia coli. These findings present for the first time a simple method for producing antibacterial CNT by direct impregnation of copper nanostructures.

  18. Cellular processing and destinies of artificial DNA nanostructures.

    PubMed

    Lee, Di Sheng; Qian, Hang; Tay, Chor Yong; Leong, David Tai

    2016-08-07

    Since many bionanotechnologies are targeted at cells, understanding how and where their interactions occur and the subsequent results of these interactions is important. Changing the intrinsic properties of DNA nanostructures and linking them with interactions presents a holistic and powerful strategy for understanding dual nanostructure-biological systems. With the recent advances in DNA nanotechnology, DNA nanostructures present a great opportunity to understand the often convoluted mass of information pertaining to nanoparticle-biological interactions due to the more precise control over their chemistry, sizes, and shapes. Coupling just some of these designs with an understanding of biological processes is both a challenge and a source of opportunities. Despite continuous advances in the field of DNA nanotechnology, the intracellular fate of DNA nanostructures has remained unclear and controversial. Because understanding its cellular processing and destiny is a necessary prelude to any rational design of exciting and innovative bionanotechnology, in this review, we will discuss and provide a comprehensive picture relevant to the intracellular processing and the fate of various DNA nanostructures which have been remained elusive for some time. We will also link the unique capabilities of DNA to some novel ideas for developing next-generation bionanotechnologies.

  19. Recycled diesel carbon nanoparticles for nanostructured battery anodes

    NASA Astrophysics Data System (ADS)

    Chen, Yuming; Liu, Chang; Sun, Xiaoxuan; Ye, Han; Cheung, Chunshun; Zhou, Limin

    2015-02-01

    Considerable attention has been devoted to using rational nanostructure design to address critical carbonaceous anode material issues for next-generation lithium-ion batteries (LIBs). However, the fabrication of nanostructured carbonaceous anode materials often involves complex processes and expensive starting materials. Diesel engine is an important source of nanostructured carbon particles with diameters ranging 20 nm-60 nm suspended in air, resulting in a serious scourge of global climate and a series of diseases such as lung cancer, asthma, and cardiovascular disease. Here, we show that diesel carbon nanoparticles collected from diesel engines can be chemically activated to create a porous structure. The resulting nanostructured carbon electrodes have a high specific capacity of 936 mAh g-1 after 40 cycles at 0.05 A/g, and excellent cycle stability while retaining a capacity of ∼210 mAh g-1 after 1200 cycles at 5 A/g. As recycled diesel carbon nanoparticles are readily available due to the several billion tons of diesel fuel consumed every year by diesel engines, their use represents an exciting source for nanostructured carbonaceous anode materials for high-performance LIBs and improves our environment and health.

  20. Understanding the biological responses of nanostructured metals and surfaces

    NASA Astrophysics Data System (ADS)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  1. In Vitro Selection of pH-Activated DNA Nanostructures.

    PubMed

    Fong, Faye Yi; Oh, Seung Soo; Hawker, Craig J; Soh, H Tom

    2016-12-05

    We report the first in vitro selection of DNA nanostructures that switch their conformation when triggered by change in pH. Previously, most pH-active nanostructures were designed using known pH-active motifs, such as the i-motif or the triplex structure. In contrast, we performed de novo selections starting from a random library and generated nanostructures that can sequester and release Mipomersen, a clinically approved antisense DNA drug, in response to pH change. We demonstrate extraordinary pH-selectivity, releasing up to 714-fold more Mipomersen at pH 5.2 compared to pH 7.5. Interestingly, none of our nanostructures showed significant sequence similarity to known pH-sensitive motifs, suggesting that they may operate via novel structure-switching mechanisms. We believe our selection scheme is general and could be adopted for generating DNA nanostructures for many applications including drug delivery, sensors and pH-active surfaces. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nanostructures Exploit Hybrid-Polariton Resonances

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    Nanostructured devices that exploit the hybrid-polariton resonances arising from coupling among photons, phonons, and plasmons are subjects of research directed toward the development of infrared-spectroscopic sensors for measuring extremely small quantities of molecules of interest. The spectroscopic techniques in question are surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption (SEIRA). An important intermediate goal of this research is to increase the sensitivity achievable by these techniques. The basic idea of the approach being followed in this research is to engineer nanostructured devices and thereby engineer their hybrid-polariton resonances to concentrate infrared radiation incident upon their surfaces in such a manner as to increase the absorption of the radiation for SEIRA and measure the frequency shifts of surface vibrational modes. The underlying hybrid-polariton-resonance concept is best described by reference to experimental devices that have been built and tested to demonstrate the concept. The nanostructure of each such device includes a matrix of silicon carbide particles of approximately 1 micron in diameter that are supported on a potassium bromide (KBr) or poly(tetrafluoroethylene) [PTFE] window. These grains are sputter-coated with gold grains of 40-nm size (see figure). From the perspective of classical electrodynamics, in this nanostructure, that includes a particulate or otherwise rough surface, the electric-field portion of an incident electromagnetic field becomes concentrated on the particles when optical resonance conditions are met. Going beyond the perspective of classical electrodynamics, it can be seen that when the resonance frequencies of surface phonons and surface plasmons overlap, the coupling of the resonances gives rise to an enhanced radiation-absorption or -scattering mechanism. The sizes, shapes, and aggregation of the particles determine the frequencies of the resonances. Hence, the task of

  3. Electron transport theory in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Choy, Tat-Sang

    Magnetic nanostructure has been a new trend because of its application in making magnetic sensors, magnetic memories, and magnetic reading heads in hard disks drives. Although a variety of nanostructures have been realized in experiments in recent years by innovative sample growth techniques, the theoretical study of these devices remain a challenge. On one hand, atomic scale modeling is often required for studying the magnetic nanostructures; on the other, these structures often have a dimension on the order of one micrometer, which makes the calculation numerically intensive. In this work, we have studied the electron transport theory in magnetic nanostructures, with special attention to the giant magnetoresistance (GMR) structure. We have developed a model that includes the details of the band structure and disorder, both of which are both important in obtaining the conductivity. We have also developed an efficient algorithm to compute the conductivity in magnetic nanostructures. The model and the algorithm are general and can be applied to complicated structures. We have applied the theory to current-perpendicular-to-plane GMR structures and the results agree with experiments. Finally, we have searched for the atomic configuration with the highest GMR using the simulated annealing algorithm. This method is computationally intensive because we have to compute the GMR for 103 to 104 configurations. However it is still very efficient because the number of steps it takes to find the maximum is much smaller than the number of all possible GMR structures. We found that ultra-thin NiCu superlattices have surprisingly large GMR even at the moderate disorder in experiments. This finding may be useful in improving the GMR technology.

  4. Elaborated Corrective Feedback and the Acquisition of Reasoning Skills: A Study of Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Collins, Maria; And Others

    1987-01-01

    Thirteen learning disabled and 15 remedial high school students were taught reasoning skills using computer-assisted instruction and were given basic or elaborated corrections. Criterion-referenced test scores were significantly higher for the elaborated-corrections treatment on the post- and maintenance tests and on a transfer test assessing…

  5. Recent patents on perovskite ferroelectric nanostructures.

    PubMed

    Zhu, Xinhua

    2009-01-01

    Ferroelectric oxide materials with a perovskite structure have promising applications in electronic devices such as random access memories, sensors, actuators, infrared detectors, and so on. Recent advances in science and technology of ferroelectrics have resulted in the feature sizes of ferroelectric-based electronic devices entering into nanoscale dimensions. At nanoscale perovskite ferroelectric materials exhibit a pronounced size effect manifesting itself in a significant deviation of the properties of low-dimensional structures from the bulk and film counterparts. One-dimensional perovskite ferroelectric nanotube/nanowire systems, offer fundamental scientific opportunities for investigating the intrinsic size effects in ferroelectrics. In the past several years, much progress has been made both in fabrication and physical property testing of perovskite ferroelectric nanostructures. In the first part of this paper, the recent patents and literatures for fabricating ferroelectric nanowires, nanorods, nanotubes, and nanorings with promising features, are reviewed. The second part deals with the recent advances on the physical property testing of perovskite ferroelectric nanostructures. The third part summarizes the recently patents and literatures about the microstructural characterizations of perovskite ferroelectric nanostructures, to improve their crystalline quality, morphology and uniformity. Finally, we conclude this review with personal perspectives towards the potential future developments of perovskite ferroelectric nanostructures.

  6. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    PubMed Central

    Wang, Yiran; Wei, Huige; Lu, Yang; Wei, Suying; Wujcik, Evan K.; Guo, Zhanhu

    2015-01-01

    Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials.These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples. PMID:28347034

  7. Carbon Nanostructures in Bone Tissue Engineering

    PubMed Central

    Perkins, Brian Lee; Naderi, Naghmeh

    2016-01-01

    Background: Recent advances in developing biocompatible materials for treating bone loss or defects have dramatically changed clinicians’ reconstructive armory. Current clinically available reconstructive options have certain advantages, but also several drawbacks that prevent them from gaining universal acceptance. A wide range of synthetic and natural biomaterials is being used to develop tissue-engineered bone. Many of these materials are currently in the clinical trial stage. Methods: A selective literature review was performed for carbon nanostructure composites in bone tissue engineering. Results: Incorporation of carbon nanostructures significantly improves the mechanical properties of various biomaterials to mimic that of natural bone. Recently, carbon-modified biomaterials for bone tissue engineering have been extensively investigated to potentially revolutionize biomaterials for bone regeneration. Conclusion: This review summarizes the chemical and biophysical properties of carbon nanostructures and discusses their functionality in bone tissue regeneration. PMID:28217212

  8. Effect of nanoholes on the plasmonic properties of star nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Shaoli; Whittaker, Andrew K.; Blakey, Idriss

    2011-12-01

    The transmission and localized electric field distribution of nanostructures are the most important parameters in the plasmonic field for nano-optics and nanobiosensors. In this paper, we propose a novel nanostructure which may be used for nanobiosensor applications. The effect of nanoholes on the plasmonic properties of star nanostructure was studied via numerical simulation, using the finite-difference time-domain (FDTD) method. In the model, the material type and size of the nanostructures was fixed, but the distance between the monotor and the surface of the nanoholes was varied. For example, nanoholes were located in the center of the nanostructures. The simulation method was as follows. Initially, the wavelength of incident light was varied from 400 to 1200 nm and the transmission spectrum and the electric field distribution were simulated. Then at the resonance wavelength (wavelength where the transmission spectrum has a minimum), the localized electric field distribution was calculated at different distances from the surface of the nanostructures. This study shows that the position of nanoholes has a significant effect on the transmission and localized electric field distribution of star nanostructures. The condition for achieving the maximum localized electric field distribution can be used in nano-optics and nanobiosensors in the future.

  9. Dendrimer-magnetic nanostructure: a Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.

    2017-11-01

    In this paper, the magnetic properties of ternary mixed spins (σ,S,q) Ising model on a dendrimer nanostructure are studied using Monte Carlo simulations. The ground state phase diagrams of dendrimer nanostructure with ternary mixed spins σ = 1/2, S = 1 and q = 3/2 Ising model are found. The variation of the thermal total and partial magnetizations with the different exchange interactions, the external magnetic fields and the crystal fields have been also studied. The reduced critical temperatures have been deduced. The magnetic hysteresis cycles have been discussed. In particular, the corresponding magnetic coercive filed values have been deduced. The multiples hysteresis cycles are found. The dendrimer nanostructure has several applications in the medicine.

  10. Biomimetic gyroid nanostructures exceeding their natural origins.

    PubMed

    Gan, Zongsong; Turner, Mark D; Gu, Min

    2016-05-01

    Using optical two-beam lithography with improved resolution and enhanced mechanical strength, we demonstrate the replication of gyroid photonic nanostructures found in the butterfly Callophrys rubi. These artificial structures are shown to have size, controllability, and uniformity that are superior to those of their biological counterparts. In particular, the elastic Young's modulus of fabricated nanowires is enhanced by up to 20%. As such, the circular dichroism enabled by the gyroid nanostructures can operate in the near-ultraviolet wavelength region, shorter than that supported by the natural butterfly wings of C. rubi. This fabrication technique provides a unique tool for extracting three-dimensional photonic designs from nature and will aid the investigation of biomimetic nanostructures.

  11. Biomimetic gyroid nanostructures exceeding their natural origins

    PubMed Central

    Gan, Zongsong; Turner, Mark D.; Gu, Min

    2016-01-01

    Using optical two-beam lithography with improved resolution and enhanced mechanical strength, we demonstrate the replication of gyroid photonic nanostructures found in the butterfly Callophrys rubi. These artificial structures are shown to have size, controllability, and uniformity that are superior to those of their biological counterparts. In particular, the elastic Young’s modulus of fabricated nanowires is enhanced by up to 20%. As such, the circular dichroism enabled by the gyroid nanostructures can operate in the near-ultraviolet wavelength region, shorter than that supported by the natural butterfly wings of C. rubi. This fabrication technique provides a unique tool for extracting three-dimensional photonic designs from nature and will aid the investigation of biomimetic nanostructures. PMID:27386542

  12. Prediction of electrocatalytic activity of boron nanostructures

    NASA Astrophysics Data System (ADS)

    Owens, Frank J.

    2018-01-01

    The dissociation of O2 and HO2 are important reactions that occur at the cathode of fuel cells producing H2O and use platinum as a catalyst. There is a need to replace platinum with less expensive catalysts. Here the possibility of boron nanostructures as catalysts for the reactions is considered using density functional theory. The calculations show that the bond dissociation energies to remove O and OH from O2 and O2H bonded to boron nanostructures are less than those necessary to dissociate free O2 and O2H indicating that some of the boron nanostructures could be catalysts for the dissociation of O2 and HO2.

  13. Production of fullerenic nanostructures in flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    1999-01-01

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  14. Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haopeng; Zhu, Yihua, E-mail: yhzhu@ecust.edu.cn; Cao, Huimin

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► The TiO{sub 2}-CDs nanostructured fibers are fabricated by using APS combining the electrospinning TiO{sub 2} nanostructured fibers and CDs. ► The CD can work as a photosensitizer in the degradation of rhodamine B under visible light irradiation. ► The TiO{sub 2}-CDs nanostructured fibers exhibit enhanced photocatalytic efficiency and can be easily handled and recycled. -- Abstract: The carbon dots (CDs) are new functional carbon-aceous materials. Compared to conventional dye molecules and semiconductor quantum dots, CDs are superior in chemical inertness and low toxicity. The TiO{sub 2}-CDs nanostructured fibers were fabricated by combining the electrospinningmore » technique and reflux method. Compared with the pure TiO{sub 2} nanostructured fibers and P25, the TiO{sub 2}-CDs nanostructured fibers exhibited enhanced photocatalytic efficiency of photodegradation of rhodamine B (RhB) under visible light irradiation. The enhanced photocatalytic activity of TiO{sub 2}-CDs nanostructured fibers could be attributed to the presence of CDs embedded in TiO{sub 2} nanostructured fibers. The CD can work as a photosensitizer in the degradation. Furthermore, the TiO{sub 2}-CDs nanostructured fibers could be easily handled and recycled due to their one-dimensional nanostructural property.« less

  15. Structure and Electronic Properties of Interface-Confined Oxide Nanostructures

    DOE PAGES

    Liu, Yun; Ning, Yanxiao; Yu, Liang; ...

    2017-09-16

    The controlled fabrication of nanostructures has often made use of a substrate template to mediate and control the growth kinetics. Electronic substrate-mediated interactions have been demonstrated to guide the assembly of organic molecules or the nucleation of metal atoms but usually at cryogenic temperatures, where the diffusion has been limited. Combining STM, STS, and DFT studies, we report that the strong electronic interaction between transition metals and oxides could indeed govern the growth of low-dimensional oxide nanostructures. As a demonstration, a series of FeO triangles, which are of the same structure and electronic properties but with different sizes (side lengthmore » >3 nm), are synthesized on Pt(111). The strong interfacial interaction confines the growth of FeO nanostructures, leading to a discrete size distribution and a uniform step structure. Given the same interfacial configuration, as-grown FeO nanostructures not only expose identical edge/surface structure but also exhibit the same electronic properties, as manifested by the local density of states and local work functions. We expect the interfacial confinement effect can be generally applied to control the growth of oxide nanostructures on transition metal surfaces. These oxide nanostructures of the same structure and electronic properties are excellent models for studies of nanoscale effects and applications.« less

  16. Structure and Electronic Properties of Interface-Confined Oxide Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Ning, Yanxiao; Yu, Liang

    The controlled fabrication of nanostructures has often made use of a substrate template to mediate and control the growth kinetics. Electronic substrate-mediated interactions have been demonstrated to guide the assembly of organic molecules or the nucleation of metal atoms but usually at cryogenic temperatures, where the diffusion has been limited. Combining STM, STS, and DFT studies, we report that the strong electronic interaction between transition metals and oxides could indeed govern the growth of low-dimensional oxide nanostructures. As a demonstration, a series of FeO triangles, which are of the same structure and electronic properties but with different sizes (side lengthmore » >3 nm), are synthesized on Pt(111). The strong interfacial interaction confines the growth of FeO nanostructures, leading to a discrete size distribution and a uniform step structure. Given the same interfacial configuration, as-grown FeO nanostructures not only expose identical edge/surface structure but also exhibit the same electronic properties, as manifested by the local density of states and local work functions. We expect the interfacial confinement effect can be generally applied to control the growth of oxide nanostructures on transition metal surfaces. These oxide nanostructures of the same structure and electronic properties are excellent models for studies of nanoscale effects and applications.« less

  17. Bottom-up multiferroic nanostructures

    NASA Astrophysics Data System (ADS)

    Ren, Shenqiang

    Multiferroic and especially magnetoelectric (ME) nanocomposites have received extensive attention due to their potential applications in spintronics, information storage and logic devices. The extrinsic ME coupling in composites is strain mediated via the interface between the piezoelectric and magnetostrictive components. However, the design and synthesis of controlled nanostructures with engineering enhanced coupling remain a significant challenge. The purpose of this thesis is to create nanostructures with very large interface densities and unique connectivities of the two phases in a controlled manner. Using inorganic solid state phase transformations and organic block copolymer self assembly methodologies, we present novel self assembly "bottom-up" techniques as a general protocol for the nanofabrication of multifunctional devices. First, Lead-Zirconium-Titanate/Nickel-Ferrite (PZT/NFO) vertical multilamellar nanostructures have been produced by crystallizing and decomposing a gel in a magnetic field below the Curie temperature of NFO. The ensuing microstructure is nanoscopically periodic and anisotropic. The wavelength of the PZT/NFO alternation, 25 nm, agrees within a factor of two with the theoretically estimated value. The macroscopic ferromagnetic and magnetoelectric responses correspond qualitatively and semi-quantitatively to the features of the nanostructure. The maximum of the field dependent magnetoelectric susceptibility equals 1.8 V/cm Oe. Second, a magnetoelectric composite with controlled nanostructures is synthesized using co-assembly of two inorganic precursors with a block copolymer. This solution processed material consists of hexagonally arranged ferromagnetic cobalt ferrite (CFO) nano-cylinders within a matrix of ferroelectric Lead-Zirconium-Titanate (PZT). The initial magnetic permeability of the self-assembled CFO/PZT nanocomposite changes by a factor of 5 through the application of 2.5 V. This work may have significant impact on the

  18. CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyson, D.; Laboratorio de Ensino de Ciencias, DME Universidade Federal da Paraiba, PB; Volanti, D.P.

    This letter reports the synthesis of CuO urchin-nanostructures by a simple and novel hydrothermal microwave method. The formation and growth of urchin-nanostructures is mainly affected by the addition of polyethylene glycol (PEG). The hierarchical malachite particles are uniform spheres with a diameter of 0.7-1.9 {mu}m. CuO urchin-nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FEG-SEM) and nitrogen adsorption (BET). The specific surface area of the CuO nanostructured microspheres was about 170.5 m{sup 2}/g. A possible mechanism for the formation of such CuO urchin-nanostructures is proposed.

  19. Hydrothermal synthesis of alpha- and beta-HgS nanostructures

    NASA Astrophysics Data System (ADS)

    Galain, Isabel; María, Pérez Barthaburu; Ivana, Aguiar; Laura, Fornaro

    2017-01-01

    We synthesized HgS nanostructures by the hydrothermal method in order to use them as electron acceptors in hybrid organic-inorganic solar cells. We employed different mercury sources (HgO and Hg(CH3COO)2) and polyvinylpyrrolidone (PVP) or hexadecanethiol (HDT) as stabilizing/capping agent for controlling size, crystallinity, morphology and stability of the obtained nanostructures. We also used thiourea as sulfur source, and a temperature of 180 °C during 6 h. Synthesized nanostructures were characterized by powder X-Ray Diffraction, Diffuse Reflectance Infrared Fourier Transform and Transmission Electron Microscopy. When PVP acts as stabilizing agent, the mercury source has influence on the size -but not in morphology- of the beta-HgS obtained nansostructures. HDT has control over nanostructures' size and depending on the relation Hg:HDT, we obtained a mixture of alpha and beta HgS which can be advantageous in the application in solar cells, due their absorption in different spectral regions. The smallest nanostructures obtained have a mean diameter of 20 nm when using HDT as capping agent. Also, we deposited the aforementioned nanostructures onto flat glass substrates by the spin coating technique as a first approach of an active layer of a solar cell. The depositions were characterized by atomic force microscopy. We obtained smaller particle deposition and higher particle density -but a lower area coverage (5%) - in samples with HDT as capping agent. This work presents promising results on nanostructures for future application on hybrid solar cells. Further efforts will be focused on the deposition of organic-inorganic layers.

  20. Factors influencing public risk-benefit considerations of nanotechnology: Assessing the effects of mass media, interpersonal communication, and elaborative processing.

    PubMed

    Ho, Shirley S; Scheufele, Dietram A; Corley, Elizabeth A

    2013-07-01

    This study examines the influence of mass media, interpersonal communication, and elaborative processing on public perception of benefits and risks of nanotechnology, based on a large-scale nationally representative telephone survey of U.S. adult citizens. Results indicate that cognitive processes in the form of news elaboration had a significant positive main effect on benefits outweigh risks perception. The influences of attention to science in newspapers, attention to science news on television, and interpersonal communication about science on public perception of benefits outweigh risks were moderated by elaborative processing, after controlling for socio-demographic variables, religious beliefs, trust in scientists, and scientific knowledge. The findings highlight the importance of elaborative processing when it comes to understanding how the mass media differentially influence public benefits outweigh risks perception of emerging technologies. Specifically, high elaborative processing emphasizes higher levels of perceived benefits outweigh risks than low elaborative processing. This study explores explanations for this phenomenon and offers implications for future research and policy.

  1. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    PubMed

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally

  2. Two-Dimensional Nanostructure- Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering

    PubMed Central

    Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Lin, Liangjun; Kasper, F. Kurtis; Qin, Yi-Xian; Mikos, Antonios G.; Sitharaman, Balaji

    2013-01-01

    This study investigates the efficacy of two dimensional (2D) carbon and inorganic nanostructures as reinforcing agents of crosslinked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multi-walled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum di-sulfite nanoplatelets (MSNPs) at 0.01–0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multi-walled carbon nanotubes (SWCNT, MWCNT) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35–108%, compressive yield strength = 26–93%, flexural modulus = 15–53%, and flexural yield strength = 101–262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNPs nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNPs showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2-D nanostructures (GONP, MSNP) are better reinforcing agents compared to 1-D nanostructures (e.g. SWCNTs). The results also indicate that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicates good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01–0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1–0.2 wt%). The analysis of surface area and aspect ratio of

  3. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  4. Nanostructured cerium oxide: preparation, characterization, and application in energy and environmental catalysis

    DOE PAGES

    Tang, Wen-Xiang; Gao, Pu-Xian

    2016-11-10

    Nanostructured cerium oxide (CeO 2) with outstanding physical and chemical properties has attracted extensive interests over the past few decades in environment and energy-related applications. With controllable synthesis of nanostructured CeO 2, much more features were technologically brought out from defect chemistry to structure-derived effects. This paper highlights recent progress on the synthesis and characterization of nanostructured ceria-based materials as well as the traditional and new applications. Specifically, several typical applications based on the desired ceria nanostructures are focused to showcase the importance of nanostructure-derived effects. Moreover, some challenges and perspectives on the nanostructured ceria are presented, such as defectsmore » controlling and retainment, scale-up fabrication, and monolithic devices. Hopefully, this paper can provide an improved understanding of nanostructured CeO 2 and offer new opportunities to promote the further research and applications in the future.« less

  5. Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering.

    PubMed

    Zhu, Zhendong; Li, Qunqing; Bai, Benfeng; Fan, Shoushan

    2014-01-13

    To date, fabricating three-dimensional (3D) nanostructured substrate with small nanogap was a laborious challenge by conventional fabrication techniques. In this article, we address a simple, low-cost, large-area, and spatially controllable method to fabricate 3D nanostructures, involving hemisphere, hemiellipsoid, and pyramidal pits based on nanosphere lithography (NSL). These 3D nanostructures were used as surface-enhanced Raman scattering (SERS) substrates of single Rhodamine 6G (R6G) molecule. The average SERS enhancement factor achieved up to 1011. The inevitably negative influence of the adhesion-promoting intermediate layer of Cr or Ti was resolved by using such kind of 3D nanostructures. The nanostructured quartz substrate is a free platform as a SERS substrate and is nondestructive when altering with different metal films and is recyclable, which avoids the laborious and complicated fabricating procedures.

  6. Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering

    PubMed Central

    2014-01-01

    To date, fabricating three-dimensional (3D) nanostructured substrate with small nanogap was a laborious challenge by conventional fabrication techniques. In this article, we address a simple, low-cost, large-area, and spatially controllable method to fabricate 3D nanostructures, involving hemisphere, hemiellipsoid, and pyramidal pits based on nanosphere lithography (NSL). These 3D nanostructures were used as surface-enhanced Raman scattering (SERS) substrates of single Rhodamine 6G (R6G) molecule. The average SERS enhancement factor achieved up to 1011. The inevitably negative influence of the adhesion-promoting intermediate layer of Cr or Ti was resolved by using such kind of 3D nanostructures. The nanostructured quartz substrate is a free platform as a SERS substrate and is nondestructive when altering with different metal films and is recyclable, which avoids the laborious and complicated fabricating procedures. PMID:24417892

  7. Self-formation of polymer nanostructures in plasma etching: mechanisms and applications

    NASA Astrophysics Data System (ADS)

    Du, Ke; Jiang, Youhua; Huang, Po-Shun; Ding, Junjun; Gao, Tongchuan; Choi, Chang-Hwan

    2018-01-01

    In recent years, plasma-induced self-formation of polymer nanostructures has emerged as a simple, scalable and rapid nanomanufacturing technique to pattern sub-100 nm nanostructures. High-aspect-ratio nanostructures (>20:1) are fabricated on a variety of polymer surfaces such as poly(methylmethacrylate) (PMMA), polystyrene (PS), polydimethylsiloxane (PDMS), and fluorinated ethylene propylene (FEP). Sub-100 nm nanostructures (i.e. diameter  ⩽  50 nm) are fabricated in this one-step process without relying on slow and expensive nanolithography techniques. This review starts with discussion of the self-formation mechanisms including surface modulation, random masks, and materials impurities. Emphasis is put on the applications of polymer nanostructures in the fields of hierarchical nanostructures, liquid repellence, adhesion, lab-on-a-chip, surface enhanced Raman scattering (SERS), organic light emitting diode (OLED), and energy harvesting. The unique advantages of this nanomanufacturing technique are illustrated, followed by prospects.

  8. Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions.

    PubMed

    El-Said, Ayman S; Wilhelm, Richard A; Heller, Rene; Sorokin, Michael; Facsko, Stefan; Aumayr, Friedrich

    2016-09-16

    Slow highly charged ions have been utilized recently for the creation of monotype surface nanostructures (craters, calderas, or hillocks) in different materials. In the present study, we report on the ability of slow highly charged xenon ions (^{129}Xe^{Q+}) to form three different types of nanostructures on the LiF(100) surface. By increasing the charge state from Q=15 to Q=36, the shape of the impact induced nanostructures changes from craters to hillocks crossing an intermediate stage of caldera structures. A dimensional analysis of the nanostructures reveals an increase of the height up to 1.5 nm as a function of the potential energy of the incident ions. Based on the evolution of both the geometry and size of the created nanostructures, defect-mediated desorption and the development of a thermal spike are utilized as creation mechanisms of the nanostructures at low and high charge states, respectively.

  9. (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures.

    PubMed

    Ahmadi, Yasaman; De Llano, Elisa; Barišić, Ivan

    2018-04-26

    DNA nanostructures hold immense potential to be used for biological and medical applications. However, they are extremely vulnerable towards salt depletion and nucleases, which are common under physiological conditions. In this contribution, we used chitosan and linear polyethyleneimine for coating and long-term stabilization of several three-dimensional DNA origami nanostructures. The impact of the degree of polymerization and the charge density of the polymer together with the N/P charge ratio (ratio of the amines in polycations to the phosphates in DNA) on the stability of encapsulated DNA origami nanostructures in the presence of nucleases and in low-salt media was examined. The polycation shells were compatible with enzyme- and aptamer-based functionalization of the DNA nanostructures. Additionally, we showed that despite being highly vulnerable to salt depletion and nucleolytic digestion, self-assembled DNA nanostructures are stable in cell culture media up to a week. This was contrary to unassembled DNA scaffolds that degraded in one hour, showing that placing DNA strands into a spatially designed configuration crucially affect the structural integrity. The stability of naked DNA nanostructures in cell culture was shown to be mediated by growth media. DNA origami nanostructures kept in growth media were significantly more resistant towards low-salt denaturation, DNase I and serum-mediated digestion than when in a conventional buffer. Moreover, we confirmed that DNA origami nanostructures remain not only structurally intact but also fully functional after exposure to cell media. Agarose gel electrophoresis and negative stain transmission electron microscopy analysis revealed the hybridization of DNA origami nanostructures to their targets in the presence of serum proteins and nucleases. The structural integrity and functionality of DNA nanostructures in physiological fluids validate their use particularly for short-time biological applications in which the

  10. Optical nano artifact metrics using silicon random nanostructures

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tsutomu; Yoshida, Naoki; Nishio, Shumpei; Hoga, Morihisa; Ohyagi, Yasuyuki; Tate, Naoya; Naruse, Makoto

    2016-08-01

    Nano-artifact metrics exploit unique physical attributes of nanostructured matter for authentication and clone resistance, which is vitally important in the age of Internet-of-Things where securing identities is critical. However, expensive and huge experimental apparatuses, such as scanning electron microscopy, have been required in the former studies. Herein, we demonstrate an optical approach to characterise the nanoscale-precision signatures of silicon random structures towards realising low-cost and high-value information security technology. Unique and versatile silicon nanostructures are generated via resist collapse phenomena, which contains dimensions that are well below the diffraction limit of light. We exploit the nanoscale precision ability of confocal laser microscopy in the height dimension; our experimental results demonstrate that the vertical precision of measurement is essential in satisfying the performances required for artifact metrics. Furthermore, by using state-of-the-art nanostructuring technology, we experimentally fabricate clones from the genuine devices. We demonstrate that the statistical properties of the genuine and clone devices are successfully exploited, showing that the liveness-detection-type approach, which is widely deployed in biometrics, is valid in artificially-constructed solid-state nanostructures. These findings pave the way for reasonable and yet sufficiently secure novel principles for information security based on silicon random nanostructures and optical technologies.

  11. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles

    PubMed Central

    2014-01-01

    We report the fabrication of broadband antireflective silicon (Si) nanostructures fabricated using spin-coated silver (Ag) nanoparticles as an etch mask followed by inductively coupled plasma (ICP) etching process. This fabrication technique is a simple, fast, cost-effective, and high-throughput method, making it highly suitable for mass production. Prior to the fabrication of Si nanostructures, theoretical investigations were carried out using a rigorous coupled-wave analysis method in order to determine the effects of variations in the geometrical features of Si nanostructures to obtain antireflection over a broad wavelength range. The Ag ink ratio and ICP etching conditions, which can affect the distribution, distance between the adjacent nanostructures, and height of the resulting Si nanostructures, were carefully adjusted to determine the optimal experimental conditions for obtaining desirable Si nanostructures for practical applications. The Si nanostructures fabricated using the optimal experimental conditions showed a very low average reflectance of 8.3%, which is much lower than that of bulk Si (36.8%), as well as a very low reflectance for a wide range of incident angles and different polarizations over a broad wavelength range of 300 to 1,100 nm. These results indicate that the fabrication technique is highly beneficial to produce antireflective structures for Si-based device applications requiring low light reflection. PMID:24484636

  12. A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors

    PubMed Central

    Zhai, Tianyou; Fang, Xiaosheng; Liao, Meiyong; Xu, Xijin; Zeng, Haibo; Yoshio, Bando; Golberg, Dmitri

    2009-01-01

    One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area. PMID:22454597

  13. Social justifications for moral emotions: when reasons for disgust are less elaborated than for anger.

    PubMed

    Russell, Pascale Sophie; Giner-Sorolla, Roger

    2011-06-01

    In the present research, we tested the unreasoning disgust hypothesis: moral disgust, in particular in response to a violation of a bodily norm, is less likely than moral anger to be justified with cognitively elaborated reasons. In Experiment 1, participants were asked to explain why they felt anger and disgust toward pedophiles. Participants were more likely to invoke elaborated reasons, versus merely evaluative responses, when explaining their anger, versus disgust. Experiment 2 used a between-participants design; participants explained why they felt either anger or disgust toward seven groups that either violated a sexual or nonsexual norm. Again, elaborated reasons were less prevalent when explaining their disgust versus anger and, in particular, when explaining disgust toward a group that violated a sexual norm. Experiment 3 further established that these findings are due to a lower accessibility of elaborated reasons for bodily disgust, rather than inhibition in using them when provided. From these findings, it can be concluded that communicating external reasons for moral disgust at bodily violations is made more difficult due to the unavailability of those reasons to people.

  14. Enhanced blue responses in nanostructured Si solar cells by shallow doping

    NASA Astrophysics Data System (ADS)

    Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho

    2018-03-01

    Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.

  15. Parallel macromolecular delivery and biochemical/electrochemical interface to cells employing nanostructures

    DOEpatents

    McKnight, Timothy E; Melechko, Anatoli V; Griffin, Guy D; Guillorn, Michael A; Merkulov, Vladimir L; Simpson, Michael L

    2015-03-31

    Systems and methods are described for parallel macromolecular delivery and biochemical/electrochemical interface to whole cells employing carbon nanostructures including nanofibers and nanotubes. A method includes providing a first material on at least a first portion of a first surface of a first tip of a first elongated carbon nanostructure; providing a second material on at least a second portion of a second surface of a second tip of a second elongated carbon nanostructure, the second elongated carbon nanostructure coupled to, and substantially parallel to, the first elongated carbon nanostructure; and penetrating a boundary of a biological sample with at least one member selected from the group consisting of the first tip and the second tip.

  16. Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures

    PubMed Central

    Wang, Li; Sun, Yujing; Li, Zhuang; Wu, Aiguo; Wei, Gang

    2016-01-01

    The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future. PMID:28787853

  17. Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping.

    PubMed

    Yi, Chongyue; Su, Man-Nung; Dongare, Pratiksha D; Chakraborty, Debadi; Cai, Yi-Yu; Marolf, David M; Kress, Rachael N; Ostovar, Behnaz; Tauzin, Lawrence J; Wen, Fangfang; Chang, Wei-Shun; Jones, Matthew R; Sader, John E; Halas, Naomi J; Link, Stephan

    2018-06-13

    The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young's modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.

  18. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications.

    PubMed

    Li, Xuanhua; Zhu, Jinmeng; Wei, Bingqing

    2016-06-07

    Hybrid nanostructures composed of graphene or other two-dimensional (2D) nanomaterials and plasmonic metal components have been extensively studied. The unusual properties of 2D materials are associated with their atomically thin thickness and 2D morphology, and many impressive structures enable the metal nanomaterials to establish various interesting hybrid nanostructures with outstanding plasmonic properties. In addition, the hybrid nanostructures display unique optical characteristics that are derived from the close conjunction of plasmonic optical effects and the unique physicochemical properties of 2D materials. More importantly, the hybrid nanostructures show several plasmonic electrical effects including an improved photogeneration rate, efficient carrier transfer, and a plasmon-induced "hot carrier", playing a significant role in enhancing device performance. They have been widely studied for plasmon-enhanced optical signals, photocatalysis, photodetectors (PDs), and solar cells. In this review, the developments in the field of metal/2D hybrid nanostructures are comprehensively described. Preparation of hybrid nanostructures is first presented according to the 2D material type, as well as the metal nanomaterial morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then described. Lastly, possible future research in this promising field is discussed.

  19. Structural and spectroscopic study of mechanically synthesized SnO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Vij, Ankush; Kumar, Ravi

    2016-05-01

    We report the single step synthesis of SnO2 nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO2 nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A1g Raman mode towards lower wave number, which is correlated with the nanostructure formation.

  20. Simple Versus Elaborate Feedback in a Nursing Science Course

    NASA Astrophysics Data System (ADS)

    Elder, Betty L.; Brooks, David W.

    2008-08-01

    Feedback techniques, including computer-assisted feedback, have had mixed results in improving student learning outcomes. This project addresses the effect of type of feedback, simple or elaborate, for both short-term comprehension and long-term outcomes. A sample of 75 graduate nursing students was given a total of ten examinations. Four examinations provided tutorials in which the students received one of two types of feedback, simple or elaborate. Five examinations provided tutorials with no feedback. A comprehensive final examination compared initial content and final scores. This study found no significant differences between the types of feedback the students received. The mean scores were significantly higher on the four examinations where the students received feedback than on the five examinations with no feedback on tutorials. The comparison between the individual examinations and the similar content portion of the final examination indicated a significant drop in each of the four examinations where feedback was given and a significant improvement in four of the five examinations where no feedback was given.

  1. Training maltreating parents in elaborative and emotion-rich reminiscing with their preschool-aged children

    PubMed Central

    Valentino, Kristin; Comas, Michelle; Nuttall, Amy K.; Thomas, Taylor

    2013-01-01

    Objective In the current study, the effects of training maltreating parents and their preschool-aged children in elaborative and emotion-rich reminiscing were examined. Method 44 parent-child dyads were randomly assigned to a training (reminiscing) or wait-list (control) condition. All participating parents had substantiated maltreatment and were involved with the Department of Child Services at the time of enrollment. Children were 3–6 years old (M = 4.88, SD = .99) and living in the custody of the participating parent. Dyads in the reminiscing condition received four, weekly, in-home sessions in elaborative and emotion rich reminiscing. Results At a follow-up assessment, maltreating parents in the reminiscing condition provided more high-elaborative utterances, references to children’s negative emotions, and explanations of children’s emotion during reminiscing than did parents in the control condition. Children in the reminiscing condition had richer memory recall and made more emotion references than did children in the control condition during reminiscing with their mothers, but not with an experimenter. Conclusion The findings suggest that maltreating parents can be taught elaborative and emotion-rich reminiscing skills, with benefits for child cognitive and emotional development. The potential clinical utility of a reminiscing-based training for maltreating families with young children is discussed. PMID:23548682

  2. Functional and Effective Hippocampal–Neocortical Connectivity During Construction and Elaboration of Autobiographical Memory Retrieval

    PubMed Central

    McCormick, Cornelia; St-Laurent, Marie; Ty, Ambrose; Valiante, Taufik A.; McAndrews, Mary Pat

    2015-01-01

    Autobiographical memory (AM) provides the opportunity to study interactions among brain areas that support the search for a specific episodic memory (construction), and the later experience of mentally reliving it (elaboration). While the hippocampus supports both construction and elaboration, it is unclear how hippocampal–neocortical connectivity differs between these stages, and how this connectivity involves the anterior and posterior segments of the hippocampus, as these have been considered to support the retrieval of general concepts and recollection processes, respectively. We acquired fMRI data in 18 healthy participants during an AM retrieval task in which participants were asked to access a specific AM (construction) and then to recollect it by recovering as many episodic details as possible (elaboration). Using multivariate analytic techniques, we examined changes in functional and effective connectivity of hippocampal–neocortical interactions during these phases of AM retrieval. We found that the left anterior hippocampus interacted with frontal areas during construction and bilateral posterior hippocampi with visual perceptual areas during elaboration, indicating key roles for both hippocampi in coordinating transient neocortical networks at both AM stages. Our findings demonstrate the importance of direct interrogation of hippocampal–neocortical interactions to better illuminate the neural dynamics underlying complex cognitive tasks such as AM retrieval. PMID:24275829

  3. Biologically inspired LED lens from cuticular nanostructures of firefly lantern

    PubMed Central

    Kim, Jae-Jun; Lee, Youngseop; Kim, Ha Gon; Choi, Ki-Ju; Kweon, Hee-Seok; Park, Seongchong; Jeong, Ki-Hun

    2012-01-01

    Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages. PMID:23112185

  4. Crystalline Gaq3Nanostructures: Preparation, Thermal Property and Spectroscopy Characterization

    PubMed Central

    2009-01-01

    Crystalline Gaq31-D nanostructures and nanospheres could be fabricated by thermal evaporation under cold trap. The influences of the key process parameters on formation of the nanostructures were also investigated. It has been demonstrated that the morphology and dimension of the nanostructures were mainly controlled by working temperature and working pressure. One-dimensional nanostructures were fabricated at a lower working temperature, whereas nanospheres were formed at a higher working temperature. Larger nanospheres could be obtained when a higher working pressure was applied. The XRD, FTIR, and NMR analyses evidenced that the nanostructures mainly consisted of δ-phase Gaq3. Their DSC trace revealed two small exothermic peaks in addition to the melting endotherm. The one in lower temperature region was ascribed to a transition from δ to β phase, while another in higher temperature region could be identified as a transition from β to δ phase. All the crystalline nanostructures show similar PL spectra due to absence of quantum confinement effect. They also exhibited a spectral blue shift because of a looser interligand spacing and reduced orbital overlap in their δ-phase molecular structures. PMID:20596439

  5. One-Dimensional Nanostructures and Devices of II–V Group Semiconductors

    PubMed Central

    2009-01-01

    The II–V group semiconductors, with narrow band gaps, are important materials with many applications in infrared detectors, lasers, solar cells, ultrasonic multipliers, and Hall generators. Since the first report on trumpet-like Zn3P2nanowires, one-dimensional (1-D) nanostructures of II–V group semiconductors have attracted great research attention recently because these special 1-D nanostructures may find applications in fabricating new electronic and optoelectronic nanoscale devices. This article covers the 1-D II–V semiconducting nanostructures that have been synthesized till now, focusing on nanotubes, nanowires, nanobelts, and special nanostructures like heterostructured nanowires. Novel electronic and optoelectronic devices built on 1-D II–V semiconducting nanostructures will also be discussed, which include metal–insulator-semiconductor field-effect transistors, metal-semiconductor field-effect transistors, andp–nheterojunction photodiode. We intent to provide the readers a brief account of these exciting research activities. PMID:20596452

  6. Inferential false memories of events: negative consequences protect from distortions when the events are free from further elaboration.

    PubMed

    Mirandola, Chiara; Toffalini, Enrico; Grassano, Massimo; Cornoldi, Cesare; Melinder, Annika

    2014-01-01

    The present experiment was conducted to investigate whether negative emotionally charged and arousing content of to-be-remembered scripted material would affect propensity towards memory distortions. We further investigated whether elaboration of the studied material through free recall would affect the magnitude of memory errors. In this study participants saw eight scripts. Each of the scripts included an effect of an action, the cause of which was not presented. Effects were either negatively emotional or neutral. Participants were assigned to either a yes/no recognition test group (recognition), or to a recall and yes/no recognition test group (elaboration + recognition). Results showed that participants in the recognition group produced fewer memory errors in the emotional condition. Conversely, elaboration + recognition participants had lower accuracy and produced more emotional memory errors than the other group, suggesting a mediating role of semantic elaboration on the generation of false memories. The role of emotions and semantic elaboration on the generation of false memories is discussed.

  7. Plasmonic nanostructures for bioanalytical applications of SERS

    NASA Astrophysics Data System (ADS)

    Kahraman, Mehmet; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Surface-enhanced Raman scattering (SERS) is a potential analytical technique for the detection and identification of chemicals and biological molecules and structures in the close vicinity of metallic nanostructures. We present a novel method to fabricate tunable plasmonic nanostructures and perform a comprehensive structural and optical characterization of the structures. Spherical latex particles are uniformly deposited on glass slides and used as templates to obtain nanovoid structures on polydimethylsiloxane surfaces. The diameter and depth of the nanovoids are controlled by the size of the latex particles. The nanovoids are coated with a thin Ag layer for fabrication of uniform plasmonic nanostructures. Structural characterization of the surfaces is performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Optical properties of these plasmonic nanostructures are evaluated via UV/Vis spectroscopy, and SERS. The sample preparation step is the key point to obtain strong and reproducible SERS spectra from the biological structures. When the colloidal suspension is used as a SERS substrate for the protein detection, the electrostatic interaction of the proteins with the nanoparticles is described by the nature of their charge status, which influences the aggregation properties such as the size and shape of the aggregates, which is critical for the SERS experiment. However, when the solid SERS substrates are fabricated, SERS signal of the proteins that are background free and independent of the protein charge. Pros and cons of using plasmonic nano colloids and nanostructures as SERS substrate will be discussed for label-free detection of proteins using SERS.

  8. Precipitate strengthening of nanostructured aluminium alloy.

    PubMed

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.

  9. Picture Superiority in Free Recall: The Effects of Organization and Elaboration.

    ERIC Educational Resources Information Center

    Ritchey, Gary H.

    1980-01-01

    Tests the notion that activation in children's semantic memory might best be considered in terms of both between-item and within-item elaboration. Subjects were 192 second, fourth, and sixth graders. (MP)

  10. Formation of Partially and Fully Elaborated Generalized Equivalence Classes

    ERIC Educational Resources Information Center

    Fields, Lanny; Moss, Patricia

    2008-01-01

    Most complex categories observed in real-world settings consist of perceptually disparate stimuli, such as a picture of a person's face, the person's name as written, and the same name as heard, as well as dimensional variants of some or all of these stimuli. The stimuli function as members of a single partially or fully elaborated generalized…

  11. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy.

    PubMed

    Meng, Hong-Min; Liu, Hui; Kuai, Hailan; Peng, Ruizi; Mo, Liuting; Zhang, Xiao-Bing

    2016-05-03

    The combination of nanostructures with biomolecules leading to the generation of functional nanosystems holds great promise for biotechnological and biomedical applications. As a naturally occurring biomacromolecule, DNA exhibits excellent biocompatibility and programmability. Also, scalable synthesis can be readily realized through automated instruments. Such unique properties, together with Watson-Crick base-pairing interactions, make DNA a particularly promising candidate to be used as a building block material for a wide variety of nanostructures. In the past few decades, various DNA nanostructures have been developed, including one-, two- and three-dimensional nanomaterials. Aptamers are single-stranded DNA or RNA molecules selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), with specific recognition abilities to their targets. Therefore, integrating aptamers into DNA nanostructures results in powerful tools for biosensing and bioimaging applications. Furthermore, owing to their high loading capability, aptamer-modified DNA nanostructures have also been altered to play the role of drug nanocarriers for in vivo applications and targeted cancer therapy. In this review, we summarize recent progress in the design of aptamers and related DNA molecule-integrated DNA nanostructures as well as their applications in biosensing, bioimaging and cancer therapy. To begin with, we first introduce the SELEX technology. Subsequently, the methodologies for the preparation of aptamer-integrated DNA nanostructures are presented. Then, we highlight their applications in biosensing and bioimaging for various targets, as well as targeted cancer therapy applications. Finally, we discuss several challenges and further opportunities in this emerging field.

  12. Methods for fabrication of positional and compositionally controlled nanostructures on substrate

    DOEpatents

    Zhu, Ji; Grunes, Jeff; Choi, Yang-Kyu; Bokor, Jeffrey; Somorjai, Gabor

    2013-07-16

    Fabrication methods disclosed herein provide for a nanoscale structure or a pattern comprising a plurality of nanostructures of specific predetermined position, shape and composition, including nanostructure arrays having large area at high throughput necessary for industrial production. The resultant nanostracture patterns are useful for nanostructure arrays, specifically sensor and catalytic arrays.

  13. Silicon nanostructures for cancer diagnosis and therapy.

    PubMed

    Peng, Fei; Cao, Zhaohui; Ji, Xiaoyuan; Chu, Binbin; Su, Yuanyuan; He, Yao

    2015-01-01

    The emergence of nanotechnology suggests new and exciting opportunities for early diagnosis and therapy of cancer. During the recent years, silicon-based nanomaterials featuring unique properties have received great attention, showing high promise for myriad biological and biomedical applications. In this review, we will particularly summarize latest representative achievements on the development of silicon nanostructures as a powerful platform for cancer early diagnosis and therapy. First, we introduce the silicon nanomaterial-based biosensors for detecting cancer markers (e.g., proteins, tumor-suppressor genes and telomerase activity, among others) with high sensitivity and selectivity under molecular level. Then, we summarize in vitro and in vivo applications of silicon nanostructures as efficient nanoagents for cancer therapy. Finally, we discuss the future perspective of silicon nanostructures for cancer diagnosis and therapy.

  14. Metal nanostructures for non-enzymatic glucose sensing.

    PubMed

    Tee, Si Yin; Teng, Choon Peng; Ye, Enyi

    2017-01-01

    This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Controlling Heteroepitaxy by Oxygen Chemical Potential: Exclusive Growth of (100) Oriented Ceria Nanostructures on Cu(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höcker, Jan; Duchoň, Tomáš; Veltruská, Kateřina

    2016-01-06

    We present a novel and simple method for the preparation of a well-defined CeO 2(100) model system on Cu(111) based on the adjustment of the Ce/O ratio during growth. The method yields micrometer-sized, several nanometers high, single-phase CeO 2(100) islands with controllable size and surface termination that can be benchmarked against the known (111) nanostructured islands on Cu(111). We also demonstrate the ability to adjust the Ce to O stoichiometry from CeO 2(100) (100% Ce 4+) to c-Ce 2O 3(100) (100% Ce 3+), which can be readily recognized by characteristic surface reconstructions observed by low-energy electron diffraction. Finally, the discoverymore » of the highly stable CeO x(100) phase on a hexagonally close packed metal surface represents an unexpected growth mechanism of ceria on Cu(111), and it provides novel opportunities to prepare more elaborate models, benchmark surface chemical reactivity, and thus gain valuable insights into the redox chemistry of ceria in catalytic processes.« less

  16. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    PubMed

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  17. Understanding photoluminescence of metal nanostructures based on an oscillator model.

    PubMed

    Cheng, Yuqing; Zhang, Weidong; Zhao, Jingyi; Wen, Te; Hu, Aiqin; Gong, Qihuang; Lu, Guowei

    2018-08-03

    Scattering and absorption properties of metal nanostructures have been well understood based on the classic oscillator theory. Here, we demonstrate that photoluminescence of metal nanostructures can also be explained based on a classic model. The model shows that inelastic radiation of an oscillator resembles its resonance band after external excitation, and is related to the photoluminescence from metallic nanostructures. The understanding based on the classic oscillator model is in agreement with that predicted by a quantum electromagnetic cavity model. Moreover, by correlating a two-temperature model and the electron distributions, we demonstrate that both one-photon and two-photon luminescence of the metal nanostructures undergo the same mechanism. Furthermore, the model explains most of the emission characteristics of the metallic nanostructures, such as quantum yield, spectral shape, excitation polarization and power dependence. The model based on an oscillator provides an intuitive description of the photoluminescence process and may enable rapid optimization and exploration of the plasmonic properties.

  18. Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio Soares

    Thermal barrier coatings have been extensively applied in the aerospace industry in turbines and rocket engines as an insulation system. Partially stabilized zirconia, due to its high thermal stability and low thermal conductivity at high temperatures has been traditionally employed as the ceramic element of the thermal barrier coating system. Different approaches have been taken in order to improve the performance of these coatings. Nanostructured materials are promising an interesting future in the beginning of the 21st century. Due to its enhanced strain to failure and superplasticity new applications may be accomplished or the limits of materials utilization may be placed at higher levels. Single nanostructured particles can not be thermal sprayed by conventional thermal spray equipment. Due to its low mass, they would be deviated to the periphery of the thermal spray jet. To overcome this characteristic, single nanostructured particles were successively agglomerated into large microscopic particles, with particle size distribution similar to the conventional feedstocks for thermal spray equipment. Agglomerated nanostructured particles of partially stabilized zirconia were plasma sprayed in air with different spray parameters. According to traditional thermal spray procedure, the feedstock has to be melted in the thermal spray jet in order to achieve the necessary conditions for adhesion and cohesion on the substrate. Due to the nature of the nanostructured particles, a new step has to be taken in the thermal spray processing; particle melting has to be avoided in order to preserve the feedstock nanostructure in the coating overall microstructure. In this work, the adhesion/cohesion system of nanostructured coatings is investigated and clarified. A percentage of molten particles will retain and hold the non-molten agglomerated nanostructured particles in the coating overall microstructure. Controlling the spray parameters it was possible to produce coatings

  19. Recommendations for elaboration, transcultural adaptation and validation process of tests in Speech, Hearing and Language Pathology.

    PubMed

    Pernambuco, Leandro; Espelt, Albert; Magalhães, Hipólito Virgílio; Lima, Kenio Costa de

    2017-06-08

    to present a guide with recommendations for translation, adaptation, elaboration and process of validation of tests in Speech and Language Pathology. the recommendations were based on international guidelines with a focus on the elaboration, translation, cross-cultural adaptation and validation process of tests. the recommendations were grouped into two Charts, one of them with procedures for translation and transcultural adaptation and the other for obtaining evidence of validity, reliability and measures of accuracy of the tests. a guide with norms for the organization and systematization of the process of elaboration, translation, cross-cultural adaptation and validation process of tests in Speech and Language Pathology was created.

  20. Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia.

    PubMed

    Wennerberg, Ann; Jimbo, Ryo; Stübinger, Stefan; Obrecht, Marcel; Dard, Michel; Berner, Simon

    2014-09-01

    Implant surface properties have long been identified as an important factor to promote osseointegration. The importance of nanostructures and hydrophilicity has recently been discussed. The aim of this study was to investigate how nanostructures and wettability influence osseointegration and to identify whether the wettability, the nanostructure or both in combination play the key role in improved osseointegration. Twenty-six adult rabbits each received two Ti grade 4 discs in each tibia. Four different types of surface modifications with different wettability and nanostructures were prepared: hydrophobic without nanostructures (SLA), with nanostructures (SLAnano); hydrophilic with two different nanostructure densities (low density: pmodSLA, high density: SLActive). All four groups were intended to have similar chemistry and microroughness. The surfaces were evaluated with contact angle measurements, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and interferometry. After 4 and 8 weeks healing time, pull-out tests were performed. SLA and SLAnano were hydrophobic, whereas SLActive and pmodSLA were super-hydrophilic. No nanostructures were present on the SLA surface, but the three other surface modifications clearly showed the presence of nanostructures, although more sparsely distributed on pmodSLA. The hydrophobic samples showed higher carbon contamination levels compared with the hydrophilic samples. After 4 weeks healing time, SLActive implants showed the highest pull-out values, with significantly higher pull-out force than SLA and SLAnano. After 8 weeks, the SLActive implants had the highest pull-out force, significantly higher than SLAnano and SLA. The strongest bone response was achieved with a combination of wettability and the presence of nanostructures (SLActive). © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. DNA nanostructure-based drug delivery nanosystems in cancer therapy.

    PubMed

    Wu, Dandan; Wang, Lei; Li, Wei; Xu, Xiaowen; Jiang, Wei

    2017-11-25

    DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Engineering metallic nanostructures for plasmonics and nanophotonics

    PubMed Central

    Lindquist, Nathan C; Nagpal, Prashant; McPeak, Kevin M; Norris, David J; Oh, Sang-Hyun

    2012-01-01

    Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered. PMID:22790420

  3. Engineering metallic nanostructures for plasmonics and nanophotonics

    NASA Astrophysics Data System (ADS)

    Lindquist, Nathan C.; Nagpal, Prashant; McPeak, Kevin M.; Norris, David J.; Oh, Sang-Hyun

    2012-03-01

    Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered.

  4. Nanostructure symmetry: Relevance for physics and computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.

    2014-03-31

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.

  5. Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives.

    PubMed

    He, Guangwei; Li, Zhen; Zhao, Jing; Wang, Shaofei; Wu, Hong; Guiver, Michael D; Jiang, Zhongyi

    2015-09-23

    Polymer-based materials with tunable nanoscale structures and associated microenvironments hold great promise as next-generation ion-exchange membranes (IEMs) for acid or alkaline fuel cells. Understanding the relationships between nanostructure, physical and chemical microenvironment, and ion-transport properties are critical to the rational design and development of IEMs. These matters are addressed here by discussing representative and important advances since 2011, with particular emphasis on aromatic-polymer-based nanostructured IEMs, which are broadly divided into nanostructured polymer membranes and nanostructured polymer-filler composite membranes. For each category of membrane, the core factors that influence the physical and chemical microenvironments of the ion nanochannels are summarized. In addition, a brief perspective on the possible future directions of nanostructured IEMs is presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Large-scale synthesis of a novel tri(8-hydroxyquioline) aluminum nanostructure.

    PubMed

    Tian, Xike; Fei, Jinbo; Pi, Zhenbang; Yang, Chao; Xiao, Zhidong; Zhang, Lide

    2006-08-01

    A novel tri(8-hydroxyquioline) aluminum (AlQ3) nanostructure was prepared on large scale at low cost by low-temperature physical vapor deposition (PVD). The morphologies, the chemical bondings, and photoluminescence of the AlQ3 nanostructure were investigated by environmental scanning electronic microscopy (ESEM), Fourier transform infrared spectrum (FT-IR), and photoluminescence (PL) spectra, respectively. The AlQ3 nanostructure was composed of micro-sphere with nanowire-cluster growing on the surface. The diameter of micro-sphere and nanowire were about 5 microm and 80 nm, respectively. FT-IR results indicated that the AlQ3 molecule had a strong thermal stability under research conditions. The growth mechanism of the novel nanostructure was discussed. The novel organic nanostructure would be believed to attractive building field-emission devices and other optical devices.

  7. Process for the preparation of metal-containing nanostructured films

    NASA Technical Reports Server (NTRS)

    Lu, Yunfeng (Inventor); Wang, Donghai (Inventor)

    2006-01-01

    Metal-containing nanostructured films are prepared by electrodepositing a metal-containing composition within the pores of a mesoporous silica template to form a metal-containing silica nanocomposite. The nanocomposite is annealed to strengthen the deposited metal-containing composition. The silica is then removed from the nanocomposite, e.g., by dissolving the silica in an etching solution to provide a self-supporting metal-containing nanostructured film. The nanostructured films have a nanowire or nanomesh architecture depending on the pore structure of the mesoporous silica template used to prepare the films.

  8. Ag-ZnO nanostructure for ANTA explosive molecule detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaik, Ummar Pasha; Sangani, L. D. Varma; Gaur, Anshu

    2016-05-23

    Ag/ZnO nanostructure for surface enhanced Raman scattering application in the detection of ANTA explosive molecule is demonstrated. A highly rough ZnO microstructure was achieved by rapid thermal annealing of metallic Zn film. Different thickness Ag nanostructures are decorated over these ZnO microstructures by ion beam sputtering technique. Surface enhanced Raman spectroscopic studies carried out over Ag/ZnO substrates have shown three orders higher enhancement compared to bare Ag nanostructure deposited on the same substrate. The reasons behind such huge enhancement are discussed based on the morphology of the sample.

  9. Counseling Pretreatment and the Elaboration Likelihood Model of Attitude Change.

    ERIC Educational Resources Information Center

    Heesacker, Martin

    1986-01-01

    Results of the application of the Elaboration Likelihood Model (ELM) to a counseling context revealed that more favorable attitudes toward counseling occurred as subjects' ego involvement increased and as intervention quality improved. Counselor credibility affected the degree to which subjects' attitudes reflected argument quality differences.…

  10. Comparative study of label-free electrochemical immunoassay on various gold nanostructures

    NASA Astrophysics Data System (ADS)

    Rafique, S.; Gao, C.; Li, C. M.; Bhatti, A. S.

    2013-10-01

    Electrochemical methods such as amperometry and impedance spectroscopy provide the feasibility of label-free immunoassay. However, the performance of electrochemical interfaces varies with the shape of gold nanostructures. In the present work three types of gold nanostructures including pyramid, spherical, and rod-like nanostructures were electrochemically synthesized on the gold electrode and were further transformed into immunosensor by covalent binding of antibodies. As a model protein, a cancer biomarker, Carcinoembryonic Antigen (CEA) was detected using amperometric and impedimetric techniques on three nanostructured electrodes, which enabled to evaluate and compare the immunoassay's performance. It was found that all three immunosensors showed improved linear electrochemical response to the concentration of CEA compared to bare Au electrode. Among all the spherical gold nanostructure based immunosensors displayed superior performance. Under optimal condition, the immunosensors exhibited a limit of detection of 4.1 pg ml-1 over a concentration range of five orders of magnitude. This paper emphasizes that fine control over the geometry of nanostructures is essentially important for high-performance electrochemical immunoassay.

  11. Fabrication and characterization of ordered arrays of nanostructures

    NASA Astrophysics Data System (ADS)

    Larson, Preston

    2005-11-01

    Nanostructures are currently of great interest because of their unique properties and potential applications in a wide range of areas such as opto-electronic and biomedical devices. Current research in nanotechnology involves fabrication and characterization of these structures, as well as theoretical and experimental studies to explore their unique and novel properties. Not only do nanostructures have the potential to be both evolutionary (state-of-the-art ICs have more and more features on the nanoscale) but revolutionary (quantum computing) as well. In this thesis, a combination of bottom-up and top-down approaches is explored to fabricate ordered arrays of nanostrucutures. The bottom-up approach involves the growth of self-organized porous anodic aluminum oxide (AAO) films. AAO films consist of a well ordered hexagonal array of close-packed pores with diameters and spacings ranging from around 5 to 500 nm. Via a top-down approach, these AAO films are then used as masks or templates to fabricate ordered arrays of nanostructures (i.e. dots, holes, meshes, pillars, rings, etc.) of various materials using conventional deposition and/or etching techniques. Using AAO films as masks allows a simple and economical method to fabricate arrays of structures with nano-scale dimensions. Furthermore, they allow the fabrication of large areas (many millimeters on a side) of highly uniform and well-ordered arrays of nanostructures, a crucial requirement for most characterization techniques and applications. Characterization of these nanostructures using various techniques (electron microscopy, atomic force microscopy, UV-Vis absorption spectroscopy, photoluminescence, capacitance-voltage measurements, magnetization hysteresis curves, etc.) will be presented. Finally, these structures provide a unique opportunity to determine the single and collective properties of nanostructure arrays and will have various future applications including but not limited to: data storage, light

  12. Fabrication of Ag nanostructures with remarkable narrow plasmonic resonances by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Abbasian, Sara; Moshaii, Ahmad; Vayghan, Nader Sobhkhiz; Nikkhah, Maryam

    2018-05-01

    Glancing angle deposition (GLAD) is an efficient and inexpensive method to fabricate nanostructures with diverse complexities. However, this method has a limitation in fabrication of plasmonic nanostructures with narrow resonance peaks causing that the GLAD-nanostructures have rarely been used for refractive-index sensing. In this work, we proposed two approaches to overcome this limitation of GLAD and to fabricate Ag nanostructures with narrow plasmonic peaks. In the first approach, we introduce an effective method for seeding modification of the substrate and then growing the Ag nanocolumns on such seeded layer. The optical characterization shows that such pre-seeding of the substrate leads to nearly 40% narrowing of the plasmonic peak. In another approach, the nanostructures are grown by GLAD on a bare substrate and then are annealed at 200-400 °C. Such annealing converts the nanostructures to nanodomes with large inter-particle distances and about 60% reduction of their plasmonic width. Also, the annealing of the nanostructures at 400 °C provides a twofold improvement in figure of merit of sensing of the nanostructures. This improvement makes the GLAD comparative to other expensive alternate methods for fabrication of plasmonic sensors. In addition, the experimental plasmonic peaks are reproduced in a proper numerical simulation for similar nanostructures.

  13. Hydrothermal Synthesis of Nanostructured Vanadium Oxides

    PubMed Central

    Livage, Jacques

    2010-01-01

    A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment. PMID:28883325

  14. Nanostructured core-shell electrode materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  15. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  16. Willmore energy for joining of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Sripaturad, P.; Alshammari, N. A.; Thamwattana, N.; McCoy, J. A.; Baowan, D.

    2018-06-01

    Numerous types of carbon nanostructure have been found experimentally, including nanotubes, fullerenes and nanocones. These structures have applications in various nanoscale devices and the joining of these structures may lead to further new configurations with more remarkable properties and applications. The join profile between different carbon nanostructures in a symmetric configuration may be modelled using the calculus of variations. In previous studies, carbon nanostructures were assumed to deform according to perfect elasticity, thus the elastic energy, depending only on the axial curvature, was used to determine the join profile consisting of a finite number of discrete bonds. However, one could argue that the relevant energy should also involve the rotational curvature, especially when its size is comparable to the axial curvature. In this paper, we use the Willmore energy, a natural generalisation of the elastic energy that depends on both the axial and rotational curvatures. Catenoids are absolute minimisers of this energy and pieces of these may be used to join various nanostructures. We focus on the cases of joining a fullerene to a nanotube and joining two fullerenes along a common axis. By comparing our results with the earlier work, we find that both energies give similar joining profiles. Further work on other configurations may reveal which energy provides a better model.

  17. Nanostructures for delivery of natural antimicrobials in food.

    PubMed

    Lopes, Nathalie Almeida; Brandelli, Adriano

    2017-04-10

    Natural antimicrobial compounds are a topic of utmost interest in food science due to the increased demand for safe and high-quality foods with minimal processing. The use of nanostructures is an interesting alternative to protect and delivery antimicrobials in food, also providing controlled release of natural compounds such as bacteriocins and antimicrobial proteins, and also for delivery of plant derived antimicrobials. A diversity of nanostructures are capable of trapping natural antimicrobials maintaining the stability of substances that are frequently sensitive to food processing and storage conditions. This article provides an overview on natural antimicrobials incorporated in nanostructures, showing an effective antimicrobial activity on a diversity of food spoilage and pathogenic microorganisms.

  18. Nanostructured SnSe: Synthesis, doping, and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Liu, Shuhao; Sun, Naikun; Liu, Mei; Sucharitakul, Sukrit; Gao, Xuan P. A.

    2018-03-01

    IV-VI monochalcogenide SnSe or SnS has recently been proposed as a promising two-dimensional (2D) material for valleytronics and thermoelectrics. We report the synthesis of SnSe nanoflakes and nanostructured thin films with chemical vapor deposition method and their thermoelectric properties. As grown SnSe nanostructures are found to be intrinsically p-type and the single SnSe nanoflake field effect transistor was fabricated. By Ag doping, the power factor of SnSe nanostructured thin films can be improved by up to one order of magnitude compared to the "intrinsic" as grown materials. Our work provides an initial step in the pursuit of IV-VI monochalcogenides as novel 2D semiconductors for electronics and thermoelectrics.

  19. Learning about Posterior Probability: Do Diagrams and Elaborative Interrogation Help?

    ERIC Educational Resources Information Center

    Clinton, Virginia; Alibali, Martha Wagner; Nathan, Mitchel J.

    2016-01-01

    To learn from a text, students must make meaningful connections among related ideas in that text. This study examined the effectiveness of two methods of improving connections--elaborative interrogation and diagrams--in written lessons about posterior probability. Undergraduate students (N = 198) read a lesson in one of three questioning…

  20. Dynamic Processes in Nanostructured Crystals Under Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Uglov, V. V.; Kvasov, N. T.; Shimanski, V. I.; Safronov, I. V.; Komarov, N. D.

    2018-02-01

    The paper presents detailed investigations of dynamic processes occurring in nanostructured Si(Fe) material under the radiation exposure, namely: heating, thermoelastic stress generation, elastic disturbances of the surrounding medium similar to weak shock waves, and dislocation generation. The performance calculations are proposed for elastic properties of the nanostructured material with a glance to size effects in nanoparticles.

  1. Fabrication routes for one-dimensional nanostructures via block copolymers

    NASA Astrophysics Data System (ADS)

    Tharmavaram, Maithri; Rawtani, Deepak; Pandey, Gaurav

    2017-05-01

    Nanotechnology is the field which deals with fabrication of materials with dimensions in the nanometer range by manipulating atoms and molecules. Various synthesis routes exist for the one, two and three dimensional nanostructures. Recent advancements in nanotechnology have enabled the usage of block copolymers for the synthesis of such nanostructures. Block copolymers are versatile polymers with unique properties and come in many types and shapes. Their properties are highly dependent on the blocks of the copolymers, thus allowing easy tunability of its properties. This review briefly focusses on the use of block copolymers for synthesizing one-dimensional nanostructures especially nanowires, nanorods, nanoribbons and nanofibers. Template based, lithographic, and solution based approaches are common approaches in the synthesis of nanowires, nanorods, nanoribbons, and nanofibers. Synthesis of metal, metal oxides, metal oxalates, polymer, and graphene one dimensional nanostructures using block copolymers have been discussed as well.

  2. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    PubMed Central

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527

  3. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    PubMed

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  4. Self-assembly of amorphous biophotonic nanostructures by phase separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important rolesmore » in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.« less

  5. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M.

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than themore » geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.« less

  6. Nanostructured silver sulfide: synthesis of various forms and their application

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.

    2018-04-01

    The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.

  7. Effects of Forward and Backward Contextual Elaboration on Lexical Inferences: Evidence from a Semantic Relatedness Judgment Task

    ERIC Educational Resources Information Center

    Hamada, Akira

    2015-01-01

    Three experiments examined whether the process of lexical inferences differs according to the direction of contextual elaboration using a semantic relatedness judgment task. In Experiment 1, Japanese university students read English sentences where target unknown words were semantically elaborated by prior contextual information (forward lexical…

  8. Participation of industry experts in the elaboration of monographs and chapters of the European Pharmacopoeia.

    PubMed

    Rose, Ulrich

    2016-10-10

    The European Pharmacopoeia represents an important element in the European regulatory system for medicines. It is elaborated in a co-operation of experts from authorities, academia and industry, assisted by scientific staff from the European Directorate for the Quality of Medicines & HealthCare (EDQM). This article describes the principles of its elaboration with particular focus on the involvement of industry experts. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration (Traditional Chinese Version).

    PubMed

    Cheng, Chung-Wah; Wu, Tai-Xiang; Shang, Hong-Cai; Li, You-Ping; Altman, Douglas G; Moher, David; Bian, Zhao-Xiang

    2017-07-18

    Editors' Note: This article is the traditional Chinese version of the CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration. (Cheng C, Wu T, Shang H, Li, Y, Altman D, Moher D; CONSORT-CHM Formulas 2017 Group. CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration. Ann Intern Med. 2017;167:112-21. [Epub 27 June 2017]. doi:10.7326/M16-2977).

  10. CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration (Simplified Chinese Version).

    PubMed

    Cheng, Chung-Wah; Wu, Tai-Xiang; Shang, Hong-Cai; Li, You-Ping; Altman, Douglas G; Moher, David; Bian, Zhao-Xiang

    2017-07-18

    Editors' Note: This article is the simplified Chinese version of the CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration. (Cheng C, Wu T, Shang H, Li, Y, Altman D, Moher D; CONSORT-CHM Formulas 2017 Group. CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration. Ann Intern Med. 2017;167:112-21. [Epub 27 June 2017]. doi:10.7326/M16-2977).

  11. Library of electrocatalytic sites in nano-structured domains: electrocatalysis of hydrogen peroxide.

    PubMed

    Pandey, Prem C; Singh, Bhupendra

    2008-12-01

    Electrochemical detection of hydrogen peroxide at eight types of ormosil-modified electrodes, referred as hexacyanoferrate-system; Prussian blue systems (PB-1, PB-2, and PB-3), palladium (Pd-) system, graphite (Gr-) system, gold nanoparticle (AuNPs) system and palladium-gold nanoparticle (Pd-AuNPs) system were studied. The results on electrochemical detection suggested that hydrogen peroxide does not undergo homogeneous electrochemical mediation; however, the presence of redox mediator within nano-structured domains facilitates the electro-analysis of the same via redox electrocatalysis. Four approaches causing manipulation in nano-structured domains are described: (a) increase in the molecular size of the components generating nano-structured domains; (b) modulation via chemical reactivity; (c) modulation by non-reactive moieties and known nanoparticles; and (d) modulation by mixed approaches (a-c), all leading to decrease in a nano-structured domains. The results demonstrated that an increase in the size of nano-structured domains or decrease in micro-porous geometry increases the efficiency of electrocatalysis. The basic reaction protocol adopted in generating nano-structured domains, followed by manipulation protocols, supported the introduction of a library for creating electrocatalytic sites with varying electrocatalytic efficiency within the same basic nano-structured platform.

  12. Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector

    NASA Astrophysics Data System (ADS)

    Ren, Rui; Zhong, Zheng

    2018-06-01

    This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.

  13. Structural Diversity of Arthropod Biophotonic Nanostructures Spans Amphiphilic Phase-Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saranathan, Vinod Kumar; Seago, Ainsley E.; Sandy, Alec

    2015-05-04

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, precise structural knowledge of many biophotonic nanostructures and the mechanisms controlling their development remain tentative, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multifunctional materials. Here, we use synchrotron small-angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 integumentary scales and setae from ~127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply periodicmore » bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered spongelike morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding lipid-bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.« less

  14. Counseling Pretreatment and the Elaboration Likelihood Model of Attitude Change.

    ERIC Educational Resources Information Center

    Heesacker, Martin

    The importance of high levels of involvement in counseling has been related to theories of interpersonal influence. To examine differing effects of counselor credibility as a function of how personally involved counselors are, the Elaboration Likelihood Model (ELM) of attitude change was applied to counseling pretreatment. Students (N=256) were…

  15. Elaborer un exercice de grammaire (Working Out a Grammar Exercise)

    ERIC Educational Resources Information Center

    Principaud, Jeanne-Marie

    1977-01-01

    An elaboration of the official instruction on teaching French to native speakers in elementary school. The topics covered are: Methodological development of exercises; the linguistic ability and milieu of the students; operative criteria; and the question of a logical progression or spontaneous use of grammar exercises. (Text is in French.) (AMH)

  16. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    PubMed Central

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  17. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures.

    PubMed

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew

    2016-06-17

    In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400-800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.

  18. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures

    PubMed Central

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T.; Yeh, J. Andrew

    2016-01-01

    In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400–800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained. PMID:27322276

  19. Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots

    PubMed Central

    Murr, L. E.

    2008-01-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (∼5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (∼8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  20. Reversible creation of nanostructures between identical or different species of materials

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Ik; Ko, Sungho; Park, Junyong; Lee, Dong-Eon; Jeon, Seokwoo; Ahn, Chi Won; Yoo, Kwang Soo; Park, Jae Hong

    2012-07-01

    In this study, accurate nanostructures with various aspect ratios are created on several types of material. This work is highly applicable to the energy, optical, and nano-bio fields, for example. A silicon (Si) nano-mold is preserved using the method described, and target nanostructures are replicated reversibly and unlimitedly to or from various hard and soft materials. It is also verified that various materials can be applied to the substrates. The results confirm that the target nanostructures are successfully created in precise straight line structures and circle structures with various aspect ratios, including extremely high aspect ratios of 1:18. It is suggested that the optimal replicating and demolding process of nanostructures with high aspect ratios, which are the most problematic, could be controlled by means of the surface energy between the functional materials. Relevant numerical and analytical studies are also performed. It is possible to expand the applicability of the nanostructured mold by adopting various backing materials, including rounded substrates. The scope of the applications is extended further by transferring the nanostructures between different species of materials including metallic materials as well as identical species.

  1. Simulation of electron transport during electron-beam-induced deposition of nanostructures

    PubMed Central

    Jeschke, Harald O; Valentí, Roser

    2013-01-01

    Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747

  2. Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shpotyuk, O.; Ingram, A.; Shpotyuk, Ya.

    2018-02-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy are examined to parameterize free-volume structural evolution processes in some nanostructurized substances obeying conversion from positronium (Ps) decaying to positron trapping. Unlike conventional x3-term fitting analysis based on admixed positron trapping and Ps decaying, the effect of nanostructurization is considered as occurring due to conversion from preferential Ps decaying in initial host matrix to positron trapping in modified (nanostructurized) host-guest matrix. The developed approach referred to as x3-x2-CDA (coupling decomposition algorithm) allows estimation defect-free bulk and defect-specific positron lifetimes of free-volume elements responsible for nanostructurization. The applicability of this approach is proved for some nanostructurized materials allowing free-volume changes through Ps-to-positron trapping conversion, such as (i) metallic Ag nanoparticles embedded in polymer matrix, (ii) structure-modification processes caused by swift heavy ions irradiation in polystyrene, and (iii) host-guest chemistry problems like water immersion in alumomagnesium spinel ceramics. This approach is considered to be used as test-indicator, separating processes of host-matrix nanostructurization due to embedded nanoparticles from uncorrelated changes in positron-trapping and Ps-decaying channels.

  3. Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures

    NASA Astrophysics Data System (ADS)

    Eskandari, Abdollah; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin

    2018-03-01

    Un- and lead (Pb)-doped cadmium oxide (CdO) semiconductor nanostructures were synthesized by a sonochemical method to study their physical properties. The obtained X-ray diffraction (XRD) patterns indicated cubic CdO crystalline structures for all samples and showed that the crystallite size of CdO increases with Pb addition. Scanning electron microscopy (SEM) images of the nanostructures illustrated agglomerated oak-like particles for the Pb-doped CdO nanostructures. Furthermore, optical studies suggested that the emission band gap energy of the CdO nanostructures lies in the range of 2.27-2.38 eV and crystalline defects increase by incorporation of Pb atoms in the CdO crystalline lattice. In addition, electrical experiments declared that the n-type electrical nature of the un- and Pb-doped CdO nanostructures and the minimum of Pb atoms lead to a high carrier concentration.

  4. Enhanced Stability of DNA Nanostructures by Incorporation of Unnatural Base Pairs.

    PubMed

    Liu, Qing; Liu, Guocheng; Wang, Ting; Fu, Jing; Li, Rujiao; Song, Linlin; Wang, Zhen-Gang; Ding, Baoquan; Chen, Fei

    2017-11-03

    Self-assembled DNA nanostructures hold great promise in the fields of nanofabrication, biosensing and nanomedicine. However, the inherent low stability of the DNA double helices, formed by weak interactions, largely hinders the assembly and functions of DNA nanostructures. In this study, we redesigned and constructed a six-arm DNA junction by incorporation of the unnatural base pairs 5-Me-isoC/isoG and A/2-thioT into the double helices. They not only retained the structural integrity of the DNA nanostructure, but also showed enhanced thermal stability and resistance to T7 Exonuclease digestion. This research may expand the applications of DNA nanostructures in nanofabrication and biomedical fields, and furthermore, the genetic alphabet expansion with unnatural base pairs may enable us to construct more complicated and diversified self-assembled DNA nanostructures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Airborne Nanostructured Particles and Occupational Health

    NASA Astrophysics Data System (ADS)

    Maynard, Andrew D.; Kuempel, Eileen D.

    2005-12-01

    Nanotechnology is leading to the development in many field, of new materials and devices in many fields that demonstrate nanostructure-dependent properties. However, concern has been expressed that these same properties may present unique challenges to addressing potential health impact. Airborne particles associated with engineered nanomaterials are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanostructured particles is just beginning. However, there is a large body of data on occupational and environmental aerosols, which is applicable to developing an initial assessment of potential risk and risk reduction strategies. Epidemiological and pathological studies of occupational and environmental exposures to airborne particles and fibers provide information on the aerosol-related lung diseases and conditions that have been observed in humans. Toxicological studies provide information on the specific disease mechanisms, dose-response relationships, and the particle characteristics that influence toxicity, including the size, surface area, chemistry or reactivity, solubility, and shape. Potential health risk will depend on the magnitude and nature of exposures to airborne nanostructured particles, and on the release, dispersion, transformation and control of materials in the workplace. Aerosol control methods have not been well-characterized for nanometer diameter particles, although theory and limited experimental data indicate that conventional ventilation, engineering control and filtration approaches should be applicable in many situations. Current information supports the development of preliminary guiding principles on working with engineered nanomaterials. However critical research questions remain to be answered before the potential health risk of airborne nanostructured particles in the workplace can be fully addressed.

  6. Nanostructured hematite for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Ling, Yichuan

    Solar water splitting is an environmentally friendly reaction of producing hydrogen gas. Since Honda and Fujishima first demonstrated solar water splitting in 1972 by using semiconductor titanium dioxide (TiO2) as photoanode in a photoelectrochemical (PEC) cell, extensive efforts have been invested into improving the solar-to-hydrogen (STH) conversion efficiency and lower the production cost of photoelectrochemical devices. In the last few years, hematite (alpha-Fe2O3) nanostructures have been extensively studied as photoanodes for PEC water splitting. Although nanostructured hematite can improve its photoelectrochemical water splitting performance to some extent, by increasing active sites for water oxidation and shortening photogenerated hole path length to semiconductor/electrolyte interface, the photoactivity of pristine hematite nanostructures is still limited by a number of factors, such as poor electrical conductivities and slow oxygen evolution reaction kinetics. Previous studies have shown that tin (Sn) as an n-type dopant can substantially enhance the photoactivity of hematite photoanodes by modifying their optical and electrical properties. In this thesis, I will first demonstrate an unintentional Sn-doping method via high temperature annealing of hematite nanowires grown on fluorine-doped tin oxide (FTO) substrate to enhance the donor density. In addition to introducing extrinsic dopants into semiconductors, the carrier densities of hematite can also be enhanced by creating intrinsic defects. Oxygen vacancies function as shallow donors for a number of hematite. In this regard, I have investigated the influence of oxygen content on thermal decomposition of FeOOH to induce oxygen vacancies in hematite. In the end, I have studied low temperature activation of hematite nanostructures.

  7. Directed spatial organization of zinc oxide nanostructures

    DOEpatents

    Hsu, Julia [Albuquerque, NM; Liu, Jun [Richland, WA

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  8. Nonequilibrium Synthesis of Highly Porous Single-Crystalline Oxide Nanostructures

    DOE PAGES

    Lee, Dongkyu; Gao, Xiang; Fan, Lisha; ...

    2017-01-20

    A novel synthesis route to the formation of vertically aligned single–crystalline oxide nanostructures is found by precisely controlling the nonequilibrium pulsed laser deposition process. Here, the columnar nanostructures with deep crevices offering a large surface area are generated owing to the diffusion limited geometric shadowing effect.

  9. Nanostructure templating using low temperature atomic layer deposition

    DOEpatents

    Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  10. Shaping carbon nanostructures by controlling the synthesis process

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.; Voelkl, Edgar

    2001-08-01

    The ability to control the nanoscale shape of nanostructures in a large-scale synthesis process is an essential and elusive goal of nanotechnology research. Here, we report significant progress toward that goal. We have developed a technique that enables controlled synthesis of nanoscale carbon structures with conical and cylinder-on-cone shapes and provides the capability to dynamically change the nanostructure shape during the synthesis process. In addition, we present a phenomenological model that explains the formation of these nanostructures and provides insight into methods for precisely engineering their shape. Since the growth process we report is highly deterministic in allowing large-scale synthesis of precisely engineered nanoscale components at defined locations, our approach provides an important tool for a practical nanotechnology.

  11. PHOTONICS AND NANOTECHNOLOGY Laser nanostructuring of materials surfaces

    NASA Astrophysics Data System (ADS)

    Zavestovskaya, I. N.

    2010-12-01

    This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces.

  12. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress.

    PubMed

    Wang, Jin Min; Sun, Xiao Wei; Jiao, Zhihui

    2010-11-26

    The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO₃, crystalline WO₃ nanoparticles and nanorods, mesoporous WO₃ and TiO₂, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.

  13. Structural and spectroscopic study of mechanically synthesized SnO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vij, Ankush, E-mail: vij-anx@yahoo.com; Kumar, Ravi; Presently at Beant College of Engineering and Technology, Gurdaspur-143521

    2016-05-23

    We report the single step synthesis of SnO{sub 2} nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO{sub 2} nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A{sub 1g} Raman mode towards lower wave number, which is correlated with the nanostructure formation.

  14. Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure.

    PubMed

    Sheng, Qinglin; Liu, Ruixiao; Zhang, Sai; Zheng, Jianbin

    2014-01-15

    We proposed an ultrasensitive electrochemical cocaine biosensor based on the three-dimensional (3D) DNA structure conversion of nanostructure from Triangular Pyramid Frustum (TPFDNA) to Equilateral Triangle (ETDNA). The presence of cocaine triggered the aptamer-composed DNA nanostructure change from "Close" to "Open", leading to obvious faradaic impedance changes. The unique properties with excellent stability and specific rigid structure of the 3D DNA nanostructure made the biosensing functions stable, sensitive, and regenerable. The Faradaic impedance responses were linearly related to cocaine concentration between 1.0 nM and 2.0 μM with a correlation coefficient of 0.993. The limit of detection was calculated to be 0.21 nM following IUPAC recommendations (3Sb/b). It is expected that the distinctive features of DNA nanostructure would make it potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Growth of tungsten oxide nanostructures by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Jin, L. H.; Bai, Y.; Li, C. S.; Wang, Y.; Feng, J. Q.; Lei, L.; Zhao, G. Y.; Zhang, P. X.

    2018-05-01

    Tungsten oxide nanostructures were fabricated on LaAlO3 (00l) substrates by a simple chemical solution deposition. The decomposition behavior and phase formation of ammonium tungstate precursor were characterized by thermal analysis and X-ray diffraction. Moreover, the morphology and chemical state of nanostructures were analyzed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectra. The effects of crystallization temperature on the formation of nanodots and nanowires were investigated. The results indicated that the change of nanostructures had close relationship with the crystallization temperature during the chemical solution deposition process. Under higher crystallization temperature, the square-like dots transformed into the dome-like nanodots and nanowires. Moreover high density well-ordered nanodots could be obtained on the substrate with the further increase of crystallization temperature. It also suggested that this simple chemical solution process could be used to adjust the nanostructures of tungsten oxide compounds on substrate.

  16. Pulsed photonic fabrication of nanostructured metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.

    2017-09-01

    Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.

  17. One-Dimensional Nanostructure Field-Effect Sensors for Gas Detection

    PubMed Central

    Zhao, Xiaoli; Cai, Bin; Tang, Qingxin; Tong, Yanhong; Liu, Yichun

    2014-01-01

    Recently; one-dimensional (1D) nanostructure field-effect transistors (FETs) have attracted much attention because of their potential application in gas sensing. Micro/nanoscaled field-effect sensors combine the advantages of 1D nanostructures and the characteristic of field modulation. 1D nanostructures provide a large surface area-volume ratio; which is an outstanding advantage for gas sensors with high sensitivity and fast response. In addition; the nature of the single crystals is favorable for the studies of the response mechanism. On the other hand; one main merit of the field-effect sensors is to provide an extra gate electrode to realize the current modulation; so that the sensitivity can be dramatically enhanced by changing the conductivity when operating the sensors in the subthreshold regime. This article reviews the recent developments in the field of 1D nanostructure FET for gas detection. The sensor configuration; the performance as well as their sensing mechanism are evaluated. PMID:25090418

  18. Nanostructured systems for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2015-10-01

    The reservoir energy or that of the injected heat carrier was used to generate in situ intelligent chemical systems—nanostructured gels, sols and oil-displacing surfactants systems, preserving for a long time in the reservoir a complex of the properties being optimal for oil displacement. The results of field tests and commercial application of physicochemical technologies using nanostructured systems for enhanced oil recovery in oilfields with difficult-to-recover reserves, including deposits of high-viscosity oils, have been presented. Field tests of new "cold" technologies on the deposit of high-viscosity oil in Usinskoye oilfield proved their high efficiency.

  19. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing.

    PubMed

    Berti, Francesca; Todros, Silvia; Lakshmi, Dhana; Whitcombe, Michael J; Chianella, Iva; Ferroni, Matteo; Piletsky, Sergey A; Turner, Anthony P F; Marrazza, Giovanna

    2010-10-15

    Recent advances in nanotechnology have allowed significant progress in utilising cutting-edge techniques associated with nanomaterials and nano-fabrication to expand the scope and capability of biosensors to a new level of novelty and functionality. The aim of this work was the development and characterisation of conductive polyaniline (PANI) nanostructures for applications in electrochemical biosensing. We explore a simple, inexpensive and fast route to grow PANI nanotubes, arranged in an ordered structure directly on an electrode surface, by electrochemical polymerisation using alumina nanoporous membranes as a 'nano-mould'. The deposited nanostructures have been characterised electrochemically and morphologically prior to grafting with a molecularly imprinted polymer (MIP) receptor in order to create a model sensor for catechol detection. In this way, PANI nanostructures resulted in a conductive nanowire system which allowed direct electrical connection between the electrode and the synthetic receptor (MIP). To our knowledge, this is the first example of integration between molecularly imprinted polymers and PANI nanostructured electrodes. The advantages of using nanostructures in this particular biosensing application have been evaluated by comparing the analytical performance of the sensor with an analogous non-nanostructured MIP-sensor for catechol detection that was previously developed. A significantly lower limit of detection for catechol has been obtained (29 nM, one order of magnitude), thus demonstrating that the nanostructures are capable of improving the analytical performance of the sensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Hybrid silicon–carbon nanostructures for broadband optical absorption

    DOE PAGES

    Yang, Wen -Hua; Lu, Wen -Cai; Ho, K. M.; ...

    2017-01-25

    Proper design of nanomaterials for broadband light absorption is a key factor for improving the conversion efficiency of solar cells. Here we present a hybrid design of silicon–carbon nanostructures with silicon clusters coated by carbon cages, i.e., Si m@C 2n for potential solar cell application. The optical properties of these hybrid nanostructures were calculated based on time dependent density function theory (TDDFT). The results show that the optical spectra of Si m@C 2n are very different from those of pure Si m and C 2n clusters. While the absorption spectra of pure carbon cages and Si m clusters exhibit peaksmore » in the UV region, those of the Si m@C 2n nanostructures exhibit a significant red shift. Superposition of the optical spectra of various Si m@C 2n nanostructures forms a broad-band absorption, which extends to the visible light and infrared regions. As a result, the broadband adsorption of the assembled Si m@C 2n nanoclusters may provide a new approach for the design of high efficiency solar cell nanomaterials.« less

  1. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin.

    PubMed

    Shangguan, Mingzhu; Lu, Yi; Qi, Jianping; Han, Jin; Tian, Zhiqiang; Xie, Yunchang; Hu, Fuqiang; Yuan, Hailong; Wu, Wei

    2014-02-01

    The main purpose of this study was to prepare binary lipids-based nanostructured lipid carriers to improve the oral bioavailability of silymarin, a poorly water-soluble liver protectant. Silymarin-loaded nanostructured lipid carriers were prepared by the method of high-pressure homogenization with glycerol distearates (Precirol ATO-5) and oleic acid as the solid and liquid lipids, respectively, and lecithin (Lipoid E 100) and Tween-80 as the emulsifiers. The silymarin-nanostructured lipid carrier prepared under optimum conditions was spherical in shape with mean particle size of ∼78.87 nm, entrapment efficiency of 87.55%, loading capacity of 8.32%, and zeta potential of -65.3 mV, respectively. In vitro release of silymarin-nanostructured lipid carriers was very limited even after 12 h, while in vitro lipolysis showed fast digestion of nanostructured lipid carriers within 1 h. Relative oral bioavailability of silymarin-nanostructured lipid carriers in Beagle dogs was 2.54- and 3.10-fold that of marketed Legalon® and silymarin solid dispersion pellets, respectively. It was concluded that nanostructured lipid carriers were potential drug delivery systems to improve the bioavailability of silymarin. Other than improved dissolution, alternative mechanisms such as facilitated absorption as well as lymphatic transport may contribute to bioavailability enhancement.

  2. A Developmental Study of Semantic Elaboration and Interpretation in Recognition Memory.

    ERIC Educational Resources Information Center

    Perlmutter, Marion

    1980-01-01

    Two experiments examined semantic elaboration and interpretation in recognition memory of 4-year-olds and college students. Subjects were presented pictures of color-specific and non-color-specific items, and then tested for their recognition of the chroma of the items. (Author/MP)

  3. Standard Setting and Risk Preference: An Elaboration of the Theory of Achievement Motivation and an Empirical Test

    ERIC Educational Resources Information Center

    Kuhl, Julius

    1978-01-01

    A formal elaboration of the original theory of achievement motivation (Atkinson, 1957; Atkinson & Feather, 1966) is proposed that includes personal standards as determinants of motivational tendencies. The results of an experiment are reported that examines the validity of some of the implications of the elaborated model proposed here. (Author/RK)

  4. Disparities in correlating microstructural to nanostructural preservation of dinosaur femoral bones

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Kyun; Kwon, Yong-Eun; Lee, Sang-Gil; Lee, Ji-Hyun; Kim, Jin-Gyu; Huh, Min; Lee, Eunji; Kim, Youn-Joong

    2017-03-01

    Osteohistological researches on dinosaurs are well documented, but descriptions of direct correlations between the bone microstructure and corresponding nanostructure are currently lacking. By applying correlative microscopy, we aimed to verify that well-preserved osteohistological features correlate with pristine fossil bone nanostructures from the femoral bones of Koreanosaurus boseongensis. The quality of nanostructural preservation was evaluated based on the preferred orientation level of apatite crystals obtained from selected area electron diffraction (SAED) patterns and by measuring the “arcs” from the {100} and {002} diffraction rings. Unlike our expectations, our results revealed that well-preserved microstructures do not guarantee pristine nanostructures and vice versa. Structural preservation of bone from macro- to nanoscale primarily depends on original bioapatite density, and subsequent taphonomical factors such as effects from burial, pressure, influx of external elements and the rate of diagenetic alteration of apatite crystals. Our findings suggest that the efficient application of SAED analysis opens the opportunity for comprehensive nanostructural investigations of bone.

  5. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav R.; Harris, Alexander

    2015-10-06

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The manufacturing process may involve initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  6. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2013-03-26

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  7. Modulation of chondrocyte motility by tetrahedral DNA nanostructures.

    PubMed

    Shi, Sirong; Lin, Shiyu; Shao, Xiaoru; Li, Qianshun; Tao, Zhang; Lin, Yunfeng

    2017-10-01

    Contemporarily, a highly increasing attention was paid to nanoconstructs, particularly DNA nanostructures possessing precise organization, functional manipulation, biocompatibility and biodegradability. Amongst these DNA nanomaterials, tetrahedral DNA nanostructures (TDNs) are a significantly ideal bionanomaterials with focusing on the property that can be internalized into cytoplasm in the absence of transfection. Therefore, the focus of this study was on investigating the influence of TDNs on the chondrocytes locomotion. Tetrahedral DNA nanostructures was confirmed by 6% polyacrylamide gel electrophoresis (PAGE) and dynamic light scattering (DLS). Subsequently, the effect of TDNs on chondrocyte locomotion was investigated by real-time cell analysis (RTCA) and wound healing assay. The variation of relevant genes and proteins was detected by quantitative polymerase chain reaction (qPCR), western blotting and immunofluorescence respectively. We demonstrated that tetrahedral DNA nanostructures have positive influence on chondrocytes locomotion and promoted the expression of RhoA, ROCK2 and vinculin. Additionally, upon exposure to TDNs with the concentration of 250 nmol L -1 , the chondrocytes were showed the highest motility via both RTCA and wound healing assay. Meanwhile, the mRNA and protein expression of RhoA, ROCK2 and vinculin were also significantly enhanced with the same concentration. It can be concluded that the TDNs with the optimal concentration of 250 nmol L -1 could extremely promoted the chondrocytes locomotion through facilitating the expression of RhoA, ROCK2 and vinculin. These results seemed to reveal that this special three-dimensional DNA tetrahedral nanostructures may be applied to cartilage repair and treatment in the future. © 2017 John Wiley & Sons Ltd.

  8. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davids, P. S.; Intravia, F; Dalvit, Diego A.

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer atmore » short separations.« less

  9. Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum

    NASA Technical Reports Server (NTRS)

    Rodriguez, Marc (Inventor); Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2014-01-01

    Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.

  10. Fabrication of nanostructured electrodes and interfaces using combustion CVD

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    Reducing fabrication and operation costs while maintaining high performance is a major consideration for the design of a new generation of solid-state ionic devices such as fuel cells, batteries, and sensors. The objective of this research is to fabricate nanostructured materials for energy storage and conversion, particularly porous electrodes with nanostructured features for solid oxide fuel cells (SOFCs) and high surface area films for gas sensing using a combustion CVD process. This research started with the evaluation of the most important deposition parameters: deposition temperature, deposition time, precursor concentration, and substrate. With the optimum deposition parameters, highly porous and nanostructured electrodes for low-temperature SOFCs have been then fabricated. Further, nanostructured and functionally graded La0.8Sr0.2MnO2-La 0.8SrCoO3-Gd0.1Ce0.9O2 composite cathodes were fabricated on YSZ electrolyte supports. Extremely low interfacial polarization resistances (i.e. 0.43 Ocm2 at 700°C) and high power densities (i.e. 481 mW/cm2 at 800°C) were generated at operating temperature range of 600°C--850°C. The original combustion CVD process is modified to directly employ solid ceramic powder instead of clear solution for fabrication of porous electrodes for solid oxide fuel cells. Solid particles of SOFC electrode materials suspended in an organic solvent were burned in a combustion flame, depositing a porous cathode on an anode supported electrolyte. Combustion CVD was also employed to fabricate highly porous and nanostructured SnO2 thin film gas sensors with Pt interdigitated electrodes. The as-prepared SnO2 gas sensors were tested for ethanol vapor sensing behavior in the temperature range of 200--500°C and showed excellent sensitivity, selectivity, and speed of response. Moreover, several novel nanostructures were synthesized using a combustion CVD process, including SnO2 nanotubes with square-shaped or rectangular cross sections, well

  11. Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures

    PubMed Central

    Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao

    2013-01-01

    Conspectus Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades

  12. Carbon nanotubes for stabilization of nanostructured lipid particles

    NASA Astrophysics Data System (ADS)

    Gaunt, Nicholas P.; Patil-Sen, Yogita; Baker, Matthew J.; Kulkarni, Chandrashekhar V.

    2014-12-01

    Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs.Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development

  13. Nanostructured Surfaces for Drug Delivery and Anti-Fibrosis

    NASA Astrophysics Data System (ADS)

    Kam, Kimberly Renee

    Effective and cost-efficient healthcare is at the forefront of public discussion; on both personal and policy levels, technologies that improve therapeutic efficacy without the use of painful hypodermic needle injections or the use of harsh chemicals would prove beneficial to patients. Nanostructured surfaces as structure-mediated permeability enhancers introduce a potentially revolutionary approach to the field of drug delivery. Parental administration routes have been the mainstay technologies for delivering biologics because these therapeutics are too large to permeate epithelial barriers. However, there is a significant patient dislike for hypodermic needles resulting in reduced patient compliance and poor therapeutic results. We present an alternative strategy to harness the body's naturally occurring biological processes and transport mechanisms to enhance the drug transport of biologics across the epithelium. Our strategy offers a paradigm shift from traditional biochemical drug delivery vehicles by using nanotopography to loosen the epithelial barrier. Herein, we demonstrate that nanotopographical cues can be used to enable biologics > 66 kDa to be transported across epithelial monolayers by increasing paracellular transport. When placed in contact with epithelial cells, nanostructured films significantly increase the transport of albumin, IgG, and a model therapeutic, etanercept. Our work highlights the potential to use drug delivery systems which incorporate nanotopographical cues to increase the transport of biologics across epithelial tissue. Furthermore, we describe current advancements in nano- and microfabrication for applications in anti-fibrosis and wound healing. Influencing cellular responses to biomaterials is crucial in the field of tissue engineering and regenerative medicine. Since cells are surrounded by extracellular matrix features that are on the nanoscale, identifying nanostructures for imparting desirable cellular function could greatly

  14. Elaboration du Ge mesoporeux et etude de ses proprietes physico-chimiques en vue d'applications photovoltaiques

    NASA Astrophysics Data System (ADS)

    Tutashkonko, Sergii

    Le sujet de cette these porte sur l'elaboration du nouveau nanomateriau par la gravure electrochimique bipolaire (BEE) --- le Ge mesoporeux et sur l'analyse de ses proprietes physico-chimiques en vue de son utilisation dans des applications photovoltaiques. La formation du Ge mesoporeux par gravure electrochimique a ete precedemment rapportee dans la litterature. Cependant, le verrou technologique important des procedes de fabrication existants consistait a obtenir des couches epaisses (superieure a 500 nm) du Ge mesoporeux a la morphologie parfaitement controlee. En effet, la caracterisation physico-chimique des couches minces est beaucoup plus compliquee et le nombre de leurs applications possibles est fortement limite. Nous avons developpe un modele electrochimique qui decrit les mecanismes principaux de formation des pores ce qui nous a permis de realiser des structures epaisses du Ge mesoporeux (jusqu'au 10 mum) ayant la porosite ajustable dans une large gamme de 15% a 60%. En plus, la formation des nanostructures poreuses aux morphologies variables et bien controlees est desormais devenue possible. Enfin, la maitrise de tous ces parametres a ouvert la voie extremement prometteuse vers la realisation des structures poreuses a multi-couches a base de Ge pour des nombreuses applications innovantes et multidisciplinaires grace a la flexibilite technologique actuelle atteinte. En particulier, dans le cadre de cette these, les couches du Ge mesoporeux ont ete optimisees dans le but de realiser le procede de transfert de couches minces d'une cellule solaire a triple jonctions via une couche sacrificielle en Ge poreux. Mots-cles : Germanium meso-poreux, Gravure electrochimique bipolaire, Electrochimie des semi-conducteurs, Report des couches minces, Cellule photovoltaique

  15. Tunable growth of TiO2 nanostructures on Ti substrates

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Wang, Jingpeng; Thomas, Dan F.; Chen, Aicheng

    2005-10-01

    A simple and facile method is described to directly synthesize TiO2 nanostructures on titanium substrates by oxidizing Ti foil using small organic molecules as the oxygen source. The effect of reaction temperature and oxygen source on the formation of the TiO2 nanostructures has been studied using scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy and water contact angle measurement. Polycrystalline grains are formed when pure oxygen and formic acid are used as the oxygen source; elongated micro-crystals are produced when water vapour is used as the oxygen source; oriented and aligned TiO2 nanorod arrays are synthesized when ethanol, acetaldehyde or acetone are used as the oxygen source. The growth mechanism of the TiO2 nanostructures is discussed. The diffusion of Ti atoms to the oxide/gas interface via the network of the grain boundaries of the thin oxide layer is the determining factor for the formation of well-aligned TiO2 nanorod arrays. The wetting properties of the TiO2 nanostructured surfaces formed are dictated by their structure, varying from a hydrophilic surface to a strongly hydrophobic surface as the surface structure changes from polycrystalline grains to well-aligned nanorod arrays. This tunable growth of TiO2 nanostructures is desirable for promising applications of TiO2 nanostructures in the development of optical devices, sensors, photo-catalysts and self-cleaning coatings.

  16. Bioinspired peony-like beta-Ni(OH)2 nanostructures with enhanced electrochemical activity and superhydrophobicity.

    PubMed

    Cao, Huaqiang; Zheng, He; Liu, Kaiyu; Warner, Jamie H

    2010-02-01

    Constructing complex nanostructures has become increasingly important in the development of hydrogen storage, self-cleaning materials, and the formation of chiral branched nanowires. Several approaches have been developed to generate complex nanostructures, which have led to novel applications. Combining biology and nanotechnology through the utilization of biomolecules to chemically template the growth of complex nanostructures during synthesis has aroused great interest. Herein, we use a biomolecule-assisted hydrothermal method to synthesize beta-phase Ni(OH)(2) peony-like complex nanostructures with second-order structure nanoplate structure. The novel beta-Ni(OH)(2) nanostructures exhibit high-power Ni/MH battery performance, close to the theoretical capacity of Ni(OH)(2), as well as controlled wetting behavior. We demonstrate that this bioinspired route to generate a complex nanostructure has applications in environmental protection and green secondary cells. This approach opens up opportunities for the synthesis and potential applications of new kinds of nanostructures.

  17. Concurrent design of quasi-random photonic nanostructures

    PubMed Central

    Lee, Won-Kyu; Yu, Shuangcheng; Engel, Clifford J.; Reese, Thaddeus; Rhee, Dongjoon; Chen, Wei

    2017-01-01

    Nanostructured surfaces with quasi-random geometries can manipulate light over broadband wavelengths and wide ranges of angles. Optimization and realization of stochastic patterns have typically relied on serial, direct-write fabrication methods combined with real-space design. However, this approach is not suitable for customizable features or scalable nanomanufacturing. Moreover, trial-and-error processing cannot guarantee fabrication feasibility because processing–structure relations are not included in conventional designs. Here, we report wrinkle lithography integrated with concurrent design to produce quasi-random nanostructures in amorphous silicon at wafer scales that achieved over 160% light absorption enhancement from 800 to 1,200 nm. The quasi-periodicity of patterns, materials filling ratio, and feature depths could be independently controlled. We statistically represented the quasi-random patterns by Fourier spectral density functions (SDFs) that could bridge the processing–structure and structure–performance relations. Iterative search of the optimal structure via the SDF representation enabled concurrent design of nanostructures and processing. PMID:28760975

  18. Deep eutectic-solvothermal synthesis of nanostructured ceria

    PubMed Central

    Hammond, Oliver S.; Edler, Karen J.; Bowron, Daniel T.; Torrente-Murciano, Laura

    2017-01-01

    Ceria is a technologically important material with applications in catalysis, emissions control and solid-oxide fuel cells. Nanostructured ceria becomes profoundly more active due to its enhanced surface area to volume ratio, reactive surface oxygen vacancy concentration and superior oxygen storage capacity. Here we report the synthesis of nanostructured ceria using the green Deep Eutectic Solvent reline, which allows morphology and porosity control in one of the less energy-intensive routes reported to date. Using wide Q-range liquid-phase neutron diffraction, we elucidate the mechanism of reaction at a molecular scale at considerably milder conditions than the conventional hydrothermal synthetic routes. The reline solvent plays the role of a latent supramolecular catalyst where the increase in reaction rate from solvent-driven pre-organization of the reactants is most significant. This fundamental understanding of deep eutectic-solvothermal methodology will enable future developments in low-temperature synthesis of nanostructured ceria, facilitating its large-scale manufacturing using green, economic, non-toxic solvents. PMID:28120829

  19. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  20. Vibron and phonon hybridization in dielectric nanostructures.

    PubMed

    Preston, Thomas C; Signorell, Ruth

    2011-04-05

    Plasmon hybridization theory has been an invaluable tool in advancing our understanding of the optical properties of metallic nanostructures. Through the prism of molecular orbital theory, it allows one to interpret complex structures as "plasmonic molecules" and easily predict and engineer their electromagnetic response. However, this formalism is limited to conducting particles. Here, we present a hybridization scheme for the external and internal vibrations of dielectric nanostructures that provides a straightforward understanding of the infrared signatures of these particles through analogy to existing hybridization models of both molecular orbitals and plasmons extending the range of applications far beyond metallic nanostructures. This method not only provides a qualitative understanding, but also allows for the quantitative prediction of vibrational spectra of complex nanoobjects from well-known spectra of their primitive building blocks. The examples of nanoshells illustrate how spectral features can be understood in terms of symmetry, number of nodal planes, and scale parameters.

  1. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  2. Controllable growth of GeSi nanostructures by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ma, Yingjie; Zhou, Tong; Zhong, Zhenyang; Jiang, Zuimin

    2018-06-01

    We present an overview on the recent progress achieved on the controllable growth of diverse GeSi alloy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on patterned as well as inclined Si surfaces are outlined firstly, followed by reviews on the preferential growth of Ge nanoislands on patterned Si substrates, Ge nanowires and high density nanoislands grown on inclined Si surfaces, and the readily tunable Ge nanostructures on Si nanopillars. Ge nanostructures with controlled geometries, spatial distributions and densities, including two-dimensional ordered nanoislands, three-dimensional ordered quantum dot crystals, ordered nanorings, coupled quantum dot molecules, ordered nanowires and nanopillar alloys, are discussed in detail. A single Ge quantum dot-photonic crystal microcavity coupled optical emission device demonstration fabricated by using the preferentially grown Ge nanoisland technique is also introduced. Finally, we summarize the current technology status with a look at the future development trends and application challenges for controllable growth of Ge nanostructures. Project supports by the Natural Science Foundation of China (Nos. 61605232, 61674039) and the Open Research Project of State Key Laboratory of Surface Physics from Fudan University (Nos. KF2016_15s, KF2017_05).

  3. Learning terms and definitions: Drawing and the role of elaborative encoding.

    PubMed

    Wammes, Jeffrey D; Meade, Melissa E; Fernandes, Myra A

    2017-09-01

    Traditionally, students adopt the strategy of taking written notes when attending a class or learning from a textbook in educational settings. Informed by previous work showing that learning by doing improves memory performance, we examined whether drawing to-be-remembered definitions from university textbooks would improve later memory, relative to a more typical strategy of rote transcription. Participants were asked to either write out the definition, or to draw a picture representative of the definition. Results indicated that drawing, relative to verbatim writing, conferred a reliable memorial benefit that was robust, even when participants' preexisting familiarity with the terms was included as a covariate (in Experiment 1) or when the to-be-remembered terms and definitions were fictitious, thus removing the influence of familiarity (in Experiment 2). We reasoned that drawing likely facilitates retention at least in part because at encoding, participants must retain and elaborate upon information regarding the meaning of the definition, to translate it into a new form (a picture). This is not the case when participants write out the definitions verbatim. In Experiment 3 we showed that paraphrasing during encoding, which, like drawing and in contrast with verbatim writing, requires self-generated elaboration, led to memory performance that was comparable to drawing. Taken together, results suggest that drawing is a powerful tool which improves memory, and that drawing produces a similar level of retention as does paraphrasing. This suggests that elaborative encoding plays a critical role in the memorial benefit that drawing confers to memory for definitions of academic terms. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Matrix coatings based on anodic alumina with carbon nanostructures in the pores

    NASA Astrophysics Data System (ADS)

    Gorokh, G. G.; Pashechko, M. I.; Borc, J. T.; Lozovenko, A. A.; Kashko, I. A.; Latos, A. I.

    2018-03-01

    The nanoporous anodic alumina matrixes thickness of 1.5 mm and pore sizes of 45, 90 and 145 nm were formed on Si substrates. The tubular carbon nanostructures were synthesized into the matrixes pores by pyrolysis of fluid hydrocarbon xylene with 1% ferrocene. The structure and composition of the matrix coatings were examined by scanning electron microscopy, Auger analysis and Raman spectroscopy. The carbon nanostructures completely filled the pores of templates and uniformly covered the tops. The structure of carbon nanostructures corresponded to the structure of multiwall carbon nanotubes. Investigations of mechanical and tribological properties of nanostructured oxide-carbon composite performed by scratching and nanoindentation showed nonlinear dependencies of the frictional force, penetration depth of the cantilever, hardness and plane strain modulus on the load. It was found that the microhardness of the samples increases with reduced of alumina pore diameter, and the penetration depth of the cantilever into the film grows with carbon nanostructures size. The results showed the high mechanical strength of nanostructured oxide-carbon composite.

  5. Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds.

    PubMed

    Rammsayer, Thomas; Ulrich, Rolf

    2011-05-01

    The distinct timing hypothesis suggests a sensory mechanism for processing of durations in the range of milliseconds and a cognitively controlled mechanism for processing of longer durations. To test this hypothesis, we employed a dual-task approach to investigate the effects of maintenance and elaborative rehearsal on temporal processing of brief and long durations. Unlike mere maintenance rehearsal, elaborative rehearsal as a secondary task involved transfer of information from working to long-term memory and elaboration of information to enhance storage in long-term memory. Duration discrimination of brief intervals was not affected by a secondary cognitive task that required either maintenance or elaborative rehearsal. Concurrent elaborative rehearsal, however, impaired discrimination of longer durations as compared to maintenance rehearsal and a control condition with no secondary task. These findings endorse the distinct timing hypothesis and are in line with the notion that executive functions, such as continuous memory updating and active transfer of information into long-term memory interfere with temporal processing of durations in the second, but not in the millisecond range. 2011 Elsevier B.V. All rights reserved.

  6. Gallium arsenide/gold nanostructures deposited using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less

  7. Conducting polymer nanostructures for photocatalysis under visible light

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouamé, Natalie A.; Ramos, Laurence; Remita, Samy; Dazzi, Alexandre; Deniset-Besseau, Ariane; Beaunier, Patricia; Goubard, Fabrice; Aubert, Pierre-Henri; Remita, Hynd

    2015-05-01

    Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics.

  8. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  9. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Faghihi, S.; Li, D.; Szpunar, J. A.

    2010-12-01

    Aseptic loosening induced by wear particles from artificial bearing materials is one of the main causes of malfunctioning in total hip replacements. With the increase in young and active patients, complications in revision surgeries and immense health care costs, there is considerable interest in wear-resistant materials that can endure longer in the harsh and corrosive body environment. Here, the tribological behaviour of nanostructured titanium substrates processed by high-pressure torsion (HPT) is investigated and compared with the coarse-grained samples. The high resolution transmission electron microscopy reveals that a nanostructured sample has a grain size of 5-10 nm compared to that of ~ 10 µm and ~ 50 µm for untreated and annealed substrates, respectively. Dry and wet wear tests were performed using a linear reciprocating ball-on-flat tribometer. Nanostructured samples show the best dry wear resistance and the lowest wear rate in the electrolyte. There was significantly lower plastic deformation and no change in preferred orientation of nanostructured samples attributable to the wear process. Electrochemical impedance spectroscopy (EIS) shows lower corrosion resistance for nanostructured samples. However, under the action of both wear and corrosion the nanostructured samples show superior performance and that makes them an attractive candidate for applications in which wear and corrosion act simultaneously.

  10. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  11. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress

    PubMed Central

    Wang, Jinmin; Sun, Xiao Wei; Jiao, Zhihui

    2010-01-01

    The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO3, crystalline WO3 nanoparticles and nanorods, mesoporous WO3 and TiO2, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed. PMID:28883368

  12. Autobiographical Elaboration Reduces Memory Distortion: Cognitive Operations and the Distinctiveness Heuristic

    ERIC Educational Resources Information Center

    McDonough, Ian M.; Gallo, David A.

    2008-01-01

    Retrieval monitoring enhances episodic memory accuracy. For instance, false recognition is reduced when participants base their decisions on more distinctive recollections, a retrieval monitoring process called the distinctiveness heuristic. The experiments reported here tested the hypothesis that autobiographical elaboration during study (i.e.,…

  13. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    PubMed Central

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  14. Metamorphic quantum dots: Quite different nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Frigeri, P.; Nasi, L.

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantummore » dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.« less

  15. GaN and ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Fündling, Sönke; Sökmen, Ünsal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas; Lähnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning

    2010-07-01

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self- organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures.

  16. Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials

    DTIC Science & Technology

    2007-08-01

    code) 2007 Reprint Aug 2006-Aug 2007 Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials W911NF-04-1-0178 sub 2781-USC-DOA...Priya Vashishta 213 821 2663 Reset Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials Priya Vashishta,∗ Rajiv K. Kalia...function of the particle velocity that drives the shock [18]. The MD and experimental data agree very well. Furthermore, the simulation shows a sudden

  17. Morphology and thermodynamic characteristics of selenium-containing nanostructures based on polymethacrylic acid

    NASA Astrophysics Data System (ADS)

    Valueva, S. V.; Borovikova, L. N.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2010-09-01

    The morphology and thermodynamic characteristics of nanostructures formed as a result of the reduction of the selenium ion in a selenite-ascorbate redox system in water solutions of polymethacrylic acid were studied by molecular optics and atomic-force microscopy. The dependence of the morphology of the selenium-containing nanostructures on the mass selenium-to-polymer ratio (ν) in solution was determined. It was established that a large number of macromolecules (up to 4300) is adsorbed on the selenium nanoparticles, leading to the formation of nanostructures with super-high molecular mass and an almost spherical form. It was shown that the density of the nanostructures, as calculated on the basis of the experimental data on the size and molecular mass of the nanocomposite, depends substantially on the selenium concentrations in the solution. The thermodynamic state of the solutions of nanostructures is described.

  18. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  19. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers.

    PubMed

    Siddique, Radwanul H; Donie, Yidenekachew J; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-10-01

    The wings of the black butterfly, Pachliopta aristolochiae , are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells.

  20. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers

    PubMed Central

    Siddique, Radwanul H.; Donie, Yidenekachew J.; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-01-01

    The wings of the black butterfly, Pachliopta aristolochiae, are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells. PMID:29057320

  1. Confocal Raman microscopy of one dimensional ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Gupta, Maneesh; Yang, Rusen; Wang, Zhong; Tsukruk, Vladimir

    2009-03-01

    ZnO nanostructures with various shapes (vertically aligned nanorods, nanobelts, nanohelixes, nanorings) have been synthesized using both vapor phase and solution growth methods. In the simplest example of a nanobelt, the fast growth direction can be either (21 1 0) or (011 0) or (0001). Here, we show that confocal Raman microscopy can be employed as a fast and nondestructive analytical technique to identify the crystal planes and reveal the relative orientation of the ZnO nanostructure. Various features of the Raman spectrum of ZnO nanostructures (presence of the A1(TO) mode, width of the E2 mode) were found to be sensitive to relative orientation of the incident source laser and the crystal plane. Furthermore, owing to the optical anisotropy of ZnO, Raman scattering from the substrate is modulated (either enhanced or suppressed with respect to the background) depending on the polarization of the incident light with respect to orientation of the nanobelt. The results presented here describe a novel method to nondestructively identify the growth, relative orientation, and the waveguiding properties of the ZnO nanostructures.

  2. Analysis of periodically patterned metallic nanostructures for infrared absorber

    NASA Astrophysics Data System (ADS)

    Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.

  3. Optical response of nanostructured metal/dielectric composites and multilayers

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey B.; Maaroof, Abbas I.; Allan, Rodney S.; Schelm, Stefan; Anstis, Geoffrey R.; Cortie, Michael B.

    2004-08-01

    The homogeneous optical response in conducting nanostructured layers, and in insulating layers containing dense arrays of self assembled conducting nanoparticles separated by organic linkers, is examined experimentally through their effective complex indices (n*, k*). Classical effective medium models, modified to account for the 3-phase nanostructure, are shown to explain (n*, k*) in dense particulate systems but not inhomogeneous layers with macroscopic conductance for which a different approach to homogenisation is discussed. (n*, k*) data on thin granular metal films, thin mesoporous gold, and on thin metal layers containing ordered arrays of voids, is linked to properties of the surface plasmon states which span the nanostructured film. Coupling between evanescent waves at either surface counterbalanced by electron scattering losses must be considered. Virtual bound states for resonant photons result, with the associated transit delay leading to a large rise in n* in many nanostructures. Overcoating n-Ag with alumina is shown to alter (n*, k*) through its impact on the SP coupling. In contrast to classical optical homogenisation, effective indices depend on film thickness. Supporting high resolution SEM images are presented.

  4. Molybdenum and tungsten nanostructures and methods for making and using same

    DOEpatents

    Kotaro, Sasaki; Chen, Wei-Fu; Muckerman, James T; Adzic, Radoslav R

    2015-01-06

    The present invention provides molybdenum and tungsten nanostructures, for example, nanosheets and nanoparticles, and methods of making and using same, including using such nanostructures as catlysts for hydrogen evolution reactions.

  5. Simulations with Elaborated Worked Example Modeling: Beneficial Effects on Schema Acquisition

    ERIC Educational Resources Information Center

    Meier, Debra K.; Reinhard, Karl J.; Carter, David O.; Brooks, David W.

    2008-01-01

    Worked examples have been effective in enhancing learning outcomes, especially with novice learners. Most of this research has been conducted in laboratory settings. This study examined the impact of embedding elaborated worked example modeling in a computer simulation practice activity on learning achievement among 39 undergraduate students…

  6. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    PubMed Central

    Rahman, Md. Mahbubur; Saleh Ahammad, A. J.; Jin, Joon-Hyung; Ahn, Sang Jung; Lee, Jae-Joon

    2010-01-01

    Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors. PMID:22399911

  7. The performance of hematite nanostructures in different humidity levels

    NASA Astrophysics Data System (ADS)

    Ahmad, W. R. W.; Mamat, M. H.; Zoolfakar, A. S.; Khusaimi, Z.; Yusof, M. M.; Ismail, A. S.; Saidi, S. A.; Rusop, M.

    2018-05-01

    In this study, hematite (α-Fe2O3) nanostructure were prepared in Schott vials on fluorine-doped tin oxide (FTO) coated glass substrate using the sonicated immersion method in aqueous solution with ferric chloride FeCl3ṡ6H2O as a precursor and urea NH2-CONH2 as a stabilizer. The samples were characterized for different level of humidity conditions within range 40% to 90% RH. Based on the results obtained, the hematite nanostructure exhibited good optical properties and virtuous sensor response with high sensitivity. The fabricated hematite nanostructure has revealed a good potential for humidity sensor application based on the results obtained under different levels of humidity.

  8. Improving ethical knowledge and sensemaking from cases through elaborative interrogation and outcome valence.

    PubMed

    Johnson, James F; Bagdasarov, Zhanna; MacDougall, Alexandra E; Steele, Logan; Connelly, Shane; Devenport, Lynn D; Mumford, Michael D

    2014-01-01

    The case-based approach to learning is popular among many applied fields. However, results of case-based education vary widely on case content and case presentation. This study examined two aspects of case-based education-outcome valence and case elaboration methods-in a two-day case-based Responsible Conduct of Research (RCR) ethics education program. Results suggest that outcome information is an integral part of a quality case. Furthermore, valence consistent outcomes may have certain advantages over mixed valence outcome information. Finally, students enjoy and excel working with case material, and the use of elaborative interrogation techniques can significantly improve internally-focused ethical sensemaking strategies associated with personal biases, constraints, and emotions.

  9. Biomolecule-based nanomaterials and nanostructures.

    PubMed

    Willner, Itamar; Willner, Bilha

    2010-10-13

    Biomolecule-nanoparticle (or carbon nanotube) hybrid systems provide new materials that combine the unique optical, electronic, or catalytic properties of the nanoelements with the recognition or biocatalytic functions of biomolecules. This article summarizes recent applications of biomolecule-nanoparticle (or carbon nanotubes) hybrid systems for sensing, synthesis of nanostructures, and for the fabrication of nanoscale devices. The use of metallic nanoparticles for the electrical contacting of redox enzymes with electrodes, and as catalytic labels for the development of electrochemical biosensors is discussed. Similarly, biomolecule-quantum dot hybrid systems are implemented for optical biosensing, and for monitoring intracellular metabolic processes. Also, the self-assembly of biomolecule-metal nanoparticle hybrids into nanostructures and functional nanodevices is presented. The future perspectives of the field are addressed by discussing future challenges and highlighting different potential applications.

  10. Worry, problem elaboration and suppression of imagery: the role of concreteness.

    PubMed

    Stöber, J

    1998-01-01

    Both lay concept and scientific theory claim that worry may be helpful for defining and analyzing problems. Recent studies, however, indicate that worrisome problem elaborations are less concrete than worry-free problem elaborations. This challenges the problem solving view of worry because abstract problem analyses are unlikely to lead to concrete problem solutions. Instead the findings support the avoidance theory of worry which claims that worry suppresses aversive imagery. Following research findings in the dual-coding framework [Paivio, A. (1971). Imagery and verbal processes. New York: Holt, Rhinehart and Winston; Paivio, A. (1986). Mental representations: a dual coding approach. New York: Oxford University Press.], the present article proposes that reduced concreteness may play a central role in the understanding of worry. First, reduced concreteness can explain how worry reduces imagery. Second, it offers an explanation why worrisome problem analyses are unlikely to arrive at solutions. Third, it provides a key for the understanding of worry maintenance.

  11. Block-copolymer assisted fabrication of anisotropic plasmonic nanostructures.

    PubMed

    Gunder, Calbi J; Dhara, Pijush Kanti; Manna, Uttam; Biswas, Mahua

    2018-05-30

    The anisotropic nanostructures of noble metals are of great interest for plasmonic applications due to the possibility of tuning the localized surface plasmon resonance (LSPR) across the UV-VIS-NIR without sacrificing the linewidth as well as to achieve larger local field enhancement. Here, we report a simple and promising fabrication method of anisotropic gold nanostructures film using polystyrene-b-2-vinylpyridine (PS-b-P2VP) block copolymers (BCP) as a template. In this approach, PS-b-P2VP spherical micelles were first synthesized as a template followed by selective deposition of Au precursor inside P2VP core of the micelles using ethanol solution of Au salt. Subsequently, heat treatment of the precursor deposited BCP films followed by removal of the BCP template produced anisotropic gold nanostructures of various shapes, such as octahedron, decahedron, tetrahedron, triangles, and triangular prism. A temperature and time dependent annealing of the fabricated nanostructures led to the formation of clusters at higher temperature. Furthermore, measurement of ensemble extinction spectra of the anisotropic Au nanoparticle films showed two broad distinct LSPR peaks; one in the visible range (~ 660 nm), and the other in the NIR range (~ 875 nm). The electrodynamic simulation showed that octahedron and decahedron nanoparticles are responsible for the LSPR response in the visible; whereas the triangular shapes are responsible for the LSPR response in the NIR. Our work is expected to open up a new direction of synthesis of anisotropic nanostructures of noble metals that can be utilized to tune the LSPR response across the UV-VIS-NIR range using a simple BCP template-based method. © 2018 IOP Publishing Ltd.

  12. The Effects of Guided Elaboration in a CSCL Programme on the Learning Outcomes of Primary School Students from Dutch and Immigrant Families

    ERIC Educational Resources Information Center

    Prinsen, Fleur Ruth; Terwel, Jan; Zijlstra, Bonne J. H.; Volman, Monique M. L.

    2013-01-01

    This study examined the effects of guided elaboration on students' learning outcomes in a computer-supported collaborative learning (CSCL) environment. The programme provided students with feedback on their elaborations, and students reflected on this feedback. It was expected that students in the experimental (elaboration) programme would show…

  13. Study of Growth Kinetics in One Dimensional and Two Dimensional ZnO Nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Xin

    Because of the merits arising from the unique geometry, nanostructure materials have been an essential class of materials, which have shown great potentials in the fields of electronics, photonics, and biology. With various nanostructures being intensively investigated and successfully complemented into device applications, there has been one increasing demand to the investigation of the growth mechanism devoted to the controlled nanostructure synthesis. Motivated by this situation, this thesis is focused on the fundamental understanding of the nanostructure growth. Specifically, by taking zinc oxide as an example material, through controlling the basic driving force, that is, the supersaturation, I have rationally designed and synthesized various of nanostructures, and further applied the classical layer-by-layer growth mechanism to the understanding on the formation of these nanostructures, they are, the convex-plate-capped nanowires, the concave-plate-capped nanowires, the facet evolution at the tip of the nanowires, and the ultrathin 2D nanosheets.

  14. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs.

    PubMed

    Li, Mo; Zheng, Mengxi; Wu, Siyu; Tian, Cheng; Liu, Di; Weizmann, Yossi; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2018-06-06

    Programmed self-assembly of nucleic acids is a powerful approach for nano-constructions. The assembled nanostructures have been explored for various applications. However, nucleic acid assembly often requires chemical or in vitro enzymatical synthesis of DNA or RNA, which is not a cost-effective production method on a large scale. In addition, the difficulty of cellular delivery limits the in vivo applications. Herein we report a strategy that mimics protein production. Gene-encoded DNA duplexes are transcribed into single-stranded RNAs, which self-fold into well-defined RNA nanostructures in the same way as polypeptide chains fold into proteins. The resulting nanostructure contains only one component RNA molecule. This approach allows both in vitro and in vivo production of RNA nanostructures. In vivo synthesized RNA strands can fold into designed nanostructures inside cells. This work not only suggests a way to synthesize RNA nanostructures on a large scale and at a low cost but also facilitates the in vivo applications.

  15. The Elaborated Intrusion Theory of desire: a 10-year retrospective and implications for addiction treatments.

    PubMed

    May, Jon; Kavanagh, David J; Andrade, Jackie

    2015-05-01

    Ten years after the publication of Elaborated Intrusion (EI) Theory, there is now substantial research into its key predictions. The distinction between intrusive thoughts, which are driven by automatic processes, and their elaboration, involving controlled processing, is well established. Desires for both addictive substances and other desired targets are typically marked by imagery, especially when they are intense. Attention training strategies such as body scanning reduce intrusive thoughts, while concurrent tasks that introduce competing sensory information interfere with elaboration, especially if they compete for the same limited-capacity working memory resources. EI Theory has spawned new assessment instruments that are performing strongly and offer the ability to more clearly delineate craving from correlated processes. It has also inspired new approaches to treatment. In particular, training people to use vivid sensory imagery for functional goals holds promise as an intervention for substance misuse, since it is likely to both sustain motivation and moderate craving. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Uni-directional liquid spreading on asymmetric nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Chu, Kuang-Han; Xiao, Rong; Wang, Evelyn N.

    2010-05-01

    Controlling surface wettability and liquid spreading on patterned surfaces is of significant interest for a broad range of applications, including DNA microarrays, digital lab-on-a-chip, anti-fogging and fog-harvesting, inkjet printing and thin-film lubrication. Advancements in surface engineering, with the fabrication of various micro/nanoscale topographic features, and selective chemical patterning on surfaces, have enhanced surface wettability and enabled control of the liquid film thickness and final wetted shape. In addition, groove geometries and patterned surface chemistries have produced anisotropic wetting, where contact-angle variations in different directions resulted in elongated droplet shapes. In all of these studies, however, the wetting behaviour preserves left-right symmetry. Here, we demonstrate that we can harness the design of asymmetric nanostructured surfaces to achieve uni-directional liquid spreading, where the liquid propagates in a single preferred direction and pins in all others. Through experiments and modelling, we determined that the spreading characteristic is dependent on the degree of nanostructure asymmetry, the height-to-spacing ratio of the nanostructures and the intrinsic contact angle. The theory, based on an energy argument, provides excellent agreement with experimental data. The insights gained from this work offer new opportunities to tailor advanced nanostructures to achieve active control of complex flow patterns and wetting on demand.

  17. On the design and fabrication of nanostructures and devices

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    Nanotechnology is emerging into a new frontier in science and technology with potential impact on every aspect of human life. One of the major breakthroughs in today's nanotechnology is the discovery and preparation of new classes of nanomaterials and nanostructures. A large number of nanomaterials and nanostructures are synthesized and characterized with either new or profoundly enhanced properties or phenomena. However, there are several major challenges ahead need to be overcome before any substantial benefits can be brought to the market. One of the challenges that we need to address today is how to effectively integrate useful nanomaterials and nanostrucrures into functional devices and systems. Our mother nature gives us a classic example of how living organisms are built. Starting from a single cell, through its division and growth, it can self-assemble and become functional tissues and organs. Similar self-assemble approach has been adopted as a nano-fabrication technique to assemble nanomaterials and nanostructures into functional nanodevices. This technique has advantages of high precision and nanometer scale resolution. However, it requires a lot of effort to construct a single device and since the properties of individual nanostructures can be different, the fabricated devices may have different properties. In this dissertation, we design and fabricate nanostructures and devices using novel microfabrication techniques. In the first part of the dissertation, the design and fabrication of a variety of nanostructures, such as metal nanowires array, polymer nanowells, and nanostructured surfaces are discussed. In the second part, carbon nanotubes as a novel material has been explored as an example to demonstrate the integration of nanomaterials with novel microfabrication techniques to form a functional device. First, a resistive heating technique is developed to grow carbon nanotubes in localized regions, such as a nichrome heating coil. Then, MEMS micro

  18. Investigation of Transport Parameters of Graphene-Based Nanostructures

    NASA Astrophysics Data System (ADS)

    Sergeyev, D. M.; Shunkeyev, K. Sh.

    2018-03-01

    The paper presents results of computer simulation of the main transport parameters of nanostructures obtained through the row-by-row removal of carbon atoms from graphene ribbon. Research into the electrical parameters is carried out within the density functional theory using the non-equilibrium Green functions in the local-density approximation. Virtual NanoLab based on Atomistix ToolKit is used to construct structures and analyze simulation results. Current-voltage characteristics, differential conductivity and transmittance spectra of nanostructures are calculated at different values of bias voltage. It is found that there is a large region of negative differential resistance in current-voltage characteristics of nanostructures caused by resonant tunneling of quasi-particles. Differential (dI/dV) characteristic also has similar changes. The obtained results can be useful for building novel electronic devices in the field of nanoelectronics.

  19. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    PubMed Central

    2010-01-01

    Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674

  20. Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.

    2017-11-01

    We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.

  1. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites.

    PubMed

    Zarick, Holly F; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Talbert, Eric M; DeBra, Zachary R; Soetan, Naiya; Geohegan, David B; Bardhan, Rizia

    2017-01-26

    In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3 ) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr 3 perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.

  2. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarick, Holly; Boulesbaa, Abdelaziz; Puretzky, Alexander A

    In this paper, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr3more » perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.« less

  3. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications

    PubMed Central

    Wang, Xiaoliang; Ahmad, Mashkoor

    2017-01-01

    Zinc oxide (ZnO) nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D) complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research. PMID:29137195

  4. Soft Nanoimprint Lithography for Direct Printing of Crystalline Metal Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Beaulieu, Michael; Watkins, James

    2015-03-01

    We demonstrate a solution-based soft nanoimprint lithography technique to directly print dimensionally-stable crystalline metal oxide nanostructures. A patterned PDMS stamp is used in combination with a UV/thermal cure step to imprint a resist containing high concentrations of crystalline nanoparticles in an inorganic/organic binder phase. The as-imprinted nanostructures are highly crystalline and therefore undergo little shrinkage (less than 5% in some cases) upon thermal annealing. High aspect ratio nanostructures and sub-100 nm features are easily realized. Residual layer free direct imprinting (no etching) was achieved by choosing the resist with the appropriate surface energy to ensure dewetting at stamp-substrate interface. The technique was further extended to stack the nanostructures by deploying a layer-by-layer imprint strategy. The method is scalable and can produce large area device quality nanostructures in a rapid fashion at a low cost. CeO2, ITO and TiO2 nanopatterns are illustrated for their potential use in fuel cell electrodes, solar cell electrodes and photonic devices, respectively.

  5. Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.

    2014-01-01

    Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.

  6. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites

    DOE PAGES

    Zarick, Holly; Boulesbaa, Abdelaziz; Puretzky, Alexander A; ...

    2016-12-14

    In this paper, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr3more » perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.« less

  7. Elaborating European Pharmacopoeia monographs for biotherapeutic proteins using substances from a single source.

    PubMed

    Buda, M; Wicks, S; Charton, E

    2016-01-01

    For more than twenty years, the European Pharmacopoeia (Ph. Eur.) monographs for biotherapeutic proteins have been elaborated using the multisource approach (Procedure 1), which has led to robust quality standards for many of the first-generation biotherapeutics. In 2008, the Ph. Eur. opened up the way towards an alternative mechanism for the elaboration of monographs (Procedure 4-BIO pilot phase), which is applied to substances still under patent protection, based on a close collaboration with the Innovator company, to ensure a harmonised global standard and strengthen the quality of the upcoming products. This article describes the lessons learned during the P4-BIO pilot phase and addresses the current thinking on monograph elaboration in the field of biotherapeutics. Case studies are described to illustrate the standardisation challenges associated with the complexity of biotherapeutics and of analytical procedures, as well as the approaches that help ensure expectations are met when setting monograph specifications and allow for compatibility with the development of biosimilars. Emphasis is put on monograph flexibility, notably by including tests that measure process-dependent microheterogeneity (e.g. glycosylation) in the Production section of the monograph. The European Pharmacopoeia successfully concluded the pilot phase of the P4-BIO during its 156 th session on 22-23 November 2016.

  8. Engineering Nano-Structured Multiferroic Thin Films

    NASA Astrophysics Data System (ADS)

    Cheung, Pui Lam

    Multiferroics exhibit remarkable tunabilities in their ferromagnetic, ferroelectric and magnetoelectric properties that provide the potential in enabling the control of magnetizations by electric field for the next generation non-volatile memories, antennas and motors. In recent research and developments in integrating single-phase ferroelectric and ferromagnetic materials, multiferroic composite demonstrated a promising magnetoelectric (ME) coupling for future applications. Atomic layer deposition (ALD) technique, on the other hand, allows fabrications of complex multiferroic nanostructures to investigate interfacial coupling between the two materials. In this work, radical-enhanced ALD of cobalt ferrite (CFO) and thermal ALD of lead zirconate titanate (PZT) were combined in fabricating complex multiferroic architectures in investigating the effect of nanostructuring and magnetic shape anisotropy on improving ME coupling. In particular, 1D CFO nanotubes and nanowires; 0D-3D CFO/PZT mesoporous composite; and 1D-1D CFO/PZT core-shell nanowire composite were studied. The potential implementation of nanostructured multiferroic composites into functioning devices was assessed by quantifying the converse ME coupling coefficient. The synthesis of 1D CFO nanostructures was realized by ALD of CFO in anodic aluminum oxide (AAO) membranes. This work provided a simple and inexpensive route to create parallel and high aspect ratio ( 55) magnetic nanostructures. The change in magnetic easy axis of (partially filled) CFO nanotubes from perpendicular to parallel in (fully-filled) nanowires indicated the significance of the geometric factor in controlling magnetizations and ME coupling. The 0D-3D CFO/PZT mesoporous composite demonstrated the optimizations of the strain transfer could be achieved by precise thickness control. 100 nm of mesoporous PZT was synthesized on Pt/TiOx/SiO2/Si using amphiphilic diblock copolymers as a porous ferroelectric template (10 nm pore diameter) for

  9. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during themore » coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.« less

  10. Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Mbuyisa, Puleng N.; Rigoni, Federica; Sangaletti, Luigi; Ponzoni, Stefano; Pagliara, Stefania; Goldoni, Andrea; Ndwandwe, Muzi; Cepek, Cinzia

    2016-04-01

    A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements.

  11. Promising features of low-temperature grown Ge nanostructures on Si(001) substrates

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Wang, Shuguang; Yin, Yefei; Liu, Tao; Lin, Dongdong; Li, De-hui; Yang, Xinju; Jiang, Zuimin; Zhong, Zhenyang

    2017-03-01

    High-quality Ge nanostructures are obtained by molecular beam epitaxy of Ge on Si(001) substrates at 200 °C and ex situ annealing at 400 °C. Their structural properties are comprehensively characterized by atomic force microscopy, transmission electron microscopy and Raman spectroscopy. It is disclosed that they are almost defect free except for some defects at the Ge/Si interface and in the subsequent Si capping layer. The misfit strain in the nanostructure is substantially relaxed. Dramatically strong photoluminescence (PL) from the Ge nanostructures is observed. Detailed analyses on the power- and temperature-dependent PL spectra, together with a self-consistent calculation, indicate the confinement and the high quantum efficiency of excitons within the Ge nanostructures. Our results demonstrate that the Ge nanostructures obtained via the present feasible route may have great potential in optoelectronic devices for monolithic optical-electronic integration circuits.

  12. Graphene oxide assisted synthesis of GaN nanostructures for reducing cell adhesion.

    PubMed

    Yang, Rong; Zhang, Ying; Li, Jingying; Han, Qiusen; Zhang, Wei; Lu, Chao; Yang, Yanlian; Dong, Hongwei; Wang, Chen

    2013-11-21

    We report a general approach for the synthesis of large-scale gallium nitride (GaN) nanostructures by the graphene oxide (GO) assisted chemical vapor deposition (CVD) method. A modulation effect of GaN nanostructures on cell adhesion has been observed. The morphology of the GaN surface can be controlled by GO concentrations. This approach, which is based on the predictable choice of the ratio of GO to catalysts, can be readily extended to the synthesis of other materials with controllable nanostructures. Cell studies show that GaN nanostructures reduced cell adhesion significantly compared to GaN flat surfaces. The cell-repelling property is related to the nanostructure and surface wettability. These observations of the modulation effect on cell behaviors suggest new opportunities for novel GaN nanomaterial-based biomedical devices. We believe that potential applications will emerge in the biomedical and biotechnological fields.

  13. Rapid growth and photoluminescence properties of doped ZnS one-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Zhuo, R. F.; Feng, H. T.; Yan, D.; Chen, J. T.; Feng, J. J.; Liu, J. Z.; Yan, P. X.

    2008-06-01

    In this paper we report the synthesis of doped ZnS one-dimensional (1D) nanostructures by well-established technique of chemical vapor deposition using Zn and S powder as precursors. The ZnS 1D nanostructures were grown on the surface of Au particle-filled anodic aluminum oxide templates, catalyst-free graphite sheets and silicon substrates. ZnS 1D nanostructures with Mn, Cu and Fe as dopants were prepared via a rapid process of 15-20 min. The morphologies of ZnS nanostructures synthesized on different substrates and at different growth temperatures have distinct dissimilarities. The size of ZnS nanowires originated from the Au catalysts could be varied by altering the size of membrane nanopores as well as the embedded Au particles. Room-temperature photoluminescence measurements reveal strong blue, green and yellow-orange light emissions from the doped ZnS 1D nanostructures.

  14. Self-organised synthesis of Rh nanostructures with tunable chemical reactivity

    PubMed Central

    2007-01-01

    Nonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110) are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.

  15. The Elaboration Likelihood Model: Implications for the Practice of School Psychology.

    ERIC Educational Resources Information Center

    Petty, Richard E.; Heesacker, Martin; Hughes, Jan N.

    1997-01-01

    Reviews a contemporary theory of attitude change, the Elaboration Likelihood Model (ELM) of persuasion, and addresses its relevance to school psychology. Claims that a key postulate of ELM is that attitude change results from thoughtful (central route) or nonthoughtful (peripheral route) processes. Illustrations of ELM's utility for school…

  16. Enhancing Learning Outcomes in Computer-Based Training via Self-Generated Elaboration

    ERIC Educational Resources Information Center

    Cuevas, Haydee M.; Fiore, Stephen M.

    2014-01-01

    The present study investigated the utility of an instructional strategy known as the "query method" for enhancing learning outcomes in computer-based training. The query method involves an embedded guided, sentence generation task requiring elaboration of key concepts in the training material that encourages learners to "stop and…

  17. Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Saad, Mahmoud M.; Abdallah, Tamer; Easawi, Khalid; Negm, Sohair; Talaat, Hassan

    2015-05-01

    The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe-Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe-Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe-Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.

  18. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications

    PubMed Central

    Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia

    2016-01-01

    Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main

  19. Controlled synthesis of different metal oxide nanostructures by direct current arc discharge.

    PubMed

    Su, Yanjie; Zhang, Jing; Zhang, Liling; Zhang, Yafei

    2013-02-01

    Direct current (DC) arc discharge method gives high temperature in a short time, which has been widely used to prepare carbon nanotubes. We use this simple approach to synthesize metal oxide nanostructures (MgO, SnO2) without any catalyst. Different morphologies (nanowires, nanobelts, nanocubes, and nanodisks) of metal oxide nanostructures can be controllably synthesized by changing the content of air in buffer gas. The growth mechanisms for these nanostructures are discussed in detail. Oxygen partial pressure is supposed to be one of the most important key factors. The methodology might be used to synthesize similar nanostructures of other functional oxide materials and non-oxide materials.

  20. Elaboration over a Discourse Facilitates Retrieval in Sentence Processing

    PubMed Central

    Troyer, Melissa; Hofmeister, Philip; Kutas, Marta

    2016-01-01

    Language comprehension requires access to stored knowledge and the ability to combine knowledge in new, meaningful ways. Previous work has shown that processing linguistically more complex expressions (‘Texas cattle rancher’ vs. ‘rancher’) leads to slow-downs in reading during initial processing, possibly reflecting effort in combining information. Conversely, when this information must subsequently be retrieved (as in filler-gap constructions), processing is facilitated for more complex expressions, possibly because more semantic cues are available during retrieval. To follow up on this hypothesis, we tested whether information distributed across a short discourse can similarly provide effective cues for retrieval. Participants read texts introducing two referents (e.g., two senators), one of whom was described in greater detail than the other (e.g., ‘The Democrat had voted for one of the senators, and the Republican had voted for the other, a man from Ohio who was running for president’). The final sentence (e.g., ‘The senator who the {Republican/Democrat}had voted for…’) contained a relative clause picking out either the Many-Cue referent (with ‘Republican’) or the One-Cue referent (with ‘Democrat’). We predicted facilitated retrieval (faster reading times) for the Many-Cue condition at the verb region (‘had voted for’), where readers could understand that ‘The senator’ is the object of the verb. As predicted, this pattern was observed at the retrieval region and continued throughout the rest of the sentence. Participants also completed the Author/Magazine Recognition Tests (ART/MRT; Stanovich and West, 1989), providing a proxy for world knowledge. Since higher ART/MRT scores may index (a) greater experience accessing relevant knowledge and/or (b) richer/more highly structured representations in semantic memory, we predicted it would be positively associated with effects of elaboration on retrieval. We did not observe the

  1. Elaboration over a Discourse Facilitates Retrieval in Sentence Processing.

    PubMed

    Troyer, Melissa; Hofmeister, Philip; Kutas, Marta

    2016-01-01

    Language comprehension requires access to stored knowledge and the ability to combine knowledge in new, meaningful ways. Previous work has shown that processing linguistically more complex expressions ('Texas cattle rancher' vs. 'rancher') leads to slow-downs in reading during initial processing, possibly reflecting effort in combining information. Conversely, when this information must subsequently be retrieved (as in filler-gap constructions), processing is facilitated for more complex expressions, possibly because more semantic cues are available during retrieval. To follow up on this hypothesis, we tested whether information distributed across a short discourse can similarly provide effective cues for retrieval. Participants read texts introducing two referents (e.g., two senators), one of whom was described in greater detail than the other (e.g., 'The Democrat had voted for one of the senators, and the Republican had voted for the other, a man from Ohio who was running for president'). The final sentence (e.g., 'The senator who the {Republican/Democrat}had voted for…') contained a relative clause picking out either the Many-Cue referent (with 'Republican') or the One-Cue referent (with 'Democrat'). We predicted facilitated retrieval (faster reading times) for the Many-Cue condition at the verb region ('had voted for'), where readers could understand that 'The senator' is the object of the verb. As predicted, this pattern was observed at the retrieval region and continued throughout the rest of the sentence. Participants also completed the Author/Magazine Recognition Tests (ART/MRT; Stanovich and West, 1989), providing a proxy for world knowledge. Since higher ART/MRT scores may index (a) greater experience accessing relevant knowledge and/or (b) richer/more highly structured representations in semantic memory, we predicted it would be positively associated with effects of elaboration on retrieval. We did not observe the predicted interaction between ART

  2. Self-Assembly of Natural and Synthetic Drug Amphiphiles into Discrete Supramolecular Nanostructures

    PubMed Central

    Lock, Lye Lin; LaComb, Michelle; Schwarz, Kelly; Cheetham, Andrew G.; Lin, Yi-an; Zhang, Pengcheng

    2014-01-01

    Molecular assembly provides an effective approach to construct discrete supramolecular nanostructures of various sizes and shapes in a simple manner. One important technological application of the resulting nanostructures is their potential use as anticancer drug carriers to facilitate targeted delivery to tumour sites and consequently to improve clinical outcomes. In this carrier-assisted delivery strategy, anticancer drugs have been almost exclusively considered as the cargo to be carried and delivered, and their potential as molecular building blocks has been largely ignored. In this discussion, we report the use of anticancer drugs as molecular building units to create discrete supramolecular nanostructures that contain a high and quantitative drug loading and also have the potential for self-delivery. We first show the direct assembly of two amphiphilic drug molecules (methotrexate and folic acid) into discrete nanostructures. Our results reveal that folic acid exhibits rich self-assembly behaviours via Hoogsteen hydrogen bonding in various solvent conditions, whereas methotrexate was unable to assemble into any well-defined nanostructures under the same conditions, despite its similar chemical structures. Considering the low water solubility of most anticancer drugs, hydrophilic segments must be conjugated to the drug in order to bestow the necessary amphiphilicity. We have demonstrated this for camptothecin through the attachment of β-sheet-forming peptides with overall hydrophilicity. We found that the intermolecular interactions among camptothecin segments and those among β-sheet peptides act together to define the formation of stable one-dimensional nanostructures in dilute solutions, giving rise to nanotubes or nanofibers depending upon the processing conditions used. These results lead us to believe that self-assembly of drugs into discrete nanostructures not only offers an innovative way to craft self-delivering anticancer drugs, but also extends the

  3. Kinetic Monte Carlo Simulation of the Growth of Various Nanostructures through Atomic and Cluster Deposition: Application to Gold Nanostructure Growth on Graphite

    NASA Astrophysics Data System (ADS)

    Claassens, C. H.; Hoffman, M. J. H.; Terblans, J. J.; Swart, H. C.

    2006-01-01

    A Kinetic Monte Carlo (KMC) method is presented to describe the growth of metallic nanostructures through atomic and cluster deposition in the mono -and multilayer regime. The model makes provision for homo- and heteroepitaxial systems with small lattice mismatch. The accuracy of the model is tested with simulations of the growth of gold nanostructures on HOPG and comparisons are made with existing experimental data.

  4. Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures

    PubMed Central

    Tharsika, T.; Haseeb, A. S. M. A.; Akbar, Sheikh A.; Sabri, Mohd Faizul Mohd; Hoong, Wong Yew

    2014-01-01

    An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures. PMID:25116903

  5. A nanostructured surface increases friction exponentially at the solid-gas interface.

    PubMed

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E; Prashanthi, Kovur; Thundat, Thomas

    2016-09-06

    According to Stokes' law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  6. A nanostructured surface increases friction exponentially at the solid-gas interface

    NASA Astrophysics Data System (ADS)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  7. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs.

    PubMed

    Kim, Kyoung-Ran; Kim, Hyo Young; Lee, Yong-Deok; Ha, Jong Seong; Kang, Ji Hee; Jeong, Hansaem; Bang, Duhee; Ko, Young Tag; Kim, Sehoon; Lee, Hyukjin; Ahn, Dae-Ro

    2016-12-10

    Nanoparticle delivery systems have been extensively investigated for targeted delivery of anticancer drugs over the past decades. However, it is still a great challenge to overcome the drawbacks of conventional nanoparticle systems such as liposomes and micelles. Various novel nanomaterials consist of natural polymers are proposed to enhance the therapeutic efficacy of anticancer drugs. Among them, deoxyribonucleic acid (DNA) has received much attention as an emerging material for preparation of self-assembled nanostructures with precise control of size and shape for tailored uses. In this study, self-assembled mirror DNA tetrahedron nanostructures is developed for tumor-specific delivery of anticancer drugs. l-DNA, a mirror form of natural d-DNA, is utilized for resolving a poor serum stability of natural d-DNA. The mirror DNA nanostructures show identical thermodynamic properties to that of natural d-DNA, while possessing far enhanced serum stability. This unique characteristic results in a significant effect on the pharmacokinetics and biodistribution of DNA nanostructures. It is demonstrated that the mirror DNA nanostructures can deliver anticancer drugs selectively to tumors with enhanced cellular and tissue penetration. Furthermore, the mirror DNA nanostructures show greater anticancer effects as compared to that of conventional PEGylated liposomes. Our new approach provides an alternative strategy for tumor-specific delivery of anticancer drugs and highlights the promising potential of the mirror DNA nanostructures as a novel drug delivery platform. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. On the Masking and Disclosure of Unconscious Elaborate Processing. A Reply to Van Opstal, Reynvoet, and Verguts (2005)

    ERIC Educational Resources Information Center

    Kunde, Wilfried; Kiesel, Andrea; Hoffmann, Joachim

    2005-01-01

    We have recently argued that unconscious numerical stimuli might activate responses by a match with prespecified action trigger codes (action trigger account) rather than by semantic prime processing (elaborate processing account). [Van Opstal, F., Reynvoet, B., and Verguts, T. (2005). How to trigger elaborate processing? A comment on Kunde,…

  9. Nanostructured silicon ferromagnet collected by a permanent neodymium magnet.

    PubMed

    Okuno, Takahisa; Thürmer, Stephan; Kanoh, Hirofumi

    2017-11-30

    Nanostructured silicon (N-Si) was prepared by anodic electroetching of p-type silicon wafers. The obtained magnetic particles were separated by a permanent neodymium magnet as a magnetic nanostructured silicon (mN-Si). The N-Si and mN-Si exhibited different magnetic properties: the N-Si exhibited ferromagnetic-like behaviour, whereas the mN-Si exhibited superparamagnetic-like behaviour.

  10. A continuum state variable theory to model the size-dependent surface energy of nanostructures.

    PubMed

    Jamshidian, Mostafa; Thamburaja, Prakash; Rabczuk, Timon

    2015-10-14

    We propose a continuum-based state variable theory to quantify the excess surface free energy density throughout a nanostructure. The size-dependent effect exhibited by nanoplates and spherical nanoparticles i.e. the reduction of surface energy with reducing nanostructure size is well-captured by our continuum state variable theory. Our constitutive theory is also able to predict the reducing energetic difference between the surface and interior (bulk) portions of a nanostructure with decreasing nanostructure size.

  11. Self-assembling peptide amphiphile nanostructures for cancer therapy

    NASA Astrophysics Data System (ADS)

    Soukasene, Stephen

    The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially

  12. Particle agglomerated 3-d nanostructures for photon absorption

    NASA Astrophysics Data System (ADS)

    Sivayoganathan, Mugunthan

    The main objective of this thesis is to investigate the photon absorption properties of particle agglomerated 3-D structures that are synthesized through femtosecond laser ablation of solids. The size and morphology of these particle agglomerated 3-D structures, which can be tailored through adjusting laser parameters, determine the photon absorption property. A systematic theoretical and experimental study was performed to identify the effect of lasers on the size of the formed particles. The literature survey showed that the amount of supersaturation influences the growth rate as well as the nucleation rate of vapour condensed nanoparticles. Based on this theory, a mechanism was formed to explain the control of laser parameters over the size of formed particles. Further, a theoretical explanation was proposed from the experimental results for the transition of particle size distribution modals. These proposed mechanisms and explanations show the variation in particle size in the particle agglomerated 3-D nanostructures with laser parameters. The effect of laser parameters on the formed ring size was studied. Based on the previous studies, a mechanism was proposed for the formation of ring nanoclusters. The laser pulse intensity dependent ponderomotive force was the key force to define the formation of ring nanoclusters. Then the effect of laser parameters on ring size was studied. Structures fabricated on several materials such as graphite, aluminosilicate ceramic, zinc ingot, gold, and titanium were analyzed to show the influence of material properties, laser parameters, and the environmental conditions on the size of ring formed. The studies performed on the structures showed a minimum absorption of 0.75 A.U. in the bandwidth from UV to IR. The absorption spectrum is much wider compared to existing nanomaterials, such as silicon nanostructures and titanium dioxide nanostructures. To the best of the author's knowledge, it is a very competitive absorption rate

  13. Enhancing Student Explanations of Evolution: Comparing Elaborating and Competing Theory Prompts

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Namdar, Bahadir; Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.

    2016-01-01

    In this study, we explore how two different prompt types within an online computer-based inquiry learning environment enhance 392 7th grade students' explanations of evolution with three teachers. In the "elaborating" prompt condition, students are prompted to write explanations that support the accepted theory of evolution. In the…

  14. Processing Depth, Elaboration of Encoding, Memory Stores, and Expended Processing Capacity.

    ERIC Educational Resources Information Center

    Eysenck, Michael W.; Eysenck, M. Christine

    1979-01-01

    The effects of several factors on expended processing capacity were measured. Expended processing capacity was greater when information was retrieved from secondary memory than from primary memory, when processing was of a deep, semantic nature than when it was shallow and physical, and when processing was more elaborate. (Author/GDC)

  15. Nanowires, nanostructures and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  16. Nanostructure studies of strongly correlated materials.

    PubMed

    Wei, Jiang; Natelson, Douglas

    2011-09-01

    Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.

  17. Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Jyh-Liang; Yang, Po-Yu; Hsieh, Tsang-Yen; Juan, Pi-Chun

    2016-01-01

    Hydrothermally synthesized aluminum-doped ZnO (AZO) nanostructures have been adopted in extended-gate field-effect transistor (EGFET) sensors to demonstrate the sensitive and stable pH and glucose sensing characteristics of AZO-nanostructured EGFET sensors. The AZO-nanostructured EGFET sensors exhibited the following superior pH sensing characteristics: a high current sensitivity of 0.96 µA1/2/pH, a high linearity of 0.9999, less distortion of output waveforms, a small hysteresis width of 4.83 mV, good long-term repeatability, and a wide sensing range from pHs 1 to 13. The glucose sensing characteristics of AZO-nanostructured biosensors exhibited the desired sensitivity of 60.5 µA·cm-2·mM-1 and a linearity of 0.9996 up to 13.9 mM. The attractive characteristics of high sensitivity, high linearity, and repeatability of using ionic AZO-nanostructured EGFET sensors indicate their potential use as electrochemical and disposable biosensors.

  18. Evidences For Charge Transfer-Induced Conformational Changes In Carbon Nanostructure-Protein Corona

    PubMed Central

    Podila, R.; Vedantam, P.; Ke, P. C.; Brown, J. M.; Rao, A. M.

    2012-01-01

    The binding of proteins to a nanostructure often alters protein secondary and tertiary structures. However, the main physical mechanisms that elicit protein conformational changes in the presence of the nanostructure have not yet been fully established. Here we performed a comprehensive spectroscopic study to probe the interactions between bovine serum albumin (BSA) and carbon-based nanostructures of graphene and single-walled carbon nanotubes (SWNTs). Our results showed that the BSA “corona” acted as a weak acceptor to facilitate charge transfer from the carbon nanostructures. Notably, we observed that charge transfer occurred only in the case of SWNTs but not in graphene, resulting from the sharp and discrete electronic density of states of the former. Furthermore, the relaxation of external α–helices in BSA secondary structure increased concomitantly with the charge transfer. These results may help guide controlled nanostructure-biomolecular interactions and prove beneficial for developing novel drug delivery systems, biomedical devices and engineering of safe nanomaterials. PMID:23243478

  19. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.

    PubMed

    Zhan, Pengfei; Dutta, Palash K; Wang, Pengfei; Song, Gang; Dai, Mingjie; Zhao, Shu-Xia; Wang, Zhen-Gang; Yin, Peng; Zhang, Wei; Ding, Baoquan; Ke, Yonggang

    2017-02-28

    Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.

  20. Surface-enhanced Raman spectroscopy using 2D plasmons of InN nanostructures

    NASA Astrophysics Data System (ADS)

    Madapu, Kishore K.; Dhara, Sandip

    2018-06-01

    We explored the surface-enhanced Raman scattering (SERS) activity of the InN nanostructures, possessing surface electron accumulation (SEA), using the Rhodamine 6G (R6G) molecules. SERS enhancement is observed for the InN nanostructures which possess SEA. In case of high-temperature grown InN samples, a peak is observed in the low wave number (THz region) of Raman spectra of InN nanostructures originating from excitation of the two-dimensional (2D) plasmons of the SEA. The enhancement factor of four orders was calculated with the assumption of monolayer coverage of analyte molecule. SERS enhancement of InN nanostructures is attributed to the 2D plasmonic nature of InN nanostructures invoking SEA, rather than the contributions from 3D surface plasmon resonance and chemical interaction. The role of 2D plasmon excitation in SERS enhancement is corroborated by the near-field light-matter interaction studies using near-field scanning optical microscopy.

  1. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  2. Inorganic nanostructured materials for high performance electrochemical supercapacitors.

    PubMed

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-02-21

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  3. Theoretical description of excited state dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  4. Precisely Tailored DNA Nanostructures and their Theranostic Applications.

    PubMed

    Zhu, Bing; Wang, Lihua; Li, Jiang; Fan, Chunhai

    2017-12-01

    A critical challenge in nanotechnology is the limited precision and controllability of the structural parameters, which brings about concerns in uniformity, reproducibility and performance. Self-assembled DNA nanostructures, as a newly emerged type of nano-biomaterials, possess low-nanometer precision, excellent programmability and addressability. They can precisely arrange various molecules and materials to form spatially ordered complex, resulting in unambiguous physical or chemical properties. Because of these, DNA nanostructures have shown great promise in numerous biomedical theranostic applications. In this account, we briefly review the history and advances on construction of DNA nanoarchitectures and superstructures with accurate structural parameters. We focus on recent progress in exploiting these DNA nanostructures as platforms for quantitative biosensing, intracellular diagnosis, imaging, and smart drug delivery. We also discuss key challenges in practical applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  6. Nanostructured materials for water desalination.

    PubMed

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  7. Nanostructured materials for water desalination

    NASA Astrophysics Data System (ADS)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  8. Reducing unwanted trauma memories by imaginal exposure or autobiographical memory elaboration: An analogue study of memory processes

    PubMed Central

    Ehlers, Anke; Mauchnik, Jana; Handley, Rachel

    2012-01-01

    Unwanted memories of traumatic events are a core symptom of post-traumatic stress disorder. A range of interventions including imaginal exposure and elaboration of the trauma memory in its autobiographical context are effective in reducing such unwanted memories. This study explored whether priming for stimuli that occur in the context of trauma and evaluative conditioning may play a role in the therapeutic effects of these procedures. Healthy volunteers (N = 122) watched analogue traumatic and neutral picture stories. They were then randomly allocated to 20 min of either imaginal exposure, autobiographical memory elaboration, or a control condition designed to prevent further processing of the picture stories. A blurred picture identification task showed that neutral objects that preceded traumatic pictures in the stories were subsequently more readily identified than those that had preceded neutral stories, indicating enhanced priming. There was also an evaluative conditioning effect in that participants disliked neutral objects that had preceded traumatic pictures more. Autobiographical memory elaboration reduced the enhanced priming effect. Both interventions reduced the evaluative conditioning effect. Imaginal exposure and autobiographical memory elaboration both reduced the frequency of subsequent unwanted memories of the picture stories. PMID:21227404

  9. Semiconductor nanostructures for plasma energetic systems

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Smerdov, Rostislav; Klimenkov, Boris

    2017-10-01

    In this talk we discuss the research results of the three types of ultrasmall electrodes namely the nanoelectrode arrays based on composite nanostructured porous silicon (PS) layers, porous GaP and nanocrystals of ZnO. These semiconductor materials are of great interest to nano- and optoelectronic applications by virtue of their high specific surface area and extensive capability for surface functionalization. The use of semiconductor (GaN) cathodes in photon-enhanced thermionic emission systems has also proved to be effective although only a few (less than 1%) of the incident photons exceed the 3.3 eV GaN band gap. This significant drawback provided us with a solid foundation for our research in the field of nanostructured PS, and composite materials based on it exhibiting nearly optimal parameters in terms of the band gap (1.1 eV). The band gap modification for PS nanostructured layers is possible in the range of less than 1 eV and 3 eV due to the existence of quantum confinement effect and the remarkable possibilities of PS surface alteration thus providing us with a suitable material for both cathode and anode fabrication. The obtained results are applicable for solar concentration and thermionic energy conversion systems. Dr. Sci., Ph.D, Principal Scientist, Professor.

  10. Immunomodulatory properties of titanium dioxide nanostructural materials.

    PubMed

    Latha, T Sree; Reddy, Madhava C; R Durbaka, Prasad V; Muthukonda, Shankar V; Lomada, Dakshayani

    2017-01-01

    Although titanium dioxide (TiO 2 ) nanostructural materials have been widely used in Biology and Medicine, very little is known about immunomodulation mechanism of these materials. Objectives of this study are to investigate in vitro immunomodulatory effects of TiO 2 . Immunosuppressant may lower immune responses and are helpful for the treatment of graft versus host diseases and autoimmune disorders. In this study, we used H 2 Ti 3 O 7 titanium dioxide nanotubes (TNT) nanotubes along with commercial TiO 2 nanoparticles (TNP) and TiO 2 fine particles (TFP). We investigated the in vitro immunomodulatory effects of TNP, TNT, and TFP using mixed lymphocyte reaction (MLR). Suppression was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Cytokine profile was measured by enzyme-linked immunosorbent assay (ELISA). The results from this study illustrated that the TiO 2 nanostructural materials strongly suppressed splenocytes proliferation in MLR. For TNP and TNT, at 50 μg/ml suppression of 20%-25% and 30%-35%, respectively, and for TFP at 100 μg/ml suppression was 25%-30% was observed. Suppression of splenocytes proliferation in the presence of TNP, TNT, and TFP demonstrated that these nanostructural materials probably block T-cell-mediated responses in vitro . Our ELISA results confirmed that significantly lower levels of Th1 type cytokines (interleukin-2, interferon-γ) in the 48 h MLR culture supernatants. Our data suggest that TiO 2 nanostructural materials suppress splenocytes proliferation by suppressing Th1 cytokines.

  11. 12. Examples of the elaborate and plain pressedsteel ceiling panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Examples of the elaborate and plain pressed-steel ceiling panels, here removed to the exterior of the building for photographing. A segment of the cornice has been placed above the larger panel. The panel on the left is comprised of four square components; the panel on the right is a single piece. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  12. Nanostructure formation and regulation during low-energy ion beam sputtering of fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yi-Fan; Nie, Xutao; Nie, Xuqing; Xu, Mingjin

    2017-12-01

    Ion beam sputtering (IBS) possesses strong surface nanostructuring behaviors, where dual microscopic phenomenon can be aroused to induce the formation of ultrasmooth surfaces or regular nanostructures. Low-energy IBS of fused silica surfaces is investigated to discuss the formation mechanism and the regulation of the IBS-induced nanostructures. The research results indicate that these microscopic phenomena can be attributed to the interaction of the IBS-induced surface roughening and smoothing effects, and the interaction process strongly depends on the sputtering conditions. Alternatively, ultrasmooth surface or regular nanostructure can be selectively generated through the regulation of the nanostructuring process, and the features of the generated nanostructures, such as amplitude and period, also can be regulated. Consequently, two different technology aims of nanofabrication, including nanometer-scale and nanometer-precision fabrication, can be realized, respectively. These dual microscopic mechanisms distinguish IBS as a promising nanometer manufacturing technology for the optical surfaces.

  13. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaokai; Jood, Priyanka; Ohta, Michihiro

    2016-01-01

    In this work, we demonstrate the use of high performance nanostructured PbTe-based materials in high conversion efficiency thermoelectric modules. We fabricated the samples of PbTe-2% MgTe doped with 4% Na and PbTe doped with 0.2% PbI2 with high thermoelectric figure of merit (ZT) and sintered them with Co-Fe diffusion barriers for use as p- and n-type thermoelectric legs, respectively. Transmission electron microscopy of the PbTe legs reveals two shapes of nanostructures, disk-like and spherical. The reduction in lattice thermal conductivity through nanostructuring gives a ZT of similar to 1.8 at 810 K for p-type PbTe and similar to 1.4 atmore » 750 K for n-type PbTe. Nanostructured PbTe-based module and segmented-leg module using Bi2Te3 and nanostructured PbTe were fabricated and tested with hot-side temperatures up to 873 K in a vacuum. The maximum conversion efficiency of similar to 8.8% for a temperature difference (Delta T) of 570 K and B11% for a Delta T of 590 K have been demonstrated in the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module, respectively. Three-dimensional finite-element simulations predict that the maximum conversion efficiency of the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module reaches 12.2% for a Delta T of 570 K and 15.6% for a Delta T of 590 K respectively, which could be achieved if the electrical and thermal contact between the nanostructured PbTe legs and Cu interconnecting electrodes is further improved.« less

  14. Antimicrobial activity of TiO2 nanostructures synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Surah, Shivani Singh; Sirohi, Siddharth; Nain, Ratyakshi; Kumar, Gulshan

    2018-02-01

    Titania nanostructures were synthesized by hydrothermal method. Titanium tetrachloride was used as a precursor, sodium hydroxide was used as a solvent. Effect on their morphology by variation of parameters like temperature (110°C, 160°C and 180°C), time (15h,18h, 20h, 22h, 24h) and concentration of the solvent NaOH (5M, 8M, 10 M, 12M) were studied. The obtained TiO2 nanostructures were washed with deionized water. The structure, size, morphology of the prepared nanostructures were analyzed by SEM (scanning electron microscope), DLS (dynamic light scattering), TEM (transmission electron microscope). SEM and TEM revealed the shape, size of the nanostructures. DLS reported the particle size of prepared TiO2 nanoparticles. Polymeric films based on polyvinyl alcohol (PVA) doped with titanium dioxide nanostructures at different weight percentage (0.5, 0.75, 1,2 TiO2/PVA) were prepared using the ultra sonication and solution casting techniques. The appropriate weight of PVA was dissolved in deionized water. The mixture was magnetically stirred continuously and heated (80°C) for 4 hours, until the solution mixture becomes homogenous. Different weight percentage of TiO2 nanostructures were added to deionized water and sonicated for 3 hours to prevent the nanostructures agglomeration. The mixture was mixed with the PVA solution and magnetically stirred for 1 hour to get good dispersion without agglomeration. The final PVA /TiO2 mixture were casted in glass Petridish, were left until dry. Ultrasonication was used as a major factor for preparation in order to get better dispersion. Nanocomposite films were characterized using SEM and were found to exhibit antimicrobial properties when treated with E.coli and pseudomonas.

  15. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    PubMed Central

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  16. Preparation and photocatalytic activities of 3D flower-like CuO nanostructures

    NASA Astrophysics Data System (ADS)

    Qingfei, Fan; Qi, Lan; Meili, Zhang; Ximei, Fan; Zuowan, Zhou; Chaoliang, Zhang

    2016-08-01

    Hierarchical 3D flower-like CuO nanostructures on the Cu substrates were synthesized by a wet chemical method and subsequent heat treatment. The synthesis, structure and morphologies of obtained samples under different concentrations of Na2S2O3 were investigated in detail and the possible growth mechanisms of the 3D flower-like CuO nanostructures were discussed. Na2S2O3 plays a key role in the generation of the 3D flower-like CuO nanostructures. When the concentration of Na2S2O3 is more than 0.4 mol/L, the 3D flower-like CuO nanostructures can be prepared on the Cu foils. The photocatalytic performances were studied by analyzing the degradation of methyl orange (MO) in aqueous solution in the presence of hydroxide water (H2O2). The 3D flower-like CuO nanostructures exhibit higher photocatalytic activity (96.2% degradation rate) than commercial CuO particles (36.3% degradation rate). The origin of the higher photocatalytic activity of the 3D flower-like CuO nanostructures was also discussed. Project supported by the High-Tech Research and Development Program of China (No. 2009AA03Z427).

  17. Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.

    PubMed

    Yu, Xiaohua; Biedrzycki, Adam H; Khalil, Andrew S; Hess, Dalton; Umhoefer, Jennifer M; Markel, Mark D; Murphy, William L

    2017-09-01

    Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nanostructured Thermal Protection Systems for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Chen, Y. K.; Squire, T.; Srivastava, D.; Allen, G., Jr.; Stackpoole, M.; Goldstein, H. E.; Venkatapathy, E.; Loomis, M. P.

    2005-01-01

    Strong research and development programs in nanotechnology and Thermal Protection Systems (TPS) exist at NASA Ames. Conceptual studies have been undertaken to determine if new, nanostructured materials (composites of existing TPS materials and nanostructured composite fibers) could improve the performance of TPS. To this end, we have studied various candidate heatshields, some composed of existing TPS materials (with known material properties), to provide a baseline for comparison with others that are admixtures of such materials and a nanostructured material. In the latter case, some assumptions were made about the thermal conductivity and strength of the admixture, relative to the baseline TPS material. For the purposes of this study, we have made the conservative assumption that only a small fraction of the remarkable properties of carbon nanotubes (for example) will be realized in the material properties of the admixtures employing them. The heatshields studied included those for Sharp leading edges (appropriate to out-of-orbit entry and aero-maneuvering), probes, an out-of-orbit Apollo Command Module (as a surrogate for NASA's new Crew Exploration Vehicle [CEV]), a Mars Sample Return Vehicle and a large heat shield for Mars aerocapture missions. We report on these conceptual studies, which show that in some cases (not all), significant improvements in the TPS can be achieved through the use of nanostructured materials.

  19. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulroe, Megan D.; Srijanto, Bernadeta R.; Ahmadi, S. Farzad

    It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, andmore » pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets while short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. Furthermore, by extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping droplet condensers for heat transfer, anti-fogging, and anti-frosting applications.« less

  20. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation

    DOE PAGES

    Mulroe, Megan D.; Srijanto, Bernadeta R.; Ahmadi, S. Farzad; ...

    2017-07-18

    It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, andmore » pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets while short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. Furthermore, by extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping droplet condensers for heat transfer, anti-fogging, and anti-frosting applications.« less

  1. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    PubMed

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing.

    PubMed

    Aravamudhan, Aja; Ramos, Daisy M; Nip, Jonathan; Kalajzic, Ivo; Kumbar, Sangamesh G

    2018-02-01

    Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modulating capacitive response of MoS2 flake by controlled nanostructuring through focused laser irradiation.

    PubMed

    Rani, Renu; Kundu, Anirban; Balal, Mohammad; Sheet, Goutam; Hazra, Kiran Shankar

    2018-08-24

    Unlike graphene nanostructures, various physical properties of nanostructured MoS 2 have remained unexplored due to the lack of established fabrication routes. Herein, we have reported unique electrostatic properties of MoS 2 nanostructures, fabricated in a controlled manner of different geometries on 2D flake by using focused laser irradiation technique. Electrostatic force microscopy has been carried out on MoS 2 nanostructures by varying tip bias voltage and lift height. The analysis depicts no contrast flip in phase image of the patterned nanostructure due to the absence of free surface charges. However, prominent change in phase shift at the patterned area is observed. Such contrast changes signify the capacitive interaction between tip and nanostructures at varying tip bias voltage and lift height, irrespective of their shape and size. Such unperturbed capacitive behavior of the MoS 2 nanostructures offer modulation of capacitance in periodic array on 2D MoS 2 flake for potential application in capacitive devices.

  4. Plasma Enabled Fabrication of Silicon Carbide Nanostructures

    NASA Astrophysics Data System (ADS)

    Fang, Jinghua; Levchenko, Igor; Aramesh, Morteza; Rider, Amanda E.; Prawer, Steven; Ostrikov, Kostya (Ken)

    Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.

  5. Enhanced field emission from hexagonal rhodium nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathe, Bhaskar R.; Kakade, Bhalchandra A.; Mulla, Imtiaz S.

    2008-06-23

    Shape selective synthesis of nanostructured Rh hexagons has been demonstrated with the help of a modified chemical vapor deposition using rhodium acetate. An ultralow threshold field of 0.72 V/{mu}m is observed to generate a field emission current density of 4x10{sup -3} {mu}A/cm{sup 2}. The high enhancement factor (9325) indicates that the origin of electron emission is from nanostructured features. The smaller size of emitting area, excellent current density, and stability over a period of more than 3 h are promising characteristics for the development of electron sources.

  6. Chemical solution route to self-assembled epitaxial oxide nanostructures.

    PubMed

    Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N

    2014-04-07

    Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.

  7. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  8. Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors.

    PubMed

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-19

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp(2) carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp(2) carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  9. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    PubMed Central

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-01-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance. PMID:25134517

  10. Enhancement of Electrical Properties of Nanostructured Polysilicon Layers Through Hydrogen Passivation.

    PubMed

    Zhou, D; Xu, T; Lambert, Y; Cristini-Robbe; Stiévenard, D

    2015-12-01

    The light absorption of polysilicon planar junctions can be improved using nanostructured top surfaces due to their enhanced light harvesting properties. Nevertheless, associated with the higher surface, the roughness caused by plasma etching and defects located at the grain boundary in polysilicon, the concentration of the recombination centers increases, leading to electrical performance deterioration. In this work, we demonstrate that wet oxidation combined with hydrogen passivation using SiN(x):H are the key technological processes to significantly decrease the surface recombination and improve the electrical properties of nanostructured n(+)-i-p junctions. Nanostructured surface is fabricated by nanosphere lithography in a low-cost and controllable approach. Furthermore, it has been demonstrated that the successive annealing of silicon nitride films has significant effect on the passivation quality, resulting in some improvements on the efficiency of the Si nanostructure-based solar cell device.

  11. Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Ho; No, You-Shin

    2017-12-01

    In this review, we introduce novel plasmonic and metamaterial devices based on one-dimensional subwavelength nanostructures with cylindrical symmetry. Individual single devices with semiconductor/metal core/shell or dielectric/metal core/multi-shell structures experience strong light-matter interaction and yield unique optical properties with a variety of functions, e.g., invisibility cloaking, super-scattering/super-absorption, enhanced luminescence and nonlinear optical activities, and deep subwavelength-scale optical waveguiding. We describe the rational design of core/shell cylindrical nanostructures and the proper choice of appropriate constituent materials, which allow the efficient manipulation of electromagnetic waves and help to overcome the limitations of conventional homogeneous nanostructures. The recent developments of bottom-up synthesis combined with the top-down fabrication technologies for the practical applications and the experimental realizations of 1D subwavelength core/shell nanostructure devices are briefly discussed.

  12. Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

    PubMed Central

    Belić, Domagoj; Shawrav, Mostafa M; Bertagnolli, Emmerich

    2017-01-01

    This work presents a highly effective approach for the chemical purification of directly written 2D and 3D gold nanostructures suitable for plasmonics, biomolecule immobilisation, and nanoelectronics. Gold nano- and microstructures can be fabricated by one-step direct-write lithography process using focused electron beam induced deposition (FEBID). Typically, as-deposited gold nanostructures suffer from a low Au content and unacceptably high carbon contamination. We show that the undesirable carbon contamination can be diminished using a two-step process – a combination of optimized deposition followed by appropriate postdeposition cleaning. Starting from the common metal-organic precursor Me2-Au-tfac, it is demonstrated that the Au content in pristine FEBID nanostructures can be increased from 30 atom % to as much as 72 atom %, depending on the sustained electron beam dose. As a second step, oxygen-plasma treatment is established to further enhance the Au content in the structures, while preserving their morphology to a high degree. This two-step process represents a simple, feasible and high-throughput method for direct writing of purer gold nanostructures that can enable their future use for demanding applications. PMID:29259868

  13. Resonance properties of Ag-ZnO nanostructures at terahertz frequencies

    PubMed Central

    Sanchez, John E.; Díaz de León, Ramón; Mendoza-Santoyo, Fernando; González, Gabriel; José-Yacaman, Miguel; Ponce, Arturo; González, Francisco Javier

    2015-01-01

    Nanoantennas have been fabricated by scaling down traditional antenna designs using nanolithographic techniques and testing them at different optical wavelengths, these particular nanoantennas have shown responses in a broad range of frequencies going from visible wavelengths to the range of the terahertz. Some self-assembled nanostructures exist that exhibit similar shapes and properties to those of traditional antenna structures. In this work the emission and absorption properties of self-assembled nanostructures made of zinc oxide nanorods on silver nanowires, which resemble traditional dipole antennas, were measured and simulated in order to test their antenna performance. These structures show resonant properties in the 10-120 THz range, with the main resonance at 60 THz. The radiation pattern of these nanostructures was also obtained by numerical simulations, and it is shown that it can be tailored to increase or decrease its directivity as a function of the location of the energy source of excitation. Experimental measurements were performed by Raman spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) in order to show existing vibrational frequencies at the resonant frequencies of the nanostructures, measurements were made from ~9 to 103 THz and the results were in agreement with the simulations. These characteristics make these metal-semiconductor Ag/ZnO nanostructures useful as self-assembled nanoantennas in applications such as terahertz spectroscopy and sensing at terahertz frequencies. PMID:26406710

  14. Nanostructures based on alumina hydroxides inhibit tumor growth

    NASA Astrophysics Data System (ADS)

    Fomenko, A. N.; Korovin, M. S.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less research attention has been payed to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with AlOOH nanoparticles.

  15. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-03-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  16. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    PubMed

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  17. Strain-Engineering of Giant Pseudo-Magnetic Fields in Graphene/Boron Nitride (BN) Periodic Nanostructures

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Chih; Wang, Jiaqing; Teague, Marcus; Chen, Chien-Chang; Yeh, Nai-Chang

    2015-03-01

    Ideal graphene is strain-free whereas non-trivial strain can induce pseudo-magnetic fields as predicted theoretically and manifested experimentally. Here we employ nearly strain-free single-domain graphene, grown by plasma-enhanced chemical vapor deposition (PECVD) at low temperatures, to induce controlled strain by placing the PECVD-graphene on substrates containing engineered nanostructures. We fabricate periodic pyramid nanostructures (typically 100 ~ 200 nm laterally and 10 ~ 60 nm in height) on Si substrates by focused ion beam, and determine the topography of these nanostructures using atomic force microscopy and scanning electron microscopy after we transferred monolayer h-BN followed by PECVD-graphene onto these substrates. We find both layers conform well to the nanostructures so that we can control the size, arrangement, separation, and shape of the nanostructures to generate desirable pseudo-magnetic fields. We also employ molecular dynamics simulation to determine the displacement of carbon atoms under a given nanostructure. The pseudo-magnetic field thus obtained is ~150T in the center, relatively homogeneous over 50% of the area, and drops off precipitously near the edge. These findings are extended to arrays of nanostructures and compared with topographic and spectroscopic studies by STM. Supported by NSF.

  18. EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures

    NASA Astrophysics Data System (ADS)

    Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Gürsel, Selmiye Alkan; Scherer, Günther G.; Wokaun, Alexander

    2007-12-01

    Nanostructures of the thermoresponsive poly( N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 °C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures.

  19. Effect of annealing on morphology and photoluminescence of beta-Ga2O3 nanostructures.

    PubMed

    Zhang, Shiying; Zhuang, Huizhao; Xue, Chengshan; Li, Baoli

    2008-07-01

    A novel method was applied to prepare one-dimensional beta-Ga2O3 nanostructure films. In this method, beta-Ga2O3 nanostructures have been successfully synthesized on Si(111) substrates through annealing sputtered Ga22O3/Mo films for differernt time under flowing ammonia. The as-synthesized beta-Ga2O3 nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectrum. The results show that the formed nanostructures are single-crystalline Ga2O3 with monoclinic structure. The annealing time of the samples has an evident influence on the morphology and optical property of the nanostructured beta-Ga2O3 synthesized. The representative photoluminescence spectrum at room temperature exhibits a strong and broad emission band centered at 411.5 nm and a relatively weak emission peak located at 437.6 nm. The growth mechanism of the beta-Ga2O3 nanostructured materials is also discussed briefly.

  20. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    PubMed Central

    Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan

    2012-01-01

    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283

  1. Synthesis and properties of graphene oxide/graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Kapitanova, O. O.; Panin, G. N.; Baranov, A. N.; Kang, T. W.

    2012-05-01

    We report preparation of graphene oxide (GO)/graphene (G) nanostructures and their structural, optical and electrical properties. GO was synthesized through oxidation of graphite by using the modified Hummer's method, in which a long oxidation time was combined with a highly effective method for purifying the reaction products. The obtained GO was partially reduced (r-GO) by adding ascorbic acid and thermal annealing. An electrical reduction/oxidation process in r-GO under an electric field was used to form and control the GO/G nanostructures and the potential barrier at the interface. After the treatment, the ratio of the intensity of peak G (1578 cm-1) to that of peak D (1357 cm-1) in Raman spectra of the samples is increased, which is attributed to an increase in the ratio between the sp2 and sp3 regions. The electrical and the luminescence characteristics of the GO/G nanostructures were investigated.

  2. Silver nanostructures synthesis via optically induced electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung

    2016-06-01

    We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.

  3. A Generalized Crystallographic Description of All Tellurium Nanostructures.

    PubMed

    Kim, Min-Seok; Ma, Xing-Hua; Cho, Ki-Hyun; Jeon, Seung-Yeol; Hur, Kahyun; Sung, Yun-Mo

    2018-02-01

    Despite tellurium being less abundant in the Earth's crust than gold, platinum, or rare-earth elements, the number of industrial applications of tellurium has rapidly increased in recent years. However, to date, many properties of tellurium and its associated compounds remain unknown. For example, formation mechanisms of many tellurium nanostructures synthesized so far have not yet been verified, and it is unclear why tellurium can readily transform to other compounds like silver telluride by simply mixing with solutions containing silver ions. This uncertainty appears to be due to previous misunderstandings about the tellurium structure. Here, a new approach to the tellurium structure via synthesized structures is proposed. It is found that the proposed approach applies not only to these structures but to all other tellurium nanostructures. Moreover, some unique tellurium nanostructures whose formation mechanism are, until now, unconfirmed can be explained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials

    PubMed Central

    Tetzlaff, Jennifer M; Gøtzsche, Peter C; Altman, Douglas G; Mann, Howard; Berlin, Jesse A; Dickersin, Kay; Hróbjartsson, Asbjørn; Schulz, Kenneth F; Parulekar, Wendy R; Krleža-Jerić, Karmela; Laupacis, Andreas; Moher, David

    2013-01-01

    High quality protocols facilitate proper conduct, reporting, and external review of clinical trials. However, the completeness of trial protocols is often inadequate. To help improve the content and quality of protocols, an international group of stakeholders developed the SPIRIT 2013 Statement (Standard Protocol Items: Recommendations for Interventional Trials). The SPIRIT Statement provides guidance in the form of a checklist of recommended items to include in a clinical trial protocol. This SPIRIT 2013 Explanation and Elaboration paper provides important information to promote full understanding of the checklist recommendations. For each checklist item, we provide a rationale and detailed description; a model example from an actual protocol; and relevant references supporting its importance. We strongly recommend that this explanatory paper be used in conjunction with the SPIRIT Statement. A website of resources is also available (www.spirit-statement.org). The SPIRIT 2013 Explanation and Elaboration paper, together with the Statement, should help with the drafting of trial protocols. Complete documentation of key trial elements can facilitate transparency and protocol review for the benefit of all stakeholders. PMID:23303884

  5. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials.

    PubMed

    Chan, An-Wen; Tetzlaff, Jennifer M; Gøtzsche, Peter C; Altman, Douglas G; Mann, Howard; Berlin, Jesse A; Dickersin, Kay; Hróbjartsson, Asbjørn; Schulz, Kenneth F; Parulekar, Wendy R; Krleza-Jeric, Karmela; Laupacis, Andreas; Moher, David

    2013-01-08

    High quality protocols facilitate proper conduct, reporting, and external review of clinical trials. However, the completeness of trial protocols is often inadequate. To help improve the content and quality of protocols, an international group of stakeholders developed the SPIRIT 2013 Statement (Standard Protocol Items: Recommendations for Interventional Trials). The SPIRIT Statement provides guidance in the form of a checklist of recommended items to include in a clinical trial protocol. This SPIRIT 2013 Explanation and Elaboration paper provides important information to promote full understanding of the checklist recommendations. For each checklist item, we provide a rationale and detailed description; a model example from an actual protocol; and relevant references supporting its importance. We strongly recommend that this explanatory paper be used in conjunction with the SPIRIT Statement. A website of resources is also available (www.spirit-statement.org). The SPIRIT 2013 Explanation and Elaboration paper, together with the Statement, should help with the drafting of trial protocols. Complete documentation of key trial elements can facilitate transparency and protocol review for the benefit of all stakeholders.

  6. Structural effects on mechanical response of MoS2 nanostructures during compression

    NASA Astrophysics Data System (ADS)

    Bucholz, Eric W.; Sinnott, Susan B.

    2013-07-01

    In recent years, inorganic nanostructures, such as fullerene-like MoS2 and WS2 nanoparticles, have been shown to be promising candidates for friction and wear reduction in tribological applications. However, it has been demonstrated experimentally that the mechanical response of any given inorganic nanostructure varies depending on its individual structural characteristics such as size, shape, and crystallinity. Here, classical molecular dynamics simulations are performed that investigate the mechanical responses of different types of MoS2 nanostructures during uniaxial compression. The results illustrate the dependence of mechanical behavior on nanoparticle structure and, in particular, indicate that the mechanical properties of MoS2 nanostructures vary significantly with changes in the orientation of the MoS2 walls at the interface.

  7. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    PubMed Central

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of

  8. semiconducting nanostructures: morphology and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M.; Cantarero, Andrés

    2014-08-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1- x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  9. Vocabulary Development at Home: A Multimedia Elaborated Picture Supporting Parent-Toddler Interaction

    ERIC Educational Resources Information Center

    Gremmen, M. C.; Molenaar, I.; Teepe, R. C.

    2016-01-01

    Some children enter elementary school with large vocabulary delays, which negatively influence their later school performance. A rich home language environment can support vocabulary development through frequent high-quality parent-toddler interaction. Elaborated picture home activities can support this rich home language environment. This study…

  10. Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach

    NASA Astrophysics Data System (ADS)

    Fei, Xiang; Shao, Zhengzhong; Chen, Xin

    2013-08-01

    Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result showed that they had a good electrochemical performance. The straightforward energy-saving method developed in this research may provide a useful preparation strategy for other functional inorganic materials through an environmentally friendly process.Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result

  11. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Ruan, Qifeng

    Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components. In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications. Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized

  12. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.

    PubMed

    Wu, Gang; Zelenay, Piotr

    2013-08-20

    Platinum-based catalysts represent a state of the art in the electrocatalysis of oxygen reduction reaction (ORR) from the point of view of their activity and durability in harnessing the chemical energy via direct electrochemical conversion. However, because platinum is both expensive and scarce, its widespread implementation in such clean energy applications is limited. Recent breakthroughs in the synthesis of high-performance nonprecious metal catalysts (NPMCs) make replacement of Pt in ORR electrocatalysts with earth-abundant elements, such as Fe, Co, N, and C, a realistic possibility. In this Account, we discuss how we can obtain highly promising M-N-C (M: Fe and/or Co) catalysts by simultaneously heat-treating precursors of nitrogen, carbon, and transition metals at 800-1000 °C. The activity and durability of resulting catalysts depend greatly on the selection of precursors and synthesis chemistry. In addition, they correlate quite well with the catalyst nanostructure. While chemists have presented no conclusive description of the active catalytic site for this class of NPMCs, they have developed a designed approach to making active and durable materials, focusing on the catalyst nanostructure. The approach consists of nitrogen doping, in situ carbon graphitization, and the usage of graphitic structures (possibly graphene and graphene oxides) as carbon precursors. Various forms of nitrogen, particularly pyridinic and quaternary, can act as n-type carbon dopants in the M-N-C catalysts, assisting in the formation of disordered carbon nanostructures and donating electrons to the carbon. The CNx structures are likely a crucial part of the ORR active site(s). Noteworthy, the ORR activity is not necessarily governed by the amount of nitrogen, but by how the nitrogen is incorporated into the nanostructures. Apart from the possibility of a direct participation in the active site, the transition metal often plays an important role in the in situ formation of various

  13. Fabrication of 3D nano-structures using reverse imprint lithography

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  14. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography

    NASA Astrophysics Data System (ADS)

    Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan

    2017-11-01

    It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

  15. Engineering a nanostructured "super surface" with superhydrophobic and superkilling properties.

    PubMed

    Hasan, Jafar; Raj, Shammy; Yadav, Lavendra; Chatterjee, Kaushik

    2015-05-12

    We present a nanostructured "super surface" fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 μm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0° and contact angle hysteresis of 8.3°. Bacterial studies revealed the bactericidal property of the surface against both gram negative ( Escherichia coli ) and gram positive ( Staphylococcus aureus ) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing self-cleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.

  16. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography.

    PubMed

    Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan

    2017-11-17

    It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

  17. Fluorine-doped NiO nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Kumar, Manjeet; Singh, Dilpreet; Singh, Manjinder; Singh, Paviter; Singh, Bikramjeet; Kaur, Gurpreet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2018-05-01

    Nanostructured NiO has been prepared by co-precipitation method. In this study, the effect of fluorine doping (1, 3 and 5 wt. %) on the structural, morphological as well as optical properties of NiO nanostructures has been studied. X-ray diffraction (XRD) has employed for studying the structural properties. Cubic crystal structure of NiO was confirmed by the XRD analysis. Crystallite size increased with increase in doping concentration. Nelson-Riley factor (NRF) analysis indicated the presence of defect states in the synthesized samples. Field emission scanning electron microscopy showed the spherical morphology of the synthesized samples and also revealed that the particle size varied with dopant content. The optical properties were studied using UV-Visible Spectroscopy. The results indicated that the band gap energy of the synthesized nanostructures decreased with increase in doping concentration upto 3% but increased as the doping concentration was further raised to 5%. This can be ascribed to the defect states variations in the synthesized samples. The results suggested that the synthesized nanostructures are promising candidate for optoelectronic as well as gas sensing applications.

  18. Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells.

    PubMed

    Xie, Jian; Zhao, Cui-E; Lin, Zong-Qiong; Gu, Pei-Yang; Zhang, Qichun

    2016-05-20

    To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy-related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high-performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nanostructured ZnO - its challenging properties and potential for device applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  20. Use of Elaborative Interrogation to Help Students Acquire Information Consistent with Prior Knowledge and Information Inconsistent with Prior Knowledge.

    ERIC Educational Resources Information Center

    Woloshyn, Vera E.; And Others

    1994-01-01

    Thirty-two factual statements, half consistent and half not consistent with subjects' prior knowledge, were processed by 140 sixth and seventh graders. Half were directed to use elaborative interrogation (using prior knowledge) to answer why each statement was true. Across all memory measures, elaborative interrogation subjects performed better…