Science.gov

Sample records for bioactifs nanostructures elabores

  1. Elaboration of nanostructured biointerfaces with tunable degree of coverage by protein nanotubes using electrophoretic deposition.

    PubMed

    Kalaskar, Deepak M; Poleunis, Claude; Dupont-Gillain, Christine; Demoustier-Champagne, Sophie

    2011-11-14

    This study shows that electrophoretic deposition (EPD) is a fast and efficient technique for producing protein nanotube-based biointerfaces. Well-shaped collagen-based nanotubes of controlled dimensions are synthesized by a template method combined with the layer-by-layer (LbL) assembly technique. Separation of nanotubes from the template material and collection of nanotubes on ITO glass carried out by EPD leads to a fairly homogeneous distribution of protein nanotubes at the support surface. Biointerfaces with different and tunable densities of protein nanotubes are obtained by changing either the applied voltage, solution concentration of nanotubes, or deposition time. Moreover, it is proved that the collected nanotubes are template-free and keep their biofunctional outermost layer after EPD. A preliminary study of the behavior of preosteoblasts cells with the elaborated biointerfaces indicates a specific interaction of cells with the nanotubes through filopodia. This contribution paves the way to the easy preparation of a large variety of useful nanostructured collagen and other protein-based interfaces for controlling cell-surface interactions in diverse biomaterials applications.

  2. Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Vempaire, D.; Pelletier, J.; Lacoste, A.; Béchu, S.; Sirou, J.; Miraglia, S.; Fruchart, D.

    2005-05-01

    Plasma-based ion implantation (PBII), invented in 1987, can now be considered as a mature technology for thin film modification. After a brief recapitulation of the principle and physics of PBII, its advantages and disadvantages, as compared to conventional ion beam implantation, are listed and discussed. The elaboration of thin films and the modification of their functional properties by PBII have already been achieved in many fields, such as microelectronics (plasma doping/PLAD), biomaterials (surgical implants, bio- and blood-compatible materials), plastics (grafting, surface adhesion) and metallurgy (hard coatings, tribology), to name a few. The major advantages of PBII processing lie, on the one hand, in its flexibility in terms of ion implantation energy (from 0 to 100 keV) and operating conditions (plasma density, collisional or non-collisional ion sheath), and, on the other hand, in the easy transferrability of processes from the laboratory to industry. The possibility of modifying the composition and physical nature of the films, or of drastically changing their physical properties over several orders of magnitude makes this technology very attractive for the elaboration of innovative materials, including metastable materials, and the realization of micro- or nanostructures. A review of the state of the art in these domains is presented and illustrated through a few selected examples. The perspectives opened up by PBII processing, as well as its limitations, are discussed.

  3. Opportunities offered by the interaction of plasma and droplets to elaborate nanostructured oxide materials

    NASA Astrophysics Data System (ADS)

    Nikravech, Mehrdad; Rahmani, Abdelkader

    2016-09-01

    The association of plasma and spray will permit to process materials where organometallic precursors are not available or economically non-reliable. The injection of aerosols in low pressure plasma results in the rapid evaporation of solvent and the rapid transformation of small amounts of precursors contained in each droplet leading to form nanoscale oxide particles. We developed two configurations of this technique: one is Spray Plasma that permits to deposit this layers on flat substrates; the second one is Fluidized Spray Plasma that permits to deposit thin layers on the surface of solid beads. The aim of this presentation is to describe the principles of this new technique together with several applications. The influence of experimental parameters to deposit various mixed metal oxides will be demonstrated: thin dense layers of nanostructured ZnO for photovoltaic applications, porous layers of LaxSr1-x MnO3 as the cathode for fuel cells, ZnO-Cu, NiO layers on solid pellets in fluidized bed for catalysis applications. Aknowledgement to Programme interdisciplinaire SPC Énergies de Demain.

  4. Revetements bioactifs a base de chondroitine sulfate et de facteurs de croissance pour applications vasculaires

    NASA Astrophysics Data System (ADS)

    Lequoy, Pauline

    Malgre des avancees technologiques indeniables, l'efficacite des implants biomedicaux est encore limitee par les biomateriaux synthetiques qui les composent, notamment en raison de leur incapacite a generer une reponse biologique adequate. En particulier, la guerison tissulaire autour des implants vasculaires reste problematique. Une etude de la litterature a montre que dans le cas des endoprotheses couvertes (tuyaux polymeriques utilises pour la reparation endovasculaire des anevrismes de l'aorte abdominale), le manque de guerison observe s'explique non seulement par l'inertie des biomateriaux utilises mais aussi par le fait que l'implant est insere dans un vaisseau malade favorisant la mort des cellules par apoptose et presentant une depletion cellulaire marquee. L'hypothese a la base de ce projet est qu'un revetement bioactif pourrait ameliorer la guerison et la colonisation de l'implant par les cellules vasculaires et ainsi favoriser l'attachement de l'implant dans le vaisseau malade afin de prevenir les complications a long terme. Dans ce contexte, deux molecules anti-apoptotiques ont ete selectionnees pour developper le revetement, la chondroitine sulfate (CS), un glycosaminoglycane de la matrice extracellulaire, et le facteur de croissance de l'epiderme (EGF) qui possede egalement un role important dans la guerison tissulaire. L'un des defis de ce projet est de preserver la bioactivite de ces molecules lors de leur immobilisation dans un revetement. Pour etablir une preuve de concept, nous avons demontre qu'un revetement CS+EGF obtenu par greffage covalent permet d'ameliorer significativement la survie des cellules vasculaires humaines (cellules musculaires lisses, CMLV, et fibroblastes) sur les materiaux realistes (PET, ePTFE). Apres avoir transfere ce revetement sur des implants commerciaux en ePTFE, des tests in vivo ont demontre une amelioration de la guerison grâce au revetement bioactif, cependant la guerison n'a pas ete totale dans la cavite

  5. Structural Study of SiC Nanoparticles Grown by Inductively Coupled Plasma and Laser Pyrolysis for Nano-structured Ceramics Elaboration

    SciTech Connect

    Leconte, Yann; Portier, Xavier; Herlin-Boime, Nathalie; Reynaud, Cecile

    2008-07-01

    Refractory carbide nano-structured ceramics as SiC constitute interesting materials for high temperature applications and particularly for fourth generation nuclear plants. To elaborate such nano-materials, weighable amounts of SiC nano-powders have to be synthesized first with an accurate control of the grain size and stoichiometry. The inductively coupled plasma and the laser pyrolysis techniques, respectively developed at EMPA Thun and CEA Saclay, allow meeting these requirements. Both techniques are able to produce dozens of grams per hour of silicon carbide nano-powders. The particle size can be adjusted down to around 20 nm for the plasma synthesis and even down to 5-10 nm for the laser pyrolysis. The stoichiometry Si/C can be tuned by the addition of methane into the plasma and acetylene for the laser process. (authors)

  6. New nanostructured carbons based on porous cellulose: Elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis

    NASA Astrophysics Data System (ADS)

    Guilminot, Elodie; Gavillon, Roxane; Chatenet, Marian; Berthon-Fabry, Sandrine; Rigacci, Arnaud; Budtova, Tatiana

    New nanostructured carbons have been prepared from pyrolysis of recently developed highly porous cellulose, aerocellulose (AC). Aerocellulose is an ultra-light and highly porous pure cellulose material prepared from cellulose gels followed by drying in carbon dioxide supercritical conditions. The carbonized aerocellulose (CAC) materials were obtained after pyrolysis of the aerocellulose under nitrogen flow at 830 °C, and subsequently doped by platinum nanoparticles. The platinum insertion process consisted of (i) thermal activation at various temperatures in CO 2 atmosphere, (ii) impregnation by PtCl 6 2- and (iii) platinum salt chemical reduction. The aerocellulose materials and their carbonized counterparts were investigated by scanning and transmission electron microscopy (SEM and TEM), mercury porosimetry and thermogravimetric analysis. The morphology of the platinum particles deposited on the carbonized aerocellulose materials (Pt/CAC) was investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD): the Pt particles are of 4-5 nm size, mainly agglomerated, as a result of the complex surface chemistry of the CAC. Their electrocatalytic activity was investigated by quasi-steady-state voltammetry in the rotating disk electrode (RDE) setup, regarding the oxygen reduction reaction (ORR). The Pt/CAC materials exhibit ORR specific activities comparable with those of commercial Pt/Vulcan XC72R. Their mass activity is lower, as a result of the ca. 10 times smaller specific area of platinum as compared with the commercial electrocatalyst. We nevertheless believe that provided an appropriate pyrolysis temperature is chosen, such green carbonized aerocellulose could be a promising electrocatalyst support for PEM application.

  7. Characteristics of nanostructured Zn1-xVxO thin films with high vanadium content elaborated by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Medjnoun, K.; Djessas, K.; Belkaid, M. S.; Grillo, S. E.; Solhy, A.; Briot, O.; Moret, M.

    2015-06-01

    Nanostructured Zn1-xVxO (0 ⩽ x ⩽ 0.50) thin films were synthesized by rf-magnetron sputtering at two different substrate temperatures (room temperature (RT) and 200 °C) and with variable sputtering powers (60, 80 and 100 W). In this method, single targets based on Zn1-xVxO nanopowders prepared by the sol-gel process were used. Characterization of the Zn1-xVxO nanoparticles showed that they crystallize in the hexagonal wurtzite structure. Their size ranged from 20 to 40 nm. The effect of process parameters on the physical and chemical properties of Zn1-xVxO thin films has been studied. For x ⩽ 0.30, the results obtained at 200 °C and 60 W indicate that the films have a high quality of crystallinity. Vegard's law is respected, indicating that vanadium is incorporated in the ZnO matrix. The chemical compositions of these films were found to be close to the stoichiometry. The films exhibit a columnar structure and a smooth surface. Their average transmission, from the visible to the NIR, was in the range of 75-90%. The values of the band gap of the Zn1-xVxO thin films with x ⩽ 0.30 and elaborated at 200 °C and 60 W, vary from 3.29 to 3.74 eV. This is consistent with blue shifting of near-band edge cathodoluminescence emission. Under particular growth conditions, the investigation shows that the Zn0.80V0.20O sample presents the best properties for potential use in various optoelectronic applications, namely: a single wurtzite phase, low surface roughness (Ra ∼ 0.2 nm), a high transparency of 90% in the UV-Vis-NIR, a wide band gap of 3.74 eV and a resistivity of ∼5 × 10+3 Ω cm.

  8. Elaborating on Threshold Concepts

    ERIC Educational Resources Information Center

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-01-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account…

  9. Elaborating on threshold concepts

    NASA Astrophysics Data System (ADS)

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-09-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account for both the important and the problematic characteristics of TCs in terms of the Knowledge/Strategies/Mental Models Framework defined in previous work.

  10. Elaborate synthesis of biological macromolecules.

    PubMed

    Ito, Yoshihiro

    2012-05-29

    Egged on: Elaborate syntheses of biological macromolecules consisting of more than two different components is developing. Kajihara and co-workers have used a bio-resource to develop a new strategy for the semisynthesis of glycoproteins. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Example Elaboration as a Neglected Instructional Strategy

    SciTech Connect

    Girill, T R

    2001-07-18

    Over the last decade an unfolding cognitive-psychology research program on how learners use examples to develop effective problem solving expertise has yielded well-established empirical findings. Chi et al., Renkl, Reimann, and Neubert (in various papers) have confirmed statistically significant differences in how good and poor learners inferentially elaborate (self explain) example steps as they study. Such example elaboration is highly relevant to software documentation and training, yet largely neglected in the current literature. This paper summarizes the neglected research on example use and puts its neglect in a disciplinary perspective. The author then shows that differences in support for example elaboration in commercial software documentation reveal previously over looked usability issues. These issues involve example summaries, using goals and goal structures to reinforce example elaborations, and prompting readers to recognize the role of example parts. Secondly, I show how these same example elaboration techniques can build cognitive maturity among underperforming high school students who study technical writing. Principle based elaborations, condition elaborations, and role recognition of example steps all have their place in innovative, high school level, technical writing exercises, and all promote far transfer problem solving. Finally, I use these studies to clarify the constructivist debate over what writers and readers contribute to text meaning. I argue that writers can influence how readers elaborate on examples, and that because of the great empirical differences in example study effectiveness (and reader choices) writers should do what they can (through within text design features) to encourage readers to elaborate examples in the most successful ways. Example elaboration is a uniquely effective way to learn from worked technical examples. This paper summarizes years of research that clarifies example elaboration. I then show how example

  12. Transfer of Elaborative Strategies in College Students

    ERIC Educational Resources Information Center

    Aagaard, Lola; Conner, Timothy W., II; Skidmore, Ronald L.

    2008-01-01

    The use of elaboration as a memory strategy has been researched for decades and has been shown to be effective for preschool through adult ages (Pressley, 1982). However, the literature examining elaborative strategy use among students in college is lacking. Therefore, the purpose of this study was to investigate the transfer of elaborative…

  13. Improving Reasoning and Recall: The Differential Effects of Elaborative Interrogation and Mnemonic Elaboration.

    ERIC Educational Resources Information Center

    Scruggs, Thomas E.; And Others

    1993-01-01

    Fifty-three adolescents with learning disabilities or mild mental retardation were taught reasons for dinosaur extinction. Those taught in a mnemonic elaborative interrogation condition recalled more reasons than did students who received direct teaching. Students in elaborative interrogation and mnemonic elaborative interrogation groups recalled…

  14. Improving Reasoning and Recall: The Differential Effects of Elaborative Interrogation and Mnemonic Elaboration.

    ERIC Educational Resources Information Center

    Scruggs, Thomas E.; And Others

    1993-01-01

    Fifty-three adolescents with learning disabilities or mild mental retardation were taught reasons for dinosaur extinction. Those taught in a mnemonic elaborative interrogation condition recalled more reasons than did students who received direct teaching. Students in elaborative interrogation and mnemonic elaborative interrogation groups recalled…

  15. Constructing specifications by combining parallel elaborations

    SciTech Connect

    Feather, M.S.

    1989-02-01

    Constructing specifications of complex tasks is often a laborious activity in spite of the rich vocabulary provided by specification languages. An incremental approach to construction is proposed, with the virtue of offering considerable opportunity for mechanized support. Following this approach one builds a specification through a series of elaborations that incrementally adjust a simple initial specification. Elaborations perform both refinements, adding further detail, and adaptations, retracting oversimplifications and tailoring approximations to the specifics of the task. It is anticipated that the vast majority of elaborations can be concisely described to a mechanism which will then perform them automatically. When elaborations are independent, they can be applied in parallel, leading to diverging specifications which must later be recombined. The approach is intended to facilitate comprehension and maintenance of specifications, as well as their initial construction. The advantages of following this approach stem from the gradual nature of the elaboration process, the separation of concerns through following independent elaborations in parallel, the simplicity of the individual elaboration steps (the effects of each step are well delineated), and the availability of an explicit record of construction.

  16. Superhydrophilic nanostructure

    DOEpatents

    Mao, Samuel S; Zormpa, Vasileia; Chen, Xiaobo

    2015-05-12

    An embodiment of a superhydrophilic nanostructure includes nanoparticles. The nanoparticles are formed into porous clusters. The porous clusters are formed into aggregate clusters. An embodiment of an article of manufacture includes the superhydrophilic nanostructure on a substrate. An embodiment of a method of fabricating a superhydrophilic nanostructure includes applying a solution that includes nanoparticles to a substrate. The substrate is heated to form aggregate clusters of porous clusters of the nanoparticles.

  17. REMARK checklist elaborated to improve tumor prognostician

    Cancer.gov

    Experts have elaborated on a previously published checklist of 20 items -- including descriptions of design, methods, and analysis -- that researchers should address when publishing studies of prognostic markers. These markers are indicators that enable d

  18. Nanostructured materials

    NASA Astrophysics Data System (ADS)

    Moriarty, Philip

    2001-03-01

    Nanostructured materials may be defined as those materials whose structural elements - clusters, crystallites or molecules - have dimensions in the 1 to 100 nm range. The explosion in both academic and industrial interest in these materials over the past decade arises from the remarkable variations in fundamental electrical, optical and magnetic properties that occur as one progresses from an `infinitely extended' solid to a particle of material consisting of a countable number of atoms. This review details recent advances in the synthesis and investigation of functional nanostructured materials, focusing on the novel size-dependent physics and chemistry that results when electrons are confined within nanoscale semiconductor and metal clusters and colloids. Carbon-based nanomaterials and nanostructures including fullerenes and nanotubes play an increasingly pervasive role in nanoscale science and technology and are thus described in some depth. Current nanodevice fabrication methods and the future prospects for nanostructured materials and nanodevices are discussed.

  19. Teaching Mathematical Modelling: Demonstrating Enrichment and Elaboration

    ERIC Educational Resources Information Center

    Warwick, Jon

    2015-01-01

    This paper uses a series of models to illustrate one of the fundamental processes of model building--that of enrichment and elaboration. The paper describes how a problem context is given which allows a series of models to be developed from a simple initial model using a queuing theory framework. The process encourages students to think about the…

  20. Elaborative Retrieval: Do Semantic Mediators Improve Memory?

    ERIC Educational Resources Information Center

    Lehman, Melissa; Karpicke, Jeffrey D.

    2016-01-01

    The elaborative retrieval account of retrieval-based learning proposes that retrieval enhances retention because the retrieval process produces the generation of semantic mediators that link cues to target information. We tested 2 assumptions that form the basis of this account: that semantic mediators are more likely to be generated during…

  1. Teaching Mathematical Modelling: Demonstrating Enrichment and Elaboration

    ERIC Educational Resources Information Center

    Warwick, Jon

    2015-01-01

    This paper uses a series of models to illustrate one of the fundamental processes of model building--that of enrichment and elaboration. The paper describes how a problem context is given which allows a series of models to be developed from a simple initial model using a queuing theory framework. The process encourages students to think about the…

  2. Elaborative Retrieval: Do Semantic Mediators Improve Memory?

    ERIC Educational Resources Information Center

    Lehman, Melissa; Karpicke, Jeffrey D.

    2016-01-01

    The elaborative retrieval account of retrieval-based learning proposes that retrieval enhances retention because the retrieval process produces the generation of semantic mediators that link cues to target information. We tested 2 assumptions that form the basis of this account: that semantic mediators are more likely to be generated during…

  3. Nanostructures and mesoscopic systems

    SciTech Connect

    Kirk, W.P. . Dept. of Physics); Reed, M.A. )

    1992-01-01

    This book covers the following topics: nanostructure fabrication; ballistic transport and coherence; low-dimensional tunneling; electron correlation and coulomb blockade; nanostructure arrays and collective effects; theory and modeling of nanostructures; optical properties of nanostructures; and new systems.

  4. [Elaboration and critical evaluation of clinical guidelines].

    PubMed

    García Villar, C

    2015-11-01

    Clinical guidelines are documents to help professionals and patients select the best diagnostic or therapeutic option. Elaborating guidelines requires an efficient literature search and a critical evaluation of the articles found to select the most appropriate ones. After that, the recommendations are formulated and then must be externally evaluated before they can be disseminated. Even when the guidelines are very thorough and rigorous, it is important to know whether they fulfill all the methodological requisites before applying them. With this aim, various scales have been developed to critically appraise guidelines. Of these, the AGREE II instrument is currently the most widely used. This article explains the main steps in elaborating clinical guidelines and the main aspects that should be analyzed to know whether the guidelines are well written.

  5. Pullulan Elaboration by Aureobasidium pullulans Protoplasts

    PubMed Central

    Finkelman, Malcolm A. J.; Vardanis, Alexander

    1982-01-01

    Protoplasts of Aureobasidium pullulans are capable of producing pullulan. Biosynthesis of the polymer pullulan required induction with kinetics similar to those of whole cells. The protoplasts also produced a heteropolysaccharide component containing mannose, glucose, and galactose. The relative proportions of the pullulan and heteropolysaccharide fractions were a function of glucose concentration, with the pullulan content of the total polysaccharide rising from 20% at 2.5 mM glucose to 45% at 20 mM glucose. Elaboration of pullulan by both cells and protoplasts was sensitive to 0.6 M KCl, which was present as the osmotic stabilizer in protoplast experiments. The presence of KCl resulted in a shift in the pH optimum to a more acidic value. The molecular weight of the protoplast-derived pullulan was sharply reduced from the molecular weight of the whole-cell-derived product. Exposure of the protoplasts to proteolytic enzymes had no effect on polysaccharide elaboration. PMID:16346047

  6. Noun phrase elaboration in children's spoken stories.

    PubMed

    Eisenberg, Sarita L; Ukrainetz, Teresa A; Hsu, Jennifer R; Kaderavek, Joan N; Justice, Laura M; Gillam, Ronald B

    2008-04-01

    One feature of literate language, noun phrase elaboration, was examined in the oral fictional narratives of school-aged children. Two narratives were elicited from 5-, 8- and 11-year-old children, 1 in response to a picture sequence and 1 in response to a single picture. Noun phrases were categorized into 4 types. Simple designating noun phrases were produced by all children at age 5, simple descriptive noun phrases by all children at age 8, and noun phrases with postmodification by all children at age 11. All noun phrase types were produced by more children in object than in subject position and in the single picture than in the picture sequence context. There are important developmental changes in noun phrase elaboration in the elementary school years as children learn to manage narrative contexts. Even within picture tasks, variations in visual depiction can affect the use of elaborated noun phrases (ENPs), with more descriptive language more likely to occur in narratives based on a single picture fantasy context than on a realistic picture sequence context. Performance expectations for types of ENPs within these contexts are provided. These findings will be useful to school clinicians in evaluating and working on narrative language within the elementary school period.

  7. An Elaborate Secure Quantum Voting Scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Lei; Xie, Shu-Cui; Zhang, Jian-Zhong

    2017-07-01

    An elaborate secure quantum voting scheme is presented in this paper. It is based on quantum proxy blind signature. The eligible voter's voting information can be transmitted to the tallyman Bob with the help of the scrutineer Charlie. Charlie's supervision in the whole voting process can make the protocol satisfy fairness and un-repeatability so as to avoid Bob's dishonest behaviour. Our scheme uses the physical characteristics of quantum mechanics to achieve voting, counting and immediate supervision. In addition, the program also uses quantum key distribution protocol and quantum one-time pad to guarantee its unconditional security.

  8. An Elaborate Secure Quantum Voting Scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Lei; Xie, Shu-Cui; Zhang, Jian-Zhong

    2017-10-01

    An elaborate secure quantum voting scheme is presented in this paper. It is based on quantum proxy blind signature. The eligible voter's voting information can be transmitted to the tallyman Bob with the help of the scrutineer Charlie. Charlie's supervision in the whole voting process can make the protocol satisfy fairness and un-repeatability so as to avoid Bob's dishonest behaviour. Our scheme uses the physical characteristics of quantum mechanics to achieve voting, counting and immediate supervision. In addition, the program also uses quantum key distribution protocol and quantum one-time pad to guarantee its unconditional security.

  9. Elaborative retrieval: Do semantic mediators improve memory?

    PubMed

    Lehman, Melissa; Karpicke, Jeffrey D

    2016-10-01

    The elaborative retrieval account of retrieval-based learning proposes that retrieval enhances retention because the retrieval process produces the generation of semantic mediators that link cues to target information. We tested 2 assumptions that form the basis of this account: that semantic mediators are more likely to be generated during retrieval than during restudy and that the generation of mediators facilitates later recall of targets. Although these assumptions are often discussed in the context of retrieval processes, we noted that there was little prior empirical evidence to support either assumption. We conducted a series of experiments to measure the generation of mediators during retrieval and restudy and to examine the effect of the generation of mediators on later target recall. Across 7 experiments, we found that the generation of mediators was not more likely during retrieval (and may be more likely during restudy), and that the activation of mediators was unrelated to subsequent free recall of targets and was negatively related to cued recall of targets. The results pose challenges for both assumptions of the elaborative retrieval account. (PsycINFO Database Record

  10. Substructure mining using elaborate chemical representation.

    PubMed

    Kazius, Jeroen; Nijssen, Siegfried; Kok, Joost; Bäck, Thomas; Ijzerman, Adriaan P

    2006-01-01

    Substructure mining algorithms are important drug discovery tools since they can find substructures that affect physicochemical and biological properties. Current methods, however, only consider a part of all chemical information that is present within a data set of compounds. Therefore, the overall aim of our study was to enable more exhaustive data mining by designing methods that detect all substructures of any size, shape, and level of chemical detail. A means of chemical representation was developed that uses atomic hierarchies, thus enabling substructure mining to consider general and/or highly specific features. As a proof-of-concept, the efficient, multipurpose graph mining system Gaston learned substructures of any size and shape from a mutagenicity data set that was represented in this manner. From these substructures, we extracted a set of only six nonredundant, discriminative substructures that represent relevant biochemical knowledge. Our results demonstrate the individual and synergistic importance of elaborate chemical representation and mining for nonlinear substructures. We conclude that the combination of elaborate chemical representation and Gaston provides an excellent method for 2D substructure mining as this recipe systematically explores all substructures in different levels of chemical detail.

  11. False Memories for Suggestions: The Impact of Conceptual Elaboration.

    PubMed

    Zaragoza, Maria S; Mitchell, Karen J; Payment, Kristie; Drivdahl, Sarah

    2011-01-01

    Relatively little attention has been paid to the potential role that reflecting on the meaning and implications of suggested events (i.e., conceptual elaboration) might play in promoting the creation of false memories. Two experiments assessed whether encouraging repeated conceptual elaboration, would, like perceptual elaboration, increase false memory for suggested events. Results showed that conceptual elaboration of suggested events more often resulted in high confidence false memories (Experiment 1) and false memories that were accompanied by the phenomenal experience of remembering them (Experiment 2) than did surface-level processing. Moreover, conceptual elaboration consistently led to higher rates of false memory than did perceptual elaboration. The false memory effects that resulted from conceptual elaboration were highly dependent on the organization of the postevent interview questions, such that conceptual elaboration only increased false memory beyond surface level processing when participants evaluated both true and suggested information in relation to the same theme or dimension.

  12. False Memories for Suggestions: The Impact of Conceptual Elaboration

    PubMed Central

    Zaragoza, Maria S.; Mitchell, Karen J.; Payment, Kristie; Drivdahl, Sarah

    2010-01-01

    Relatively little attention has been paid to the potential role that reflecting on the meaning and implications of suggested events (i.e., conceptual elaboration) might play in promoting the creation of false memories. Two experiments assessed whether encouraging repeated conceptual elaboration, would, like perceptual elaboration, increase false memory for suggested events. Results showed that conceptual elaboration of suggested events more often resulted in high confidence false memories (Experiment 1) and false memories that were accompanied by the phenomenal experience of remembering them (Experiment 2) than did surface-level processing. Moreover, conceptual elaboration consistently led to higher rates of false memory than did perceptual elaboration. The false memory effects that resulted from conceptual elaboration were highly dependent on the organization of the postevent interview questions, such that conceptual elaboration only increased false memory beyond surface level processing when participants evaluated both true and suggested information in relation to the same theme or dimension. PMID:21103451

  13. PREFACE: Self-organized nanostructures

    NASA Astrophysics Data System (ADS)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by

  14. What Matters in Scientific Explanations: Effects of Elaboration and Content

    PubMed Central

    Rottman, Benjamin M.; Keil, Frank C.

    2011-01-01

    Given the breadth and depth of available information, determining which components of an explanation are most important is a crucial process for simplifying learning. Three experiments tested whether people believe that components of an explanation with more elaboration are more important. In Experiment 1, participants read separate and unstructured components that comprised explanations of real-world scientific phenomena, rated the components on their importance for understanding the explanations, and drew graphs depicting which components elaborated on which other components. Participants gave higher importance scores for components that they judged to be elaborated upon by other components. Experiment 2 demonstrated that experimentally increasing the amount of elaboration of a component increased the perceived importance of the elaborated component. Furthermore, Experiment 3 demonstrated that elaboration increases the importance of the elaborated information by providing insight into understanding the elaborated information; information that was too technical to provide insight into the elaborated component did not increase the importance of the elaborated component. While learning an explanation, people piece together the structure of elaboration relationships between components and use the insight provided by elaboration to identify important components. PMID:21924709

  15. False Memories for Suggestions: The Impact of Conceptual Elaboration

    ERIC Educational Resources Information Center

    Zaragoza, Maria S.; Mitchell, Karen J.; Payment, Kristie; Drivdahl, Sarah

    2011-01-01

    Relatively little attention has been paid to the potential role that reflecting on the meaning and implications of suggested events (i.e., conceptual elaboration) might play in promoting the creation of false memories. Two experiments assessed whether encouraging repeated conceptual elaboration, would, like perceptual elaboration, increase false…

  16. False Memories for Suggestions: The Impact of Conceptual Elaboration

    ERIC Educational Resources Information Center

    Zaragoza, Maria S.; Mitchell, Karen J.; Payment, Kristie; Drivdahl, Sarah

    2011-01-01

    Relatively little attention has been paid to the potential role that reflecting on the meaning and implications of suggested events (i.e., conceptual elaboration) might play in promoting the creation of false memories. Two experiments assessed whether encouraging repeated conceptual elaboration, would, like perceptual elaboration, increase false…

  17. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  18. Grief elaboration in families with handicapped member.

    PubMed

    Calandra, C; Finocchiaro, G; Raciti, L; Alberti, A

    1992-01-01

    Families with handicapped member seem to follow the same five stages (rejection and isolation, anger, dealing with the problem, depression, acceptance) of Kubler-Ross grief elaboration theory while dealing with the narcissistic wound of a handicapped child. Some of these families show a block in one of the stages. The effort of psychotherapy is to remove the block and let them reach the last stage. In this paper families under systemic psychotherapeutic treatment are analyzed, who had in common the birth of a child with low or modest invalidating signs and psychotic or autistic features. The families structure did not show the characteristics of a psychotic family. Nevertheless either one or both parents ignored the evidence of their child disease and they built a "disease-incongrous" wait around the child, trying to push away the painful reality. The authors explain the importance of this approach for the improvement of the autistic traits.

  19. Lightweight Beryllium Free Nanostructured Nanostructured Composites

    DTIC Science & Technology

    2007-11-02

    Plasma Processes, Inc. Lightweight Beryllium Free Nanostructured Composites SBIR Contract DASG60-02-P-41 Phase I Final Report 1/15/03 Submitted by...Report Type N/A Dates Covered (from... to) - Title and Subtitle Lightweight Beryllium Free Nanostructured Nanostructured Composites Contract

  20. DNA nanostructure meets nanofabrication.

    PubMed

    Zhang, Guomei; Surwade, Sumedh P; Zhou, Feng; Liu, Haitao

    2013-04-07

    Recent advances in DNA nanotechnology have made it possible to construct DNA nanostructures of almost arbitrary shapes with 2-3 nm of precision in their dimensions. These DNA nanostructures are ideal templates for bottom-up nanofabrication. This review highlights the challenges and recent advances in three areas that are directly related to DNA-based nanofabrication: (1) fabrication of large scale DNA nanostructures; (2) pattern transfer from DNA nanostructure to an inorganic substrate; and (3) directed assembly of DNA nanostructures.

  1. Stable aesthetic standards delusion: changing 'artistic quality' by elaboration.

    PubMed

    Carbon, Claus-Christian; Hesslinger, Vera M

    2014-01-01

    The present study challenges the notion that judgments of artistic quality are based on stable aesthetic standards. We propose that such standards are a delusion and that judgments of artistic quality are the combined result of exposure, elaboration, and discourse. We ran two experiments using elaboration tasks based on the repeated evaluation technique in which different versions of the Mona Lisa had to be elaborated deeply. During the initial task either the version known from the Louvre or an alternative version owned by the Prado was elaborated; during the second task both versions were elaborated in a comparative fashion. After both tasks multiple blends of the two versions had to be evaluated concerning several aesthetic key variables. Judgments of artistic quality of the blends were significantly different depending on the initially elaborated version of the Mona Lisa, indicating experience-based aesthetic processing, which contradicts the notion of stable aesthetic standards.

  2. Self-corrected elaboration and spacing effects in incidental memory.

    PubMed

    Toyota, Hiroshi

    2006-04-01

    The present study investigated the effect of self-corrected elaboration on incidental memory as a function of types of presentation (massed vs spaced) and sentence frames (image vs nonimage). The subjects were presented a target word and an incongruous sentence frame and asked to correct the target to make a common sentence in the self-corrected elaboration condition, whereas in the experimenter-corrected elaboration condition they were asked to rate the appropriateness of the congruous word presented, followed by free recall test. The superiority of the self-corrected elaboration to the experimenter-corrected elaboration was observed only in some situations of combinations by the types of presentation and sentence frames. These results were discussed in terms of the effectiveness of the self-corrected elaboration.

  3. Nanostructures from Synthetic Genetic Polymers.

    PubMed

    Taylor, Alexander I; Beuron, Fabienne; Peak-Chew, Sew-Yeu; Morris, Edward P; Herdewijn, Piet; Holliger, Philipp

    2016-06-16

    Nanoscale objects of increasing complexity can be constructed from DNA or RNA. However, the scope of potential applications could be enhanced by expanding beyond the moderate chemical diversity of natural nucleic acids. Here, we explore the construction of nano-objects made entirely from alternative building blocks: synthetic genetic polymers not found in nature, also called xeno nucleic acids (XNAs). Specifically, we describe assembly of 70 kDa tetrahedra elaborated in four different XNA chemistries (2'-fluro-2'-deoxy-ribofuranose nucleic acid (2'F-RNA), 2'-fluoroarabino nucleic acids (FANA), hexitol nucleic acids (HNA), and cyclohexene nucleic acids (CeNA)), as well as mixed designs, and a ∼600 kDa all-FANA octahedron, visualised by electron microscopy. Our results extend the chemical scope for programmable nanostructure assembly, with implications for the design of nano-objects and materials with an expanded range of structural and physicochemical properties, including enhanced biostability.

  4. Elaborative Processing in the Korsakoff Syndrome: Context versus Habit

    ERIC Educational Resources Information Center

    Van Damme, Ilse; d'Ydewalle, Gery

    2008-01-01

    Using a procedure of Hay and Jacoby [Hay, J. F., & Jacoby, L. L. (1999). "Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness." "Psychology and Aging," 14, 122-134], Korsakoff patients' capacity to encode and retrieve elaborative, semantic information was investigated. Habits were…

  5. Elaborated Metaphors Support Viable Inferences about Difficult Science Concepts

    ERIC Educational Resources Information Center

    Diehl, Virginia; Reese, Debbie Denise

    2010-01-01

    Instructional metaphors scaffold learning better when accompanied by an elaboration. Applying structure mapping theory, we developed and used an elaborated instructional metaphor (text and illustrations) for introductory chemistry concepts. In two studies (N[subscript 1] = 44, N[subscript 2] = 57), college students with little chemistry background…

  6. The Elaboration Theory's Procedure for Designing Instruction: A Conceptual Approach.

    ERIC Educational Resources Information Center

    Reigeluth, Charles M.; Darwazeh, Afnan

    1982-01-01

    Describes the use of elaboration theory in selecting, sequencing, synthesizing, and summarizing instructional content that is predominantly conceptual in nature. The elaboration theory is summarized and the instructional design process based upon it is outlined. Six figures, a glossary, and a 27-item reference list are included. (Author/JL)

  7. Elaborated Metaphors Support Viable Inferences about Difficult Science Concepts

    ERIC Educational Resources Information Center

    Diehl, Virginia; Reese, Debbie Denise

    2010-01-01

    Instructional metaphors scaffold learning better when accompanied by an elaboration. Applying structure mapping theory, we developed and used an elaborated instructional metaphor (text and illustrations) for introductory chemistry concepts. In two studies (N[subscript 1] = 44, N[subscript 2] = 57), college students with little chemistry background…

  8. Discrete Events in Word Encoding: The Locus of Elaboration

    ERIC Educational Resources Information Center

    Walter, Donald A.

    1977-01-01

    A model dealing with the function of elaboration in word encoding was evaluated using a 2-list recognition procedure that varied encoding time within the presentation list. The model predicted that elaboration, reflected in the incidence of false positives to associates of words presented in the recognition list, would increase as presentation…

  9. Elaborative Processing in the Korsakoff Syndrome: Context versus Habit

    ERIC Educational Resources Information Center

    Van Damme, Ilse; d'Ydewalle, Gery

    2008-01-01

    Using a procedure of Hay and Jacoby [Hay, J. F., & Jacoby, L. L. (1999). "Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness." "Psychology and Aging," 14, 122-134], Korsakoff patients' capacity to encode and retrieve elaborative, semantic information was investigated. Habits were…

  10. 11. DETAIL VIEW OF TYPICAL ENGAGED COLUMN, SHOWING THE ELABORATE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF TYPICAL ENGAGED COLUMN, SHOWING THE ELABORATE, MULTI-COLORED LOTUS LEAF PATTERNS; MAIN LOBBY OF BUILDING 1, LOOKING SSW. (Ryan) - Veterans Administration Medical Center, Building No. 1, Old State Route 13 West, Marion, Williamson County, IL

  11. Effects of Organizational Disequilibrium Training on Structural Elaboration

    ERIC Educational Resources Information Center

    Strauss, Sidney; Rimalt Llana

    1974-01-01

    Evaluates the effects of a training procedure based on the organizational disequilibrium model of cognitive development. Subjects were children who displayed pretest structural profiles of varying levels of structural elaboration. (DP)

  12. Bulk Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  13. Elaborating Surface Topology Control System for Technological Objects

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.; Lapteva, U. V.

    2017-07-01

    The basics of elaborating topology control system for technological objects are presented in the paper. The main part of the system is measuring block with laser and ultrasonic distance measuring devices, which enables to have technological object scanned with accuracy demanded. The algorithm of scanning technological object, in particular, vertical storage tank, is presented as well. The system elaborated is an integral part of intellectual decision-support system.

  14. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  15. Wedging transfer of nanostructures.

    PubMed

    Schneider, Grégory F; Calado, Victor E; Zandbergen, Henny; Vandersypen, Lieven M K; Dekker, Cees

    2010-05-12

    We report a versatile water-based method for transferring nanostructures onto surfaces of various shapes and compositions. The transfer occurs through the intercalation of a layer of water between a hydrophilic substrate and a hydrophobic nanostructure (for example, graphene flakes, carbon nanotubes, metallic nanostructures, quantum dots, etc.) locked within a hydrophobic polymer thin film. As a result, the film entrapping the nanostructure is lifted off and floats at the air-water interface. The nanostructure can subsequently be deposited onto a target substrate by the removal of the water and the dissolution of the polymeric film. We show examples where graphene flakes and patterned metallic nanostructures are precisely transferred onto a specific location on a variety of patterned substrates, even on top of curved objects such as microspheres. The method is simple to use, fast, and does not require advanced equipment.

  16. Resist-free antireflective nanostructured film fabricated by thermal-NIL

    NASA Astrophysics Data System (ADS)

    Kang, Young Hun; Han, Jae Hyung; Cho, Song Yun; Choi, Choon-Gi

    2014-05-01

    Resist-free antireflective (AR) nanostructured films are directly fabricated on polycarbonate (PC) film using thermal-nanoimprint lithography (T-NIL) and the moth-eye shape of AR nanostructure is elaborately optimized with different oxygen reactive ion etching conditions. Anodic aluminum oxide (AAO) templates are directly used as master molds of T-NIL for preparation of AR nanostructures on PC film without an additional T-NIL resist. AR nanostructures are well arranged with a period of about 200 nm and diameter of about 150 nm, which corresponds to those of the AAO template mold. The moth-eye AR nanostructures exhibit the average reflectance of 2% in wavelength range from 400 to 800 nm. From the results, highly enhanced AR properties with simple direct imprinting on PC film demonstrate the potential for panel application in the field of flat display, touch screen, and solar cells.

  17. Novel symmetric and asymmetric plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Mirin, Nikolay A.

    Metal-dielectric nanostructures capable of supporting electromagnetic resonances at optical frequencies are the vital component of the emerging technology called plasmonics. Plasmon is the electromagnetic wave confined at the metal-dielectric interface, which may effectively couple to the external electromagnetic excitation with the wavelength much larger than the geometric size of the supporting structure. Plasmonics can improve virtually any electromagnetic technology by providing subwavelength waveguides, field enhancing and concentrating structures, and nanometer size wavelength-selective components. The focus of this work is the fabrication, characterization and modeling for novel plasmonic nanostructures. Effects of the symmetry in plasmonic structures are studied. Symmetric metal nanoparticle clusters have been investigated and show highly tunable plasmon resonances with high sensitivity to the dielectric environment. Efficient, highly-scalable methods for nanoparticle self-assembly and controlled partial submicron metal sphere coatings are developed. These partially Au coated dielectric spheres have shown striking properties such as high tunability, as well as the control on resonant electromagnetic field enhancement and scattering direction. Studied effects are of vital importance for plasmonics applications, which may improve virtually any existing electromagnetic technology. Optical resonances in metal-dielectric nanostructures were correlated with LC circuit resonances elaborating on the resonance tunability, dielectric environment, symmetry breaking and mode coupling (Fano resonance) effects.

  18. Financial Well-Being among the Aged: A Further Elaboration.

    ERIC Educational Resources Information Center

    Liang, Jersey; And Others

    1980-01-01

    Elaborates on the relative deprivation model proposed by Liang and Fairchild (1979), and explores the relationship between income and financial satisfaction. Financial satisfaction is influenced by relative deprivation and distributive justice. Race and age also relate to social comparison and financial satisfaction. (Author)

  19. What Matters in Scientific Explanations: Effects of Elaboration and Content

    ERIC Educational Resources Information Center

    Rottman, Benjamin M.; Keil, Frank C.

    2011-01-01

    Given the breadth and depth of available information, determining which components of an explanation are most important is a crucial process for simplifying learning. Three experiments tested whether people believe that components of an explanation with more elaboration are more important. In Experiment 1, participants read separate and…

  20. Separate Mnemonic Effects of Retrieval Practice and Elaborative Encoding

    ERIC Educational Resources Information Center

    Karpicke, Jeffrey D.; Smith, Megan A.

    2012-01-01

    Does retrieval practice produce learning because it is an especially effective way to induce elaborative encoding? Four experiments examined this question. Subjects learned word pairs across alternating study and recall periods, and once an item was recalled it was dropped from further practice, repeatedly studied, or repeatedly retrieved on…

  1. Challenging Stereotypes about Academic Writing: Complexity, Elaboration, Explicitness

    ERIC Educational Resources Information Center

    Biber, Douglas; Gray, Bethany

    2010-01-01

    The stereotypical view of professional academic writing is that it is grammatically complex, with elaborated structures, and with meaning relations expressed explicitly. In contrast, spoken registers, especially conversation, are believed to have the opposite characteristics. Our goal in the present paper is to challenge these stereotypes, based…

  2. The Development of Expressive Elaboration in Fictional Narratives

    ERIC Educational Resources Information Center

    Ukrainetz, Teresa A.; Justice, Laura M.; Kaderavek, Joan N.; Eisenberg, Sarita L.; Gillam, Ronald B.; Harm, Heide M.

    2005-01-01

    Purpose: This study analyzed the development of expressive elaboration in fictional narratives for school-age children. Method: The analysis was derived from high-point analysis, but it was tailored to capture the artful aspects of fictional storytelling. Narratives were elicited with a short picture sequence of a likely life event from 293…

  3. Separate Mnemonic Effects of Retrieval Practice and Elaborative Encoding

    ERIC Educational Resources Information Center

    Karpicke, Jeffrey D.; Smith, Megan A.

    2012-01-01

    Does retrieval practice produce learning because it is an especially effective way to induce elaborative encoding? Four experiments examined this question. Subjects learned word pairs across alternating study and recall periods, and once an item was recalled it was dropped from further practice, repeatedly studied, or repeatedly retrieved on…

  4. Pictorial Concreteness and Mode of Elaboration in Children's Learning

    ERIC Educational Resources Information Center

    Everston, Carolyn M.; Wicker, Frank W.

    1974-01-01

    Paired associate learning by children was studied as a function of age (4 vs 7 yr), stimulus type (line drawing, color photograph, or object), and mode of elaboration (visual or verbal). Results showed that objects and photographs both surpassed line drawings in terms of learning and that they did not differ significantly from each other. (SBT)

  5. Learning about Posterior Probability: Do Diagrams and Elaborative Interrogation Help?

    ERIC Educational Resources Information Center

    Clinton, Virginia; Alibali, Martha W.; Nathan, Mitchell J.

    2016-01-01

    To learn from a text, students must make meaningful connections among related ideas in that text. This study examined the effectiveness of two methods of improving connections--elaborative interrogation and diagrams--in written lessons about posterior probability. Undergraduate students (N = 198) read a lesson in one of three questioning…

  6. Dyad Composition Effects on Cognitive Elaboration and Student Achievement

    ERIC Educational Resources Information Center

    Denessen, Eddie; Veenman, Simon; Dobbelsteen, Janine; van Schilt, Josie

    2008-01-01

    The authors addressed the following research question: Does composition of dyads in terms of gender and ability affect student participation, the level of cognitive elaborations during a collaborative activity, and individual student achievement? The study involved 24 6th-grade dyads paired as follows: a low-ability student with a medium-ability…

  7. Elaborer un exercice de grammaire (Working Out a Grammar Exercise)

    ERIC Educational Resources Information Center

    Principaud, Jeanne-Marie

    1977-01-01

    An elaboration of the official instruction on teaching French to native speakers in elementary school. The topics covered are: Methodological development of exercises; the linguistic ability and milieu of the students; operative criteria; and the question of a logical progression or spontaneous use of grammar exercises. (Text is in French.) (AMH)

  8. Learning about Posterior Probability: Do Diagrams and Elaborative Interrogation Help?

    ERIC Educational Resources Information Center

    Clinton, Virginia; Alibali, Martha W.; Nathan, Mitchell J.

    2016-01-01

    To learn from a text, students must make meaningful connections among related ideas in that text. This study examined the effectiveness of two methods of improving connections--elaborative interrogation and diagrams--in written lessons about posterior probability. Undergraduate students (N = 198) read a lesson in one of three questioning…

  9. Formation of Partially and Fully Elaborated Generalized Equivalence Classes

    ERIC Educational Resources Information Center

    Fields, Lanny; Moss, Patricia

    2008-01-01

    Most complex categories observed in real-world settings consist of perceptually disparate stimuli, such as a picture of a person's face, the person's name as written, and the same name as heard, as well as dimensional variants of some or all of these stimuli. The stimuli function as members of a single partially or fully elaborated generalized…

  10. Formation of Partially and Fully Elaborated Generalized Equivalence Classes

    ERIC Educational Resources Information Center

    Fields, Lanny; Moss, Patricia

    2008-01-01

    Most complex categories observed in real-world settings consist of perceptually disparate stimuli, such as a picture of a person's face, the person's name as written, and the same name as heard, as well as dimensional variants of some or all of these stimuli. The stimuli function as members of a single partially or fully elaborated generalized…

  11. The Development of Expressive Elaboration in Fictional Narratives

    ERIC Educational Resources Information Center

    Ukrainetz, Teresa A.; Justice, Laura M.; Kaderavek, Joan N.; Eisenberg, Sarita L.; Gillam, Ronald B.; Harm, Heide M.

    2005-01-01

    Purpose: This study analyzed the development of expressive elaboration in fictional narratives for school-age children. Method: The analysis was derived from high-point analysis, but it was tailored to capture the artful aspects of fictional storytelling. Narratives were elicited with a short picture sequence of a likely life event from 293…

  12. Nanostructures from Synthetic Genetic Polymers

    PubMed Central

    Beuron, Fabienne; Peak‐Chew, Sew‐Yeu; Morris, Edward P.; Herdewijn, Piet

    2016-01-01

    Abstract Nanoscale objects of increasing complexity can be constructed from DNA or RNA. However, the scope of potential applications could be enhanced by expanding beyond the moderate chemical diversity of natural nucleic acids. Here, we explore the construction of nano‐objects made entirely from alternative building blocks: synthetic genetic polymers not found in nature, also called xeno nucleic acids (XNAs). Specifically, we describe assembly of 70 kDa tetrahedra elaborated in four different XNA chemistries (2′‐fluro‐2′‐deoxy‐ribofuranose nucleic acid (2′F‐RNA), 2′‐fluoroarabino nucleic acids (FANA), hexitol nucleic acids (HNA), and cyclohexene nucleic acids (CeNA)), as well as mixed designs, and a ∼600 kDa all‐FANA octahedron, visualised by electron microscopy. Our results extend the chemical scope for programmable nanostructure assembly, with implications for the design of nano‐objects and materials with an expanded range of structural and physicochemical properties, including enhanced biostability. PMID:26992063

  13. Experimental Investigation of the Effects of Cognitive Elaboration on Accounting Learning Outcomes

    ERIC Educational Resources Information Center

    Xiong, Yan; Zhou, Haiyan; Ogilby, Suzanne M.

    2014-01-01

    This study analyzed how self-generated elaboration, instructor-assisted elaboration, and self-generated followed by instructor-assisted elaboration, affect accounting students' acquisition of procedural knowledge, intellectual skills, and their attitudes towards learning. The results indicate that the self-generated elaboration instructional…

  14. Elaborative processing in the Korsakoff syndrome: context versus habit.

    PubMed

    Van Damme, Ilse; d'Ydewalle, Géry

    2008-07-01

    Using a procedure of Hay and Jacoby [Hay, J. F., & Jacoby, L. L. (1999). Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness. Psychology and Aging, 14, 122-134], Korsakoff patients' capacity to encode and retrieve elaborative, semantic information was investigated. Habits were created during initial training, whereupon cued-recall memory performance was examined, with habit opposing as well as facilitating recollection of earlier studied words. A first group of patients was instructed and tested in the same way as healthy controls and showed poor test performance. Nevertheless, when given more processing and response time, additional explanation, and explicit encouragement, a second group of patients performed similarly to healthy controls. The results suggest that, when given adequate support, Korsakoff patients are able to encode and make use of semantic, contextual, and sequential information. Word distinctiveness, however, only influenced performance of controls.

  15. Further constraints on the Chauvet cave artwork elaboration

    PubMed Central

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L.; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-01-01

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419–479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908–917]. The presented 36Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution. PMID:22566649

  16. Further constraints on the Chauvet cave artwork elaboration

    NASA Astrophysics Data System (ADS)

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L.; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-05-01

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419-479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908-917]. The presented 36Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution.

  17. [The six steps necessary in elaborating critically appraised topics].

    PubMed

    García Villar, C

    2014-01-01

    Different types of critically appraised topics (CATs) can be elaborated in diagnostic imaging: comparison of diagnostic tests, evaluation of techniques for early detection (screening), economical analyses, or therapeutic aspects, among others. Their design will vary in function of the question they aim to answer. For example, for treatment evaluation, clinical trials are the best, but if there are secondary studies (systematic reviews or meta-analyses) that synthesize information from several studies, the results will be more important and the scientific conclusions will be more relevant. Regardless of the study design used, the elaboration of a CAT will involve six steps: 1) question; 2) systematic and efficient bibliographic search; 3) levels of evidence (choosing the articles that have the best level); 4) critical reading of the articles chosen; 5) applying conclusions to the context, and 6) recommendations. In this article, we will describe these steps and the nuances for different types of studies in each step.

  18. 12. Examples of the elaborate and plain pressedsteel ceiling panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Examples of the elaborate and plain pressed-steel ceiling panels, here removed to the exterior of the building for photographing. A segment of the cornice has been placed above the larger panel. The panel on the left is comprised of four square components; the panel on the right is a single piece. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  19. Measuring Strong Nanostructures

    ScienceCinema

    Andy Minor

    2016-07-12

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  20. Measuring Strong Nanostructures

    SciTech Connect

    Andy Minor

    2008-10-16

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  1. Architectures for Nanostructured Batteries

    NASA Astrophysics Data System (ADS)

    Rubloff, Gary

    2013-03-01

    Heterogeneous nanostructures offer profound opportunities for advancement in electrochemical energy storage, particularly with regard to power. However, their design and integration must balance ion transport, electron transport, and stability under charge/discharge cycling, involving fundamental physical, chemical and electrochemical mechanisms at nano length scales and across disparate time scales. In our group and in our DOE Energy Frontier Research Center (www.efrc.umd.edu) we have investigated single nanostructures and regular nanostructure arrays as batteries, electrochemical capacitors, and electrostatic capacitors to understand limiting mechanisms, using a variety of synthesis and characterization strategies. Primary lithiation pathways in heterogeneous nanostructures have been observed to include surface, interface, and both isotropic and anisotropic diffusion, depending on materials. Integrating current collection layers at the nano scale with active ion storage layers enhances power and can improve stability during cycling. For densely packed nanostructures as required for storage applications, we investigate both ``regular'' and ``random'' architectures consistent with transport requirements for spatial connectivity. Such configurations raise further important questions at the meso scale, such as dynamic ion and electron transport in narrow and tortuous channels, and the role of defect structures and their evolution during charge cycling. Supported as part of the Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160

  2. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection.

    PubMed

    Ji, Seungmuk; Song, Kyungjun; Nguyen, Thanh Binh; Kim, Namsoo; Lim, Hyuneui

    2013-11-13

    Broadband antireflection (AR) is essential for improving the photocurrent generation of photovoltaic modules or the enhancement of visibility in optical devices. Beyond conventional AR coating methods, moth eye mimicking nanostructures give new directions to enhance broadband antireflection through the selection of geometrical parameters, such as height, periodic distance, shape, and arrangement. This study numerically and experimentally investigates the behavior of light on complex nanostructures designed to mimic the surface of the moth eye with mixed shapes and various arrangements. To obtain broadband AR, we rigorously study the design parameters, such as height, periodic distance, shape, and arrangement, on a transparent quartz substrate. Several kinds of nanopillar arrays are elaborately fabricated including mixed nanostructures comprising pointy and round shapes in ordered and random arrangements via colloidal lithography. The optimal morphology of moth eye nanostructure arrays for broadband antireflection is suggested in view of reflectance and average weight transmittance.

  3. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  4. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  5. Epistemic Benefits of Elaborated and Systematized Delusions in Schizophrenia

    PubMed Central

    2016-01-01

    In this article I ask whether elaborated and systematized delusions emerging in the context of schizophrenia have the potential for epistemic innocence. Cognitions are epistemically innocent if they have significant epistemic benefits that could not be attained otherwise. In particular, I propose that a cognition is epistemically innocent if it delivers some significant epistemic benefit to a given agent at a given time, and if alternative cognitions delivering the same epistemic benefit are unavailable to that agent at that time. Elaborated and systematized delusions in schizophrenia are typically false and exemplify failures of rationality and self-knowledge. Empirical studies suggest that they may have psychological benefits by relieving anxiety and enhancing meaningfulness. Moreover, these delusions have been considered as adaptive in virtue of the fact that they enable automated learning to resume after a significant disruption caused by incorrect prediction-error signalling. I argue that such psychological benefits and adaptive features also have positive epistemic consequences. More precisely, delusions can be a means to restoring epistemic functionality in agents who are overwhelmed by hypersalient experiences in the prodromal stage of psychosis. The analysis leads to a more complex view of the epistemic status of delusions than is found in the contemporary philosophical literature and has some implications for clinical practice. 1 Introduction2 Types of Delusions3 What Is Wrong with Elaborated and Systematized Delusions?4 Finding Life Meaningful5 Learning Resumed6 Epistemic Innocence7 Epistemic Benefit8 No Alternatives9 Conclusions and Implications PMID:27924116

  6. Simulation and Experimental Elaboration of Acoustic Sensors for Mobile Robots

    DTIC Science & Technology

    2005-05-01

    Wheeled mobile robot “ Argonaut -2” equipped with acoustic audition systems is shown on Fig. 1. The left picture shows the 1st release of a system, and the...2 RTO-MP-SET-092 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 1: The “ Argonaut -2” Mobile Robot Equipped with Audition Sensors. 2.1...onboard part of control system is given on Fig. 2. Figure 2: Control System of a Robot “ Argonaut -2”. Simulation and Experimental Elaboration of

  7. Functionalized Metallated Cavitands via Imidation and Late-Stage Elaboration

    PubMed Central

    Zhao, Yanchuan

    2015-01-01

    Efficient methods for the preparation of functionalized metallated cavitands are described. Functional groups can be either introduced by an imidation of metal-oxo complexes or by a late-stage elaboration of the imido ligands. By using diversified iminophosphorane (PPh3=NR) reagents, π-conjugated pyrene, redox active ferrocene and polymerizable norbornene moieties were successfully introduced. Furthermore, the iodo and alkynyl groups on the imido ligands are capable of undergoing efficient Sonogashira cross-coupling and copper-catalyzed azide alkyne cycloaddition reactions, thereby providing facile access to complex architectures containing metallated cavitands. PMID:26962300

  8. Self-replication: Nanostructure evolution

    NASA Astrophysics Data System (ADS)

    Simmel, Friedrich C.

    2017-10-01

    DNA origami nanostructures were utilized to replicate a seed pattern that resulted in the growth of populations of nanostructures. Exponential growth could be controlled by environmental conditions depending on the preferential requirements of each population.

  9. Nanostructured materials in potentiometry.

    PubMed

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  10. Climatic patterns predict the elaboration of song displays in mockingbirds.

    PubMed

    Botero, Carlos A; Boogert, Neeltje J; Vehrencamp, Sandra L; Lovette, Irby J

    2009-07-14

    Climatic variability and unpredictability affect the distribution and abundance of resources and the timing and duration of breeding opportunities. In vertebrates, climatic variability selects for enhanced cognition when organisms compensate for environmental changes through learning and innovation. This hypothesis is supported by larger brain sizes, higher foraging innovation rates, higher reproductive flexibility, and higher sociality in species living in more variable climates. Male songbirds sing to attract females and repel rivals. Given the reliance of these displays on learning and innovation, we hypothesized that they could also be affected by climatic patterns. Here we show that in the mockingbird family (Aves: Mimidae), species subject to more variable and unpredictable climates have more elaborate song displays. We discuss two potential mechanisms for this result, both of which acknowledge that the complexity of song displays is largely driven by sexual selection. First, stronger selection in more variable and unpredictable climates could lead to the elaboration of signals of quality. Alternatively, selection for enhanced learning and innovation in more variable and unpredictable climates might lead to the evolution of signals of intelligence in the context of mate attraction.

  11. Climatic patterns predict the elaboration of song displays in songbirds

    PubMed Central

    Botero, Carlos A.; Boogert, Neeltje J.; Vehrencamp, Sandra L.; Lovette, Irby J.

    2012-01-01

    Summary Climatic variability and unpredictability [1] affect the distribution and abundance of resources and the timing and duration of breeding opportunities. In vertebrates, climatic variability selects for enhanced cognition when organisms compensate for environmental changes through learning and innovation [2–5]. This hypothesis is supported by larger brain sizes [6], higher foraging innovation rates [7–9], higher reproductive flexibility [10–12], and higher sociality [13] in species living in more variable climates. Male songbirds sing to attract females and repel rivals [14]. Given the reliance of these displays on learning and innovation, we hypothesized that they could also be affected by climatic patterns. Here we show that in the mockingbird family (Aves: Mimidae), species subject to more variable and unpredictable climates have more elaborate song displays. We discuss two potential mechanisms for this result, both of which acknowledge that the complexity of song displays is largely driven by sexual selection [15, 16]. First, stronger selection in more variable and unpredictable climates could lead to the elaboration of signals of quality [14, 17–20]. Alternatively, selection for enhanced learning and innovation in more variable and unpredictable climates might lead to the evolution of signals of intelligence in the context of mate attraction [14, 21–23]. PMID:19464180

  12. Simple Versus Elaborate Feedback in a Nursing Science Course

    NASA Astrophysics Data System (ADS)

    Elder, Betty L.; Brooks, David W.

    2008-08-01

    Feedback techniques, including computer-assisted feedback, have had mixed results in improving student learning outcomes. This project addresses the effect of type of feedback, simple or elaborate, for both short-term comprehension and long-term outcomes. A sample of 75 graduate nursing students was given a total of ten examinations. Four examinations provided tutorials in which the students received one of two types of feedback, simple or elaborate. Five examinations provided tutorials with no feedback. A comprehensive final examination compared initial content and final scores. This study found no significant differences between the types of feedback the students received. The mean scores were significantly higher on the four examinations where the students received feedback than on the five examinations with no feedback on tutorials. The comparison between the individual examinations and the similar content portion of the final examination indicated a significant drop in each of the four examinations where feedback was given and a significant improvement in four of the five examinations where no feedback was given.

  13. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  14. Low-temperature solution syntheses of hexagonal ZnO nanorods and morphology-controlled nanostructures

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Lee, In-Hwan

    2016-02-01

    Well-developed hexagonal ZnO nanorods and morphology-controlled nanostructures were synthesized at low temperatures using a simple solution method without the assistance of any templates or catalysts. Uniform conical nanorods with an average diameter of 35 nm and the aspect ratio of 14 could be obtained at a near-room temperature, while nanoplatelets with the planar aspect ratio of 2.4-4.8 were produced at higher temperatures. It was revealed that the morphology, dimensions, and the crystallinity of ZnO nanostructures could be controlled by elaborately adjusting experimental conditions such as the molar ratio of Zn2+ to OH-, EDA concentration, and temperature.

  15. Nanostructured Biomaterials for Regeneration**

    PubMed Central

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/dysfunctional tissues or organs. Biomaterials (scaffolds) serve as temporary 3D substrates to guide neo tissue formation and organization. It is often beneficial for a scaffolding material to mimic the characteristics of extracellular matrix (ECM) at the nanometer scale and to induce certain natural developmental or/and wound healing processes for tissue regeneration applications. This article reviews the fabrication and modification technologies for nanofibrous, nanocomposite, and nanostructured drug-delivering scaffolds. ECM-mimicking nanostructured biomaterials have been shown to actively regulate cellular responses including attachment, proliferation, differentiation and matrix deposition. Nano-scaled drug delivery systems can be successfully incorporated into a porous 3D scaffold to enhance the tissue regeneration capacity. In conclusion, nano-structured biomateials are a very exciting and rapidly expanding research area, and are providing new enabling technologies for regenerative medicine. PMID:19946357

  16. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  17. Changes across age groups in self-choice elaboration effects on incidental memory.

    PubMed

    Toyota, Hiroshi; Konishi, Tomoko

    2004-08-01

    The present study investigated age differences in the effects of a self-choice elaboration and an experimenter-provided elaboration on incidental memory. Adults, sixth grade, and second grade subjects chose which of two sentence frames the target fit better in a self-choice elaboration condition. They then judged whether each target made sense in its sentence frame in the experimenter-provided elaboration, then did free recall tests. Only adults recalled better the targets with an image sentence with self-choice elaboration, rather than experimenter-provided elaboration. However, self-choice elaboration was far superior for the recall of targets with nonimage sentences only for second graders. Thus, the effects of self-choice elaboration were determined both by age and by type of sentence frame.

  18. Chiral Inorganic Nanostructures.

    PubMed

    Ma, Wei; Xu, Liguang; de Moura, André F; Wu, Xiaoling; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A

    2017-06-28

    The field of chiral inorganic nanostructures is rapidly expanding. It started from the observation of strong circular dichroism during the synthesis of individual nanoparticles (NPs) and their assemblies and expanded to sophisticated synthetic protocols involving nanostructures from metals, semiconductors, ceramics, and nanocarbons. Besides the well-established chirality transfer from bioorganic molecules, other methods to impart handedness to nanoscale matter specific to inorganic materials were discovered, including three-dimentional lithography, multiphoton chirality transfer, polarization effects in nanoscale assemblies, and others. Multiple chiral geometries were observed with characteristic scales from ångströms to microns. Uniquely high values of chiral anisotropy factors that spurred the development of the field and differentiate it from chiral structures studied before, are now well understood; they originate from strong resonances of incident electromagnetic waves with plasmonic and excitonic states typical for metals and semiconductors. At the same time, distinct similarities with chiral supramolecular and biological systems also emerged. They can be seen in the synthesis and separation methods, chemical properties of individual NPs, geometries of the nanoparticle assemblies, and interactions with biological membranes. Their analysis can help us understand in greater depth the role of chiral asymmetry in nature inclusive of both earth and space. Consideration of both differences and similarities between chiral inorganic, organic, and biological nanostructures will also accelerate the development of technologies based on chiroplasmonic and chiroexcitonic effects. This review will cover both experiment and theory of chiral nanostructures starting with the origin and multiple components of mirror asymmetry of individual NPs and their assemblies. We shall consider four different types of chirality in nanostructures and related physical, chemical, and

  19. Nanostructured Solar Cells

    PubMed Central

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  20. Plasmonics in nanostructures.

    PubMed

    Fang, Zheyu; Zhu, Xing

    2013-07-26

    Plasmonics has developed into one of the rapidly growing research topics for nanophotonics. With advanced nanofabrication techniques, a broad variety of nanostructures can be designed and fabricated for plasmonic devices at nanoscale. Fundamental properties for both surface plasmon polaritons (SPP) and localized surface plasmons (LSP) arise a new insight and understanding for the electro-optical device investigations, such as plasmonic nanofocusing, low-loss plasmon waveguide and active plasmonic detectors for energy harvesting. Here, we review some typical functional plasmonic nanostructures and nanosmart devices emerging from our individual and collaborative research works. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  2. Simulation of Semiconductor Nanostructures

    SciTech Connect

    Williamson, A J; Grossman, J C; Puzder, A; Benedict, L X; Galli, G

    2001-07-19

    The field of research into the optical properties of silicon nanostructures has seen enormous growth over the last decade. The discovery that silicon nanoparticles exhibit visible photoluminescence (PL) has led to new insights into the mechanisms responsible for such phenomena. The importance of understanding and controlling the PL properties of any silicon based material is of paramount interest to the optoelectronics industry where silicon nanoclusters could be embedded into existing silicon based circuitry. In this talk, we present a combination of quantum Monte Carlo and density functional approaches to the calculation of the electronic, structural, and optical properties of silicon nanostructures.

  3. Measuring Knowledge Elaboration Based on a Computer-Assisted Knowledge Map Analytical Approach to Collaborative Learning

    ERIC Educational Resources Information Center

    Zheng, Lanqin; Huang, Ronghuai; Hwang, Gwo-Jen; Yang, Kaicheng

    2015-01-01

    The purpose of this study is to quantitatively measure the level of knowledge elaboration and explore the relationships between prior knowledge of a group, group performance, and knowledge elaboration in collaborative learning. Two experiments were conducted to investigate the level of knowledge elaboration. The collaborative learning objective in…

  4. Measuring Knowledge Elaboration Based on a Computer-Assisted Knowledge Map Analytical Approach to Collaborative Learning

    ERIC Educational Resources Information Center

    Zheng, Lanqin; Huang, Ronghuai; Hwang, Gwo-Jen; Yang, Kaicheng

    2015-01-01

    The purpose of this study is to quantitatively measure the level of knowledge elaboration and explore the relationships between prior knowledge of a group, group performance, and knowledge elaboration in collaborative learning. Two experiments were conducted to investigate the level of knowledge elaboration. The collaborative learning objective in…

  5. Acquisition of Procedures: The Effects of Example Elaborations and Active Learning Exercises

    ERIC Educational Resources Information Center

    Catrambone, Richard; Yuasa, Mashiho

    2006-01-01

    This study explored the effects of active learning and types of elaboration on procedure acquisition (writing database queries). Training materials emphasized elaborations of conditions for executing actions versus elaborations of the connection between conditions and actions. In the "active" conditions, participants performed structured exercises…

  6. Acquisition of Procedures: The Effects of Example Elaborations and Active Learning Exercises

    ERIC Educational Resources Information Center

    Catrambone, Richard; Yuasa, Mashiho

    2006-01-01

    This study explored the effects of active learning and types of elaboration on procedure acquisition (writing database queries). Training materials emphasized elaborations of conditions for executing actions versus elaborations of the connection between conditions and actions. In the "active" conditions, participants performed structured exercises…

  7. Elaboration during Problem-Based Group Discussion: Effects on Recall for High and Low Ability Students

    ERIC Educational Resources Information Center

    Van Blankenstein, Floris M.; Dolmans, Diana H. J. M.; Van der Vleuten, Cees P. M.; Schmidt, Henk G.

    2013-01-01

    Although elaboration has been investigated frequently, there is little evidence for the beneficial effect of elaboration in problem-based learning. A controlled experiment tested the effect of elaboration during problem-based discussion on recall. Sixty-seven students observed a video-recorded, problem-based discussion. In one experimental…

  8. Say More and Be More Coherent: How Text Elaboration and Cohesion Can Increase Writing Quality

    ERIC Educational Resources Information Center

    Crossley, Scott A.; McNamara, Danielle S.

    2016-01-01

    This study examines links between essay quality and text elaboration and text cohesion. For this study, 35 students wrote two essays (on two different prompts) and for each, were given 15 minutes to elaborate on their original text. An expert in discourse comprehension then modified the original and elaborated essays to increase cohesion,…

  9. The Bidirectional Nature of Narrative Scaffolding: Latino Caregivers' Elaboration While Creating Stories from a Picture Book

    ERIC Educational Resources Information Center

    Schick, Adina R.; Melzi, Gigliana; Obregón, Javanna

    2017-01-01

    Although caregiver narrative elaboration is seen as a critical dimension for children's development of narrative skills, research has yet to show a predictive relation between caregiver elaboration and child outcomes for low-income Latino children. The present study explored whether specific types of narrative elaboration were predicted by and…

  10. Deep-Elaborative Learning of Introductory Management Accounting for Business Students

    ERIC Educational Resources Information Center

    Choo, Freddie; Tan, Kim B.

    2005-01-01

    Research by Choo and Tan (1990; 1995) suggests that accounting students, who engage in deep-elaborative learning, have a better understanding of the course materials. The purposes of this paper are: (1) to describe a deep-elaborative instructional approach (hereafter DEIA) that promotes deep-elaborative learning of introductory management…

  11. Say More and Be More Coherent: How Text Elaboration and Cohesion Can Increase Writing Quality

    ERIC Educational Resources Information Center

    Crossley, Scott A.; McNamara, Danielle S.

    2016-01-01

    This study examines links between essay quality and text elaboration and text cohesion. For this study, 35 students wrote two essays (on two different prompts) and for each, were given 15 minutes to elaborate on their original text. An expert in discourse comprehension then modified the original and elaborated essays to increase cohesion,…

  12. Elaboration over a Discourse Facilitates Retrieval in Sentence Processing

    PubMed Central

    Troyer, Melissa; Hofmeister, Philip; Kutas, Marta

    2016-01-01

    Language comprehension requires access to stored knowledge and the ability to combine knowledge in new, meaningful ways. Previous work has shown that processing linguistically more complex expressions (‘Texas cattle rancher’ vs. ‘rancher’) leads to slow-downs in reading during initial processing, possibly reflecting effort in combining information. Conversely, when this information must subsequently be retrieved (as in filler-gap constructions), processing is facilitated for more complex expressions, possibly because more semantic cues are available during retrieval. To follow up on this hypothesis, we tested whether information distributed across a short discourse can similarly provide effective cues for retrieval. Participants read texts introducing two referents (e.g., two senators), one of whom was described in greater detail than the other (e.g., ‘The Democrat had voted for one of the senators, and the Republican had voted for the other, a man from Ohio who was running for president’). The final sentence (e.g., ‘The senator who the {Republican/Democrat}had voted for…’) contained a relative clause picking out either the Many-Cue referent (with ‘Republican’) or the One-Cue referent (with ‘Democrat’). We predicted facilitated retrieval (faster reading times) for the Many-Cue condition at the verb region (‘had voted for’), where readers could understand that ‘The senator’ is the object of the verb. As predicted, this pattern was observed at the retrieval region and continued throughout the rest of the sentence. Participants also completed the Author/Magazine Recognition Tests (ART/MRT; Stanovich and West, 1989), providing a proxy for world knowledge. Since higher ART/MRT scores may index (a) greater experience accessing relevant knowledge and/or (b) richer/more highly structured representations in semantic memory, we predicted it would be positively associated with effects of elaboration on retrieval. We did not observe the

  13. Elaboration over a Discourse Facilitates Retrieval in Sentence Processing.

    PubMed

    Troyer, Melissa; Hofmeister, Philip; Kutas, Marta

    2016-01-01

    Language comprehension requires access to stored knowledge and the ability to combine knowledge in new, meaningful ways. Previous work has shown that processing linguistically more complex expressions ('Texas cattle rancher' vs. 'rancher') leads to slow-downs in reading during initial processing, possibly reflecting effort in combining information. Conversely, when this information must subsequently be retrieved (as in filler-gap constructions), processing is facilitated for more complex expressions, possibly because more semantic cues are available during retrieval. To follow up on this hypothesis, we tested whether information distributed across a short discourse can similarly provide effective cues for retrieval. Participants read texts introducing two referents (e.g., two senators), one of whom was described in greater detail than the other (e.g., 'The Democrat had voted for one of the senators, and the Republican had voted for the other, a man from Ohio who was running for president'). The final sentence (e.g., 'The senator who the {Republican/Democrat}had voted for…') contained a relative clause picking out either the Many-Cue referent (with 'Republican') or the One-Cue referent (with 'Democrat'). We predicted facilitated retrieval (faster reading times) for the Many-Cue condition at the verb region ('had voted for'), where readers could understand that 'The senator' is the object of the verb. As predicted, this pattern was observed at the retrieval region and continued throughout the rest of the sentence. Participants also completed the Author/Magazine Recognition Tests (ART/MRT; Stanovich and West, 1989), providing a proxy for world knowledge. Since higher ART/MRT scores may index (a) greater experience accessing relevant knowledge and/or (b) richer/more highly structured representations in semantic memory, we predicted it would be positively associated with effects of elaboration on retrieval. We did not observe the predicted interaction between ART

  14. Nanostructured luminescently labeled nucleic acids.

    PubMed

    Kricka, Larry J; Fortina, Paolo; Park, Jason Y

    2017-03-01

    Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron); (ii) the labeling of bulk nucleic acids (e.g. single-stranded DNA, double-stranded DNA) with nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver nanoclusters). This review surveys recent advances in these three different approaches to the generation of nanostructured luminescently labeled nucleic acids, and includes both direct and indirect labeling methods. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Elaboration and Validation of the Medication Prescription Safety Checklist 1

    PubMed Central

    Pires, Aline de Oliveira Meireles; Ferreira, Maria Beatriz Guimarães; do Nascimento, Kleiton Gonçalves; Felix, Márcia Marques dos Santos; Pires, Patrícia da Silva; Barbosa, Maria Helena

    2017-01-01

    ABSTRACT Objective: to elaborate and validate a checklist to identify compliance with the recommendations for the structure of medication prescriptions, based on the Protocol of the Ministry of Health and the Brazilian Health Surveillance Agency. Method: methodological research, conducted through the validation and reliability analysis process, using a sample of 27 electronic prescriptions. Results: the analyses confirmed the content validity and reliability of the tool. The content validity, obtained by expert assessment, was considered satisfactory as it covered items that represent the compliance with the recommendations regarding the structure of the medication prescriptions. The reliability, assessed through interrater agreement, was excellent (ICC=1.00) and showed perfect agreement (K=1.00). Conclusion: the Medication Prescription Safety Checklist showed to be a valid and reliable tool for the group studied. We hope that this study can contribute to the prevention of adverse events, as well as to the improvement of care quality and safety in medication use. PMID:28793128

  16. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Carlier, Thibault; Saitzek, Sébastien; Méar, François O.; Blach, Jean-François; Ferri, Anthony; Huvé, Marielle; Montagne, Lionel

    2017-03-01

    In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  17. Independent elaboration of steroid hormone signaling pathways in metazoans

    PubMed Central

    Markov, Gabriel V.; Tavares, Raquel; Dauphin-Villemant, Chantal; Demeneix, Barbara A.; Baker, Michael E.; Laudet, Vincent

    2009-01-01

    Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast, the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics. PMID:19571007

  18. Verbal elaboration of distinct affect categories and BPD symptoms.

    PubMed

    Lecours, Serge; Bouchard, Marc-André

    2011-03-01

    The present study explores the relationship between the mentalization of distinct affect categories and the severity of borderline personality disorder (BPD) symptoms. Mentalization is assessed by both the level of verbal elaboration (VE) achieved by discrete affects (explicit mentalization) and the proportion of these individual affects in verbal expression (implicit mentalization). Sixty-four outpatients completed a series of questionnaires and took part in an interview designed to produce eight relationship episodes that involved four basic emotions: sadness, joy, anger, and fear (two of each). Affect mentalization was assessed with the Grille de l'Élaboration Verbale de l'Affect (GEVA), an observer-rated measure of levels of elaboration of verbalized affect, and the measure of affect content (MAC), which identifies the content of the verbalized affect (e.g., anger). Diagnostic criteria were obtained with the BPD scale of the Structured Clinical Interview for DSM-IV (SCID-II) questionnaire. Alexithymia was assessed with the 20-item Toronto Alexithymia Scale (TAS-20). The severity of BPD symptoms was related to lower levels of VE of sadness. It was also associated with a higher frequency of hostility directed against others. The level of VE of sadness and the proportion of hostility showed incremental predictive value of borderline symptomatology over demographic information, the presence of a depressive disorder and alexithymia. These findings point to an association between the severity of BPD symptoms and a difficulty mentalizing specific affective domains largely recognized as being central to borderline pathology, namely sadness and hostility. © 2011 The British Psychological Society.

  19. Diverse Modes of Axon Elaboration in the Developing Neocortex

    PubMed Central

    Weimer, Robby M; De Paola, Vincenzo; Caroni, Pico; Svoboda, Karel

    2005-01-01

    The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC) and Cajal-Retzius (CR) axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons) or degeneration of large portions of the arbor (hundreds of microns, for TC axons only). The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons. PMID:16026180

  20. Growth of elaborate microbial pinnacles in Lake Vanda, Antarctica.

    PubMed

    Sumner, D Y; Jungblut, A D; Hawes, I; Andersen, D T; Mackey, T J; Wall, K

    2016-11-01

    Microbial pinnacles in ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica, extend from the base of the ice to more than 50 m water depth. The distribution of microbial communities, their photosynthetic potential, and pinnacle morphology affects the local accumulation of biomass, which in turn shapes pinnacle morphology. This feedback, plus environmental stability, promotes the growth of elaborate microbial structures. In Lake Vanda, all mats sampled from greater than 10 m water depth contained pinnacles with a gradation in size from <1-mm-tall tufts to pinnacles that were centimeters tall. Small pinnacles were cuspate, whereas larger ones had variable morphology. The largest pinnacles were up to ~30 cm tall and had cylindrical bases and cuspate tops. Pinnacle biomass was dominated by cyanobacteria from the morphological and genomic groups Leptolyngbya, Phormidium, and Tychonema. The photosynthetic potential of these cyanobacterial communities was high to depths of several millimeters into the mat based on PAM fluorometry, and sufficient light for photosynthesis penetrated ~5 mm into pinnacles. The distribution of photosynthetic potential and its correlation to pinnacle morphology suggests a working model for pinnacle growth. First, small tufts initiate from random irregularities in prostrate mat. Some tufts grow into pinnacles over the course of ~3 years. As pinnacles increase in size and age, their interiors become colonized by a more diverse community of cyanobacteria with high photosynthetic potential. Biomass accumulation within this subsurface community causes pinnacles to swell, expanding laminae thickness and creating distinctive cylindrical bases and cuspate tops. This change in shape suggests that pinnacle morphology emerges from a specific distribution of biomass accumulation that depends on multiple microbial communities fixing carbon in different parts of pinnacles. Similarly, complex patterns of biomass accumulation may be reflected in the

  1. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  2. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  3. Building Nanostructures with Drugs

    PubMed Central

    Ma, Wang; Cheetham, Andrew G.

    2016-01-01

    The convergence of nanoscience and drug delivery has prompted the formation of the field of nanomedicine, one that exploits the novel physicochemical and biological properties of nanostructures for improved medical treatments and reduced side effects. Until recently, this nanostructure-mediated strategy considered the drug to be solely a biologically active compound to be delivered, and its potential as a molecular building unit remained largely unexplored. A growing trend within nanomedicine has been the use of drug molecules to build well-defined nanostructures of various sizes and shapes. This strategy allows for the creation of self-delivering supramolecular nanomedicines containing a high and fixed drug content. Through rational design of the number and type of the drug incorporated, the resulting nanostructures can be tailored to assume various morphologies (e.g. nanospheres, rods, nanofibers, or nanotubes) for a particular mode of administration such as systemic, topical, and local delivery. This review covers the recent advances in this rapidly developing field, with the aim of providing an in-depth evaluation of the exciting opportunities that this new field could create to improve the current clinical practice of nanomedicine. PMID:27066106

  4. Emerging double helical nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-07-01

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on `bottom-up' and `top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  5. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  6. Emerging double helical nanostructures.

    PubMed

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-08-21

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on 'bottom-up' and 'top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  7. Atomically Traceable Nanostructure Fabrication

    PubMed Central

    Ballard, Josh B.; Dick, Don D.; McDonnell, Stephen J.; Bischof, Maia; Fu, Joseph; Owen, James H. G.; Owen, William R.; Alexander, Justin D.; Jaeger, David L.; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J.; Wallace, Robert M.; Reidy, Richard; Silver, Richard M.; Randall, John N.; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  8. Complex WS 2 nanostructures

    NASA Astrophysics Data System (ADS)

    Whitby, R. L. D.; Hsu, W. K.; Lee, T. H.; Boothroyd, C. B.; Kroto, H. W.; Walton, D. R. M.

    2002-06-01

    A range of elegant tubular and conical nanostructures has been created by template growth of (WS 2) n layers on the surfaces of single-walled carbon nanotube bundles. The structures exhibit remarkably perfect straight segments together with interesting complexities at the intersections, which are discussed here in detail in order to enhance understanding of the structural features governing tube growth.

  9. Synthesis and performances of bio-sourced nanostructured carbon membranes elaborated by hydrothermal conversion of beer industry wastes

    NASA Astrophysics Data System (ADS)

    El Korhani, Oula; Zaouk, Doumit; Cerneaux, Sophie; Khoury, Randa; Khoury, Antonio; Cornu, David

    2013-03-01

    Hydrothermal carbonization (HTC) process of beer wastes (Almaza Brewery) yields a biochar and homogeneous carbon-based nanoparticles (NPs). The NPs have been used to prepare carbon membrane on commercial alumina support. Water filtration experiments evidenced the quasi-dense behavior of the membrane with no measurable water flux below an applied nitrogen pressure of 6 bar. Gas permeation tests were conducted and gave remarkable results, namely (1) the existence of a limit temperature of utilization of the membrane, which was below 100°C in our experimental conditions, (2) an evolution of the microstructure of the carbon membrane with the operating temperature that yielded to improved performances in gas separation, (3) the temperature-dependent gas permeance should follow a Knudsen diffusion mechanism, and (4) He permeance was increasing with the applied pressure, whereas N2 and CO2 permeances remained stable in the same conditions. These results yielded an enhancement of both the He/N2 and He/CO2 permselectivities with the applied pressure. These promising results made biomass-sourced HTC-processed carbon membranes encouraging candidates as ultralow-cost and sustainable membranes for gas separation applications.

  10. Synthesis and performances of bio-sourced nanostructured carbon membranes elaborated by hydrothermal conversion of beer industry wastes.

    PubMed

    El Korhani, Oula; Zaouk, Doumit; Cerneaux, Sophie; Khoury, Randa; Khoury, Antonio; Cornu, David

    2013-03-07

    Hydrothermal carbonization (HTC) process of beer wastes (Almaza Brewery) yields a biochar and homogeneous carbon-based nanoparticles (NPs). The NPs have been used to prepare carbon membrane on commercial alumina support. Water filtration experiments evidenced the quasi-dense behavior of the membrane with no measurable water flux below an applied nitrogen pressure of 6 bar. Gas permeation tests were conducted and gave remarkable results, namely (1) the existence of a limit temperature of utilization of the membrane, which was below 100°C in our experimental conditions, (2) an evolution of the microstructure of the carbon membrane with the operating temperature that yielded to improved performances in gas separation, (3) the temperature-dependent gas permeance should follow a Knudsen diffusion mechanism, and (4) He permeance was increasing with the applied pressure, whereas N2 and CO2 permeances remained stable in the same conditions. These results yielded an enhancement of both the He/N2 and He/CO2 permselectivities with the applied pressure. These promising results made biomass-sourced HTC-processed carbon membranes encouraging candidates as ultralow-cost and sustainable membranes for gas separation applications.

  11. Synthesis and performances of bio-sourced nanostructured carbon membranes elaborated by hydrothermal conversion of beer industry wastes

    PubMed Central

    2013-01-01

    Hydrothermal carbonization (HTC) process of beer wastes (Almaza Brewery) yields a biochar and homogeneous carbon-based nanoparticles (NPs). The NPs have been used to prepare carbon membrane on commercial alumina support. Water filtration experiments evidenced the quasi-dense behavior of the membrane with no measurable water flux below an applied nitrogen pressure of 6 bar. Gas permeation tests were conducted and gave remarkable results, namely (1) the existence of a limit temperature of utilization of the membrane, which was below 100°C in our experimental conditions, (2) an evolution of the microstructure of the carbon membrane with the operating temperature that yielded to improved performances in gas separation, (3) the temperature-dependent gas permeance should follow a Knudsen diffusion mechanism, and (4) He permeance was increasing with the applied pressure, whereas N2 and CO2 permeances remained stable in the same conditions. These results yielded an enhancement of both the He/N2 and He/CO2 permselectivities with the applied pressure. These promising results made biomass-sourced HTC-processed carbon membranes encouraging candidates as ultralow-cost and sustainable membranes for gas separation applications. PMID:23497215

  12. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  13. Manganese Nanostructures and Magnetism

    NASA Astrophysics Data System (ADS)

    Simov, Kirie Rangelov

    The primary goal of this study is to incorporate adatoms with large magnetic moment, such as Mn, into two technologically significant group IV semiconductor (SC) matrices, e.g. Si and Ge. For the first time in the world, we experimentally demonstrate Mn doping by embedding nanostructured thin layers, i.e. delta-doping. The growth is observed by in-situ scanning tunneling microscopy (STM), which combines topographic and electronic information in a single image. We investigate the initial stages of Mn monolayer growth on a Si(100)(2x1) surface reconstruction, develop methods for classification of nanostructure types for a range of surface defect concentrations (1.0 to 18.2%), and subsequently encapsulate the thin Mn layer in a SC matrix. These experiments are instrumental in generating a surface processing diagram for self-assembly of monoatomic Mn-wires. The role of surface vacancies has also been studied by kinetic Monte Carlo modeling and the experimental observations are compared with the simulation results, leading to the conclusion that Si(100)(2x1) vacancies serve as nucleation centers in the Mn-Si system. Oxide formation, which happens readily in air, is detrimental to ferromagnetism and lessens the magnetic properties of the nanostructures. Therefore, the protective SC cap, composed of either Si or Ge, serves a dual purpose: it is both the embedding matrix for the Mn nanostructured thin film and a protective agent for oxidation. STM observations of partially deposited caps ensure that the nanostructures remain intact during growth. Lastly, the relationship between magnetism and nanostructure types is established by an in-depth study using x-ray magnetic circular dichroism (XMCD). This sensitive method detects signals even at coverages less than one atomic layer of Mn. XMCD is capable of discerning which chemical compounds contribute to the magnetic moment of the system, and provides a ratio between the orbital and spin contributions. Depending on the amount

  14. The elaborate plumage in peacocks is not such a drag.

    PubMed

    Askew, Graham N

    2014-09-15

    One of the classic examples of an exaggerated sexually selected trait is the elaborate plumage that forms the train in male peafowl Pavo cristatus (peacock). Such ornaments are thought to reduce locomotor performance as a result of their weight and aerodynamic drag, but this cost is unknown. Here, the effect that the train has on take-off flight in peacocks was quantified as the sum of the rates of change of the potential and kinetic energies of the body (P(CoM)) in birds with trains and following the train's removal. There was no significant difference between P(CoM) in birds with and without a train. The train incurs drag during take-off; however, while this produces a twofold increase in parasite drag, parasite power only accounts for 0.1% of the total aerodynamic power. The train represented 6.9% of body weight and is expected to increase induced power. The absence of a detectable effect on take-off performance does not necessarily mean that there is no cost associated with possessing such ornate plumage; rather, it suggests that given the variation in take-off performance per se, the magnitude of any effect of the train has little meaningful functional relevance. © 2014. Published by The Company of Biologists Ltd.

  15. Evolution of the elaborate male intromittent organ of Xiphophorus fishes.

    PubMed

    Jones, Julia C; Fruciano, Carmelo; Keller, Anja; Schartl, Manfred; Meyer, Axel

    2016-10-01

    Internally fertilizing animals show a remarkable diversity in male genital morphology that is associated with sexual selection, and these traits are thought to be evolving particularly rapidly. Male fish in some internally fertilizing species have "gonopodia," highly modified anal fins that are putatively important for sexual selection. However, our understanding of the evolution of genital diversity remains incomplete. Contrary to the prediction that male genital traits evolve more rapidly than other traits, here we show that gonopodial traits and other nongonopodial traits exhibit similar evolutionary rates of trait change and also follow similar evolutionary models in an iconic genus of poeciliid fish (Xiphophorus spp.). Furthermore, we find that both mating and nonmating natural selection mechanisms are unlikely to be driving the diverse Xiphophorus gonopodial morphology. Putative holdfast features of the male genital organ do not appear to be influenced by water flow, a candidate selective force in aquatic habitats. Additionally, interspecific divergence in gonopodial morphology is not significantly higher between sympatric species, than between allopatric species, suggesting that male genitals have not undergone reproductive character displacement. Slower rates of evolution in gonopodial traits compared with a subset of putatively sexually selected nongenital traits suggest that different selection mechanisms may be acting on the different trait types. Further investigations of this elaborate trait are imperative to determine whether it is ultimately an important driver of speciation.

  16. Translating neuronal activity into dendrite elaboration: signaling to the nucleus.

    PubMed

    Redmond, Lori

    2008-01-01

    Growth and elaboration of neuronal processes is key to establishing neuronal connectivity critical for an optimally functioning nervous system. Neuronal activity clearly influences neuronal connectivity and does so via intracellular calcium signaling. A number of CaMKs and MAPKs convey the calcium signal initiated by neuronal activity. Several of these kinases interact with substrates in close proximity to the plasma membrane and alter dendrite structure locally via these local interactions. However, many calcium-activated kinases, such as Ras-MAPK and CaMKIV, target proteins in the nucleus, either by activating a downstream substrate that is a component of a signaling cascade or by directly acting within the nucleus. It is the activation of nuclear signaling and gene transcription that is thought to mediate global changes in dendrite complexity. The identification of calcium-sensitive transcription factors and transcriptional coactivators provides substantial evidence that gene transcription is a prevalent mechanism by which neuronal activity is translated into changes in dendrite complexity. The present review presents an overview of the role of neuronal activity in the development of neuronal dendrites, the signaling mechanisms that translate neuronal activity into gene transcription, and the transcribed effectors that regulate dendrite complexity. (c) 2008 S. Karger AG, Basel.

  17. Planar plasmonic chiral nanostructures

    NASA Astrophysics Data System (ADS)

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-01

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response.A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. Electronic supplementary information (ESI) available

  18. Nanostructured Superhydrophobic Coatings

    SciTech Connect

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  19. Macromolecular Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Ueyama, Norikazu; Harada, Akira

    This book presents a detailed account of the synthesis, characterization and application of organic and inorganic macromolecular nanostructured materials. These materials consist of simple organic compounds, inorganic complexes and polymers, and display unique properties such as electrical conductivity ranging from semiconducting to superconducting. Also described in the book are the roles of these materials in electrodeposition and gas deposition, as photosensitizers, magnets, macromolecular metal catalysts, sol-gel hybrids, and in biomineralization.

  20. Alternative nanostructures for thermophones.

    PubMed

    Aliev, Ali E; Mayo, Nathanael K; Jung de Andrade, Monica; Robles, Raquel O; Fang, Shaoli; Baughman, Ray H; Zhang, Mei; Chen, Yongsheng; Lee, Jae Ah; Kim, Seon Jeong

    2015-05-26

    Thermophones are highly promising for applications such as high-power SONAR arrays, flexible loudspeakers, and noise cancellation devices. So far, freestanding carbon nanotube aerogel sheets provide the most attractive performance as a thermoacoustic heat source. However, the limited accessibility of large-size freestanding carbon nanotube aerogel sheets and other even more exotic materials recently investigated hampers the field. We describe alternative materials for a thermoacoustic heat source with high-energy conversion efficiency, additional functionalities, environmentally friendly, and cost-effective production technologies. We discuss the thermoacoustic performance of alternative nanostructured materials and compare their spectral and power dependencies of sound pressure in air. We demonstrate that the heat capacity of aerogel-like nanostructures can be extracted by a thorough analysis of the sound pressure spectra. The study presented here focuses on engineering thermal gradients in the vicinity of nanostructures and subsequent heat dissipation processes from the interior of encapsulated thermoacoustic projectors. Applications of thermoacoustic projectors for high-power SONAR arrays, sound cancellation, and optimal thermal design, regarding enhanced energy conversion efficiency, are discussed.

  1. Sonoelectrochemical Approach Towards Nanostructures

    NASA Astrophysics Data System (ADS)

    Burda, Clemens; Qiu, Xiaofeng

    2006-03-01

    We will report on the sonoelectrochemical synthesis of nanostructured semiconductor materials. The talk will focus on the control of the nanostructure size, shape, and composition using sonolectrochemistry as a versatile synthesis tool. The synthesis of targeted nanostructures requires thorough control of the redox chemistry during the growth process. The composition of the product can be controlled by changing the initial metal-ligand concentration. Futhermore, the properties of the novel materials will be discussed. Powder X-ray diffraction of the products confirmed the compositional change in the nanomaterials. Control of the involved sonoelectrochemistry also allows for the formation of highly monodispersed 1-D Nanorods. Qiu, Xiaofeng; Lou, Yongbing; Samia, Anna C. S.; Devadoss, Anando; Burgess, James D.; Dayal, Smita; Burda, Clemens. PbTe nanorods by sonoelectrochemistry. Angewandte Chemie, International Edition (2005), 44(36), 5855-5857. Qiu, Xiaofeng; Burda, Clemens; Fu, Ruiling; Pu, Lin; Chen, Hongyuan; Zhu, Junjie. Heterostructured Bi2Se3 Nanowires with Periodic Phase Boundaries. Journal of the American Chemical Society (2004), 126(50), 16276-16277.

  2. Plasmonic Nanostructured Cellular Automata

    NASA Astrophysics Data System (ADS)

    Alkhazraji, Emad; Ghalib, A.; Manzoor, K.; Alsunaidi, M. A.

    2017-03-01

    In this work, we have investigated the scattering plasmonic resonance characteristics of silver nanospheres with a geometrical distribution that is modelled by Cellular Automata using time-domain numerical analysis. Cellular Automata are discrete mathematical structures that model different natural phenomena. Two binary one-dimensional Cellular Automata rules are considered to model the nanostructure, namely rule 30 and rule 33. The analysis produces three-dimensional scattering profiles of the entire plasmonic nanostructure. For the Cellular Automaton rule 33, the introduction of more Cellular Automata generations resulted only in slight red and blue shifts in the plasmonic modes with respect to the first generation. On the other hand, while rule 30 introduced significant red shifts in the resonance peaks at early generations, at later generations however, a peculiar effect is witnessed in the scattering profile as new peaks emerge as a feature of the overall Cellular Automata structure rather than the sum of the smaller parts that compose it. We strongly believe that these features that emerge as a result adopting the different 256 Cellular Automata rules as configuration models of nanostructures in different applications and systems might possess a great potential in enhancing their capability, sensitivity, efficiency, and power utilization.

  3. The neural correlates of specific versus general autobiographical memory construction and elaboration

    PubMed Central

    Holland, Alisha C.; Addis, Donna Rose; Kensinger, Elizabeth A.

    2011-01-01

    We examined the neural correlates of specific (i.e., unique to time and place) and general (i.e., extended in or repeated over time) autobiographical memories (AMs) during their initial construction and later elaboration phases. The construction and elaboration of specific and general events engaged a widely distributed set of regions previously associated with AM recall. Specific (vs. general) event construction preferentially engaged prefrontal and medial temporal lobe regions known to be critical for memory search and retrieval processes. General event elaboration was differentiated from specific event elaboration by extensive right-lateralized prefrontal cortex (PFC) activity. Interaction analyses confirmed that PFC activity was disproportionately engaged by specific AMs during construction, and general AMs during elaboration; a similar pattern was evident in regions of the left lateral temporal lobe. These neural differences between specific and general AM construction and elaboration were largely unrelated to reported differences in the level of detail recalled about each type of event. PMID:21803063

  4. Problems in archaeomagnetic reference curves elaboration in the prehistoric past.

    NASA Astrophysics Data System (ADS)

    Avramova, M.; Kovacheva, M.; Boyadziev, Y.

    2012-04-01

    dated (perennial or annual) and cultural features. An example for such reference profile is the multilevel site Yunatzite from the Early Bronze Age. The comparison of archaeomagnetic profile Yunatzite with another archaeomagnetically studied Early Bronze Age multilevel site Djadovo shows very good agreement. Comparisons of other archaeomagnetic profiles available for Bulgaria related to the same epoch or sub-epoch will be presented. The expected correspondence can help the refinement of chronology of sites having only stratigraphic profiles. In our opinion the observed discrepancies between the local PSVCs for a given geographical region might be due mainly to the above described difficulties for elaboration of these curves in the prehistory. The further refinement and updating of existing archaeomagnetic databases will help considerably the elaboration of the newest geomagnetic field models. Acknowledgement: A partial financial support is from the Project "The archaeomagnetism - a key for solving fundamental problems in geophysics and archaeology", granted from the Bulgarian National Science Fund.

  5. Differentiation of subsequent memory effects between retrieval practice and elaborative study.

    PubMed

    Liu, Yi; Rosburg, Timm; Gao, Chuanji; Weber, Christine; Guo, Chunyan

    2017-07-01

    Retrieval practice enhances memory retention more than re-studying. The underlying mechanisms of this retrieval practice effect have remained widely unclear. According to the elaborative retrieval hypothesis, activation of elaborative information occurs to a larger extent during testing than re-studying. In contrast, the episodic context account has suggested that recollecting prior episodic information (especially the temporal context) contributes to memory retention. To adjudicate the distinction between these two accounts, the present study used the classical retrieval practice effect paradigm to compare retrieval practice and elaborative study. In an initial behavioral experiment, retrieval practice produced greater retention than elaboration and re-studying in a one-week delayed test. In a subsequent event-related potential (ERP) experiment, retrieval practice resulted in reliably superior accuracy in the delayed test compared to elaborative study. In the ERPs, a frontally distributed subsequent memory effect (SME), starting at 300ms, occurred in the elaborative study condition, but not in the retrieval practice condition. A parietal SME emerged in the retrieval practice condition from 500 to 700ms, but was absent in the elaborative study condition. After 700ms, a late SME was present in the retrieval practice condition, but not in the elaborative study condition. Moreover, SMEs lasted longer in retrieval practice than in elaboration. The frontal SME in the elaborative study condition might be related to semantic processing or working memory-based elaboration, whereas the parietal and widespread SME in the retrieval practice condition might be associated with episodic recollection processes. These findings contradict the elaborative retrieval theory, and suggest that contextual recollection rather than activation of semantic information contributes to the retrieval practice effect, supporting the episodic context account. Copyright © 2017. Published by

  6. Thesis Abstract Fermented milk elaborated with Camellia sinensis.

    PubMed

    Ribeiro, O A S; Silva, M I A; Boari, C A

    2016-05-13

    This study aimed to develop and to characterize fermented dairy beverage formulated with Camellia sinensis. The infusion was elaborated with the addiction of dehydrated leaves of C. sinensis in whey (1g/100g) which added in sweetened milk (10% sucrose w/w) coagulated by Streptococcus salivarius subspecies thermophilus and Lactobacillus delbrueckii subspecies bulgaricus in proportions of 10, 20, 30 and 40% (v/w). The control treatment consisted of yogurt added with sucrose (10% w/w). Analysis were performed to quantify dry mass, moisture, ash, protein, fat, sodium, acidity, total quantification of lactic acid bacteria, total antioxidant activity and viscosity at the initial time of production and at 15 and 30 days of storage. Chromatographic determination of volatile compounds and sensory tests of acceptance and consumption intention were conducted at the initial time of production. Dry matter content, moisture, ash and total count of lactic acid bacteria from fermented milk drink formulations were not significantly affected by the amount of infusion of C. sinensis. However, the content of protein, fat and sodium were significantly lower with the increase of the proportion of infusion incorporated into the product. Significant reduction in apparent viscosity occurs with the increase in the amount of infusion added. The total antioxidant activity of the formulations was significantly higher as higher were the amount of added infusion. The addition of infusion contributed to the diversification of volatile aroma and taste makers in the product. The formulation of fermented dairy drink with addition of 30% infusion C. sinensis was better evaluated in sensory tests, with greater acceptance and greater consumer intent of consumption.

  7. Elaborating on systems thinking in health promotion practice.

    PubMed

    Naaldenberg, Jenneken; Vaandrager, Lenneke; Koelen, Maria; Wagemakers, Anne-Marie; Saan, Hans; de Hoog, Kees

    2009-03-01

    Health and well-being are the result of a series of complex processes in which an individual interacts with other people and the environment. A systematic approach ensures incorporation of individual, ecological, social and political factors. However, interactions between these factors can be overlooked within a systematical approach. A systemic approach can provide additional information by incorporating interactions and communication. The opportunities of a systems thinking perspective for health promotion were investigated for this paper. Although others have also made attempts to explore systems thinking in the field of health promotion, the implications of systems thinking in practice need attention. Other fields such as agricultural extension studies, organizational studies and development studies provide useful experiences with the use of a systems thinking perspective in practice. Building on experiences from these fields, we give a theoretical background in which processes of social learning and innovation play an important role. From this background, we derive an overview of important concepts for the practical application of a systems thinking perspective. These concepts are the structure of the system, meanings attached to actions, and power relations between actors. To make these concepts more explicit and reduce the theoretical character of systems thinking, we use an illustration to elaborate on these concepts in practice. For this purpose, we describe a health promotion partnership in The Netherlands using the concepts structure, meaning and power relations. We show how a systems perspective increases insight in the functioning of a partnership and how this can facilitate processes of social learning and innovation. This article concludes by identifying future opportunities and challenges in adopting systems thinking for health promotion practice. A systems perspective towards health promotion can help projects reaching a more integral and

  8. Operationalising elaboration theory for simulation instruction design: a Delphi study.

    PubMed

    Haji, Faizal A; Khan, Rabia; Regehr, Glenn; Ng, Gary; de Ribaupierre, Sandrine; Dubrowski, Adam

    2015-06-01

    The aim of this study was to assess the feasibility of incorporating the Delphi process within the simplifying conditions method (SCM) described in elaboration theory (ET) to identify conditions impacting the complexity of procedural skills for novice learners. We generated an initial list of conditions impacting the complexity of lumbar puncture (LP) from key informant interviews (n = 5) and a literature review. Eighteen clinician-educators from six different medical specialties were subsequently recruited as expert panellists. Over three Delphi rounds, these panellists rated: (i) their agreement with the inclusion of the simple version of the conditions in a representative ('epitome') training scenario, and (ii) how much the inverse (complex) version increases LP complexity for a novice. Cronbach's α-values were used to assess inter-rater agreement. All panellists completed Rounds 1 and 2 of the survey and 17 completed Round 3. In Round 1, Cronbach's α-values were 0.89 and 0.94 for conditions that simplify and increase LP complexity, respectively; both values increased to 0.98 in Rounds 2 and 3. With the exception of 'high CSF (cerebral spinal fluid) pressure', panellists agreed with the inclusion of all conditions in the simplest (epitome) training scenario. Panellists rated patient movement, spinal anatomy, patient cooperativeness, body habitus, and the presence or absence of an experienced assistant as having the greatest impact on the complexity of LP. This study demonstrated the feasibility of using expert consensus to establish conditions impacting the complexity of procedural skills, and the benefits of incorporating the Delphi method into the SCM. These data can be used to develop and sequence simulation scenarios in a progressively challenging manner. If the theorised learning gains associated with ET are realised, the methods described in this study may be applied to the design of simulation training for other procedural and non-procedural skills

  9. Nanostructures for peroxidases

    PubMed Central

    Carmona-Ribeiro, Ana M.; Prieto, Tatiana; Nantes, Iseli L.

    2015-01-01

    Peroxidases are enzymes catalyzing redox reactions that cleave peroxides. Their active redox centers have heme, cysteine thiols, selenium, manganese, and other chemical moieties. Peroxidases and their mimetic systems have several technological and biomedical applications such as environment protection, energy production, bioremediation, sensors and immunoassays design, and drug delivery devices. The combination of peroxidases or systems with peroxidase-like activity with nanostructures such as nanoparticles, nanotubes, thin films, liposomes, micelles, nanoflowers, nanorods and others is often an efficient strategy to improve catalytic activity, targeting, and reusability. PMID:26389124

  10. Nanoindentation of Carbon Nanostructures.

    PubMed

    Kumar, Dinesh; Singh, Karamjit; Verma, Veena; Bhatti, H S

    2016-06-01

    In the present research paper carbon nanostructures viz. single walled carbon nanotubes, multi-walled carbon nanotubes, single walled carbon nanohorns and graphene nanoplatelets have been synthesized by CVD technique, hydrothermal method, DC arc discharge method in liquid nitrogen and microwave technique respectively. After synthesis 5 mm thick pallets of given nanomaterial are prepared by making a paste in isopropyl alcohol and using polyvinylidene difluoride as a binder and then these pallets were used for nanoindentation measurements. Hardness, reduced modulus, stiffness, contact height and contact area have been measured using nanoindenter.

  11. Use of Syntactic Elaboration Techniques to Enhance Comprehensibility of EST Texts

    ERIC Educational Resources Information Center

    Rahimi, Mohammad Ali; Rezaei, Amir

    2011-01-01

    The current study examined differential effects of two pre-modification types, syntactic elaboration and syntactic simplification (at the level of syntax and irrespective of problematic lexis), on EST students' reading comprehension. The purpose was to see whether a priori syntactic elaborative adjustment, given its advantages over simplification,…

  12. Socialization of Past Event Talk: Cultural Differences in Maternal Elaborative Reminiscing

    ERIC Educational Resources Information Center

    Tougu, Pirko; Tulviste, Tiia; Schroder, Lisa; Keller, Heidi; De Geer, Boel

    2011-01-01

    This study examines mother-child reminiscing conversations with respect to variation in use and function of mothers' elaborations, the nature of children's memory elaborations, and the connections between the two, in three Western middle-class cultures where autonomy is valued over relatedness. Mothers participated with their 4-year-old children…

  13. Supporting Students' Knowledge Construction and Self-Regulation through the Use of Elaborative Processing Strategies

    ERIC Educational Resources Information Center

    Sperling, Rayne A.; Ramsay, Crystal M.; Reeves, Philip M.; Follmer, D. Jake; Richmond, Aaron S.

    2016-01-01

    Theoretical and empirical support for the benefits of elaborative strategy instruction for middle level students is highlighted. Consistent with the "Keys of Educating Young Adolescents," teaching elaborative strategies enhances academic achievement, engages learners, and empowers students' future independent learning. A transactional…

  14. Elaborative Talk during and after an Event: Conversational Style Influences Children's Memory Reports

    ERIC Educational Resources Information Center

    Hedrick, Amy M.; Haden, Catherine A.; Ornstein, Peter A.

    2009-01-01

    An experimental design was utilized to examine the effects of elaborative talk during and/or after an event on children's event memory reports. Sixty preschoolers were assigned randomly to one of four conditions that varied according to a researcher's use of high- or low- elaborative during- and/or post-event talk about a camping event. In a…

  15. Cue Strength as a Moderator of the Testing Effect: The Benefits of Elaborative Retrieval

    ERIC Educational Resources Information Center

    Carpenter, Shana K.

    2009-01-01

    The current study explored the elaborative retrieval hypothesis as an explanation for the testing effect: the tendency for a memory test to enhance retention more than restudying. In particular, the retrieval process during testing may activate elaborative information related to the target response, thereby increasing the chances that activation…

  16. Socialization of Past Event Talk: Cultural Differences in Maternal Elaborative Reminiscing

    ERIC Educational Resources Information Center

    Tougu, Pirko; Tulviste, Tiia; Schroder, Lisa; Keller, Heidi; De Geer, Boel

    2011-01-01

    This study examines mother-child reminiscing conversations with respect to variation in use and function of mothers' elaborations, the nature of children's memory elaborations, and the connections between the two, in three Western middle-class cultures where autonomy is valued over relatedness. Mothers participated with their 4-year-old children…

  17. Elaborations of Introductory Psychology Terms: Effects on Test Performance and Subjective Ratings

    ERIC Educational Resources Information Center

    Balch, William R.

    2005-01-01

    Undergraduate students participated in an experiment designed to evaluate different types of elaborations on definitions of 16 psychology terms. First, participants received booklets presenting the definition of each term, followed by 1 of several elaborations: an example, a mnemonic, a paraphrase, or a repeated definition (the nonelaborating…

  18. Effects of a Cooperative Learning Program on the Elaborations of Students Working in Dyads

    ERIC Educational Resources Information Center

    Krol, Karen; Janssen, Jeroen; Veenman, Simon; van der Linden, Jos

    2004-01-01

    In this study, the effects of a school improvement program on cooperative learning (CL) with respect to the elaborations of 6th grade students working in mixed ability and mixed sex dyads on 2 cooperative tasks were examined. A post test only design with a control group was used to investigate the provision and receipt of elaborations within the…

  19. Elaborative Talk during and after an Event: Conversational Style Influences Children's Memory Reports

    ERIC Educational Resources Information Center

    Hedrick, Amy M.; Haden, Catherine A.; Ornstein, Peter A.

    2009-01-01

    An experimental design was utilized to examine the effects of elaborative talk during and/or after an event on children's event memory reports. Sixty preschoolers were assigned randomly to one of four conditions that varied according to a researcher's use of high- or low- elaborative during- and/or post-event talk about a camping event. In a…

  20. Maternal Reminiscing, Elaborative Talk, and Children's Theory of Mind: An Intervention Study

    ERIC Educational Resources Information Center

    Taumoepeau, Mele; Reese, Elaine

    2013-01-01

    This study examined the impact of training mothers to talk elaboratively about the past on children's understanding of mind. The researchers randomly assigned 102 mothers of 19-month-old children to a training or no-training group. Mothers in the experimental group received training in an elaborative style of talking about the past when children…

  1. Using Elaborative Interrogation Enhanced Worked Examples to Improve Chemistry Problem Solving

    ERIC Educational Resources Information Center

    Pease, Rebecca Simpson

    2012-01-01

    Elaborative interrogation, which prompts students to answer why-questions placed strategically within informational text, has been shown to increase learning comprehension through reading. In this study, elaborative interrogation why-questions requested readers to explain why paraphrased statements taken from a reading were "true."…

  2. Team-Based Learning: Moderating Effects of Metacognitive Elaborative Rehearsal and Middle School History Content Recall

    ERIC Educational Resources Information Center

    Roberts, Greg; Scammacca, Nancy; Osman, David J.; Hall, Colby; Mohammed, Sarojani S.; Vaughn, Sharon

    2014-01-01

    Promoting Acceleration of Comprehension and Content through Text (PACT) and similar team-based models directly engage and support students in learning situations that require cognitive elaboration as part of the processing of new information. Elaboration is subject to metacognitive control, as well (Karpicke, "Journal of Experimental…

  3. Team-Based Learning: Moderating Effects of Metacognitive Elaborative Rehearsal and Middle School History Content Recall

    ERIC Educational Resources Information Center

    Roberts, Greg; Scammacca, Nancy; Osman, David J.; Hall, Colby; Mohammed, Sarojani S.; Vaughn, Sharon

    2014-01-01

    Promoting Acceleration of Comprehension and Content through Text (PACT) and similar team-based models directly engage and support students in learning situations that require cognitive elaboration as part of the processing of new information. Elaboration is subject to metacognitive control, as well (Karpicke, "Journal of Experimental…

  4. Elaborate Analogies in Science Text: Tools for Enhancing Preservice Teachers' Knowledge and Attitudes

    ERIC Educational Resources Information Center

    Paris, Nita A.; Glynn, Shawn M.

    2004-01-01

    Preservice teachers studied texts about three fundamentally important science concepts. They read versions with no analogy, versions with a simple analogy, and versions with an elaborate analogy. An elaborate analogy is one that consists of text and pictorial components in which similarities between the analog and the target concept are made…

  5. Elaborate Analogies in Science Text: Tools for Enhancing Preservice Teachers' Knowledge and Attitudes

    ERIC Educational Resources Information Center

    Paris, Nita A.; Glynn, Shawn M.

    2004-01-01

    Preservice teachers studied texts about three fundamentally important science concepts. They read versions with no analogy, versions with a simple analogy, and versions with an elaborate analogy. An elaborate analogy is one that consists of text and pictorial components in which similarities between the analog and the target concept are made…

  6. The Coded Elaborative Outline as a Strategy To Help Students Learn from Text.

    ERIC Educational Resources Information Center

    Tuckman, Bruce W.

    The coded elaborative outline (CEO) was evaluated as a strategy for helping students learn from text. CEOs are outlines of main points that include the coding of information read and elaborate on that information to enhance meaning. The following five conditions were compared: (1) required CEOs; (2) voluntary CEOs; (3) CEO instruction only; (4)…

  7. Imagery Based Elaboration as an Index of EMR Children's Creativity and Incidental Associative Learning.

    ERIC Educational Resources Information Center

    Greeson, Larry E.; Vane, Raymond J.

    1986-01-01

    Educable mentally retarded (EMR) 13- to 15-year-olds (N=19) and matched mental-age comparison subjects (N=22) participated in an imagery-based, associative learning pictorial elaboration task, followed by a delayed test of incidental learning. Both groups were able to generate original elaborations, although fluency and incidental learning scores…

  8. Maternal Reminiscing, Elaborative Talk, and Children's Theory of Mind: An Intervention Study

    ERIC Educational Resources Information Center

    Taumoepeau, Mele; Reese, Elaine

    2013-01-01

    This study examined the impact of training mothers to talk elaboratively about the past on children's understanding of mind. The researchers randomly assigned 102 mothers of 19-month-old children to a training or no-training group. Mothers in the experimental group received training in an elaborative style of talking about the past when children…

  9. Cue Strength as a Moderator of the Testing Effect: The Benefits of Elaborative Retrieval

    ERIC Educational Resources Information Center

    Carpenter, Shana K.

    2009-01-01

    The current study explored the elaborative retrieval hypothesis as an explanation for the testing effect: the tendency for a memory test to enhance retention more than restudying. In particular, the retrieval process during testing may activate elaborative information related to the target response, thereby increasing the chances that activation…

  10. The Expressive Elaboration of Imaginative Narratives by Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Ukrainetz, Teresa A.; Gillam, Ronald B.

    2009-01-01

    Purpose: This study investigated the expressive elaboration of narratives from children with specific language impairment (SLI). Method: Forty-eight 6- and 8-year-old children with SLI were compared with forty-eight 6- and 8-year-old typical language (TL) children. Two imaginative narratives were scored for 14 elements of expressive elaboration in…

  11. Elaborations of Introductory Psychology Terms: Effects on Test Performance and Subjective Ratings

    ERIC Educational Resources Information Center

    Balch, William R.

    2005-01-01

    Undergraduate students participated in an experiment designed to evaluate different types of elaborations on definitions of 16 psychology terms. First, participants received booklets presenting the definition of each term, followed by 1 of several elaborations: an example, a mnemonic, a paraphrase, or a repeated definition (the nonelaborating…

  12. Attributional Retraining and Elaborative Learning: Improving Academic Development through Writing-Based Interventions

    ERIC Educational Resources Information Center

    Hall, Nathan C.; Perry, Raymond P.; Goetz, Thomas; Ruthig, Joelle C.; Stupnisky, Robert H.; Newall, Nancy E.

    2007-01-01

    Attributional retraining (AR) is a motivational intervention that consistently produces improved performance by encouraging controllable failure attributions. Research suggests that cognitively engaging AR methods are ideal for high-elaborating students, whereas affect-oriented techniques are better for low-elaborating students. College students'…

  13. Mother-child reminiscing at risk: Maternal attachment, elaboration, and child autobiographical memory specificity.

    PubMed

    McDonnell, Christina G; Valentino, Kristin; Comas, Michelle; Nuttall, Amy K

    2016-03-01

    Mother-child reminiscing, the process by which mothers and their children discuss past events and emotional experiences, has been robustly linked with child outcomes, including autobiographical memory. To advance previous work linking elaborative maternal reminiscing with child autobiographical memory specificity, the ability to generate and retrieve specific memories from one's past, it is essential to make distinctions among aspects of elaboration and to consider how maternal risk factors may influence the reminiscing context. The current study evaluated (a) an interaction between emotional and structural elaboration predicting child autobiographical memory specificity and (b) the potential moderating role of maternal adult attachment. Participants consisted of 95 preschool-aged children and their mothers. The sample was predominantly low income and racially diverse. Dyads completed a reminiscing task that was coded for emotional and structural elaboration. Mothers completed the Experiences in Close Relationships questionnaire (ECR-R) to assess attachment-related avoidance and anxiety, and children completed the Autobiographical Memory Test-Preschool Version (AMT-PV) to assess memory specificity. Results indicated that the association between structural reminiscing and child memory specificity was moderated by emotional elements of reminiscing. At high levels of emotional elaboration, mothers with high levels of structural elaboration had children with more specific memory than mothers with low levels of structural elaboration. Moreover, emotional elaboration (a) predicted less specific child memory without high structural support and (b) negatively predicted child specificity at high levels of maternal attachment avoidance and anxiety, a profile associated with fearful avoidance. Future directions and implications are discussed.

  14. Attributional Retraining and Elaborative Learning: Improving Academic Development through Writing-Based Interventions

    ERIC Educational Resources Information Center

    Hall, Nathan C.; Perry, Raymond P.; Goetz, Thomas; Ruthig, Joelle C.; Stupnisky, Robert H.; Newall, Nancy E.

    2007-01-01

    Attributional retraining (AR) is a motivational intervention that consistently produces improved performance by encouraging controllable failure attributions. Research suggests that cognitively engaging AR methods are ideal for high-elaborating students, whereas affect-oriented techniques are better for low-elaborating students. College students'…

  15. Learning from Science Text: Role of an Elaborate Analogy. Reading Research Report No. 71.

    ERIC Educational Resources Information Center

    Glynn, Shawn M.

    A study examined the role that an elaborate analogy can play when high school students learn a concept from a leading science textbook. The elaborate analogy had graphic and text components that integrated and mapped key features from the analogy (a factory) to the target concept (an animal cell). The target features were parts of the cell and, by…

  16. Maternal Elaborative Reminiscing Increases Low-Income Children's Narrative Skills Relative to Dialogic Reading

    ERIC Educational Resources Information Center

    Reese, Elaine; Leyva, Diana; Sparks, Alison; Grolnick, Wendy

    2010-01-01

    Research Findings: This study compared the unique effects of training low-income mothers in dialogic reading versus elaborative reminiscing on children's oral language and emergent literacy. Thirty-three low-income parents of 4-year-old children attending Head Start were randomly assigned to either dialogic reading, elaborative reminiscing, or a…

  17. Magnetic Properties of Nanostructures

    NASA Astrophysics Data System (ADS)

    Ciraldo, John

    2007-10-01

    The recent development of the superlattice nanowire pattern transfer (SNAP) technique has enabled the fabrication of complex molecular-electronic circuits at unprecedented densities. In this project, we explore the possibility of extending this technique to generate comparably dense arrays of nanoscale giant magnetoresistive (GMR) and tunneling magnetoresistive (TMR) devices. My primary contribution to this project has focused on using a vibrating sample magnetometer (VSM), as well as a superconducting interference device (SQUID) magnetometer to monitor the magnetic properties of the devices as they are processed from thin 2D films into nanostructure arrays. This investigation allows us to investigate both fundamental and technological aspects of the nanopatterning process. For example, the effects of changing surface to volume ratios on the ferromagnetic exchange interaction and the role of various patterning techniques in determining surface chemistry and oxidation of the final nanostructures, respectively. Additionally I have worked on simulations of the materials using NIST's OOMF program, allowing me to compare actual results with theoretical expectations. I am also designing a magneto-optical Kerr effect (MOKE) detector, which will allow faster approximations of magnetic behavior.

  18. The role of attributional retraining and elaborative learning in college students' academic development.

    PubMed

    Hall, Nathan C; Hladkyj, Steven; Perry, Raymond P; Ruthig, Joelle C

    2004-12-01

    In the present longitudinal study, the authors examined the impact of attributional retraining (AR) techniques on academic motivation and achievement for college students who are either frequently or infrequently using elaborative learning strategies. During the 1st semester, 203 students completed an initial questionnaire assessing elaborative learning followed by 1 of 3 treatment conditions (No AR, Writing AR, Aptitude Test AR). Results indicated improvements in students' end-of-year perceptions of control, success, and emotions, as well as course-specific and overall academic performance for those receiving either AR format, with "high elaborators" showing higher levels on these measures than "low elaborators." The authors discussed the importance of elaborative and attributional processes underlying the effectiveness of the AR treatment and the potential utility of individualized AR techniques in the college classroom.

  19. Modeling of the interface formation during CuO deposition on Al(111) substrate: linking material design and elaboration process parameters through multi-levels approach

    NASA Astrophysics Data System (ADS)

    Guiltat, M.; Salles, N.; Brut, M.; Landa, G.; Richard, N.; Vizzini, S.; Hémeryck, A.

    2017-09-01

    In this paper, we use a multi-levels modeling approach to describe the elaboration of directly integrated energetic materials. The deposition of copper oxide on aluminum substrate is described. Atomic scale calculations are first conducted to identify local mechanisms involved during the growth of CuO on Al(111). These atomic scale data are then used to parameterize a macroscopic code, inspired on a kinetic Monte Carlo methodology dedicated to simulate vapor like deposition process. The objective is to establish the link between the microstructure of materials and the way they are achieved, i.e. the process parameters such as temperature and gas pressure. This work is conducted in the context of the integration of nano-structured energetic thermites used as micro energy source in microelectronic devices. We show that the temperature of the deposition process appears as the driving parameter to tailor the thickness of interfacial layers.

  20. Elaboration and Validation of the Medication Prescription Safety Checklist.

    PubMed

    Pires, Aline de Oliveira Meireles; Ferreira, Maria Beatriz Guimarães; Nascimento, Kleiton Gonçalves do; Felix, Márcia Marques Dos Santos; Pires, Patrícia da Silva; Barbosa, Maria Helena

    2017-08-03

    to elaborate and validate a checklist to identify compliance with the recommendations for the structure of medication prescriptions, based on the Protocol of the Ministry of Health and the Brazilian Health Surveillance Agency. methodological research, conducted through the validation and reliability analysis process, using a sample of 27 electronic prescriptions. the analyses confirmed the content validity and reliability of the tool. The content validity, obtained by expert assessment, was considered satisfactory as it covered items that represent the compliance with the recommendations regarding the structure of the medication prescriptions. The reliability, assessed through interrater agreement, was excellent (ICC=1.00) and showed perfect agreement (K=1.00). the Medication Prescription Safety Checklist showed to be a valid and reliable tool for the group studied. We hope that this study can contribute to the prevention of adverse events, as well as to the improvement of care quality and safety in medication use. elaborar e validar um instrumento tipo checklist para identificar a adesão às recomendações na estrutura das prescrições de medicamentos, a partir do Protocolo do Ministério da Saúde e Agência Nacional de Vigilância Sanitária. pesquisa metodológica, conduzida por meio do processo de validade e análise de confiabilidade, com amostra de 27 prescrições eletrônicas. análises realizadas confirmaram a validade de conteúdo e a confiabilidade da versão do instrumento. A validade de conteúdo, obtida por meio da avaliação de juízes, foi considerada satisfatória por contemplar itens que representam a adesão às recomendações na estrutura das prescrições de medicamentos. A confiabilidade, avaliada por interobservadores, apresentou-se excelente (ICC=1,00) e de concordância perfeita (K=1,00). o instrumento Lista de Verificação de Segurança na Prescrição de Medicamentos demonstrou-se válido e confiável para o grupo estudado. Espera

  1. Reduced Benefit of Memory Elaboration in Older Adults with Subjective Memory Decline.

    PubMed

    Pike, Kerryn E; Zeneli, Amina; Ong, Ben; Price, Sarah; Kinsella, Glynda J

    2015-01-01

    Cognitive interventions for neurodegenerative diseases, such as Alzheimer's disease (AD), are best targeted at the preclinical stages, and subjective memory decline (SMD) without objective memory impairment on standard tests in older adults may represent a very early preclinical stage. Elaborated encoding effectively enhances memory performance for healthy older adults (HOAs), but has not been examined in people with SMD. To examine elaborated encoding in people with SMD, compared with HOAs. Participants were 32 HOAs and 22 people with SMD, defined using the Memory Complaint Questionnaire. Participants completed a verbal paired associate learning (PAL) task with delayed recall under elaborated and non-elaborated encoding conditions, as well as the California Verbal Learning Test-II. On the PAL learning trials, with age controlled, a significant interaction of group X encoding condition emerged, F(1, 51) =  6.47, MSE = 6.54, p = 0.014, ηp² = 0.11. Simple main effects revealed no differences between groups in the non-elaborated condition, but in the elaborated condition HOAs recalled more pairs than SMD, although both groups benefited from elaboration. At delayed recall, HOA recalled more pairs than SMD, F(1, 51) =  4.59, p = 0.037, ηp²= 0.08, and both groups benefited from elaboration, F(1, 52) =  19.25, p <  0.001, ηp² = 0.27. People with SMD benefit from elaborated encoding, although not to the same extent as HOAs. This objective difference in complex learning and memory suggests neural changes in SMD that may represent preclinical AD. Elaborated encoding is a promising technique to help maintain memory and decrease anxiety in this at-risk population.

  2. EDITORIAL: Nanostructured solar cells Nanostructured solar cells

    NASA Astrophysics Data System (ADS)

    Greenham, Neil C.; Grätzel, Michael

    2008-10-01

    Conversion into electrical power of even a small fraction of the solar radiation incident on the Earth's surface has the potential to satisfy the world's energy demands without generating CO2 emissions. Current photovoltaic technology is not yet fulfilling this promise, largely due to the high cost of the electricity produced. Although the challenges of storage and distribution should not be underestimated, a major bottleneck lies in the photovoltaic devices themselves. Improving efficiency is part of the solution, but diminishing returns in that area mean that reducing the manufacturing cost is absolutely vital, whilst still retaining good efficiencies and device lifetimes. Solution-processible materials, e.g. organic molecules, conjugated polymers and semiconductor nanoparticles, offer new routes to the low-cost production of solar cells. The challenge here is that absorbing light in an organic material produces a coulombically bound exciton that requires dissociation at a donor-acceptor heterojunction. A thickness of at least 100 nm is required to absorb the incident light, but excitons only diffuse a few nanometres before decaying. The problem is therefore intrinsically at the nano-scale: we need composite devices with a large area of internal donor-acceptor interface, but where each carrier has a pathway to the respective electrode. Dye-sensitized and bulk heterojunction cells have nanostructures which approach this challenge in different ways, and leading research in this area is described in many of the articles in this special issue. This issue is not restricted to organic or dye-sensitized photovoltaics, since nanotechnology can also play an important role in devices based on more conventional inorganic materials. In these materials, the electronic properties can be controlled, tuned and in some cases completely changed by nanoscale confinement. Also, the techniques of nanoscience are the natural ones for investigating the localized states, particularly at

  3. Periodic nanostructural materials for nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Choi, Dukhyun

    2017-02-01

    Nanoscale periodic material design and fabrication are essentially fundamental requirement for basic scientific researches and industrial applications of nanoscience and engineering. Innovative, effective, reproducible, large-area uniform, tunable and robust nanostructure/material syntheses are still challenging. Here, I would like to introduce the novel periodic nanostructural materials particularly with uniformly ordered nanoporous or nanoflower structures, which are fabricated by simple, cost-effective, and high-throughput wet chemical methods. I also report large-area periodic plasmonic nanostructures based on template-based nanolithography. The surface morphology and optical properties are characterized by SEM and UV-vis. spectroscopy. Furthermore, their enhancement factor is evaluated by using SERS signals.

  4. Mechanical design of DNA nanostructures.

    PubMed

    Castro, Carlos E; Su, Hai-Jun; Marras, Alexander E; Zhou, Lifeng; Johnson, Joshua

    2015-04-14

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.

  5. Electronic Properties of Novel Nanostructures

    NASA Astrophysics Data System (ADS)

    Kuzmany, Hans; Fink, Jörg; Mehring, Michael; Roth, Siegmar

    The 19th Winterschool focused mainly on new nanostructured materials, with data presented on functionalized fullerenes and carbon nanotubes, filled and double-wall nanotubes, non-carbon nanotubes, such as BN and MoS2 tubes, and other nanostructures. The direction of nanoelectronics research was explored in depth, and advancements in composite technology and novel applications for nanotubes were discussed. Importantly, participants were updated on the theoretical and experimental determinations of structural and electronic properties as well as on characterization methods for molecular nanostructures.

  6. Bioscaffolds for metal nanostructures

    NASA Astrophysics Data System (ADS)

    Radloff, Corey J.; Vaia, Richard A.; Brunton, Jason; Ward, Vernon; Kalmakoff, James; Dokland, Terge

    2004-10-01

    The use of virus nanoparticles, specifically Chilo and Wiseana Iridovirus, as core substrates in the fabrication of metallodielectric, plasmonic nanostructures is discussed. A gold shell is assembled around the viral core by attaching small, 2 - 5 nm, gold nanoparticles to the virus surface by means of inherent chemical functionality found within the protein cage structure of the viral capsid. These gold nanoparticles act as nucleation sites for electroless deposition of gold ions from solution. The density of the gold nucleation sites on the virus was maximized by reducing the repulsive forces between the gold particles, which was accompolished by controlling the ionic strength of the nanoparticle solution. UV/Vis spectroscopy and transmission electron microscopy were used to verify creation of the virus-Au particles. The optical extinction spectra of the metallo-viral complex were compared to Mie scattering theory and found to be in quantitative agreement.

  7. Alternative nanostructures for thermophones

    NASA Astrophysics Data System (ADS)

    Mayo, Nathanael; Aliev, Ali; Baughman, Ray

    2015-03-01

    There is a large promise for thermophones in high power sonar arrays, flexible loudspeakers, and noise cancellation devices. So far, freestanding aerogel-like carbon nanotube sheets demonstrate the best performance as a thermoacoustic heat source. However, the limited accessibility of large size freestanding carbon nanotube sheets and other even more exotic materials published recently, hampers the field. We present here new alternative materials for a thermoacoustic heat source with high energy conversion efficiency, additional functionalities, environmentally friendly and cost effective production technologies. We discuss the thermoacoustic performance of alternative nanoscale materials and compare their spectral and power dependencies of sound pressure in air. The study presented here focuses on engineering thermal gradients in the vicinity of nanostructures and subsequent heat dissipation processes from the interior of encapsulated thermoacoustic projectors. Applications of thermoacoustic projectors for high power SONAR arrays, sound cancellation, and optimal thermal design, regarding enhanced energy conversion efficiency, are discussed.

  8. @AuAg nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Rina; Soni, R. K.

    2014-09-01

    Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric-metal-metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core-shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core-shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core-shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core-shell or Al@Al2O3@AgAu alloy. The formation of core-shell and alloy nanostructure was confirmed by UV-visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400-520 nm with increasing ablation time suggesting formation of Ag-Au alloy in the presence of alumina particles in the solution.

  9. Repairable, nanostructured biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Firestone, M.; Brombosz, S.; Grubjesic, S.

    2013-03-01

    Proteins facilitate many key cellular processes, including signal recognition and energy transduction. The ability to harness this evolutionarily-optimized functionality could lead to the development of protein-based systems useful for advancing alternative energy storage and conversion. The future of protein-based, however, requires the development of materials that will stabilize, order and control the activity of the proteins. Recently we have developed a synthetic approach for the preparation of a durable biomimetic chemical hydrogel that can be reversibly swollen in water. The matrix has proven ideal for the stable encapsulation of both water- and membrane-soluble proteins. The material is composed of an aqueous dispersion of a diacrylate end-derivatized PEO-PPO-PEO macromer, a saturated phospholipid and a zwitterionic co-surfactant that self-assembles into a nanostructured physical gel at room temperature as determined by X-ray scattering. The addition of a water soluble PEGDA co-monomer and photoinitator does not alter the self-assembled structure and UV irradiation serves to crosslink the acrylate end groups on the macromer with the PEGDA forming a network within the aqueous domains as determined by FT-IR. More recently we have begun to incorporate reversible crosslinks employing Diels-Alder chemistry, allowing for the extraction and replacement of inactive proteins. The ability to replenish the materials with active, non-denatured forms of protein is an important step in advancing these materials for use in nanostructured devices This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, USDoE under Contract No. DE-AC02-06CH11357.

  10. Peptide nanostructures in biomedical technology.

    PubMed

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  11. Microscopic characterization of peptide nanostructures.

    PubMed

    Mammadov, Rashad; Tekinay, Ayse B; Dana, Aykutlu; Guler, Mustafa O

    2012-02-01

    Peptide-based nanomaterials have been utilized for various applications from regenerative medicine to electronics since they provide several advantages including easy synthesis methods, numerous routes for functionalization and biomimicry of secondary structures of proteins which leads to design of self-assembling peptide molecules to form nanostructures. Microscopic characterization at nanoscale is critical to understand processes directing peptide molecules to self-assemble and identify structure-function relationship of the nanostructures. Here, fundamental studies in microscopic characterization of peptide nanostructures are discussed to provide insights in widely used microscopy tools. In this review, we will encompass characterization studies of peptide nanostructures with modern microscopes, such as TEM, SEM, AFM, and advanced optical microscopy techniques. We will also mention specimen preparation methods and describe interpretation of the images.

  12. TOPICAL REVIEW: Magnetic surface nanostructures

    NASA Astrophysics Data System (ADS)

    Enders, A.; Skomski, R.; Honolka, J.

    2010-11-01

    Recent trends in the emerging field of surface-supported magnetic nanostructures are reviewed. Current strategies for nanostructure synthesis are summarized, followed by a predominantly theoretical description of magnetic phenomena in surface magnetic structures and a review of experimental research in this field. Emphasis is on Fe- or Co-based nanostructures in various low-dimensional geometries, which are studied as model systems to explore the effects of dimensionality, atomic coordination, chemical bonds, alloying and, most importantly, interactions with the supporting substrate on the magnetism. This review also includes a discussion of closely related systems, such as 3d element impurities integrated into organic networks, surface-supported Fe-based molecular magnets, Kondo systems or 4d element nanostructures that exhibit emergent magnetism, thereby bridging the traditional areas of surface science, molecular physics and nanomagnetism.

  13. Nanostructured Materials for Renewable Energy

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose overall objective is to advance the fundamental understanding of novel photoelectronic organic device structures integrated with inorganic nanostructures, while also expanding the general field of nanomaterials for renewable energy devices and systems.

  14. Nanostructure-induced DNA condensation

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Llizo, Axel; Wang, Chen; Xu, Guiying; Yang, Yanlian

    2013-08-01

    The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.

  15. Structural and magnetic properties of cobalt nanostructures on SiO2/Si(1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Bounour-Bouzamouche, W.; Chérif, S. M.; Farhat, S.; Roussigné, Y.; Tallaire, A.; Gicquel, A.; Lungu, C. P.; Guerioune, M.

    2014-11-01

    2D architectures of cobalt onto silicon (1 1 1) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800 °C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750 °C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve.

  16. Picture Superiority in Free Recall: The Effects of Organization and Elaboration.

    ERIC Educational Resources Information Center

    Ritchey, Gary H.

    1980-01-01

    Tests the notion that activation in children's semantic memory might best be considered in terms of both between-item and within-item elaboration. Subjects were 192 second, fourth, and sixth graders. (MP)

  17. Episodic elaboration: Investigating the structure of retrieved past events and imagined future events.

    PubMed

    Anderson, Rachel J; Peters, Lien; Dewhurst, Stephen A

    2015-05-01

    Five experiments investigated the cognitive processes involved in the elaboration of past and future events. A production listing procedure was used, in which participants listed details of each event in forwards chronological order, backwards chronological order, or free order. For both past and future events, forwards and free ordering conditions were reliably faster than backwards order. Production rates between past and future temporal directions did not differ in Experiments 1a, 1b, and 3. However, in Experiment 2, the elaboration of future events was faster than the elaboration of past events. This pattern can be explained by the findings of Experiment 4, in which production rates were faster for likely events than for unlikely events but only in the future condition. Overall, the findings suggest that the elaboration of future, but not past, events, is facilitated when constructed around current goals. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Lateral and medial prefrontal contributions to emotion generation by semantic elaboration during episodic encoding.

    PubMed

    Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi

    2017-02-01

    Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.

  19. CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration (Traditional Chinese Version).

    PubMed

    Cheng, Chung-Wah; Wu, Tai-Xiang; Shang, Hong-Cai; Li, You-Ping; Altman, Douglas G; Moher, David; Bian, Zhao-Xiang

    2017-07-18

    Editors' Note: This article is the traditional Chinese version of the CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration. (Cheng C, Wu T, Shang H, Li, Y, Altman D, Moher D; CONSORT-CHM Formulas 2017 Group. CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration. Ann Intern Med. 2017;167:112-21. [Epub 27 June 2017]. doi:10.7326/M16-2977).

  20. CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration (Simplified Chinese Version).

    PubMed

    Cheng, Chung-Wah; Wu, Tai-Xiang; Shang, Hong-Cai; Li, You-Ping; Altman, Douglas G; Moher, David; Bian, Zhao-Xiang

    2017-07-18

    Editors' Note: This article is the simplified Chinese version of the CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration. (Cheng C, Wu T, Shang H, Li, Y, Altman D, Moher D; CONSORT-CHM Formulas 2017 Group. CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration. Ann Intern Med. 2017;167:112-21. [Epub 27 June 2017]. doi:10.7326/M16-2977).

  1. The seahorse, the almond, and the night-mare: elaborative encoding during sleep-paralysis hallucinations?

    PubMed

    Girard, Todd A

    2013-12-01

    Llewellyn's proposal that rapid eye movement (REM) dreaming reflects elaborative encoding mediated by the hippocampus ("seahorse") offers an interesting perspective for understanding hallucinations accompanying sleep paralysis (SP; "night-mare"). SP arises from anomalous intrusion of REM processes into waking consciousness, including threat-detection systems mediated by the amygdala ("almond"). Unique aspects of SP hallucinations offer additional prospects for investigation of Llewellyn's theory of elaborative encoding.

  2. Training Mothers in Elaborative Reminiscing Enhances Children's Autobiographical Memory and Narrative

    ERIC Educational Resources Information Center

    Reese, Elaine; Newcombe, Rhiannon

    2007-01-01

    This longitudinal intervention assessed children's memory at 2-1/2 years (short-term posttest; N = 115) and their memory and narrative at 3-1/2 years (long-term posttest; N = 100) as a function of maternal training in elaborative reminiscing when children were 1-1/2 to 2-1/2 years. At both posttests, trained mothers were more elaborative in their…

  3. Training Mothers in Elaborative Reminiscing Enhances Children's Autobiographical Memory and Narrative

    ERIC Educational Resources Information Center

    Reese, Elaine; Newcombe, Rhiannon

    2007-01-01

    This longitudinal intervention assessed children's memory at 2-1/2 years (short-term posttest; N = 115) and their memory and narrative at 3-1/2 years (long-term posttest; N = 100) as a function of maternal training in elaborative reminiscing when children were 1-1/2 to 2-1/2 years. At both posttests, trained mothers were more elaborative in their…

  4. Chemically enabled nanostructure fabrication

    NASA Astrophysics Data System (ADS)

    Huo, Fengwei

    The first part of the dissertation explored ways of chemically synthesizing new nanoparticles and biologically guided assembly of nanoparticle building blocks. Chapter two focuses on synthesizing three-layer composite magnetic nanoparticles with a gold shell which can be easily functionalized with other biomolecules. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, while maintaining the magnetic properties of the Fe3O4 inner shell. Chapter three describes a new method for synthesizing nanoparticles asymmetrically functionalized with oligonucleotides and the use of these novel building blocks to create satellite structures. This synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle assembly events. The second part of the thesis explored approaches of nanostructure fabrication on substrates. Chapter four focuses on the development of a new scanning probe contact printing method, polymer pen lithography (PPL), which combines the advantages of muCp and DPN to achieve high-throughput, flexible molecular printing. PPL uses a soft elastomeric tip array, rather than tips mounted on individual cantilevers, to deliver inks to a surface in a "direct write" manner. Arrays with as many as ˜11 million pyramid-shaped pens can be brought into contact with substrates and readily leveled optically in order to insure uniform pattern development. Chapter five describes gel pen lithography, which uses a gel to fabricate pen array. Gel pen lithography is a low-cost, high-throughput nanolithography method especially useful for biomaterials patterning and aqueous solution patterning which makes it a supplement to DPN and PPL. Chapter 6 shows a novel form of optical nanolithography, Beam Pen Lithography (BPL), which uses an array of NSOM pens to do nanoscale optical

  5. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds.

    PubMed

    Mason, Nicholas A; Shultz, Allison J; Burns, Kevin J

    2014-08-07

    The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the 'transfer hypothesis' is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers.

  6. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds

    PubMed Central

    Mason, Nicholas A.; Shultz, Allison J.; Burns, Kevin J.

    2014-01-01

    The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the ‘transfer hypothesis’ is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers. PMID:24943371

  7. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths

    PubMed Central

    Symonds, Matthew RE; Johnson, Tamara L; Elgar, Mark A

    2012-01-01

    The males of some species of moths possess elaborate feathery antennae. It is widely assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically released in minute quantities. Accordingly, females of species in which males have elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce the smallest quantities of pheromone. Alternatively, antennal morphology may be associated with the chemical properties of the pheromone components, with elaborate antennae being associated with pheromones that diffuse more quickly (i.e., have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence more elaborate antennae. We conducted a phylogenetic comparative analysis to test these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing length), which suggests a biological cost that smaller moth species cannot bear. Body size is also positively correlated with pheromone titre and negatively correlated with population abundance (estimated by male abundance). Removing the effects of body size revealed no association between the shape of antennae and either pheromone titre, male abundance, or mean molecular weight of the pheromone components. However, among species with elaborate antennae, longer antennae were typically associated with lower male abundances and pheromone compounds with lower molecular weight, suggesting that male distribution and a more rapidly diffusing female sex pheromone may influence the size but not the general shape of male antennae. PMID:22408739

  8. Towards new functional nanostructures for medical imaging

    SciTech Connect

    Matsuura, Naomi; Rowlands, J. A.

    2008-10-15

    Nanostructures represent a promising new type of contrast agent for clinical medical imaging modalities, including magnetic resonance imaging, x-ray computed tomography, ultrasound, and nuclear imaging. Currently, most nanostructures are simple, single-purpose imaging agents based on spherical constructs (e.g., liposomes, micelles, nanoemulsions, macromolecules, dendrimers, and solid nanoparticle structures). In the next decade, new clinical imaging nanostructures will be designed as multi-functional constructs, to both amplify imaging signals at disease sites and deliver localized therapy. Proposals for nanostructures to fulfill these new functions will be outlined. New functional nanostructures are expected to develop in five main directions: Modular nanostructures with additive functionality; cooperative nanostructures with synergistic functionality; nanostructures activated by their in vivo environment; nanostructures activated by sources outside the patient; and novel, nonspherical nanostructures and components. The development and clinical translation of next-generation nanostructures will be facilitated by a combination of improved clarity of the in vivo imaging and biological challenges and the requirements to successfully overcome them; development of standardized characterization and validation systems tailored for the preclinical assessment of nanostructure agents; and development of streamlined commercialization strategies and pipelines tailored for nanostructure-based agents for their efficient translation to the clinic.

  9. Functionalized nanostructures for enhanced photocatalytic performance under solar light.

    PubMed

    Guo, Liejin; Jing, Dengwei; Liu, Maochang; Chen, Yubin; Shen, Shaohua; Shi, Jinwen; Zhang, Kai

    2014-01-01

    Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology.

  10. Functionalized nanostructures for enhanced photocatalytic performance under solar light

    PubMed Central

    Liu, Maochang; Chen, Yubin; Shen, Shaohua; Shi, Jinwen; Zhang, Kai

    2014-01-01

    Summary Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology. PMID:25161835

  11. Nanostructures in photovoltaics.

    PubMed

    Catchpole, Kylie R

    2006-12-15

    The world has recently been waking up to the urgent need to move away from fossil fuels and towards a low-carbon economy. To achieve this, we need a way of producing electricity that is efficient, widely applicable and cheap. At the same time, there has recently been an appreciation of the tremendous scope for making entirely new types of devices, and even seeing new physics, by structuring matter at the nanoscale. Furthermore, the occurrence of self-assembly in nature suggests that a range of types of nanoscale structures could be made simply and cheaply. The application of nanostructures to photovoltaics combines a field of almost limitless possibilities with a problem of vital urgency. In this paper, some of the newer ideas emerging from this trend are described, along with how they challenge our ideas on what a solar cell looks like. We are at the beginning of a time of radically rethinking the design of the solar cell, which may lead to the exploitation of completely new physical ideas in achieving a sustainable energy future.

  12. Phonon engineering for nanostructures.

    SciTech Connect

    Aubry, Sylvie; Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H.; Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen

    2010-01-01

    Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.

  13. Ultrahard magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Sahota, P. K.; Liu, Y.; Skomski, R.; Manchanda, P.; Zhang, R.; Franchin, M.; Fangohr, H.; Hadjipanayis, G. C.; Kashyap, A.; Sellmyer, D. J.

    2012-04-01

    The performance of hard-magnetic nanostructures is investigated by analyzing the size and geometry dependence of thin-film hysteresis loops. Compared to bulk magnets, weight and volume are much less important, but we find that the energy product remains the main figure of merit down to very small features sizes. However, hysteresis loops are much easier to control on small length scales, as epitomized by Fe-Co-Pt thin films with magnetizations of up to 1.78 T and coercivities of up to 2.52 T. Our numerical and analytical calculations show that the feature size and geometry have a big effect on the hysteresis loop. Layered soft regions, especially if they have a free surface, are more harmful to coercivity and energy product than spherical inclusions. In hard-soft nanocomposites, an additional complication is provided by the physical properties of the hard phases. For a given soft phase, the performance of a hard-soft composite is determined by the parameter (Ms - Mh)/Kh.

  14. Topological crystalline insulator nanostructures.

    PubMed

    Shen, Jie; Cha, Judy J

    2014-11-06

    Topological crystalline insulators are topological insulators whose surface states are protected by the crystalline symmetry, instead of the time reversal symmetry. Similar to the first generation of three-dimensional topological insulators such as Bi₂Se₃ and Bi₂Te₃, topological crystalline insulators also possess surface states with exotic electronic properties such as spin-momentum locking and Dirac dispersion. Experimentally verified topological crystalline insulators to date are SnTe, Pb₁-xSnxSe, and Pb₁-xSnxTe. Because topological protection comes from the crystal symmetry, magnetic impurities or in-plane magnetic fields are not expected to open a gap in the surface states in topological crystalline insulators. Additionally, because they have a cubic structure instead of a layered structure, branched structures or strong coupling with other materials for large proximity effects are possible, which are difficult with layered Bi₂Se₃ and Bi₂Te₃. Thus, additional fundamental phenomena inaccessible in three-dimensional topological insulators can be pursued. In this review, topological crystalline insulator SnTe nanostructures will be discussed. For comparison, experimental results based on SnTe thin films will be covered. Surface state properties of topological crystalline insulators will be discussed briefly.

  15. Ions and carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Gyulai, József; Tapasztó, Levente; Endre Horváth, Zsolt; Nemes-Incze, Péter; Osváth, Zoltán; Péter Biró, László

    2013-06-01

    First experiments on swift ion irradiation of highly oriented pyrolythic graphite led to formation of carbon nanotubes (CNT) at the cascade eruption points. CNT length was in the micron range, which corresponded to an explosive crystallization of the carbon plume with about sound velocity. Multiplicity of CNT walls depended on cascade density: single wall CNTs were formed for approx. 200 MeV Xe ions, while multiwall CNTs for Kr, Ne ions of similar energy. Ion beam created defects were clearly visible on scanning tunneling microscopy (STM) images with atomic resolution. Second part of the paper deals with results of ion irradiation to sensitize CNT-s to reach, e.g. gas sensing properties using mainly changes in electrical conductivity of the bunch of CNTs. A third part of the paper contains some results on irradiated graphene. A new nanolithography technique of graphene used STM as a tool for nanostructuring graphene with crystallographic orientation control and line width of the order of few nanometers. The process enables to produce few nm wide stripes with precise crystallographic orientation.

  16. The nanostructure problem

    SciTech Connect

    Billinge, S.

    2010-03-22

    Diffraction techniques are making progress in tackling the difficult problem of solving the structures of nanoparticles and nanoscale materials. The great gift of x-ray crystallography has made us almost complacent in our ability to locate the three-dimensional coordinates of atoms in a crystal with a precision of around 10{sup -4} nm. However, the powerful methods of crystallography break down for structures in which order only extends over a few nanometers. In fact, as we near the one hundred year mark since the birth of crystallography, we face a resilient frontier in condensed matter physics: our inability to routinely and robustly determine the structure of complex nanostructured and amorphous materials. Knowing the structure and arrangement of atoms in a solid is so fundamental to understanding its properties that the topic routinely occupies the early chapters of every solid-state physics textbook. Yet what has become clear with the emergence of nanotechnology is that diffraction data alone may not be enough to uniquely solve the structure of nanomaterials. As part of a growing effort to incorporate the results of other techniques to constrain x-ray refinements - a method called 'complex modeling' which is a simple but elegant approach for combining information from spectroscopy with diffraction data to solve the structure of several amorphous and nanostructured materials. Crystallography just works, so we rarely question how and why this is so, yet understanding the physics of diffraction can be very helpful as we consider the nanostructure problem. The relationship between the electron density distribution in three dimensions (i.e., the crystal structure) and an x-ray diffraction pattern is well established: the measured intensity distribution in reciprocal space is the square of the Fourier transform of the autocorrelation function <{rho}(r){rho}(r+r')> of the electron density distribution {rho}(r). The fact that we get the autocorrelation function

  17. Elaboration du Ge mesoporeux et etude de ses proprietes physico-chimiques en vue d'applications photovoltaiques

    NASA Astrophysics Data System (ADS)

    Tutashkonko, Sergii

    Le sujet de cette these porte sur l'elaboration du nouveau nanomateriau par la gravure electrochimique bipolaire (BEE) --- le Ge mesoporeux et sur l'analyse de ses proprietes physico-chimiques en vue de son utilisation dans des applications photovoltaiques. La formation du Ge mesoporeux par gravure electrochimique a ete precedemment rapportee dans la litterature. Cependant, le verrou technologique important des procedes de fabrication existants consistait a obtenir des couches epaisses (superieure a 500 nm) du Ge mesoporeux a la morphologie parfaitement controlee. En effet, la caracterisation physico-chimique des couches minces est beaucoup plus compliquee et le nombre de leurs applications possibles est fortement limite. Nous avons developpe un modele electrochimique qui decrit les mecanismes principaux de formation des pores ce qui nous a permis de realiser des structures epaisses du Ge mesoporeux (jusqu'au 10 mum) ayant la porosite ajustable dans une large gamme de 15% a 60%. En plus, la formation des nanostructures poreuses aux morphologies variables et bien controlees est desormais devenue possible. Enfin, la maitrise de tous ces parametres a ouvert la voie extremement prometteuse vers la realisation des structures poreuses a multi-couches a base de Ge pour des nombreuses applications innovantes et multidisciplinaires grace a la flexibilite technologique actuelle atteinte. En particulier, dans le cadre de cette these, les couches du Ge mesoporeux ont ete optimisees dans le but de realiser le procede de transfert de couches minces d'une cellule solaire a triple jonctions via une couche sacrificielle en Ge poreux. Mots-cles : Germanium meso-poreux, Gravure electrochimique bipolaire, Electrochimie des semi-conducteurs, Report des couches minces, Cellule photovoltaique

  18. Nanostructured catalysts for organic transformations.

    PubMed

    Chng, Leng Leng; Erathodiyil, Nandanan; Ying, Jackie Y

    2013-08-20

    The development of green, sustainable and economical chemical processes is one of the major challenges in chemistry. Besides the traditional need for efficient and selective catalytic reactions that will transform raw materials into valuable chemicals, pharmaceuticals and fuels, green chemistry also strives for waste reduction, atomic efficiency and high rates of catalyst recovery. Nanostructured materials are attractive candidates as heterogeneous catalysts for various organic transformations, especially because they meet the goals of green chemistry. Researchers have made significant advances in the synthesis of well-defined nanostructured materials in recent years. Among these are novel approaches that have permitted the rational design and synthesis of highly active and selective nanostructured catalysts by controlling the structure and composition of the active nanoparticles (NPs) and by manipulating the interaction between the catalytically active NP species and their support. The ease of isolation and separation of the heterogeneous catalysts from the desired organic product and the recovery and reuse of these NPs further enhance their attractiveness as green and sustainable catalysts. This Account reviews recent advances in the use of nanostructured materials for catalytic organic transformations. We present a broad overview of nanostructured catalysts used in different types of organic transformations including chemoselective oxidations and reductions, asymmetric hydrogenations, coupling reactions, C-H activations, oxidative aminations, domino and tandem reactions, and more. We focus on recent research efforts towards the development of the following nanostructured materials: (i) nanostructured catalysts with controlled morphologies, (ii) magnetic nanocomposites, (iii) semiconductor-metal nanocomposites, and (iv) hybrid nanostructured catalysts. Selected examples showcase principles of nanoparticle design such as the enhancement of reactivity, selectivity

  19. Carbon nanostructures for orthopedic medical applications.

    PubMed

    Yang, Lei; Zhang, Lijuan; Webster, Thomas J

    2011-09-01

    Carbon nanostructures (including carbon nanofibers, nanostructured diamond, fullerene materials and so forth) possess extraordinary physiochemical, mechanical and electrical properties attractive to bioengineers and medical researchers. In the past decade, numerous developments towards the fabrication and biological studies of carbon nanostructures have provided opportunities to improve orthopedic applications. Therefore, the aim of this article is to provide an up-to-date review on carbon nanostructure advances in orthopedic research. Orthopedic medical device applications of carbon nanotubes/carbon nanofibers and nanostructured diamond (including particulate nanodiamond and nanocrystalline diamond coatings) are emphasized here along with other carbon nanostructures that have promising potential. In addition, widely used fabrication techniques for producing carbon nanostructures in both the laboratory and in industry are briefly introduced. In conclusion, carbon nanostructures have demonstrated tremendous promise for orthopedic medical device applications to date, and although some safety, reliability and durability issues related to the manufacturing and implantation of carbon nanomaterials remain, their future is bright.

  20. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect

    Dr Stephan Bremner

    2010-07-21

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  1. Emotion processing in the aging brain is modulated by semantic elaboration.

    PubMed

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M; Cabeza, Roberto

    2011-03-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs' capacity for controlled elaboration. However, the role of semantic elaboration in mediating valence effects in the aging brain has not yet been explicitly tested. In the present study, YAs and OAs were scanned while they viewed negative, neutral, and positive pictures during either a deep, elaborative task or a shallow, perceptual task. fMRI results reveal that emotion-related activity in the amygdala is preserved in aging and insensitive to elaboration demands. This study provides novel evidence that differences in valence processing are modulated by elaboration: relative to YAs, OAs show enhanced activity in the medial prefrontal cortex (PFC) and ventrolateral PFC in response to positive versus negative stimuli, but only during elaborative processing. These positive valence effects are predicted by individual differences in executive function in OAs for the deep but not shallow task. Finally, psychophysiological interaction analyses reveal age effects on valence-dependent functional connectivity between medial PFC and ventral striatum, as well as age and task effects on medial PFC-retrosplenial cortex interactions. Altogether, these findings provide support for the hypothesis that valence shifts in the aging brain are mediated by controlled processes such as semantic elaboration, self-referential processing, and emotion regulation.

  2. DNA microarrays on silicon nanostructures: optimization of the multilayer stack for fluorescence detection.

    PubMed

    Oillic, C; Mur, P; Blanquet, E; Delapierre, G; Vinet, F; Billon, T

    2007-04-15

    To improve the sensitivity of fluorescence detection in DNA microarrays, the use of silicon nanostructures based on chemical vapor deposition (CVD) processes adopted for the growth of rough polycrystalline silicon was investigated. These substrates present advantages of two main properties which could lead to an enhancement of the fluorescence detection, i.e. (i) the increase of the available surface area in order to achieve a high loading capacity of biomolecules and (ii) the optimization of the stack of silicon nanostructures support. Indeed, the structures were elaborated on an initial thermal oxide layer and then covered with a silicon oxide layer, obtained by oxidation and allowing the functionalization for the subsequent grafting of DNA probes. Moreover, these oxide layers play a part in the fluorescence detection. The influence of the silicon oxide layer thickness above and below the silicon grains in close relation with the density of nanostructures on the emitted fluorescence was emphasized. This paper presents an experimental characterization of the fluorescence intensity and the optimization of the different layers that composed the substrate used for DNA microarrays. The performances of the microarrays were investigated by means of hybridization experiments using complementary fluorescent labeled-oligonucleotides targets. Our results indicate that an optimized substrate can be designed and that the use of oxidized silicon nanostructures for support of biochip could be a strategy for improving the sensitivity of fluorescence detection.

  3. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  4. Nanostructured materials in electroanalysis of pharmaceuticals.

    PubMed

    Rahi, A; Karimian, K; Heli, H

    2016-03-15

    Basic strategies and recent developments for the enhancement of the sensory performance of nanostructures in the electroanalysis of pharmaceuticals are reviewed. A discussion of the properties of nanostructures and their application as modified electrodes for drug assays is presented. The electrocatalytic effect of nanostructured materials and their application in determining low levels of drugs in pharmaceutical forms and biofluids are discussed.

  5. Semiconductor nanostructure-based photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Genqiang; Finefrock, Scott; Liang, Daxin; Yadav, Gautam G.; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2011-06-01

    Substantial efforts have been devoted to design, synthesize, and integrate various semiconductor nanostructures for photovoltaic (PV) solar cells. In this article, we will review the recent progress in this exciting area and cover the material chemistry and physics related to all-inorganic nanostructure solar cells, hybrid inorganic nanostructure-conductive polymer composite solar cells, and dye-sensitized solar cells.

  6. Semiconductor nanostructure-based photovoltaic solar cells.

    PubMed

    Zhang, Genqiang; Finefrock, Scott; Liang, Daxin; Yadav, Gautam G; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2011-06-01

    Substantial efforts have been devoted to design, synthesize, and integrate various semiconductor nanostructures for photovoltaic (PV) solar cells. In this article, we will review the recent progress in this exciting area and cover the material chemistry and physics related to all-inorganic nanostructure solar cells, hybrid inorganic nanostructure-conductive polymer composite solar cells, and dye-sensitized solar cells.

  7. Zinc stannate nanostructures: hydrothermal synthesis

    PubMed Central

    Baruah, Sunandan; Dutta, Joydeep

    2011-01-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature. PMID:27877377

  8. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  9. Interfacing nanostructures to biological cells

    DOEpatents

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  10. Vortex ice in nanostructured superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, Andras J

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  11. Nanostructured Substrates for Optical Sensing

    PubMed Central

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates. PMID:22174955

  12. Maternal Elaborative Reminiscing Mediates the Effect of Child Maltreatment on Behavioral and Physiological Functioning

    PubMed Central

    Valentino, Kristin; Hibel, Leah C; Cummings, E. Mark; Nuttall, Amy K.; Comas, Michelle; McDonnell, Christina G.

    2016-01-01

    Theoretical and empirical evidence suggest that the way in which parents discuss everyday emotional experiences with their young children (i.e., elaborative reminiscing) has significant implications for child cognitive and socio-emotional functioning, and that maltreating parents have a particularly difficult time in engaging in this type of dialogue. This dyadic interactional exchange, therefore, has the potential to be an important process variable linking child maltreatment to developmental outcomes at multiple levels of analysis. The current investigation evaluated the role of maternal elaborative reminiscing in associations between maltreatment and child cognitive, emotional, and physiological functioning. Participants included 43 maltreated and 49 nonmaltreated children (aged 3–6) and their mothers. Dyads participated in a joint reminiscing task about four past emotional events, and children participated in assessments of receptive language and emotion knowledge. Child salivary cortisol was also collected from children three times a day (waking, midday, and bedtime) on two consecutive days to assess daily levels and diurnal decline. Results indicated that maltreating mothers engaged in significantly less elaborative reminiscing than nonmaltreating mothers. Maternal elaborative reminiscing mediated associations between child maltreatment and child receptive language and child emotion knowledge. Additionally, there was support for an indirect pathway between child maltreatment and child cortisol diurnal decline through maternal elaborative reminiscing. Directions for future research are discussed and potential clinical implications are addressed. PMID:26535941

  13. Elaboration of the contextual factors of the ICF for Occupational Health Care.

    PubMed

    Heerkens, Yvonne F; de Brouwer, Carin P M; Engels, Josephine A; van der Gulden, Joost W J; Kant, IJmert

    2017-01-01

    Many work-related items are not included in the current classification of environmental factors from the International Classification of Functioning, Disability and Health (ICF). Furthermore, personal factors are not classified and the ICF only provides a very limited list of examples. These facts make the ICF less useful for occupational health care and for research in the field of occupation and health. The objective of this discussion paper is to introduce an elaboration of contextual factors, focussing on factors that influence work participation. During the last 12 years, we developed two concept lists from the bottom up. These lists are based on our experiences in teaching and research, suggestions from students and other researchers, and factors found in the literature. In the fall of 2015 a scoping literature review was done to check for missing factors in these two concept lists. An elaboration of contextual factors, consisting of a list of work-related environmental factors and a list of personal factors. Important contextual factors that influence work participation are identified. Researchers, teachers, students, occupational and insurance physicians, allied health care professionals, employers, employees, and policy makers are invited to use the elaboration and to make suggestions for improvement. The elaboration and the suggestions received can be used in the ICF revision process. The development of an ICF ontology must be given priority, to give room to this elaboration, which will increase the applicability of the ICF and enable mapping with other terminologies and classifications.

  14. Hydrothermal growth of ZnO nanostructures

    PubMed Central

    Baruah, Sunandan; Dutta, Joydeep

    2009-01-01

    One-dimensional nanostructures exhibit interesting electronic and optical properties due to their low dimensionality leading to quantum confinement effects. ZnO has received lot of attention as a nanostructured material because of unique properties rendering it suitable for various applications. Amongst the different methods of synthesis of ZnO nanostructures, the hydrothermal method is attractive for its simplicity and environment friendly conditions. This review summarizes the conditions leading to the growth of different ZnO nanostructures using hydrothermal technique. Doping of ZnO nanostructures through hydrothermal method are also highlighted. PMID:27877250

  15. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  16. Elaborated contextual framing is necessary for action-based attitude acquisition.

    PubMed

    Laham, Simon M; Kashima, Yoshihisa; Dix, Jennifer; Wheeler, Melissa; Levis, Bianca

    2014-01-01

    Although arm flexion and extension have been implicated as conditioners of attitudes, recent work casts some doubt on the nature and strength of the coupling of these muscle contractions and stimulus evaluation. We propose that the elaborated contextual framing of flexion and extension actions is necessary for attitude acquisition. Results showed that when flexion and extension were disambiguated via elaborated contextual cues (i.e., framed as collect and discard within a foraging context), neutral stimuli processed under flexion were liked more than neutral stimuli processed under extension. However, when unelaborated framing was used (e.g., mere stimulus zooming effects), stimulus evaluation did not differ as a function of muscle contractions. These results suggest that neither arm contractions per se nor unelaborated framings are sufficient for action-based attitude acquisition, but that elaborated framings are necessary.

  17. Toward an episodic context account of retrieval-based learning: dissociating retrieval practice and elaboration.

    PubMed

    Lehman, Melissa; Smith, Megan A; Karpicke, Jeffrey D

    2014-11-01

    We tested the predictions of 2 explanations for retrieval-based learning; while the elaborative retrieval hypothesis assumes that the retrieval of studied information promotes the generation of semantically related information, which aids in later retrieval (Carpenter, 2009), the episodic context account proposed by Karpicke, Lehman, and Aue (in press) assumes that retrieval alters the representation of episodic context and improves one's ability to guide memory search on future tests. Subjects studied multiple word lists and either recalled each list (retrieval practice), did a math task (control), or generated associates for each word (elaboration) after each list. After studying the last list, all subjects recalled the list and, after a 5-min delay, recalled all lists. Analyses of correct recall, intrusions, response times, and temporal clustering dissociate retrieval practice from elaboration, supporting the episodic context account. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. The Elaborated Intrusion Theory of desire: a 10-year retrospective and implications for addiction treatments.

    PubMed

    May, Jon; Kavanagh, David J; Andrade, Jackie

    2015-05-01

    Ten years after the publication of Elaborated Intrusion (EI) Theory, there is now substantial research into its key predictions. The distinction between intrusive thoughts, which are driven by automatic processes, and their elaboration, involving controlled processing, is well established. Desires for both addictive substances and other desired targets are typically marked by imagery, especially when they are intense. Attention training strategies such as body scanning reduce intrusive thoughts, while concurrent tasks that introduce competing sensory information interfere with elaboration, especially if they compete for the same limited-capacity working memory resources. EI Theory has spawned new assessment instruments that are performing strongly and offer the ability to more clearly delineate craving from correlated processes. It has also inspired new approaches to treatment. In particular, training people to use vivid sensory imagery for functional goals holds promise as an intervention for substance misuse, since it is likely to both sustain motivation and moderate craving. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Conductance fluctuations in nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Ningjia

    1997-12-01

    In this Ph.D thesis the conductance fluctuations of different physical origins in semi-conductor nanostructures were studied using both diagrammatic analytical methods and large scale numerical techniques. In the "mixed" transport regime where both mesoscopic and ballistic features play a role, for the first time I have analytically calculated the non-universal conductance fluctuations. This mixed regime is reached when impurities are distributed near the walls of a quantum wire, leaving the center region ballistic. I have discovered that the existence of a ballistic region destroys the universal conductance fluctuations. The crossover behavior of the fluctuation amplitude from the usual quasi-1D situation to that of the mixed regime is clearly revealed, and the role of various length scales are identified. My analytical predictions were confirmed by a direct numerical simulation by evaluating the Landauer formula. In another direction, I have made several studies of conductance or resistance oscillations and fluctuations in systems with artificial impurities in the ballistic regime. My calculation gave explanations of all the experimental results concerning the classical focusing peaks of the resistance versus magnetic field, the weak localization peak in a Sinai billiard system, the formation of a chaotic billiard, and predicted certain transport features which were indeed found experimentally. I have further extended the calculation to study the Hall resistance in a four-terminal quantum dot in which there is an antidot array. From my numerical data I analyzed the classical paths of electron motion and its quantum oscillations. The results compare well with recent experimental studies on similar systems. Since these billiard systems could provide quantum chaotic dynamics, I have made a detailed study of the consequence of such dynamics. In particular I have investigated the resonant transmission of electrons in these chaotic systems, and found that the level

  20. Magnetostatic interactions between wire-tube nanostructures

    NASA Astrophysics Data System (ADS)

    Salazar-Aravena, D.; Palma, J. L.; Escrig, J.

    2015-05-01

    We have investigated the magnetostatic interactions between wire-tube nanostructures. We have observed that the coercivity of the array decreases when the distance between the nanostructures decreases. Besides, when the external magnetic field is applied along the axis of the nanostructures, the two Barkhausen jumps observed for an isolated wire-tube nanostructure give rise to several minor jumps for a weakly interacting array, which eventually become a single jump for the most interacting case. Additionally, the angle θ at which maximum coercivity is obtained varies as a function of the center-to-center distance between the nanostructures, while those remanences obtained for arrays with different distances between the nanostructures coincide. In this way, the study of magnetostatic interactions between wire-tube nanostructures is an interesting topic of research in connection with potential applications where it is usually desirable to avoid such interactions or at least control them.

  1. Controlled placement and orientation of nanostructures

    DOEpatents

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  2. Synthesis of Gold Nanoparticle-Embedded Silver Cubic Mesh Nanostructures Using AgCl Nanocubes for Plasmonic Photocatalysis.

    PubMed

    Joo, Jang Ho; Kim, Byung-Ho; Lee, Jae-Seung

    2017-09-13

    A novel room-temperature aqueous synthesis for gold nanoparticle-embedded silver cubic mesh nanostructures using AgCl templates via a template-assisted coreduction method is developed. The cubic AgCl templates are coreduced in the presence of AuCl4(-) and Ag(+) , resulting in the reduction of AuCl4(-) into gold nanoparticles on the outer region of AgCl templates, followed by the reduction of AgCl and Ag(+) into silver cubic mesh nanostructures. Removal of the template clearly demonstrates the delicately designed silver mesh nanostructures embedded with gold nanoparticles. The synthetic mechanism, structural properties, and surface functionalization are spectroscopically investigated. The plasmonic photocatalysis of the cubic mesh nanostructures for the degradation of organic pollutants and removal of highly toxic metal ions is investigated; the photocatalytic activity of the cubic mesh nanostructures is superior to those of conventional TiO2 catalysts and they are catalytically functional even in natural water, owing to their high surface area and excellent chemical stability. The synthetic development presented in this study can be exploited for the highly elaborate, yet, facile design of nanomaterials with outstanding properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A transparent nanostructured optical biosensor.

    PubMed

    He, Yuan; Li, Xiang; Que, Long

    2014-05-01

    Herein we report a new transparent nanostructured Fabry-Perot interferometer (FPI) device. The unique features of the nanostructured optical device can be summarized as the following: (i) optically transparent nanostructured optical device; (ii) simple and inexpensive for fabrication; (iii) easy to be fabricated and scaled up as an arrayed format. These features overcome the existing barriers for the current nanopore-based interferometric optical biosensors by measuring the transmitted optical signals rather than the reflected optical signals, thereby facilitating the optical testing significantly for the arrayed biosensors and thus paving the way for their potential for high throughput biodetection applications. The optically transparent nanostructures (i.e., anodic aluminum oxide nanopores) inside the FPI devices are fabricated from 2.2 microm thick lithographically patterned Al thin film on an indium tin oxide (ITO) glass substrate using a two-step anodization process. Utilizing the binding between Protein A and porcine immunoglobulin G (IgG) as a model, the detection of the bioreaction between biomolecules has been demonstrated successfully. Experiments found that the lowest detection concentration of proteins is in the range of picomolar level using current devices, which can be easily tuned into the range of femtomolar level by optimizing the performance of devices.

  4. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  5. Dynamics of Nanostructures at Surfaces

    SciTech Connect

    Schmid, Andreas K.

    2001-02-28

    Currently, much effort is being devoted to the goal of achieving useful nanotechnologies, which depend on the ability to control and manipulate things on a very small scale. One promising approach to the construction of nanostructures is 'self-assembly', which means that under suitable conditions desired nanostructures might form automatically due to physical and chemical forces. Remarkably, the forces controlling such self-assembly mechanisms are only poorly understood, even though highly successful examples of self-assembly are known in nature (e.g., complex biochemical machinery regularly self-assembles in the conditions inside living cells). This talk will highlight basic measurements of fundamental forces governing the dynamics of nanostructures at prototypical metal surfaces. We use advanced surface microscopy techniques to track the motions of very small structures in real time and up to atomic resolution. One classic example of self-organized nanostructures are networks of surface dislocations (linear crystal defects). The direct observation of thermally activated atomic motions of dislocations in a reconstructed gold surface allows us to measure the forces stabilizing the remarkable long-range order of this nanostructure. In another example, the rapid migration of nano-scale tin crystals deposited on a pure copper surface was traced to an atomic repulsion between tin atoms absorbed on the crystal surface and bronze alloy formed in the footprint of the tin crystals. It is intriguing to consider the clusters as simple chemo-mechanical energy transducers, essentially tiny linear motors built of 100,000 Sn atoms. We can support this view by providing estimates of the power and energy-efficiency of these nano-motors.

  6. Plasmonic Nanostructures for Biosensor Applications

    NASA Astrophysics Data System (ADS)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  7. Fabrication of zein nanostructure

    NASA Astrophysics Data System (ADS)

    Luecha, Jarupat

    resins. The soft lithography technique was mainly used to fabricate micro and nanostructures on zein films. Zein material well-replicated small structures with the smallest size at sub micrometer scale that resulted in interesting photonic properties. The bonding method was also developed for assembling portable zein microfluidic devices with small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design with no leakage. Aside from the fabrication technique development, several potential applications of this environmentally friendly microfluidic device were investigated. The concentration gradient manipulation of Rhodamine B solution in zein-glass microfluidic devices was demonstrated. The diffusion of small molecules such as fluorescent dye into the wall of the zein microfluidic channels was observed. However, with this formulation, zein microfluidic devices were not suitable for cell culture applications. This pioneer study covered a wide spectrum of the implementation of the two nanotechnology approaches to advance zein biomaterial which provided proof of fundamental concepts as well as presenting some limitations. The findings in this study can lead to several innovative research opportunities of advanced zein biomaterials with broad applications. The information from the study of zein nanocomposite structure allows the packaging industry to develop the low cost biodegradable materials with physical property improvement. The information from the study of the zein microfluidic devices allows agro-industry to develop the nanotechnology-enabled microfluidic sensors fabricated entirely from biodegradable polymer for on-site disease or contaminant detection in the fields of food and agriculture.

  8. [Effect of paradoxical sleep deprivation on elaboration and differentiation of alimentary conditioned reflexes].

    PubMed

    Koridze, M G; Nemsadze, N D

    1980-01-01

    Paradoxical sleep deprivation of cats by means of awakening them without any significant emotional stress does not affect the acquisition of sound discrimination. Paradoxical sleep deprivation by Jouvet's method producing emotional stress impairs the acquisition of sound discrimination. However, it fails to affect the reproduction of preliminary elaborated sound discrimination.

  9. Autobiographical Elaboration Reduces Memory Distortion: Cognitive Operations and the Distinctiveness Heuristic

    ERIC Educational Resources Information Center

    McDonough, Ian M.; Gallo, David A.

    2008-01-01

    Retrieval monitoring enhances episodic memory accuracy. For instance, false recognition is reduced when participants base their decisions on more distinctive recollections, a retrieval monitoring process called the distinctiveness heuristic. The experiments reported here tested the hypothesis that autobiographical elaboration during study (i.e.,…

  10. Illustrating Story Plans: Does a Mnemonic Strategy Including Art Media Render More Elaborate Text?

    ERIC Educational Resources Information Center

    Dunn, Michael W.

    2012-01-01

    Students who have difficulty with academics often benefit from learning mnemonic strategies which provide a step-by-step process to accomplish a task. Three fourth-grade students who struggled with writing learned the Ask, Reflect, Text (ART) strategy to help them produce more elaborate narrative story text. After initially asking the questions…

  11. Simulations with Elaborated Worked Example Modeling: Beneficial Effects on Schema Acquisition

    ERIC Educational Resources Information Center

    Meier, Debra K.; Reinhard, Karl J.; Carter, David O.; Brooks, David W.

    2008-01-01

    Worked examples have been effective in enhancing learning outcomes, especially with novice learners. Most of this research has been conducted in laboratory settings. This study examined the impact of embedding elaborated worked example modeling in a computer simulation practice activity on learning achievement among 39 undergraduate students…

  12. Age Differences in Processing: Assessments of Depth Elaboration and Encoding-Retrieval Compatibility with Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Anooshian, Linda J.; Samuelson, Julie A.

    1986-01-01

    Young, middle-age, and old adults ranked similarities of word pairs in a conditional rank-ordering task. Analyses of variance revealed an age-related decline in semantic processing but no such decline for elaboration. Older adults' retrieval was less compatible with initial processing than was the case for younger adults. (Author/ABB)

  13. Collaborative Argumentation and Cognitive Elaboration in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Stegmann, Karsten; Wecker, Christof; Weinberger, Armin; Fischer, Frank

    2012-01-01

    This study explores the relation between argumentation in online discussions, cognitive elaboration, and individual knowledge acquisition. In a one-factorial experimental design with 48 participants we investigated the effect of an argumentative computer-supported collaboration script (with vs. without) on the formal quality of argumentation,…

  14. Effects of Semantic Elaboration and Typicality on Picture Naming in Alzheimer Disease

    ERIC Educational Resources Information Center

    Morelli, Claudia A.; Altmann, Lori J. P.; Kendall, Diane; Fischler, Ira; Heilman, Kennneth M.

    2011-01-01

    Purpose: Individuals with probable Alzheimer disease (pAD) are frequently impaired at picture naming. This study examined whether a semantic elaboration task would facilitate naming in pAD, and whether training either semantically typical or atypical stimulus items facilitated generalized improvement in picture naming and category generation…

  15. Erotic Education: Elaborating a Feminist and Faith-Based Pedagogy for Experiential Learning in Religious Studies

    ERIC Educational Resources Information Center

    Carbine, Rosemary P.

    2010-01-01

    This essay explores intersections among Jesuit, Quaker, and feminist theologies and pedagogies of social justice education in order to propose and elaborate an innovative theoretical and theological framework for experiential learning in religious studies that prioritizes relationality, called erotic education. This essay then applies the…

  16. Intentionality as Measured in the Persistence and Elaboration of Communication by Chimpanzees (Pan troglodytes)

    ERIC Educational Resources Information Center

    Leavens, David A.; Russell, Jamie L.; Hopkins, William D.

    2005-01-01

    In human infancy, 2 criteria for intentional communication are (a) persistence in and (b) elaboration of communication when initial attempts to communicate fail. Twenty-nine chimpanzees (Pan troglodytes) were presented with both desirable (a banana) and undesirable food (commercial primate chow). Three conditions were administered: (a) the banana…

  17. Development and Validation of Two Scales to Measure Elaboration and Behaviors Associated with Stewardship in Children

    ERIC Educational Resources Information Center

    Vezeau, Susan Lynn; Powell, Robert B.; Stern, Marc J.; Moore, D. DeWayne; Wright, Brett A.

    2017-01-01

    This investigation examines the development of two scales that measure elaboration and behaviors associated with stewardship in children. The scales were developed using confirmatory factor analysis to investigate their construct validity, reliability, and psychometric properties. Results suggest that a second-order factor model structure provides…

  18. Stratification, Elaboration and Formalisation of Design Documents: Effects on the Production of Instructional Materials

    ERIC Educational Resources Information Center

    Boot, Eddy W.; Nelson, Jon; van Merrienboer, Jeroen J. G.; Gibbons, Andrew S.

    2007-01-01

    Designers and producers of instructional materials lack a common design language. As a result, producers have difficulties translating design documents into technical specifications. The 3D-model is introduced to improve the stratification, elaboration and formalisation of design documents. It is hypothesised that producers working with improved…

  19. Source and Message Factors in Persuasion: A Reply to Stiff's Critique of the Elaboration Likelihood Model.

    ERIC Educational Resources Information Center

    Petty, Richard E.; And Others

    1987-01-01

    Answers James Stiff's criticism of the Elaboration Likelihood Model (ELM) of persuasion. Corrects certain misperceptions of the ELM and criticizes Stiff's meta-analysis that compares ELM predictions with those derived from Kahneman's elastic capacity model. Argues that Stiff's presentation of the ELM and the conclusions he draws based on the data…

  20. An Elaboration on the Effect of Reading Anxiety on Reading Achievement

    ERIC Educational Resources Information Center

    Mohammadpur, Bijan; Ghafournia, Narjes

    2015-01-01

    The present study was an elaboration on the effect of foreign language anxiety on reading comprehension achievement of Iranian EFL learners. The participants comprised 100 BA students, doing General English Course in different academic fields at Islamic University of Neyshabur. The participants took a reading proficiency test of TOEFL and answered…

  1. E(Lab)orating Performance: Transnationalism and Blended Learning in the Theatre Classroom

    ERIC Educational Resources Information Center

    Cloete, Nicola; Dinesh, Nandita; Hazou, Rand T.; Matchett, Sara

    2015-01-01

    "E(Lab)orating Performance" is a transnational collaborative teaching and learning project involving Massey University (New Zealand), University of Cape Town (South Africa), UWC Mahindra College (India), and University of the Witwatersrand (South Africa). The project was devised to facilitate creative engagements between students and…

  2. Discourse, Complexity, Normativity: Tracing the Elaboration of Foucault's Materialist Concept of Discourse

    ERIC Educational Resources Information Center

    Olssen, Mark

    2014-01-01

    In this article, I want to suggest that it is through the elaboration of the concept of discourse that the differences between Foucault and thinkers like Habermas, Hegel and Marx can best be understood. Foucault progressively develops a conception of discourse as a purely historical category that resists all reference to transcendental principles…

  3. Evaluation of Smoking Prevention Television Messages Based on the Elaboration Likelihood Model

    ERIC Educational Resources Information Center

    Flynn, Brian S.; Worden, John K.; Bunn, Janice Yanushka; Connolly, Scott W.; Dorwaldt, Anne L.

    2011-01-01

    Progress in reducing youth smoking may depend on developing improved methods to communicate with higher risk youth. This study explored the potential of smoking prevention messages based on the Elaboration Likelihood Model (ELM) to address these needs. Structured evaluations of 12 smoking prevention messages based on three strategies derived from…

  4. Using Theory Elaboration and Activity Theory for Building a Knowledge Management Apparatus.

    ERIC Educational Resources Information Center

    Cortez, Edwin M.; Kazlauskas, Edward J.

    2000-01-01

    Reports ongoing developmental research at the Department of Agriculture to build a high-performance knowledge base for four agencies within the Department. Describes data gathering for the information system; planning to support knowledge management practices; theory elaboration through qualitative case analysis; and use of an activity theory…

  5. Toward an Episodic Context Account of Retrieval-Based Learning: Dissociating Retrieval Practice and Elaboration

    ERIC Educational Resources Information Center

    Lehman, Melissa; Smith, Megan A.; Karpicke, Jeffrey D.

    2014-01-01

    We tested the predictions of 2 explanations for retrieval-based learning; while the elaborative retrieval hypothesis assumes that the retrieval of studied information promotes the generation of semantically related information, which aids in later retrieval (Carpenter, 2009), the episodic context account proposed by Karpicke, Lehman, and Aue (in…

  6. Enhancing Learning Outcomes in Computer-Based Training via Self-Generated Elaboration

    ERIC Educational Resources Information Center

    Cuevas, Haydee M.; Fiore, Stephen M.

    2014-01-01

    The present study investigated the utility of an instructional strategy known as the "query method" for enhancing learning outcomes in computer-based training. The query method involves an embedded guided, sentence generation task requiring elaboration of key concepts in the training material that encourages learners to "stop and…

  7. Discourse, Complexity, Normativity: Tracing the Elaboration of Foucault's Materialist Concept of Discourse

    ERIC Educational Resources Information Center

    Olssen, Mark

    2014-01-01

    In this article, I want to suggest that it is through the elaboration of the concept of discourse that the differences between Foucault and thinkers like Habermas, Hegel and Marx can best be understood. Foucault progressively develops a conception of discourse as a purely historical category that resists all reference to transcendental principles…

  8. Enhancing Student Explanations of Evolution: Comparing Elaborating and Competing Theory Prompts

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Namdar, Bahadir; Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.

    2016-01-01

    In this study, we explore how two different prompt types within an online computer-based inquiry learning environment enhance 392 7th grade students' explanations of evolution with three teachers. In the "elaborating" prompt condition, students are prompted to write explanations that support the accepted theory of evolution. In the…

  9. Enhancing Learning Outcomes in Computer-Based Training via Self-Generated Elaboration

    ERIC Educational Resources Information Center

    Cuevas, Haydee M.; Fiore, Stephen M.

    2014-01-01

    The present study investigated the utility of an instructional strategy known as the "query method" for enhancing learning outcomes in computer-based training. The query method involves an embedded guided, sentence generation task requiring elaboration of key concepts in the training material that encourages learners to "stop and…

  10. Relevant Prior Knowledge Moderates the Effect of Elaboration during Small Group Discussion on Academic Achievement

    ERIC Educational Resources Information Center

    Van Blankenstein, Floris M.; Dolmans, Diana H. J. M.; Van der Vleuten, Cees P. M.; Schmidt, Henk G.

    2013-01-01

    This study set out to test whether relevant prior knowledge would moderate a positive effect on academic achievement of elaboration during small-group discussion. In a 2 × 2 experimental design, 66 undergraduate students observed a video showing a small-group problem-based discussion about thunder and lightning. In the video, a teacher asked…

  11. Physiological control of elaborate male courtship: Female choice for neuromuscular systems

    PubMed Central

    Fusani, Leonida; Barske, Julia; Day, Lainy D.; Fuxjager, Matthew J.; Schlinger, Barney A.

    2015-01-01

    Males of many animal species perform specialized courtship behaviours to gain copulations with females. Identifying physiological and anatomical specializations underlying performance of these behaviours helps clarify mechanisms through which sexual selection promotes the evolution of elaborate courtship. Our knowledge about neuromuscular specializations that support elaborate displays is limited to a few model species. In this review, we focus on the physiological control of the courtship of a tropical bird, the golden-collared manakin, which has been the focus of our research for nearly 20 years. Male manakins perform physically elaborate courtship displays that are quick, accurate and powerful. Females seem to choose males based on their motor skills suggesting that neuromuscular specializations possessed by these males are driven by female choice. Male courtship is activated by androgens and androgen receptors are expressed in qualitatively and quantitatively unconventional ways in manakin brain, spinal cord and skeletal muscles. We propose that in some species, females select males based on their neuromuscular capabilities and acquired skills and that elaborate steroid-dependent courtship displays evolve to signal these traits. PMID:25086380

  12. Physiological control of elaborate male courtship: female choice for neuromuscular systems.

    PubMed

    Fusani, Leonida; Barske, Julia; Day, Lainy D; Fuxjager, Matthew J; Schlinger, Barney A

    2014-10-01

    Males of many animal species perform specialized courtship behaviours to gain copulations with females. Identifying physiological and anatomical specializations underlying performance of these behaviours helps clarify mechanisms through which sexual selection promotes the evolution of elaborate courtship. Our knowledge about neuromuscular specializations that support elaborate displays is limited to a few model species. In this review, we focus on the physiological control of the courtship of a tropical bird, the golden-collared manakin, which has been the focus of our research for nearly 20 years. Male manakins perform physically elaborate courtship displays that are quick, accurate and powerful. Females seem to choose males based on their motor skills suggesting that neuromuscular specializations possessed by these males are driven by female choice. Male courtship is activated by androgens and androgen receptors are expressed in qualitatively and quantitatively unconventional ways in manakin brain, spinal cord and skeletal muscles. We propose that in some species, females select males based on their neuromuscular capabilities and acquired skills and that elaborate steroid-dependent courtship displays evolve to signal these traits.

  13. Source and Message Factors in Persuasion: A Reply to Stiff's Critique of the Elaboration Likelihood Model.

    ERIC Educational Resources Information Center

    Petty, Richard E.; And Others

    1987-01-01

    Answers James Stiff's criticism of the Elaboration Likelihood Model (ELM) of persuasion. Corrects certain misperceptions of the ELM and criticizes Stiff's meta-analysis that compares ELM predictions with those derived from Kahneman's elastic capacity model. Argues that Stiff's presentation of the ELM and the conclusions he draws based on the data…

  14. Other People's Students Elaborated Codes and Dialect in Basic Writing

    ERIC Educational Resources Information Center

    Evans, Jason Cory

    2012-01-01

    English teachers, especially those in the field of basic writing, have long debated how to teach writing to students whose home language differs from the perceived norm. This thesis intervenes in that stalemated debate by re-examining "elaborated codes" and by arguing for a type of correctness in writing that includes being correct…

  15. Modified Response Elaboration Training: Application to Procedural Discourse and Personal Recounts

    ERIC Educational Resources Information Center

    Wambaugh, Julie L.; Nessler, Christina; Wright, Sandra

    2013-01-01

    Purpose: This investigation was designed to examine the effects of a modification of response elaboration training (RET; Kearns, 1985) with speakers with mild to mild-moderate aphasia. The modification entailed application of RET to procedural discourse and personal recounts rather than to narrative discourse. Method: Three participants with…

  16. Autobiographical Elaboration Reduces Memory Distortion: Cognitive Operations and the Distinctiveness Heuristic

    ERIC Educational Resources Information Center

    McDonough, Ian M.; Gallo, David A.

    2008-01-01

    Retrieval monitoring enhances episodic memory accuracy. For instance, false recognition is reduced when participants base their decisions on more distinctive recollections, a retrieval monitoring process called the distinctiveness heuristic. The experiments reported here tested the hypothesis that autobiographical elaboration during study (i.e.,…

  17. Effects of Semantic Elaboration and Typicality on Picture Naming in Alzheimer Disease

    ERIC Educational Resources Information Center

    Morelli, Claudia A.; Altmann, Lori J. P.; Kendall, Diane; Fischler, Ira; Heilman, Kennneth M.

    2011-01-01

    Purpose: Individuals with probable Alzheimer disease (pAD) are frequently impaired at picture naming. This study examined whether a semantic elaboration task would facilitate naming in pAD, and whether training either semantically typical or atypical stimulus items facilitated generalized improvement in picture naming and category generation…

  18. Development and Validation of Two Scales to Measure Elaboration and Behaviors Associated with Stewardship in Children

    ERIC Educational Resources Information Center

    Vezeau, Susan Lynn; Powell, Robert B.; Stern, Marc J.; Moore, D. DeWayne; Wright, Brett A.

    2017-01-01

    This investigation examines the development of two scales that measure elaboration and behaviors associated with stewardship in children. The scales were developed using confirmatory factor analysis to investigate their construct validity, reliability, and psychometric properties. Results suggest that a second-order factor model structure provides…

  19. Relevant Prior Knowledge Moderates the Effect of Elaboration during Small Group Discussion on Academic Achievement

    ERIC Educational Resources Information Center

    Van Blankenstein, Floris M.; Dolmans, Diana H. J. M.; Van der Vleuten, Cees P. M.; Schmidt, Henk G.

    2013-01-01

    This study set out to test whether relevant prior knowledge would moderate a positive effect on academic achievement of elaboration during small-group discussion. In a 2 × 2 experimental design, 66 undergraduate students observed a video showing a small-group problem-based discussion about thunder and lightning. In the video, a teacher asked…

  20. Using Theory Elaboration and Activity Theory for Building a Knowledge Management Apparatus.

    ERIC Educational Resources Information Center

    Cortez, Edwin M.; Kazlauskas, Edward J.

    2000-01-01

    Reports ongoing developmental research at the Department of Agriculture to build a high-performance knowledge base for four agencies within the Department. Describes data gathering for the information system; planning to support knowledge management practices; theory elaboration through qualitative case analysis; and use of an activity theory…

  1. Intentionality as Measured in the Persistence and Elaboration of Communication by Chimpanzees (Pan troglodytes)

    ERIC Educational Resources Information Center

    Leavens, David A.; Russell, Jamie L.; Hopkins, William D.

    2005-01-01

    In human infancy, 2 criteria for intentional communication are (a) persistence in and (b) elaboration of communication when initial attempts to communicate fail. Twenty-nine chimpanzees (Pan troglodytes) were presented with both desirable (a banana) and undesirable food (commercial primate chow). Three conditions were administered: (a) the banana…

  2. Other People's Students Elaborated Codes and Dialect in Basic Writing

    ERIC Educational Resources Information Center

    Evans, Jason Cory

    2012-01-01

    English teachers, especially those in the field of basic writing, have long debated how to teach writing to students whose home language differs from the perceived norm. This thesis intervenes in that stalemated debate by re-examining "elaborated codes" and by arguing for a type of correctness in writing that includes being correct…

  3. E(Lab)orating Performance: Transnationalism and Blended Learning in the Theatre Classroom

    ERIC Educational Resources Information Center

    Cloete, Nicola; Dinesh, Nandita; Hazou, Rand T.; Matchett, Sara

    2015-01-01

    "E(Lab)orating Performance" is a transnational collaborative teaching and learning project involving Massey University (New Zealand), University of Cape Town (South Africa), UWC Mahindra College (India), and University of the Witwatersrand (South Africa). The project was devised to facilitate creative engagements between students and…

  4. Enhancing Student Explanations of Evolution: Comparing Elaborating and Competing Theory Prompts

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Namdar, Bahadir; Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.

    2016-01-01

    In this study, we explore how two different prompt types within an online computer-based inquiry learning environment enhance 392 7th grade students' explanations of evolution with three teachers. In the "elaborating" prompt condition, students are prompted to write explanations that support the accepted theory of evolution. In the…

  5. Training maltreating parents in elaborative and emotion-rich reminiscing with their preschool-aged children

    PubMed Central

    Valentino, Kristin; Comas, Michelle; Nuttall, Amy K.; Thomas, Taylor

    2013-01-01

    Objective In the current study, the effects of training maltreating parents and their preschool-aged children in elaborative and emotion-rich reminiscing were examined. Method 44 parent-child dyads were randomly assigned to a training (reminiscing) or wait-list (control) condition. All participating parents had substantiated maltreatment and were involved with the Department of Child Services at the time of enrollment. Children were 3–6 years old (M = 4.88, SD = .99) and living in the custody of the participating parent. Dyads in the reminiscing condition received four, weekly, in-home sessions in elaborative and emotion rich reminiscing. Results At a follow-up assessment, maltreating parents in the reminiscing condition provided more high-elaborative utterances, references to children’s negative emotions, and explanations of children’s emotion during reminiscing than did parents in the control condition. Children in the reminiscing condition had richer memory recall and made more emotion references than did children in the control condition during reminiscing with their mothers, but not with an experimenter. Conclusion The findings suggest that maltreating parents can be taught elaborative and emotion-rich reminiscing skills, with benefits for child cognitive and emotional development. The potential clinical utility of a reminiscing-based training for maltreating families with young children is discussed. PMID:23548682

  6. Predicting Elements of Early Maternal Elaborative Discourse from 12 to 18 Months of Age

    ERIC Educational Resources Information Center

    Ontai, Lenna L.; Virmani, Elita Amini

    2010-01-01

    To date, much of the research investigating maternal-child discourse has focused on the preschool period of children's development, with little attention paid to how these styles develop. The current study aimed to assess whether maternal elaborative discourse elements seen in preschool are also evident during the toddler years, and whether the…

  7. Independence and Elaboration Day: Activities to Enhance Student Reading in Social Studies.

    ERIC Educational Resources Information Center

    Mikulecky, Larry; Smith, Frederick

    1981-01-01

    Describes an activity approach (Independence and Elaboration Day, I & E Day) which is intended to help high school social studies students become independent readers and learners by reading social studies material other than textbooks. Suggested materials include newspapers, minutes of political and legislative meetings, and magazines. (DB)

  8. Simulations with Elaborated Worked Example Modeling: Beneficial Effects on Schema Acquisition

    ERIC Educational Resources Information Center

    Meier, Debra K.; Reinhard, Karl J.; Carter, David O.; Brooks, David W.

    2008-01-01

    Worked examples have been effective in enhancing learning outcomes, especially with novice learners. Most of this research has been conducted in laboratory settings. This study examined the impact of embedding elaborated worked example modeling in a computer simulation practice activity on learning achievement among 39 undergraduate students…

  9. Effect of Text Coherence and Elaboration on Recall of Sentences within Paragraphs.

    ERIC Educational Resources Information Center

    Miller, Raymond B.; McCown, Rick R.

    1986-01-01

    Two experiments were conducted to test competing explanations of the levels effect in memory for text. In both experiments subjects (college students) read paragraphs in which the height of target propositions was held constant while the amount of target elaboration differed across versions of the paragraphs. (Author/LMO)

  10. Toward an Episodic Context Account of Retrieval-Based Learning: Dissociating Retrieval Practice and Elaboration

    ERIC Educational Resources Information Center

    Lehman, Melissa; Smith, Megan A.; Karpicke, Jeffrey D.

    2014-01-01

    We tested the predictions of 2 explanations for retrieval-based learning; while the elaborative retrieval hypothesis assumes that the retrieval of studied information promotes the generation of semantically related information, which aids in later retrieval (Carpenter, 2009), the episodic context account proposed by Karpicke, Lehman, and Aue (in…

  11. Plasmonic spectroscopy of metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Ni, Weihai

    The study of the plasmonic spectroscopy of metallic nanostructures is of great interest in nanoscale optics and photonics. Metallic nanostructures exhibit rich optical and electrical properties due to their localized surface plasmons (LSPs, collective charge density oscillations that are confined to metallic nanostructures). They can be widely used in a variety of application areas, such as surface-enhanced Raman scattering (SERS), plasmonic sensing, and metal enhanced fluorescence (MEF). In this thesis, a systematic study on the plasmonic spectroscopy of metallic nanostructures has been presented, both theoretically and experimentally. I will first describe my studies on the plasmonic properties of metallic nanostructures. Specific approaches of modifying the sizes and shapes of Au nanorods have been developed for tailoring their plasmonic properties, including surface plasmon wavelength, absorption, scattering, and extinction cross sections. Single-particle dark-field imaging and spectroscopy have proved that the scattering intensity of overgrown nanorods is larger than that of shortened nanorods from the same starting nanorods. Finite-difference time-domain (FDTD) calculations further show that the scattering-to-extinction ratio increases linearly as a function of the diameter of Au nanorods with a fixed aspect ratio. To obtain a deep understanding on the shape dependence of the localized surface plasmon resonance, I have emplyed FDTD on both Au nanorods and Au nanobipyramids. The results show that, when excited at their LSP wavelengths, Au nanobipyramids exhibit a maximal electric field intensity enhancement that is 3--6 times that of Au nanorods. Au nanorods have been further assembled into chains (end-to-end) and stacks (side-by-side). FDTD calculations have been performed on both Au nanorod chains and stacks with varying gap distances to obtain the dependence of the plasmon shift on the gap distance, which is then used as a plasmonic ruler to estimate the

  12. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  13. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  14. Nanostructured Biomaterials and Their Applications

    PubMed Central

    Parratt, Kirsten; Yao, Nan

    2013-01-01

    Some of the most important advances in the life sciences have come from transitioning to thinking of materials and their properties on the nanoscale rather than the macro or even microscale. Improvements in imaging technology have allowed us to see nanofeatures that directly impact chemical and mechanical properties of natural and man-made materials. Now that these can be imaged and quantified, substantial advances have been made in the fields of biomimetics, tissue engineering, and drug delivery. For the first time, scientists can determine the importance of nanograins and nanoasperities in nacre, direct the nucleation of apatite and the growth of cells on nanostructured scaffolds, and pass drugs tethered to nanoparticles through the blood-brain barrier. This review examines some of the most interesting materials whose nanostructure and hierarchical organization have been shown to correlate directly with favorable properties and their resulting applications.

  15. Hematite nanostructuring using electrohydrodynamic lithography

    NASA Astrophysics Data System (ADS)

    Boudoire, Florent; Toth, Rita; Heier, Jakob; Braun, Artur; Constable, Edwin C.

    2014-06-01

    Tailoring hematite thin film nanostructure is particularly interesting since this oxide's function is closely related to its structure, for example when implemented as a photoanode in water splitting solar cells. In this study, electrohydrodynamic destabilization was designed to grow hematite nanodroplets with morphologies controlled by a master electrode. A polymer/iron salt film was destabilized by electrohydrodynamic destabilization and the resulting structures were pyrolysed to achieve crystalline α-Fe2O3 nanodroplets of 30 nm height and 70 nm radius. NEXAFS spectroscopy proved that the structures contain ferrihydrite, which is converted into hematite during pyrolysis, while the polymer was decomposed. Homogeneous nanoparticle precipitation in the bulk of the polymer, due to encapsulation of the iron precursor in the polymer matrix, is accounted for the good preservation of the structures. This study represents the first step towards the use of electrohydrodynamic destabilization for nanostructuring of hematite thin films, with a control over the feature size.

  16. Nanostructured materials for water desalination.

    PubMed

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  17. Nanostructured materials for thermoelectric applications.

    PubMed

    Bux, Sabah K; Fleurial, Jean-Pierre; Kaner, Richard B

    2010-11-28

    Recent studies indicate that nanostructuring can be an effective method for increasing the dimensionless thermoelectric figure of merit (ZT) in materials. Most of the enhancement in ZT can be attributed to large reductions in the lattice thermal conductivity due to increased phonon scattering at interfaces. Although significant gains have been reported, much higher ZTs in practical, cost-effective and environmentally benign materials are needed in order for thermoelectrics to become effective for large-scale, wide-spread power and thermal management applications. This review discusses the various synthetic techniques that can be used in the production of bulk scale nanostructured materials. The advantages and disadvantages of each synthetic method are evaluated along with guidelines and goals presented for an ideal thermoelectric material. With proper optimization, some of these techniques hold promise for producing high efficiency devices.

  18. Raman Studies of Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Jorio, Ado; Souza Filho, Antonio G.

    2016-07-01

    This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes-anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.

  19. Nanostructured materials for water desalination

    NASA Astrophysics Data System (ADS)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  20. Chiroplasmonic DNA-based nanostructures

    NASA Astrophysics Data System (ADS)

    Cecconello, Alessandro; Besteiro, Lucas V.; Govorov, Alexander O.; Willner, Itamar

    2017-09-01

    Chiroplasmonic properties of nanoparticles, organized using DNA-based nanostructures, have attracted both theoretical and experimental interest. Theory suggests that the circular dichroism spectra accompanying chiroplasmonic nanoparticle assemblies are controlled by the sizes, shapes, geometries and interparticle distances of the nanoparticles. In this Review, we present different methods to assemble chiroplasmonic nanoparticle or nanorod systems using DNA scaffolds, and we discuss the operations of dynamically reconfigurable chiroplasmonic nanostructures. The chiroplasmonic properties of the different systems are characterized by circular dichroism and further supported by high-resolution transmission electron microscopy or cryo-transmission electron microscopy imaging and theoretical modelling. We also outline the applications of chiroplasmonic assemblies, including their use as DNA-sensing platforms and as functional systems for information processing and storage. Finally, future perspectives in applying chiroplasmonic nanoparticles as waveguides for selective information transfer and their use as ensembles for chiroselective synthesis are discussed. Specifically, we highlight the upscaling of the systems to device-like configurations.

  1. Nanorice: a new hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Nordlander, P.; Brandl, D.; Le, F.; Wang, H.; Halas, N. J.

    2006-03-01

    The plasmon hybridization method [1] is applied to nanorice, a new metallic nanostructure which combines the properties of two popular tunable plasmonic nanoparticle geometries: nanorods and nanoshells. The particle consists of a prolate spheroidal dielectric core and a thin metallic shell, bearing a remarkable resemblance to a rice grain. The nanorice particle shows far greater geometric tunability of the optical resonance, larger local field intensity enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than any previously reported dielectric-metal nanostructure. The tunability of the nanorice particle arises from the interaction of primitive plasmons associated with the inner and outer surfaces of the shell. The results from plasmon hybridization are compared to FDTD simulations. [1] E. Prodan and P. Nordlander, J. Chem. Phys. 120(2004)5444-5454

  2. Dispersive interactions in graphitic nanostructures

    NASA Astrophysics Data System (ADS)

    Woods, L. M.; Popescu, A.; Drosdoff, D.; Bondarev, I. V.

    2013-02-01

    The Casimir interaction between graphitic nanostructures, such as carbon nanotubes and graphene sheets, is investigated at the quantum mechanical limit (T = 0 K) using a quantum electrodynamical approach for absorbing and dispersive media. It is found that the nanotube/nanotube interaction in a double wall carbon nanotube configuration is profoundly affected by the collective low frequency excitations of individual nanotubes. It is shown that pronounced, low frequency peaks in the nanotube electron energy loss spectra are a main factor contributing to the strength of the intertube attraction. The graphene/graphene force is also investigated. It is obtained that the graphene optical transparency is the main reason for the reduced attraction as compared to the one for perfect metals. This study presents a unified approach for electromagnetic interactions in graphitic nanostructures, which is able to account for their unique electronic and response properties and geometry configurations.

  3. Thermoelectric effects in graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Dollfus, Philippe; Nguyen, Viet Hung; Saint-Martin, Jérôme

    2015-04-01

    The thermoelectric properties of graphene and graphene nanostructures have recently attracted significant attention from the physics and engineering communities. In fundamental physics, the analysis of Seebeck and Nernst effects is very useful in elucidating some details of the electronic band structure of graphene that cannot be probed by conductance measurements alone, due in particular to the ambipolar nature of this gapless material. For applications in thermoelectric energy conversion, graphene has two major disadvantages. It is gapless, which leads to a small Seebeck coefficient due to the opposite contributions of electrons and holes, and it is an excellent thermal conductor. The thermoelectric figure of merit ZT of a two-dimensional (2D) graphene sheet is thus very limited. However, many works have demonstrated recently that appropriate nanostructuring and bandgap engineering of graphene can concomitantly strongly reduce the lattice thermal conductance and enhance the Seebeck coefficient without dramatically degrading the electronic conductance. Hence, in various graphene nanostructures, ZT has been predicted to be high enough to make them attractive for energy conversion. In this article, we review the main results obtained experimentally and theoretically on the thermoelectric properties of graphene and its nanostructures, emphasizing the physical effects that govern these properties. Beyond pure graphene structures, we discuss also the thermoelectric properties of some hybrid graphene structures, as graphane, layered carbon allotropes such as graphynes and graphdiynes, and graphene/hexagonal boron nitride heterostructures which offer new opportunities. Finally, we briefly review the recent activities on other atomically thin 2D semiconductors with finite bandgap, i.e. dichalcogenides and phosphorene, which have attracted great attention for various kinds of applications, including thermoelectrics.

  4. Sintering and ripening resistant noble metal nanostructures

    DOEpatents

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  5. Dielectric nanostructures with high laser damage threshold

    NASA Astrophysics Data System (ADS)

    Ngo, C. Y.; Hong, L. Y.; Deng, J.; Khoo, E. H.; Liu, Z.; Wu, R. F.; Teng, J. H.

    2017-02-01

    Dielectric-based metamaterials are proposed to be the ideal candidates for low-loss, high-efficiency devices. However, to employ dielectric nanostructures for high-power applications, the dielectric material must have a high laser-induced damaged threshold (LIDT) value. In this work, we investigated the LIDT values of dielectric nanostructures for high-power fiber laser applications. Consequently, we found that the fabricated SiO2 nanostructured lens can withstand laser fluence exceeding 100 J/cm2.

  6. Nanostructured conducting polymers and their biomedical applications.

    PubMed

    Wang, G W; Lu, Y N; Wang, L P; Wang, H J; Wang, J Y

    2014-01-01

    Much attention has been paid to nanostructured conducting polymers due to their unique properties, which arise from their nanoscale size, such as their large surface area, high electrical conductivity, electrochemical stability and quantum effects. This article reviews three methods to synthesize nanostructured conducting polymers and their applications in the biomedical field, focusing specifically on neural probes, biosensors, artificial muscles or actuators and controlled drug release. Challenges and future directions of these nanostructured conducting polymer are also discussed.

  7. Application of smart nanostructures in medicine.

    PubMed

    He, Jingjing; Qi, Xiaoxue; Miao, Yuqing; Wu, Hai-Long; He, Nongyue; Zhu, Jun-Jie

    2010-09-01

    Smart nanostructures are sensitive to various environmental or biological parameters. They offer great potential for numerous biomedical applications such as monitoring, diagnoses, repair and treatment of human biological systems. The present work introduces smart nanostructures for biomedical applications. In addition to drug delivery, which has been extensively reported and reviewed, increasing interest has been observed in using smart nanostructures to develop various novel techniques of sensing, imaging, tissue engineering, biofabrication, nanodevices and nanorobots for the improvement of healthcare.

  8. Optical properties of chiral nanostructures

    NASA Astrophysics Data System (ADS)

    Cecilia, Noguez; Román-Velázquez, Carlos E.; Garzón, Ignacio L.

    2004-03-01

    We present a computational model to study the optical properties chiral nanostructures[1] . In this work the nanostructures of interest are composed by N atoms, where each one is represented by a polarizable point dipole located at theposition of the atom. We assume that the dipole located is characterized by a polarizability. The nanostructure is excited by a circularly polarized incident wave, such that, each dipole is subject to a total electric field due to: (i) the incident radiation field, plus (ii) the radiation field resulting from all of the other induced dipoles. Once we solve the complex-linear equations, the dipole moment on each atom in the cluster can be determined and we can find the extinction cross section of the whole nanoparticle. Circular dichroism (CD) spectra of chiral bare and thiol-passivated gold nanoclusters have been calculated within the dipole approximation. The calculated CD spectra show features that allow us to distinguish between clusters with different indexes of chirality. The main factor responsible of the differences in the CD lineshapes is the distribution of interatomic distances that characterize the chiral cluster geometry. These results provide theoretical support for the quantification of chirality and its measurement, using the CD lineshapes of chiral metal nanoclusters. [1] C. E. Roman-Velazquez, et al., J. of Phys. Chem. B (Letter) 107, 12035 (2003) This work has been partly supported by DGAPA-UNAM grants No. IN104201 and IN104402, and by CONACyT grant 36651-E.

  9. Physical electrochemistry of nanostructured devices.

    PubMed

    Bisquert, Juan

    2008-01-07

    This Perspective reviews recent developments in experimental techniques and conceptual methods applied to the electrochemical properties of metal-oxide semiconductor nanostructures and organic conductors, such as those used in dye-sensitized solar cells, high-energy batteries, sensors, and electrochromic devices. The aim is to provide a broad view of the interpretation of electrochemical and optoelectrical measurements for semiconductor nanostructures (sintered colloidal particles, nanorods, arrays of quantum dots, etc.) deposited or grown on a conducting substrate. The Fermi level displacement by potentiostatic control causes a broad change of physical properties such as the hopping conductivity, that can be investigated over a very large variation of electron density. In contrast to traditional electrochemistry, we emphasize that in nanostructured devices we must deal with systems that depart heavily from the ideal, Maxwell-Boltzmann statistics, due to broad distributions of states (energy disorder) and interactions of charge carriers, therefore the electrochemical analysis must be aided by thermodynamics and statistical mechanics. We discuss in detail the most characteristic densities of states, the chemical capacitance, and the transport properties, specially the chemical diffusion coefficient, mobility, and generalized Einstein relation.

  10. Photoinduced magnetic force between nanostructures

    NASA Astrophysics Data System (ADS)

    Guclu, Caner; Tamma, Venkata Ananth; Wickramasinghe, Hemantha Kumar; Capolino, Filippo

    2015-12-01

    Photoinduced magnetic force between nanostructures, at optical frequencies, is investigated theoretically. Till now optical magnetic effects were not used in scanning probe microscopy because of the vanishing natural magnetism with increasing frequency. On the other hand, artificial magnetism in engineered nanostructures led to the development of measurable optical magnetism. Here two examples of nanoprobes that are able to generate strong magnetic dipolar fields at optical frequency are investigated: first, an ideal magnetically polarizable nanosphere and then a circular cluster of silver nanospheres that has a looplike collective plasmonic resonance equivalent to a magnetic dipole. Magnetic forces are evaluated based on nanostructure polarizabilities, i.e., induced magnetic dipoles, and magnetic-near field evaluations. As an initial assessment on the possibility of a magnetic nanoprobe to detect magnetic forces, we consider two identical magnetically polarizable nanoprobes and observe magnetic forces on the order of piconewtons, thereby bringing it within detection limits of conventional atomic force microscopes at ambient pressure and temperature. The detection of magnetic force is a promising method in studying optical magnetic transitions that can be the basis of innovative spectroscopy applications.

  11. Ultrasonic approach for surface nanostructuring.

    PubMed

    Skorb, Ekaterina V; Möhwald, Helmuth

    2016-03-01

    The review is about solid surface modifications by cavitation induced in strong ultrasonic fields. The topic is worth to be discussed in a special issue of surface cleaning by cavitation induced processes since it is important question if we always find surface cleaning when surface modifications occur, or vice versa. While these aspects are extremely interesting it is important for applications to follow possible pathways during ultrasonic treatment of the surface: (i) solely cleaning; (ii) cleaning with following surface nanostructuring; and (iii) topic of this particular review, surface modification with controllably changing its characteristics for advanced applications. It is important to know what can happen and which parameters should be taking into account in the case of surface modification when actually the aim is solely cleaning or aim is surface nanostructuring. Nanostructuring should be taking into account since is often accidentally applied in cleaning. Surface hydrophilicity, stability to Red/Ox reactions, adhesion of surface layers to substrate, stiffness and melting temperature are important to predict the ultrasonic influence on a surface and discussed from these points for various materials and intermetallics, silicon, hybrid materials. Important solid surface characteristics which determine resistivity and kinetics of surface response to ultrasonic treatment are discussed. It is also discussed treatment in different solvents and presents in solution of metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  13. Particle Lithography Enables Fabrication of Multicomponent Nanostructures

    PubMed Central

    Lin, Wei-feng; Swartz, Logan A.; Li, Jie-Ren; Liu, Yang; Liu, Gang-yu

    2014-01-01

    Multicomponent nanostructures with individual geometries have attracted much attention because of their potential to carry out multiple functions synergistically. The current work reports a simple method using particle lithography to fabricate multicomponent nanostructures of metals, proteins, and organosiloxane molecules, each with its own geometry. Particle lithography is well-known for its capability to produce arrays of triangular-shaped nanostructures with novel optical properties. This paper extends the capability of particle lithography by combining a particle template in conjunction with surface chemistry to produce multicomponent nanostructures. The advantages and limitations of this approach will also be addressed. PMID:24707328

  14. Is there a shift to "active nanostructures"?

    NASA Astrophysics Data System (ADS)

    Subramanian, Vrishali; Youtie, Jan; Porter, Alan L.; Shapira, Philip

    2010-01-01

    It has been suggested that an important transition in the long-run trajectory of nanotechnology development is a shift from passive to active nanostructures. Such a shift could present different or increased societal impacts and require new approaches for risk assessment. An active nanostructure "changes or evolves its state during its operation," according to the National Science Foundation's (2006) Active Nanostructures and Nanosystems grant solicitation. Active nanostructure examples include nanoelectromechanical systems (NEMS), nanomachines, self-healing materials, targeted drugs and chemicals, energy storage devices, and sensors. This article considers two questions: (a) Is there a "shift" to active nanostructures? (b) How can we characterize the prototypical areas into which active nanostructures may emerge? We build upon the NSF definition of active nanostructures to develop a research publication search strategy, with a particular intent to distinguish between passive and active nanotechnologies. We perform bibliometric analyses and describe the main publication trends from 1995 to 2008. We then describe the prototypes of research that emerge based on reading the abstracts and review papers encountered in our search. Preliminary results suggest that there is a sharp rise in active nanostructures publications in 2006, and this rise is maintained in 2007 and through to early 2008. We present a typology that can be used to describe the kind of active nanostructures that may be commercialized and regulated in the future.

  15. Processing Nanostructured Sensors Using Microfabrication Techniques

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; VanderWal, Randall L.; Evans, Laura J.; Xu, Jennifer C.

    2010-01-01

    Standard microfabrication techniques can be implemented and scaled to help assemble nanoscale microsensors. Currently nanostructures are often deposited onto materials primarily by adding them to a solution, then applying the solution in a thin film. This results in random placement of the nanostructures with no controlled order, and no way to accurately reproduce the placement. This method changes the means by which microsensors with nanostructures are fabricated. The fundamental advantage to this approach is that it enables standard microfabrication techniques to be applied in the repeated manufacture of nanostructured sensors on a microplatform.

  16. Precise replication of antireflective nanostructures from biotemplates

    NASA Astrophysics Data System (ADS)

    Gao, Hongjun; Liu, Zhongfan; Zhang, Jin; Zhang, Guoming; Xie, Guoyong

    2007-03-01

    The authors report herein a new type of nanonipple structures on the cicada's eye and the direct structural replication of the complex micro- and nanostructures for potential functional emulation. A two-step direct molding process is developed to replicate these natural micro- and nanostructures using epoxy resin with high fidelity, which demonstrates a general way of fabricating functional nanostructures by direct replication of natural biotemplates via a suitable physicochemical process. Measurements of spectral reflectance showed that this kind of replicated nanostructure has remarkable antireflective property, suggestive of its potential applications to optical devices.

  17. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  18. Synthesis of Silver Nanostructures by Multistep Methods

    PubMed Central

    Zhang, Tong; Song, Yuan-Jun; Zhang, Xiao-Yang; Wu, Jing-Yuan

    2014-01-01

    The shape of plasmonic nanostructures such as silver and gold is vital to their physical and chemical properties and potential applications. Recently, preparation of complex nanostructures with rich function by chemical multistep methods is the hotspot of research. In this review we introduce three typical multistep methods to prepare silver nanostructures with well-controlled shapes, including the double reductant method, etching technique and construction of core-shell nanostructures. The growth mechanism of double the reductant method is that different favorable facets of silver nanocrystals are produced in different reductants, which can be used to prepare complex nanostructures such as nanoflags with ultranarrow resonant band bandwidth or some silver nanostructures which are difficult to prepare using other methods. The etching technique can selectively remove nanoparticles to achieve the aim of shape control and is widely used for the synthesis of nanoflowers and hollow nanostructures. Construction of core-shell nanostructures is another tool to control shape and size. The three methods can not only prepare various silver nanostructures with well-controlled shapes, which exhibit unique optical properties, such as strong surface-enhanced Raman scattering (SERS) signal and localized surface plasmon resonance (LSPR) effect, but also have potential application in many areas. PMID:24670722

  19. Reactor and method for production of nanostructures

    DOEpatents

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  20. Bottom-up multiferroic nanostructures

    NASA Astrophysics Data System (ADS)

    Ren, Shenqiang

    Multiferroic and especially magnetoelectric (ME) nanocomposites have received extensive attention due to their potential applications in spintronics, information storage and logic devices. The extrinsic ME coupling in composites is strain mediated via the interface between the piezoelectric and magnetostrictive components. However, the design and synthesis of controlled nanostructures with engineering enhanced coupling remain a significant challenge. The purpose of this thesis is to create nanostructures with very large interface densities and unique connectivities of the two phases in a controlled manner. Using inorganic solid state phase transformations and organic block copolymer self assembly methodologies, we present novel self assembly "bottom-up" techniques as a general protocol for the nanofabrication of multifunctional devices. First, Lead-Zirconium-Titanate/Nickel-Ferrite (PZT/NFO) vertical multilamellar nanostructures have been produced by crystallizing and decomposing a gel in a magnetic field below the Curie temperature of NFO. The ensuing microstructure is nanoscopically periodic and anisotropic. The wavelength of the PZT/NFO alternation, 25 nm, agrees within a factor of two with the theoretically estimated value. The macroscopic ferromagnetic and magnetoelectric responses correspond qualitatively and semi-quantitatively to the features of the nanostructure. The maximum of the field dependent magnetoelectric susceptibility equals 1.8 V/cm Oe. Second, a magnetoelectric composite with controlled nanostructures is synthesized using co-assembly of two inorganic precursors with a block copolymer. This solution processed material consists of hexagonally arranged ferromagnetic cobalt ferrite (CFO) nano-cylinders within a matrix of ferroelectric Lead-Zirconium-Titanate (PZT). The initial magnetic permeability of the self-assembled CFO/PZT nanocomposite changes by a factor of 5 through the application of 2.5 V. This work may have significant impact on the

  1. Investigation of the in-plane and out-of-plane electrical properties of metallic nanoparticles in dielectric matrix thin films elaborated by atomic layer deposition.

    PubMed

    Thomas, Daniel; Puyoo, Etienne; Le Berre, Martine; Militaru, Liviu; Koneti, Siddardha; Malchere, Annie; Epicier, Thierry; Roiban, Lucian; Albertini, David; Sabac, Andrei; Calmon, Francis

    2017-09-08

    Pt nanoparticles in a Al<sub>2</sub>O<sub>3</sub> dielectric matrix thin films are elaborated by means of atomic layer deposition. These nanostructured thin films are integrated in vertical and planar test structures in order to assess both their in-plane and out-of-plane electrical properties. A shadow edge evaporation process is used to develop planar devices with electrode separation distances in the range of 30nm. Both vertical and planar test structures show a Poole-Frenkel conduction mechanism. Low trap energy levels (<0.1eV) are identified for the two test structures which indicates that the Pt islands themselves are not acting as traps in the PF mechanism. Furthermore, a more than three order of magnitude current density difference is observed between the two geometries. This electrical anisotropy is attributed to a large electron mobility difference in the in-plane and out-of-plane directions which can be related to different trap distributions in both directions. © 2017 IOP Publishing Ltd.

  2. Lithography-free synthesis of nanostructured cobalt on Si (111) surfaces: structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Bounour-Bouzamouche, W.; Chérif, S. M.; Farhat, S.; Roussigné, Y.; Lungu, C. P.; Mazaleyrat, F.; Guerioune, M.

    2014-07-01

    We illustrate the concept of lithography-free synthesis and patterning of magnetic cobalt in the nanometric scale. Our elaboration method allows fabricating 2D architectures of cobalt and cobalt silicide onto silicon (111) surfaces. A continuous cobalt layer of 1, 3 and 10 nm thickness was first deposited by using thermoionic vacuum arc (TVA) technology and then, thermally annealed on vacuum at temperatures from 450° C to 800° C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750° C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the substrate temperature. Magnetic properties were investigated by means of vibrating sample magnetometer (VSM) technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modelled by a series of shapes tending to a fractal curve.

  3. Modeling energy transport in nanostructures

    NASA Astrophysics Data System (ADS)

    Pattamatta, Arvind

    Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermal management and energy conversion. Example of thermal management in micro/nano electronic devices is the use of efficient nanostructured materials to alleviate 'hot spots' in integrated circuits. Examples in the manipulation of heat flow and energy conversion include nanostructures for thermoelectric energy conversion, thermophotovoltaic power generation, and data storage. One of the major challenges in Metal-Oxide Field Effect Transistor (MOSFET) devices is to study the 'hot spot' generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Prediction of hotspot temperature and position in MOSFET devices is necessary for improving thermal design and reliability of micro/nano electronic devices. Thermoelectric properties are among the properties that may drastically change at nanoscale. The efficiency of thermoelectric energy conversion in a material is measured by a non-dimensional figure of merit (ZT) defined as, ZT = sigmaS2T/k where sigma is the electrical conductivity, S is the Seebeck coefficient, T is the temperature, and k is the thermal conductivity. During the last decade, advances have been made in increasing ZT using nanostructures. Three important topics are studied with respect to energy transport in nanostructure materials for micro/nano electronic and thermoelectric applications; (1) the role of nanocomposites in improving the thermal efficiency of thermoelectric devices, (2) the interfacial thermal resistance for the semiconductor/metal contacts in thermoelectric devices and for metallic interconnects in micro/nano electronic devices, (3) the

  4. Improving ethical knowledge and sensemaking from cases through elaborative interrogation and outcome valence.

    PubMed

    Johnson, James F; Bagdasarov, Zhanna; MacDougall, Alexandra E; Steele, Logan; Connelly, Shane; Devenport, Lynn D; Mumford, Michael D

    2014-01-01

    The case-based approach to learning is popular among many applied fields. However, results of case-based education vary widely on case content and case presentation. This study examined two aspects of case-based education-outcome valence and case elaboration methods-in a two-day case-based Responsible Conduct of Research (RCR) ethics education program. Results suggest that outcome information is an integral part of a quality case. Furthermore, valence consistent outcomes may have certain advantages over mixed valence outcome information. Finally, students enjoy and excel working with case material, and the use of elaborative interrogation techniques can significantly improve internally-focused ethical sensemaking strategies associated with personal biases, constraints, and emotions.

  5. [Description of conditioned reflex elaboration in cats in response to electric stimulation of the hippocampal formation].

    PubMed

    Fomin, B A

    1981-01-01

    In six cats with chronically implanted brain electrodes conditioned running to the feeding trough was elaborated in response to electrical stimulation of the ventral hippocampal formation (VHF), which at first produced inhibition of running. The stages of conditioning were as follows: 1) inhibition of conditioned activity; 2) replacement of inhibition by more frequent runnings--generalization of the conditioned reflex; 3) enhancement of signal significance of VHF electrical stimulation and subsequent decrease of intersignal reactions. Conditioned reflex to electrical stimulation of CA1 field was elaborated slower than that to electrical stimulation of other VHF points. At the beginning of conditioning a periodic decrease of probability of conditioned reactions manifestation was observed, which is estimated as an additional characteristic of the hippocampus activity.

  6. Elaboration and validation of the athletes Idiocentric and Allocentric Profile Inventory (I-A Profile).

    PubMed

    de Melo, Gislane Ferreira; Giavoni, Adriana

    2010-11-01

    The athlete's psychological profile is one of the most studied areas in sport psychology, but there is no consensus in this area. The purpose of this study was to elaborate and validate a scale to measure and classify athletes into a Idiocentric-Alocentric profile. The method was split in two phases: a) Items elaboration and theoretical model and b) Validation. Qualitative analyses were performed during the first phase and factorial analysis and Cronbach's Alpha were used to validate the instrument. The final instrument was composed by 27 items and the factorial structure showed three factors for Idiocentrism (Self-Realization & Competitiveness, Hedonism, Team Emotional Distance and a second order factor - Idiocentrism Level) and one factor for the Alocentrism (Alocentrism Level). It was concluded that the pattern and consistency of the results indicate that this inventory could be used as a reliable research tool in Brazilian sports context.

  7. When Does Chemical Elaboration Induce a Ligand To Change Its Binding Mode?

    PubMed

    Malhotra, Shipra; Karanicolas, John

    2017-01-12

    Traditional hit-to-lead optimization assumes that upon elaboration of chemical structure, the ligand retains its binding mode relative to the receptor. Here, we build a large-scale collection of related ligand pairs solved in complex with the same protein partner: we find that for 41 of 297 pairs (14%), the binding mode changes upon elaboration of the smaller ligand. While certain ligand physiochemical properties predispose changes in binding mode, particularly those properties that define fragments, simple structure-based modeling proves far more effective for identifying substitutions that alter the binding mode. Some ligand pairs change binding mode because the added substituent would irreconcilably conflict with the receptor in the original pose, whereas others change because the added substituent enables new, stronger interactions that are available only in a different pose. Scaffolds that can engage their target using alternate poses may enable productive structure-based optimization along multiple divergent pathways.

  8. Governing at a distance: the elaboration of controls in British immigration.

    PubMed

    Morris, L

    1998-01-01

    This article considers the possibility that aspects of recent thinking on governmentality could be applied to the delimitation of rights and elaboration of controls in the policy and practice of British immigration over the period of Conservative rule. First, the complex of external strategies which interact to control and inhibit migration, including the discursive assertion of sovereign boundaries in the face of moves towards a frontier-free Europe are reviewed. Then, turning to official expressions of concern over public funds, the centrality of this rationale in the drive for correspondence between benefit regulations and immigration rules is documented. This drive, it is argued, is a key tactic in the development of internal controls, both as a basis for interagency cooperation and the means by which service providers can be encouraged to police migration. Finally, the paper shows how the rationality dictating these changes has itself been questioned and further elaborates the limits of "governmentality" in practice.

  9. Standard Setting and Risk Preference: An Elaboration of the Theory of Achievement Motivation and an Empirical Test

    ERIC Educational Resources Information Center

    Kuhl, Julius

    1978-01-01

    A formal elaboration of the original theory of achievement motivation (Atkinson, 1957; Atkinson & Feather, 1966) is proposed that includes personal standards as determinants of motivational tendencies. The results of an experiment are reported that examines the validity of some of the implications of the elaborated model proposed here. (Author/RK)

  10. Effects of Forward and Backward Contextual Elaboration on Lexical Inferences: Evidence from a Semantic Relatedness Judgment Task

    ERIC Educational Resources Information Center

    Hamada, Akira

    2015-01-01

    Three experiments examined whether the process of lexical inferences differs according to the direction of contextual elaboration using a semantic relatedness judgment task. In Experiment 1, Japanese university students read English sentences where target unknown words were semantically elaborated by prior contextual information (forward lexical…

  11. Revising Tinto's Interactionalist Theory of Student Departure Through Theory Elaboration: Examining the Role of Organizational Attributes in the Persistence Process.

    ERIC Educational Resources Information Center

    Berger, Joseph B.; Braxton, John M.

    1998-01-01

    A study used theory elaboration to help revise Tinto's interactionalist theory of individual student departure from college to include the effects of organizational attributes on student withdrawal. Results provide strong support for including concepts from organizational theory and suggest future research should use theory elaboration to look for…

  12. Effects of Forward and Backward Contextual Elaboration on Lexical Inferences: Evidence from a Semantic Relatedness Judgment Task

    ERIC Educational Resources Information Center

    Hamada, Akira

    2015-01-01

    Three experiments examined whether the process of lexical inferences differs according to the direction of contextual elaboration using a semantic relatedness judgment task. In Experiment 1, Japanese university students read English sentences where target unknown words were semantically elaborated by prior contextual information (forward lexical…

  13. Differential-associative processing or example elaboration: Which strategy is best for learning the definitions of related and unrelated concepts?

    PubMed Central

    Hannon, Brenda

    2013-01-01

    Definitions of related concepts (e.g., genotype–phenotype) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts (morpheme-fluid intelligence), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts. PMID:24347814

  14. Standard Setting and Risk Preference: An Elaboration of the Theory of Achievement Motivation and an Empirical Test

    ERIC Educational Resources Information Center

    Kuhl, Julius

    1978-01-01

    A formal elaboration of the original theory of achievement motivation (Atkinson, 1957; Atkinson & Feather, 1966) is proposed that includes personal standards as determinants of motivational tendencies. The results of an experiment are reported that examines the validity of some of the implications of the elaborated model proposed here. (Author/RK)

  15. [Methodic approach to elaboration of regional educational programs of teaching rational nutrition in different population groups].

    PubMed

    Shibanova, N Iu

    2007-01-01

    Lack of knowledge is a serious obstacle to proper nutrition. Elaboration of regional programs for elevating the knowledge standard in nutrition problems is vital nowadays and is of great social and hygienic significance for the whole population of the Russian Federation. The training of nutrition problems is to be directed to the formation of complex idea of the main principles of proper nutrition, the structure of food diet concerning different labour conditions and age groups.

  16. Familial amyloid polyneuropathy: elaboration of a therapeutic patient education programme, "EdAmyl".

    PubMed

    Théaudin, Marie; Cauquil, Cécile; Antonini, Teresa; Algalarrondo, Vincent; Labeyrie, Céline; Aycaguer, Sophie; Clément, Mireille; Kubezyk, Marie; Nonnez, Géraldine; Morier, Agnès; Bourges, Catherine; Darras, Amandine; Mouzat, Laurence; Adams, David

    2014-12-01

    Transthyretin-related amyloidosis (ATTR) is an autosomal dominant disease affecting the peripheral and autonomic nervous system, heart, eyes and kidneys. It is the most disabling hereditary polyneuropathy in adults. The French National Reference centre for this disease was accredited in 2005 with 10 lines of action. One of them is to inform and educate patients about their disease to improve their care and reduce morbidities. We thus decided to elaborate a therapeutic patient education (TPE) programme, starting with patients' needs assessment. A qualitative research study was conducted with one-to-one semi-structured interviews of selected individuals. Recorded interviews were analysed to identify the skills that patients need to acquire. A TPE programme was elaborated on the basis of these findings. Seven patients, one asymptomatic carrier and two healthy spouses were interviewed. Analysis of the interviews showed that interviewees had a good knowledge of the disease and its symptoms but they had difficulties explaining the disease mechanism and did not have an adequate knowledge of the available treatment options, although they knew that liver transplant might halt progression of the disease. ATTR amyloidosis appeared to have a major negative impact on the patient's physical and mental well-being. Patients feared loss of autonomy and having to require assistance from their relatives and spouses. All interviewees were keen to participate in a TPE programme. Based on this needs assessment, we identified seven skills that patients need to acquire and several pedagogical goals to be achieved during the education programme. An interdisciplinary team then elaborated a complete TPE programme. Elaboration of a TPE programme for ATTR amyloidosis required to obtain useful information from the patients themselves, and their relatives, concerning their perception of their disease. This needs' assessment constituted the basis for designing the first TPE programme, to our

  17. Estimated glycemic index and dietary fiber content of cookies elaborated with extruded wheat bran.

    PubMed

    Reyes-Pérez, Faviola; Salazar-García, María Guadalupe; Romero-Baranzini, Ana Lourdes; Islas-Rubio, Alma Rosa; Ramírez-Wong, Benjamín

    2013-03-01

    The increasing demand for high-fiber products has favored the design of numerous bakery products rich in fiber such as bread, cookies, and cakes. The objective of this study was to evaluate the dietary fiber and estimated glycemic index of cookies containing extruded wheat bran. Wheat bran was subjected to extrusion process under three temperature profiles: TP1;(60, 75, 85 and 100 °C), TP2;(60, 80, 100 and 120 °C), and TP3;(60, 80, 110 and 140 °C) and three moisture contents: (15, 23, and 31 %). Cookies were elaborated using extruded wheat bran (30 %), separated into two fractions (coarse and fine). The dietary fiber content of cookies elaborated with extruded wheat bran was higher than the controls; C0 (100 % wheat flour) and C1 (30 % of no extruded bran coarse fraction) and C2 (30 % of no extruded bran fine fraction). The higher values of dietary fiber were observed on cookies from treatments 5 (TP1, 31 % moisture content and coarse fraction) and 11 (TP2, 31 % moisture content and coarse fraction). The estimated glycemic index of cookies ranged from 68.54 to 80.16. The dietary fiber content of cookies was increased and the lowest glycemic index corresponded to the cookies elaborated with extruded wheat bran. Cookie made with the treatment 11 had a better dietary fiber content and lower estimated glycemic index.

  18. Source entitativity and the elaboration of persuasive messages: the roles of perceived efficacy and message discrepancy.

    PubMed

    Clark, Jason K; Wegener, Duane T

    2009-07-01

    Compared with nonentitative groups, entitative targets are considered to elicit more elaborative processing because of the singularity or unity they represent. However, when groups serve as sources of persuasive messages, other dynamics may operate. The current research suggests that entitativity is intrinsically linked to perceptions of a group's efficacy related to the advocacy, and this efficacy combines with the position of the appeal to determine message elaboration. When messages are counterattitudinal, entitative (efficacious) sources should elicit greater processing than nonentitative groups because of concern that the entitative sources may be more likely to bring about the negative outcomes proposed. However, when appeals are proattitudinal, sources low in entitativity (nonefficacious) should initiate more elaboration due to concern that they may be unlikely to facilitate the positive outcomes proposed. These hypotheses were supported in a series of studies. Preliminary studies established the entitativity-efficacy relation (Studies 1A and 1B). Primary persuasion studies showed that manipulations of source entitativity (Studies 2 and 3) and source efficacy (Studies 4A and 4B) have opposite effects on processing as a function of message discrepancy.

  19. Processing of Nanostructured Devices Using Microfabrication Techniques

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W (Inventor); Xu, Jennifer C (Inventor); Evans, Laura J (Inventor); Kulis, Michael H (Inventor); Berger, Gordon M (Inventor); Vander Wal, Randall L (Inventor)

    2014-01-01

    Systems and methods that incorporate nanostructures into microdevices are discussed herein. These systems and methods can allow for standard microfabrication techniques to be extended to the field of nanotechnology. Sensors incorporating nanostructures can be fabricated as described herein, and can be used to reliably detect a range of gases with high response.

  20. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  1. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  2. Recent achievements in nanostructured photovoltaic devices.

    PubMed

    Khlyap, Halyna M; Laptev, Viktor I

    2011-06-01

    This mini-review summarizes some key interesting applications and perspectives of nanostructured devices for future nanoelectronics, among them are photonic circuits, carbon nanostructures for chemisensors, unique Ag-Cu-nanocluster contacts for high-effective solar cells. Recent patents in the field are also discussed.

  3. Energy transfer in nanostructured materials

    NASA Astrophysics Data System (ADS)

    Haughn, Chelsea

    Energy transport and loss are critical to the performance of optoelectronic devices such as photovoltaics and terahertz imaging devices. Nanostructured materials provide many opportunities to tailor transport and loss parameters for specific device applications. However, it has been very difficult to correlate specific nanoscale structural parameters with changes in these performance metrics. I report the development of new ways of using time-resolved photoluminescence (TRPL) to probe charge and energy transport and loss dynamics. These techniques are applied to several types of nanostructured materials, including bulk semiconductors with defects, self-assembled quantum dots and colloidal quantum dots. First, GaAs/InP double heterostructures grown via metal organic chemical vapor deposition (MOCVD) were characterized with TRPL. TRPL is typically used to extract minority carrier lifetimes, but we discovered that the measured lifetime depended critically on the intensity of the exciting laser. We developed a Shockley-Read-Hall model to extract trap state densities from intensity-dependent TRPL measurements. Second, we characterized energy and charge transfer between InAs quantum dots and ErAs nanoinclusions within III-V heterostructures. Using intensity- and temperature-dependent TRPL, we confirmed tunneling as the dominant mechanism of charge transport and characterized the electronic structure of the ErAs nanoparticles. Finally, we characterized energy transport in colloidal quantum dot cascade structures. These cascade structures utilize Forster Resonance Energy Transfer and trap state recycling to funnel excitons from donor layers to acceptor layers and suggest a promising method for avoiding losses associated with surface trap states. Collectively, the analysis of these disparate material types advances our understanding of energy dynamics in nanostructured materials and improves our ability to design the next generation of photovoltaic and optoelectronic

  4. Nanostructures, systems, and methods for photocatalysis

    DOEpatents

    Reece, Steven Y.; Jarvi, Thomas D.

    2015-12-08

    The present invention generally relates to nanostructures and compositions comprising nanostructures, methods of making and using the nanostructures, and related systems. In some embodiments, a nanostructure comprises a first region and a second region, wherein a first photocatalytic reaction (e.g., an oxidation reaction) can be carried out at the first region and a second photocatalytic reaction (e.g., a reduction reaction) can be carried out at the second region. In some cases, the first photocatalytic reaction is the formation of oxygen gas from water and the second photocatalytic reaction is the formation of hydrogen gas from water. In some embodiments, a nanostructure comprises at least one semiconductor material, and, in some cases, at least one catalytic material and/or at least one photosensitizing agent.

  5. High-performance nanostructured MR contrast probes

    PubMed Central

    Hu, Fengqin; Joshi, Hrushikesh M.; Dravid, Vinayak P.; Meade, Thomas J.

    2011-01-01

    Magnetic resonance imaging (MRI) has become a powerful technique in biological molecular imaging and clinical diagnosis. With the rapid progress in nanoscale science and technology, nanostructure-based MR contrast agents are undergoing rapid development. This is in part due to the tuneable magnetic and cellular uptake properties, large surface area for conjugation and favourable biodistribution. In this review, we describe our recent progress in the development of high-performance nanostructured MR contrast agents. Specifically, we report on Gd-enriched nanostructured probes that exhibit T1 MR contrast and superparamagnetic Fe3O4 and CoFe2O4 nanostructures that display T2 MR contrast enhancement. The effects of nanostructure size, shape, assembly and surface modification on relaxivity are described. The potential of these contrast agents for in vitro and in vivo MR imaging with respect to colloidal stability under physiological conditions, biocompatibility, and surface functionality are also evaluated. PMID:20694208

  6. Supramolecular Nanostructures Formed by Anticancer Drug Assembly

    PubMed Central

    Cheetham, Andrew G.; Zhang, Pengcheng; Lin, Yi-an; Lock, Lye Lin; Cui, Honggang

    2013-01-01

    We report here a supramolecular strategy to directly assemble the small molecular hydrophobic anticancer drug camptothecin (CPT) into discrete, stable, well-defined nanostructures with a high and quantitative drug loading. Depending on the number of CPTs in the molecular design, the resulting nanostructures can be either nanofibers or nanotubes, and have a fixed CPT loading content ranging from 23% to 38%. We found that formation of nanostructures provides protection for both the CPT drug and the biodegradable linker from the external environment and thus offers a mechanism for controlled release of CPT. Under tumor-relevant conditions, these drug nanostructures can release the bioactive form of CPT and show in vitro efficacy against a number of cancer cell lines. This strategy can be extended to construct nanostructures of other types of anticancer drugs, and thus presents new opportunities for the development of self-delivering drugs for cancer therapeutics. PMID:23379791

  7. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

    NASA Astrophysics Data System (ADS)

    Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.

    2017-06-01

    Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.

  8. Effect of Si addition on the structural, microstructural and magnetic properties of (Fe70Al30)100-xSix nanostructured powders elaborated by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hemmous, M.; Guittoum, A.; Kezrane, M.; Boukherroub, N.; Martínez-Blanco, D.; Gorria, P.; Blanco, J. A.; Souami, N.; Fenineche, N.

    2017-10-01

    In the present work, nanocrystalline (Fe70Al30)100-xSix (x = 0, 5, 10, 15 and 20 at.%) powders were prepared by mechanical alloying for a fixed milling time of 72 h. The powder samples were characterized in terms of structural evolution, morphological changes and magnetic behavior. The X-ray diffraction measurements reveal that all the samples are of (bcc) single phase with an average crystallite size less than 22 nm. Besides, the lattice parameter decreases with Si content (x) up to the solubility limit of Si atoms into the α-Fe lattice where it remains independent of the composition. The magnetic data obtained by Vibrating Sample Magnetometer showed that the saturation magnetization decreases monotonously with Si content increasing x, whereas coercivity which not only depends on composition but also on structure of the sample decreases to a minimum of 20.3 Oe at x = 10 at.% and increases abruptly at the higher x value (x = 20 at.%). Mössbauer spectroscopy analyses indicated that the sample with x = 5 at.% exhibits a fully ferromagnetic behavior and that beyond this concentration, the content of the ferromagnetic phase gradually decreases due to the non magnetic nature of Si.

  9. Dispersion and separation of nanostructured carbon in organic solvents

    NASA Technical Reports Server (NTRS)

    Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor); Ruf, Herbert J. (Inventor); Evans, Christopher M. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  10. Influence de revetements bioactifs sur les cellules endotheliales: Vers des protheses vasculaires non thrombotiques

    NASA Astrophysics Data System (ADS)

    Fadlallah, Hicham

    Developing vascular prostheses of small diameter to replace vessels closed by atherosclerosis remains a challenge because of the risk of thrombosis. Seeding of endothelial cells, which have antithrombogenic properties, is a promising solution, but we must create surfaces which promote their adhesion and retention to resist shear stresses created by the blood flow on the surface. This master's project aimed at investigating the effect of a plasma polymerized coating rich in primary amines (called LP), with or without elements of the extracellular matrix (Fibronectin (FN) or chondroitin sulphate (CS)) on the endothelial cells and hemocompatibility of polyethylene terephthalate (PET). The adhesion, growth and retention of human umbilical vein endothelial cells (HUVECs) on PET and LP, in the presence and absence of FN or CS, have been studied. In addition, platelet adhesion on different surfaces was evaluated by a perfusion test with whole blood, platelets being previously labeled with rhodamine. Finally a double fluorescent labeling (using Cellview Maroon to mark the HUVECs and CD61 antibody for platelets) was developed to study the retention of endothelial cells, under blood flow and verify their non thrombogenic character. The results obtained show that both the LP coating and the adsorbed FN, strongly increase both the cellular adhesion and growth on PET; however they have no additional effect when the two are combined. They also augment cellular retention to surface, but this remains incomplete. Moreover we observed that the plasma coating (LP) greatly increases the thrombogenicity of the surface, with strong platelet adhesion and activation. This thrombogenicity is extremely reduced when endothelial cells cover the surface, but cell loss under the effect of shear produced by the perfusion creates significant areas of platelet adhesion. The grafting of CS on LP also permits good HUVECs adhesion, growth and retention under shear stress on HUVEC, with no difference from the LP alone. In addition, the CS sharply decreases the platelet adhesion, which is found below the value observed for PET. The double cell labeling also showed that cells adhered on LP+CS has an anti-thrombotic phenotype and can resist blood flow. These studies suggest that a coating of CS is a promising strategy for vascular prosthesis given the combination of the good adhesion of endothelial cells and the low thrombogenicity of the underlying surface. Keywords: vascular prostheses, polymers, bioactive coating, thrombogenicity, HUVECs.

  11. Quantitative Characterization of Nanostructured Materials

    SciTech Connect

    Dr. Frank Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to real-world materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  12. Process Development for Nanostructured Photovoltaics

    SciTech Connect

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  13. Biocompatibility of plasma nanostructured biopolymers

    NASA Astrophysics Data System (ADS)

    Slepičková Kasálková, N.; Slepička, P.; Bačáková, L.; Sajdl, P.; Švorčík, V.

    2013-07-01

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell's adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  14. EDITORIAL: Nanostructures + Light = 'New Optics'

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay; Shalaev, Vladimir

    2005-02-01

    Suddenly, at the end of the last century, classical optics and classical electrodynamics became fashionable again. Fields that several generations of researchers thought were comprehensively covered by the famous Born and Wolf textbook and were essentially dead as research subjects were generating new excitement. In accordance with Richard Feynman’s famous quotation on nano-science, the optical community suddenly discovered that 'there is plenty of room at the bottom'—mixing light with small, meso- and nano-structures could generate new physics and new mind-blowing applications. This renaissance began when the concept of band structure was imported from electronics into the domain of optics and led to the development of what is now a massive research field dedicated to two- and three-dimensional photonic bandgap structures. The field was soon awash with bright new ideas and discoveries that consolidated the birth of the 'new optics'. A revision of some of the basic equations of electrodynamics led to the suspicion that we had overlooked the possibility that the triad of wave vector, electric field and magnetic field, characterizing propagating waves, do not necessarily form a right-handed set. This brought up the astonishing possibilities of sub-wavelength microscopy and telescopy where resolution is not limited by diffraction. The notion of meta-materials, i.e. artificial materials with properties not available in nature, originated in the microwave community but has been widely adopted in the domain of optical research, thanks to rapidly improving nanofabrication capabilities and the development of sub-wavelength scanning imaging techniques. Photonic meta-materials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials. The structural units of meta-materials can be tailored in shape and size; their composition and morphology can be artificially tuned, and inclusions can be

  15. Silicon-embedded copper nanostructure network for high energy storage

    DOEpatents

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  16. Peripheral androgen receptors sustain the acrobatics and fine motor skill of elaborate male courtship.

    PubMed

    Fuxjager, Matthew J; Longpre, Kristy M; Chew, Jennifer G; Fusani, Leonida; Schlinger, Barney A

    2013-09-01

    Androgenic hormones regulate many aspects of animal social behavior, including the elaborate display routines on which many species rely for advertisement and competition. One way that this might occur is through peripheral effects of androgens, particularly on skeletal muscles that control complex movements and postures of the body and its limbs. However, the specific contribution of peripheral androgen-muscle interactions to the performance of elaborate behavioral displays in the natural world has never been examined. We study this issue in one of the only natural physiological models of animal acrobatics: the golden-collared manakin (Manacus vitellinus). In this tropical bird, males compete with each other and court females by producing firecracker-like wing- snaps and by rapidly dancing among saplings over the forest floor. To test how activation of peripheral androgen receptors (AR) influences this display, we treat reproductively active adult male birds with the peripherally selective antiandrogen bicalutamide (BICAL) and observe the effects of this manipulation on male display performance. We not only validate the peripheral specificity of BICAL in this species, but we also show that BICAL treatment reduces the frequency with which adult male birds perform their acrobatic display maneuvers and disrupts the overall structure and fine-scale patterning of these birds' main complex wing-snap sonation. In addition, this manipulation has no effect on the behavioral metrics associated with male motivation to display. Together, our findings help differentiate the various effects of peripheral and central AR on the performance of a complex sociosexual behavioral phenotype by indicating that peripheral AR can optimize the motor skills necessary for the production of an elaborate animal display.

  17. Peripheral Androgen Receptors Sustain the Acrobatics and Fine Motor Skill of Elaborate Male Courtship

    PubMed Central

    Longpre, Kristy M.; Chew, Jennifer G.; Fusani, Leonida; Schlinger, Barney A.

    2013-01-01

    Androgenic hormones regulate many aspects of animal social behavior, including the elaborate display routines on which many species rely for advertisement and competition. One way that this might occur is through peripheral effects of androgens, particularly on skeletal muscles that control complex movements and postures of the body and its limbs. However, the specific contribution of peripheral androgen-muscle interactions to the performance of elaborate behavioral displays in the natural world has never been examined. We study this issue in one of the only natural physiological models of animal acrobatics: the golden-collared manakin (Manacus vitellinus). In this tropical bird, males compete with each other and court females by producing firecracker-like wing- snaps and by rapidly dancing among saplings over the forest floor. To test how activation of peripheral androgen receptors (AR) influences this display, we treat reproductively active adult male birds with the peripherally selective antiandrogen bicalutamide (BICAL) and observe the effects of this manipulation on male display performance. We not only validate the peripheral specificity of BICAL in this species, but we also show that BICAL treatment reduces the frequency with which adult male birds perform their acrobatic display maneuvers and disrupts the overall structure and fine-scale patterning of these birds' main complex wing-snap sonation. In addition, this manipulation has no effect on the behavioral metrics associated with male motivation to display. Together, our findings help differentiate the various effects of peripheral and central AR on the performance of a complex sociosexual behavioral phenotype by indicating that peripheral AR can optimize the motor skills necessary for the production of an elaborate animal display. PMID:23782945

  18. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  19. [Simplification and over-elaboration in English translation of traditional Chinese medicine].

    PubMed

    Shen, Xiao-Xiong

    2007-09-01

    Aiming at the problem concerning simplification or over-elaboration in the English translation of TCM, which exists in the most common teaching materials both at home and abroad, the author indicated, by way of illustration, that the English translation of TCM should match the international teaching requirement for TCM: popularized, simple and clear, without superfluities, recommended for applying Chinese Pinyin, rich and colorful in both text and illustrative atlases. Meanwhile, the English translations should be faithful to their origi-nals, conform to the characteristics of TCM and vulgarity should be avoided.

  20. A real-time data acquisition and elaboration system for instabilities control in the FTU tokamak

    NASA Astrophysics Data System (ADS)

    Alessi, E.; Boncagni, L.; Galperti, C.; Marchetto, C.; Nowak, S.; Sozzi, C.; Apruzzese, G.; Bin, W.; Belli, F.; Botrugno, A.; Bruschi, A.; Cirant, S.; D‧Antona, G.; Davoudi, M.; Figini, L.; Ferrero, R.; Gabellieri, L.; Garavaglia, S.; Granucci, G.; Grosso, A.; Lazzaro, E.; Moro, A.; Mellera, V.; Minelli, D.; Panella, M.; Piergotti, V.; Platania, P.; Ramogida, G.; Rocchi, G.; Sibio, A.; Tilia, B.; Tudisco, O.

    2013-08-01

    A real-time data acquisition and elaboration system is being implemented to control the new ECH launcher recently installed at FTU (Frascati Tokamak Upgrade). The system is aimed at controlling different kinds of magnetohydrodynamic instabilities, in particular the deleterious 3/2 and 2/1 (neoclassical) tearing modes, (N)TM, and the saw teeth period in order to prevent the seeding of NTMs. The complete system is presented here together with preliminary offline and real-time tests. 2001 Elsevier Science.

  1. Optical design including characteristics of manufactured nanostructures

    NASA Astrophysics Data System (ADS)

    Wächter, Christoph; Müller, Martin; Förster, Erik; Oliva, Maria; Michaelis, Dirk

    2013-09-01

    Micro- and nanostructures enable specific optical functionalities, which rely on diffractive effects or effective medium features, depending on pattern dimension and wavelength. Performance predictions of optical systems which make use of nanostructured materials require having an accurate description of these materials ready to hand within the optical design. At the one hand, nanostructure characteristics which result from rigorous electromagnetic modeling can be used for the optical design. At the other hand, manufactured nanostructures may deviate from their idealized geometry, which will affect the performance of the optical system, wherein these artificial structures will be used. Thus, detailed optical characterization of the micro- or nanostructure functionality is prerequisite for accurate optical design and performance prediction. To this end, several characterization techniques can be applied depending on the scope of the optical design, finally. We report on a general route to include all accessible and required optical information about the nanostructured material within a corresponding model of the nanostructure as a specific optical component which can be used within a ray-trace engine, finally. This is illustrated by a meta-material with asymmetric transmission properties in some more detail.

  2. Sequence-specific recognition of DNA nanostructures.

    PubMed

    Rusling, David A; Fox, Keith R

    2014-05-15

    DNA is the most exploited biopolymer for the programmed self-assembly of objects and devices that exhibit nanoscale-sized features. One of the most useful properties of DNA nanostructures is their ability to be functionalized with additional non-nucleic acid components. The introduction of such a component is often achieved by attaching it to an oligonucleotide that is part of the nanostructure, or hybridizing it to single-stranded overhangs that extend beyond or above the nanostructure surface. However, restrictions in nanostructure design and/or the self-assembly process can limit the suitability of these procedures. An alternative strategy is to couple the component to a DNA recognition agent that is capable of binding to duplex sequences within the nanostructure. This offers the advantage that it requires little, if any, alteration to the nanostructure and can be achieved after structure assembly. In addition, since the molecular recognition of DNA can be controlled by varying pH and ionic conditions, such systems offer tunable properties that are distinct from simple Watson-Crick hybridization. Here, we describe methodology that has been used to exploit and characterize the sequence-specific recognition of DNA nanostructures, with the aim of generating functional assemblies for bionanotechnology and synthetic biology applications.

  3. Electron emission from nanostructured materials

    NASA Astrophysics Data System (ADS)

    Safir, Abdelilah

    In this dissertation, standardized methods for measuring electron emission (EE) from nanostructured materials are established. Design of an emitter array platform, synthesis and nanomanipulation of different types of are successfully conducted. Preexisting as well as novel nanostructures are examined for possible use as electron point sources. Three main categories of emitters are under evaluation: oxide nanowires, metallic nanowires and carbon based nanomaterials (CBNs). Tungsten oxides nanowires have low work function, then metallic nanowires have high electrical conductivity and abundant number of free electrons at and below their Fermi level and lastly, CBNs have superior electrical, mechanical, chemical and thermal properties. This evaluation is designed to compare and choose among the nanoemitters that are suitable for EE. Simulation through theoretical modeling is provided to optimize the parameters directly or indirectly affecting EE properties. The models are to enhance the emitter's performance through increase the packing density, reduce the field screening effect, lower the turn-on and the threshold electric fields and increase the emission current densities. The current estimations and the modeling of the validity regions where EE types theoretically exist, help to select and fabricate optimum emitters. An assembly consisting of sample substrate, electrical feedthroughs, electrodes, nano/micro-manipulator and insulators are mounted within a vacuum chamber. An ion vacuum pump and a turbo pump are used to reach a vacuum pressure of 10-7 Torr. Two systems are used for EE characterization of nanostructures: bulk and In-situ configurations. The bulk investigation is realized by designing a vacuum chamber and different sample holders that can resist harsh environment as well as high temperature for both FE and TE experiments. In-situ experiments are conducted in the chamber of the scanning electron microscope (SEM), it consists of designing special sample

  4. Energetics of hydrogen storage in organolithium nanostructures

    SciTech Connect

    Namilae, Sirish; Fuentes-Cabrera, Miguel A; Radhakrishnan, Balasubramaniam; Gorti, Sarma B; Nicholson, Don M

    2007-01-01

    Ab-initio calculations based on the second order Moller-Plesset perturbation theory (MP2) were used to investigate the interaction of molecular hydrogen with alkyl lithium organometallic compounds. It is found that lithium in organolithium structures attracts two hydrogen molecules with a binding energy of about 0.14 eV. The calculations also show that organolithium compounds bind strongly with graphitic nanostructures. Therefore, these carbon based nanostructures functionalized with organolithium compounds can be effectively used for storage of molecular hydrogen. Energetics and mechanisms for achieving high weight percent hydrogen storage in organolithium based nanostructures are discussed.

  5. Nanostructured transparent conducting oxide electrochromic device

    DOEpatents

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  6. Ceramic nanostructures and methods of fabrication

    DOEpatents

    Ripley, Edward B.; Seals, Roland D.; Morrell, Jonathan S.

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  7. Nanostructured organic and hybrid solar cells.

    PubMed

    Weickert, Jonas; Dunbar, Ricky B; Hesse, Holger C; Wiedemann, Wolfgang; Schmidt-Mende, Lukas

    2011-04-26

    This Progress Report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices.

  8. Electrodeposition of one-dimensional nanostructures.

    PubMed

    She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2009-01-01

    Electrodeposition is a simple and flexible method for the synthesis of one-dimensional (1D) nanostructures and has attracted more and more attention in recent years. 1D nanostructures of metals, semiconductors and polymers have been successfully fabricated by electrodeposition. Templates were often used in the electrochemical process to realize the 1D growth. On the other hand, some materials with intrinsic anisotropic crystal structures can also be prepared by the template-free electrochemical method. In this paper, we review the recent patents progress and offer some prospects of future directions in electrodeposition of 1D nanostructures.

  9. Nonlinear Optical Microscopy of Single Nanostructures

    NASA Astrophysics Data System (ADS)

    Huang, Libai; Cheng, Ji-Xin

    2013-07-01

    We review recent advances in nonlinear optical (NLO) microscopy studies of single nanostructures. NLO signals are intrinsically sensitive to the electronic, vibrational, and structural properties of such nanostructures. Ultrafast excitation allows for mapping of energy relaxation pathways at the single-particle level. The strong nonlinear response of nanostructures makes them highly attractive for applications as novel NLO imaging agents in biological and biomedical research. NLO modalities based on harmonic generation, multiphoton photoluminescence, four-wave mixing, and pump-probe processes are discussed in detail.

  10. Nanostructured lead sulfide: synthesis, structure and properties

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Gusev, A. I.; Rempel, A. A.

    2016-07-01

    The theoretical and experimental results of recent studies dealing with nanostructured lead sulfide are summarized and analyzed. The key methods for the synthesis of nanostructured lead sulfide are described. The crystal structure of PbS in nanopowders and nanofilms is discussed. The influence of the size of nanostructure elements on the optical and thermal properties of lead sulfide is considered. The dependence of the band gap of PbS on the nanoparticle (crystallite) size for powders and films is illustrated. The bibliography includes 222 references.

  11. The effect of face-to-face collaborative learning on the elaboration of computer-based simulated cases.

    PubMed

    de Leng, Bas A; Muijtjens, Arno M; van der Vleuten, Cees P

    2009-01-01

    This study investigates the effects of working face to face in small groups on the processes that occur when students elaborate on computer-based simulated cases. We performed a randomized controlled experiment that was designed to measure the effect of "social context" (triads versus individuals) on students' perceptions of the elaboration process and on the time spent on the different parts of the computer case. We sought students' perceptions using a questionnaire that was administered to all participating students (N = 47) and we examined the actions of the students working in triads (N = 12) and individually (N = 11) by analyzing the log files of the computer case. The results demonstrated no significant effect of social context on the degree of elaboration of the computer case. Working with computer-based simulated cases in small groups as opposed to individually in itself is not enough to increase the scope and depth of the elaboration of computer cases.

  12. Elaborating patient information with patients themselves: lessons from a cancer treatment focus group

    PubMed Central

    Moumjid, Nora; Morelle, Magali; Carrère, Marie‐Odile; Bachelot, Thomas; Mignotte, Hervé; Brémond, Alain

    2003-01-01

    Abstract Objective  To assess the significance of patients' input in the elaboration of a patient information booklet. Design  Qualitative study based on focus group discussions. Setting  Centre Léon Bérard, a comprehensive cancer centre in the Rhône‐Alpes region of France. Participants  (1) A multidisciplinary working group (oncologists, health economists and one clinical psychologist) wrote up initial information documents concerning possible breast cancer treatments. (2) A focus group comprised of patients with a history of breast cancer and healthy volunteers discussed their reactions to these documents. Main outcome measure  Analysis of the focus group's reactions according to key themes predetermined by the working group and related themes introduced by the focus group itself. Results  The focus group proposed numerous, significant modifications to answer requests for additional information, clarification and better readability in the information booklets. Discussion/Conclusions  This qualitative analysis showed a significant input of patients' perspective in the elaboration of patient information. It is also an additional support to the feasibility and appropriateness of the focus group technique. The next stage will be to test whether information documents produced here conform to the needs of patients currently undergoing treatment. PMID:12752741

  13. Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Moussa, S.; Namouchi, F.; Guermazi, H.

    2015-07-01

    Hybrid nanocomposites were elaborated by incorporating ZnO nanoparticles into a transparent epoxy polymer matrix, using the direct dispersion method. The effect of the nanoparticles on the structural and optical properties of the polymer matrix was investigated using Fourier transform infrared (FTIR), Raman and UV-Visible spectroscopies. Nanocomposites FTIR spectra showed a variation of band intensities attributed to nanoparticles agglomeration within the polymer. The UV-Visible measurements showed a redshift on the band gap energy of the nanocomposites differently from neat epoxy resin, caused by interactions between ZnO NPs and polymer chains. Raman spectra confirm these interactions and the formation of hydrogen bonds in the nanocomposites. The UV-Visible transmittance spectra revealed that addition of a very low concentration (0.2wt%) of ZnO nanoparticles to a transparent epoxy matrix would maintain high visible-light transparency. The decrease of transmittance with increasing ZnO percentage is due to light scattering which originates from the agglomeration of nanoparticles in the matrix, the mismatch between the refractive index of ZnO and that of the epoxy matrix, and the increase of the surface roughness of the nanocomposite with increasing ZnO addition. Moreover, the UV-vis absorption spectra revealed that adding more than 1wt% ZnO leads to the improvement of the UV shielding properties of the nanocomposites. These results prove that the elaborated ZnO/epoxy nanocomposites can be used as UV shielding materials.

  14. 2-Furoylmethyl amino acids as indicators of Maillard reaction during the elaboration of black garlic.

    PubMed

    Ríos-Ríos, Karina L; Vázquez-Barrios, M Estela; Gaytán-Martínez, Marcela; Olano, Agustín; Montilla, Antonia; Villamiel, Mar

    2018-02-01

    This study reports the formation of 2-furomethyl-amino acids (2-FM-AA) as indicators of Maillard reaction (MR) in black garlic elaboration, followed by the determination of furosine by ion-pair RP-HPLC-UV. The method was assessed for accuracy, repeatability and detection and quantitation limits indicating its adequacy. Traditional procedure of black garlic obtainment and the inclusion of convective drying (CDP) and ohmic heating (OHP) were assayed. For comparison purposes, three commercial black garlic samples were used. Together with furosine (2-FM-lysine), 2-furoylmethyl-γ-aminobutyric acid and 2-FM-arginine were detected. Levels of furosine were higher in CDP (46.6-110.1mg/100g protein) than in OHP (13.7-42.0mg/100g protein) samples, probably due to the most severe processing conditions used in the former. These results highlight the suitability of 2-FM-AA as chemical indicators to monitor the process of black garlic elaboration in order to obtain high quality products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Psychoanalytic psychodrama in France and group elaboration of counter-transference: Therapeutic operators in play therapy.

    PubMed

    Blanc, Adrien; Boutinaud, Jérôme

    2016-06-15

    In France, psychoanalytic psychodrama is mainly envisioned in its individual form - that is, a single patient working with a group of therapists. Its originality consists in bringing together several clinicians within a clinical experience that is shared as a group. This experience is fundamentally different from traditional individual therapies, psychotherapies or group co-led therapies. Its configuration may be confusing or overwhelming due to the large number of co-therapists involved in the setting. However, thanks to group elaboration based on the transferential-countertransferential dynamics induced by the treated patient, this potential 'cacophony' can lead to fruitful psychic development embedded in play. This is tied to the co-therapists' positioning in the transitional space shared with the patient as well as to the patient's subjective appropriation of their initiatives. By reflecting on clinical material taken from actual sessions as well as from the exchanges and elaborations occurring at their margins, this article shows how psychodrama and group come to metabolize the transferential elements, shaping the engagement of participants in the context of improvised play.

  16. SOXE neofunctionalization and elaboration of the neural crest during chordate evolution

    PubMed Central

    Tai, Andrew; Cheung, Martin; Huang, Yong-Heng; Jauch, Ralf; Bronner, Marianne E.; Cheah, Kathryn S. E.

    2016-01-01

    During chordate evolution, two genome-wide duplications facilitated acquisition of vertebrate traits, including emergence of neural crest cells (NCCs), in which neofunctionalization of the duplicated genes are thought to have facilitated development of craniofacial structures and the peripheral nervous system. How these duplicated genes evolve and acquire the ability to specify NC and their derivatives are largely unknown. Vertebrate SoxE paralogues, most notably Sox9/10, are essential for NC induction, delamination and lineage specification. In contrast, the basal chordate, amphioxus, has a single SoxE gene and lacks NC-like cells. Here, we test the hypothesis that duplication and divergence of an ancestral SoxE gene may have facilitated elaboration of NC lineages. By using an in vivo expression assay to compare effects of AmphiSoxE and vertebrate Sox9 on NC development, we demonstrate that all SOXE proteins possess similar DNA binding and homodimerization properties and can induce NCCs. However, AmphiSOXE is less efficient than SOX9 in transactivation activity and in the ability to preferentially promote glial over neuronal fate, a difference that lies within the combined properties of amino terminal and transactivation domains. We propose that acquisition of AmphiSoxE expression in the neural plate border led to NCC emergence while duplication and divergence produced advantageous mutations in vertebrate homologues, promoting elaboration of NC traits. PMID:27734831

  17. The limits of elaboration: curved allometries reveal the constraints on mandible size in stag beetles.

    PubMed

    Knell, Robert J; Pomfret, Joanne C; Tomkins, Joseph L

    2004-03-07

    Many studies have demonstrated the adaptive advantage of elaborate secondary sexual traits, but few if any have shown compelling evidence for the limits to the elaboration of these traits that must exist. We describe such evidence in the exaggerated mandibles of stag beetles. In 1932, Huxley showed that the slope of the allometric relationship between mandible length and body size in some stag beetles declines in the largest males. We show that this curvature is most pronounced in species with relatively long mandibles, consistent with the hypothesis that the decrease in slope is caused by the increasing costs of large mandibles, which ultimately limit their size. Increasing depletion of resources in the prepupa and pupa by the rapidly growing mandibles is the most likely way in which these costs are manifested. The curved allometries have two components: intraspecific mandible allometry is steepest among small males of the species with the longest mandibles, but shallowest among the largest males of those same species. These patterns suggest that selection continues to favour positive allometry in species that invest relatively more in weaponry despite the limits to mandible exaggeration being reached in the largest males.

  18. The ESCRT machinery influences haem uptake and capsule elaboration in Cryptococcus neoformans

    PubMed Central

    Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Bakkeren, Erik; Do, Eunsoo; Jung, Won Hee; Kronstad, James W.

    2015-01-01

    Summary Iron availability is a key determinant of virulence in the pathogenic fungus Cryptococcus neoformans. Previous work revealed that the ESCRT (endosomal sorting complex required for transport) protein Vps23 functions in iron acquisition, capsule formation and virulence. Here, we further characterized the ESCRT machinery to demonstrate that defects in the ESCRT-II and III complexes caused reduced capsule attachment, impaired growth on haem and resistance to non-iron metalloprotoporphyrins. The ESCRT mutants shared several phenotypes with a mutant lacking the pH-response regulator Rim101 and, in other fungi, the ESCRT machinery is known to activate Rim101 via proteolytic cleavage. We therefore expressed a truncated and activated version of Rim101 in the ESCRT mutants and found that this allele restored capsule formation but not growth on haem, thus suggesting a Rim101-independent contribution to haem uptake. We also demonstrated that the ESCRT machinery acts downstream of the cAMP/protein kinase A pathway to influence capsule elaboration. Defects in the ESCRT components also attenuated virulence in macrophage survival assays and a mouse model of cryptococcosis to a greater extent than reported for loss of Rim101. Overall, these results indicate that the ESCRT complexes function in capsule elaboration, haem uptake and virulence via Rim101-dependent and independent mechanisms. PMID:25732100

  19. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials.

    PubMed

    Chan, An-Wen; Tetzlaff, Jennifer M; Gøtzsche, Peter C; Altman, Douglas G; Mann, Howard; Berlin, Jesse A; Dickersin, Kay; Hróbjartsson, Asbjørn; Schulz, Kenneth F; Parulekar, Wendy R; Krleza-Jeric, Karmela; Laupacis, Andreas; Moher, David

    2013-01-08

    High quality protocols facilitate proper conduct, reporting, and external review of clinical trials. However, the completeness of trial protocols is often inadequate. To help improve the content and quality of protocols, an international group of stakeholders developed the SPIRIT 2013 Statement (Standard Protocol Items: Recommendations for Interventional Trials). The SPIRIT Statement provides guidance in the form of a checklist of recommended items to include in a clinical trial protocol. This SPIRIT 2013 Explanation and Elaboration paper provides important information to promote full understanding of the checklist recommendations. For each checklist item, we provide a rationale and detailed description; a model example from an actual protocol; and relevant references supporting its importance. We strongly recommend that this explanatory paper be used in conjunction with the SPIRIT Statement. A website of resources is also available (www.spirit-statement.org). The SPIRIT 2013 Explanation and Elaboration paper, together with the Statement, should help with the drafting of trial protocols. Complete documentation of key trial elements can facilitate transparency and protocol review for the benefit of all stakeholders.

  20. Fast elaboration of diagnostic data for real time control in FTU tokamak

    NASA Astrophysics Data System (ADS)

    Alessi, E.; Boncagni, L.; Botrugno, A.; Cirant, S.; Galperti, C.; Marchetto, C.; Nowak, S.; Sozzi, C.; Tudisco, O.

    2012-09-01

    The automatic controller developed for MHD instability control on FTU via the real time (RT) EC launcher [1, 2] is based on the a-priori estimate of the instabilities location and on the fast elaboration of the stream of diagnostic data. A fast data acquisition system, based on existing standard FTU diagnostics, collects thermal and magnetic signals by a 12-channels ECE polychromator [3] and by a set of 22 Mirnov coils respectively. Moreover, the EC time waveform from directional couplers along the transmission line is acquired as well. This set of signals is processed in a timescale significantly shorter than the typical time step of the controller (1ms). RT elaboration algorithms aim at supplying the controller [4] with reliable information about the existence and the spatial location of the instability and about the actual ECRH deposition layer in plasma. The main algorithms blocks are ECE-ECE, ECE-Mirnov and ECE-ECRH cross-correlation, and SVD (Singular Value Decomposition) of Mirnov signals. The capabilities of effective detection, false positive resilience, and mode discrimination will be discussed through the application to actual plasma data.

  1. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials

    PubMed Central

    Tetzlaff, Jennifer M; Gøtzsche, Peter C; Altman, Douglas G; Mann, Howard; Berlin, Jesse A; Dickersin, Kay; Hróbjartsson, Asbjørn; Schulz, Kenneth F; Parulekar, Wendy R; Krleža-Jerić, Karmela; Laupacis, Andreas; Moher, David

    2013-01-01

    High quality protocols facilitate proper conduct, reporting, and external review of clinical trials. However, the completeness of trial protocols is often inadequate. To help improve the content and quality of protocols, an international group of stakeholders developed the SPIRIT 2013 Statement (Standard Protocol Items: Recommendations for Interventional Trials). The SPIRIT Statement provides guidance in the form of a checklist of recommended items to include in a clinical trial protocol. This SPIRIT 2013 Explanation and Elaboration paper provides important information to promote full understanding of the checklist recommendations. For each checklist item, we provide a rationale and detailed description; a model example from an actual protocol; and relevant references supporting its importance. We strongly recommend that this explanatory paper be used in conjunction with the SPIRIT Statement. A website of resources is also available (www.spirit-statement.org). The SPIRIT 2013 Explanation and Elaboration paper, together with the Statement, should help with the drafting of trial protocols. Complete documentation of key trial elements can facilitate transparency and protocol review for the benefit of all stakeholders. PMID:23303884

  2. [Participation of thalamic nuclei in the elaboration of conditioned avoidance reflexes of rats. IV. Lesions of the nucleus reuniens].

    PubMed

    Flämig, R; Klingberg, F

    1978-01-01

    The elaboration of conditioned avoidance reflexes in a Y-maze and in the jumping test was scarcely influenced by lesion of the n. reuniens of the thalamus in hooded rats. The increase of intertrialreactions in the jumping test after such lesions in contrast to the control group indicates changes in the regulation of motivational processes. After additional lesion of the n. rhomboideus neither the conditioned avoidance nor the unconditioned escape reaction were elaborated in the jumping test.

  3. Quantum rotor in nanostructured superconductors

    PubMed Central

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  4. Cluster assembly of hierarchical nanostructures

    SciTech Connect

    Siegel, R.W.

    1992-02-01

    In the past few years, atom clusters with diameters in the range of 2--20 nm of a variety of materials, including both metals and ceramics, have been synthesized by evaporation and condensation in high-purity gases and subsequently consolidated in situ under ultrahigh vacuum conditions to create nanophase materials. These new utlrafine-grained materials have properties that are often significantly different and considerably improved relative to those of their coarser-grained counterparts owing to both their small grain-size scale and the large percentage of their atoms in grain boundary environments. Since their properties can be engineered during the synthesis and processing steps, cluster-assembled materials appear to have significant potential for the introduction of a hierarchy of both structure and properties. Some of the recent research on nanophase materials related to properties and scale are reviewed and some of the possibilities for synthesizing hierarchical nanostructures via cluster assembly are considered.

  5. Nanostructured Materials for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

    2003-01-01

    The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

  6. Nanostructured scaffolds for neural applications.

    PubMed

    Seidlits, Stephanie K; Lee, Jae Y; Schmidt, Christine E

    2008-04-01

    This review discusses the design of scaffolds having submicron and nanoscale features for neural-engineering applications. In particular, the goal is to create materials that can interface more intimately with individual neuronal cells, within both living tissues and in culture, by better mimicking the native extracellular environment. Scaffolds with nanoscale features have the potential to improve the specificity and accuracy of materials for a number of neural-engineering applications, ranging from neural probes for Parkinson's patients to guidance scaffolds for axonal regeneration in patients with traumatic nerve injuries. This review will highlight several techniques that are used to create nanostructured scaffolds, such as photolithography to create grooves for neurite guidance, electrospinning of fibrous matrices, self-assembly of 3D scaffolds from designer peptides and fabrication of conductive nanoscale materials. Most importantly, this review focuses on the effects of incorporating nanoscale architectures into these materials on neuronal and glial cell growth and function.

  7. Characterization of Si nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Zaidi, Saleem H.; Gee, James M.; Ruby, Douglas S.; Brueck, Steven R. J.

    1999-06-01

    Surface scattering of Si to enhanced absorption particularly in the IR spectral region has been extensively investigated. Previous research chiefly examined approaches based on geometrical optics. These surface textures typically consist of pyramids with dimensions much larger than optical wavelengths. We have investigated a physical optics approach that relies on surface texture features comparable to, or smaller than, the optical wavelengths inside the semiconductor material. Light interaction at this are strongly dependent on incident polarization and surface profile. Nanoscale textures can be tuned for either narrow band, or broad band absorptive behavior. Lowest broad band reflection has been observed for triangular profiles with linewidths significantly less than 100 nm. Si nanostructures have been integrated into large (approximately 42 cm2) area solar cells. Internal quantum efficiency measurements in comparison with polished and conventionally textured cells show lower efficiency in the UV-visible (350 - 680 nm), but significantly higher IR (700 - 1200 nm) efficiency.

  8. Reconfigurable optical assembly of nanostructures

    NASA Astrophysics Data System (ADS)

    Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun

    2016-06-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays.

  9. Dimensional crossover in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru

    2016-08-01

    Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.

  10. Dimensional crossover in semiconductor nanostructures

    PubMed Central

    McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru

    2016-01-01

    Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5–10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies. PMID:27577091

  11. Nanorice Particles: Hybrid Plasmonic Nanostructures

    NASA Technical Reports Server (NTRS)

    Wang, Hui (Inventor); Brandl, Daniel (Inventor); Le, Fei (Inventor); Nordlander, Peter (Inventor); Halas, Nancy J. (Inventor)

    2010-01-01

    A new hybrid nanoparticle, i.e., a nanorice particle, which combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells, is described herein. This geometry possesses far greater structural tunability than previous nanoparticle geometries, along with much larger local field enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than presently known dielectric-conductive material nanostructures. In an embodiment, a nanoparticle comprises a prolate spheroid-shaped core having a first aspect ratio. The nanoparticle also comprises at least one conductive shell surrounding said prolate spheroid-shaped core. The nanoparticle has a surface plasmon resonance sensitivity of at least 600 nm RIU(sup.-1). Methods of making the disclosed nanorice particles are also described herein.

  12. A Plasmon Laser in Nanostructures

    NASA Astrophysics Data System (ADS)

    Bakshi, P.; Kempa, K.

    2003-03-01

    Plasma instabilities lead to exponentially growing charge density oscillations, which can generate electromagnetic radiation at the same frequency. Current driven semiconductor nanostructures can develop THz collective oscillations and serve as radiation sources in that range.The basic criterion for plasma instabilities was established [1] to be the resonant interaction of an emissive plasmon mode with an absorptive plasmon mode.Scenarios are presented where this phenomenon can be realized in a high density low current regime.A special case is a reservoir (an absorptive mode) with an adjoining quantum well that harbors a population inverted pair of subbands (the emissive mode). [1].P.Bakshi and K.Kempa,Condensed Matter Theories,12,p.399-412,(1997). Work supported by US Army Research Office.

  13. Jumplike microdeformation of nanostructured metals

    NASA Astrophysics Data System (ADS)

    Peschanskaya, N. N.; Smirnov, B. I.; Shpeĭzman, V. V.

    2008-05-01

    The parameters of microdeformation jumps for copper, aluminum, titanium, and Armco iron with the initial (annealed) structure and after equal-channel angular pressing are investigated in a creep mode under low compressive stresses. The strain rate is measured with a laser interferometer in 0.15-μm linear displacements. It is demonstrated that the values of the microstrain rate and the mean sizes of jumps for the annealed metals are larger than those for the metals subjected to severe deformation. It is revealed that there is a correlation between the jumps of microplastic deformation and the size of nanometal grains. The inference is made that, for nanostructured metals, as for other materials, the structural heterogeneity is one of the factors responsible for the jumplike deformation.

  14. Hybrid lipid-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  15. Yoctocalorimetry: phonon counting in nanostructures

    NASA Astrophysics Data System (ADS)

    Roukes, M. L.

    1999-03-01

    It appears feasible with nanostructures to perform calorimetry at the level of individual thermal phonons. Here I outline an approach employing monocrystalline mesoscopic insulators, which can now be patterned from semiconductor heterostructures into complex geometries with full, three-dimensional relief. Successive application of these techniques also enables definition of integrated nanoscale thermal transducers; coupling these to a dc SQUID readout yields the requisite energy sensitivity and temporal resolution with minimal back action. The prospect of phonon counting opens intriguing experimental possibilities with analogies in quantum optics. These include fluctuation-based phonon spectroscopy, phonon shot noise in the energy relaxation of nanoscale systems, and quantum statistical phenomena such as phonon bunching and anticorrelated electron-phonon exchange.

  16. Characterization of Si Nanostructured Surfaces

    SciTech Connect

    Brueck, S.R.J.; Gee, James M.; Ruby, Douglas S.; Zaidi, Saleem H.

    1999-07-20

    Surface texturing of Si to enhance absorption particularly in the IR spectral region has been extensively investigated. Previous research chiefly examined approaches based on geometrical optics. These surface textures typically consist of pyramids with dimensions much larger than optical wavelengths. We have investigated a physical optics approach that relies on surface texture features comparable to, or smaller than, the optical wavelengths inside the semiconductor material. Light interaction at this are strongly dependent on incident polarization and surface profile. Nanoscale textures can be tuned for either narrow band, or broad band absorptive behavior. Lowest broadband reflection has been observed for triangular profiles with linewidths significantly less than 100 nm. Si nanostructures have been integrated into large ({approximately}42 cm{sup 2}) area solar cells, Internal quantum efficiency measurements in comparison with polished and conventionally textured cells show lower efficiency in the UV-visible (350-680 mu), but significantly higher IR (700-1200 nm) efficiency.

  17. Reconfigurable optical assembly of nanostructures.

    PubMed

    Montelongo, Yunuen; Yetisen, Ali K; Butt, Haider; Yun, Seok-Hyun

    2016-06-23

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays.

  18. Reconfigurable optical assembly of nanostructures

    PubMed Central

    Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun

    2016-01-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays. PMID:27337216

  19. Ferroelectric memory based on nanostructures

    PubMed Central

    2012-01-01

    In the past decades, ferroelectric materials have attracted wide attention due to their applications in nonvolatile memory devices (NVMDs) rendered by the electrically switchable spontaneous polarizations. Furthermore, the combination of ferroelectric and nanomaterials opens a new route to fabricating a nanoscale memory device with ultrahigh memory integration, which greatly eases the ever increasing scaling and economic challenges encountered in the traditional semiconductor industry. In this review, we summarize the recent development of the nonvolatile ferroelectric field effect transistor (FeFET) memory devices based on nanostructures. The operating principles of FeFET are introduced first, followed by the discussion of the real FeFET memory nanodevices based on oxide nanowires, nanoparticles, semiconductor nanotetrapods, carbon nanotubes, and graphene. Finally, we present the opportunities and challenges in nanomemory devices and our views on the future prospects of NVMDs. PMID:22655750

  20. Tailored magnetic nanostructures on surfaces

    NASA Astrophysics Data System (ADS)

    Pierce, John Philip

    Nanostructuring has introduced us to a new world of tunable, artificially structured materials. An exciting aspect of this new world is that we control where the atoms, or layers of atoms, are arranged in materials and have learned that this can awaken new properties in them. But, we are only at the beginning stages in developing this control and an understanding of what can be done with it. This dissertation is about an important part of finding our way in this new world; learning to tailor magnetic nanostructures on surfaces. We begin by showing ways in which the magnetic properties of ultrathin films, nanostripes, and isolated nanoclusters can be systematically varied in order to teach us about their behavior. The ultrathin films are from the historically challenging Fe/Cu(100) system. We use small fractions of a single layer of cobalt capping atoms to control their magnetization direction and find a completely new way to cause the magnetization direction to reorient. The nanostripes are made of alloys of iron and cobalt on a tungsten surface. We explore how the magnetic ordering in these stripes is affected by variation of their composition. We then show how changing the size and spacing of isolated Fe dots on a copper surface can teach us about magnetic interactions between them. Finally, we show how our ability to synthesize the dots represented the last piece in an important puzzle. This work enables us to make the first direct observation of how the magnetic properties of a particular amount of a single material change as it is prepared in the form of an ultrathin film, wire array, or dot assembly on a common template.

  1. Factors influencing public risk-benefit considerations of nanotechnology: Assessing the effects of mass media, interpersonal communication, and elaborative processing.

    PubMed

    Ho, Shirley S; Scheufele, Dietram A; Corley, Elizabeth A

    2013-07-01

    This study examines the influence of mass media, interpersonal communication, and elaborative processing on public perception of benefits and risks of nanotechnology, based on a large-scale nationally representative telephone survey of U.S. adult citizens. Results indicate that cognitive processes in the form of news elaboration had a significant positive main effect on benefits outweigh risks perception. The influences of attention to science in newspapers, attention to science news on television, and interpersonal communication about science on public perception of benefits outweigh risks were moderated by elaborative processing, after controlling for socio-demographic variables, religious beliefs, trust in scientists, and scientific knowledge. The findings highlight the importance of elaborative processing when it comes to understanding how the mass media differentially influence public benefits outweigh risks perception of emerging technologies. Specifically, high elaborative processing emphasizes higher levels of perceived benefits outweigh risks than low elaborative processing. This study explores explanations for this phenomenon and offers implications for future research and policy.

  2. Hierarchically nanostructured materials for sustainable environmental applications

    PubMed Central

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  3. Metallic Nanostructures Based on DNA Nanoshapes.

    PubMed

    Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A; Toppari, Jari Jussi

    2016-08-10

    Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.

  4. Plant-derived nanostructures: types and applications

    EPA Science Inventory

    Plant-derived nanostructures and nanoparticles (NPs) have functional applications in numerous disciplines such as health care, food and feed, cosmetics, biomedical science, energy science, drug-gene delivery, environmental health, and so on. Consequently, it is imperative for res...

  5. Ferrimagnetic Co1+δ Te nanostructures

    NASA Astrophysics Data System (ADS)

    Dahal, Bishnu R.; Dulal, Rajendra P.; Pegg, Ian L.; Philip, John

    2016-11-01

    Transition metal telluride, Co1+δ Te nanostructures are synthesized using the hydrothermal method. These nanostructures exhibit filled NiAs-type hexagonal crystal structure also known as Ni2In structure with the space group p63/mmc. The Co1+ δ Te nanostructures exhibit hard ferrimagnetic behavior below 40 K. The coercivity increases with the decrease in temperature, which is around 4.90 kOe at 3 K. The saturation magnetization is 0.6 μ B/Co atom. Electrical transport measurements show that the Co1+ δ Te nanostructures are nonmetallic in nature with the resistance increases with the decrease in temperature. It does not follow the thermal excitation law for semiconductors, but can be explained by the Motts three-dimensional variable range hopping model.

  6. Porphyrin-Based Nanostructures for Photocatalytic Applications

    PubMed Central

    Chen, Yingzhi; Li, Aoxiang; Huang, Zheng-Hong; Wang, Lu-Ning; Kang, Feiyu

    2016-01-01

    Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed. PMID:28344308

  7. Metallic Nanostructures Based on DNA Nanoshapes

    PubMed Central

    Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A.; Toppari, Jari Jussi

    2016-01-01

    Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects. PMID:28335274

  8. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    NASA Astrophysics Data System (ADS)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-11-01

    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  9. Optical properties of ZnO nanostructures.

    PubMed

    Djurisić, Aleksandra B; Leung, Yu Hang

    2006-08-01

    We present a review of current research on the optical properties of ZnO nanostructures. We provide a brief introduction to different fabrication methods for various ZnO nanostructures and some general guidelines on how fabrication parameters (temperature, vapor-phase versus solution-phase deposition, etc.) affect their properties. A detailed discussion of photoluminescence, both in the UV region and in the visible spectral range, is provided. In addition, different gain (excitonic versus electron hole plasma) and feedback (random lasing versus individual nanostructures functioning as Fabry-Perot resonators) mechanisms for achieving stimulated emission are described. The factors affecting the achievement of stimulated emission are discussed, and the results of time-resolved studies of stimulated emission are summarized. Then, results of nonlinear optical studies, such as second-harmonic generation, are presented. Optical properties of doped ZnO nanostructures are also discussed, along with a concluding outlook for research into the optical properties of ZnO.

  10. Systematic synthesis of ZnO nanostructures.

    PubMed

    Li, Peng; Wang, Dingsheng; Wei, Zhe; Peng, Qing; Li, Yadong

    2013-03-11

    In this study, we report a simple solution-phase method to prepare ZnO nanostructures with controllable morphologies. By using oleylamine (OAm) and dodecanol (DDL) as solvents, zinc oxide nanocrystals with tunable sizes and diverse shapes (hexagonal pyramids, bulletlike, and pencil-like shapes) have been obtained under mild conditions. At the same time, the introduction of presynthesized gold nanocrystals can also lead to the hybrid nanostructures of gold-zinc oxide hexagonal nanopyramids. In addition, the possible formation mechanism of the as-prepared ZnO nanostructures has been investigated. Notably, the unique optical properties of the ZnO nanostructures with different sizes and shapes have also been discussed. We hope that this strategy will be a general and effective method for fabricating other metal oxide nanocrystals.

  11. Complex DNA nanostructures from oligonucleotide ensembles.

    PubMed

    Mathur, Divita; Henderson, Eric R

    2013-04-19

    The first synthetic DNA nanostructures were created by self-assembly of a small number of oligonucleotides. Introduction of the DNA origami method provided a new paradigm for designing and creating two- and three-dimensional DNA nanostructures by folding a large single-stranded DNA and 'stapling' it together with a library of oligonucleotides. Despite its power and wide-ranging implementation, the DNA origami technique suffers from some limitations. Foremost among these is the limited number of useful single-stranded scaffolds of biological origin. This report describes a new approach to creating large DNA nanostructures exclusively from synthetic oligonucleotides. The essence of this approach is to replace the single-stranded scaffold in DNA origami with a library of oligonucleotides termed "scaples" (scaffold staples). Scaples eliminate the need for scaffolds of biological origin and create new opportunities for producing larger and more diverse DNA nanostructures as well as simultaneous assembly of distinct structures in a "single-pot" reaction.

  12. Plant-derived nanostructures: types and applications

    EPA Science Inventory

    Plant-derived nanostructures and nanoparticles (NPs) have functional applications in numerous disciplines such as health care, food and feed, cosmetics, biomedical science, energy science, drug-gene delivery, environmental health, and so on. Consequently, it is imperative for res...

  13. Optical Biosensors Based on Semiconductor Nanostructures

    PubMed Central

    Martín-Palma, Raúl J.; Manso, Miguel; Torres-Costa, Vicente

    2009-01-01

    The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented. PMID:22346691

  14. Sulfated glycopeptide nanostructures for multipotent protein activation.

    PubMed

    Lee, Sungsoo S; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S; Weiner, Joseph A; Cook, Ralph W; Freshman, Ryan D; Schallmo, Michael S; Katchko, Karina M; Schneider, Andrew D; Smith, Justin T; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z; McClendon, Mark T; Yu, Zhilin; Stock, Stuart R; Hsu, Wellington K; Hsu, Erin L; Stupp, Samuel I

    2017-08-01

    Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.

  15. Boundary Condition for Modeling Semiconductor Nanostructures

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard

    2006-01-01

    A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.

  16. Engineering metallic nanostructures for plasmonics and nanophotonics.

    PubMed

    Lindquist, Nathan C; Nagpal, Prashant; McPeak, Kevin M; Norris, David J; Oh, Sang-Hyun

    2012-03-01

    Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered.

  17. Nanostructure symmetry: Relevance for physics and computing

    SciTech Connect

    Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.; Dalessi, S.; Gallinet, B.; Svendsen, G.

    2014-03-31

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.

  18. Gold nanostructures and methods of use

    DOEpatents

    Zhang, Jin Z [Santa Cruz, CA; Schwartzberg, Adam [Santa Cruz, CA; Olson, Tammy Y [Santa Cruz, CA

    2012-03-20

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  19. Engineering metallic nanostructures for plasmonics and nanophotonics

    PubMed Central

    Lindquist, Nathan C; Nagpal, Prashant; McPeak, Kevin M; Norris, David J; Oh, Sang-Hyun

    2012-01-01

    Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered. PMID:22790420

  20. Directed spatial organization of zinc oxide nanostructures

    DOEpatents

    Hsu, Julia; Liu, Jun

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  1. Production of fullerenic nanostructures in flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    1999-01-01

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  2. Laser Fabricated Nanostructures on Vanadium Foils

    SciTech Connect

    Farkas, B.; Fuele, M.; Nanai, L.; Balint, A. M.

    2011-10-03

    In this work we present our results concerning to the nanostructure generation on vanadium surfaces by ultrashort pulsed laser irradiation. The melting free formation of these structures is very important in many fields of science and industry too. We obtain that the nanostructure forming process on vanadium surface is Stransky Krastanov type. The surface covering and the nano-tower shape are depending on the ambient of the laser matter reaction.

  3. Giant optical nonlinearity of plasmonic nanostructures

    SciTech Connect

    Melentiev, P N; Afanasev, A E; Balykin, V I

    2014-06-30

    The experimental studies of giant optical nonlinearity of single metal nanostructures are briefly reviewed. A new hybrid nanostructure – split-hole resonator (SHR) – is investigated. This structure is characterised by a record-high efficiency of third-harmonic generation and multiphoton luminescence (its nonlinearity exceeds that of a single nanohole by five orders of magnitude) and an unprecedently high sensitivity to light polarisation (extinction coefficient 4 × 10{sup 4}). (extreme light fields and their applications)

  4. Gold nanostructures and methods of use

    DOEpatents

    Zhang, Jin Z.; Schwartzberg, Adam; Olson, Tammy Y.

    2016-03-01

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  5. The Effects of Guided Elaboration in a CSCL Programme on the Learning Outcomes of Primary School Students from Dutch and Immigrant Families

    ERIC Educational Resources Information Center

    Prinsen, Fleur Ruth; Terwel, Jan; Zijlstra, Bonne J. H.; Volman, Monique M. L.

    2013-01-01

    This study examined the effects of guided elaboration on students' learning outcomes in a computer-supported collaborative learning (CSCL) environment. The programme provided students with feedback on their elaborations, and students reflected on this feedback. It was expected that students in the experimental (elaboration) programme would show…

  6. The Effects of Guided Elaboration in a CSCL Programme on the Learning Outcomes of Primary School Students from Dutch and Immigrant Families

    ERIC Educational Resources Information Center

    Prinsen, Fleur Ruth; Terwel, Jan; Zijlstra, Bonne J. H.; Volman, Monique M. L.

    2013-01-01

    This study examined the effects of guided elaboration on students' learning outcomes in a computer-supported collaborative learning (CSCL) environment. The programme provided students with feedback on their elaborations, and students reflected on this feedback. It was expected that students in the experimental (elaboration) programme would show…

  7. Nanostructured conductive polymers for advanced energy storage.

    PubMed

    Shi, Ye; Peng, Lele; Ding, Yu; Zhao, Yu; Yu, Guihua

    2015-10-07

    Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as large surface areas and shortened pathways for charge/mass transport, which make them promising candidates for broad applications in energy conversion and storage, sensors, actuators, and biomedical devices. Numerous synthetic strategies have been developed to obtain various conductive polymer nanostructures, and high-performance devices based on these nanostructured conductive polymers have been realized. This Tutorial review describes the synthesis and characteristics of different conductive polymer nanostructures; presents the representative applications of nanostructured conductive polymers as active electrode materials for electrochemical capacitors and lithium-ion batteries and new perspectives of functional materials for next-generation high-energy batteries, meanwhile discusses the general design rules, advantages, and limitations of nanostructured conductive polymers in the energy storage field; and provides new insights into future directions.

  8. Metallic glass nanostructures: fabrication, properties, and applications.

    PubMed

    Liu, Lianci; Hasan, Molla; Kumar, Golden

    2014-02-21

    Remarkable progress has been made in fabrication and characterization of metal nanostructures because of their crucial role in energy conversion, nanophotonics, nanoelectronics, and biodiagnostics. Less emphasis has been placed on the synthesis of nanostructures from metallic alloys, which are better suited than elemental metals for certain applications such as fuel-cell catalysts. The main challenges in fabrication of alloy nanostructures are controlling their chemical stoichiometry, crystal structures, and shapes because of anisotropic nucleation and growth rates. These limitations can be overcome by using metallic glasses (amorphous metal alloys) which are isotropic and provide additional control handles through their tunable compositions and degree of crystallinity. Here, we review the recent developments in fabrication and characterization of metallic glass (MG) nanostructures. The focus is on sub-micron structures synthesized by unconventional thermoplastic techniques. A concept of self-assembly is introduced for fashioning functional structures using MG nanostructures as building blocks. The article concludes with a brief discussion about unique properties and prospective applications of MG nanostructures.

  9. Synthesis of carbon nanostructures on iron nanopowders

    NASA Astrophysics Data System (ADS)

    Koshanova, A.; Partizan, G.; Mansurov, B.; Medyanova, B.; Mansurova, M.; Aliev, B.; Jiang, Xin

    2016-08-01

    This work presents the results of experiments on synthesis of carbon nanostructures (CNs) by the method of thermal chemical vapor deposition using iron nanopowders obtained by the method of electrical explosion of wires as catalysts. To study the process of nucleation and growth of individual carbon nanostructures, experiments were conducted not only on nanopowders, but also on the separated clusters. To determine the optimum conditions of the carbon nanostructures synthesis and lower temperature limit, experiments were performed at different temperatures (300-700°C) and pressures (100-400 mbar). The experiments have shown that the lower temperature limit for carbon nanostructures synthesis on the iron nanopowders is 350°C and in this process the growth of carbon nanostructures is not so massive. Stable growth of carbon nanostructures for nanopowders began from 400°C during the entire range of pressures. The analysis of Raman spectroscopy showed that the most optimum conditions for obtaining nanotubes of high quality are P = 100 mbar and T = 425°C.

  10. Fabrication of complex metallic nanostructures by nanoskiving.

    PubMed

    Xu, Qiaobing; Rioux, Robert M; Whitesides, George M

    2007-10-01

    This paper describes the use of nanoskiving to fabricate complex metallic nanostructures by sectioning polymer slabs containing small, embedded metal structures. This method begins with the deposition of thin metallic films on an epoxy substrate by e-beam evaporation or sputtering. After embedding the thin metallic film in an epoxy matrix, sectioning (in a plane perpendicular or parallel to the metal film) with an ultramicrotome generates sections (which can be as thin as 50 nm) of epoxy containing metallic nanostructures. The cross-sectional dimensions of the metal wires embedded in the resulting thin epoxy sections are controlled by the thickness of the evaporated metal film (which can be as small as 20 nm) and the thickness of the sections cut by the ultramicrotome; this work uses a standard 45 degrees diamond knife and routinely generates slabs 50 nm thick. The embedded nanostructures can be transferred to, and positioned on, planar or curved substrates by manipulating the thin polymer film. Removal of the epoxy matrix by etching with an oxygen plasma generates free-standing metallic nanostructures. Nanoskiving can fabricate complex nanostructures that are difficult or impossible to achieve by other methods of nanofabrication. These include multilayer structures, structures on curved surfaces, structures that span gaps, structures in less familiar materials, structures with high aspect ratios, and large-area structures comprising two-dimensional periodic arrays. This paper illustrates one class of application of these nanostructures: frequency-selective surfaces at mid-IR wavelengths.

  11. Optimized biomimetic antireflection nanostructure for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Tao, Fei; Chen, Jiacheng; Zhou, Hang

    2012-11-01

    Minimizing surface reflection loss is critical when designing high efficiency solar cells. In recent years, biomimetic antireflection nanostructures (such as moth-eye structures), with their extraordinary broadband and omnidirectional antireflection properties, have caught much attention. Single side biomimetic antireflection (AR) coatings show good performance in suppressing broadband reflection between air and glass interface. However, reflection from the interface between absorption layer and transparent window layer still remains. In this study, we proposed a double-side gradient-index nanostructure, and examined its reflection spectrum in comparison with different biomimetic nanostructures using a finite-difference time-domain (FDTD) simulation and effective medium theory (EMT). In order to minimize surface reflection, all abrupt interfaces were replaced by gradientindex biomimetic nanostructures, including air/glass interface and absorber/glass interface. Monolayer of silica spheres serve as double-side gradient-index nanostructures, partially immersed into photoabsorbing material. Spheres with diameter smaller than incoming light wavelength show excellent antireflection properties. From simulation results, in normal incidence, average reflection rate of optimized AR coating structure was lower to around 5% compared to originally above 25% within visible spectrum region (350nm - 850nm). Details of how to apply such biomimetic nanostructures in thin film solar cells were also discussed.

  12. A methodology proposal for collaborative business process elaboration using a model-driven approach

    NASA Astrophysics Data System (ADS)

    Mu, Wenxin; Bénaben, Frédérick; Pingaud, Hervé

    2015-05-01

    Business process management (BPM) principles are commonly used to improve processes within an organisation. But they can equally be applied to supporting the design of an Information System (IS). In a collaborative situation involving several partners, this type of BPM approach may be useful to support the design of a Mediation Information System (MIS), which would ensure interoperability between the partners' ISs (which are assumed to be service oriented). To achieve this objective, the first main task is to build a collaborative business process cartography. The aim of this article is to present a method for bringing together collaborative information and elaborating collaborative business processes from the information gathered (by using a collaborative situation framework, an organisational model, an informational model, a functional model and a metamodel and by using model transformation rules).

  13. Effects of deceptive packaging and product involvement on purchase intention: an elaboration likelihood model perspective.

    PubMed

    Lammers, H B

    2000-04-01

    From an Elaboration Likelihood Model perspective, it was hypothesized that postexposure awareness of deceptive packaging claims would have a greater negative effect on scores for purchase intention by consumers lowly involved rather than highly involved with a product (n = 40). Undergraduates who were classified as either highly or lowly (ns = 20 and 20) involved with M&Ms examined either a deceptive or non-deceptive package design for M&Ms candy and were subsequently informed of the deception employed in the packaging before finally rating their intention to purchase. As anticipated, highly deceived subjects who were low in involvement rated intention to purchase lower than their highly involved peers. Overall, the results attest to the robustness of the model and suggest that the model has implications beyond advertising effects and into packaging effects.

  14. Surface-initiated Polymerization of Azidopropyl Methacrylate and its Film Elaboration via Click Chemistry.

    PubMed

    Saha, Sampa; Bruening, Merlin L; Baker, Gregory L

    2012-11-27

    Azidopropyl methacrylate (AzPMA), a functional monomer with a pendent azido group, polymerizes from surfaces and provides polymer brushes amenable to subsequent elaboration via click chemistry. In DMF at 50 °C, click reactions between poly(AzPMA) brushes and an alkynylated dye proceed with >90% conversion in a few minutes. However, in aqueous solutions, reaction with an alkyne-containing poly(ethylene glycol) methyl ether (mPEG, Mn=5000) gives <10% conversion after a 12-h reaction at room temperature. Formation of copolymers with AzPMA and polyethylene glycol methyl ether methacrylate (mPEGMA) enables control over the hydrophilicity and functional group density in the copolymer to increase the yield of aqueous click reactions. The copolymers show reaction efficiencies as high as 60%. These studies suggest that for aqueous applications such as bioconjugation via click chemistry, control over brush hydrophilicity is vital.

  15. Expeditious diastereoselective synthesis of elaborated ketones via remote Csp3-H functionalization

    NASA Astrophysics Data System (ADS)

    Shu, Wei; Lorente, Adriana; Gómez-Bengoa, Enrique; Nevado, Cristina

    2017-01-01

    The quest for selective C-H functionalization reactions, able to provide new strategic opportunities for the rapid assembly of molecular complexity, represents a major focus of the chemical community. Examples of non-directed, remote Csp3-H activation to forge complex carbon frameworks remain scarce due to the kinetic stability and thus intrinsic challenge associated to the chemo-, regio- and stereoselective functionalization of aliphatic C-H bonds. Here we describe a radical-mediated, directing-group-free regioselective 1,5-hydrogen transfer of unactivated Csp3-H bonds followed by a second Csp2-H functionalization to produce, with exquisite stereoselectivity, a variety of elaborated fused ketones. This study demonstrates that aliphatic acids can be strategically harnessed as 1,2-diradical synthons and that secondary aliphatic C-H bonds can be engaged in stereoselective C-C bond-forming reactions, highlighting the potential of this protocol for target-oriented natural product and pharmaceutical synthesis.

  16. Bridging faultlines by valuing diversity: diversity beliefs, information elaboration, and performance in diverse work groups.

    PubMed

    Homan, Astrid C; van Knippenberg, Daan; Van Kleef, Gerben A; De Dreu, Carsten K W

    2007-09-01

    Although there are numerous potential benefits to diversity in work groups, converging dimensions of diversity often prevent groups from exploiting this potential. In a study of heterogeneous decision-making groups, the authors examined whether the disruptive effects of diversity faultlines can be overcome by convincing groups of the value of diversity. Groups were persuaded either of the value of diversity or the value of similarity for group performance, and they were provided with either homogeneous or heterogeneous information. As expected, informationally diverse groups performed better when they held pro-diversity rather than pro-similarity beliefs, whereas the performance of informationally homogeneous groups was unaffected by diversity beliefs. This effect was mediated by group-level information elaboration. Implications for diversity management in organizations are discussed. (c) 2007 APA.

  17. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    PubMed

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth.

  18. Whose idea was that? Source monitoring for idea ownership following elaboration.

    PubMed

    Stark, Louisa-Jayne; Perfect, Timothy J

    2007-10-01

    Unconscious plagiarism (UP) occurs when an individual claims a previously experienced idea as their own. Previous studies have explored the cognitive precursors of such errors by manipulating the ways that ideas are thought about between initial idea exposure and later test. While imagining other's ideas does not increase rates of UP relative to control on either a recall-own or generate-new task, improving others' ideas substantially increases such errors in the recall-own task. This study explored the effects of elaboration on rates of UP when a source-monitoring test replaced the recall-own test. Plagiarism was again observed following idea improvement but not idea imagery even though participants engaged explicit source evaluation. Thus the probability of plagiarising another's idea appears linked to the generative nature of the idea processing performed.

  19. Elaboration of extensin-pectin thin film model of primary plant cell wall.

    PubMed

    Valentin, Romain; Cerclier, Carole; Geneix, Nathalie; Aguié-Béghin, Véronique; Gaillard, Cédric; Ralet, Marie-Christine; Cathala, Bernard

    2010-06-15

    With the aim of mimicking the plant cell wall, a layer by layer approach was used to build a thin film consisting of successive adsorption of pectin and extensin. Elaboration of the thin film was monitored by surface plasmon resonance, quartz crystal microbalance, and ellipsometry. All data indicate that formation of the film was successful and that growth occurred according to a nonuniform growth. It is likely that diffusion of the polymers occurred within the multilayer structure and that the final structure is not constituted by layered individual pectin and extensin films. Polymer rearrangements were also supported by the atomic force microscopy images that show a smoother surface after extensin adsorption than after pectin deposition.

  20. Elaboration, morphology and properties of starch/polyester nano-biocomposites based on sepiolite clay.

    PubMed

    Olivato, J B; Marini, J; Pollet, E; Yamashita, F; Grossmann, M V E; Avérous, L

    2015-03-15

    The incorporation of nano-sized sepiolite clays into thermoplastic starch/poly(butylene adipate-co-terephthalate) (TPS/PBAT) blends has been investigated with the goal of improving the matrix properties. TPS/PBAT nano-biocomposites were elaborated with two different proportions of the polymeric phases. The influence of the sepiolite nanoclays on the mechanical, thermal and structural properties of the corresponding blends was evaluated. SEM images confirmed the good dispersion of the sepiolite clay, with a low occurrence of small aggregates in the polymeric matrix. Wide-angle X-ray diffraction showed no significant alteration of the crystalline structures of PBAT and starch induced by the sepiolite clay. The addition of sepiolite slightly affected the thermal degradation of the nano-biocomposites; however, the mechanical tests revealed an increase in some mechanical properties, demonstrating that sepiolite is a promising nanofiller for TPS-based materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Stimulus Fading and Response Elaboration in Differential Reinforcement for Alternative Behavior

    PubMed Central

    Schlichenmeyer, Kevin J.; Dube, William V.; Vargas-Irwin, Mariela

    2015-01-01

    A hallmark of applied behavior analysis is the development of function-based interventions for problem behavior. A widely recommended function-based intervention is differential reinforcement of alternative behavior (DRA), in which reinforcement is contingent upon socially acceptable alternatives to problem behavior (e.g., teaching communication skills). Typically, DRA is introduced under rich schedules of reinforcement. Although effective for initiating behavior change, rich schedules are often impractical in the natural setting. In this study, we evaluated the extent to which a stimulus fading program could be employed to elaborate alternative behavior (mands) in two individuals diagnosed with an Autism Spectrum Disorder. For both participants, problem behavior was reduced substantially upon implementation of the DRA procedure. Further, problem behavior rates remained low and mand rates decreased to more practical levels as the DRA behavioral requirements increased during the fading program. The fading approach demonstrated in this paper may be a useful component of intervention packages for clinicians. PMID:25844032

  2. Expeditious diastereoselective synthesis of elaborated ketones via remote Csp(3)-H functionalization.

    PubMed

    Shu, Wei; Lorente, Adriana; Gómez-Bengoa, Enrique; Nevado, Cristina

    2017-01-13

    The quest for selective C-H functionalization reactions, able to provide new strategic opportunities for the rapid assembly of molecular complexity, represents a major focus of the chemical community. Examples of non-directed, remote Csp(3)-H activation to forge complex carbon frameworks remain scarce due to the kinetic stability and thus intrinsic challenge associated to the chemo-, regio- and stereoselective functionalization of aliphatic C-H bonds. Here we describe a radical-mediated, directing-group-free regioselective 1,5-hydrogen transfer of unactivated Csp(3)-H bonds followed by a second Csp(2)-H functionalization to produce, with exquisite stereoselectivity, a variety of elaborated fused ketones. This study demonstrates that aliphatic acids can be strategically harnessed as 1,2-diradical synthons and that secondary aliphatic C-H bonds can be engaged in stereoselective C-C bond-forming reactions, highlighting the potential of this protocol for target-oriented natural product and pharmaceutical synthesis.

  3. Properties of zirconia thin layers elaborated by high voltage anodisation in view of SOFC application

    NASA Astrophysics Data System (ADS)

    Montero, Xabier; Pauporté, Thierry; Ringuedé, Armelle; Vannier, Rose-Noelle; Cassir, Michel

    In order to adapt the anodisation technique to SOFC application, zirconium and zirconium-niobium alloys were tested in various electrolytic media and applied potentials (up to 420 V). The elaborated ZrO 2 insulating layers were characterised in situ by electrochemical impedance spectroscopy and their thicknesses were determined as ranging up to 1 μm. The effect of thermal annealing treatment of layers prepared in various experimental conditions was investigated by X-ray diffraction (XRD) and solid-state electrochemical impedance spectroscopy in a planar configuration. The effect of the growing conditions on significant parameters such as zirconia crystallite size, zirconia conductivity and activation energy were deduced up to 800 °C. The possibility of using the anodisation process for fuel cell devices is discussed. This study demonstrates that it surely requires the use of more efficient dopants, such as yttria.

  4. Morphology Dependent Photocatalytic Properties of ZnO Nanostructures

    NASA Astrophysics Data System (ADS)

    Ranjith, K. S.; Kumar, R. T. Rajendra

    2011-07-01

    ZnO nanostructures of different morphology (Rods, spindles, stars, buds) were successfully synthesized by co-precipitation method. The prepared ZnO nanostructures were systematically characterized by X-ray diffraction, Scanning electron microscopy (SEM). XRD results show the prepared nanostructures were in the hexagonal wurtzite structure. The photocatalytic degradation of methylene blue (MB) in aqueous solution under UV-irradiation was investigated with different ZnO nanostructures. The photocatalytic experiments reveal that spindle like nanostructures showed fast photocatalytic activity compared to the other rods, stars and buds like nanostructures.

  5. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    SciTech Connect

    Lowe, Terry C.

    2012-07-24

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  6. Titanate and titania nanostructures and nanostructure assemblies, and methods of making same

    DOEpatents

    Wong, Stanislaus S; Mao, Yuanbing

    2013-05-14

    The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.

  7. Titanate and titania nanostructures and nanostructure assemblies, and methods of making same

    SciTech Connect

    Wong, Stanislaus S.; Mao, Yuanbing

    2016-06-14

    The invention relates to nanomaterial's and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.

  8. A Novel Repressor of the ica Locus Discovered in Clinically Isolated Super-Biofilm-Elaborating Staphylococcus aureus

    PubMed Central

    Yu, Liansheng; Hisatsune, Junzo; Hayashi, Ikue; Tatsukawa, Nobuyuki; Sato’o, Yusuke; Mizumachi, Emiri; Kato, Fuminori; Hirakawa, Hideki; Pier, Gerald B.

    2017-01-01

    ABSTRACT Staphylococcus aureus TF2758 is a clinical isolate from an atheroma and a super-biofilm-elaborating/polysaccharide intercellular adhesin (PIA)/poly-N-acetylglucosamine (PNAG)-overproducing strain (L. Shrestha et al., Microbiol Immunol 60:148–159, 2016, https://doi.org/10.1111/1348-0421.12359). A microarray analysis and DNA genome sequencing were performed to identify the mechanism underlying biofilm overproduction by TF2758. We found high transcriptional expression levels of a 7-gene cluster (satf2580 to satf2586) and the ica operon in TF2758. Within the 7-gene cluster, a putative transcriptional regulator gene designated rob had a nonsense mutation that caused the truncation of the protein. The complementation of TF2758 with rob from FK300, an rsbU-repaired derivative of S. aureus strain NCTC8325-4, significantly decreased biofilm elaboration, suggesting a role for rob in this process. The deletion of rob in non-biofilm-producing FK300 significantly increased biofilm elaboration and PIA/PNAG production. In the search for a gene(s) in the 7-gene cluster for biofilm elaboration controlled by rob, we identified open reading frame (ORF) SAOUHSC_2898 (satf2584). Our results suggest that ORF SAOUHSC_2898 (satf2584) and icaADBC are required for enhanced biofilm elaboration and PIA/PNAG production in the rob deletion mutant. Rob bound to a palindromic sequence within its own promoter region. Furthermore, Rob recognized the TATTT motif within the icaR-icaA intergenic region and bound to a 25-bp DNA stretch containing this motif, which is a critically important short sequence regulating biofilm elaboration in S. aureus. Our results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is an important regulator of biofilm elaboration through its control of SAOUHSC_2898 (SATF2584) and Ica protein expression in S. aureus. PMID:28143981

  9. [Strategies for elaboration of comprehensive quality standard system on traditional Chinese medicine].

    PubMed

    Wu, Wan-Ying; Guo, De'an

    2014-02-01

    Based on the research goal of "traditional Chinese medicine standards lead in the international standard-setting", scientific strategies for the elaboration of traditional Chinese medicine (TCM) comprehensive quality standard system were introduced. TCM is a complex multi-component system which was used under the guidance of traditional Chinese medical theory. The present paper has put forward the basic principle of " deep research and simplified standard" to construct the quality standards of TCM. " Deep research" refers to systematic, thorough investigations on active constituents and biological mechanisms. On the basis of deep research, "simplified standard" means to establish a scientific and feasible standard, which should be practical and less complicated, to control the quality of Chinese herbs. Three key issues related to the elaboration of the quality standards are suggested. For reference substances, we propose the research methodology using reference extract to develop the qualitative and quantitative determination methods. Compared with that of using reference compounds, the preparation of reference extract is more accessible, economical and practical. Moreover, compared with reference crude drugs, the reference extract showed better batch-to-batch consistency. For identification, in addition to conventional methods, high performance liquid chromatography (HPLC), chemical fingerprints and characteristic chromatogram are proposed, in which more major marker compounds are monitored. And then LC-MS technique is employed to comprehensively analyze and characterize the peaks in the fingerprint. For multi-component quantification, the method of single standard to determine multi-components (SSDMC) is suggested, providing solutions for the lack of reference standards in quality evaluation. The SSDMC method uses a single reference standard to simultaneously determine the content of multiple compounds. In general, the integrate quality control standard of TCM is

  10. Combining classical and molecular approaches elaborates on the complexity of mechanisms underpinning anterior regeneration.

    PubMed

    Evans, Deborah J; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A Aziz

    2011-01-01

    The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then

  11. Genome-wide analysis of acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system

    PubMed Central

    2012-01-01

    Background Microbial degradation of plant cell walls and its conversion to sugars and other byproducts is a key step in the carbon cycle on Earth. In order to process heterogeneous plant-derived biomass, specialized anaerobic bacteria use an elaborate multi-enzyme cellulosome complex to synergistically deconstruct cellulosic substrates. The cellulosome was first discovered in the cellulolytic thermophile, Clostridium thermocellum, and much of our knowledge of this intriguing type of protein composite is based on the cellulosome of this environmentally and biotechnologically important bacterium. The recently sequenced genome of the cellulolytic mesophile, Acetivibrio cellulolyticus, allows detailed comparison of the cellulosomes of these two select cellulosome-producing bacteria. Results Comprehensive analysis of the A. cellulolyticus draft genome sequence revealed a very sophisticated cellulosome system. Compared to C. thermocellum, the cellulosomal architecture of A. cellulolyticus is much more extensive, whereby the genome encodes for twice the number of cohesin- and dockerin-containing proteins. The A. cellulolyticus genome has thus evolved an inflated number of 143 dockerin-containing genes, coding for multimodular proteins with distinctive catalytic and carbohydrate-binding modules that play critical roles in biomass degradation. Additionally, 41 putative cohesin modules distributed in 16 different scaffoldin proteins were identified in the genome, representing a broader diversity and modularity than those of Clostridium thermocellum. Although many of the A. cellulolyticus scaffoldins appear in unconventional modular combinations, elements of the basic structural scaffoldins are maintained in both species. In addition, both species exhibit similarly elaborate cell-anchoring and cellulosome-related gene- regulatory elements. Conclusions This work portrays a particularly intricate, cell-surface cellulosome system in A. cellulolyticus and provides a blueprint for

  12. Cookies elaborated with oat and common bean flours improved serum markers in diabetic rats.

    PubMed

    Pérez-Ramírez, Iza F; Becerril-Ocampo, Laura J; Reynoso-Camacho, Rosalía; Herrera, Mayra D; Guzmán-Maldonado, S Horacio; Cruz-Bravo, Raquel K

    2017-07-17

    Common beans have been associated with anti-diabetic effects, due to its high content of bioactive compounds. Nevertheless, its consumption has decreased worldwide. Therefore, there is an increasing interest in the development of novel functional foods elaborated with common beans. The aim of this study was to evaluate the anti-diabetic effect of oat-bean flour cookies, and to analyze its bioactive composition, using commercial oat-wheat cookies for comparative purposes. Oat-bean cookies (1.2 g kg(-1) ) slightly decreased serum glucose levels (∼1.1-fold) and increased insulin levels (∼1.2-fold) in diabetic rats, reducing the hyperglycemic peak in healthy rats (∼1.1-fold). Oat-bean cookies (0.8 and 1.2 g kg(-1) ) exerted a greater hypolipidemic effect than commercial oat-wheat cookies (1.2 g kg(-1) ), as observed in decreased serum triglycerides and low-density lipoprotein cholesterol. Furthermore, the supplementation with 1.2 g kg(-1) oat-bean cookies decreased atherogenic index and serum C-reactive protein levels, suggesting their cardioprotective potential. The beneficial effect of oat-bean cookies was associated with their high content of dietary fiber and galacto oligosaccharides, as well as chlorogenic acid, rutin, protocatechuic acid, β-sitosterol and soyasaponins. These results suggest that common beans can be used as functional ingredients for the elaboration of cookies with anti-diabetic effects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Clarifying the best interests standard: the elaborative and enumerative strategies in public policy-making.

    PubMed

    Lim, Chong-Ming; Dunn, Michael C; Chin, Jacqueline J

    2016-08-01

    One recurring criticism of the best interests standard concerns its vagueness, and thus the inadequate guidance it offers to care providers. The lack of an agreed definition of 'best interests', together with the fact that several suggested considerations adopted in legislation or professional guidelines for doctors do not obviously apply across different groups of persons, result in decisions being made in murky waters. In response, bioethicists have attempted to specify the best interests standard, to reduce the indeterminacy surrounding medical decisions. In this paper, we discuss the bioethicists' response in relation to the state's possible role in clarifying the best interests standard. We identify and characterise two clarificatory strategies employed by bioethicists -elaborative and enumerative-and argue that the state should adopt the latter. Beyond the practical difficulties of the former strategy, a state adoption of it would inevitably be prejudicial in a pluralistic society. Given the gravity of best interests decisions, and the delicate task of respecting citizens with different understandings of best interests, only the enumerative strategy is viable. We argue that this does not commit the state to silence in providing guidance to and supporting healthcare providers, nor does it facilitate the abuse of the vulnerable. Finally, we address two methodological worries about adopting this approach at the state level. The adoption of the enumerative strategy is not defeatist in attitude, nor does it eventually collapse into (a form of) the elaborative strategy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Combining Classical and Molecular Approaches Elaborates on the Complexity of Mechanisms Underpinning Anterior Regeneration

    PubMed Central

    Evans, Deborah J.; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A. Aziz

    2011-01-01

    The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then

  15. Intergranular Exchange in Magnetic Nanostructures

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph

    2005-03-01

    Exchange interactions determine not only atomic-scale properties such as the Curie temperature but are also paramount to the realization of mesoscopic magnetism. Nanoscale exchange reflect the relativistic origin of magnetism. On an atomic scale, interatomic exchange tends to be much stronger than magnetic interactions, but the quadratic wave-vector dependence of the exchange energy makes magnetic interactions competitive on a nanoscale. The corresponding characteristic length scale is ao/α = 7.252 nm, where ao is the Bohr radius and α = 1/137 is Sommerfeld's fine structure constant. In homogeneous solids, the competing relativistic and nonrelativistic interactions determine, for example, the thickness of domain walls. In nanostructures, the situation is more complex, because mesoscopic and atomic exchange effects interfere with structural length scales. This is important in many areas of magnetism, such as permanent magnetism, soft magnetism, spin electronics, and magnetic recording. (For a recent review, see Skomski, J. Phys. CM, vol. 15, 2003, p. R841.) From an atomic point of view, local magnetic moments embedded in an itinerant electron gas are coupled by RKKY-type interactions, whose oscillatory period is determined by the Fermi wave vector kF. First, RKKY interaction between embedded clusters or particles do not average to zero but actually increase with particle size. Second, the low carrier densities of semimetals and semiconductors yield small Fermi wave vectors and nanoscale oscillation periodicities. From a mesoscopic point of view, traditional random-anisotropy scaling amounts to a dimensionless coupling constant A/K1R^2, but this expression fails to account for important real-structure features. For example, grain boundaries with reduced interatomic exchange give rise to a quasi-discontinuity of the magnetization, create a magnetization perturbation that extends far into the bulk, and modify scaling relations for the coercivity and other quantities

  16. Electronic properties of complex nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen

    Nanostructured materials have brought an unprecedented opportunity for advancement in many fields of human endeavor and in applications. Nanostructures are a new research field which may revolutionize people's everyday life. In the Thesis, I have used theoretical methods including density functional theory (DFT), molecular dynamic simulations (MD) and tight-binding methods to explore the structural, mechanical and electronic properties of various nanomaterials. In all this, I also paid attention to potential applications of these findings. First, I will briefly introduce the scientific background of this Thesis, including the motivation for the study of a boron enriched aluminum surface, novel carbon foam structures and my research interest in 2D electronics. Then I will review the computational techniques I used in the study, mostly DFT methods. In Chapter 3, I introduce an effective way to enhance surface hardness of aluminum by boron nanoparticle implantation. Using boron dimers to represent the nanoparticles, the process of boron implantation is modeled in a molecular dynamics simulation of bombarding the aluminum surface by energetic B 2 molecules. Possible metastable structures of boron-coated aluminum surface are identified. Within these structures, I find that boron atoms prefer to stay in the subsurface region of aluminum. By modeling the Rockwell indentation process, boron enriched aluminum surface is found to be harder than the pristine aluminum surface by at least 15%. In Chapter 4, I discuss novel carbon structures, including 3D carbon foam and related 2D slab structures. Carbon foam contains both sp 2 and sp3 hybridized carbon atoms. It forms a 3D honeycomb lattice with a comparable stability to fullerenes, suggesting possible existence of such carbon foam structures. Although the bulk 3D foam structure is semiconducting, an sp2 terminated carbon surface could maintain a conducting channel even when passivated by hydrogen. To promote the experimental

  17. Towards in vitro molecular diagnostics using nanostructures.

    PubMed

    Kurkina, Tetiana; Balasubramanian, Kannan

    2012-02-01

    Nanostructures appear to be promising for a number of applications in molecular diagnostics, mainly due to the increased surface-to-volume ratio they can offer, the very low limit of detection achievable, and the possibility to fabricate point-of-care diagnostic devices. In this paper, we review examples of the use of nanostructures as diagnostic tools that bring in marked improvements over prevalent classical assays. The focus is laid on the various sensing paradigms that possess the potential or have demonstrated the capability to replace or augment current analytical strategies. We start with a brief introduction of the various types of nanostructures and their physical properties that determine the transduction principle. This is followed by a concise collection of various functionalization protocols used to immobilize biomolecules on the nanostructure surface. The sensing paradigms are discussed in two contexts: the nanostructure acting as a label for detection, or the nanostructure acting as a support upon which the molecular recognition events take place. In order to be successful in the field of molecular diagnostics, it is important that the nanoanalytical tools be evaluated in the appropriate biological environment. The final section of the review compiles such examples, where the nanostructure-based diagnostic tools have been tested on realistic samples such as serum, demonstrating their analytical power even in the presence of complex matrix effects. The ability of nanodiagnostic tools to detect ultralow concentrations of one or more analytes coupled with portability and the use of low sample volumes is expected to have a broad impact in the field of molecular diagnostics.

  18. Large-scale one-dimensional Bi x O y I z nanostructures: synthesis, characterization, and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Liu, Chaohong; Zhang, Dun

    2015-03-01

    The performances of Bi x O y I z photofunctional materials are very sensitive to their composition and microstructures; however, the morphology evolution and crystallization process of one-dimensional Bi x O y I z nanostructures, the roles of experimental factors, and related reaction mechanisms remain poorly understood. In this work, large-scale one-dimensional Bi x O y I z nanostructures were fabricated using simple inorganic iodine source. By combing the results of X-ray diffraction and scanning electron microscope, the effect of volume ratios of water and ethanol, concentration of NaOH, and reaction time on the morphologies and crystal phases of Bi x O y I z were elaborated. On the basis of characterizations, a possible process for the growth of Bi5O7I nanobelts was proposed. The optical performances of Bi x O y I z nanostructures were evaluated by ultraviolet-visible-near infrared diffuse reflectance spectra as well as photocatalytic degradation of organic dye and corrosive bacteria. The as-prepared Bi5O7I/Bi2O2CO3/BiOI composite showed excellent photocatalytic activity over malachite green under visible light irradiation, which was deduced closely related to its heterojunction structures.

  19. Configurational forces in solid nanostructures

    SciTech Connect

    Zhigang Suo

    2006-06-12

    The DOE grant (DE-FG02-99ER45787) to Princeton University, entitled Configurational Forces in Solid Nanostructures, was intended to cover the four-year period from September 1999 to September 2003. Effective 1 July 2003, the PI will relocate from Princeton to join the Harvard faculty. Princeton University will submit the Final Financial Report, the Final Property Report, and the Final Patent Report. The expenditures to date are $261,513 with %8,487 remaining of the awarded amount of $320,000. Harvard University will submit a request for the remaining amount. This Final Technical Report covers from the period between September 1999 to June 2003. Three Ph.D. students, Wei Lu, Yanfei Gao and Wei Hong, admitted to Princeton in the fall of 1998, 1999, 2002, respectively, have been dedicated to this project. Wei Lu earned his Ph.D. in August 2001, and is now an assistant professor at The University of Michigan, Ann Arbor. Yanfei Gao earned his Ph.D. in February 2003, and is now a post-doc at Brown University. The amount of funding covers one student at a time. All three students received first-year fellowships from Princeton University. In the Mechanical and Aerospace Engineering Department, to fulfill a doctoral degree requirement, every student serves as a teaching assistant for three semesters, for which the student is partially paid by the University.

  20. Nanostructured surfaces of dental implants.

    PubMed

    Bressan, Eriberto; Sbricoli, Luca; Guazzo, Riccardo; Tocco, Ilaria; Roman, Marco; Vindigni, Vincenzo; Stellini, Edoardo; Gardin, Chiara; Ferroni, Letizia; Sivolella, Stefano; Zavan, Barbara

    2013-01-17

    The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years.

  1. Numerical Simulation of Nanostructure Growth

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.

  2. Nonlinear scattering in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Chu, Shi-Wei

    2016-09-01

    Nonlinear phenomena provide novel light manipulation capabilities and innovative applications. Recently, we discovered nonlinear saturation on single-particle scattering of gold nanospheres by continuous-wave laser excitation and innovatively applied to improve microscopic resolution down to λ/8. However, the nonlinearity was limited to the green-orange plasmonic band of gold nanosphere, and the underlying mechanism has not yet been fully understood. In this work, we demonstrated that nonlinear scattering exists for various material/geometry combinations, thus expanding the applicable wavelength range. For near-infrared, gold nanorod is used, while for blue-violet, silver nanospheres are adopted. In terms of mechanism, the nonlinearity may originate from interband/intraband absorption, hot electron, or hot lattice, which are spectrally mixed in the case of gold nanosphere. For gold nanorod and silver nanosphere, nonlinear scattering occurs at plasmonic resonances, which are spectrally far from interband/intraband absorptions, so they are excluded. We found that the nonlinear index is much larger than possible contributions from hot electrons in literature. Therefore, we conclude that hot lattice is the major mechanism. In addition, we propose that similar to z-scan, which is the standard method to characterize nonlinearity of a thin sample, laser scanning microscopy should be adopted as the standard method to characterize nonlinearity from a nanostructure. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multi-color superresolution imaging based on non-bleaching plasmonic scattering.

  3. Semiconductor nanostructures for artificial photosynthesis

    NASA Astrophysics Data System (ADS)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  4. Chemical scissors cut phosphorene nanostructures

    NASA Astrophysics Data System (ADS)

    Peng, Xihong; Wei, Qun

    2014-12-01

    Phosphorene, a recently fabricated two-dimensional puckered honeycomb structure of phosphorus, showed promising properties for applications in nano-electronics. In this work, we report a chemical scissors effect on phosphorene, using first-principles method. It was found that chemical species, such as H, OH, F, and Cl, can act as scissors to cut phosphorene. Phosphorus nanochains and nanoribbons can be obtained. The scissors effect results from the strong bonding between the chemical species and phosphorus atoms. Other species such as O, S and Se fail to cut phosphorene nanostructures due to their weak bonding with phosphorus. The electronic structures of the produced P-chains reveal that the hydrogenated chain is an insulator while the pristine chain is a one-dimensional Dirac material, in which the charge carriers are massless fermions travelling at an effective speed of light ˜8 × 105 m s-1. The obtained zigzag phosphorene nanoribbons show either metallic or semiconducting behaviors, depending on the treatment of the edge phosphorus atoms.

  5. Numerical Simulation of Nanostructure Growth

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.

  6. Nanostructured bioceramics for maxillofacial applications.

    PubMed

    Adamopoulos, Othon; Papadopoulos, Triantafillos

    2007-08-01

    Biomaterials science and technology have been expanding tremendously the recent years. The results of this evolution are obvious in maxillofacial applications especially with the contemporary development of Nanotechnology. Among biomaterials, bioceramics possess a specific field due to various interactions with the biological tissues. The combination of bioceramics and nanotechnology has resulted in enhanced skeletal interactions in maxillofacial applications. Nanotechnology secures better mechanical properties and more effective biological interactions with jaws. The main production methods for the synthesis of nanostructured materials include plasma arcing, chemical vapour deposition, sol-gel and precipitation. The bioceramics in Dentistry comprise inert, bioactive, resorbable and composite systems. The purpose of the present article is to describe the available nanotechnology methods and how these could be addressed to synthesise maxillofacial bioceramics with advanced properties for better biological applications. Additionally, it describes specific clinical applications in maxillofacial surgery of these biomaterials--either by themselves or in combination with others--that can be promising candidates for bone tissue engineering. Such applications include replacement of lost teeth, filling of jaws defects or reconstruction of mandible and temporomandibular joint.

  7. Electrostatic properties of graphitic nanostructures

    NASA Astrophysics Data System (ADS)

    Erbahar, Dogan

    2014-03-01

    Carbon nanostructures are considered to be one of the most important candidates of circuit elements for future nanoelectronics. However, being one of the main issues of conventional circuitry used today, charge accumulation on circuit elements can also be expected to have important effects on the performance of the nanoscale devices. In this work we investigated charge accumulation on various graphitic systems by simulated charge doping. We report ab initio density functional theory (DFT) calculations of electrostatically charged multilayered carbon nano structures. We investigate the effect of total and background charge on charge distribution profiles on the systems under consideration varying from multilayered graphene to multiwalled carbon nanotubes. We show that the charge distribution profile on the inner layers are mainly induced from the background charge which is imposed by the code on periodic systems. Our population anaylsis indicates that the outermost two layers effectively shields the inner layers electrostatically. Illuminating the typical skin depth of those systems our results could give important insights for designing the nanocircuit elements.

  8. Radiation Nanostructuring of Magnetic Crystals

    NASA Astrophysics Data System (ADS)

    Ageev, V. A.; Kirischuk, V. I.; Koblyanskiy, Yu. V.; Melkov, G. A.; Sadovnikov, L. V.; Slavin, A. N.; Strilchuk, N. V.; Vasyuchka, V. I.; Zheltonozhsky, V. A.

    The influence of irradiations (reactor neutrons, 3 MeV protons and Ar+ ions with the energy of 125 keV) upon ferrite YIG films and devices properties has been investigated. Qualititative similarity of such influence for neutrons and protons has been established. Because of the homogeneous distribution of radiation defects in both cases, there is a simultaneous broadening of homogeneous FMR linewidth, magnetostatic oscillations and modes, and short dipole-exchange spin waves. In the case of Ar+ irradiation due to small path length, there is an inhomogeneous nanostructuring over the thickness of the film with characteristic layer size ~0.1 μm. The presence of nanolayers influences in the different way upon the properties of different film oscillations and modes. The decrease of FMR linewidth by 40% at the fluence of 3 × 1016cm-2 has been observed for the first time. At the same time, spin wave linewidth has practically not changed allowing to increase the efficiency of wave front reversal in YIG films irradiated by Ar+ ions. All discovered experimental facts are explained in the frame of multilayer model of the film consisting of alternate magnetic and nonmagnetic layers.

  9. Silica-Ceria Hybrid Nanostructures

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Baer, Donald R.; Thevuthasan, Suntharampillai

    2012-04-25

    A new hybrid material system that consists of ceria attached silica nanoparticles has been developed. Because of the versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and antioxidant properties of ceria nanoparticles, this material system is ideally suited for biomedical applications. The silica particles of size ~50nm were synthesized by the Stöber synthesis method and ceria nanoparticles of size ~2-3nm was attached to the silica surface using a hetrocoagulation method. The presence of silanol groups on the surface of silica particles mediated homogenous nucleation of ceria which were attached to silica surface by Si-O-Ce bonding. The formations of silica-ceria hybrid nanostructures were characterized by X-photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). The HRTEM image confirms the formation of individual crystallites of ceria nanoparticles attached to the silica surface. The XPS analysis indicates that ceria nanoparticles are chemically bonded to surface of silica and possess mixture of +3 and +4 chemical states.

  10. Nanostructures Using Anodic Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Valmianski, Ilya; Monton, Carlos M.; Pereiro, Juan; Basaran, Ali C.; Schuller, Ivan K.

    2013-03-01

    We present two fabrication methods for asymmetric mesoscopic dot arrays over macroscopic areas using anodic aluminum oxide templates. In the first approach, metal is deposited at 45o to the template axis to partially close the pores and produce an elliptical shadow-mask. In the second approach, now underway, nanoimprint lithography on a polymer intermediary layer is followed by reactive ion etching to generate asymmetric pore seeds. Both these techniques are quantified by an analysis of the lateral morphology and lattice of the pores or dots using scanning electron microscopy and a newly developed MATLAB based code (available for free download at http://ischuller.ucsd.edu). The code automatically provides a segmentation of the measured area and the statistics of morphological properties such as area, diameter, and eccentricity, as well as the lattice properties such as number of nearest neighbors, and unbiased angular and radial two point correlation functions. Furthermore, novel user defined statistics can be easily obtained. We will additionally present several applications of these methods to superconducting, ferromagnetic, and organic nanostructures. This work is supported by AFOSR FA9550-10-1-0409

  11. Fabrication of nanostructures and nanostructure based interfaces for biosensor application

    NASA Astrophysics Data System (ADS)

    Srivastava, Devesh

    Nanoparticles have applications from electronics, composites, drug-delivery, imaging and sensors etc. Fabricating and controlling shape and size of nanoparticles and also controlling the positioning of these particles in 1, 2 or 3-d structures is of most interest. The underlying theme of this study is to develop simple and efficient techniques to fabricate nanoparticles from polymers, and also achieve control in shape, size and functionalization of nanoparticles, while applying them in biosensor applications. First part of the dissertation studies the fabrication of nanostructures using anodized alumina membrane as template. It discusses the fabrication design for injecting polystyrene nanoparticles inside the pores of anodized alumina membranes and heating the membrane to coalesce the particles into tapered nanoparticles. Various parameters like temperature and amount of injected particles can vary the size and shape of fabricated nanoparticles. Later it focuses on the fabrication of metallic nanostructures using the alumina membranes without the aid of the injection system. It utilizes the difference in the functionality of the pore edges of cleaved alumina membrane with respect to the pore walls to first deposit charged polymers using layer-by-layer deposition followed by deposition of nickel. Second part of this study involves immobilization of enzymes for biosensor applications. It describes a biosensor interface developed by immobilization of tyrosinase using layer-by-layer (LBL) deposition process. The interface was modified with functional nanoparticles and their influence on the response of biosensor was studied. Tyrosinase sensor was further extended to develop a novel biosensor which was used to study real time inhibition of NEST, a subunit of the medically relevant membrane protein, neuropathy target esterase. The biosensor was developed to give real time monitoring of dose dependent decrease in activity of NEST. Final part of this study emphasizes on

  12. Nanostructuring of Palladium with Low-Temperature Helium Plasma.

    PubMed

    Fiflis, P; Christenson, M P; Connolly, N; Ruzic, D N

    2015-11-25

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium.

  13. Nanostructuring of Palladium with Low-Temperature Helium Plasma

    PubMed Central

    Fiflis, P.; Christenson, M.P.; Connolly, N.; Ruzic, D.N.

    2015-01-01

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium. PMID:28347109

  14. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  15. Nanostructured surfaces for bone biotemplating applications.

    PubMed

    Popat, Ketul C; Daniels, R Hugh; Dubrow, Robert S; Hardev, Veeral; Desai, Tejal A

    2006-04-01

    A major goal of orthopedic biomaterials research is to design better surface chemistries and configurations to control behavior of bone cells such as osteoblasts. Nanostructured architecture significantly affects the response of several cell lines. In this work, nanostructured surfaces were prepared by vapor liquid solid growth of silicon nanowires from size-controlled gold colloid catalysts deposited on fused silica substrates. The lengths and surface densities of the nanowires were varied to assess the effect of these parameters on bone cell response. Osteoblasts were seeded on nanowire surfaces to investigate both short-term adhesion and proliferation and long-term functionality and matrix production. Cell adhesion and proliferation were characterized using a standard 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay and cell counting for up to 4 days of culture. The total protein content, alkaline phosphatase activity, and matrix production were quantified using standard colorimetric assays for up to 4 weeks of culture. Matrix production was also characterized by measuring surface concentrations of calcium and phosphorus using X-ray photoelectron spectroscopy. Further, scanning electron microscopy was used to investigate osteoblast morphology on nanostructured surfaces. Over the 4-week study, the nanostructured surfaces demonstrated improved osteoblast adhesion and proliferation and increased alkaline phosphatase activity and matrix production compared to non-nanostructured control surfaces.

  16. Nanostructuring of PEG-fibrinogen polymeric scaffolds.

    PubMed

    Frisman, Ilya; Seliktar, Dror; Bianco-Peled, Havazelet

    2010-07-01

    Recent studies have shown that nanostructuring of scaffolds for tissue engineering has a major impact on their interactions with cells. The current investigation focuses on nanostructuring of a biocompatible, biosynthetic polymeric hydrogel scaffold made from crosslinked poly(ethylene glycol)-fibrinogen conjugates. Nanostructuring was achieved by the addition of the block copolymer Pluronic F127, which self-assembles into nanometric micelles at certain concentrations and temperatures. Cryo-transmission electron microscopy experiments detected F127 micelles, both embedded within PEGylated fibrinogen hydrogels and in solution. The density of the F127 micelles, as well as their ordering, increased with increasing block copolymer concentration. The mechanical properties of the nanostructured hydrogels were investigated using stress-sweep rheological testing. These tests revealed a correlation between the block copolymer concentration and the storage modulus of the composite hydrogels. In vitro cellular assays confirmed that the increased modulus of the hydrogels did not limit the ability of the cells to form extensions and become spindled within the three-dimensional (3-D) hydrogel culture environment. Thus, altering the nanostructure of the hydrogel may be used as a strategy to control cellular behavior in 3-D through changes in mechanical properties of the environment.

  17. Mueller matrix imaging ellipsometry for nanostructure metrology.

    PubMed

    Liu, Shiyuan; Du, Weichao; Chen, Xiuguo; Jiang, Hao; Zhang, Chuanwei

    2015-06-29

    In order to achieve effective process control, fast, inexpensive, nondestructive and reliable nanometer scale feature measurements are extremely useful in high-volume nanomanufacturing. Among the possible techniques, optical scatterometry is relatively ideal due to its high throughput, low cost, and minimal sample damage. However, this technique is inherently limited by the illumination spot size of the instrument and the low efficiency in construction of a map of the sample over a wide area. Aiming at these issues, we introduce conventional imaging techniques to optical scatterometry and combine them with Mueller matrix ellipsometry based scatterometry, which is expected to be a powerful tool for the measurement of nanostructures in future high-volume nanomanufacturing, and propose to apply Mueller matrix imaging ellipsometry (MMIE) for nanostructure metrology. Two kinds of nanostructures were measured using an in-house developed Mueller matrix imaging ellipsometer in this work. The experimental results demonstrate that we can achieve Mueller matrix measurement and analysis for nanostructures with pixel-sized illumination spots by using MMIE. We can also efficiently construct parameter maps of the nanostructures over a wide area with pixel-sized lateral resolution by performing parallel ellipsometric analysis for all the pixels of interest.

  18. Plasmonic nanostructures for bioanalytical applications of SERS

    NASA Astrophysics Data System (ADS)

    Kahraman, Mehmet; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Surface-enhanced Raman scattering (SERS) is a potential analytical technique for the detection and identification of chemicals and biological molecules and structures in the close vicinity of metallic nanostructures. We present a novel method to fabricate tunable plasmonic nanostructures and perform a comprehensive structural and optical characterization of the structures. Spherical latex particles are uniformly deposited on glass slides and used as templates to obtain nanovoid structures on polydimethylsiloxane surfaces. The diameter and depth of the nanovoids are controlled by the size of the latex particles. The nanovoids are coated with a thin Ag layer for fabrication of uniform plasmonic nanostructures. Structural characterization of the surfaces is performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Optical properties of these plasmonic nanostructures are evaluated via UV/Vis spectroscopy, and SERS. The sample preparation step is the key point to obtain strong and reproducible SERS spectra from the biological structures. When the colloidal suspension is used as a SERS substrate for the protein detection, the electrostatic interaction of the proteins with the nanoparticles is described by the nature of their charge status, which influences the aggregation properties such as the size and shape of the aggregates, which is critical for the SERS experiment. However, when the solid SERS substrates are fabricated, SERS signal of the proteins that are background free and independent of the protein charge. Pros and cons of using plasmonic nano colloids and nanostructures as SERS substrate will be discussed for label-free detection of proteins using SERS.

  19. Polymeric photovoltaics with various metallic plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Zeng, Beibei; Gan, Qiaoqiang; Kafafi, Zakya H.; Bartoli, Filbert J.

    2013-02-01

    Broadband light absorption enhancement is numerically investigated for the active light harvesting layer of an organic photovoltaic (OPV), which consists of a blend of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). Periodic plasmonic nanostructures placed above and below the active layer incorporate Ag, Al, Au, or a combination of two different metals. Three dimensional (3D) full-field electromagnetic simulations are applied to determine the effect of varying the metal employed in the plasmonic nanostructures on the absorption enhancement of the OPV. In addition, the geometric parameters (e.g., film thickness, period, and diameter) of the symmetrically distributed top and bottom metal (Ag, Al, or Au) nanostructures were varied to optimize the device structure and delineate the mechanism(s) leading to the absorption enhancement. A spectrally broadband, polarization-insensitive, and wide-angle absorption enhancement is obtained using a double plasmonic nanostructure and is attributed to the combined excitation of localized and single-interface surface plasmon polariton modes. The total photon absorption of the OPV with the optimized double plasmonic Ag nanostructures was found to be enhanced by as much as 82.8% and 80.4% under normal (0°) and 60° light incidence, respectively.

  20. In vivo cloning of artificial DNA nanostructures.

    PubMed

    Lin, Chenxiang; Rinker, Sherri; Wang, Xing; Liu, Yan; Seeman, Nadrian C; Yan, Hao

    2008-11-18

    Mimicking nature is both a key goal and a difficult challenge for the scientific enterprise. DNA, well known as the genetic-information carrier in nature, can be replicated efficiently in living cells. Today, despite the dramatic evolution of DNA nanotechnology, a versatile method that replicates artificial DNA nanostructures with complex secondary structures remains an appealing target. Previous success in replicating DNA nanostructures enzymatically in vitro suggests that a possible solution could be cloning these nanostructures by using viruses. Here, we report a system where a single-stranded DNA nanostructure (Holliday junction or paranemic cross-over DNA) is inserted into a phagemid, transformed into XL1-Blue cells and amplified in vivo in the presence of helper phages. High copy numbers of cloned nanostructures can be obtained readily by using standard molecular biology techniques. Correct replication is verified by a number of assays including nondenaturing PAGE, Ferguson analysis, endonuclease VII digestion, and hydroxyl radical autofootprinting. The simplicity, efficiency, and fidelity of nature are fully reflected in this system. UV-induced psoralen cross-linking is used to probe the secondary structure of the inserted junction in infected cells. Our data suggest the possible formation of the immobile four-arm junction in vivo.

  1. Mapping the stochastic response of nanostructures

    NASA Astrophysics Data System (ADS)

    Pattamatta, Subrahmanyam; Elliott, Ryan S.; Tadmor, Ellad B.

    2014-04-01

    Nanostructures are technological devices constructed on a nanometer length scale more than a thousand times thinner than a human hair. Due to the unique properties of matter at this scale, such devices offer great potential for creating novel materials and behaviors that can be leveraged to benefit mankind. This paper addresses a particular challenge involved in the design of nanostructures-their stochastic or apparently random response to external loading. This is because fundamentally the function that relates the energy of a nanostructure to the arrangement of its atoms is extremely nonconvex, with each minimum corresponding to a possible equilibrium state that may be visited as the system responds to loading. Traditional atomistic simulation techniques are not capable of systematically addressing this complexity. Instead, we construct an equilibrium map (EM) for the nanostructure, analogous to a phase diagram for bulk materials, which fully characterizes its response. Using the EM, definitive predictions can be made in limiting cases and the spectrum of responses at any desired loading rate can be obtained. The latter is important because standard atomistic methods are fundamentally limited, by computational feasibility, to simulations of loading rates that are many orders of magnitude faster than reality. In contrast, the EM-based approach makes possible the direct simulation of nanostructure experiments. We demonstrate the method's capabilities and its surprisingly complex results for the case of a nanoslab of nickel under compression.

  2. Elaboration de revetements nanocomposites avec des proprietes superhydrophobes, semi-conductrices et photocatalytiques

    NASA Astrophysics Data System (ADS)

    Madidi, Fatima Zahra

    Les lignes aeriennes de transport et de distribution de l'energie electrique sont souvent exposees a diverses contraintes. Parmi celles-ci, la pollution des isolateurs constitue l'un des facteurs de premiere importance dans la fiabilite du transport d'energie. En effet, la presence de pollution sur les isolateurs lorsqu'elle est humidifiee entraine la diminution de leur performance electrique en favorisant l'apparition d'arcs de contournement. De telles pannes peuvent parfois causer des impacts socioeconomiques importants. Par ailleurs, le developpement de nouveaux revetements pour ces isolateurs peut s'averer un moyen efficace pour les proteger contre l'apparition de l'arc de contournement. Les revetements superhydrophobes ont fait l'objet de nombreuses etudes au cours de ces dernieres annees. Ces surfaces sont preparees en combinant une rugosite nano-microstructuree avec une faible energie de surface. En outre, de telles surfaces ont de nombreuses applications si elles sont durables et n'ont pas d'effets nocifs sur l'environnement. L'objectif principal de la presente etude vise d'abord l'elaboration de revetements superhydrophobes, puis l'etude de leur duree de vie, leurs proprietes dielectriques et photocatalytiques. Une grande variete de materiaux a faible energie de surface peuvent etre utilises pour le developpement de ces revetements. Dans cette recherche, le caoutchouc de silicone (CS) est employe car il presente de nombreuses proprietes, notamment une forte hydrophobie, une resistance aux rayonnements ultraviolets, et une bonne tenue au feu sans degagement de produits toxiques. Toutefois, le point faible de ces materiaux est la degradation de leurs proprietes hydrophobes. Afin d'ameliorer certaines proprietes du caoutchouc de silicone, des nanoparticules seront additionnees au polymere de base. La technique d'elaboration des revetements consiste a ajouter des nanoparticules de dioxyde de titane (TiO2) au polymere de base, par des methodes ayant un

  3. Teaching and learning grade 7 science concepts by elaborate analogies: Mainstream and East and South Asian ESL students' experiences

    NASA Astrophysics Data System (ADS)

    Kim, Judy Joo-Hyun

    This study explored the effectiveness of an instructional tool, elaborate analogy, in teaching the particle theory to both Grade 7 mainstream and East or South Asian ESL students. Ten Grade 7 science classes from five different schools in a large school district in the Greater Toronto area participated. Each of the ten classes were designated as either Group X or Y. Using a quasi-experimental counterbalanced design, Group X students were taught one science unit using the elaborate analogies, while Group Y students were taught by their teachers' usual methods of teaching. The instructional methods used for Group X and Y were interchanged for the subsequent science unit. Quantitative data were collected from 95 students (50 mainstream and 45 ESL) by means of a posttest and a follow-up test for each of the units. When the differences between mainstream and East or South Asian ESL students were analyzed, the results indicate that both groups scored higher on the posttests when they were instructed with elaborate analogies, and that the difference between the two groups was not significant. That is, the ESL students, as well as the mainstream students, benefited academically when they were instructed with the elaborate analogies. The students obtained higher inferential scores on the posttest when their teacher connected the features of less familiar and more abstract scientific concepts to the features of the familiar and easy-to-visualize concept of school dances. However, after two months, the students were unable to recall inferential content knowledge. This is perhaps due to the lack of opportunity for the students to represent and test their initial mental models. Rather than merely employing elaborate analogies, perhaps, science teachers can supplement the use of elaborate analogies with explicit guidance in helping students to represent and test the coherence of their mental models.

  4. Methodology for Elaborating Regional Susceptibility Maps of Slope Instability: the State of Guerrero (mexico) Case Study

    NASA Astrophysics Data System (ADS)

    González Huesca, A. E.; Ferrés, D.; Domínguez-M, L.

    2013-05-01

    Numerous cases of different types of slope instability occur every year in the mountain areas of México. Sometimes these instabilities severely affect the exposed communities, roads and infrastructure, causing deaths and serious material damage, mainly in the states of Puebla, Veracruz, Oaxaca, Guerrero and Chiapas, at the central and south sectors of the country. The occurrence of the slope instability is the result of the combination of climatic, geologic, hydrologic, geomorphologic and anthropogenic factors. The National Center for Disaster Prevention (CENAPRED) is developing several projects in order to offer civil protection authorities of the Mexican states some methodologies to address the hazard assessment for different natural phenomena in a regional level. In this framework, during the past two years, a methodology was prepared to construct susceptibility maps for slope instability at regional (≤ 1:100 000) and national (≤ 1:1 000 000) levels. This research was addressed in accordance to the criteria established by the International Association of Engineering Geology, which is the highest international authority in this topic. The state of Guerrero has been taken as a pilot scheme to elaborate the susceptibility map for slope instability at a regional level. The major constraints considered in the methodology to calculate susceptibility are: a) the slope of the surface, b) the geology and c) the land use, which were integrated using a Geographic Information System (GIS). The arithmetic sum and weighting factors to obtain the final susceptibility map were based on the average values calculated in the individual study of several cases of slope instability occurred in the state in the past decade. For each case, the evaluation format proposed by CENAPRED in 2006 in the "Guía Básica para la elaboración de Atlas Estatales y Municipales de Peligros y Riesgos" to evaluate instabilities in a local level, was applied. The resulting susceptibility map shows

  5. Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area

    PubMed Central

    Harrison, Theresa A.; He, Zhiguo; Boggs, Kristin; Thuret, Gilles; Liu, Hong-Xiang

    2016-01-01

    Purpose The corneal endothelium is widely believed to consist of geometrically regular cells interconnected by junctional complexes. However, while en face visualization of the endothelial apical surface reveals characteristic polygonal borders, the overall form of the component cells has rarely been observed. Methods To visualize the shape of individual endothelial cells within the native monolayer, two independent Cre/LoxP-based cell labeling approaches were used. In the first, a P0-Cre mouse driver strain was bred to an R26-tdTomato reporter line to map neural crest–derived endothelial cells with cytosolic red fluorescent protein. In the second, HPRT-Cre induction of small numbers of green and red fluorescent protein–filled cells within a background of unlabeled cells was achieved using a dual-color reporter system, mosaic analysis with double markers (MADM). Selective imaging of the endothelial lateral membranes at different apicobasal levels was accomplished after staining with antibodies to ZO-1 and the neural cell adhesion molecule (NCAM). Results When viewed in their entirety in whole-mount preparations, fluorescent protein–filled cells appear star-shaped, extending multiple dendritic processes that radiate outward in the plane of the monolayer. Examination of rare cases where cells expressing different fluorescent proteins lie directly adjacent to one another reveals that these long processes undergo extensive interdigitation. The resulting overlap allows individual cells to extend over a greater area than if the cell boundaries were mutually exclusive. Anti-NCAM staining of these interlocking peripheral cell extensions reveals an elaborate system of lateral membrane folds that, when viewed in optical sections, increase in complexity from the apical to the basal pole. This not only produces a substantial increase in the basolateral, relative to the apical, membrane but also greatly extends the paracellular pathway as a highly convoluted space

  6. Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area.

    PubMed

    Harrison, Theresa A; He, Zhiguo; Boggs, Kristin; Thuret, Gilles; Liu, Hong-Xiang; Defoe, Dennis M

    2016-01-01

    The corneal endothelium is widely believed to consist of geometrically regular cells interconnected by junctional complexes. However, while en face visualization of the endothelial apical surface reveals characteristic polygonal borders, the overall form of the component cells has rarely been observed. To visualize the shape of individual endothelial cells within the native monolayer, two independent Cre/LoxP-based cell labeling approaches were used. In the first, a P0-Cre mouse driver strain was bred to an R26-tdTomato reporter line to map neural crest-derived endothelial cells with cytosolic red fluorescent protein. In the second, HPRT-Cre induction of small numbers of green and red fluorescent protein-filled cells within a background of unlabeled cells was achieved using a dual-color reporter system, mosaic analysis with double markers (MADM). Selective imaging of the endothelial lateral membranes at different apicobasal levels was accomplished after staining with antibodies to ZO-1 and the neural cell adhesion molecule (NCAM). When viewed in their entirety in whole-mount preparations, fluorescent protein-filled cells appear star-shaped, extending multiple dendritic processes that radiate outward in the plane of the monolayer. Examination of rare cases where cells expressing different fluorescent proteins lie directly adjacent to one another reveals that these long processes undergo extensive interdigitation. The resulting overlap allows individual cells to extend over a greater area than if the cell boundaries were mutually exclusive. Anti-NCAM staining of these interlocking peripheral cell extensions reveals an elaborate system of lateral membrane folds that, when viewed in optical sections, increase in complexity from the apical to the basal pole. This not only produces a substantial increase in the basolateral, relative to the apical, membrane but also greatly extends the paracellular pathway as a highly convoluted space. Our analysis indicates that, far

  7. 40 CFR 721.10706 - Infused carbon nanostructures (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Infused carbon nanostructures (generic... Specific Chemical Substances § 721.10706 Infused carbon nanostructures (generic). (a) Chemical substance... infused carbon nanostructures (PMN P-12-576) is subject to reporting under this section for...

  8. 40 CFR 721.10287 - Infused carbon nanostructures (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Infused carbon nanostructures (generic... Specific Chemical Substances § 721.10287 Infused carbon nanostructures (generic). (a) Chemical substance... infused carbon nanostructures (PMN P-11-188) is subject to reporting under this section for...

  9. 40 CFR 721.10287 - Infused carbon nanostructures (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Infused carbon nanostructures (generic... Specific Chemical Substances § 721.10287 Infused carbon nanostructures (generic). (a) Chemical substance... infused carbon nanostructures (PMN P-11-188) is subject to reporting under this section for...

  10. 40 CFR 721.10287 - Infused carbon nanostructures (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Infused carbon nanostructures (generic... Specific Chemical Substances § 721.10287 Infused carbon nanostructures (generic). (a) Chemical substance... infused carbon nanostructures (PMN P-11-188) is subject to reporting under this section for...

  11. Assembly of barcode-like nucleic acid nanostructures.

    PubMed

    Wang, Pengfei; Tian, Cheng; Li, Xiang; Mao, Chengde

    2014-10-15

    Barcode-like (BC) nanopatterns from programmed self-assembly of nucleic acids (DNA and RNA) are reported. BC nanostructures are generated by the introduction of open spaces at selected sites to an otherwise closely packed, plain, rectangle nucleic acid nanostructure. This strategy is applied to nanostructures assembled from both origami approach and single stranded tile approach.

  12. Chemical Strategies for Template Syntheses of Composite Micro and Nanostructures.

    DTIC Science & Technology

    1997-05-02

    CHEMICAL STRATEGIES FOR TEMPLATE SYNTHESES OF COMPOSITE MICRO AND NANOSTRUCTURES Veronica M. Cepak, John C. Hulteen, Guangli Che, Kshama B. Jirage...for the first time, template-based syntheses of composite micro and nanostructures in which an outer tubule composed of one material encapsulates...ropolymerizations. The template method for preparing nanomaterials entails synthesis of monodisperse tubular and fibrillar nanostructures within the

  13. Atomistic simulation of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Zhu, Ronghua

    Atomistic based computer modeling and simulation of nanostructured materials has become an important subfield of materials research. Based on the multiresolution method, which combines the continuum mechanics, kinetic Monte Carlo method and molecular dynamics method, we study the nanostructured materials grown by quantum-dot self-assembly, mechanical properties of strained semiconductors, and mechanical properties of carbon nanotube reinforced composites. This thesis covers the following three main contributions. 1. Self-organization of semiconductors InAs/GaAs in Stranski-Krastanov growth mode is studied using kinetic Monte Carlo simulations method coupled with the Green's function solution for the elastic strain energy distribution. The relevant growth parameters such as growth temperature, surface coverage, flux rate, and growth interruption time are investigated. It is shown clearly that when the long-range strain energy is included in the simulation, ordered uniform size distribution can be achieved. To address the effect of material anisotropy, the anisotropic substrates of GaAs with different growth orientations (001), (111), and (113) and an isotropic substrate Iso (001), reduced from cubic GaAs, are also investigated. Simulation results show that at selected growth parameters for temperature, coverage, and growth interruption time, strain energy field in the substrate is the key factor that controls the pattern of island distribution. Furthermore, layer-by-layer growth of quantum dots is also simulated briefly, and vertical alignment is observed that could lead to progressively uniform island sizes and spatial ordering. 2. Since the misfit strain will be induced during the quantum dots epitaxial growth, the mechanical property of the grown semiconductors will be influenced. In this thesis, utilizing the basic continuum mechanics, we present a molecular dynamic prediction for the elastic stiffness C11, C12 and C 44 in strained silicon and InAs as functions

  14. Designing fractal nanostructured biointerfaces for biomedical applications.

    PubMed

    Zhang, Pengchao; Wang, Shutao

    2014-06-06

    Fractal structures in nature offer a unique "fractal contact mode" that guarantees the efficient working of an organism with an optimized style. Fractal nanostructured biointerfaces have shown great potential for the ultrasensitive detection of disease-relevant biomarkers from small biomolecules on the nanoscale to cancer cells on the microscale. This review will present the advantages of fractal nanostructures, the basic concept of designing fractal nanostructured biointerfaces, and their biomedical applications for the ultrasensitive detection of various disease-relevant biomarkers, such microRNA, cancer antigen 125, and breast cancer cells, from unpurified cell lysates and the blood of patients. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanostructured injectable cell microcarriers for tissue regeneration

    PubMed Central

    Zhang, Zhanpeng; Eyster, Thomas W; Ma, Peter X

    2016-01-01

    Biodegradable polymer microspheres have emerged as cell carriers for the regeneration and repair of irregularly shaped tissue defects due to their injectability, controllable biodegradability and capacity for drug incorporation and release. Notably, recent advances in nanotechnology allowed the manipulation of the physical and chemical properties of the microspheres at the nanoscale, creating nanostructured microspheres mimicking the composition and/or structure of natural extracellular matrix. These nanostructured microspheres, including nanocomposite microspheres and nanofibrous microspheres, have been employed as cell carriers for tissue regeneration. They enhance cell attachment and proliferation, promote positive cell-carrier interactions and facilitate stem cell differentiation for target tissue regeneration. This review highlights the recent advances in nanostructured microspheres that are employed as injectable, biomimetic and cell-instructive cell carriers. PMID:27230960

  16. Vibron and phonon hybridization in dielectric nanostructures.

    PubMed

    Preston, Thomas C; Signorell, Ruth

    2011-04-05

    Plasmon hybridization theory has been an invaluable tool in advancing our understanding of the optical properties of metallic nanostructures. Through the prism of molecular orbital theory, it allows one to interpret complex structures as "plasmonic molecules" and easily predict and engineer their electromagnetic response. However, this formalism is limited to conducting particles. Here, we present a hybridization scheme for the external and internal vibrations of dielectric nanostructures that provides a straightforward understanding of the infrared signatures of these particles through analogy to existing hybridization models of both molecular orbitals and plasmons extending the range of applications far beyond metallic nanostructures. This method not only provides a qualitative understanding, but also allows for the quantitative prediction of vibrational spectra of complex nanoobjects from well-known spectra of their primitive building blocks. The examples of nanoshells illustrate how spectral features can be understood in terms of symmetry, number of nodal planes, and scale parameters.

  17. To Develop Nanostructured Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhao, Weixun; Wang, Ping; Wei, Zheng

    Advanced turbine engines require the application of thermal barrier coatings (TBCs) to provide still higher reliability, thermal insulation effect and longer lifetime under harsh operating conditions. TBCs with nanostructure proved to be promising to deliver the desired property and performance. To exploit full potentials of the current widely used yttria-partially-stabilized zirconia (YSZ), nano-sized YSZ powders were developed and used as the ceramic source material. By controlling the deposition processes, novel TBCs with outstanding nanostructure such as nano-sized grains and pores were produced by atmospheric plasma spray (APS) and electron beam physical vapor deposition (EB-PVD), respectively. The incorporated nanostructure in TBCs resulted in substantial increase in thermal barrier effect and their lifetime. The long-term microstructure stability of the nanocoating was also investigated.

  18. Silicon nanostructures for cancer diagnosis and therapy.

    PubMed

    Peng, Fei; Cao, Zhaohui; Ji, Xiaoyuan; Chu, Binbin; Su, Yuanyuan; He, Yao

    2015-01-01

    The emergence of nanotechnology suggests new and exciting opportunities for early diagnosis and therapy of cancer. During the recent years, silicon-based nanomaterials featuring unique properties have received great attention, showing high promise for myriad biological and biomedical applications. In this review, we will particularly summarize latest representative achievements on the development of silicon nanostructures as a powerful platform for cancer early diagnosis and therapy. First, we introduce the silicon nanomaterial-based biosensors for detecting cancer markers (e.g., proteins, tumor-suppressor genes and telomerase activity, among others) with high sensitivity and selectivity under molecular level. Then, we summarize in vitro and in vivo applications of silicon nanostructures as efficient nanoagents for cancer therapy. Finally, we discuss the future perspective of silicon nanostructures for cancer diagnosis and therapy.

  19. Biomimetic gyroid nanostructures exceeding their natural origins

    PubMed Central

    Gan, Zongsong; Turner, Mark D.; Gu, Min

    2016-01-01

    Using optical two-beam lithography with improved resolution and enhanced mechanical strength, we demonstrate the replication of gyroid photonic nanostructures found in the butterfly Callophrys rubi. These artificial structures are shown to have size, controllability, and uniformity that are superior to those of their biological counterparts. In particular, the elastic Young’s modulus of fabricated nanowires is enhanced by up to 20%. As such, the circular dichroism enabled by the gyroid nanostructures can operate in the near-ultraviolet wavelength region, shorter than that supported by the natural butterfly wings of C. rubi. This fabrication technique provides a unique tool for extracting three-dimensional photonic designs from nature and will aid the investigation of biomimetic nanostructures. PMID:27386542

  20. Synthesis and processing of nanostructured materials

    SciTech Connect

    Siegel, R.W.

    1992-12-01

    Significant and growing interest is being exhibited in the novel and enhanced properties of nanostructured materials. These materials, with their constituent phase or grain structures modulated on a length scale less than 100 nm, are artificially synthesized by a wide variety of physical, chemical, and mechanical methods. In this NATO Advanced Study Institute, where mechanical behavior is emphasized, nanostructured materials with modulation dimensionalities from one (multilayers) to three (nanophase materials) are mainly considered. No attempt is made in this review to cover in detail all of the diverse methods available for the synthesis of nanostructured materials. Rather, the basic principles involved in their synthesis are discussed in terms of the special properties sought using examples of particular synthesis and processing methodologies. Some examples of the property changes that can result from one of these methods, cluster assembly of nanophase materials, are presented.