Sample records for bioactive basing materials

  1. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration

    PubMed Central

    Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki

    2009-01-01

    Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid. PMID:19158015

  2. [Preparation and characteristics of aerogel-based bioactive materials used in dentistry].

    PubMed

    Lázár, István; Kuttor, Andrea; Győri, Enikö; Veres, Péter; Fábián, István; Manó, Sándor; Hegedüs, Csaba

    2015-03-01

    A variety of bioactive materials have been investigated as substitute materials for diseased or damaged bone tissues in dentistry. The aim of this study was to prepare mesoporous silica containing biomaterials by sol-gel technology. These materials may be combinated with hydroxyapatite and β-tricalcium phosphate, as bioactive agents. The synthesis and testing of important physical parameters were performed. Based on these measurements, the silica aerogel can be an applicable material in the dental field in the future.

  3. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    PubMed

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    NASA Astrophysics Data System (ADS)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2017-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  5. Bioglass® 45S5-based composites for bone tissue engineering and functional applications.

    PubMed

    Rizwan, M; Hamdi, M; Basirun, W J

    2017-11-01

    Bioglass® 45S5 (BG) has an outstanding ability to bond with bones and soft tissues, but its application as a load-bearing scaffold material is restricted due to its inherent brittleness. BG-based composites combine the amazing biological and bioactive characteristics of BG with structural and functional features of other materials. This article reviews the composites of Bioglass ® in combination with metals, ceramics and polymers for a wide range of potential applications from bone scaffolds to nerve regeneration. Bioglass ® also possesses angiogenic and antibacterial properties in addition to its very high bioactivity; hence, composite materials developed for these applications are also discussed. BG-based composites with polymer matrices have been developed for a wide variety of soft tissue engineering. This review focuses on the research that suggests the suitability of BG-based composites as a scaffold material for hard and soft tissues engineering. Composite production techniques have a direct influence on the bioactivity and mechanical behavior of scaffolds. A detailed discussion of the bioactivity, in vitro and in vivo biocompatibility and biodegradation is presented as a function of materials and its processing techniques. Finally, an outlook for future research is also proposed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3197-3223, 2017. © 2017 Wiley Periodicals, Inc.

  6. Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration

    PubMed Central

    Allo, Bedilu A.; Costa, Daniel O.; Dixon, S. Jeffrey; Mequanint, Kibret; Rizkalla, Amin S.

    2012-01-01

    Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone. PMID:24955542

  7. Physicochemical and bioactive properties of innovative resin-based materials containing functional halloysite-nanotubes fillers.

    PubMed

    Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Takimi, Antonio Shigueaki; Collares, Fabrício Mezzomo; Sauro, Salvatore

    2016-09-01

    This study aimed to assess the degree of conversion, microhardness, solvent degradation, contact angle, surface free energy and bioactivity (e.g., mineral precipitation) of experimental resin-based materials containing, pure or triclosan-encapsulated, aluminosilicate-(halloysite) nanotubes. An experimental resin blend was prepared using bis-GMA/TEGDMA, 75/25wt% (control). Halloysite nanotubes (HNT) doped with or without triclosan (TCN) were first analyzed using transmission electron microscopy (TEM). HNT or HNT/TCN fillers were incorporated into the resin blend at different concentrations (5, 10, and 20wt%). Seven experimental resins were created and the degree of conversion, microhardness, solvent degradation and contact angle were assessed. Bioactive mineral precipitation induced by the experimental resins was evaluated through Raman spectroscopy and SEM-EDX. TEM showed a clear presence of TCN particles inside the tubular lumen and along the outer surfaces of the halloysite nanotubes. The degree of conversion, surface free energy, microhardness, and mineral deposition of polymers increased with higher amount of HNTs. Conversely, the higher the amount (20wt%) of TCN-loaded HNTs the lower the microhardness of the experimental resins. The incorporation of pure or TCN-loaded aluminosilicate-(halloysite) nanotubes into resin-based materials increase the bioactivity of such experimental restorative materials and promotes mineral deposition. Therefore, innovative resin-based materials containing functional halloysite-nanotube fillers may represent a valuable alternative for therapeutic minimally invasive treatments. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Bioactive Polymeric Composites for Tooth Mineral Regeneration: Physicochemical and Cellular Aspects

    PubMed Central

    Skrtic, Drago; Antonucci, Joseph M.

    2011-01-01

    Our studies of amorphous calcium phosphate (ACP)-based dental materials are focused on the design of bioactive, non-degradable, biocompatible, polymeric composites derived from acrylic monomer systems and ACP by photochemical or chemically activated polymerization. Their intended uses include remineralizing bases/liners, orthodontic adhesives and/or endodontic sealers. The bioactivity of these materials originates from the propensity of ACP, once exposed to oral fluids, to release Ca and PO4 ions (building blocks of tooth and bone mineral) in a sustained manner while spontaneously converting to thermodynamically stable apatite. As a result of ACP's bioactivity, local Ca- and PO4-enriched environments are created with supersaturation conditions favorable for the regeneration of tooth mineral lost to decay or wear. Besides its applicative purpose, our research also seeks to expand the fundamental knowledge base of structure-composition-property relationships existing in these complex systems and identify the mechanisms that govern filler/polymer and composite/tooth interfacial phenomena. In addition to an extensive physicochemical evaluation, we also assess the leachability of the unreacted monomers and in vitro cellular responses to these types of dental materials. The systematic physicochemical and cellular assessments presented in this study typically provide model materials suitable for further animal and/or clinical testing. In addition to their potential dental clinical value, these studies suggest the future development of calcium phosphate-based biomaterials based on composite materials derived from biodegradable polymers and ACP, and designed primarily for general bone tissue regeneration. PMID:22102967

  9. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.

    PubMed

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

  10. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years.

    PubMed

    Philippart, Anahí; Boccaccini, Aldo R; Fleck, Claudia; Schubert, Dirk W; Roether, Judith A

    2015-01-01

    Inorganic scaffolds with high interconnected porosity based on bioactive glasses and ceramics are prime candidates for applications in bone tissue engineering. These materials however exhibit relatively low fracture strength and high brittleness. A simple and effective approach to improve the toughness is to combine the basic scaffold structure with polymer coatings or through the formation of interpenetrating polymer-bioactive ceramic microstructures. The polymeric phase can additionally serve as a carrier for growth factors and therapeutic drugs, thus adding biological functionalities. The present paper reviews the state-of-the art in the field of polymer coated and infiltrated bioactive inorganic scaffolds. Based on the notable combination of bioactivity, improved mechanical properties and drug or growth factor delivery capability, this scaffold type is a candidate for bone and osteochondral regeneration strategies. Remaining challenges for the improvement of the materials are discussed and opportunities to broaden the application potential of this scaffold type are also highlighted.

  11. Bioactive Nanocomposites for Tissue Repair and Regeneration: A Review

    PubMed Central

    Bramhill, Jane; Ross, Sukunya; Ross, Gareth

    2017-01-01

    This review presents scientific findings concerning the use of bioactive nanocomposites in the field of tissue repair and regeneration. Bioactivity is the ability of a material to incite a specific biological reaction, usually at the boundary of the material. Nanocomposites have been shown to be ideal bioactive materials due the many biological interfaces and structures operating at the nanoscale. This has resulted in many researchers investigating nanocomposites for use in bioapplications. Nanocomposites encompass a number of different structures, incorporating organic-inorganic, inorganic-inorganic and bioinorganic nanomaterials and based upon ceramic, metallic or polymeric materials. This enables a wide range of properties to be incorporated into nanocomposite materials, such as magnetic properties, MR imaging contrast or drug delivery, and even a combination of these properties. Much of the classical research was focused on bone regeneration, however, recent advances have enabled further use in soft tissue body sites too. Despite recent technological advances, more research is needed to further understand the long-term biocompatibility impact of the use of nanoparticles within the human body. PMID:28085054

  12. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review

    PubMed Central

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848

  13. Stem cell homing-based tissue engineering using bioactive materials

    NASA Astrophysics Data System (ADS)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  14. Non-biodegradable polymer particles for drug delivery: A new technology for "bio-active" restorative materials.

    PubMed

    Imazato, Satoshi; Kitagawa, Haruaki; Tsuboi, Ririko; Kitagawa, Ranna; Thongthai, Pasiree; Sasaki, Jun-Ichi

    2017-09-26

    To develop dental restorative materials with "bio-active" functions, addition of the capability to release active agents is an effective approach. However, such functionality needs to be attained without compromising the basic properties of the restorative materials. We have developed novel non-biodegradable polymer particles for drug delivery, aimed for application in dental resins. The particles are made using 2-hydroxyethyl methacrylate (HEMA) and a cross-linking monomer trimethylolpropane trimethacrylate (TMPT), with a hydrophilic nature to adsorb proteins or water-soluble antimicrobials. The polyHEMA/TMPT particles work as a reservoir to release fibroblast growth factor-2 (FGF-2) or cetylpyridinium chloride (CPC) in an effective manner. Application of the polyHEMA/TMPT particles loaded with FGF-2 to adhesives, or those loaded with CPC to resin-based endodontic sealers or denture bases/crowns is a promising approach to increase the success of the treatments by conferring "bio-active" properties to these materials to induce tissue regeneration or to inhibit bacterial infection.

  15. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering.

    PubMed

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Kozieł, Marcin; Nowakowska, Maria

    2015-02-10

    Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.

  16. Nanocellulose-based composites and bioactive agents for food packaging.

    PubMed

    Khan, Avik; Huq, Tanzina; Khan, Ruhul A; Riedl, Bernard; Lacroix, Monique

    2014-01-01

    Global environmental concern, regarding the use of petroleum-based packaging materials, is encouraging researchers and industries in the search for packaging materials from natural biopolymers. Bioactive packaging is gaining more and more interest not only due to its environment friendly nature but also due to its potential to improve food quality and safety during packaging. Some of the shortcomings of biopolymers, such as weak mechanical and barrier properties can be significantly enhanced by the use of nanomaterials such as nanocellulose (NC). The use of NC can extend the food shelf life and can also improve the food quality as they can serve as carriers of some active substances, such as antioxidants and antimicrobials. The NC fiber-based composites have great potential in the preparation of cheap, lightweight, and very strong nanocomposites for food packaging. This review highlights the potential use and application of NC fiber-based nanocomposites and also the incorporation of bioactive agents in food packaging.

  17. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    PubMed Central

    Vichery, Charlotte; Nedelec, Jean-Marie

    2016-01-01

    Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented. PMID:28773412

  18. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Janis, Abram D. (Inventor); Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor)

    2014-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  19. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2015-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  20. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2016-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  1. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly (Inventor); Janis, Abram D. (Inventor); Stuart, Katherine A. (Inventor)

    2017-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  2. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    PubMed

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Bioactive calcium phosphate coatings on metallic implants

    NASA Astrophysics Data System (ADS)

    Sedelnikova, M. B.; Komarova, E. G.; Sharkeev, Yu. P.; Tolkacheva, T. V.; Khlusov, I. A.; Sheikin, V. V.

    2017-09-01

    Biocomposites based on bioinert metals or alloys and bioactive calcium phosphate coatings are a promising tendency of the new-generation implants development. In recent years, the approach of regenerative medicine based on the use of biodegradable biomaterials has been priority direction. Such materials are capable of initiating the bone tissue regeneration and replaced by the newly formed bone. The microarc oxidation (MAO) method allows obtaining the bioactive coatings with a porous structure, special functional properties, and modified by the essential elements. During the last decade, the investigations in the field of the nanostructured biocomposites based on bioinert Ti, Zr, Nb and their alloys with a calcium phosphate coatings deposited by the MAO method have been studied in the Institute of Strength Physics and Materials Science SB RAS, Tomsk. In this article the possibility to produce the bioactive coatings with high antibacterial and osseoconductive properties due to the introduction in the coatings of Zn, Cu, Ag, La, Si elements and wollastonite CaSiO3 was shown. The high hydrophilic and bioresorbed coatings stimulate the processes of osseointegration of the implant into the bone tissue. A promising direction in the field of the medical material science is a development of the metallic implants with good biomechanical compatibility to the bone, such as Ti-Nb alloys with a low elastic modulus that can be classified as biomaterials of the second generation. Zr and its alloys are promising materials for the dentistry and orthopedic surgery due to their high strength and corrosion resistance. Biodegradable Mg alloys are biomaterials of third generation. Such materials can dissolve with a certain speed in human body and excreted from the body thereby excluding the need for reoperation. This article presents the analysis of the study results of bioactive MAO coatings on Ti, Ti-Nb, Zr-Nb and Mg alloys and their promising medical application.

  4. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.

  5. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends.

    PubMed

    Ventura, Sónia P M; E Silva, Francisca A; Quental, Maria V; Mondal, Dibyendu; Freire, Mara G; Coutinho, João A P

    2017-05-24

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.

  6. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends

    PubMed Central

    2017-01-01

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid–liquid extractions, IL-based liquid–liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations. PMID:28151648

  7. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  8. Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints.

    PubMed

    Rahaman, Mohamed N; Bal, B Sonny; Huang, Wenhai

    2014-08-01

    Bacterial contamination of implanted orthopedic prostheses is a serious complication that requires prolonged systemic antibiotic therapy, major surgery to remove infected implants, bone reconstruction, and considerable morbidity. Local delivery of high doses of antibiotics using poly(methyl methacrylate) (PMMA) cement as the carrier, along with systemic antibiotics, is the standard treatment. However, PMMA is not biodegradable, and it can present a surface on which secondary bacterial infection can occur. PMMA spacers used to treat deep implant infections must be removed after resolution of the infection. Alternative carrier materials for antibiotics that could also restore deficient bone are therefore of interest. In this article, the development of bioactive glass-based materials as a delivery system for antibiotics is reviewed. Bioactive glass is osteoconductive, converts to hydroxyapatite, and heals to hard and soft tissues in vivo. Consequently, bioactive glass-based carriers can provide the combined functions of controlled local antibiotic delivery and bone restoration. Recently-developed borate bioactive glasses are of particular interest since they have controllable degradation rates coupled with desirable properties related to osteogenesis and angiogenesis. Such glasses have the potential for providing a new class of biomaterials, as substitutes for PMMA, in the treatment of deep bone infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices.

    PubMed

    Chowdhury, Mohammad A

    2014-04-01

    This article presents the perspectives on the lignin-based controlled release (CR) of bioactive materials which are based on the researches that took place over the last three decades. It encompasses three broad spectra of observations: CR formulations with mixed-matrix of lignin; CR formulations with modified lignin; and the lignin-based CR formulation modelling. The article covers a range of bioactive materials aimed for agricultural utilisations viz. herbicides, pesticides, insecticides and fertilisers for their controlled release studies, which were formulated either with lignin or lignin-based biopolymers. The inherent complexities, structural heterogeneities, and the presence of myriad range of functionalities in the lignin structure make it difficult to understand and explaining the underlying CR behaviour and process. In conjunction to this issue, the fundamental aspects of the synthetic and biocompatible polymer-based drug controlled release process are presented, and correlated with the lignin-based CR research. The articulation of this correlation and the overview presented in this article may be complemented of the future lignin-based CR research gaining better insights, reflections, and understanding. A recommended approach on the lignin depolymerisation is suggested to fragmenting the lignin, which may be tailored further using the re-polymerisation or other synthetic approaches. Thus it may allow more control with flexibilities and improved properties of the modified lignin materials, and help achieve the desired CR outcomes. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional foods.

    PubMed

    McClements, David Julian

    2013-12-01

    The oral bioavailability of many lipophilic bioactives, such as pharmaceuticals and nutraceuticals, is relatively low due to their poor solubility, permeability and/or chemical stability within the human gastrointestinal tract (GIT). The oral bioavailability of lipophilic bioactives can be improved by designing food matrices that control their release, solubilization, transport and absorption within the GIT. This article discusses the challenges associated with delivering lipophilic bioactive components, the impact of food composition and structure on oral bioavailability and the design of functional and medical foods for improving the oral bioavailability of lipophilic bioactives. Food-based delivery systems can be used to improve the oral bioavailability of lipophilic bioactives. There are a number of potential advantages to delivering lipophilic bioactives using functional or medical foods: greater compliance than conventional delivery forms; increased bioavailability and efficacy; and reduced variability in biological effects. However, food matrices are structurally complex multicomponent materials and research is still needed to identify optimum structures and compositions for particular bioactives.

  11. Engineering bioactive polymers for the next generation of bone repair

    NASA Astrophysics Data System (ADS)

    Ho, Emily Y.

    Bone disease is a serious health condition among the aged population. In some cases of bone damage it becomes necessary to replace, recontour, and assist in the healing of the bone. Many materials have been proposed as useful replacements but none have been proven to be ideal. In this thesis, two bioactive composites were investigated for bone replacements. First reported material is a hydroxyapatite (HA) particle reinforced polymethylmethacrylate (PMMA) composite treated with a co-polymer coupling agent for mandible augmentations. The influence of the coupling agent on the local mechanical properties of the system before and after simulated biological conditions was determined by applying nano-indentation at the cross-sectional HA/PMMA interface. The local interfacial results were indicative of the global quasi static compression test results. While the coupling agent improved the interfacial and global mechanical properties before and after 24 hours in vitro immersion, it did not affect the surface bioactivity of the system. However, the addition of coupling agent did not provide long term in vitro improvement of both local and global mechanical properties of the composite. An alternative approach of combining a bioactive phase into polymer matrix was developed. The second analyzed material is an injectable composite with osteoconductivity and ideal mechanical biocompatibility for vertebral fracture fixations which we formulated and fabricated. A bioactive component was engineered into the macromolecular structure to facilitate the formation of apatite nucleation sites on a thermo-sensitive polymer, poly(N-isopropylacryamide)-co-poly(ethyleneglycol) dimethacrylate (PNIPAAm-PEGDM), through incorporation of tri-methacryloxypropyltrimethoxysilane (MPS). PNIPAAm-PEGDM is capable of liquid to solid phase transformation at 32°C. In this study, the phase transformation temperature (LCSTs), the in vitro mechanical properties, swelling characteristics and bioactivity of the polymers were evaluated. The addition of NIPS to the polymer encouraged apatite formation and increased its compressive modulus while its LCST remained unchanged. The challenge of this material system is to balance the network-forming and bioactivity inducing MPS with the gain in elastic recovery induced by PEGDM addition to the PNIPAAm base, all while maintaining an injectable material system. This material platform offers a family of polymers that have a range of mechanical properties for various tissue replacements.

  12. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula.

    PubMed

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling; Wang, Yun

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components.

  13. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula

    PubMed Central

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components. PMID:29692857

  14. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.

    PubMed

    Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui

    2016-03-01

    Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants-a review.

    PubMed

    Abdullah, Mohamed Ruslan; Goharian, Amirhossein; Abdul Kadir, Mohammed Rafiq; Wahit, Mat Uzir

    2015-11-01

    The use of polyetheretherketone (PEEK) composites in the trauma plating system, total replacement implants, and tissue scaffolds has found great interest among researchers. In recent years (2008 afterward), this type of composites has been examined for suitability as substitute material over stainless steel, titanium alloys, ultra high molecular weight polyethylene, or even biodegradable materials in orthopedic implant applications. Biomechanical and bioactivity concepts were contemplated for the development of PEEK orthopedic implants and a few primary clinical studies reported the clinical outcomes of PEEK-based orthopedic implants. This study aims to review and discuss the recent concepts and contribute further concepts in terms of biomechanical and bioactivity challenges for the development of PEEK and PEEK composites in orthopedic implants. © 2015 Wiley Periodicals, Inc.

  16. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    PubMed Central

    Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. PMID:24113131

  17. Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells.

    PubMed

    Wu, Yaobin; Wang, Ling; Hu, Tianli; Ma, Peter X; Guo, Baolin

    2018-05-15

    Controlling cellular alignment and elongation has been demonstrated as an important parameter for developing nerve tissue engineering scaffolds. Many approaches have been developed to guide cellular orientation for nerve regeneration such as micropatterning techniques. However, most of materials used for developing micropatterning scaffolds lack of bioactivity and biofunctionability. Here we present a functional conductive micropatterned scaffold based on bioactive conductive biodegradable polyurethane prepared using a micro-molding technique. These conductive micropatterned scaffolds are able to not only induce the Schwann cells (SCs) alignment and elongation by the micropatterned surface but also enhance the nerve growth factor (NGF) gene expression of SCs by the bioactivity of these materials. Additionally, the combined effect of the bioactivity of such conductive materials and the micropatterned structure also dramatically promotes the neurite extension and elongation of PC12 cells in a highly aligned direction. These data suggest that these conductive micropatterned scaffolds that easily control cellular orientation and organization, and dramatically enhance NGF gene expression and significantly induce the neurite extension of PC12 cells, have a great potential for nerve regeneration applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease.

    PubMed

    Watson, Timothy F; Atmeh, Amre R; Sajini, Shara; Cook, Richard J; Festy, Frederic

    2014-01-01

    Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin-restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement-dentin interface samples behavior over time. The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Fracture toughness of heat cured denture base acrylic resin modified with Chlorhexidine and Fluconazole as bioactive compounds.

    PubMed

    Al-Haddad, Alaa; Vahid Roudsari, Reza; Satterthwaite, Julian D

    2014-02-01

    This study investigated the impact of incorporating Chlorhexidine and Fluconazole as bioactive compounds on the fracture toughness of conventional heat cured denture base acrylic resin material (PMMA). 30 single edge-notched (SEN) samples were prepared and divided into three groups. 10% (mass) Chlorhexidine and 10% (mass) Diflucan powder (4.5% mass Fluconazole) were added to heat cured PMMA respectively to create the two study groups. A third group of conventional heat cured PMMA was prepared as the control group. Fracture toughness (3-point bending test) was carried out for each sample and critical force (Fc) and critical stress intensity factor (KIC) values measured. Data were subject to parametric statistical analysis using one-way ANOVA and Post hoc Bonferroni test (p=0.05). Fluconazole had no significant effect on the fracture toughness of the PMMA while Chlorhexidine significantly reduced the KIC and therefore affected the fracture toughness. When considering addition of a bioactive material to PMMA acrylic, Chlorhexidine will result in reduced fracture toughness of the acrylic base while Fluconazole has no effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses.

    PubMed

    Stone-Weiss, Nicholas; Pierce, Eric M; Youngman, Randall E; Gulbiten, Ozgur; Smith, Nicholas J; Du, Jincheng; Goel, Ashutosh

    2018-01-01

    The past decade has witnessed a significant upsurge in the development of borate and borosilicate based resorbable bioactive glasses owing to their faster degradation rate in comparison to their silicate counterparts. However, due to our lack of understanding about the fundamental science governing the aqueous corrosion of these glasses, most of the borate/borosilicate based bioactive glasses reported in the literature have been designed by "trial-and-error" approach. With an ever-increasing demand for their application in treating a broad spectrum of non-skeletal health problems, it is becoming increasingly difficult to design advanced glass formulations using the same conventional approach. Therefore, a paradigm shift from the "trial-and-error" approach to "materials-by-design" approach is required to develop new-generations of bioactive glasses with controlled release of functional ions tailored for specific patients and disease states, whereby material functions and properties can be predicted from first principles. Realizing this goal, however, requires a thorough understanding of the complex sequence of reactions that control the dissolution kinetics of bioactive glasses and the structural drivers that govern them. While there is a considerable amount of literature published on chemical dissolution behavior and apatite-forming ability of potentially bioactive glasses, the majority of this literature has been produced on silicate glass chemistries using different experimental and measurement protocols. It follows that inter-comparison of different datasets reveals inconsistencies between experimental groups. There are also some major experimental challenges or choices that need to be carefully navigated to unearth the mechanisms governing the chemical degradation behavior and kinetics of boron-containing bioactive glasses, and to accurately determine the composition-structure-property relationships. In order to address these challenges, a simplified borosilicate based model melt-quenched bioactive glass system has been studied to depict the impact of thermal history on its molecular structure and dissolution behavior in water. It has been shown that the methodology of quenching of the glass melt impacts the dissolution rate of the studied glasses by 1.5×-3× depending on the changes induced in their molecular structure due to variation in thermal history. Further, a recommendation has been made to study dissolution behavior of bioactive glasses using surface area of the sample - to - volume of solution (SA/V) approach instead of the currently followed mass of sample - to - volume of solution approach. The structural and chemical dissolution data obtained from bioactive glasses following the approach presented in this paper can be used to develop the structural descriptors and potential energy functions over a broad range of bioactive glass compositions. Realizing the goal of designing third generation bioactive glasses requires a thorough understanding of the complex sequence of reactions that control their rate of degradation (in physiological fluids) and the structural drivers that control them. In this article, we have highlighted some major experimental challenges and choices that need to be carefully navigated in order to unearth the mechanisms governing the chemical dissolution behavior of borosilicate based bioactive glasses. The proposed experimental approach allows us to gain a new level of conceptual understanding about the composition-structure-property relationships in these glass systems, which can be applied to attain a significant leap in designing borosilicate based bioactive glasses with controlled dissolution rates tailored for specific patient and disease states. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  1. A new hydroxyapatite-based biocomposite for bone replacement.

    PubMed

    Bellucci, Devis; Sola, Antonella; Gazzarri, Matteo; Chiellini, Federica; Cannillo, Valeria

    2013-04-01

    Since the 1970s, various types of ceramic, glass and glass-ceramic materials have been proposed and used to replace damaged bone in many clinical applications. Among them, hydroxyapatite (HA) has been successfully employed thanks to its excellent biocompatibility. On the other hand, the bioactivity of HA and its reactivity with bone can be improved through the addition of proper amounts of bioactive glasses, thus obtaining HA-based composites. Unfortunately, high temperature treatments (1200°C÷1300°C) are usually required in order to sinter these systems, causing the bioactive glass to crystallize into a glass-ceramic and hence inhibiting the bioactivity of the resulting composite. In the present study novel HA-based composites are realized and discussed. The samples can be sintered at a relatively low temperature (800 °C), thanks to the employment of a new glass (BG_Ca) with a reduced tendency to crystallize compared to the widely used 45S5 Bioglass®. The rich glassy phase, which can be preserved during the thermal treatment, has excellent effects in terms of in vitro bioactivity; moreover, compared to composites based on 45S5 Bioglass® having the same HA/glass proportions, the samples based on BG_Ca displayed an earlier response in terms of cell proliferation. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Current progress in bioactive ceramic scaffolds for bone repair and regeneration.

    PubMed

    Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping

    2014-03-18

    Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration.

  3. Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration

    PubMed Central

    Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping

    2014-01-01

    Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration. PMID:24646912

  4. Interactions of bioactive glass materials in the oral environment

    NASA Astrophysics Data System (ADS)

    Efflandt, Sarah Elizabeth

    The aim of this research was to investigate bioactive glass materials for their use in dental restorations. Mechanical properties such as strength, toughness and wear resistance were considered initially, but the focus of this thesis was the biological properties such as reactions with saliva and interactions with natural dental tissues. Bioactive composite materials were created by incorporating bioactive glass and alumina powders into an aqueous suspension, slip casting, and infiltrating with resin. Microstructure, mechanical properties and wear resistance were evaluated. Mechanically, the composites are comparable to natural dental tissues and current dental materials with a strength of 206 +/- 18.7 MPa and a toughness of 1.74 +/- 0.08 MPa(m)1/2. Interfacial reactions were examined using bulk bioactive glasses. Disks were prepared from a melt, placed in saliva and incubated at 37°C. Surfaces were analyzed at 2, 5, 10, 21, and 42 days using scanning electron microscopy (SEM) and microdiffraction. Results showed changes at 2 days with apatite crystallization by 10 days. These glass disks were then secured against extracted human dentin and incubated in saliva for 21 or 42 days. Results from SEM, electron microprobe analysis (EMPA) and microdiffraction showed that dentin and bioactive glasses adhered in this in vitro environment due to attraction of collagen to bioactive glasses and growth of an interfacial apatite. After investigating these bulk glass responses, particulate bioactive glasses were placed in in vitro and in vivo set-ups for evaluation. Particles immersed in biologically buffered saliva showed crystallization of apatite at 3 days. These bioactive glass particles were placed in the molars of mini-pigs and left in vivo. After 30 days the bioactive paste was evaluated using SEM, EMPA and microdiffraction analyses. Results showed that the paste gained structural integrity and had chemical changes in vivo. These sets of experiments show that bioactive glasses have many mechanical and biological characteristics desirable for use in dental materials. Hopefully, the conclusions presented here will lead to further investigations toward their use in dentistry.

  5. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Hanagodimath, S. M.

    2015-08-01

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.

  6. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    PubMed

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets.

    PubMed

    Pu, Huayin; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Yu, Long; Li, Lin

    2011-05-25

    An oral colon-targeting controlled release system based on resistant starch acetate (RSA) as a film-coating material was developed. The RSA was successfully synthesized, and its digestion resistibility could be improved by increasing the degree of substitution (DS), which was favorable for the colon-targeting purpose. As a delivery carrier material, the characteristics of RSA were investigated by polarized light microscopy, FTIR spectroscopy, and X-ray diffraction. The results revealed a decrease of the crystallinity of RSA and a change of its crystalline structure from B + V hydrid type to V type. To evaluate the colon-targeting release performance, the RSA film-coated pellets loaded with different bioactive components were prepared by extrusion-spheronization and then by fluid bed coating. The effects of the DS, plasticizer content, and coating thickness of the RSA film and those of the content and molecular weight of the loaded bioactive component on the colon-targeting release performance of the resulting delivery system were investigated. By adjusting the DS, the coating thickness, and the plasticizer content of the RSA film, either the pellets loaded with a small molecular bioactive component such as 5-aminosalicylic acid or those with a macromolecular bioactive peptide or protein such as bovine serum albumin, hepatocyte growth-promoting factor, or insulin showed a desirable colon-targeting release performance. The release percentage was less than 12% in simulated upper gastrointestinal tract and went up to 70% over a period of 40 h in simulated colonic fluid. This suggests that the delivery system based on RSA film has an excellent colon-targeting release performance and the universality for a wide range of bioactive components.

  8. Membranes for Periodontal Regeneration--A Materials Perspective.

    PubMed

    Bottino, Marco C; Thomas, Vinoy

    2015-01-01

    Periodontitis is a chronic inflammatory disorder affecting nearly 50% of adults in the United States. If left untreated, it can lead to the destruction of both soft and mineralized tissues that constitute the periodontium. Clinical management, including but not limited to flap debridement and/or curettage, as well as regenerative-based strategies with periodontal membranes associated or not with grafting materials, has been used with distinct levels of success. Unquestionably, no single implantable biomaterial can consistently guide the coordinated growth and development of multiple tissue types, especially in very large periodontal defects. With the global aging population, it is extremely important to find novel biomaterials, particularly bioactive membranes and/or scaffolds, for guided tissue (GTR) and bone regeneration (GBR) to aid in the reestablishment of the health and function of distinct periodontal tissues. This chapter offers an update on the evolution of biomaterials (i.e. membranes and bioactive scaffolds) as well as material-based strategies applied in periodontal regeneration. The authors start by providing a brief summary of the histological characteristics and functions of the periodontium and its main pathological condition, namely periodontitis. Next, a review of commercially available GTR/GBR membranes is given, followed by a critical appraisal of the most recent advances in the development of bioactive materials that enhance the chance for clinical success of periodontal tissue regeneration. © 2015 S. Karger AG, Basel.

  9. Synthesis and Characterization of Silver-Doped Mesoporous Bioactive Glass and Its Applications in Conjunction with Electrospinning

    PubMed Central

    Ciraldo, Francesca E.; Goldmann, Wolfgang H.

    2018-01-01

    Since they were first developed in 2004, mesoporous bioactive glasses (MBGs) rapidly captured the interest of the scientific community thanks to their numerous beneficial properties. MBGs are synthesised by a combination of the sol–gel method with the chemistry of surfactants to obtain highly mesoporous (pore size from 5 to 20 nm) materials that, owing to their high surface area and ordered structure, are optimal candidates for controlled drug-delivery systems. In this work, we synthesised and characterised a silver-containing mesoporous bioactive glass (Ag-MBG). It was found that Ag-MBG is a suitable candidate for controlled drug delivery, showing a perfectly ordered mesoporous structure ideal for the loading of drugs together with optimal bioactivity, sustained release of silver from the matrix, and fast and strong bacterial inhibition against both Gram-positive and Gram-negative bacteria. Silver-doped mesoporous glass particles were used in three electrospinning-based techniques to produce PCL/Ag-MBG composite fibres, to coat bioactive glass scaffolds (via electrospraying), and for direct sol electrospinning. The results obtained in this study highlight the versatility and efficacy of Ag-substituted mesoporous bioactive glass and encourage further studies to characterize the biological response to Ag-MBG-based antibacterial controlled-delivery systems for tissue-engineering applications. PMID:29710768

  10. Copper-Doped Bioactive Glass as Filler for PMMA-Based Bone Cements: Morphological, Mechanical, Reactivity, and Preliminary Antibacterial Characterization.

    PubMed

    Miola, Marta; Cochis, Andrea; Kumar, Ajay; Arciola, Carla Renata; Rimondini, Lia; Verné, Enrica

    2018-06-06

    To promote osteointegration and simultaneously limit bacterial contamination without using antibiotics, we designed innovative composite cements containing copper (Cu)-doped bioactive glass powders. Cu-doped glass powders were produced by a melt and quenching process, followed by an ion-exchange process in a Cu salt aqueous solution. Cu-doped glass was incorporated into commercial polymethyl methacrylate (PMMA)-based cements with different viscosities. The realized composites were characterized in terms of morphology, composition, leaching ability, bioactivity, mechanical, and antibacterial properties. Glass powders appeared well distributed and exposed on the PMMA surface. Composite cements showed good bioactivity, evidencing hydroxyapatite precipitation on the sample surfaces after seven days of immersion in simulated body fluid. The leaching test demonstrated that composite cements released a significant amount of copper, with a noticeable antibacterial effect toward Staphylococcus epidermidis strain. Thus, the proposed materials represent an innovative and multifunctional tool for orthopedic prostheses fixation, temporary prostheses, and spinal surgery.

  11. 3D bioactive composite scaffolds for bone tissue engineering.

    PubMed

    Turnbull, Gareth; Clarke, Jon; Picard, Frédéric; Riches, Philip; Jia, Luanluan; Han, Fengxuan; Li, Bin; Shu, Wenmiao

    2018-09-01

    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.

  12. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite.

    PubMed

    Shokrollahi, Parvin; Mirzadeh, Hamid; Scherman, Oren A; Huck, Wilhelm T S

    2010-10-01

    Supramolecular polymers based on quadruple hydrogen-bonding ureido-pyrimidinone (UPy) moieties hold promise as dynamic/stimuli-responsive materials in applications such as tissue engineering. Here, a new class of materials is introduced: supramolecular polymer composites. We show that despite the highly ordered structure and tacticity-dependent nature of hydrogen-bonded supramolecular polymers, the bioactivity of these polymers can be tuned through composite preparation with bioceramics. These novel supramolecular composites combine the superior processability of supramolecular polymers with the excellent bioactivity and mechanical characteristics of bioceramics. In particular, the bioactive composites prepared from supramolecular polycaprolactone and UPy-grafted hydroxyapatite (HApUPy) are described that can be easily formed into microporous biomaterials. The compression moduli increased about 40 and 90% upon composite preparation with HAp and HApUPy, respectively, as an indication to improved mechanical properties. These new materials show excellent potential as microporous composite scaffolds for the adhesion and proliferation of rat mesenchymal stem cells (rMSCs) as a first step toward bone regeneration studies; rMSCs proliferate about 2 and 2.7 times faster on the conventional composite with HAp and the supramolecular composite with (HApUPy) than on the neat PCL1250(UPy)(2). Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  13. A bioactive film based on cashew gum polysaccharide for wound dressing applications.

    PubMed

    Moreira, Bruna R; Batista, Karla A; Castro, Elisandra G; Lima, Eliana M; Fernandes, Kátia F

    2015-05-20

    This work presents the development of a new bioactive material for wound therapeutics which may play a dual role of modulate metallo proteinases activity while prevents infection blocking out pathogenic microorganisms and foreign materials. A CGP/PVA film was activated by covalent immobilization of trypsin. Results from biocompatibility test revealed that PDL fibroblasts grown on the surface of CGP/PVA and the high amount of viable cells proved absence of cytotoxicity. Trypsin immobilized onto CGP/PVA film remained 100% active after 28 days stored dried at room temperature. In addition, CGP/PVA-trypsin film could be used for 9 cycles of storage/use without loss of activity. After immobilization, trypsin retained its collagenolytic activity, indicating this material as a promising material for wound dressing applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pinosylvin-Based Polymers: Biodegradable Poly(Anhydride-Esters) for Extended Release of Antibacterial Pinosylvin.

    PubMed

    Bien-Aime, Stephan; Yu, Weiling; Uhrich, Kathryn E

    2016-07-01

    Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride-ester) (PAE) backbone via melt-condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin-based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo-first order kinetic experiments on model compounds, butyric anhydride and 3-butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin-based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    PubMed

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Bioactive Materials in Endodontics: An Evolving Component of Clinical Dentistry.

    PubMed

    Mohapatra, Satyajit; Patro, Swadheena; Mishra, Sumita

    2016-06-01

    Achieving biocompatibility in a material requires an interdisciplinary approach that involves a sound knowledge of materials science, bioengineering, and biotechnology. The host microbial-material response is also critical. Endodontic treatment is a delicate procedure that must be planned and executed properly. Despite major advances in endodontic therapy in recent decades, clinicians are confronted with a complex root canal anatomy and a wide selection of endodontic filling materials that, in turn, may not be well tolerated by the periapical tissues and may evoke an immune reaction. This article discusses published reports of various bioactive materials that are used in endodontic therapy, including calcium hydroxide, mineral trioxide aggregate, a bioactive dentin substrate, calcium phosphate ceramics, and calcium phosphate cements.

  17. Surface properties of semi-synthetic enteric coating films: Opportunities to develop bio-based enteric coating films for colon- targeted delivery

    USDA-ARS?s Scientific Manuscript database

    This study investigated the surface properties of the semi-synthetic enteric coating materials for potential colon- targeted bioactive delivery. The enteric coating materials were produced by combining nanoscale resistant starch, pectin, and carboxymethylcellulose. The surface properties of the co...

  18. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    PubMed

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  19. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shantappa, Anil, E-mail: anilmalipatil@yahoo.co.in; Hanagodimath, S. M., E-mail: smhmath@rediffmail.com

    2015-08-28

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO{sub 2}-Na{sub 2}O, SiO{sub 2}-Na{sub 2}O-CaO and SiO{sub 2}-Na{sub 2}O-P{sub 2}O{sub 5} in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (Z{submore » PI,} {sub eff}) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.« less

  20. Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone.

    PubMed

    Mistry, S; Kundu, D; Datta, S; Basu, D

    2011-03-01

    Current trends in clinical dental implant therapy include modification of titanium surfaces for the purpose of improving osseointegration by different additive (bioactive coatings) and subtractive processes (acid etching, grit-blasting). The aim of this study was to evaluate and compare the behaviour of hydroxyapatite and the newly developed bioactive glass coated implants (62 implants) in osseous tissue following implantation in 31 patients. Bioactive glass and hydroxyapatite was suitably coated on titanium alloy. Hydroxyapatite coating was applied on the implant surface by air microplasma spray technique and bioactive glass coating was applied by vitreous enamelling technique. The outcome was assessed up to 12 months after prosthetic loading using different clinical and radiological parameters. Hydroxyapatite and bioactive glass coating materials were non-toxic and biocompatible. Overall results showed that bioactive glass coated implants were as equally successful as hydroxyapatite in achieving osseointegration and supporting final restorations. The newly developed bioactive glass is a good alternative coating material for dental implants. © 2011 Australian Dental Association.

  1. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    PubMed

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  2. Bioactive glass/polymer composite materials with mechanical properties matching those of cortical bone.

    PubMed

    Koleganova, Veronika A; Bernier, Suzanne M; Dixon, S Jeffrey; Rizkalla, Amin S

    2006-06-01

    Stress shielding resulting from mismatch in dynamic mechanical properties contributes to the reduced stability of osseous implants. Our objective was to develop biocompatible composites having mechanical properties similar to those of cortical bone. Polymers of urethane dimethacrylate (UDMA) and 2-hydroxyethyl methacrylate (HEMA, 0-20%) and composites containing bioactive glass particles (70% SiO(2), 25% CaO, and 5% P(2)O(5)), with or without silane treatment were prepared. Young's moduli of composites containing silane-treated glass (16 GPa) were significantly greater than those of composites containing untreated glass (12-13 GPa) or of unfilled polymers (5-6 GPa). Bioactive glass reduced water sorption by the composites and incorporation of silane-treated glass prevented HEMA-induced increases in water sorption. Osteoblast-like cells attached equally well to UDMA polymer and composite containing silane-treated bioactive glass. Thus, silane treatment improved the mechanical properties of bioactive glass composites without compromising biocompatibility. This material has a Young's modulus comparable to that of cortical bone. Therefore, silane-treated bioactive glass composites, when used as implant or cement materials, would reduce stress shielding and improve implant stability.

  3. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength

    NASA Astrophysics Data System (ADS)

    Zima, A.

    2018-03-01

    Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42 - and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17 wt% and 23 wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.

  4. A bioactive triphasic ceramic-coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells.

    PubMed

    Nair, Manitha B; Bernhardt, Anne; Lode, Anja; Heinemann, Christiane; Thieme, Sebastian; Hanke, Thomas; Varma, Harikrishna; Gelinsky, Michael; John, Annie

    2009-08-01

    Hydroxyapatite (HA) ceramics are widely used as bone graft substitutes because of their biocompatibility and osteoconductivity. However, to enhance the success of therapeutic application, many efforts are undertaken to improve the bioactivity of HA. We have developed a triphasic, silica-containing ceramic-coated hydroxyapatite (HASi) and evaluated its performance as a scaffold for cell-based tissue engineering applications. Human bone marrow stromal cells (hBMSCs) were seeded on both HASi and HA scaffolds and cultured with and without osteogenic supplements for a period of 4 weeks. Cellular responses were determined in vitro in terms of cell adhesion, viability, proliferation, and osteogenic differentiation, where both materials exhibited excellent cytocompatibility. Nevertheless, an enhanced rate of cell proliferation and higher levels of both alkaline phosphatase expression and activity were observed for cells cultured on HASi with osteogenic supplements. These findings indicate that the bioactivity of HA endowed with a silica-containing coating has definitely influenced the cellular activity, projecting HASi as a suitable candidate material for bone regenerative therapy.

  5. Encapsulation of grape seed extract in polylactide microcapsules for sustained bioactivity and time-dependent release in dental material applications.

    PubMed

    Yourdkhani, Mostafa; Leme-Kraus, Ariene Arcas; Aydin, Berdan; Bedran-Russo, Ana Karina; White, Scott R

    2017-06-01

    To sustain the bioactivity of proanthocyanidins-rich plant-derived extracts via encapsulation within biodegradable polymer microcapsules. Polylactide microcapsules containing grape seed extract (GSE) were manufactured using a combination of double emulsion and solvent evaporation techniques. Microcapsule morphology, size distribution, and cross-section were examined via scanning electron microscopy. UV-vis measurements were carried out to evaluate the core loading and encapsulation efficiency of microcapsules. The bioactivity of extracts was evaluated after extraction from capsules via solvent partitioning one week or one year post-encapsulation process. Fifteen human molars were cut into 7mm×1.7mm×0.5mm thick mid-coronal dentin beams, demineralized, and treated with either encapsulated GSE, pristine GSE, or left untreated. The elastic modulus of dentin specimens was measured based on three-point bending experiments as an indirect assessment of the bioactivity of grape seed extracts. The effects of the encapsulation process and storage time on the bioactivity of extracts were analyzed. Polynuclear microcapsules with average diameter of 1.38μm and core loading of up to 38wt% were successfully manufactured. There were no statistically significant differences in the mean fold increase of elastic modulus values among the samples treated with encapsulated or pristine GSE (p=0.333), or the storage time (one week versus one year storage at room temperature, p=0.967). Polynuclear microcapsules containing proanthocyanidins-rich plant-derived extracts were prepared. The bioactivity of extracts was preserved after microencapsulation. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials.

    PubMed

    Jun, Xi

    2013-01-01

    High-pressure processing is a food processing technique that has shown great potentials in the food industry. Recently, it was developed to extract bioactive ingredients from plant materials, known as ultrahigh pressure extraction (UPE), taking advantages of time saving, higher extraction yields, fewer impurities in the extraction solution, minimal heat and can avoid thermal degradation on the activity and structure of bioactive components, and so on. This review provides an overview of the developments in the UPE of bioactive ingredients from plant material. Apart from a brief presentation of the theories of UPE and extraction equipment systems, the principal parameters that influence the extraction efficiency to be optimized in the UPE (e.g., solvent, pressure, temperature, extraction time, and the number of cycle) were discussed in detail, and finally the more recent applications of UPE for the extraction of active compounds from plant materials were summarized.

  7. Bioactivity, cytocompatibility and thermal properties of experimental Bioglass-reinforced composites as potential root-canal filling materials.

    PubMed

    Alhashimi, Raghad Abdulrazzaq; Mannocci, Francesco; Sauro, Salvatore

    2017-05-01

    To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were determined using differential scanning calorimetry (DSC). The cytocompatibility of the experimental composites used in this study was assessed using human osteoblasts and statistically analysed using the Pairwise t-test (p<0.05). Bioglass and SrO fillers were well distributed within the resin matrix and increased both the thermal properties and the radiopacity of the polyethylene matrix. The FTIR showed a clear formation of calcium-phosphates, while, MTT and AlamrBlue tests demonstrated no deleterious effects on the metabolic activity of the osteoblast-like cells. BAG-reinforced polyethylene composites may be suitable as obturation materials for endodontic treatment. Since their low melting temperature, such innovative composites may be easily removed in case of root canal retreatment. Moreover, their biocompatibility and bioactivity may benefit proliferation of human osteoblast cells at the periapical area of the root. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells.

    PubMed

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Salles, Loise Pedrosa; Bosso-Martelo, Roberta; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2015-10-01

    Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus. The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs). The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%). MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure. The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.

  9. The effect of variation in physical properties of porous bioactive glass on the expression and maintenance of the osteoblastic phenotype

    NASA Astrophysics Data System (ADS)

    Effah Kaufmann, Elsie Akosua Biraa

    Revision surgery to replace failed hip implants is a significant health care issue that is expected to escalate as life expectancy increases. A major goal of revision surgery is to reconstruct femoral intramedullary bone-stock loss. To address this problem of bone loss, grafting techniques are widely used. Although fresh autografts remain the optimal material for all forms of surgery seeking to restore structural integrity to the skeleton, it is evident that the supply of such tissue is limited. In recent years, calcium phosphate ceramics have been studied as alternatives to autografts and allografts. The significant limitations associated with the use of biological and synthetic grafts have led to a growing interest in the in vitro synthesis of bone tissue. The approach is to synthesize bone tissue in vitro with the patient's own cells, and use this tissue for the repair of bony defects. Various substrates including metals, polymers, calcium phosphate ceramics and bioactive glasses, have been seeded with osteogenic cells. The selection of bioactive glass in this study is based on the fact that this material has shown an intense beneficial biological effect which has not been reproduced by other biomaterials. Even though the literature provides extensive data on the effect of pore size and porosity on in vivo bone tissue ingrowth into porous materials for joint prosthesis fixation, the data from past studies cannot be applied to the use of bioactive glass as a substrate for the in vitro synthesis of bone tissue. First, unlike the in vivo studies in the literature, this research deals with the growth of bone tissue in vitro. Second, unlike the implants used in past studies, bioactive glass is a degradable and resorbable material. Thus, in order to establish optimal substrate characteristics (porosity and pore size) for bioactive glass, it was important to study these parameters in an in vitro model. We synthesized porous bioactive glass substrates (BG) with varying pore sizes and porosity and determined the effect of substrate properties on the expression and maintenance of the osteoblastic phenotype, using an in vitro culture of osteoblast-like cells. Our data showed that porous bioactive glass substrates support the proliferation and maturation of osteoblast-like cells. Within the conditions of the experiment, we also found that at a given porosity of 44% the pore size of bioactive glass neither directs nor modulates the in vitro expression of the osteoblastic phenotype. On the other hand, at an average pore size of 92 mum, when cultures are maintained for 14 days, cell activity is greatly affected by the substrate porosity. As the porosity increases from 35% to 59%, osteoblast activity is adversely affected. (Abstract shortened by UMI.)

  10. Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering

    PubMed Central

    Hamzehlou, Sepideh

    2017-01-01

    Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs) have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers), in regards to repair and regenerate injured tissues of cardiac and pulmonary systems. PMID:29244726

  11. Laser cladding of bioactive glass coatings.

    PubMed

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Advances on Bioactive Polysaccharides from Medicinal Plants.

    PubMed

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  13. Silica Materials for Medical Applications

    PubMed Central

    Vallet-Regí, María; Balas, Francisco

    2008-01-01

    The two main applications of silica-based materials in medicine and biotechnology, i.e. for bone-repairing devices and for drug delivery systems, are presented and discussed. The influence of the structure and chemical composition in the final characteristics and properties of every silica-based material is also shown as a function of the both applications presented. The adequate combination of the synthesis techniques, template systems and additives leads to the development of materials that merge the bioactive behavior with the drug carrier ability. These systems could be excellent candidates as materials for the development of devices for tissue engineering. PMID:19662110

  14. Bioactive glass-coated silicone for percutaneous devices with improved tissue interaction

    NASA Astrophysics Data System (ADS)

    Marotta, James Scott

    The discovery of bioactive glasses, in the early 1970s, has produced a material that develops a strong adherent bond with soft tissue. Many medical applications currently use silicone as an implant material, but are hindered by the formation of fibrous scar tissue surrounding the device. This fibrous scar tissue can lead to pain, infection, and/or extrusion of these devices. Bioactive ceramic materials are inherently brittle and can not be used in applications where a flexible material is needed. Therefore, the coating of existing flexible silicone medical devices, like catheters, with a bioactive glass material would give the advantages of both. The research presented here is of methods used to coat silicone with a bioactive glass powder (Bioglass°ler) and the in vitro testing of those coatings. The bioactivity of these coatings was measured using scanning electron microscopy, inductively coupled plasma spectroscopy, and Fourier transform infrared spectroscopy. It was observed that hydroxyapatite, a bonelike apatite, was formed in vitro on both the bioactive glass particles and the silicone surface between these particles. From these results a new theory was developed that related the distance between particles on a surface with the formation of an apatite layer. A critical distance between particles for the formation of an apatite layer on the substrate exists. This critical distance is a function of both the particle size and composition. In addition, a method to coat silicone catheters with bioactive glass powder is also discussed. This coated catheter could ultimately be used for improved percutaneous access in peritoneal dialysis. The one barrier to greater peritoneal dialysis use and the reason many patients switch from peritoneal to hemodialysis is recurrent exit-site infections and subsequent peritonitis. These infections are caused by the lack of a tight seal and downgrowth of epidermal tissue around the catheter at the catheter-skin interface.

  15. Therapeutic polymers for dental adhesives: Loading resins with bio-active components

    PubMed Central

    Imazato, Satoshi; Ma, Sai; Chen, Ji-hua; Xu, Hockin H.K.

    2014-01-01

    Objectives Many recent adhesives on the market exhibit reasonable clinical performance. Future innovations in adhesive materials should therefore seek out novel properties rather than simply modifying existing technologies. It is proposed that adhesive materials that are “bio-active” could contribute to better prognosis of restorative treatments. Methods This review examines the recent approaches used to achieve therapeutic polymers for dental adhesives by incorporating bio-active components. A strategy to maintain adhesive restorations is the focus of this paper. Results Major trials on therapeutic dental adhesives have looked at adding antibacterial activities or remineralization effects. Applications of antibacterial resin monomers based on quaternary ammonium compounds have received much research attention, and the loading of nano-sized bioactive particles or multiple ion-releasing glass fillers have been perceived as advantageous since they are not expected to influence the mechanical properties of the carrier polymer. Significance The therapeutic polymer approaches described here have the potential to provide clinical benefits. However, not many technological applications in this category have been successfully commercialized. Clinical evidence as well as further advancement of these technologies can be a driving force to make these new types of materials clinically available. PMID:23899387

  16. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    PubMed

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. Copyright © 2012. Published by Elsevier B.V.

  18. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    PubMed

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H 2 SO 4 and CaCl 2 . Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H 2 SO 4 and CaCl 2 ; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    PubMed

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  20. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings

    PubMed Central

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-01-01

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds. PMID:23015764

  1. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    PubMed

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  2. Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials.

    PubMed

    Montalbano, Giorgia; Fiorilli, Sonia; Caneschi, Andrea; Vitale-Brovarone, Chiara

    2018-04-28

    Bone tissue engineering offers an alternative promising solution to treat a large number of bone injuries with special focus on pathological conditions, such as osteoporosis. In this scenario, the bone tissue regeneration may be promoted using bioactive and biomimetic materials able to direct cell response, while the desired scaffold architecture can be tailored by means of 3D printing technologies. In this context, our study aimed to develop a hybrid bioactive material suitable for 3D printing of scaffolds mimicking the natural composition and structure of healthy bone. Type I collagen and strontium-containing mesoporous bioactive glasses were combined to obtain suspensions able to perform a sol-gel transition under physiological conditions. Field emission scanning electron microscopy (FESEM) analyses confirmed the formation of fibrous nanostructures homogeneously embedding inorganic particles, whereas bioactivity studies demonstrated the large calcium phosphate deposition. The high-water content promoted the strontium ion release from the embedded glass particles, potentially enhancing the osteogenic behaviour of the composite. Furthermore, the suspension printability was assessed by means of rheological studies and preliminary extrusion tests, showing shear thinning and fast material recovery upon deposition. In conclusion, the reported results suggest that promising hybrid systems suitable for 3D printing of bioactive scaffolds for bone tissue engineering have been developed.

  3. Recent advances in applied nanoscience for food safety

    USDA-ARS?s Scientific Manuscript database

    Ongoing developments in nanotechnology offer potential to transform agriculture in several areas, including food safety, quality, packaging, product traceability, food processing, and bioactive delivery. These nanoscience-based applications utilize the unique properties of materials with a dimension...

  4. Zirconia/Hydroxyapatite Composites Synthesized Via Sol-Gel: Influence of Hydroxyapatite Content and Heating on Their Biological Properties

    PubMed Central

    Bollino, Flavia; Armenia, Emilia; Tranquillo, Elisabetta

    2017-01-01

    Zirconia (ZrO2) and zirconia-based glasses and ceramics are materials proposed for use in the dental and orthopedic fields. In this work, ZrO2 glass was modified by adding different amounts of bioactive and biocompatible hydroxyapatite (HAp). ZrO2/HAp composites were synthesized via the sol-gel method and heated to different temperatures to induce modifications of their chemical structure, as ascertained by Fourier transform infrared spectroscopy (FTIR) analysis. The aim was to investigate the effect of both HAp content and heating on the biological performances of ZrO2. The materials’ bioactivity was studied by soaking samples in a simulated body fluid (SBF). FTIR and scanning electron microscopy (SEM)) analyses carried out after exposure to SBF showed that all materials are bioactive, i.e., they are able to form a hydroxyapatite layer on their surface. Moreover, the samples were soaked in a solution containing bovine serum albumin (BSA). FTIR analysis proved that the synthesized materials are able to adsorb the blood protein, the first step of cell adhesion. WST-8 ([2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt]) assay showed that no cytotoxicity effects were induced by the materials’ extract. However, the results proved that bioactivity increases with both the HAp content and the temperature used for the thermal treatment, whereas biocompatibility increases with heating but is not affected by the HAp content. PMID:28773116

  5. Bioactive compounds and encapsulation of Yanang (Tiliacora triandra) leaves.

    PubMed

    Singthong, Jittra; Oonsivilai, Ratchadaporn; Oonmetta-Aree, Jirawan; Ningsanond, Suwayd

    2014-01-01

    Yanang (Tiliacora triandra) has been known as vegetable and herbal in northeast Thailand and Lao People's Democratic Republic. Extracts from Yanang leaves contain high amounts of polyphenol constituents possessing antioxidant activity. This work investigated bioactive compounds of Yanang extracts prepared by infusion with water, ethanol and acetone. Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability of bioactive compounds was evaluated using phenolic compounds, total antioxidant, carotenoids and chlorophyll. The study of the bioactivity of Yanang extracts found that extraction with water was the appropriate application. The study of Yanang encapsulation demonstrated that gum Arabic, as coating agents, protected bioactive compounds of Yanang. Optimized condition for the encapsulation was at the ratio of core to wall {1:4}, in gum Arabic concentration 10% (w/v), and inlet temperature at 160▯C. The results show that the bioactive compounds were mainly affected by the ratio of core to wall material. Besides, moisture content and particle size of encapsulation depend on inlet temperature of spray drying, and gum Arabic concentration, respectively. This optimization reveals that the encapsulation process did not lose the bioactive compounds. Yanang extract with water was the main phenolic compound and showed high antioxidant activities. This study demonstrates the potentials of using spray drying process and optimization for the encapsulation of herbal products.

  6. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing.

    PubMed

    Zhou, Jie; Wang, Hui; Zhao, Shichang; Zhou, Nai; Li, Le; Huang, Wenhai; Wang, Deping; Zhang, Changqing

    2016-03-01

    Full-thickness skin defects represent urgent clinical problem nowadays. Wound dressing materials are hotly needed to induce dermal reconstruction or to treat serious skin defects. In this study, the borate bioactive glass (BG) micro-fibers were fabricated and compared with the traditional material 45S5 Bioglass(®) (SiG) micro-fibers. The morphology, biodegradation and bioactivity of BG and SiG micro-fibers were investigated in vitro. The wound size reduction and angiogenic effects of BG and SiG micro-fibers were evaluated by the rat full-thickness skin defect model and Microfil technique in vivo. Results indicated that the BG micro-fibers showed thinner fiber diameter (1 μm) and better bioactivity than the SiG micro-fibers did. The ionic extracts of BG and SiG micro-fibers were not toxic to human umbilical vein endothelial cells (HUVECs). In vivo, the BG micro-fiber wound dressings obviously enhanced the formation of blood vessel, and resulted in a much faster wound size reduction than the SiG micro-fibers, or than the control groups, after 9 days application. The good skin defect reconstruction ability of BG micro-fibers contributed to the B element in the composition, which results in the better bioactivity and angiogenesis. As shown above, the novel bioactive borate glass micro-fibers are expected to provide a promising therapeutic alternative for dermal reconstruction or skin defect repair. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes.

    PubMed

    Dias, Luisa L S; Mansur, Herman S; Donnici, Claudio Luis; Pereira, Marivalda M

    2011-01-01

    The tissue engineering strategy is a new approach for the regeneration of cementum, which is essential for the regeneration of the periodontal tissue. This strategy involves the cell cultures present in this tissue, called cementoblasts, and located on an appropriate substrate for posterior implantation in the regeneration site. Prior studies from our research group have shown that the proliferation and viability of cementoblasts increase in the presence of the ionic dissolution products of bioactive glass particles. Therefore, one possible approach to obtaining adequate substrates for cementoblast cultures is the development of composite membranes containing bioactive glass. In the present study, composite films of chitosan-polyvinyl alcohol-bioactive glass containing different glass contents were developed. Glutaraldehyde was also added to allow for the formation of cross-links and changes in the degradation rate. The glass phase was introduced in the material by a sol-gel route, leading to an organic-inorganic hybrid. The films were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Bioactivity tests were also conducted by immersion of the films in simulated body fluid (SBF). Films containing up to 30% glass phase could be obtained. The formation of calcium phosphate was observed after the immersion of the films. A calcium phosphate layer formed more quickly on materials containing higher bioactive glass contents. In the hybrid containing 23% bioactive glass, a complete layer was formed after 24 h immersion, showing the high bioactivity of this material. However, despite the higher in vitro bioactivity, the film with 23% glass showed lower mechanical properties compared with films containing up to 17% glass.

  8. [Application of synthetic biology to sustainable utilization of Chinese materia medica resources].

    PubMed

    Huang, Lu-Qi; Gao, Wei; Zhou, Yong-Jin

    2014-01-01

    Bioactive natural products are the material bases of Chinese materia medica resources. With successful applications of synthetic biology strategies to the researches and productions of taxol, artemisinin and tanshinone, etc, the potential ability of synthetic biology in the sustainable utilization of Chinese materia medica resources has been attracted by many researchers. This paper reviews the development of synthetic biology, the opportunities of sustainable utilization of Chinese materia medica resources, and the progress of synthetic biology applied to the researches of bioactive natural products. Furthermore, this paper also analyzes how to apply synthetic biology to sustainable utilization of Chinese materia medica resources and what the crucial factors are. Production of bioactive natural products with synthetic biology strategies will become a significant approach for the sustainable utilization of Chinese materia medica resources.

  9. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure.

    PubMed

    Par, Matej; Spanovic, Nika; Bjelovucic, Ruza; Skenderovic, Hrvoje; Gamulin, Ozren; Tarle, Zrinka

    2018-06-17

    The aim of this work was to investigate the curing potential of an experimental resin composite series with the systematically varying amount of bioactive glass 45S5 by evaluating the degree of conversion, light transmittance and depth of cure. Resin composites based on a Bis-GMA/TEGDMA resin with a total filler load of 70 wt% and a variable amount of bioactive glass (0-40 wt%) were prepared. The photoinitiator system was camphorquinone and ethyl-4-(dimethylamino) benzoate. The degree of conversion and light transmittance were measured by Raman spectroscopy and UV-vis spectroscopy, respectively. The depth of cure was evaluated according to the classical ISO 4049 test. The initial introduction of bioactive glass into the experimental series diminished the light transmittance while the further increase in the bioactive glass amount up to 40 wt% caused minor variations with no clear trend. The curing potential of the experimental composites was similar to or better than that of commercial resin composites. However, unsilanized bioactive glass fillers demonstrated the tendency to diminish both the maximum attainable conversion and the curing efficiency at depth. Experimental composite materials containing bioactive glass showed a clinically acceptable degree of conversion and depth of cure. The degree of conversion and depth of cure were diminished by bioactive glass fillers in a dose-dependent manner, although light transmittance was similar among all of the experimental composites containing 5-40 wt% of bioactive glass. Reduced curing potential caused by the bioactive glass has possible consequences on mechanical properties and biocompatibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Bioactive Polymeric Materials for Tissue Repair

    PubMed Central

    Bienek, Diane R.; Tutak, Wojtek; Skrtic, Drago

    2017-01-01

    Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP)-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field. PMID:28134776

  11. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  12. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    PubMed

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  13. Design of Bioactive Organic-inorganic Hybrid Materials with Self-setting Ability

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Machida, S.; Morita, Y.; Ishida, E.

    2011-10-01

    Paste-like materials with ability of self-setting are attractive for bone substitutes, since they can be injected from the small hole with minimized invasion to the patient. Although bone cements which set as apatite are clinically used, there is limitation on clinical applications due to their mechanical properties such as high brittleness and low fracture toughness. To overcome this problem, organic-inorganic hybrids based on a flexible polymer are attractive. We have obtained an idea for design of self-setting hybrids using polyion complex fabricated by ionic interaction of anionic and cationic polymers. We aimed at preparation of organic-inorganic hybrids exhibiting self-setting ability and bioactivity. The liquid component was prepared from cationic chitosan aqueous solution. The powder component was prepared by mixing various carrageenans with α-tricalcium phosphate (α-TCP). The obtained cements set within 1 day. Compressive strength showed tendency to increase with increase in α-TCP content in the powder component. The prepared cements formed the apatite in simulated body fluid within 3 days. Novel self-setting materials based on organic-inorganic hybrid can be designed utilizing ionic interaction of polysaccharide.

  14. Eucommia ulmoides Oliver: A Potential Feedstock for Bioactive Products.

    PubMed

    Zhu, Ming-Qiang; Sun, Run-Cang

    2018-06-06

    Eucommia ulmoides Oliver (EUO), a traditional Chinese herb, contains a variety of bioactive chemicals, including lignans, iridoids, phenolics, steroids, terpenoids, flavonoids, etc. These bioactive chemicals possess the effective function in nourishing the liver and kidneys and regulating blood pressure. The composition of bioactive chemicals extracted from EUO vary in the different functional parts (leaves, seeds, bark, and staminate flower) and planting models. The bioactive parts of EUO are widely used as raw materials for medicine and food, powdery extracts, herbal formulations, and tinctures. These capabilities hold potential for future development and commercial exploitation of the bioactive products from EUO.

  15. Effects of Composites Containing Bioactive Glasses on Demineralized Dentin.

    PubMed

    Tezvergil-Mutluay, A; Seseogullari-Dirihan, R; Feitosa, V P; Cama, G; Brauer, D S; Sauro, S

    2017-08-01

    The aim of this study was to evaluate the degradation of completely demineralized dentin specimens in contact with a filler-free or 2 ion-releasing resins containing micrometer-sized particles of Bioglass 45S5 (BAG) or fluoride-containing phosphate-rich bioactive glass (BAG-F). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were also used to evaluate the remineralization induced by the experimental ion-releasing resin-based materials. Dentin beams were totally demineralized in H 3 PO 4 (10%) and placed in direct contact with a filler-free (RESIN) or 2 experimental ion-releasing resins (BAG or BAG-F) and immersed in artificial saliva (AS) up to 30 d. Further specimens were also processed and submitted to FTIR and SEM analysis to evaluate the remineralization induced by such ion-releasing resins before and after AS immersion. BAG and BAG-F alkalinized the incubation media. A significant decrease of the dry mass was observed between the specimens of all groups stored for 3 and 30 d in AS. However, the fluoride-containing phosphate-rich bioactive glass incorporated into a resin-based material (BAG-F) showed greater ability in reducing the solubilization of C-terminal cross-linked telopeptide (ICTP) and C-terminal telopeptide (CTX) after prolonged AS storage. Moreover, after 30 d of AS storage, BAG-F showed the greatest remineralizing effect on the stiffness of the completely demineralized dentin matrices. In conclusion, fluoride-containing phosphate-rich bioactive glass incorporated as micrometer-sized filler in dental composites may offer greater beneficial effects than Bioglass 45S5 in reducing the enzyme-mediated degradation and remineralization of demineralized dentin.

  16. A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol-gel process.

    PubMed

    Jun, Shin-Hee; Lee, Eun-Jung; Yook, Se-Won; Kim, Hyoun-Ee; Kim, Hae-Won; Koh, Young-Hag

    2010-01-01

    A bioactive coating consisting of a silica xerogel/chitosan hybrid was applied to Ti at room temperature as a novel surface treatment for metallic implants. A crack-free thin layer (<2 microm) was coated on Ti with a chitosan content of >30 vol.% through a sol-gel process. The coating layer became more hydrophilic with increasing silica xerogel content, as assessed by contact angle measurement. The hybrid coatings afforded excellent bone bioactivity by inducing the rapid precipitation of apatite on their surface when immersed in a simulated body fluid (SBF). Osteoblastic cells cultured on the hybrid coatings were more viable than those on a pure chitosan coating. Furthermore, the alkaline phosphate activity of the cells was significantly higher on the hybrid coatings than on a pure chitosan coating, with the highest level being achieved on the hybrid coating containing 30% chitosan. These results indicate that silica xerogel/chitosan hybrids are potentially useful as room temperature bioactive coating materials on titanium-based medical implants.

  17. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    NASA Astrophysics Data System (ADS)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  18. A review of the bioactivity of hydraulic calcium silicate cements

    PubMed Central

    Niu, Li-na; Jiao, Kai; Wang, Tian-da; Zhang, Wei; Camilleri, Josette; Bergeron, Brian E.; Feng, Hai-lan; Mao, Jing; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.

    2014-01-01

    Objectives In tissue regeneration research, the term “bioactivity” was initially used to describe the resistance to removal of a biomaterial from host tissues after intraosseous implantation. Hydraulic calcium silicate cements (HCSCs) are putatively accepted as bioactive materials, as exemplified by the increasing number of publications reporting that these cements produce an apatite-rich surface layer after they contact simulated body fluids. Methods In this review, the same definitions employed for establishing in vitro and in vivo bioactivity in glass–ceramics, and the proposed mechanisms involved in these phenomena are used as blueprints for investigating whether HCSCs are bioactive. Results The literature abounds with evidence that HCSCs exhibit in vitro bioactivity; however, there is a general lack of stringent methodologies for characterizing the calcium phosphate phases precipitated on HCSCs. Although in vivo bioactivity has been demonstrated for some HCSCs, a fibrous connective tissue layer is frequently identified along the bone–cement interface that is reminiscent of the responses observed in bioinert materials, without accompanying clarifications to account for such observations. Conclusions As bone-bonding is not predictably achieved, there is insufficient scientific evidence to substantiate that HCSCs are indeed bioactive. Objective appraisal criteria should be developed for more accurately defining the bioactivity profiles of HCSCs designed for clinical use. PMID:24440449

  19. Bioactive glass for dentin remineralization: A systematic review.

    PubMed

    Fernando, Delihta; Attik, Nina; Pradelle-Plasse, Nelly; Jackson, Phil; Grosgogeat, Brigitte; Colon, Pierre

    2017-07-01

    Strategies to achieve dentin remineralization is at present an important target of restorative dentistry. Remineralization of dentin by a bioactive material is complete only when the tissue regains its functionality. This is achieved when there is adequate apatite formation which most importantly translates into improved mechanical properties of dentin as a result of intrafibrillar mineralization. Bioactive glass (BAG) is a well-known implant material for bone regeneration and is proven to have excellent ability of apatite formation. Hence, recent studies have proposed BAGs as one of the most desired materials for remineralization of dentin. Therefore the aim of this systematic review was to scope the evidence of bioactive glass to remineralize dentin. The following research question was formulated: "Is there strong evidence for bioactive glass to remineralize dentin?" Three databases (Web of science, PubMed and Science direct) were scanned independently following PRISMA guidelines. Inclusion and exclusion criteria were set to identify relevant articles based on title and abstract screening. Finally, potentially relevant articles were downloaded and the full text was scrutinized to select the articles included in this review. The first phase of search returned 303 articles. A total of 19 papers with full text were scrutinized for inclusion, of which 3 papers were chosen for the final synthesis. All three studies confirm that BAG treatment leads to enhanced apatite formation in dentin. Only 1 of the 3 studies has reported the mechanical properties of dentin after BAG treatment and it revealed that the Young's modulus and flexural bend strength of BAG treated dentin were much lower than natural dentin even though they had similar apatite content. This review highlights the importance of assessing the mechanical properties of dentin alongside to the newly formed apatite content in order to prove BAGs efficiency to remineralize this tissue. Though studies have confirmed that BAGs stimulate excellent apatite formation in dentin, it should be concluded that there isn't sufficient evidence for bioactive glass to effectively remineralize this tissue as the mechanical properties of the BAG treated dentin haven't been well explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.

    PubMed

    Najeeb, Shariq; Bds, Zohaib Khurshid; Bds, Sana Zohaib; Bds, Muhammad Sohail Zafar

    2016-12-01

    Polyetheretherketone (PEEK) has been suggested as an alternative to replace titanium as a dental implant material. However, PEEK's bioactivity and osseointegration are debatable. This review has systematically analyzed studies that have compared PEEK (or PEEK-based) implants with titanium implants so that its feasibility as a possible replacement for titanium can be determined. The focused question was: "Are the bioactivity and osseointegration of PEEK implants comparable to or better than titanium implants?" Using the key words "dental implant," "implant," "polyetheretherketone," "PEEK," and "titanium" in various combinations, the following databases were searched electronically: PubMED/MEDLINE, Embase, Google Scholar, ISI Web of Knowledge, and Cochrane Database. 5 in vitro and 4 animal studies were included in the review. In 4 out of 5 in vitro studies, titanium exhibited more cellular proliferation, angiogenesis, osteoblast maturation, and osteogenesis compared to PEEK; one in vitro study observed comparable outcomes regardless of the implant material. In all animal studies, uncoated and coated titanium exhibited a more osteogenic behavior than did uncoated PEEK, while comparable bone-implant contact was observed in HA-coated PEEK and coated titanium implants. Unmodified PEEK is less osseoconductive and bioactive than titanium. Furthermore, the majority of studies had multiple sources of bias; hence, in its unmodified form, PEEK is unsuitable to be used as dental implant. Significantly more research and long-term trials must focus on improving the bioactivity of PEEK before it can be used as dental implant. More comparative animal and clinical studies are warranted to ascertain the potential of PEEK as a viable alternative to titanium.

  1. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a first attempt to establish composition-structure-property relationships for these biomaterials.

  2. Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity

    NASA Astrophysics Data System (ADS)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2013-06-01

    Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

  3. Organic-inorganic composites designed for biomedical applications.

    PubMed

    Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara

    2013-01-01

    Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.

  4. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.

    PubMed

    Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng

    2015-07-01

    Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    PubMed Central

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  6. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  7. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture

    NASA Astrophysics Data System (ADS)

    Sachot, N.; Mateos-Timoneda, M. A.; Planell, J. A.; Velders, A. H.; Lewandowska, M.; Engel, E.; Castaño, O.

    2015-09-01

    Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials.Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04275e

  8. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    NASA Astrophysics Data System (ADS)

    Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied

    2010-12-01

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2-CaO-P 2O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 μm and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  9. Fabricated Elastin.

    PubMed

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabricated elastin

    PubMed Central

    Yeo, Giselle C.; Weiss, Anthony S.

    2015-01-01

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows for precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone and dental replacement. PMID:25771993

  11. Microgel particles for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J.; Murthy Niren

    2010-03-23

    Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

  12. Microgel particles for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M.; Murthy, Niren

    2006-06-06

    Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

  13. Graphene-based nanoprobes for molecular diagnostics.

    PubMed

    Chen, Shixing; Li, Fuwu; Fan, Chunhai; Song, Shiping

    2015-10-07

    In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.

  14. Fabrication of nano structural biphasic materials from phosphogypsum waste and their in vitro applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Khaled R., E-mail: Kh_rezk966@yahoo.com; Mousa, Sahar M.; Inorganic Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, 11787 Cairo

    2014-02-01

    Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: • Ratio of HA and β-TCP phases were controlled by thermal treatment. • HA partially decomposed into β-TCP with other bioactive phases. • Calcined HA at 900 °C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) could bemore » obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into β-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.« less

  15. The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P 2O 5 sol-gel glasses and glass-ceramics.

    PubMed

    Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2013-02-01

    Bioactive glasses and glass-ceramics of the SiO(2)-CaO-P(2)O(5) system were synthesised by means of a sol-gel method using different phosphorus precursors according to their respective rates of hydrolysis-triethylphosphate (OP(OC(2)H(5))(3)), phosphoric acid (H(3)PO(4)) and a solution prepared by dissolving phosphorus oxide (P(2)O(5)) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700-1,200 °C that were used to convert the gels into glasses and glass-ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO(3)) and tricalcium phosphate (α-Ca(3)(PO(4))(2)).

  16. Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro.

    PubMed

    Leppäranta, Outi; Vaahtio, Minna; Peltola, Timo; Zhang, Di; Hupa, Leena; Hupa, Mikko; Ylänen, Heimo; Salonen, Jukka I; Viljanen, Matti K; Eerola, Erkki

    2008-02-01

    Bioactive glasses (BAGs) of different compositions have been studied for decades for clinical use and they have found many dental and orthopaedic applications. Particulate BAGs have also been shown to have antibacterial properties. This large-scale study shows that two bioactive glass powders (S53P4 and 13-93) and a sol-gel derived material (CaPSiO II) have an antibacterial effect on 17 clinically important anaerobic bacterial species. All the materials tested demonstrated growth inhibition, although the concentration and time needed for the effect varied depending on the BAG. Glass S53P4 had a strong growth-inhibitory effect on all pathogens tested. Glass 13-93 and sol-gel derived material CaPSiO II showed moderate antibacterial properties.

  17. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  18. Influence of silica matrix composition and functional component additives on the bioactivity and viability of encapsulated living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Travis J.; Dunphy, Darren R.; Harbaugh, Svetlana

    The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living E. coli cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in E. coli bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. E. coli cellsmore » encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. Furthermore, this unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.« less

  19. Influence of silica matrix composition and functional component additives on the bioactivity and viability of encapsulated living cells

    DOE PAGES

    Savage, Travis J.; Dunphy, Darren R.; Harbaugh, Svetlana; ...

    2015-11-06

    The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living E. coli cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in E. coli bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. E. coli cellsmore » encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. Furthermore, this unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.« less

  20. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth.

    PubMed

    Kumaraswamy, R V; Kumari, Sarita; Choudhary, Ram Chandra; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim; Saharan, Vinod

    2018-07-01

    Excessive use of agrochemicals for enhancing crop production and its protection posed environmental and health concern. Integration of advanced technology is required to realize the concept of precision agriculture by minimizing the input of pesticides and fertilizers per unit while improving the crop productivity. Notably, chitosan based biodegradable nanomaterials (NMs) including nanoparticles, nanogels and nanocomposites have eventually proceeded as a key choice in agriculture due to their inimitable properties like antimicrobial and plant growth promoting activities. The foreseeable role of chitosan based NMs in plants might be in achieving sustainable plant growth through boosting the intrinsic potential of plants. In-spite of the fact that chitosan based NMs abode immense biological activities in plants, these materials have not yet been widely adopted in agriculture due to poor understanding of their bioactivity and modes of action towards pathogenic microbes and in plant protection and growth. To expedite the anticipated claims of chitosan based NMs, it is imperative to line up all the possible bioactivities which denote for sustainable agriculture. Herein, we have highlighted, in-depth, various chitosan based NMs which have been used in plant growth and protection mainly against fungi, bacteria and viruses and have also explained their modes of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    PubMed Central

    Khoroushi, Maryam; Keshani, Fateme

    2013-01-01

    Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the “smart” materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI) cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA). Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications. PMID:24130573

  2. An ethnobotanical survey of medicinal plants of Laos toward the discovery of bioactive compounds as potential candidates for pharmaceutical development

    PubMed Central

    Soejarto, D.D.; Gyllenhaal, C.; Kadushin, M.R.; Southavong, B.; Sydara, K.; Bouamanivong, S.; Xaiveu, M.; Zhang, H.-J.; Franzblau, S.G.; Tan, Ghee T.; Pezzuto, J.M.; Riley, M.C.; Elkington, B.G.; Waller, D.P.

    2012-01-01

    Context An ethnobotany-based approach in the selection of raw plant materials to study was implemented. Objective To acquire raw plant materials using ethnobotanical field interviews as starting point to discover new bioactive compounds from medicinal plants of the Lao People’s Democratic Republic. Methods Using semi-structured field interviews with healers in the Lao PDR, plant samples were collected, extracted, and bio-assayed to detect bioactivity against cancer, HIV/AIDS, TB, malaria. Plant species demonstrating activity were recollected and the extracts subjected to a bioassay-guided isolation protocol to isolate and identify the active compounds. Results Field interviews with 118 healers in 15 of 17 provinces of Lao PDR yielded 753 collections (573 species) with 955 plant samples. Of these 955, 50 extracts demonstrated activity in the anticancer, 10 in the anti-HIV, 30 in the anti-TB, and 52 in the antimalarial assay. Recollection of actives followed by bioassay-guided isolation processes yielded a series of new and known in vitro-active anticancer and antimalarial compounds from 5 species. Discussion Laos has a rich biodiversity, harboring an estimated 8000–11,000 species of plants. In a country highly dependent on traditional medicine for its primary health care, this rich plant diversity serves as a major source of their medication. Conclusions Ethnobotanical survey has demonstrated the richness of plant-based traditional medicine of Lao PDR, taxonomically and therapeutically. Biological assays of extracts of half of the 955 samples followed by in-depth studies of a number of actives have yielded a series of new bioactive compounds against the diseases of cancer and malaria. PMID:22136442

  3. Bioactive composite for keratoprosthesis skirt.

    PubMed

    Laattala, Kaisa; Huhtinen, Reeta; Puska, Mervi; Arstila, Hanna; Hupa, Leena; Kellomäki, Minna; Vallittu, Pekka K

    2011-11-01

    In this study, the fabrication and properties of a synthetic keratoprosthesis skirt for use in osteo-odonto-keratoprosthesis (OOKP) surgery are discussed. In the search for a new material concept, bioactive glass and polymethyl methacrylate (PMMA)-based composites were prepared. Three different bioactive glasses (i.e. 45S5, S53P4 and 1-98) and one slowly resorbing glass, FL107, with two different forms (i.e. particles and porous glass structures) were employed in the fabrication of specimens. In in vitro studies, the dissolution behaviour in simulated aqueous humour, compressive properties, and pore formation of the composites were investigated. According to the results, FL107 dissolved very slowly (2.4% of the initial glass content in three weeks); thus, the pore formation of the FL107 composite was also observed to be restricted. The dissolution rates of the bioactive glass-PMMA composites were greater (12%-17%). These faster dissolving bioactive glass particles caused some porosity on the outermost surfaces of the composite. The slight surface porosity was also confirmed by a decrease in compressive properties. During six weeks' in vitro dissolution, the compressive strength of the test specimens containing particles decreased by 22% compared to values in dry conditions (90-107 MPa). These results indicate that the bioactive composites could be stable synthetic candidates for a keratoprosthesis skirt in the treatment of severely damaged or diseased cornea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Osteoconductive properties of two different bioactive glass forms (powder and fiber) combined with collagen

    NASA Astrophysics Data System (ADS)

    Magri, Angela Maria Paiva; Fernandes, Kelly Rossetti; Ueno, Fabio Roberto; Kido, Hueliton Wilian; da Silva, Antonio Carlos; Braga, Francisco José Correa; Granito, Renata Neves; Gabbai-Armelin, Paulo Roberto; Rennó, Ana Claudia Muniz

    2017-11-01

    Bioactive Glasses (BG) is a group of synthetic silica-based materials with the unique ability to bond to living bone and can be used in bone repair. Although the osteogenic potential of BG, this material may have not present sufficient osteoconductive and osteoinductive properties to allow bone regeneration, especially in compromised situations. In order to overcome this limitation, it was proposed the combination the BG in two forms (powder and fiber) combined with collagen type I (COL-1). The aim of this study was to evaluate the BG/COL-based materials in terms of morphological characteristics, physicochemical features and mineralization. Additionally, the second objective was to investigate and compare the osteoconductive properties of two different bioactive glass forms (powder and fiber) enriched or not with collagen using a tibial bone defect model in rats. For this, four different formulations (BG powder - BGp, BG powder enriched with collagen - BGp/Col, BG fibers - BGf and BGp fibers enriched with collagen - BGf/Col) were developed. The physicochemical and morphological modifications were analyzed by SEM, FTIR, calcium assay and pH measurement. For in vivo evaluations, histopathology, morphometrical and immunohistochemistry were performed in a tibial defect in rats. The FTIR analysis indicated that BGp and BGf maintained the characteristic peaks for this class of material. Furthermore, the calcium assay showed an increased Ca uptake in the BG fibers. The pH measurements revealed that BGp (with or without collagen) presented higher pH values compared to BGf. In addition, the histological analysis demonstrated no inflammation for all groups at the site of the injury, besides a faster material degradation and higher bone ingrowth for groups with collagen. The immunohistochemistry analysis demonstrated Runx-2 and Rank-L expression for all the groups. Those findings support that BGp with collagen can be a promising alternative for treating fracture of difficult consolidation.

  5. Enhanced bioactive properties of BiodentineTM modified with bioactive glass nanoparticles

    PubMed Central

    CORRAL NUÑEZ, Camila; COVARRUBIAS, Cristian; FERNANDEZ, Eduardo; de OLIVEIRA, Osmir Batista

    2017-01-01

    Abstract Objective To prepare nanocomposite cements based on the incorporation of bioactive glass nanoparticles (nBGs) into BiodentineTM (BD, Septodent, Saint-Maur-des-Fosses Cedex, France) and to assess their bioactive properties. Material and Methods nBGs were synthesised by the sol-gel method. BD nanocomposites (nBG/BD) were prepared with 1 and 2% nBGs by weight; unmodified BD and GC Fuji IX (GIC, GC Corporation, Tokyo, Japan) were used as references. The in vitro ability of the materials to induce apatite formation was assessed in SBF by X-ray diffraction (XRD), attenuated total reflectance with Fourier transform infrared spectroscopy (ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. BD and nBG/BD were also applied to dentine discs for seven days; the morphology and elemental composition of the dentine-cement interface were analysed using SEM-EDX. Results One and two percent nBG/BD composites accelerated apatite formation on the disc surface after short-term immersion in SBF. Apatite was detected on the nBG/BD nanocomposites after three days, compared with seven days for unmodified BD. No apatite formation was detected on the GIC surface. nBG/BD formed a wider interfacial area with dentine than BD, showing blockage of dentine tubules and Si incorporation, suggesting intratubular precipitation. Conclusions The incorporation of nBGs into BD improves its in vitro bioactivity, accelerating the formation of a crystalline apatite layer on its surface after immersion in SBF. Compared with unmodified BD, nBG/BD showed a wider interfacial area with greater Si incorporation and intratubular precipitation of deposits when immersed in SBF. PMID:28403358

  6. Albumin-mediated deposition of bone-like apatite onto nano-sized surfaces: Effect of surface reactivity and interfacial hydration.

    PubMed

    D'Elia, Noelia L; Gravina, Noel; Ruso, Juan M; Marco-Brown, Jose L; Sieben, Juan M; Messina, Paula V

    2017-05-15

    The bioactivity of an implant is displayed on its ability to induce heterogeneous nucleation of biogenic apatite onto its surface upon immersion in body fluids; forming, through this layer, a stable bond with the host tissue. The present article evaluates the bioactivity of different nanostructured substrates based on synthetic hydroxyapatite (HA) and titania (TiO 2 ) nanoparticles, where we extend the debate regarding the selective roles played by the presence of albumin on the biogenic apatite coating evolution. The substrates bone-bonding potential was evaluated by keeping the materials in contact with Simulated Body Fluid, while the influence of the presence of Bovine Serum Albumin in bioactivity was analyzed by a spectrophotometric technique. Our results show that materials' surface reactivity and their interfacial hydration are responsible for the bonding-site alteration and surface charge density distribution, which in turn, regulate the protein adsorption process. As a matter of fact, variations on the protein adsorbed density have a directly proportional impact on calcium binding sites, which should be responsible for the initiation of the mineralization process, disturbing the deposition of the interfacial calcium phosphate (Ca-P) mineralized coating. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta

    2006-07-01

    The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.

  8. Bioactive Glasses with Low Ca/P Ratio and Enhanced Bioactivity

    PubMed Central

    Araújo, Marco; Miola, Marta; Baldi, Giovanni; Perez, Javier; Verné, Enrica

    2016-01-01

    Three new silica-based glass formulations with low molar Ca/P ratio (2–3) have been synthesized. The thermal properties, the crystalline phases induced by thermal treatments and the sintering ability of each glass formulation have been investigated by simultaneous differential scanning calorimetry-thermogravimetric analysis (DSC-TG), X-ray diffraction (XRD) and hot stage microscopy (HSM). The glasses exhibited a good sintering behavior, with two samples achieving shrinkage of 85%–95% prior to crystallization. The bioactivity of the glasses in simulated body fluid (SBF) has been investigated by performing XRD and Fourier transform infrared spectroscopy (FTIR) on the samples prior and after immersion. The glasses with lower MgO contents were able to form a fully crystallized apatite layer after three days of immersion in simulated body fluid (SBF), while for the glass exhibiting a higher MgO content in its composition, the crystallization of the Ca–P layer was achieved after seven days. The conjugation of these properties opens new insights on the synthesis of highly bioactive and mechanically strong prosthetic materials. PMID:28773350

  9. Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility.

    PubMed

    Wani, Touseef Ahmed; Shah, Adil Gani; Wani, Sajad Mohd; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad; Nissar, Nazia; Shagoo, Mudasir Ahmad

    2016-11-17

    Functional foods find a very important place in the modern era, where different types of cancer, diabetes, cardiovascular diseases, etc. are on a high. Irrespective of the abundance of bioactive components in different fruits and vegetables, their low solubility in aqueous solution, vulnerability to destruction in different environmental and gastrointestinal conditions and a low intestinal absorption becomes a concern. Because it is quite difficult to commercialize non food materials for the food encapsulation purposes due to their safety concerns in the human body, scientists in the recent times have come up with the idea of encapsulating the different bioactive components in different food grade materials that are able to safeguard these bioactive components against the different environmental and gastrointestinal conditions and ensure their safe and targeted delivery at their absorption sites. Different food grade encapsulation materials including various oligosaccharides, polysaccharides (starch, cyclodextrins, alginates, chitosan, gum arabic, and carboxymethyl cellulose) and proteins and their suitability for encapsulating various bioactive components like flavonoids (catechins, rutin, curcumin, hesperetin, and vanillin), nonflavonoids (resveratrol), carotenoids (β-carotene, lycopene, and lutein), and fatty acids (fish oil, flaxseed oil, and olive oil) of high medical and nutritional value are reviewed here.

  10. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudouri, O.M., E-mail: menti.goudouri@ww.uni-erlangen.de; Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki; Theodosoglou, E.

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis ofmore » an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.« less

  11. Clinical Outcome of Hydroxyapatite Coated, Bioactive Glass Coated, and Machined Ti6Al4V Threaded Dental Implant in Human Jaws: A Short-Term Comparative Study.

    PubMed

    Mistry, Surajit; Roy, Rajiv; Kundu, Biswanath; Datta, Someswar; Kumar, Manoj; Chanda, Abhijit; Kundu, Debabrata

    2016-04-01

    Growing aspect of endosseous implant research is focused on surface modification of dental implants for the purpose of improving osseointegration. The aim of this study was to evaluate and compare the clinical outcome (ie, osseointegration) of hydroxyapatite coated, bioactive glass coated and machined titanium alloy threaded dental implants in human jaw bone after implantation. One hundred twenty-six implants (45 hydroxyapatite coated, 41 bioactive glass coated, and 40 machined titanium implants) have been placed in incisor areas of 62 adult patients. Outcome was assessed up to 12 months after prosthetic rehabilitation using different clinical and radiological parameters. Surface roughness of failed implants was analyzed by laser profilometer. Hydroxyapatite and bioactive glass coating materials were nontoxic and biocompatible. Least marginal bone loss in radiograph, significantly higher (P < 0.05) interface radiodensity, and less interfacial gaps were observed in computed tomography with bioactive glass coated implants at anterior maxilla compared to other 2 types. Bioactive glass coated implants are equally safe and effective as hydroxyapatite coated and machined titanium implants in achieving osseointegration; therefore, can be effectively used as an alternative coating material for dental implants.

  12. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition

    PubMed Central

    Gad, Mohammed M; Fouda, Shaimaa M; Al-Harbi, Fahad A; Näpänkangas, Ritva; Raustia, Aune

    2017-01-01

    This paper reviews acrylic denture base resin enhancement during the past few decades. Specific attention is given to the effect of fiber, filler, and nanofiller addition on poly(methyl methacrylate) (PMMA) properties. The review is based on scientific reviews, papers, and abstracts, as well as studies concerning the effect of additives, fibers, fillers, and reinforcement materials on PMMA, published between 1974 and 2016. Many studies have reported improvement of PMMA denture base material with the addition of fillers, fibers, nanofiller, and hybrid reinforcement. However, most of the studies were limited to in vitro investigations without bioactivity and clinical implications. Considering the findings of the review, there is no ideal denture base material, but the properties of PMMA could be improved with some modifications, especially with silanized nanoparticle addition and a hybrid reinforcement system. PMID:28553115

  13. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  14. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    PubMed

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing improved mechanical properties and osteointegrative potential compared to degradable polymers of poly(lactic acid-glycolic acid) alone. Future work will focus on the optimization of the composite scaffold for bone tissue-engineering applications and the evaluation of the 3-D composite in an in vivo model. Copyright 2003 Wiley Periodicals, Inc.

  15. Non-targeted metabolite profiling highlights the potential of strawberry leaves as a resource for specific bioactive compounds.

    PubMed

    Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; McDougall, Gordon J; Stewart, Derek; Karjalainen, Reijo O

    2017-05-01

    The non-edible parts of horticultural crops, such as leaves, contain substantial amounts of valuable bioactive compounds which are currently only little exploited. For example, strawberry (Fragaria × ananassa) leaves may be a promising bioresource for diverse health-related applications. However, product standardization sets a real challenge, especially when the leaf material comes from varying cultivars. The first step towards better quality control of berry fruit leaf-based ingredients and supplements is to understand metabolites present and their stability in different plant cultivars, so this study surveyed the distribution of potentially bioactive strawberry leaf metabolites in six different strawberry cultivars. Non-targeted metabolite profiling analysis using LC/qTOF-ESI-MS with data processing via principal component analysis and k-means clustering analysis was utilized to examine differences and commonalities between the leaf metabolite profiles. Quercetin and kaempferol derivatives were the dominant flavonol groups in strawberry leaves. Previously described and novel caffeic and chlorogenic acid derivatives were among the major phenolic acids. In addition, ellagitannins were one of the distinguishing compound classes in strawberry leaves. In general, strawberry leaves also contained high levels of octadecatrienoic acid derivatives, precursors of valuable odour compounds. The specific bioactive compounds found in the leaves of different strawberry cultivars offer the potential for the selection of optimized leaf materials for added-value food and non-food applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants.

    PubMed

    Vallittu, Pekka K; Närhi, Timo O; Hupa, Leena

    2015-04-01

    Although metal implants have successfully been used for decades, devices made out of metals do not meet all clinical requirements, for example, metal objects may interfere with some new medical imaging systems, while their stiffness also differs from natural bone and may cause stress-shielding and over-loading of bone. Peer-review articles and other scientific literature were reviewed for providing up-dated information how fiber-reinforced composites and bioactive glass can be utilized in implantology. There has been a lot of development in the field of composite material research, which has focused to a large extent on biodegradable composites. However, it has become evident that biostable composites may also have several clinical benefits. Fiber reinforced composites containing bioactive glasses are relatively new types of biomaterials in the field of implantology. Biostable glass fibers are responsible for the load-bearing capacity of the implant, while the dissolution of the bioactive glass particles supports bone bonding and provides antimicrobial properties for the implant. These kinds of combination materials have been used clinically in cranioplasty implants and they have been investigated also as oral and orthopedic implants. The present knowledge suggests that by combining glass fiber-reinforced composite with particles of bioactive glass can be used in cranial implants and that the combination of materials may have potential use also as other types of bone replacing and repairing implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity.

    PubMed

    Lilja, Mirjam; Genvad, Axel; Astrand, Maria; Strømme, Maria; Enqvist, Håkan

    2011-12-01

    Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO(2) has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO(2) on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O(2) gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.

  18. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD)

    PubMed Central

    Nazarov, Denis V.; Zemtsova, Elena G.; Valiev, Ruslan Z.; Smirnov, Vladimir M.

    2015-01-01

    In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD), chemical etching and atomic layer deposition (ALD). For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions) and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD). Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material. PMID:28793716

  19. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    PubMed

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications.

    PubMed

    Kaya, Seray; Cresswell, Mark; Boccaccini, Aldo R

    2018-02-01

    Bioactive glasses (BGs) are being used in several biomedical applications, one of them being as antibacterial materials. BGs can be produced via melt-quenching technique or sol-gel method. Bactericidal silver-doped sol-gel derived mesoporous silica-based bioactive glasses were reported for the first time in 2000, having the composition 76SiO 2 -19CaO-2P 2 O 5 -3Ag 2 O (wt%) and a mean pore diameter of 28nm. This review paper discusses studies carried out exploring the potential antibacterial applications of drug-free mesoporous silica-based BGs. Bioactive glasses doped with metallic elements such as silver, copper, zinc, cerium and gallium are the point of interest of this review, in which SiO 2 , SiO 2 -CaO and SiO 2 -CaO-P 2 O 5 systems are included as the parent glass compositions. Key findings are that silica-based mesoporous BGs offer a potential alternative to the systemic delivery of antibiotics for prevention against infections. The composition dependent dissolution rate and the concentration of the doped elements affect the antibacterial efficacy of BGs. A balance between antibacterial activity and biocompatibility is required, since a high dose of metallic ion addition can cause cytotoxicity. Typical applications of mesoporous BGs doped with antibacterial ions include bone tissue regeneration, multifunctional ceramic coatings for orthopedic devices and orbital implants, scaffolds with enhanced angiogenesis potential, osteostimulation and antibacterial properties for the treatment of large bone defects as well as in wound healing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Programmable Control in Extracellular Matrix-mimicking Polymer Hydrogels.

    PubMed

    Hof, Kevin S; Bastings, Maartje M C

    2017-06-28

    The extracellular matrix (ECM) and cells have a reciprocal relationship, one shapes the other and vice versa. One of the main challenges of synthetic material systems for developmental cell culturing, organoid and stem cell work includes the implementation of this reciprocal nature. The largest hurdle to achieve true cell-instructive materials in biomaterials engineering is a lack of spatial and temporal control over material properties and the display of bioactive signals compared to the natural cell environment. ECM-mimicking hydrogels have been developed using a wide range of polymers, assembly and cross-linking strategies. While our synthetic toolbox is larger than nature, often our systems underperform when compared to ECM systems with natural components like Matrigel. Material properties and three-dimensional structure ill-represent the three-dimensional ECM reciprocal nature and ligand presentation is an oversimplified version of the complexity found in nature. We hypothesize that the lack of programmable control in properties and ligand presentation forms the basis of this mismatch in performance and analyze the presence of control in current state of the art ECM-mimicking systems based on covalent, supramolecular and recombinant polymers. We conclude that through combining the dynamics of supramolecular materials, robustness from covalent systems and the programmable spatial control of bio-activation in recombinant ECM materials, the optimal synthetic artificial ECM could be assembled.

  2. Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO·P₂O₅--SiO₂--MgO system.

    PubMed

    Daguano, Juliana K M F; Rogero, Sizue O; Crovace, Murilo C; Peitl, Oscar; Strecker, Kurt; Dos Santos, Claudinei

    2013-09-01

    The mechanical strength of bioactive glasses can be improved by controlled crystallization, turning its use as bulk bone implants viable. However, crystallization may affect the bioactivity of the material. The aim of this study was to develop glass-ceramics of the nominal composition (wt%) 52.75(3CaO·P₂O₅)-30SiO₂-17.25MgO, with different crystallized fractions and to evaluate their in vitro cytotoxicity and bioactivity. Specimens were heat-treated at 700, 775 and 975 °C, for 4 h. The major crystalline phase identified was whitlockite, an Mg-substituted tricalcium phosphate. The evaluation of the cytotoxicity was carried out by the neutral red uptake methodology. Ionic exchanges with the simulated body fluid SBF-K9 acellular solution during the in vitro bioactivity tests highlight the differences in terms of chemical reactivity between the glass and the glass-ceramics. The effect of crystallinity on the rates of hydroxycarbonate apatite (HCA) formation was followed by Fourier transformed infrared spectroscopy. Although all glass-ceramics can be considered bioactive, the glass-ceramic heat-treated at 775 °C (V775-4) presented the most interesting result, because the onset for HCA formation is at about 24 h and after 7 days the HCA layer dominates completely the spectrum. This occurs probably due to the presence of the whitlockite phase (3(Ca,Mg)O·P₂O₅). All samples were considered not cytotoxic.

  3. Bioactive glasses: Importance of structure and properties in bone regeneration

    NASA Astrophysics Data System (ADS)

    Hench, Larry L.; Roki, Niksa; Fenn, Michael B.

    2014-09-01

    This review provides a brief background on the applications, mechanisms and genetics involved with use of bioactive glass to stimulate regeneration of bone. The emphasis is on the role of structural changes of the bioactive glasses, in particular Bioglass, which result in controlled release of osteostimulative ions. The review also summarizes the use of Raman spectroscopy, referred to hereto forward as bio-Raman spectroscopy, to obtain rapid, real time in vitro analysis of human cells in contact with bioactive glasses, and the osteostimulative dissolution ions that lead to osteogenesis. The bio-Raman studies support the results obtained from in vivo studies of bioactive glasses, as well as extensive cell and molecular biology studies, and thus offers an innovative means for rapid screening of new bioactive materials while reducing the need for animal testing.

  4. Dental-Implantate und ihre Werkstoffe

    NASA Astrophysics Data System (ADS)

    Newesely, Heinrich

    1983-07-01

    Some new trends in materials for dental implants, which also effect in the operative techniques and implant design, are described. Advantages and shortcomings of the different material types are exemplified and correlated with their bioinert resp. bioactive functions. The practical interest in metallic implants focussed in titanium resp. oxide ceramics in the ceramic field, whereas the special goal of implant research follows from the improvement of the bioactive principle with loaded calcium phosphate implants.

  5. Integrated HPTLC-based Methodology for the Tracing of Bioactive Compounds in Herbal Extracts Employing Multivariate Chemometrics. A Case Study on Morus alba.

    PubMed

    Chaita, Eliza; Gikas, Evagelos; Aligiannis, Nektarios

    2017-03-01

    In drug discovery, bioassay-guided isolation is a well-established procedure, and still the basic approach for the discovery of natural products with desired biological properties. However, in these procedures, the most laborious and time-consuming step is the isolation of the bioactive constituents. A prior identification of the compounds that contribute to the demonstrated activity of the fractions would enable the selection of proper chromatographic techniques and lead to targeted isolation. The development of an integrated HPTLC-based methodology for the rapid tracing of the bioactive compounds during bioassay-guided processes, using multivariate statistics. Materials and Methods - The methanol extract of Morus alba was fractionated employing CPC. Subsequently, fractions were assayed for tyrosinase inhibition and analyzed with HPTLC. PLS-R algorithm was performed in order to correlate the analytical data with the biological response of the fractions and identify the compounds with the highest contribution. Two methodologies were developed for the generation of the dataset; one based on manual peak picking and the second based on chromatogram binning. Results and Discussion - Both methodologies afforded comparable results and were able to trace the bioactive constituents (e.g. oxyresveratrol, trans-dihydromorin, 2,4,3'-trihydroxydihydrostilbene). The suggested compounds were compared in terms of R f values and UV spectra with compounds isolated from M. alba using typical bioassay-guided process. Chemometric tools supported the development of a novel HPTLC-based methodology for the tracing of tyrosinase inhibitors in M. alba extract. All steps of the experimental procedure implemented techniques that afford essential key elements for application in high-throughput screening procedures for drug discovery purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Sensitivity of novel silicate and borate-based glass structures on in vitro bioactivity and degradation behaviour.

    PubMed

    Mancuso, Elena; Bretcanu, Oana; Marshall, Martyn; Dalgarno, Kenneth W

    2017-10-15

    Three novel glass compositions, identified as NCL2 (SiO 2 -based), NCL4 (B 2 O 3 -based) and NCL7 (SiO 2 -based), along with apatite-wollastonite (AW) were processed to form sintered dense pellets, and subsequently evaluated for their in vitro bioactive potential, resulting physico-chemical properties and degradation rate. Microstructural analysis showed the carbonated hydroxyapatite (HCA) precipitate morphology following SBF testing to be composition-dependent. AW and the NCL7 formulation exhibited greater HCA precursor formation than the NCL2 and NCL4-derived pellets. Moreover, the NCL4 borate-based samples showed the highest biodegradation rate; with silicate-derived structures displaying the lowest weight loss after SBF immersion. The results of this study suggested that glass composition has significant influence on apatite-forming ability and also degradation rate, indicating the possibility to customise the properties of this class of materials towards the bone repair and regeneration process.

  7. Mechanical characteristic and biological behaviour of implanted and restorative bioglasses used in medicine and dentistry: A systematic review.

    PubMed

    Lizzi, F; Villat, C; Attik, N; Jackson, P; Grosgogeat, B; Goutaudier, C

    2017-06-01

    Nowadays bioactive glasses are finding increasing applications in medical practice due to their ability to stimulate re-mineralisation. However, they are intrinsically brittle materials and the study of new compositions will open up new scenarios enhancing their mechanical properties and maintaining the high bioactivity for a broader range of applications. This systematic review aims to identify the relationship between the composition of bioactive glasses used in medical applications and their influence on the mechanical and biological properties. Various electronic databases (PubMed, Science Direct) were used for collecting articles on this subject. This research includes papers from January 2011 to March 2016. PRISMA guidelines for systematic review and meta-analysis have been used. 109 abstracts were collected and screened, 68 articles were read as relevant articles and a total of 22 papers were finally selected for this study. Most of the studies obtained enhanced mechanical properties and the conservation of bioactivity behaviours; although a lack of homogeneity in the characterization methods makes it difficult to compare data. New compositions of bioactive glasses incorporating specific ions and the addition in polymers will be the most important direction for future researches in developing new materials for medical applications and especially for dentistry. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Chitosan as a bioactive polymer: Processing, properties and applications.

    PubMed

    Muxika, A; Etxabide, A; Uranga, J; Guerrero, P; de la Caba, K

    2017-12-01

    Chitin is one of the most abundant natural polysaccharides in the world and it is mainly used for the production of chitosan by a deacetylation process. Chitosan is a bioactive polymer with a wide variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. This review summarizes the most common chitosan processing methods and highlights some applications of chitosan in various industrial and biomedical fields. Finally, environmental concerns of chitosan-based films, considering the stages from raw materials extraction up to the end of life after disposal, are also discussed with the aim of finding more eco-friendly alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Electrospinning bioactive supramolecular polymers from water.

    PubMed

    Tayi, Alok S; Pashuck, E Thomas; Newcomb, Christina J; McClendon, Mark T; Stupp, Samuel I

    2014-04-14

    Electrospinning is a high-throughput, low-cost technique for manufacturing long fibers from solution. Conventionally, this technique is used with covalent polymers with large molecular weights. We report here the electrospinning of functional peptide-based supramolecular polymers from water at very low concentrations (<4 wt %). Molecules with low molecular weights (<1 kDa) could be electrospun because they self-assembled into one-dimensional supramolecular polymers upon solvation and the critical parameters of viscosity, solution conductivity, and surface tension were optimized for this technique. The supramolecular structure of the electrospun fibers could ensure that certain residues, like bioepitopes, are displayed on the surface even after processing. This system provides an opportunity to electrospin bioactive supramolecular materials from water for biomedical applications.

  10. A multi-material coating containing chemically-modified apatites for combined enhanced bioactivity and reduced infection via a drop-on-demand micro-dispensing technique.

    PubMed

    Lim, Poon Nian; Wang, Zuyong; Chang, Lei; Konishi, Toshiisa; Choong, Cleo; Ho, Bow; Thian, Eng San

    2017-01-01

    Prevention of infection and enhanced osseointegration are closely related, and required for a successful orthopaedic implant, which necessitate implant designs to consider both criteria in tandem. A multi-material coating containing 1:1 ratio of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite as the top functional layer, and hydroxyapatite as the base layer, was produced via the drop-on-demand micro-dispensing technique, as a strategic approach in the fight against infection along with the promotion of bone tissue regeneration. The homogeneous distribution of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets at alternate position in silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating delayed the exponential growth of Staphylococcus aureus for up to 24 h, and gave rise to up-regulated expression of alkaline phosphatase activity, type I collagen and osteocalcin as compared to hydroxyapatite and silver-substituted hydroxyapatite coatings. Despite containing reduced amounts of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets over the coated area than silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite coatings, silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating exhibited effective antibacterial property with enhanced bioactivity. By exhibiting good controllability of distributing silicon-substituted hydroxyapatite, silver-substituted hydroxyapatite and hydroxyapatite micro-droplets, it was demonstrated that drop-on-demand micro-dispensing technique was capable in harnessing the advantages of silver-substituted hydroxyapatite, silicon-substituted hydroxyapatite and hydroxyapatite to produce a multi-material coating along with enhanced bioactivity and reduced infection.

  11. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    PubMed

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers

    PubMed Central

    Gibson, Matt; Mao, Hai-Quan; Elisseeff, Jennifer

    2014-01-01

    Biomaterials derived from the decellularization of mature tissues retain biological and architectural features that profoundly influence cellular activity. However, the clinical utility of such materials remains limited as the shape and physical properties are difficult to control. In contrast, scaffolds based on synthetic polymers can be engineered to exhibit specific physical properties, yet often suffer from limited biological functionality. This study characterizes composite materials that present decellularized extracellular matrix (DECM) particles in combination with synthetic nanofibers and examines the ability of these materials to influence stem cell differentiation. Mechanical processing of decellularized tissues yielded particles with diameters ranging from 71 to 334 nm. Nanofiber scaffolds containing up to 10% DECM particles (wt/wt) derived from six different tissues were engineered and evaluated to confirm DECM particle incorporation and to measure bioactivity. Scaffolds containing bone, cartilage, and fat promoted osteogenesis at 1 and 3 weeks compared to controls. In contrast, spleen and lung DECM significantly reduced osteogenic outcomes compared to controls. These findings highlight the potential to incorporate appropriate source DECM nanoparticles within nanofiber composites to design a scaffold with bioactivity targeted to specific applications. PMID:24971329

  13. Dental applications of nanostructured bioactive glass and its composites

    PubMed Central

    Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.

    2013-01-01

    To improve treatments for bone or dental trauma, and for diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here we review how the properties of these materials have been enhanced by the advent of nanotechnology; and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug-delivery systems. PMID:23606653

  14. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  15. Modular protein domains: an engineering approach toward functional biomaterials.

    PubMed

    Lin, Charng-Yu; Liu, Julie C

    2016-08-01

    Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Microgravity

    NASA Image and Video Library

    2000-12-15

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  17. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    NASA Astrophysics Data System (ADS)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.

  18. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    PubMed

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis and evaluation of bioceramics for orthopedics and tissue culture applications

    NASA Astrophysics Data System (ADS)

    Demirkiran, Hande

    Hydroxyapatite is the most well known phosphate in the biologically active phosphate ceramic family by virtue of its similarity to natural bone mineral. Among all bioglass compositions BioglassRTM45S5 is one of the most bioactive glasses. This study initially started by adding different amounts (1, 2.5, 5, 10, and 25 wt.%) of BioglassRTM45S5 to synthetic hydroxyapatite in order to improve the bioactivity of these bioceramics. The chemistries formed by sintering and their effect on different material properties including bioactivity were identified by using various techniques, such as powder and thin film x-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray absorption near edge spectroscopy, compression test, and nano indentation. All the results demonstrated that 10 and 25 wt.% BioglassRTM45S5 addition to hydroxyapatite and sintering at 1200°C for 4 hours yield new compositions with main Ca 5(PO4)2SiO4 and Na3Ca 6(PO4)5 crystalline phases dispersed in silicate glassy matrices, respectively. In addition, in vitro bioactivity tests such as bone like apatite formation in simulated body fluid and bone marrow stromal cell culture have shown that the crystalline and amorphous phases have an important role on improving bioactivity of these bioceramic compositions. Besides, compression test and nano indentation has given important information on compression strength and nano structure properties of these newly composed bioceramic materials and the bone like apatite layers formed on them, respectively. Finally, the effect of silicate addition on both formation and bioactivity of Na3Ca6(PO4)5 bioceramics were shown. These findings and different techniques used assisted to develop a phenomenological approach to demonstrate how the novel bioceramic compositions were composed and aid improving bioactivity of known bioceramic materials.

  20. Toward Smart Implant Synthesis: Bonding Bioceramics of Different Resorbability to Match Bone Growth Rates

    PubMed Central

    Comesaña, Rafael; Lusquiños, Fernando; del Val, Jesús; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Jones, Julian R.; Hill, Robert G.; Pou, Juan

    2015-01-01

    Craniofacial reconstructive surgery requires a bioactive bone implant capable to provide a gradual resorbability and to adjust to the kinetics of new bone formation during healing. Biomaterials made of calcium phosphate or bioactive glasses are currently available, mainly as bone defect fillers, but it is still required a versatile processing technique to fabricate composition-gradient bioceramics for application as controlled resorption implants. Here it is reported the application of rapid prototyping based on laser cladding to produce three-dimensional bioceramic implants comprising of a calcium phosphate inner core, with moderate in vitro degradation at physiological pH, surrounded by a bioactive glass outer layer of higher degradability. Each component of the implant is validated in terms of chemical and physical properties, and absence of toxicity. Pre–osteoblastic cell adhesion and proliferation assays reveal the adherence and growth of new bone cells on the material. This technique affords implants with gradual-resorbability for restoration of low-load-bearing bone. PMID:26032983

  1. Prevention of bacterial adhesion to zwitterionic biocompatible mesoporous glasses.

    PubMed

    Sánchez-Salcedo, Sandra; García, Ana; Vallet-Regí, María

    2017-07-15

    Novel materials, based on Mesoporous Bioactive Glasses (MBGs) in the ternary system SiO 2 -CaO-P 2 O 5 , decorated with (3-aminopropyl)triethoxysilane (APTES) and subsequently with amino acid Lysine (Lys), by post-grafting method on the external surface of the glasses (named MBG-NH 2 and MBG-Lys), are reported. The surface functionalization with organic groups did not damage the mesoporous network and their structural and textural properties were also preserved despite the high solubility of MBG matrices. The incorporation of Lys confers a zwitterionic nature to these MBG materials due to the presence of adjacent amine and carboxylic groups in the external surface. At physiologic pH, this coexistence of basic amine and carboxilic acid groups from anchored Lys provided zero surface charge named zwitterionic effect. This behaviour could give rise to potential applications of antibacterial adhesion. Therefore, in order to assess the influence of zwitterionic nature in in vitro bacterial adhesion, studies were carried out with Staphylococcus aureus. It was demonstrated that the efficient interaction of these zwitterionic pairs onto the MBG surfaces reduced bacterial adhesion up to 99.9% compared to bare MBGs. In order to test the suitability of zwitterionic MBGs materials as bone grafts, their cytocompatibility was investigated in vitro with MC3T3-E1 preosteoblasts. These findings suggested that the proposed surface functionalization strategy provided MBG materials with notable antibacterial adhesion properties, hence making these materials promising candidates for local bone infection therapy. The present research work is focused in finding a preventive treatment of bone infection based on Mesoporous Bioactive Glasses (MBGs) with antibacterial adhesion properties obtained by zwitterionic surface modification. MBGs exhibit unique nanostructural, textural and bioactive characteristics. The novelty and originality of this manuscript is based on the design and optimization of a straightforward functionalization method capable of providing MBGs with zwitterionic surfaces that are able to inhibit bacterial adhesion without affecting their cytocompatibility. This new characteristic enhanced the MBG properties to avoid the bacterial adherence onto the implant surfaces for bone tissue engineering applications. Subsequently, it could help to decrease the infection rates after implantation surgery, which represents one of the most serious complications associated to surgical treatments of bone diseases and fractures. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    PubMed

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Bioactivity evolution of the surface functionalized bioactive glasses.

    PubMed

    Magyari, Klára; Baia, Lucian; Vulpoi, Adriana; Simon, Simion; Popescu, Octavian; Simon, Viorica

    2015-02-01

    The formation of a calcium phosphate layer on the surface of the SiO2 -CaO-P2 O5 glasses after immersion in simulated body fluid (SBF) generally demonstrates the bioactivity of these materials. Grafting of the surface by chemical bonding can minimize the structural changes in protein adsorbed on the surface. Therefore, in this study our interest was to evaluate the bioactivity and blood biocompatibility of the SiO2 -CaO-P2 O5 glasses after their surface modification by functionalization with aminopropyl-triethoxysilane and/or by fibrinogen. It is shown that the fibrinogen adsorbed on the glass surfaces induces a growing of the apatite-like layer. It is also evidenced that the protein content from SBF influences the growth of the apatite-like layer. Furthermore, the good blood compatibility of the materials after fibrinogen and bovine serum albumin adsorption is proved from the assessment of the β-sheet-β-turn ratio. © 2014 Wiley Periodicals, Inc.

  4. Methotrexate Reduced TNF Bioactivity in Rheumatoid Arthritis Patients Treated with Infliximab

    PubMed Central

    Rinaudo-Gaujous, Mélanie; Thomas, Thierry

    2017-01-01

    Objectives. To evaluate methotrexate effect on tumor necrosis factor (TNF) alpha bioactivity during infliximab (IFX) therapy in rheumatoid arthritis (RA) patients and to correlate TNF bioactivity with antibody towards IFX (ATI) development and RA clinical response. Materials and Methods. Thirty-nine active women RA patients despite conventional synthetic disease modifying antirheumatic drugs (csDMARDs) requiring IFX therapy were enrolled, and clinical data and blood samples were recorded at baseline (W0) and at 6 weeks (W6), W22, and W54 of IFX treatment. TNF bioactivity as well as IFX trough and ATI concentrations were assessed on blood samples. Results. TNF bioactivity decreased from W0 to W54 with a large range from W22 at the time of ATI detection. From W22, TNF bioactivity was lower in presence of methotrexate as csDMARD compared to other csDMARDs. IFX trough concentration increased from W0 to W54 with a large range from W22, similarly to TNF bioactivity. Methotrexate therapy prevented ATI presence at W22 and reduced TNF bioactivity compared to other csDMARDs (p = 0.002). Conclusion. This suggests that methotrexate plays a key role in TNF bioactivity and against ATI development. PMID:28352145

  5. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.

    PubMed

    Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E; Brown, Roger F; Velez, Mariano

    2011-06-01

    Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 °C and 695 °C. The sintered scaffolds had pore sizes ranging from 300 to 800 µm with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

  6. Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders.

    PubMed

    Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2015-10-01

    In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with the special feature of radiopacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Synthesis of Bioactive Chlorogenic Acid-Silica Hybrid Materials via the Sol–Gel Route and Evaluation of Their Biocompatibility

    PubMed Central

    Pacifico, Severina

    2017-01-01

    Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based materials, the sol–gel method was used to embed different content of the phenolic antioxidant chlorogenic acid (CGA) within silica matrices to obtain organic-inorganic hybrid materials. Fourier transform infrared (FTIR) measurements were used to characterize the prepared materials. The new materials were screened for their bioactivity and antioxidant potential. To this latter purpose, direct DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) methods were applied: radical scavenging capability appeared strongly dependent on the phenol amount in investigated hybrids, and became pronounced, mainly toward the ABTS radical cation, when materials with CGA content equal to 15 wt% and 20 wt% were analyzed. The in vitro biocompatibility of the synthetized materials was estimated by using the MTT assay towards fibroblast NIH 3T3 cells, human keratinocyte HaCaT cells, and the neuroblastoma SH-SY5Y cell line. As cell viability and morphology of tested cell lines seemed to be unaffected by new materials, the attenuated total reflectance (ATR)-FTIR method was applied to deeply measure the effects of the hybrids in the three different cell lines. PMID:28773198

  8. Synthesis of Bioactive Chlorogenic Acid-Silica Hybrid Materials via the Sol-Gel Route and Evaluation of Their Biocompatibility.

    PubMed

    Catauro, Michelina; Pacifico, Severina

    2017-07-21

    Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based materials, the sol-gel method was used to embed different content of the phenolic antioxidant chlorogenic acid (CGA) within silica matrices to obtain organic-inorganic hybrid materials. Fourier transform infrared (FTIR) measurements were used to characterize the prepared materials. The new materials were screened for their bioactivity and antioxidant potential. To this latter purpose, direct DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) methods were applied: radical scavenging capability appeared strongly dependent on the phenol amount in investigated hybrids, and became pronounced, mainly toward the ABTS radical cation, when materials with CGA content equal to 15 wt% and 20 wt% were analyzed. The in vitro biocompatibility of the synthetized materials was estimated by using the MTT assay towards fibroblast NIH 3T3 cells, human keratinocyte HaCaT cells, and the neuroblastoma SH-SY5Y cell line. As cell viability and morphology of tested cell lines seemed to be unaffected by new materials, the attenuated total reflectance (ATR)-FTIR method was applied to deeply measure the effects of the hybrids in the three different cell lines.

  9. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    PubMed

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-02

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications.

  10. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species.

    PubMed

    Cabrales, Pedro; Friedman, Joel M

    2013-06-10

    Despite many advances in blood substitute research, the development of materials that are effective in maintaining blood volume and oxygen delivery remains a priority for emergency care and trauma. Clinical trials on hemoglobin (Hb)-based oxygen carriers (HBOCs) have not provided information on the mechanism of toxicity, although all commercial formulations have safety concerns. Specifically, it is important to reconcile the different hypotheses of Hb toxicity, such as nitric oxide (NO) depletion and oxidative reactions, to provide a coherent molecular basis for designing a safe HBOC. HBOCs with different sizes often exhibit differences in the degree of HBOC-induced vasoactivity. This has been attributed to differences in the degree of NO scavenging and in the extent of Hb extravasation. Additionally, it is appears that Hb can undergo reactions that compensate for NO scavenging by generating bioactive forms of NO. Engineering modifications to enhance bioactive NO production can result in diminished oxygen delivery by virtue of increased oxygen affinity. This strategy can prevent the HBOC from fulfilling the intended goal on preserving oxygenation; however, the NO production effects will increase perfusion and oxygen transport. Hb modifications influence NO scavenging and the capacity of certain HBOCs to compensate for NO scavenging through nitrite-mediated reactions that generate bioactive NO. Based on the current understanding of these NO-related factors, possible synthetic strategies are presented that address how HBOC formulations can be prepared that: (i) effectively deliver oxygen, (ii) maintain tissue perfusion, and (iii) limit/reverse underlying inflammation within the vasculature.

  11. Production and bioactivity of pectic oligosaccharides from fruit and vegetable biomass

    USDA-ARS?s Scientific Manuscript database

    Pectin is abundant in various agro-industrial bio-resources such as citrus peel, apple pomace, cranberry pulp and sugar beet pulp. These materials can therefore be considered as a source of potential bioactive pectic oligosaccharides. This chapter reviews the various extraction and purification meth...

  12. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    PubMed

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  13. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration.

    PubMed

    Rao, Prashanth J; Pelletier, Matthew H; Walsh, William R; Mobbs, Ralph J

    2014-05-01

    The clinical outcome of lumbar spinal fusion is correlated with achievement of bony fusion. Improving interbody implant bone on-growth and in-growth may enhance fusion, limiting pseudoarthrosis, stress shielding, subsidence and implant failure. Polyetheretherketone (PEEK) and titanium (Ti) are commonly selected for interbody spacer construction. Although these materials have desirable biocompatibility and mechanical properties, they require further modification to support osseointegration. Reports of extensive research on this topic are available in biomaterial-centric published reports; however, there are few clinical studies concerning surface modification of interbody spinal implants. The current article focuses on surface modifications aimed at fostering osseointegration from a clinician's point of view. Surface modification of Ti by creating rougher surfaces, modifying its surface topography (macro and nano), physical and chemical treatment and creating a porous material with high interconnectivity can improve its osseointegrative potential and bioactivity. Coating the surface with osteoconductive materials like hydroxyapatite (HA) can improve osseointegration. Because PEEK spacers are relatively inert, creating a composite by adding Ti or osteoconductive materials like HA can improve osseointegration. In addition, PEEK may be coated with Ti, effectively bio-activating the coating. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  14. Novel non-cytotoxic, bioactive and biodegradable hybrid materials based on polyurethanes/TiO2 for biomedical applications.

    PubMed

    González-García, Dulce M; Téllez Jurado, L; Jiménez-Gallegos, R; Rodríguez-Lorenzo, Luis M

    2017-06-01

    Titanium compounds have demonstrated great interfacial properties with biological tissues whereas a wide variety of polyurethanes have also been successfully probed in medical applications. However, studies about hybrids based on polyurethanes/TiO 2 for medical applications are scarce. The aim of this work is to design novel biodegradable hybrid materials based on polyurethanes/TiO 2 (80% organic-20% inorganic) and to perform a preliminary study of the potential applications in bone regeneration. The hybrids have been prepared by a sol-gel reaction using titanium isopropoxide as precursor of the inorganic component and polyurethane as the organic one. A series of polyurethanes has been prepared using different polyesters glycol succinate as soft segment, and 1,6-diisocyanatohexane (HDI) and butanediol (BD) as linear hard segment. The spectroscopy techniques used allow to confirm the formation of the required polyurethanes by the identification of bands related to carboxylic groups (COOH), and the amine groups (NH), and also the TiOH bonds and the bonds related to the interconnected network between the inorganic and the organic components from hybrids. The results from SEM/EDS show a homogeneous distribution of the inorganic component into the organic matrix. The nontoxic character of the hybrid (H400) was probed using MG-63 cell line with over 90% of cell viability. Finally, the formation of a hydroxyapatite layer in the material surface after 21days of soaking in SBF shows the bioactive character. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Surface Plasmon Resonance or Biocompatibility—Key Properties for Determining the Applicability of Noble Metal Nanoparticles

    PubMed Central

    Craciun, Ana Maria; Focsan, Monica; Vulpoi, Adriana

    2017-01-01

    Metal and in particular noble metal nanoparticles represent a very special class of materials which can be applied as prepared or as composite materials. In most of the cases, two main properties are exploited in a vast number of publications: biocompatibility and surface plasmon resonance (SPR). For instance, these two important properties are exploitable in plasmonic diagnostics, bioactive glasses/glass ceramics and catalysis. The most frequently applied noble metal nanoparticle that is universally applicable in all the previously mentioned research areas is gold, although in the case of bioactive glasses/glass ceramics, silver and copper nanoparticles are more frequently applied. The composite partners/supports/matrix/scaffolds for these nanoparticles can vary depending on the chosen application (biopolymers, semiconductor-based composites: TiO2, WO3, Bi2WO6, biomaterials: SiO2 or P2O5-based glasses and glass ceramics, polymers: polyvinyl alcohol (PVA), Gelatin, polyethylene glycol (PEG), polylactic acid (PLA), etc.). The scientific works on these materials’ applicability and the development of new approaches will be targeted in the present review, focusing in several cases on the functioning mechanism and on the role of the noble metal. PMID:28773196

  16. The agar diffusion scratch assay - A novel method to assess the bioactive and cytotoxic potential of new materials and compounds

    PubMed Central

    Pusnik, Mascha; Imeri, Minire; Deppierraz, Grégoire; Bruinink, Arie; Zinn, Manfred

    2016-01-01

    A profound in vitro evaluation not only of the cytotoxic but also of bioactive potential of a given compound or material is crucial for predicting potential effects in the in vivo situation. However, most of the current methods have weaknesses in either the quantitative or qualitative assessment of cytotoxicity and/or bioactivity of the test compound. Here we describe a novel assay combining the ISO 10993-5 agar diffusion test and the scratch also termed wound healing assay. In contrast to these original tests this assay is able to detect and distinguish between cytotoxic, cell migration modifying and cytotoxic plus cell migration modifying compounds, and this at higher sensitivity and in a quantitative way. PMID:26861591

  17. Optimization of liquid culture conditions of Philippine wild edible mushrooms as potential source of bioactive lipids

    USDA-ARS?s Scientific Manuscript database

    With remarkable bioactivities and delightful taste, mushrooms have been a commercial nutraceutical around the world. Mushrooms are cultivated on solid materials. Here we report the successful cultivation of four Philippine edible mushrooms in liquid medium. This work highlights the optimal liquid cu...

  18. Bioactive and inert dental glass-ceramics.

    PubMed

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  19. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro

    NASA Astrophysics Data System (ADS)

    Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica

    2013-04-01

    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.

  20. Bioactive glasses containing Au nanoparticles. Effect of calcination temperature on structure, morphology, and surface properties.

    PubMed

    Lusvardi, Gigliola; Malavasi, Gianluca; Aina, Valentina; Bertinetti, Luca; Cerrato, Giuseppina; Magnacca, Giuliana; Morterra, Claudio; Menabue, Ledi

    2010-06-15

    Bioactive glasses containing gold nanoparticles (AuNPs) have been synthesized via the sol-gel route using HAuCl(4) x 3 H(2)O as gold precursor. The formation process of AuNPs was studied as a function of the thermal treatment, which induces nucleation of Au particles and influences their nature, optical properties, shape, size, and distribution. The physicochemical characterization indicates that the sample treated at 600 degrees C presents the best characteristics to be used as a bioactive material, namely high surface area, high amount of AuNPs located at the glass surface, presence of micropores, and abundant surface OH groups. In the case of samples either aged at 60 degrees C or calcined at 150 degrees C, AuNPs just begin their formation, and at this stage the gel is not completely polymerized and dried yet. A thermal treatment at higher temperatures (900 degrees C) causes the aggregation of AuNPs, forming "AuMPs" (i.e., Au microparticles) in a densified glass-ceramic material with low surface area, absence of pores, and low number of surface OH groups. These features induce in the glass-ceramic materials treated at high-temperatures a lower bioactivity (evidenced by SBF reaction), as compared with that exhibited by the glass samples treated at 600 degrees C.

  1. New Amniotic Membrane Based Biocomposite for Future Application in Reconstructive Urology

    PubMed Central

    Tworkiewicz, Jakub; Kowalczyk, Tomasz; van Breda, Shane V.; Tyloch, Dominik; Kloskowski, Tomasz; Bodnar, Magda; Skopinska-Wisniewska, Joanna; Marszałek, Andrzej; Frontczak-Baniewicz, Malgorzata; Kowalewski, Tomasz A.; Drewa, Tomasz

    2016-01-01

    Objective Due to the capacity of the amniotic membrane (Am) to support re-epithelisation and inhibit scar formation, Am has a potential to become a considerable asset for reconstructive urology i.e., reconstruction of ureters and urethrae. The application of Am in reconstructive urology is limited due to a poor mechanical characteristic. Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance, without affecting its unique bioactivity profile. This study evaluated biocomposite material composed of Am and nanofibers as a graft for urinary bladder augmentation in a rat model. Material and Methods Sandwich-structured biocomposite material was constructed from frozen Am and covered on both sides with two-layered membranes prepared from electrospun poly-(L-lactide-co-E-caprolactone) (PLCL). Wistar rats underwent hemicystectomy and bladder augmentation with the biocomposite material. Results Immunohistohemical analysis (hematoxylin and eosin [H&E], anti-smoothelin and Masson’s trichrome staining [TRI]) revealed effective regeneration of the urothelial and smooth muscle layers. Anti-smoothelin staining confirmed the presence of contractile smooth muscle within a new bladder wall. Sandwich-structured biocomposite graft material was designed to regenerate the urinary bladder wall, fulfilling the requirements for normal bladder tension, contraction, elasticity and compliance. Mechanical evaluation of regenerated bladder wall conducted based on Young’s elastic modulus reflected changes in the histological remodeling of the augmented part of the bladder. The structure of the biocomposite material made it possible to deliver an intact Am to the area for regeneration. An unmodified Am surface supported regeneration of the urinary bladder wall and the PLCL membranes did not disturb the regeneration process. Conclusions Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance without affecting its unique bioactivity profile. PMID:26766636

  2. Intraocular lens bioactivity tested using rabbit corneal tissue cultures.

    PubMed

    Linnola, R J; Salonen, J I; Happonen, R P

    1999-11-01

    To evaluate the effects of different intraocular lens (IOL) materials on epithelial cell growth to test the sandwich theory; i.e., a bioactivity-based explanation of posterior capsule opacification (PCO) after cataract surgery. Central Hospital, Vaasa, and Institute of Dentistry and Turku Center for Biomaterials, University of Turku, Finland. Rabbit corneal tissue cultures were set up on poly(methyl methacrylate) (PMMA), heparin-surface-modified (HSM) PMMA, silicone, acrylate, and hydrogel IOLs for 1 week. The tissue consisted of intact epithelium and half the thickness of the corneal stroma, which was placed against the IOL. The growth of the epithelium was examined by light microscopy to evaluate the attachment of the corneal explant to the IOL surface. All tissue samples grew well under the culture conditions. When grown on PMMA, HSM PMMA, silicone, and hydrogel, the tissue did not attach to the IOL or the epithelium grew around the explant, suggesting that the attachment of the stroma to the IOL was poor or nonexistent. Some explants on acrylate IOLs attached directly to the IOL surface with no epithelial ingrowth between the stroma and the IOL. This tissue culture method can be used to examine the behavior of corneal tissue in contact with different IOL materials. The results suggest that the acrylate IOL may have bioactive properties. This, with the lens optic's square edge, may hinder lens epithelial cell proliferation and thus prevent PCO.

  3. [Ultrasound monitoring of consolidation processes in fractures of long tubular bones in osteosynthesis using bioactive implants].

    PubMed

    Zavadovskaia, V D; Popov, V P; Akbasheva, O E; Grigor'ev, E G; Druzhinina, T V

    2014-01-01

    To show the capabilities of ultrasound monitoring to assess consolidation processes in fractures of long tubular bones in the use of bioactive material-containing implants. Eighty-two (45.1%) patients whose bone fragments had been fixed with bioactive material-coated plates and 100 (54.9%) patients with bioinert material-coated ones were examined. Consolidation changes were estimated by ultrasound and X-ray studies 2, 4, 6, and 12 months after surgery. Bone metabolic changes were determined by US osteometry 2 months following surgery. Ultrasound data were compared with the biochemical markers: C-terminal telopeptide (CrossLaps) and osteocalcin. Ultrasound monitoring of the rates of consolidation and the time course of changes in bone strength versus the biochemical markers established the positive effect of bioactiveplates on the process of consolidation in fractures of tubular bones and made it possible to consider local osteopenic syndrome to be a prognostically favorable sign of timely callus formation.

  4. Chromatogram-Bioactivity Correlation-Based Discovery and Identification of Three Bioactive Compounds Affecting Endothelial Function in Ginkgo Biloba Extract.

    PubMed

    Liu, Hong; Tan, Li-Ping; Huang, Xin; Liao, Yi-Qiu; Zhang, Wei-Jian; Li, Pei-Bo; Wang, Yong-Gang; Peng, Wei; Wu, Zhong; Su, Wei-Wei; Yao, Hong-Liang

    2018-05-03

    Discovery and identification of three bioactive compounds affecting endothelial function in Ginkgo biloba Extract (GBE) based on chromatogram-bioactivity correlation analysis. Three portions were separated from GBE via D101 macroporous resin and then re-combined to prepare nine GBE samples. 21 compounds in GBE samples were identified through UFLC-DAD-Q-TOF-MS/MS. Correlation analysis between compounds differences and endothelin-1 (ET-1) in vivo in nine GBE samples was conducted. The analysis results indicated that three bioactive compounds had close relevance to ET-1: Kaempferol-3- O -α-l-glucoside, 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Quercetin isomers, and 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Kaempferide. The discovery of bioactive compounds could provide references for the quality control and novel pharmaceuticals development of GRE. The present work proposes a feasible chromatogram-bioactivity correlation based approach to discover the compounds and define their bioactivities for the complex multi-component systems.

  5. A new synthesis route to high surface area sol gel bioactive glass through alcohol washing

    PubMed Central

    M. Mukundan, Lakshmi; Nirmal, Remya; Vaikkath, Dhanesh; Nair, Prabha D.

    2013-01-01

    Bioactive glass is one of the widely used bone repair material due to its unique properties like osteoconductivity, osteoinductivity and biodegradability. In this study bioactive glass is prepared by the sol gel process and stabilized by a novel method that involves a solvent instead of the conventional calcinations process. This study represents the first attempt to use this method for the stabilization of bioactive glass. The bioactive glass stabilized by this ethanol washing process was characterized for its physicochemical and biomimetic property in comparison with similar composition of calcined bioactive glass. The compositional similarity of the two stabilized glass powders was confirmed by spectroscopic and thermogravimetric analysis. Other physicochemical characterizations together with the cell culture studies with L929 fibroblast cells and bone marrow mesenchymal stem cells proved that the stabilization was achieved with the retention of its inherent bioactive potential. However an increase in the surface area of the glass powder was obtained as a result of this ethanol washing process and this add up to the success of the study. Hence the present study exhibits a promising route for high surface area bioactive glass for increasing biomimicity. PMID:23512012

  6. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    PubMed

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  8. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.

    PubMed

    Pina, Sandra; Oliveira, Joaquim M; Reis, Rui L

    2015-02-18

    Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application

    PubMed Central

    Wu, Chengtie; Chang, Jiang

    2012-01-01

    The impact of bone diseases and trauma in the whole world has increased significantly in the past decades. Bioactive glasses are regarded as an important bone regeneration material owing to their generally excellent osteoconductivity and osteostimulativity. A new class of bioactive glass, referred to as mesoporous bioglass (MBG), was developed 7 years ago, which possess a highly ordered mesoporous channel structure and a highly specific surface area. The study of MBG for drug/growth factor delivery and bone tissue engineering has grown significantly in the past several years. In this article, we review the recent advances of MBG materials, including the preparation of different forms of MBG, composition–structure relationship, efficient drug/growth factor delivery and bone tissue engineering application. By summarizing our recent research, the interaction of MBG scaffolds with bone-forming cells, the effect of drug/growth factor delivery on proliferation and differentiation of tissue cells and the in vivo osteogenesis of MBG scaffolds are highlighted. The advantages and limitations of MBG for drug delivery and bone tissue engineering have been compared with microsize bioactive glasses and nanosize bioactive glasses. The future perspective of MBG is discussed for bone regeneration application by combining drug delivery with bone tissue engineering and investigating the in vivo osteogenesis mechanism in large animal models. PMID:23741607

  10. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    PubMed

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  11. Current Strategies to Improve the Bioactivity of PEEK

    PubMed Central

    Ma, Rui; Tang, Tingting

    2014-01-01

    The synthetic thermoplastic polymer polyetheretherketone (PEEK) is becoming a popular component of clinical orthopedic and spinal applications, but its practical use suffers from several limitations. Although PEEK is biocompatible, chemically stable, radiolucent and has an elastic modulus similar to that of normal human bone, it is biologically inert, preventing good integration with adjacent bone tissues upon implantation. Recent efforts have focused on increasing the bioactivity of PEEK to improve the bone-implant interface. Two main strategies have been used to overcome the inert character of PEEK. One approach is surface modification to activate PEEK through surface treatment alone or in combination with a surface coating. Another strategy is to prepare bioactive PEEK composites by impregnating bioactive materials into PEEK substrate. Researchers believe that modified bioactive PEEK will have a wide range of orthopedic applications. PMID:24686515

  12. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing

    PubMed Central

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-01-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article. PMID:27877783

  13. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.

    PubMed

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  14. Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing

    PubMed Central

    Li, Chunmei; Hotz, Blake; Ling, Shengjie; Guo, Jin; Haas, Dylan S.; Marelli, Benedetto; Omenetto, Fiorenzo; Lin, Samuel J.; Kaplan, David L.

    2016-01-01

    Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrated excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration. PMID:27697669

  15. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering

    PubMed Central

    Samorezov, Julia E.; Alsberg, Eben

    2015-01-01

    Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719

  16. Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Khor, K. A.; Cheang, P.

    1998-03-01

    Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.

  17. Nano Traditional Chinese Medicine: Current Progresses and Future Challenges.

    PubMed

    Huang, Yi; Zhao, Yinglan; Liu, Fang; Liu, Songqing

    2015-01-01

    Nano traditional Chinese medicine (nano TCM) refers to bioactive ingredients, bioactive parts, medicinal materials or complex prescription, being approximately 100 nm in size, which are processed by nanotechnology. Nano TCM is a product of the TCM modernization, and is an application of nanotechnology in the field of TCM. This article reviews literatures on researches of nano TCM, which were published in the past 15 years. Different nanotechnologies have been used in preparation of Nano TCM in view of the varying aims of the study. The mechanical crushing technology is the main approach for nanolization of TCM material and complex prescription, and nanoparticulate drug delivery systems is the main approach for nanolization of bioactive ingredients or bioactive parts in TCM. Nano TCM has a number of advantages, for example, enhancing the bioavailability of TCM, reducing the adverse effects of TCM, achieving sustained release, attaining targeted delivery, enhancing pharmacological effects and improving the administration route of TCM. However, there are still many problems that must be resolved in nano TCM research. The main challenges to nano TCM include the theory system of TCM modernization, preparation technology, safety and stability, etc.

  18. Alkali-free bioactive glasses for bone regeneration =

    NASA Astrophysics Data System (ADS)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass-ceramic materials are excellent candidates for applications in bone regeneration and for the fabrication of scaffolds for tissue engineering.

  19. Optimization and characterization of bioactive glass nanofibers and nanocomposites

    NASA Astrophysics Data System (ADS)

    Scarber, Reginna E.

    Disease affects different areas of the bone and can impact individuals of all pathologies and ethnicities. These bone diseases can result in weakening which leads to trauma during ordinary function, the need for reconstructive surgery, and eventual bone replacement. Tissue engineering can provide a less traumatic and more fundamental solution to the current therapies. Bioactive glasses are promising materials in tissue engineering applications because of their ability to form hydroxycarbonate apatite in the presence of simulated body fluid, support cell adhesion, growth, and differentiation, induce bone formation, and concentrate bone morphogenic proteins in vivo. The research in this dissertation will attempt to improve the quality, yield, and toughness of bioactive glass nanofibrous scaffolds. The three specific aims of this research include, (1) Optimization and Characterization of Surfactant Modified Bioactive Glass (2) Optimization of Direct Synthesis Bioactive glass Nanofibers from Sols (3) Mechanical Properties and In-vitro Biomineralization of Bioglass-loaded Polyglyconate Nanocomposites Created Using the Particulate Leaching Method. The purpose of the first specific aim was to optimize the processing of bioactive glass nanofibers, resulting in greater fiber uniformity with a reduction in beading. The increase in viscosity coupled with the ability of the surfactant to limit polymeric secondary bonding led to improved fiber quality. The focal point of the second specific aim is the production of sol-gel derived glass fibers with high bioactivity prepared by electrospinning without the use of any polymer carrier system. Advantages of this method include decreased processing time, increased production of fibers, and a decrease in the loss of material due to the calcining process. The solvent cast/ particulate leaching method was used to create a nanocomposite of bioglass and the co-polymer polyglyconate (MaxonRTM) for bone tissue scaffolds The biocompatibility of the composite foams was observed and calcium phosphate presence was quantified. The incorporation of bioglass into the polymer matrix improved the strength (modulus - 21.47 MPa) and biocompatibility of the polyglyconate foam. Keywords: Bioactive glass, Electrospinning, Solvent Casting/Particulate Leaching Method, Nanocomposites

  20. A new sol-gel process for producing Na(2)O-containing bioactive glass ceramics.

    PubMed

    Chen, Qi-Zhi; Li, Yuan; Jin, Li-Yu; Quinn, Julian M W; Komesaroff, Paul A

    2010-10-01

    The sol-gel process of producing SiO(2)-CaO bioactive glasses is well established, but problems remain with the poor mechanical properties of the amorphous form and the bioinertness of its crystalline counterpart. These properties may be improved by incorporating Na(2)O into bioactive glasses, which can result in the formation of a hard yet biodegradable crystalline phase from bioactive glasses when sintered. However, production of Na(2)O-containing bioactive glasses by sol-gel methods has proved to be difficult. This work reports a new sol-gel process for the production of Na(2)O-containing bioactive glass ceramics, potentially enabling their use as medical implantation materials. Fine powders of 45S5 (a Na(2)O-containing composition) glass ceramic have for the first time been successfully synthesized using the sol-gel technique in aqueous solution under ambient conditions, with the mean particle size being approximately 5 microm. A comparative study of sol-gel derived S70C30 (a Na(2)O-free composition) and 45S5 glass ceramic materials revealed that the latter possesses a number of features desirable in biomaterials used for bone tissue engineering, including (i) the crystalline phase Na(2)Ca(2)Si(3)O(9) that couples good mechanical strength with satisfactory biodegradability, (ii) formation of hydroxyapatite, which may promote good bone bonding and (iii) cytocompatibility. In contrast, the sol-gel derived S70C30 glass ceramic consisted of a virtually inert crystalline phase CaSiO(3). Moreover, amorphous S70C30 largely transited to CaCO(3) with minor hydroxyapatite when immersed in simulated body fluid under standard tissue culture conditions. In conclusion, sol-gel derived Na(2)O-containing glass ceramics have significant advantages over related Na(2)O-free materials, having a greatly improved combination of mechanical capability and biological absorbability. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Chemoecological Screening Reveals High Bioactivity in Diverse Culturable Portuguese Marine Cyanobacteria

    PubMed Central

    Leão, Pedro N.; Ramos, Vitor; Gonçalves, Patrício B.; Viana, Flávia; Lage, Olga M.; Gerwick, William H.; Vasconcelos, Vitor M.

    2013-01-01

    Marine cyanobacteria, notably those from tropical regions, are a rich source of bioactive secondary metabolites. Tropical marine cyanobacteria often grow to high densities in the environment, allowing direct isolation of many secondary metabolites from field-collected material. However, in temperate environments culturing is usually required to produce enough biomass for investigations of their chemical constituents. In this work, we cultured a selection of novel and diverse cyanobacteria isolated from the Portuguese coast, and tested their organic extracts in a series of ecologically-relevant bioassays. The majority of the extracts showed activity in at least one of the bioassays, all of which were run in very small scale. Phylogenetically related isolates exhibited different activity profiles, highlighting the value of microdiversity for bioprospection studies. Furthermore, LC-MS analyses of selected active extracts suggested the presence of previously unidentified secondary metabolites. Overall, the screening strategy employed here, in which previously untapped cyanobacterial diversity was combined with multiple bioassays, proved to be a successful strategy and allowed the selection of several strains for further investigations based on their bioactivity profiles. PMID:23609580

  2. Putty-like bone fillers based on CaP ceramics or Biosilicate® combined with carboxymethylcellulose: Characterization, optimization, and evaluation.

    PubMed

    Gabbai-Armelin, Paulo R; Renno, Ana Cm; Crovace, Murilo C; Magri, Angela Mp; Zanotto, Edgar D; Peitl, Oscar; Leeuwenburgh, Sander Cg; Jansen, John A; van den Beucken, Jeroen Jjp

    2017-08-01

    Calcium phosphates and bioactive glass ceramics have been considered promising biomaterials for use in surgeries. However, their moldability should be further enhanced. We here thereby report the handling, physicochemical features, and morphological characteristics of formulations consisting of carboxymethylcellulose-glycerol and hydroxyapatite-tricalcium phosphate or Biosilicate® particles. We hypothesized that combining either material with carboxymethylcellulose-glycerol would improve handling properties, retaining their bioactivity. In addition to scanning electron microscopy, cohesion, mineralization, pH, and viscoelastic properties of the novel formulations, cell culture experiments were performed to evaluate the cytotoxicity and cell proliferation. Putty-like formulations were obtained with improved cohesion and moldability. Remarkably, mineralization in simulated body fluid of hydroxyapatite-tricalcium phosphate/carboxymethylcellulose-glycerol formulations was enhanced compared to pure hydroxyapatite-tricalcium phosphate. Cell experiments showed that all formulations were noncytotoxic and that HA-TCP60 and BGC50 extracts led to an increased cell proliferation. We conclude that combining carboxymethylcellulose-glycerol with either hydroxyapatite-tricalcium phosphate or Biosilicate® allows for the generation of moldable putties, improves handling properties, and retains the ceramic bioactivity.

  3. Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.

    PubMed

    Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew

    2013-05-01

    Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.

  4. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    NASA Astrophysics Data System (ADS)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  5. Synthesis, Characterization, In Vitro Bioactivity and Biocompatibility Evaluation of Hydroxyapatite/Bredigite (Ca7MgSi4O16) Composite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouhi, Monireh; Shamanian, Morteza; Fathi, Mohammadhossein; Samadikuchaksaraei, Ali; Mehdipour, Ahmad

    2016-04-01

    Silicate-based bioceramics have been found to possess excellent apatite-forming ability, and they can stimulate cell proliferation and osteogenic differentiation. In this study, bredigite (Ca7MgSi4O16) nanoparticles were synthesized and incorporated into a hydroxyapatite (HA)-based matrix to produce composite nanoparticles with improved bioactivity and biocompatibility. HA/bredigite nanoparticles containing 25% and 50% bredigite were synthesized by using the sol-gel method. X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Fourier transform infrared techniques were used to study the phase structure, morphology, and structural properties of prepared nanoparticles. Results indicated that HA/bredigite nanoparticles with an average particle size of less than 50 nm and homogeneous distribution of bredigite were successfully synthesized. Obtained results also revealed that the presence of bredigite led to a small increase in HA lattice parameters and to a decrease in the agglomeration of composite nanoparticles. The in vitro bioactivity studies performed in the simulated body fluid showed that composite nanoparticles had higher apatite-forming ability than pure HA. The results of a cell proliferation assay revealed that the proliferation of mesenchymal stem cells in the extract of HA/bredigite was significantly higher than those in the extract of the initial HA and control group after 72 h. As the properties of HA/bredigite nanoparticles were highly improved, compared with pure HA, it is concluded that these composite nanoparticles could potentially be good candidates for use as effective bioactive materials in bone regeneration applications.

  6. DESENSITIZING BIOACTIVE AGENTS IMPROVES BOND STRENGTH OF INDIRECT RESIN-CEMENTED RESTORATIONS: PRELIMINARY RESULTS

    PubMed Central

    Pires-De-Souza, Fernanda de Carvalho Panzeri; de Marco, Fabíola Fiorezi; Casemiro, Luciana Assirati; Panzeri, Heitor

    2007-01-01

    Objective: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. Materials and Method: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5): Group I: acid etching + Prime & Bond NT (Dentsply); Group II: application of a bioactive glass (Biosilicato®)+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita); Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer) cylinders (6x10mm) were fabricated and cemented to the teeth with a dualcure resin-based cement (Enforce, Dentsply). After cementation, the specimens were stored in artificial saliva at 37oC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC) with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence). Results: Groups I, II and III had statistically similar results (p>0.05). Group IV had statistically significant higher bond strength means (p<0.05) than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. Conclusion: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems. PMID:19089114

  7. Bioglass: A novel biocompatible innovation.

    PubMed

    Krishnan, Vidya; Lakshmi, T

    2013-04-01

    Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass) as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as "bioactive glass-bioglass." It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as "bioactive ceramics." The aim of this article is to give a bird's-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone.

  8. Effect of Bioactive Materials Modified with Chondroitin Sulfate on Human MSC =

    NASA Astrophysics Data System (ADS)

    De La Torre Torres, Jessica Elizabeth

    In this project chondroitin sulfate (CS) and growth factors were studied for their effect on hMSC in biomaterials. First, the effect of these biomolecules was tested in solution. Then, two kinds of biomaterials were created: bioactive surfaces for enhancing bioactivity of implantable devices and bioactive hydrogels which can be used as 3D scaffolds for cell encapsulation and delivery. A pro-survival effect of the growth factors studied in this project (epidermal growth factor, vascular endothelial growth factor and fibroblast growth factor) was not observed when tested in solution, therefore the project further focused on CS effect only. Interestingly, CS did not affect cell growth in media containing serum, while inducing cell detachment from substrate in serum free conditions. For the bioactive surfaces construction, CS was grafted to either an amine-rich plasmapolymerized coating created on polyethylene terephthalate (PET) films (further referred as LP) or to commercial cell culture plates functionalized with amino groups. The bioactive surfaces were characterized by different techniques such as contact angle, atomic force microscopy, Orange II dye and Toluidine Blue O dye colorimetric assays (for amino group and CS quantification respectively) and finally, cell culture experiments (adhesion, growth and survival). Results confirmed the presence of CS grafted on both substrates. Commercial amine plates grafted almost five times more CS compared to LP. This rendered the surface antifouling for proteins and cells as confirmed by protein adsorption and cell culture assays. Cell culture assays on bioactive surfaces based on LP demonstrated improved cell adhesion and growth when compared to tissue culture plates or bare PET films in serum containing conditions. Chitosan based hydrogels containing CS at a concentration of 500 mug/ml resulted in a cohesive hydrogel which supported hMSC viability up to 7 days. However increasing CS concentration to high level such as 10000 mug/ml led to decrease of cell viability after 4 or 7 days, probably due to lack of porosity and water since the hydrogel precipitates upon formation and expulses water. In conclusion, this work demonstrated that CS immobilization can enhance the biological interactions of hMSC with biomaterials used for implantable devices such as PET. Further studies are needed to evaluate the possible effect of CS on hMSC differentiation and phenotype. Hydrogels with CS could be very interesting for tissue engineering applications such as cartilage formation. (Abstract shortened by ProQuest.).

  9. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    PubMed

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  10. Microgravity

    NASA Image and Video Library

    2000-12-15

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  11. Electrostatic Control of Bioactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberger, Joshua E.; Berns, Eric J.; Bitton, Ronit

    2012-03-15

    The power of independence: When exhibited on the surface of self-assembling peptide-amphiphile nanofibers, the hydrophobic laminin-derived IKVAV epitope induced nanofiber bundling through interdigitation with neighboring fibers and thus decreased the bioactivity of the resulting materials. The inclusion of charged amino acids in the peptide amphiphiles disrupted the tendency to bundle and led to significantly enhanced neurite outgrowth.

  12. Ex vivo and in vitro synchrotron-based micro-imaging of biocompatible materials applied in dental surgery

    NASA Astrophysics Data System (ADS)

    Rack, A.; Stiller, M.; Nelson, K.; Knabe, C.; Rack, T.; Zabler, S.; Dalügge, O.; Riesemeier, H.; Cecilia, A.; Goebbels, J.

    2010-09-01

    Biocompatible materials such as porous bioactive calcium phosphate ceramics or titanium are regularly applied in dental surgery: ceramics are used to support the local bone regeneration in a given defect, afterwards titanium implants replace lost teeth. The current gold standard for bone reconstruction in implant dentistry is the use of autogenous bone grafts. But the concept of guided bone regeneration (GBR) has become a predictable and well documented surgical approach using biomaterials (bioactive calcium phosphate ceramics) which qualify as bone substitutes for this kind of application as well. We applied high resolution synchrotron microtomography and subsequent 3d image analysis in order to investigate bone formation and degradation of the bone substitute material in a three-dimensional manner, extending the knowledge beyond the limits of classical histology. Following the bone regeneration, titanium-based implants to replace lost teeth call for high mechanical precision, especially when two-piece concepts are used in order to guaranty leak tightness. Here, synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in these kind of highly attenuating objects. Therefore, we could study micro-gap formation at interfaces in two-piece dental implants with the specimen under different mechanical load. We could prove the existence of micro-gaps for implants with conical connections as well as to study the micromechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential issue of failure, i. e. bacterial leakage which can induce an inflammatory process.

  13. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.

  14. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    NASA Astrophysics Data System (ADS)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  15. The effect of plasma surface treatment on the bioactivity of titanium implant materials (in vitro)

    PubMed Central

    Abdelrahim, Ramy A.; Badr, Nadia A.; Baroudi, Kusai

    2016-01-01

    Background: The surface of an implantable biomaterial plays a very important role in determining the biocompatibility, osteoinduction, and osteointegration of implants because it is in intimate contact with the host bone and soft tissues. Objective: This study was aimed to assess the effect of plasma surface treatment on the bioactivity of titanium alloy (Ti–6Al–4V). Materials and Methods: Fifteen titanium alloy samples were used in this study. The samples were divided into three groups (with five samples in each group). Five samples were kept untreated and served as control (group A). Another five plasma samples were sprayed for nitrogen ion implantation on their surfaces (group B) and the last five samples were pre-etched with acid before plasma treatment (group C). All the investigated samples were immersed for 7 days in Hank's balanced salt solution (HBSS) which was used as a simulating body fluid (SBF) at pH 7.4 and 37°C. HBSS was renewed every 3 days. The different surfaces were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXA), and Fourier Transformation Infrared Spectroscopy (FTIR). Results: Nitriding of Ti-alloy samples via plasma nitrogen ion implantation increased the bioactivity of titanium. Moreover, the surface topography affected the chemical structure of the formed apatite. Increasing the surface roughness enhanced the bioactivity of the implant material. Conclusions: Nitridation can be exploited as an effective way to promote the formation of bone-like material on the implant surface. PMID:27011927

  16. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    PubMed

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cements

  17. Enhanced bioactive properties of BiodentineTM modified with bioactive glass nanoparticles.

    PubMed

    Corral Nuñez, Camila; Covarrubias, Cristian; Fernandez, Eduardo; Oliveira, Osmir Batista de

    2017-01-01

    To prepare nanocomposite cements based on the incorporation of bioactive glass nanoparticles (nBGs) into BiodentineTM (BD, Septodent, Saint-Maur-des-Fosses Cedex, France) and to assess their bioactive properties. nBGs were synthesised by the sol-gel method. BD nanocomposites (nBG/BD) were prepared with 1 and 2% nBGs by weight; unmodified BD and GC Fuji IX (GIC, GC Corporation, Tokyo, Japan) were used as references. The in vitro ability of the materials to induce apatite formation was assessed in SBF by X-ray diffraction (XRD), attenuated total reflectance with Fourier transform infrared spectroscopy (ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. BD and nBG/BD were also applied to dentine discs for seven days; the morphology and elemental composition of the dentine-cement interface were analysed using SEM-EDX. One and two percent nBG/BD composites accelerated apatite formation on the disc surface after short-term immersion in SBF. Apatite was detected on the nBG/BD nanocomposites after three days, compared with seven days for unmodified BD. No apatite formation was detected on the GIC surface. nBG/BD formed a wider interfacial area with dentine than BD, showing blockage of dentine tubules and Si incorporation, suggesting intratubular precipitation. The incorporation of nBGs into BD improves its in vitro bioactivity, accelerating the formation of a crystalline apatite layer on its surface after immersion in SBF. Compared with unmodified BD, nBG/BD showed a wider interfacial area with greater Si incorporation and intratubular precipitation of deposits when immersed in SBF.

  18. Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization

    PubMed Central

    Minagar, Sepideh; Berndt, Christopher C.; Wen, Cuie

    2015-01-01

    Valve metals such as titanium (Ti), zirconium (Zr), niobium (Nb) and tantalum (Ta) that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (Ta2O5), niobia (Nb2O5), zirconia (ZrO2) and titania (TiO2) in accordance to their roughness and wettability. Therefore, four kinds of metal oxide nanoporous and nanotubular Ta2O5, Nb2O5, ZrO2 and TiO2 were fabricated via anodization. The nanosize distribution, morphology and the physical and chemical properties of the nanolayers and their surface energies and bioactivities were investigated using SEM-EDS, X-ray diffraction (XRD) analysis and 3D profilometer. It was found that the nanoporous Ta2O5 exhibited an irregular porous structure, high roughness and high surface energy as compared to bare tantalum metal; and exhibited the most superior bioactivity after annealing among the four kinds of nanoporous structures. The nanoporous Nb2O5 showed a uniform porous structure and low roughness, but no bioactivity before annealing. Overall, the nanoporous and nanotubular layers of Ta2O5, Nb2O5, ZrO2 and TiO2 demonstrated promising potential for enhanced bioactivity to improve their biomedical application alone or to improve the usage in other biocompatible metal implants. PMID:25837724

  19. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications.

    PubMed

    Blaker, J J; Nazhat, S N; Boccaccini, A R

    2004-01-01

    A novel silver-doped bioactive glass powder (AgBG) was used to coat resorbable Vicryl (polyglactin 910) and non-resorbable Mersilk surgical sutures, thereby imparting bioactive, antimicrobial and bactericidal properties to the sutures. Stable and homogeneous coatings on the surface of the sutures were achieved using an optimised aqueous slurry-dipping technique. Dynamic mechanical analysis (DMA) was used to investigate the viscoelastic parameters of storage modulus and tandelta and thermal transitions of the as-received and composite (coated) sutures. The results generally showed that the bioactive glass coating did not affect the dynamic mechanical and thermal properties of the sutures. The in vitro bioactivity of the sutures was tested by immersion in simulated body fluid (SBF). After only 3 days of immersion in SBF, bonelike hydroxyapatite formed on the coated suture surfaces, indicating their enhanced bioactive behaviour. Resorbable sutures with bioactive coatings as fabricated here, in conjunction with 3-D textile technology, may provide attractive materials for producing 3-D scaffolds with controlled porosities for tissue engineering applications. The bactericidal properties imparted by the Ag-containing glass coating open also new opportunities for use of the composite sutures in wound healing and body wall repair.

  20. Bioactive Glasses: Frontiers and Challenges

    PubMed Central

    Hench, Larry L.; Jones, Julian R.

    2015-01-01

    Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong, and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass–ceramics. In the 1980s, it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are (a) discovery, (b) clinical application, (c) tissue regeneration, and (d) innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs. PMID:26649290

  1. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite.

    PubMed

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Tayebi, Lobat

    2015-04-01

    A reduction in the degradation rate of magnesium (Mg) and its alloys is in high demand to enable these materials to be used in orthopedic applications. For this purpose, in this paper, a biocompatible polymeric layer reinforced with a bioactive ceramic made of polycaprolactone (PCL) and bioactive glass (BG) was applied on the surface of Mg scaffolds using dip-coating technique under low vacuum. The results indicated that the PCL-BG coated Mg scaffolds exhibited noticeably enhanced bioactivity compared to the uncoated scaffold. Moreover, the mechanical integrity of the Mg scaffolds was improved using the PCL-BG coating on the surface. The stable barrier property of the coatings effectively delayed the degradation activity of Mg scaffold substrates. Moreover, the coatings induced the formation of apatite layer on their surface after immersion in the SBF, which can enhance the biological bone in-growth and block the microcracks and pore channels in the coatings, thus prolonging their protective effect. Furthermore, it was shown that a three times increase in the concentration of PCL-BG noticeably improved the characteristics of scaffolds including their degradation resistance and mechanical stability. Since bioactivity, degradation resistance and mechanical integrity of a bone substitute are the key factors for repairing and healing fractured bones, we suggest that PCL-BG is a suitable coating material for surface modification of Mg scaffolds. Published by Elsevier B.V.

  2. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior.

    PubMed

    Gandolfi, Maria Giovanna; Taddei, Paola; Siboni, Francesco; Modena, Enrico; Ciapetti, Gabriela; Prati, Carlo

    2011-07-01

    An innovative light-curable calcium-silicate cement containing a HEMA-TEGDMA-based resin (lc-MTA) was designed to obtain a bioactive fast setting root-end filling and root repair material. lc-MTA was tested for setting time, solubility, water absorption, calcium release, alkalinizing activity (pH of soaking water), bioactivity (apatite-forming ability) and cell growth-proliferation. The apatite-forming ability was investigated by micro-Raman, ATR-FTIR and ESEM/EDX after immersion at 37°C for 1-28 days in DPBS or DMEM+FBS. The marginal adaptation of cement in root-end cavities of extracted teeth was assessed by ESEM/EDX, and the viability of Saos-2 cell on cements was evaluated. lc-MTA demonstrated a rapid setting time (2min), low solubility, high calcium release (150-200ppm) and alkalinizing power (pH 10-12). lc-MTA proved the formation of bone-like apatite spherulites just after 1 day. Apatite precipitates completely filled the interface porosities and created a perfect marginal adaptation. lc-MTA allowed Saos-2 cell viability and growth and no compromising toxicity was exerted. HEMA-TEGDMA creates a polymeric network able to stabilize the outer surface of the cement and a hydrophilic matrix permeable enough to allow water absorption. SiO(-)/Si-OH groups from the mineral particles induce heterogeneous nucleation of apatite by sorption of calcium and phosphate ions. Oxygen-containing groups from poly-HEMA-TEGDMA provide additional apatite nucleating sites through the formation of calcium chelates. The strong novelty was that the combination of a hydraulic calcium-silicate powder and a poly-HEMA-TEGDMA hydrophilic resin creates the conditions (calcium release and functional groups able to chelate Ca ions) for a bioactive fast setting light-curable material for clinical applications in dental and maxillofacial surgery. The first and unique/exclusive light-curable calcium-silicate MTA cement for endodontics and root-end application was created, with a potential strong impact on surgical procedures. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Species classification and bioactive ingredients accumulation of BaiJiangCao based on characteristic inorganic elements analysis by inductively coupled plasma-mass spectrometry and multivariate analysis

    PubMed Central

    Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang

    2015-01-01

    Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721

  4. A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering.

    PubMed

    Tajbakhsh, Saeid; Hajiali, Faezeh

    2017-01-01

    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites containing ceramic reinforcements, including various methods of production and the evaluation of the scaffolds in terms of porosity, mechanical properties, in vitro and in vivo biocompatibility and bioactivity for bone tissue engineering applications. The production routes range from traditional approaches such as the use of porogens to provide porosity in the scaffolds to novel methods such as solid free-form techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate / hydroxyl apatite nano particle scaffolds: Potential materials for bone regeneration applications

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas; Bhatia, Gaurav; Nim, Lovedeep; Kaur, Manpreet; Arora, Daljit Singh

    2017-05-01

    Bioresorbable and bioactive scaffolds are promising materials for various biomedical applications including bone regeneration and drug delievrery. Authors present bioactive scaffolds prepared from 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) (PBSu-DCH) with different amount of hydroxyl apatite nanoparticles (nHAp) by solvent casting and particulate leaching techniques. Different weight ratios of nHAp (i.e. 0, 5 and 10 wt %) with fixed weight ratio (i.e. 10 wt %) of PBSu-DCH polymer have been prepared. Scaffolds have been assessed for their morphology, bioactivity, degradation, drug release and biological properties including cytotoxicity, cell attachment using MG-63 cell line and antimicrobial activity. Effectual drug release has been measured by incorporating gentamycin as an antibiotic in the scaffolds. The study is aimed at developing new biodegradable scaffolds to be used in skull, jaw and tooth socket for preserving bone mass.

  6. Cocoa Shell: A By-Product with Great Potential for Wide Application.

    PubMed

    Panak Balentić, Jelena; Ačkar, Đurđica; Jokić, Stela; Jozinović, Antun; Babić, Jurislav; Miličević, Borislav; Šubarić, Drago; Pavlović, Nika

    2018-06-09

    Solving the problem of large quantities of organic waste, which represents an enormous ecological and financial burden for all aspects of the process industry, is a necessity. Therefore, there is an emerged need to find specific solutions to utilize raw materials as efficiently as possible in the production process. The cocoa shell is a valuable by-product obtained from the chocolate industry. It is rich in protein, dietary fiber, and ash, as well as in some other valuable bioactive compounds, such as methylxanthines and phenolics. This paper gives an overview of published results related to the cocoa shell, mostly on important bioactive compounds and possible applications of the cocoa shell in different areas. The cocoa shell, due to its nutritional value and high-value bioactive compounds, could become a desirable raw material in a large spectrum of functional, pharmaceutical, or cosmetic products, as well as in the production of energy or biofuels in the near future.

  7. Bioactivity of plasma implanted biomaterials

    NASA Astrophysics Data System (ADS)

    Chu, Paul K.

    2006-01-01

    Plasma immersion ion implantation and deposition (PIII&D) is an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification of biomedical materials is described. NiTi alloys have unique super-elastic and shape memory properties and are suitable for orthopedic implants but the leaching of toxic Ni may pose health hazards in humans. We have recently investigated the use of acetylene, oxygen and nitrogen PIII&D to prevent out-diffusion of nickel and good results have been obtained. Silicon is the most important material in the microelectronics industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PIII into silicon to improve the surface bioactivity and observed biomimetic growth of apatite on the surface in simulated body fluids. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness and by incorporation of elements such as nitrogen and phosphorus, the surface blood compatibility can be improved. The properties as well as in vitro biological test results are discussed in this article.

  8. Design strategies and applications of nacre-based biomaterials.

    PubMed

    Gerhard, Ethan Michael; Wang, Wei; Li, Caiyan; Guo, Jinshan; Ozbolat, Ibrahim Tarik; Rahn, Kevin Michael; Armstrong, April Dawn; Xia, Jingfen; Qian, Guoying; Yang, Jian

    2017-05-01

    The field of tissue engineering and regenerative medicine relies heavily on materials capable of implantation without significant foreign body reactions and with the ability to promote tissue differentiation and regeneration. The field of bone tissue engineering in particular requires materials capable of providing enhanced mechanical properties and promoting osteogenic cell lineage commitment. While bone repair has long relied almost exclusively on inorganic, calcium phosphate ceramics such as hydroxyapatite and their composites or on non-degradable metals, the organically derived shell and pearl nacre generated by mollusks has emerged as a promising alternative. Nacre is a naturally occurring composite material composed of inorganic, calcium carbonate plates connected by a framework of organic molecules. Similar to mammalian bone, the highly organized microstructure of nacre endows the composite with superior mechanical properties while the organic phase contributes to significant bioactivity. Studies, both in vitro and in vivo, have demonstrated nacre's biocompatibility, biodegradability, and osteogenic potential, which are superior to pure inorganic minerals such as hydroxyapatite or non-degradable metals. Nacre can be used directly as a bulk implant or as part of a composite material when combined with polymers or other ceramics. While nacre has demonstrated its effectiveness in multiple cell culture and animal models, it remains a relatively underexplored biomaterial. This review introduces the formation, structure, and characteristics of nacre, and discusses the present and future uses of this biologically-derived material as a novel biomaterial for orthopedic and other tissue engineering applications. Mussel derived nacre, a biological composite composed of mineralized calcium carbonate platelets and interplatelet protein components, has recently gained interest as a potential alternative ceramic material in orthopedic biomaterials, combining the integration and mechanical capabilities of calcium phosphates with increased bioactivity derived from proteins and biomolecules; however, there is limited awareness of this material's potential. Herein, we present, to our knowledge, the first comprehensive review of nacre as a biomaterial. Nacre is a highly promising yet overlooked biomaterial for orthopedic tissue engineering with great potential in a wide variety of material systems. It is our hope that publication of this article will lead to increased community awareness of the potential of nacre as a versatile, bioactive ceramic capable of improving bone tissue regeneration and will elicit increased research effort and innovation utilizing nacre. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.

    PubMed

    Catauro, M; Papale, F; Sapio, L; Naviglio, S

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO2 Hybrid Materials Synthesized via Sol-Gel Technique

    PubMed Central

    Tranquillo, Elisabetta; Illiano, Michela; Sapio, Luigi; Spina, Annamaria; Naviglio, Silvio

    2017-01-01

    Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic–inorganic hybrids. Among those, poly(e-caprolactone)/zirconia (PCL/ZrO2) hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO2 hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO2 hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones) enhance cell proliferation when compared to pure ZrO2 by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO2 hybrids differently supports cell proliferation suggests that PCL/ZrO2 hybrids could be useful tools with different potential clinical applications. PMID:29039803

  11. Biomaterials for periodontal regeneration

    PubMed Central

    Shue, Li; Yufeng, Zhang; Mony, Ullas

    2012-01-01

    Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect. PMID:23507891

  12. Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing.

    PubMed

    Li, Chunmei; Hotz, Blake; Ling, Shengjie; Guo, Jin; Haas, Dylan S; Marelli, Benedetto; Omenetto, Fiorenzo; Lin, Samuel J; Kaplan, David L

    2016-12-01

    Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrate excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    PubMed Central

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  14. Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells.

    PubMed

    Pashkuleva, I; Marques, A P; Vaz, F; Reis, R L

    2005-01-01

    The surface modification of three starch based polymeric biomaterials, using a KMnO4/HNO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows--starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds. The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.

  15. Development of antimicrobial active packaging materials based on gluten proteins.

    PubMed

    Gómez-Heincke, Diana; Martínez, Inmaculada; Partal, Pedro; Guerrero, Antonio; Gallegos, Críspulo

    2016-08-01

    The incorporation of natural biocide agents into protein-based bioplastics, a source of biodegradable polymeric materials, manufactured by a thermo-mechanical method is a way to contribute to a sustainable food packaging industry. This study assesses the antimicrobial activity of 10 different biocides incorporated into wheat gluten-based bioplastics. The effect that formulation, processing, and further thermal treatments exert on the thermo-mechanical properties, water absorption characteristics and rheological behaviour of these materials is also studied. Bioplastics containing six of the 10 examined bioactive agents have demonstrated suitable antimicrobial activity at 37 °C after their incorporation into the bioplastic. Moreover, the essential oils are able to create an antimicrobial atmosphere within a Petri dish. Depending on the selected biocide, its addition may alter the bioplastics protein network in a different extent, which leads to materials exhibiting less water uptake and different rheological and thermo-mechanical behaviours. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Effects of graphene modification on the bioactivation of polyethylene-terephthalate-based artificial ligaments.

    PubMed

    Wang, Chun-Hui; Guo, Zhong-Shang; Pang, Fei; Zhang, Li-Yuan; Yan, Ming; Yan, Jin-Hong; Li, Ke-Wen; Li, Xiao-Jie; Li, Yong; Bi, Long; Han, Yi-Sheng

    2015-07-22

    The objective of this study was to investigate whether surface coating with graphene could enhance the surface bioactivation of PET-based artificial ligaments to accelerate graft-to-bone healing after anterior cruciate ligament reconstruction. In an in vitro study, the proliferation of MC3T3-E1 cells and their differentiation on the scaffolds were quantified via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and real-time polymerase chain reaction assays. The significantly higher optical-density values and transcription levels of osteoblast-specific genes indicated that graphene modification could promote the proliferation of MC3T3-E1 cells and accelerate their specific differentiation into osteogenic lineages on scaffolds. In an in vivo test, rabbits were used to establish an extra-articular graft-to-bone healing model. At 4, 8, and 12 weeks after surgery, biomechanical tests, microcomputed tomography analysis, and histological observations were performed. The final results demonstrated that the microstructural parameters, the average mineral apposition rate of the bone, and the biomechanical properties of the graphene-coated polyethylene terephthalate (PET)-based artificial ligament (G-PET-AL) group were significantly higher than those of the PET-AL graft group (P < 0.05). The results of Van Gieson staining indicated that in the G-PET-AL group, there was more newly formed bone than there was in the group in which nongraphene-coated PET-ALs were used. In conclusion, graphene exhibits considerable potential for enhancing the surface bioactivation of materials.

  17. Antioxidant and acetylcholinesterase-inhibitory properties of long-term stored medicinal plants

    PubMed Central

    2012-01-01

    Background Medicinal plants are possible sources for future novel antioxidant compounds in food and pharmaceutical formulations. Recent attention on medicinal plants emanates from their long historical utilisation in folk medicine as well as their prophylactic properties. However, there is a dearth of scientific data on the efficacy and stability of the bioactive chemical constituents in medicinal plants after prolonged storage. This is a frequent problem in African Traditional Medicine. Methods The phytochemical, antioxidant and acetylcholinesterase-inhibitory properties of 21 medicinal plants were evaluated after long-term storage of 12 or 16 years using standard in vitro methods in comparison to freshly harvested materials. Results The total phenolic content of Artemisia afra, Clausena anisata, Cussonia spicata, Leonotis intermedia and Spirostachys africana were significantly higher in stored compared to fresh materials. The flavonoid content were also significantly higher in stored A. afra, C. anisata, C. spicata, L. intermedia, Olea europea and Tetradenia riparia materials. With the exception of Ekebergia capensis and L. intermedia, there were no significant differences between the antioxidant activities of stored and fresh plant materials as measured in the β-carotene-linoleic acid model system. Similarly, the EC50 values based on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay were generally lower for stored than fresh material. Percentage inhibition of acetylcholinesterase was generally similar for both stored and fresh plant material. Stored plant material of Tetradenia riparia and Trichilia dregeana exhibited significantly higher AChE inhibition than the fresh material. Conclusions The current study presents evidence that medicinal plants can retain their biological activity after prolonged storage under dark conditions at room temperature. The high antioxidant activities of stable bioactive compounds in these medicinal plants offer interesting prospects for the identification of novel principles for application in food and pharmaceutical formulations. PMID:22769046

  18. Coatings of titanium substrates with xCaO · (1 - x)SiO2 sol-gel materials: characterization, bioactivity and biocompatibility evaluation.

    PubMed

    Catauro, M; Papale, F; Bollino, F

    2016-01-01

    The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0

  19. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  20. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    PubMed

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  1. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    PubMed

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  2. Rechargeable anticandidal denture material with sustained release in saliva

    PubMed Central

    Malakhov, Andrey; Wen, Jianchuan; Zhang, Bin-Xian; Wang, Hanzhou; Geng, Hui; Chen, Xiao-Dong; Sun, Yuyu; Yeh, Chih-Ko

    2016-01-01

    Objective Candida-induced denture stomatitis is a common debilitating problem among denture wearers. Previously, we described the fabrication of a new denture material that released antifungal drugs when immersed in phosphate buffered saline. Here, we use more clinically relevant immersion conditions (human saliva; 37°C) and measure miconazole release and bioactivity. Materials and Methods Disks were prepared by grafting PNVP [poly(N-vinyl-2-pyrrolidinone)] onto PMMA [poly(methylmethacrylate)] using plasma initiation (PMMA-g-PNVP) and then loaded with miconazole. Drug-loaded disks were immersed in 10–100% human saliva (1–30 days). Miconazole release was measured and then tested for bioactivity versus miconazole-sensitive and -resistant Candida isolates. Results HPLC was used to quantify miconazole levels in saliva. Miconazole-loaded disks released antifungal drug for up to 30 days. Higher drug release was found with higher concentrations of saliva and, interestingly, miconazole solubility was increased with higher saliva concentrations. The released miconazole retained its anticandidal activity. After immersion, the residual miconazole could be quenched and the disks recharged. Freshly recharged disks displayed the same release kinetics and bioactivity as the original disks. Quenched disks could also be charged with chlorhexidine that displayed anticandidal activity. Conclusions These results suggest that PMMA-g-PNVP is a promising new denture material for long-term management of denture stomatitis. PMID:26855200

  3. HBOC Vasoactivity: Interplay Between Nitric Oxide Scavenging and Capacity to Generate Bioactive Nitric Oxide Species

    PubMed Central

    Friedman, Joel M.

    2013-01-01

    Abstract Significance: Despite many advances in blood substitute research, the development of materials that are effective in maintaining blood volume and oxygen delivery remains a priority for emergency care and trauma. Clinical trials on hemoglobin (Hb)-based oxygen carriers (HBOCs) have not provided information on the mechanism of toxicity, although all commercial formulations have safety concerns. Specifically, it is important to reconcile the different hypotheses of Hb toxicity, such as nitric oxide (NO) depletion and oxidative reactions, to provide a coherent molecular basis for designing a safe HBOC. Recent Advances: HBOCs with different sizes often exhibit differences in the degree of HBOC-induced vasoactivity. This has been attributed to differences in the degree of NO scavenging and in the extent of Hb extravasation. Additionally, it is appears that Hb can undergo reactions that compensate for NO scavenging by generating bioactive forms of NO. Critical Issues: Engineering modifications to enhance bioactive NO production can result in diminished oxygen delivery by virtue of increased oxygen affinity. This strategy can prevent the HBOC from fulfilling the intended goal on preserving oxygenation; however, the NO production effects will increase perfusion and oxygen transport. Future Directions: Hb modifications influence NO scavenging and the capacity of certain HBOCs to compensate for NO scavenging through nitrite-mediated reactions that generate bioactive NO. Based on the current understanding of these NO-related factors, possible synthetic strategies are presented that address how HBOC formulations can be prepared that: (i) effectively deliver oxygen, (ii) maintain tissue perfusion, and (iii) limit/reverse underlying inflammation within the vasculature. Antioxid. Redox Signal. 18, 2284–2297. PMID:23249305

  4. In vitro studies of degradation and bioactivity of aliphatic polyester composites

    NASA Astrophysics Data System (ADS)

    Chouzouri, Georgia

    In spite of numerous publications on the potential use of combinations of aliphatic polyester composites containing bioactive fillers for bone regeneration, little information exists on the combined in vitro mechanisms involving simultaneously diffusion for polymer degradation and bioactivity through nucleation and growth of apatite in simulated body fluid (SBF) solution. The objective of this study is to contribute to the understanding of the fundamentals in designing non-porous, solid materials for bone regeneration, from experimental data along with their engineering interpretation. Bioactivity, in terms of apatite growth, was assessed through several experimental methods such as scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray-diffraction (XRD) and changes in ion concentration. In the case of the six neat fillers evaluated, the filler shape, form and chemical structure showed significant differences in bioactivity response. Bioglass and calcium silicate fillers showed faster nucleation and growth rates in the screening experiments. Composites at 30% by weight filler were prepared by solution and/or melt mixing. Polycaprolactone (PCL) composites containing five different fillers were evaluated. Solution processed PCL/calcium silicate (CS) samples showed faster bioactivity, as determined by apatite growth, compared to melt mixed samples. The onset time for bioactivity was different for all PCL composites. The limited bioactivity in the PCL composites over longer periods of time could be attributed to the PCL hydrophobicity leading to a slow polymer degradation rate, and also to the lack of SBF replenishment. For both polylactic acid (PLA) composites containing CS and bioglass, significant growth was observed after one week and in the case of CS was still evident after four weeks immersion. However, at prolonged time periods no further bioactivity was observed, although ion release results indicated a faster release rate that would eventually lead to a faster polymer degradation and possibly continuing bioactivity. The presence of silicate fillers enhanced the hydrolytic degradation rate of both PCL and PLA as shown from kinetic data calculations based on molecular weight measurements. Unfilled PLA samples showed significant embrittlement after two weeks immersion, whereas for the CS filled system more significant changes could be observed in the compressive strength and modulus after the same time period. Experimental data were also fitted into an equation proposed to calculate erosion number; in the case of unfilled PLA predictions were found to agree with literature results suggesting bulk erosion. By assuming impermeable, randomly dispersed glass flakes, water transport in a composite system, prior to significant polymer degradation could be modeled. However, modeling of transport in the case of the composite consisting of a degrading polymer and a reactive decaying filler was challenging, particularly in the case of directional bioactive reinforcements, due to the occurrence of simultaneous time dependent diffusion phenomena that altered the integrity of the sample.

  5. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming.

    PubMed

    Vaezi, Mohammad; Black, Cameron; Gibbs, David M R; Oreffo, Richard O C; Brady, Mark; Moshrefi-Torbati, Mohamed; Yang, Shoufeng

    2016-05-26

    Addition of bioactive materials such as calcium phosphates or Bioglass, and incorporation of porosity into polyetheretherketone (PEEK) has been identified as an effective approach to improve bone-implant interfaces and osseointegration of PEEK-based devices. In this paper, a novel production technique based on the extrusion freeforming method is proposed that yields a bioactive PEEK/hydroxyapatite (PEEK/HA) composite with a unique configuration in which the bioactive phase (i.e., HA) distribution is computer-controlled within a PEEK matrix. The 100% interconnectivity of the HA network in the biocomposite confers an advantage over alternative forms of other microstructural configurations. Moreover, the technique can be employed to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. The results of unconfined, uniaxial compressive tests on these new PEEK/HA biocomposites with 40% HA under both static and cyclic mode were promising, showing the composites possess yield and compressive strength within the range of human cortical bone suitable for load bearing applications. In addition, preliminary evidence supporting initial biological safety of the new technique developed is demonstrated in this paper. Sufficient cell attachment, sustained viability in contact with the sample over a seven-day period, evidence of cell bridging and matrix deposition all confirmed excellent biocompatibility.

  6. Natural bioactive compounds from winery by-products as health promoters: a review.

    PubMed

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina

    2014-09-04

    The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  7. Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions.

    PubMed

    McClements, David Julian; Saliva-Trujillo, Laura; Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Yao, Mingfei; Xiao, Hang

    2016-10-01

    Many highly hydrophobic bioactives, such as non-polar nutrients, nutraceuticals, and vitamins, have a relatively low or variable oral bioavailability. The poor bioavailability profile of these bioactives may be due to limited bioaccessibility, poor absorption, and/or chemical transformation within the gastrointestinal tract (GIT). The bioavailability of hydrophobic bioactives can be improved using specially designed oil-in-water emulsions consisting of lipid droplets dispersed within an aqueous phase. The bioactives may be isolated from their natural environment and then incorporated into the lipid phase of emulsion-based delivery systems. Alternatively, the bioactives may be left in their natural environment (e.g., fruits or vegetables), and then ingested with emulsion-based excipient systems. An excipient emulsion may have no inherent health benefits itself, but it boosts the biological activity of bioactive ingredients co-ingested with it by altering their bioaccessibility, absorption, and/or chemical transformation. This review discusses the design and fabrication of excipient emulsions, and gives some examples of recent research that demonstrates their potential efficacy for improving the bioavailability of hydrophobic bioactives. The concept of excipient emulsions could be used to formulate emulsion-based food products (such as excipient sauces, dressings, dips, creams, or yogurts) specifically designed to increase the bioavailability of bioactive agents in natural foods, such as fruits and vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. StraPep: a structure database of bioactive peptides

    PubMed Central

    Wang, Jian; Yin, Tailang; Xiao, Xuwen; He, Dan; Xue, Zhidong; Jiang, Xinnong; Wang, Yan

    2018-01-01

    Abstract Bioactive peptides, with a variety of biological activities and wide distribution in nature, have attracted great research interest in biological and medical fields, especially in pharmaceutical industry. The structural information of bioactive peptide is important for the development of peptide-based drugs. Many databases have been developed cataloguing bioactive peptides. However, to our knowledge, database dedicated to collect all the bioactive peptides with known structure is not available yet. Thus, we developed StraPep, a structure database of bioactive peptides. StraPep holds 3791 bioactive peptide structures, which belong to 1312 unique bioactive peptide sequences. About 905 out of 1312 (68%) bioactive peptides in StraPep contain disulfide bonds, which is significantly higher than that (21%) of PDB. Interestingly, 150 out of 616 (24%) bioactive peptides with three or more disulfide bonds form a structural motif known as cystine knot, which confers considerable structural stability on proteins and is an attractive scaffold for drug design. Detailed information of each peptide, including the experimental structure, the location of disulfide bonds, secondary structure, classification, post-translational modification and so on, has been provided. A wide range of user-friendly tools, such as browsing, sequence and structure-based searching and so on, has been incorporated into StraPep. We hope that this database will be helpful for the research community. Database URL: http://isyslab.info/StraPep PMID:29688386

  9. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    PubMed Central

    Yun, Hui-suk; Kim, Sang-Hyun; Khang, Dongwoo; Choi, Jungil; Kim, Hui-hoon; Kang, Minji

    2011-01-01

    Background Mesoporous bioactive glasses (MBGs) are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA) in simulated body fluid (SBF), which is a major inorganic component of bone extracellular matrix (ECM) and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL) composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs. Methods and materials The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed. Results The ECM components were fully coated on MBG-PCL scaffolds after immersing in SBF containing dilute collagen-I solution only for 24 hours due to the high bone-forming bioactivity of MBG. Both cell affinity and osteoconductivity of MBG-PCL scaffolds were dramatically enhanced by this precoating process. Conclusion The precoating process of ECM components on MBG-PCL scaffold using a high bioactivity of MBG was not only effective in enhancing the functionality of scaffolds but also effective in eliminating the unexpected side effect. The MBG-PCL scaffold-coated ECM components ideally satisfied the required conditions of scaffold in tissue engineering, including 3D well-interconnected pore structures with high porosity, good bioactivity, enhanced cell affinity, biocompatibility, osteoconductivity, and sufficient mechanical properties, and promise excellent potential application in the field of biomaterials. PMID:22072886

  10. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection.

    PubMed

    Posti, Jussi P; Piitulainen, Jaakko M; Hupa, Leena; Fagerlund, Susanne; Frantzén, Janek; Aitasalo, Kalle M J; Vuorinen, Ville; Serlo, Willy; Syrjänen, Stina; Vallittu, Pekka K

    2015-03-01

    This case study describes the properties of an early development stage bioactive glass containing fiber-reinforced composite calvarial implant with histology that has been in function for two years and three months. The patient is a 33-year old woman with a history of substance abuse, who sustained a severe traumatic brain injury later unsuccessfully treated with an autologous bone flap and a custom-made porous polyethylene implant. She was thereafter treated with developmental stage glass fiber-reinforced composite - bioactive glass implant. After two years and three months, the implant was removed due to an implant site infection. The implant was analyzed histologically, mechanically, and in terms of chemistry and dissolution of bioactive glass. Mechanical integrity of the load bearing fiber-reinforced composite part of the implant was not affected by the in vivo period. Bioactive glass particles demonstrated surface layers of hydroxyapatite like mineral and dissolution, and related increase of pH was considerably less after two and three months period than that for fresh bioactive glass. There was a difference in the histology of the tissues inside the implant areas near to the margin of the implant that absorbed blood during implant installation surgery, showed fibrous tissue with blood vessels, osteoblasts, collagenous fibers with osteoid formation, and tiny clusters of more mature hard tissue. In the center of the implant, where there was less absorbed blood, only fibrous tissue was observed. This finding is in line with the combined positron emission tomography - computed tomography examination with (18F)-fluoride marker, which demonstrated activity of the mineralizing bone by osteoblasts especially at the area near to the margin of the implant 10 months after implantation. Based on these promising reactions found in the bioactive glass containing fiber-reinforced composite implant that has been implanted for two years and three months, calvarial reconstruction with the presented material appears to be a feasible method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens

    PubMed Central

    Li, Jiashen; Chen, Yun; Mak, Arthur F.T.; Tuan, Rocky S.; Li, Lin; Li, Yi

    2010-01-01

    Porous poly(L-lactic acid) (PLLA) scaffolds with bioactive coatings were prepared by a novel one-step method. In this process, ice-based microporogens containing bioactive molecules, such as hydroxyapatite (HA) and collagen, served as both porogens to form the porous structure and vehicles to transfer the bioactive molecules to the inside of PLLA scaffolds in a single step. Based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis, the bioactive components were found to be transferred successfully from the porogens to PLLA scaffolds evenly. Osteoblast cells were used to evaluate the cellular behaviors of the composite scaffolds. After 8 days culturing, MTT assay and alkaline phosphatase (ALP) activity results suggested that HA/collagen could improve the interactions between osteoblast cells and the polymeric scaffold. PMID:20004261

  12. Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods-A SUSFOOD Project.

    PubMed

    Rohm, Harald; Brennan, Charles; Turner, Charlotta; Günther, Edeltraud; Campbell, Grant; Hernando, Isabel; Struck, Susanne; Kontogiorgos, Vassilis

    2015-11-24

    This article communicates the set-up of BERRYPOM, a European research project established in the second call of the SUStainable FOOD Production and Consumption (SUSFOOD) network. The project deals with the by-product from berry processing, which is frequently recycled as animal feed, composted or utilized for biogas production. With BERRYPOM it is proposed to analyze the value of berry pomace, to optimize the recovery of bioactive compounds from pomace material, and to incorporate processed berry pomace in cereal-based foods to take advantage of nutritional benefits that originate from its fiber and the content of bioactive substances. Additionally, extraction methods will be evaluated to obtain products rich in phytochemicals, and the influence of processing steps on the antioxidant capacity of pomace will be analyzed. The fiber extracts will then also be utilized in different cereal-based foods and extruded products. As project outcome we expect a substantial increase of knowledge concerning fiber and phytochemicals extraction from berry pomace, its suitability for enhancing nutritional and sensory properties of cereal-based foods, and its effects on the sustainability of the food chain.

  13. Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project

    PubMed Central

    Rohm, Harald; Brennan, Charles; Turner, Charlotta; Günther, Edeltraud; Campbell, Grant; Hernando, Isabel; Struck, Susanne; Kontogiorgos, Vassilis

    2015-01-01

    This article communicates the set-up of BERRYPOM, a European research project established in the second call of the SUStainable FOOD Production and Consumption (SUSFOOD) network. The project deals with the by-product from berry processing, which is frequently recycled as animal feed, composted or utilized for biogas production. With BERRYPOM it is proposed to analyze the value of berry pomace, to optimize the recovery of bioactive compounds from pomace material, and to incorporate processed berry pomace in cereal-based foods to take advantage of nutritional benefits that originate from its fiber and the content of bioactive substances. Additionally, extraction methods will be evaluated to obtain products rich in phytochemicals, and the influence of processing steps on the antioxidant capacity of pomace will be analyzed. The fiber extracts will then also be utilized in different cereal-based foods and extruded products. As project outcome we expect a substantial increase of knowledge concerning fiber and phytochemicals extraction from berry pomace, its suitability for enhancing nutritional and sensory properties of cereal-based foods, and its effects on the sustainability of the food chain. PMID:28231231

  14. Calcium silicate-based cements and functional impacts of various constituents

    PubMed Central

    SAGHIRI, Mohammad Ali; ORANGI, Jafar; ASATOURIAN, Armen; GUTMANN, James L.; Garcia-Godoy, Franklin; LOTFI, Mehrdad; SHEIBANI, Nader

    2016-01-01

    Calcium silicate-based cements have superior sealing ability, bioactivity, and marginal adaptation, which make them suitable for different dental treatment applications. However, they exhibit some drawbacks such as long setting time and poor handling characteristics. To overcome these limitations calcium silicates are engineered with various constituents to improve specific characteristics of the base material, and are the focus of this review. An electronic search of the PubMed, MEDLINE, and EMBASE via OVID databases using appropriate terms and keywords related to the use, application, and properties of calcium silicate-based cements was conducted. Two independent reviewers obtained and analyzed the full texts of the selected articles. Although the effects of various constituents and additives to the base Portland cement-like materials have been investigated, there is no one particular ingredient that stands out as being most important. Applying nanotechnology and new synthesis methods for powders most positively affected the cement properties. PMID:27773894

  15. Inorganic materials for bone repair or replacement applications.

    PubMed

    Hertz, Audrey; Bruce, Ian J

    2007-12-01

    In recent years, excipient systems have been used increasingly in biomedicine in reconstructive and replacement surgery, as bone cements, drug-delivery vehicles and contrast agents. Particularly, interest has been growing in the development and application of controlled pore inorganic ceramic materials for use in bone-replacement and bone-repair roles and, in this context, attention has been focused on calcium-phosphate, bioactive glasses and SiO2- and TiO2-based materials. It has been shown that inorganic materials that most closely mimic bone structure and surface chemistry most closely function best in bone replacement/repair and, in particular, if a substance possesses a macroporous structure (pores and interconnections >100 microm diameter), then cell infiltration, bone growth and vascularization can all be promoted. The surface roughness and micro/mesoporosity of a material have also been observed to significantly influence its ability to promote apatite nucleation and cell attachment significantly. Pores (where present) can also be packed with pharmaceuticals and biomolecules (e.g., bone morphogenetic proteins [BMPs], which can stimulate bone formation). Finally, the most bio-efficient - in terms of collagen formation and apatite nucleation - materials are those that are able to provide soluble mineralizing species (Si, Ca, PO(4)) at their implant sites and/or are doped or have been surface-activated with specific functional groups. This article presents the context and latest advances in the field of bone-repair materials, especially with respect to the development of bioactive glasses and micro/mesoporous and macroporous inorganic scaffolds. It deals with the possible methods of preparing porous pure/doped or functionalized silicas or their composites, the studies that have been undertaken to evaluate their abilities to act as bone repair scaffolds and also presents future directions for work in that context.

  16. Effect of Different Germination Conditions on Antioxidative Properties and Bioactive Compounds of Germinated Brown Rice

    PubMed Central

    Lin, You-Tung; Pao, Cheng-Cheng; Wu, Shwu-Tzy; Chang, Chi-Yue

    2015-01-01

    This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR) and germinated brown rice (GBR). We used two rice cultivars (Oryza sativa L.), Taiwan Japonica 9 (TJ-9) and Taichung Indica 10 (TCI-10), as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C), long soaking time (72 h), darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR). We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity) and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol). Higher temperature (36°C) is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives. PMID:25861637

  17. Update on Bioactive Prosthetic Material for the Treatment of Hernias.

    PubMed

    Edelman, David S; Hodde, Jason P

    2011-12-01

    The use of mesh in the repair of hernias is commonplace. Synthetic mesh, like polypropylene, has been the workhorse for hernia repairs since the 1980s. Surgisis® mesh (Cook Surgical, Bloomington, IN), a biologic hernia graft material composed of purified porcine small intestinal submucosa (SIS), was first introduced to the United States in 1998 as an alternative to synthetic mesh materials. This mesh, composed of extracellular matrix collagen, fibronectin and associated glycosaminoglycans and growth factors, has been extensively investigated in animal models and used clinically in many types of surgical procedures. SIS acts as a scaffold for natural growth and strength. We reported our initial results in this publication in July 2006. Since then, there have been many more reports and numerous other bioactive prosthetic materials (BPMs) released. The object of this article is to briefly review some of the current literature on the use of BPM for inguinal hernias, sports hernias, and umbilical hernias.

  18. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers

    PubMed Central

    Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT

    2007-01-01

    Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure. PMID:18203429

  19. Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments

    PubMed Central

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device. PMID:25893014

  20. Identification and quantification of flavonoids and chromes in Baeckea frutescens by using HPLC coupled with diode-array detection and quadruple time-of-flight mass spectrometry.

    PubMed

    Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang

    2015-01-01

    This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens.

  1. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines.

    PubMed

    Olender, Dorota; Żwawiak, Justyna; Zaprutko, Lucjusz

    2018-05-29

    The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.

  2. The influence of precursor addition order on the porosity of sol-gel bioactive glasses.

    PubMed

    Fernando, Delihta; Colon, Pierre; Cresswell, Mark; Journet, Catherine; Pradelle-Plasse, Nelly; Jackson, Phil; Grosgogeat, Brigitte; Attik, Nina

    2018-06-16

    The superior textural properties of sol-gel derived bioactive glasses compared to conventional melt quench glasses accounts for their accelerated bioactivity in vitro. Several studies have explored ways to improve the surface properties of sol-gel glasses in order to maximise their efficiency for bone and tooth regeneration. In this study, we investigated the effect of order of network modifying precursor addition on the textural properties of sol-gel derived bioactive glasses. The effect of precursor addition order on the glass characteristics was assessed by switching the order of network modifying precursor (calcium acetate monohydrate and sodium acetate anhydrous) addition for a fixed composition of bioactive glass (75SiO 2 :5CaO:10Na 2 O:10P 2 O 5 ). The results of this study showed that the order of precursor addition does influence the porosity of these glasses. For the glasses of a fixed composition and preparation conditions we achieved a doubling of surface area, a 1.5 times increase in pore volume and a 1.2 times decrease in pore size just by the mixing the network modifying precursors and adding them together in the sol-gel preparation. This simple and straightforward route adaptation to the preparation of bioactive glasses would allow us to enhance the textural properties of existing and novel composition of bioactive glasses and thus accelerate their bioactivity. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  3. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity.

    PubMed

    Yatongchai, Chokchai; Placek, Lana M; Curran, Declan J; Towler, Mark R; Wren, Anthony W

    2015-11-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability. © The Author(s) 2015.

  4. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of implant coated nanometer HA ceramics had increased biocompatibility and improved the osteointegration. It endows the implants with new vital activity.

  5. Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data.

    PubMed

    Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2016-01-01

    ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.

  6. Peptide-Based Materials for Cartilage Tissue Regeneration.

    PubMed

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  7. Component analysis and target cell-based neuroactivity screening of Panax ginseng by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

    PubMed

    Yuan, Jinbin; Chen, Yang; Liang, Jian; Wang, Chong-Zhi; Liu, Xiaofei; Yan, Zhihong; Tang, Yi; Li, Jiankang; Yuan, Chun-Su

    2016-12-01

    Ginseng is one of the most widely used natural medicines in the world. Recent studies have suggested Panax ginseng has a wide range of beneficial effects on aging, central nervous system disorders, and neurodegenerative diseases. However, knowledge about the specific bioactive components of ginseng is still limited. This work aimed to screen for the bioactive components in Panax ginseng that act against neurodegenerative diseases, using the target cell-based bioactivity screening method. Firstly, component analysis of Panax ginseng extracts was performed by UPLC-QTOF-MS, and a total of 54 compounds in white ginseng were characterized and identified according to the retention behaviors, accurate MW, MS characteristics, parent nucleus, aglycones, side chains, and literature data. Then target cell-based bioactivity screening method was developed to predict the candidate compounds in ginseng with SH-SY5Y cells. Four ginsenosides, Rg 2 , Rh 1 , Ro, and Rd, were observed to be active. The target cell-based bioactivity screening method coupled with UPLC-QTOF-MS technique has suitable sensitivity and it can be used as a screening tool for low content bioactive constituents in natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams

    PubMed Central

    Kovtun, Anna; Goeckelmann, Melanie J.; Niclas, Antje A.; Montufar, Edgar B.; Ginebra, Maria-Pau; Planell, Josep A.; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. PMID:25448348

  9. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams.

    PubMed

    Kovtun, Anna; Goeckelmann, Melanie J; Niclas, Antje A; Montufar, Edgar B; Ginebra, Maria-Pau; Planell, Josep A; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  10. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration

    PubMed Central

    Bailey, Brennan M.; Nail, Lindsay N.; Grunlan, Melissa A.

    2013-01-01

    In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior including regeneration. Thus, a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight “hybrid” hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer [methacrylated star polydimethylsiloxane, PDMSstar-MA] and organic macromer [poly(ethylene glycol)diacrylate, PEG-DA] as well both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four “zones” perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well-suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. PMID:23707502

  11. Bioglass 45S5 transformation and molding material in the processing of biodegradable poly-DL-lactide scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Abdollahi, Sara

    When bone is damaged, a scaffold can temporarily replace it in the site of injury and incite bone tissue to repair itself. A biodegradable scaffold resorbs into the body, generating non-toxic degradation products as new tissue reforms; a bioactive scaffold encourages the surrounding tissue to regenerate. In the present study, we make composite biodegradable and bioactive scaffolds using poly-DL-lactide (PDLLA), a biodegradable polymer, and incorporate Bioglass 45S5 (BG) to stimulate scaffold bioactivity. BG has an interesting trait when immersed in body fluid, a layer of hydroxycarbonate apatite, similar to the inorganic component of bone, forms on its surface. It is of utmost importance to understand the fate of BG throughout the scaffold’s processing in order to assess the scaffold’s bioactivity. In this study, the established different stages of BG reactivity have been verified by monitoring pH during BG dissolution experiments and by conducting an elemental analysis using inductively coupled plasma optical emission spectroscopy (ICP-OES). The composite scaffolds are synthesized by the solvent casting and particulate leaching technique and their morphology assessed by scanning electron microscopy (SEM). To understand the transformations occurred in BG during scaffold synthesis, BG as received, as well BG treated in acetone and water (the fluids involved in scaffold processing) are characterized by Fourier transform infrared (FTIR), and x-ray photoelectron spectroscopy (XPS). The results are then compared with BG extracted from scaffolds after processing. BG has been determined to start reacting during the scaffold processing. In addition, its reactivity is influenced by BG particle size. The study suggests that the presence of the polymer provides a reactive environment for BG due to pH effects. Teflon molds in scaffold fabrication are inert and biocompatibile, but their stiffness presents a challenge during de-molding. Silicone-based and polyurethane molds are attractive because they are flexible. However, there is a possibility that silicone leaches either from the material itself or the agents used to enhance their performance onto the scaffold. The second study in this thesis focuses on different types of such flexible substrates (Sil940, polyurethane, polyether, polydimethylsiloxane). The presence of Si in PDLLA films prepared on each material is inspected using XPS. Films made on all four materials are found to contain Si, indicative of the dissolution of part of the substrate in the film. However, silicon in the Si-containing catalysts used in the synthesis of polyethers is not transferred to samples, when the polyether substrate is plasma coated.

  12. Organic-Inorganic Composites Toward Biomaterial Application.

    PubMed

    Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara

    2015-01-01

    Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions. © 2015 S. Karger AG, Basel.

  13. β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.

    PubMed

    Correa, Daniel; Almirall, Amisel; García-Carrodeguas, Raúl; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Delgado, José Ángel

    2014-10-01

    β-dicalcium silicate (β-Ca₂ SiO₄, β-C₂ S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, β-C₂ S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of β-C₂ S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control. © 2013 Wiley Periodicals, Inc.

  14. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    PubMed

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  15. Ceramic modifications of porous titanium: effects on macrophage activation.

    PubMed

    Scislowska-Czarnecka, A; Menaszek, E; Szaraniec, B; Kolaczkowska, E

    2012-12-01

    Porous titanium is one of the most widely used implant materials because of its mechanical properties, however, it is also characterised by low bioactivity. To improve the above parameter we prepared three modifications of the porous (30 wt%) titanium (Ti) surface by covering it with bioactive hydroxyapatite (HA), bioglass (BG) and calcium silicate (CS). Subsequently we tested the impact of the modifications on macrophages directing the inflammatory response that might compromise the implant bioactivity. In the study we investigated the in vitro effects of the materials on murine cell line RAW 264.7 macrophage adherence, morphology and activation (production/release of metalloproteinase MMP-9 and pro- and anti-inflammatory cytokines). CS Ti decreased the macrophage adherence and up-regulated the release of several pro-inflammatory mediators, including TNF-α, IL-6, IL-12. Also HA Ti reduced the cell adherence but other parameters were generally not increased, except of TNF-α. In contrast, BG Ti improved macrophage adherence and either decreased production of multiple mediators (MMP-9, TNF-α, IFN-γ, MCP-1) or did not change it in comparison to the porous titanium. We can conclude that analyzing the effects on the inflammatory response initiated by macrophages in vitro, calcium silicate did not improve the biological properties of the porous titanium. The improved bioactivity of titanium was, however, achieved by the application of the hydroxyapatite and bioglass layers. The present in vitro results suggest that these materials, HA Ti and especially BG Ti, may be suitable for in vivo application and thus justify their further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Surface modification of food contact materials for processing and packaging applications

    NASA Astrophysics Data System (ADS)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further work was performed to test the stability of non-fouling material after extended exposure to an alkali detergent or acid sanitizer formulated for clean-in-place procedures in dairy processing facilities. Additionally, the anti-corrosive property of the surface coating was tested on carbon steel against chlorine ions, a common corrosive agent found in the food industry. Accelerated corrosion and long-term chemical exposure studies were conducted to measure the coating stability against the harsh corrosive agents.

  17. Bioactivation of particles

    DOEpatents

    Pinaud, Fabien [Berkeley, CA; King, David [San Francisco, CA; Weiss, Shimon [Los Angeles, CA

    2011-08-16

    Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

  18. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure

    EPA Science Inventory

    Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors ...

  19. Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures.

    PubMed

    Zuin, Vânia G; Budarin, Vitaliy L; De Bruyn, Mario; Shuttleworth, Peter S; Hunt, Andrew J; Pluciennik, Camille; Borisova, Aleksandra; Dodson, Jennifer; Parker, Helen L; Clark, James H

    2017-09-21

    The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.

  20. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    PubMed Central

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A.; Garcia-Viguera, Cristina

    2014-01-01

    The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health. PMID:25192288

  1. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.

    PubMed

    Leenakul, Wilaiwan; Tunkasiri, Tawee; Tongsiri, Natee; Pengpat, Kamonpan; Ruangsuriya, Jetsada

    2016-04-01

    45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Enhancing the Bioactivity of Yttria-Stabilized Tetragonal Zirconia Ceramics via Grain-Boundary Activation.

    PubMed

    Ke, Jinhuan; He, Fupo; Ye, Jiandong

    2017-05-17

    Yttria-stabilized tetragonal zirconia (Y-TZP) has been proposed as a potential dental implant because of its good biocompatibility, excellent mechanical properties, and distinctive aesthetic effect. However, Y-TZP cannot form chemical bonds with bone tissue because of its biological inertness, which affects the reliability and long-term efficacy of Y-TZP implants. In this study, to improve the bioactivity of Y-TZP ceramics while maintaining their good mechanical performance, Y-TZP was modified by grain-boundary activation via the infiltration of a bioactive glass (BG) sol into the surface layers of Y-TZP ceramics under different negative pressures (atmospheric pressure, -0.05 kPa, and -0.1 kPa), followed by gelling and sintering. The in vitro bioactivity, mechanical properties, and cell behavior of the Y-TZP with improved bioactivity were systematically investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), electron probe microanalysis (EPMA), and Raman spectroscopy. The results of the bioactivity test conducted by immersing Y-TZP in simulated body fluid (SBF) showed that a bonelike apatite layer was produced on the entire surface. The mechanical properties of the modified Y-TZP decreased as the negative pressure in the BG-infiltration process increased relative to those of the Y-TZP blank group. However, the samples infiltrated with the BG sol under -0.05 kPa and atmospheric pressure still retained good mechanical performance. The cell-culture results revealed that the bioactive surface modification of Y-TZP could promote cell adhesion and differentiation. The present work demonstrates that the bioactivity of Y-TZP can be enhanced by grain-boundary activation, and the bioactive Y-TZP is expected to be a potential candidate for use as a dental implant material.

  3. Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films

    NASA Astrophysics Data System (ADS)

    Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee

    2015-04-01

    Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07373h

  4. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    NASA Astrophysics Data System (ADS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  5. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

    PubMed

    Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm

    2016-06-01

    Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bio-based materials with novel characteristics for tissue engineering applications - A review.

    PubMed

    Bedian, Luis; Villalba-Rodríguez, Angel M; Hernández-Vargas, Gustavo; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2017-05-01

    Recently, a wider spectrum of bio-based materials and materials-based novel constructs and systems has been engineered with high interests. The key objective is to help for an enhanced/better quality of life in a secure way by avoiding/limiting various adverse effects of some in practice traditional therapies. In this context, different methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, bio-based therapeutic constructs are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable materials-based novel constructs for multipurpose applications is essential and a core demand to tackle many human health related diseases. Bio-based materials possess several complementary functionalities, e.g. unique chemical structure, bioactivity, non-toxicity, biocompatibility, biodegradability, recyclability, etc. that position them well in the modern world's materials sector. In this context, the utilization of biomaterials provides extensive opportunities for experimentation in the field of interdisciplinary and multidisciplinary scientific research. With an aim to address the global dependence on petroleum-based polymers, researchers have been redirecting their interests to the engineering of biological materials for targeted applications in different industries including cosmetics, pharmaceuticals, and other biotechnological or biomedical applications. Herein, we reviewed biotechnological advancements at large and tissue engineering from a biomaterials perspective in particular and envision directions of future developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hydrolysis and Sulfation Pattern Effects on Release of Bioactive Bone Morphogenetic Protein-2 from Heparin-Based Microparticles.

    PubMed

    Tellier, Liane E; Miller, Tobias; McDevitt, Todd C; Temenoff, Johnna S

    2015-10-28

    Glycosaminoglycans (GAGs) such as heparin are promising materials for growth factor delivery due to their ability to efficiently bind positively charged growth factors including bone morphogenetic protein-2 (BMP-2) through their negatively charged sulfate groups. Therefore, the goal of this study was to examine BMP-2 release from heparin-based microparticles (MPs) after first, incorporating a hydrolytically degradable crosslinker and varying heparin content within MPs to alter MP degradation and second, altering the sulfation pattern of heparin within MPs to vary BMP-2 binding and release. Using varied MP formulations, it was found that the time course of MP degradation for 1 wt% heparin MPs was ~4 days slower than 10 wt% heparin MPs, indicating that MP degradation was dependent on heparin content. After incubating 100 ng BMP-2 with 0.1 mg MPs, most MP formulations loaded BMP-2 with ~50% efficiency and significantly more BMP-2 release (60% of loaded BMP-2) was observed from more sulfated heparin MPs (MPs with ~100% and 80% of native sulfation). Similarly, BMP-2 bioactivity in more sulfated heparin MP groups was at least four-fold higher than soluble BMP-2 and less sulfated heparin MP groups, as determined by an established C2C12 cell alkaline phosphatase (ALP) assay. Ultimately, the two most sulfated 10 wt% heparin MP formulations were able to efficiently load and release BMP-2 while enhancing BMP-2 bioactivity, making them promising candidates for future growth factor delivery applications.

  8. Functionally graded bioactive coatings: From fabrication to testing

    NASA Astrophysics Data System (ADS)

    Foppiano, Silvia

    Every year about half a million Americans undergo total joint replacement surgery of some kind. This number is expected to steadily increase in the future. About 20% of these patients will need a revision surgery because of implant failure, with a significant increase in health care cost. Current implant materials for load bearing applications must be strong enough to support the loads involved in daily activities, and bioinert, to limit reactivity in the body that may cause inflammatory and other adverse reactions. Metal alloys are typically used as materials for load bearing implants and rely on mechanical interlocking to achieve fixation which can be improved by using bone cements. To improve implant osteointegration, metal implants have been coated with a bone-like mineral: hydroxyapatite (HA). The plasma spray technique is commonly used to apply the HA coating. Such implants do not require the use of bone cement. Plasma sprayed HA coated implants are FDA approved and currently on the market, but their properties are not reproducible or reliable. Thus, coating delamination can occur. Our research group developed a novel family of bioactive glasses which were enameled onto titanium alloy using a functionally graded approach. We stratified the coating with different glass compositions to fulfill different functions. We coupled a first glass layer, with a good CTE match to the alloy, with a second layer of bioactive glass obtaining a functionally graded bioactive coating (FGC). In this thesis for the first time the cytocompatibility of novel bioactive glasses, and their functionally graded coatings on Ti6Al4V, was studied with an in vitro bone model (MC3T3-E1.4 mouse preosteblast cells). The novel bioactive glasses are cytocompatible and no compositional change is required. The fabrication process is reproducible, introduces a small (average 6 vol%) amount of crystallization, which does not significantly affect bioactivity in SBF as tested. The coatings are cytocompatible, but should be preconditioned in SBF prior to their use. Preconditioning stabilizes the coatings, eliminates possible contaminants introduced during processing and handling, and yields dissolution products capable of inducing specific gene expression (e.g. Runx-2). Future research will involve identification of such dissolution products as well as in vivo testing.

  9. Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems.

    PubMed

    Aboalnaja, Khaled Omer; Yaghmoor, Soonham; Kumosani, Taha Abdullah; McClements, David Julian

    2016-09-01

    The efficacy of many hydrophobic bioactives (pharmaceuticals, supplements, and nutraceuticals) is limited due to their relatively low or highly variable bioavailability. Nanoemulsions consisting of small lipid droplets (r < 100 nm) dispersed in water can be designed to improve bioavailability. The major factors limiting the oral bioavailability of hydrophobic bioactive agents are highlighted: bioaccessibility, absorption and transformation. Two nanoemulsion-based approaches to control these processes and improve bioavailability are discussed: nanoemulsion delivery systems (NDS) and nanoemulsion excipient systems (NES). In NDS, hydrophobic bioactives are dissolved within the lipid phase of oil-in-water nanoemulsions. In NES, the bioactives are present within a conventional drug, supplement, or food, which is consumed with an oil-in-water nanoemulsion. Examples of NDS and NES utilization to improve bioactive bioavailability are given. Considerable progress has been made in nanoemulsion design, fabrication, and testing. This knowledge facilitates the design of new formulations to improve the bioavailability of pharmaceuticals, supplements, and nutraceuticals. NDS and NES must be carefully designed based on the major factors limiting the bioavailability of specific bioactives. Research is still required to ensure these systems are commercially viable, and to demonstrate their safety and efficacy using animal and human feeding studies.

  10. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.

    PubMed

    Leach, J Kent; Kaigler, Darnell; Wang, Zhuo; Krebsbach, Paul H; Mooney, David J

    2006-06-01

    Bioactive glasses are potentially useful as bone defect fillers, and vascular endothelial growth factor (VEGF) has demonstrated benefit in bone regeneration as well. We hypothesized that the specific combination of prolonged localized VEGF presentation from a matrix coated with a bioactive glass may enhance bone regeneration. To test this hypothesis, the capacity of VEGF-releasing polymeric scaffolds with a bioactive glass coating was examined in vitro and in vivo using a rat critical-sized defect model. In the presence of a bioactive glass coating, we did not detect pronounced differences in the differentiation of human mesenchymal stem cells in vitro. However, we observed significantly enhanced mitogenic stimulation of endothelial cells in the presence of the bioactive glass coating, with an additive effect with VEGF release. This trend was maintained in vivo, where coated VEGF-releasing scaffolds demonstrated significant improvements in blood vessel density at 2 weeks versus coated control scaffolds. At 12 weeks, bone mineral density was significantly increased in coated VEGF-releasing scaffolds versus coated controls, while only a slight increase in bone volume fraction was observed. The results of this study suggest that a bioactive glass coating on a polymeric substrate participates in bone healing through indirect processes which enhance angiogenesis and bone maturation and not directly on osteoprogenitor differentiation and bone formation. The mass of bioactive glass used in this study provides a comparable and potentially additive, response to localized VEGF delivery over early time points. These studies demonstrate a materials approach to achieve an angiogenic response formerly limited to the delivery of inductive growth factors.

  11. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering.

    PubMed

    Torres-Rendon, Jose Guillermo; Femmer, Tim; De Laporte, Laura; Tigges, Thomas; Rahimi, Khosrow; Gremse, Felix; Zafarnia, Sara; Lederle, Wiltrud; Ifuku, Shinsuke; Wessling, Matthias; Hardy, John G; Walther, Andreas

    2015-05-20

    A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geo-metries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Luminescent nanodiamonds for biomedical applications.

    PubMed

    Say, Jana M; van Vreden, Caryn; Reilly, David J; Brown, Louise J; Rabeau, James R; King, Nicholas J C

    2011-12-01

    In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.

  13. Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study.

    PubMed

    Heikkilä, Jouni T; Kukkonen, Juha; Aho, Allan J; Moisander, Susanna; Kyyrönen, Timo; Mattila, Kimmo

    2011-04-01

    Purpose of this study was to compare bioactive glass and autogenous bone as a bone substitute material in tibial plateau fractures. We designed a prospective, randomized study consisting of 25 consecutive operatively treated patients with depressed unilateral tibial comminuted plateau fracture (AO classification 41 B2 and B3).14 patients (7 females, 7 males, mean age 57 years, range 25-82) were randomized in the bioglass group (BG) and 11 patients (6 females, 5 males, mean age 50 years, range 31-82) served as autogenous bone control group (AB). Clinical examination of the patients was performed at 3 and 12 months, patients' subjective and functional results were evaluated at 12 months. Radiological analysis was performed preoperatively, immediately postoperatively and at 3 and 12 months. The postoperative redepression for both studied groups was 1 mm until 3 months and remained unchanged at 12 months. No differences were identified in the subjective evaluation, functional tests and clinical examination between the two groups during 1 year follow-up. We conclude that bioactive glass granules can be clinically used as filler material instead of autogenous bone in the lateral tibial plateau compression fractures.

  14. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-01

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c5nr01580d

  15. Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing.

    PubMed

    Douglas, Timothy E L; Dziadek, Michal; Gorodzha, Svetlana; Lišková, Jana; Brackman, Gilles; Vanhoorne, Valérie; Vervaet, Chris; Balcaen, Lieve; Del Rosario Florez Garcia, Maria; Boccaccini, Aldo R; Weinhardt, Venera; Baumbach, Tilo; Vanhaecke, Frank; Coenye, Tom; Bačáková, Lucie; Surmeneva, Maria A; Surmenev, Roman A; Cholewa-Kowalska, Katarzyna; Skirtach, Andre G

    2018-06-01

    Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self-gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X-ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt-derived 45S5 preparation served as a standard and was compared with a calcium-rich, sol-gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast-like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium-deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self-gelling composites. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Bioactive composites with designed interfaces

    NASA Astrophysics Data System (ADS)

    Orefice, Rodrigo Lambert

    Bioactive glasses can bond to bone and even soft tissue. However, they are usually weak, brittle and hard to process in specific shapes. The goal of this work is to produce polymer composites having bioactive materials as a reinforcing phase that would display both bioactive behavior and mechanical properties compatible to bone. Polysulfone and bioactive glass particulate were combined in composites with different volume fractions. Composites with 40 vol.% of particulate were submitted to in vitro tests in simulated body fluids. The recorded rates of hydroxy-carbonate-apatite layer deposition were close to the ones observed for pure bioactive glasses. Mechanical properties showed values of elastic modulus, strain at failure and strength within the range of cortical bone for composites with high volume fraction of particles. Fibers can usually favor higher levels of reinforcement in composites than particles. Novel multicomponent fibers were prepared by using the sol-gel method. They were determined to be bioactive in vitro and were successfully used as a reinforcing phase in polysulfone composites. Properties of the bioactive composites were modified by altering the chemistry and structure of the interfaces. Polymers with sulfonic acid and silane groups were specially designed to interact with both the silica surface and the polymer matrix. Nano-composites with a structure and chemistry in between the macrocomponents of the composite were prepared by combining a silanated polymer and silica sol-gel. When applied as interfacial agents, these nano-composites as well as the modified polymers improved the overall properties of the bioactive system. A decay in mechanical properties was observed for composites submitted to an in vitro test. The developed interfacial agents successfully reduced the degree of degradation in properties. Interactions occurring at the interfaces of bioactive composites were studied using Atomic Force Microscopy (AFM). The effect of the structure and chemistry of interfaces was correlated to physical and chemical processes occurring at the interfaces and to the overall properties of composites.

  17. Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds

    PubMed Central

    Parmar, Paresh A.; St-Pierre, Jean-Philippe; Chow, Lesley W.; Puetzer, Jennifer L.; Stoichevska, Violet; Peng, Yong Y.; Werkmeister, Jerome A.; Ramshaw, John A. M.; Stevens, Molly M.

    2017-01-01

    Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as “blank slate” collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications. PMID:27219220

  18. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering.

    PubMed

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Kumbar, Sangamesh G; Brown, Justin L; Krogman, Nicholas R; Weikel, Arlin L; Allcock, Harry R; Laurencin, Cato T

    2010-01-01

    The long-term goal of this work is to develop biomimetic polymer-based systems for bone regeneration that both allow for neutral pH degradation products and have the ability to nucleate bonelike apatite. In this study, the etheric biodegradable polyphosphazene, poly[(50%ethyl glycinato)(50%methoxyethoxyethoxy)phosphazene] (PNEG(50)MEEP(50)) was blended with poly(lactide-co-glycolide) PLAGA and studied their ability to produce high-strength degradable biomaterials with bioactivity. Accordingly, two blends with weight ratios of PNEG(50)MEEP(50) to PLAGA 25:75 (BLEND25) and 50:50 (BLEND50) were fabricated using a mutual solvent approach. Increases in PNEG(50)MEEP(50) content in the blend system resulted in decreased elastic modulus of 779 MPa when compared with 1684 MPa (PLAGA) as well as tensile strength 7.9 MPa when compared with 25.7 MPa (PLAGA). However, the higher PNEG(50)MEEP(50) content in the blend system resulted in higher Ca/P atomic ratio of the apatite layer 1.35 (BLEND50) when compared with 0.69 (BLEND25) indicating improved biomimicry. Furthermore, these blends supported primary rat osteoblast adhesion and proliferation with an enhanced phenotypic expression when compared with PLAGA. These findings establish the suitability of PNEG(50)MEEP(50)-PLAGA biodegradable blends as promising bioactive materials for orthopedic applications.

  19. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  20. Vortex-ultrasound-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the analysis of volatile bioactive components and comparative pharmacokinetic study of the herb-herb interactions in Guanxin Shutong Capsule.

    PubMed

    Mu, Jingqing; Gao, Xun; Li, Qing; Yang, Xiaomei; Yang, Wenling; Sun, Xu; Bi, Kaishun; Zhang, Huifen

    2017-08-01

    Guanxin Shutong Capsule, an effective traditional Chinese medicine, is widely used for coronary heart disease clinically. Volatile components are one of its important bioactive constituents. To better understand the material basis for the therapeutic effects, the components of Guanxin Shutong Capsule absorbed into the blood and their metabolites were identified based on gas chromatography with mass spectrometry coupled with vortex-ultrasound-assisted dispersive liquid-liquid microextraction. As a result, three prototypes and 15 metabolites were identified or tentatively characterized in rat plasma. Subsequently, a pharmacokinetic study was carried out to monitor the concentrations of the main bioactive constituents and metabolites (isoborneol, borneol, eugenol, and camphor) by gas chromatography with mass spectrometry in rat plasma following oral administration of single herb extract and different combinations of herbs in this prescription. Compared to other groups, a statistically significant difference of the pharmacokinetic properties was obtained when the total complex prescription was administered, indicating possible drug-drug interactions among the complex ingredients of Guanxin Shutong Capsule. These findings provided an experimental basis concerning the clinical application and medicinal efficacy of Guanxin Shutong Capsule in the treatment of coronary heart disease. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries.

    PubMed

    Suleria, Hafiz Ansar Rasul; Osborne, Simone; Masci, Paul; Gobe, Glenda

    2015-10-14

    Recent trends in functional foods and supplements have demonstrated that bioactive molecules play a major therapeutic role in human disease. Nutritionists and biomedical and food scientists are working together to discover new bioactive molecules that have increased potency and therapeutic benefits. Marine life constitutes almost 80% of the world biota with thousands of bioactive compounds and secondary metabolites derived from marine invertebrates such as tunicates, sponges, molluscs, bryozoans, sea slugs and many other marine organisms. These bioactive molecules and secondary metabolites possess antibiotic, antiparasitic, antiviral, anti-inflammatory, antifibrotic and anticancer activities. They are also inhibitors or activators of critical enzymes and transcription factors, competitors of transporters and sequestrants that modulate various physiological pathways. The current review summaries the widely available marine-based nutraceuticals and recent research carried out for the purposes of isolation, identification and characterization of marine-derived bioactive compounds with various therapeutic potentials.

  2. Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries

    PubMed Central

    Suleria, Hafiz Ansar Rasul; Osborne, Simone; Masci, Paul; Gobe, Glenda

    2015-01-01

    Recent trends in functional foods and supplements have demonstrated that bioactive molecules play a major therapeutic role in human disease. Nutritionists and biomedical and food scientists are working together to discover new bioactive molecules that have increased potency and therapeutic benefits. Marine life constitutes almost 80% of the world biota with thousands of bioactive compounds and secondary metabolites derived from marine invertebrates such as tunicates, sponges, molluscs, bryozoans, sea slugs and many other marine organisms. These bioactive molecules and secondary metabolites possess antibiotic, antiparasitic, antiviral, anti-inflammatory, antifibrotic and anticancer activities. They are also inhibitors or activators of critical enzymes and transcription factors, competitors of transporters and sequestrants that modulate various physiological pathways. The current review summaries the widely available marine-based nutraceuticals and recent research carried out for the purposes of isolation, identification and characterization of marine-derived bioactive compounds with various therapeutic potentials. PMID:26473889

  3. Effect of Tricalcium Aluminate on the Physicochemical Properties, Bioactivity, and Biocompatibility of Partially Stabilized Cements

    PubMed Central

    Chang, Kai-Chun; Chang, Chia-Chieh; Huang, Ying-Chieh; Chen, Min-Hua; Lin, Feng-Huei; Lin, Chun-Pin

    2014-01-01

    Background/Purpose Mineral Trioxide Aggregate (MTA) was widely used as a root-end filling material and for vital pulp therapy. A significant disadvantage to MTA is the prolonged setting time has limited the application in endodontic treatments. This study examined the physicochemical properties and biological performance of novel partially stabilized cements (PSCs) prepared to address some of the drawbacks of MTA, without causing any change in biological properties. PSC has a great potential as the vital pulp therapy material in dentistry. Methods This study examined three experimental groups consisting of samples that were fabricated using sol-gel processes in C3S/C3A molar ratios of 9/1, 7/3, and 5/5 (denoted as PSC-91, PSC-73, and PSC-55, respectively). The comparison group consisted of MTA samples. The setting times, pH variation, compressive strength, morphology, and phase composition of hydration products and ex vivo bioactivity were evaluated. Moreover, biocompatibility was assessed by using lactate dehydrogenase to determine the cytotoxicity and a cell proliferation (WST-1) assay kit to determine cell viability. Mineralization was evaluated using Alizarin Red S staining. Results Crystalline phases, which were determined using X-ray diffraction analysis, confirmed that the C3A contents of the material powder differed. The initial setting times of PSC-73 and PSC-55 ranged between 15 and 25 min; these values are significantly (p<0.05, ANOVA and post-hoc test) lower than those obtained for MTA (165 min) and PSC-91 (80.5 min). All of the PSCs exhibited ex vivo bioactivity when immersed in simulated body fluid. The biocompatibility results for all of the tested cements were as favorable as those of the negative control, except for PSC-55, which exhibited mild cytotoxicity. Conclusion PSC-91 is a favorable material for vital pulp therapy because it exhibits optimal compressive strength, a short setting time, and high biocompatibility and bioactivity. PMID:25247808

  4. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites.

    PubMed

    Liu, Aixue; Hong, Zhongkui; Zhuang, Xiuli; Chen, Xuesi; Cui, Yang; Liu, Yi; Jing, Xiabin

    2008-07-01

    Novel bioactive glass (BG) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca=29:13:58 weight ratio) of about 40nm diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M(n)=9700Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility. When the filler loading reached around 4 wt.%, the tensile strength of the composite increased from 56.7 to 69.2MPa for the pure PLLA, and the impact strength energy increased from 15.8 to 18.0 kJ m(-2). The morphology of the tensile fracture surface of the composite showed surface-grafted bioactive glass particles (g-BG) to be dispersed homogeneously in the PLLA matrix. An in vitro bioactivity test showed that, compared to pure PLLA scaffold, the BG/PLLA nanocomposite demonstrated a greater capability to induce the formation of an apatite layer on the scaffold surface. The results of marrow stromal cell culture revealed that the composites containing either BG or g-BG particles have much better biocompatibility compared to pure PLLA material.

  5. Improving bioactivity of inert bioceramics by a novel Mg-incorporated solution treatment

    NASA Astrophysics Data System (ADS)

    Dehestani, Mahdi; Zemlyanov, Dmitry; Adolfsson, Erik; Stanciu, Lia A.

    2017-12-01

    Zirconia/alumina ceramics possess outstanding mechanical properties for dental and orthopedic applications, but due to their poor surface bioactivities they exhibit a weak bone-bonding ability. This work proposes an effective 30-min solution treatment which could successfully induce formation of bone-like apatite on the surface of 3Y-TZP and a ternary composite composed of yttria-stabilized zirconia, ceria-stabilized zirconia, and alumina (35 vol% 3Y-TZP + 35 vol% 12Ce-TZP + 30 vol% Al2O3) after 3 weeks immersion in simulated body fluid (SBF). XRD was used for phase identification in the ceramic materials. The influence of solution treatment on the surface chemistry and its role on apatite formation were investigated via SEM, EDS and XPS. In vitro apatite-forming ability for the solution-treated and untreated samples of the composite and individual substrates of 3Y-TZP, 12Ce-TZP, and Al2O3 was evaluated by immersion in SBF. Apatite crystals were formed only on 3Y-TZP and composite substrates, implying that it is mainly the 3Y-TZP constituent that contributes to the bioactivity of the composite. Further, it was found from the XPS analysis that the zirconia material with higher phase stability (12Ce-TZP) produced less Zrsbnd OH functional groups on its surface after solution treatment which accounts for its weaker bioactivity compared to 3Y-TZP.

  6. Early osteoblast responses to orthopedic implants: Synergy of surface roughness and chemistry of bioactive ceramic coating.

    PubMed

    Aniket; Reid, Robert; Hall, Benika; Marriott, Ian; El-Ghannam, Ahmed

    2015-06-01

    Pro-osteogenic stimulation of bone cells by bioactive ceramic-coated orthopedic implants is influenced by both surface roughness and material chemistry; however, their concomitant impact on osteoblast behavior is not well understood. The aim of this study is to investigate the effects of nano-scale roughness and chemistry of bioactive silica-calcium phosphate nanocomposite (SCPC50) coated Ti-6Al-4V on modulating early bone cell responses. Cell attachment was higher on SCPC50-coated substrates compared to the uncoated controls; however, cells on the uncoated substrate exhibited greater spreading and superior quality of F-actin filaments than cells on the SCPC50-coated substrates. The poor F-actin filament organization on SCPC50-coated substrates is thought to be due to the enhanced calcium uptake by the ceramic surface. Dissolution analyses showed that an increase in surface roughness was accompanied by increased calcium uptake, and increased phosphorous and silicon release, all of which appear to interfere with F-actin assembly and osteoblast morphology. Moreover, cell attachment onto the SCPC50-coated substrates correlated with the known adsorption of fibronectin, and was independent of surface roughness. High-throughput genome sequencing showed enhanced expression of extracellular matrix and cell differentiation related genes. These results demonstrate a synergistic relationship between bioactive ceramic coating roughness and material chemistry resulting in a phenotype that leads to early osteoblast differentiation. © 2014 Wiley Periodicals, Inc.

  7. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides.

    PubMed

    Koss, K M; Unsworth, L D

    2016-10-15

    Rescuing or repairing neural tissues is of utmost importance to the patient's quality of life after an injury. To remedy this, many novel biomaterials are being developed that are, ideally, non-invasive and directly facilitate neural wound healing. As such, this review surveys the recent approaches and applications of self-assembling peptides and peptide amphiphiles, for building multi-faceted nanoscaffolds for direct application to neural injury. Specifically, methods enabling cellular interactions with the nanoscaffold and controlling the release of bioactive molecules from the nanoscaffold for the express purpose of directing endogenous cells in damaged or diseased neural tissues is presented. An extensive overview of recently derived self-assembling peptide-based materials and their use as neural nanoscaffolds is presented. In addition, an overview of potential bioactive peptides and ligands that could be used to direct behaviour of endogenous cells are categorized with their biological effects. Finally, a number of neurotrophic and anti-inflammatory drugs are described and discussed. Smaller therapeutic molecules are emphasized, as they are thought to be able to have less potential effect on the overall peptide self-assembly mechanism. Options for potential nanoscaffolds and drug delivery systems are suggested. Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. The combination of the existing knowledge on bioactive motifs for neural engineering and the self-assembling propensity of peptides is discussed in specific reference to neural tissue engineering. Copyright © 2016. Published by Elsevier Ltd.

  8. Surface Modification of Porous Titanium Granules for Improving Bioactivity.

    PubMed

    Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab

    The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.

  9. Porous starch-based drug delivery systems processed by a microwave route.

    PubMed

    Malafaya, P B; Elvira, C; Gallardo, A; San Román, J; Reis, R L

    2001-01-01

    Abstract-A new simple processing route to produce starch-based porous materials was developed based on a microwave baking methodology. This innovative processing route was used to obtain non-loaded controls and loaded drug delivery carriers, incorporating a non-steroid anti-inflammatory agent. This bioactive agent was selected as model drug with expectations that the developed methodology might be used for other drugs and growth factors. The prepared systems were characterized by 1H and 13C NMR spectroscopy which allow the study of the interactions between the starch-based materials and the processing components, i.e, the blowing agents. The porosity of the prepared materials was estimated by measuring their apparent density and studied by comparing drug-loaded and non-loaded carriers. The behaviour of the porous structures, while immersed in aqueous media, was studied in terms of swelling and degradation, being intimately related to their porosity. Finally, in vitro drug release studies were performed showing a clear burst effect, followed by a slow controlled release of the drug over several days (up to 10 days).

  10. The Influence of Peptide Modifications of Bioactive Glass on Human Mesenchymal Stem Cell Growth and Function

    NASA Astrophysics Data System (ADS)

    Ammar, Mohamed

    2011-12-01

    Bioactive glass is known for its potential as a bone scaffold due to its ability to stimulate osteogenesis and induce bone formation. Broadening this potential to include the differentiation of human mesenchymal stem cells (hMSCs) to bone cells will enhance the healing process in bone defects. The surface of bioactive glass made by the sol-gel technique with the composition of 70% SiO2-30% CaO (mol %) was grafted with 3 peptides sequences in different combinations from proteins (fibronectin BMP-2 and BMP-9) that are known to promote the adhesion, differentiation and osteogenesis process. The experiment was done in two forms, a 2D non-porous thin film and a 3D nano-macroporous structure. hMSCs were grown on the materials for a total of five weeks. The 2D materials were tested for the expression of 3 osteogenic markers (osteopontin, osteocalcin and osteonectin) through immunocytochemistry. The 3D forms were monitored for cell's adhesion, morphology, spreading and proliferation by scanning electron microscopy, in addition to proliferation assay and alkaline phosphatase activity measurement. Results showed that hMSCs poorly adhered to the 2D thin films, but the few cells survived showed enhanced expression of the osteogenic markers. On the 3D form, cells showed enhanced proliferation at week one and more survival of the cells on the materials grafted with the adhesion peptide for the successive weeks in comparison to the positive control samples. Enhanced alkaline phosphatase activity was also detected compared to the negative control samples but were still below the positive control samples. In conclusion, the peptide grafting could increase the effect of bioactive glass but more peptide combinations should be examined to improve the effects on the differentiation and osteogenic activity of the hMSCs.

  11. The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite.

    PubMed

    Borkowski, Leszek; Sroka-Bartnicka, Anna; Drączkowski, Piotr; Ptak, Agnieszka; Zięba, Emil; Ślósarczyk, Anna; Ginalska, Grażyna

    2016-05-01

    Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Biomimetic surface coatings from modular amphiphilic proteins

    NASA Astrophysics Data System (ADS)

    Harden, James; Wan, Fan; Fischer, Stephen; Dick, Scott

    2010-03-01

    Recombinant DNA methods have been used to develop a library of diblock protein polymers for creating designer biofunctional interfaces. These proteins are composed of a surface-active, amphiphilic block joined to a disordered, water soluble block with an end terminal bioactive domain. The amphiphilic block has a strong affinity for many synthetic polymer surfaces, providing a facile means of imparting biological functionality to otherwise bio-neutral materials through physical self-assembly. We have incorporated a series of bioactive end domains into this diblock motif, including sequences that encode specific cell binding and signaling functions of extracellular matrix constituents (e.g. RGD and YIGSR). In this talk, we show that these diblock constructs self-assemble into biofunctional surface coatings on several model synthetic polymer materials. We demonstrate that surface adsorption of the proteins has minimal impacts on the presentation of the bioactive domains in the soluble block, and through the use of microscopic and cell proliferation assays, we show that the resulting biofunctional interfaces are capable of inducing appropriate cellular responses in a variety of human cell types.

  13. Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds

    USDA-ARS?s Scientific Manuscript database

    Oxidation of encapsulated bioactive compounds is a key challenge that limits shelf-life of bioactive containing products. The objectives of this study were to compare differences between the oxidative barrier properties of biopolymer particle based encapsulation system (zein colloidal particles) and...

  14. Comparison of diverse nanomaterial bioactivity profiles based on high-throughput screening (HTS) in ToxCast™ (FutureToxII)

    EPA Science Inventory

    Most nanomaterials (NMs) in commerce lack hazard data. Efficient NM testing requires suitable toxicity tests for prioritization of NMs to be tested. The EPA’s ToxCast program is screening NM bioactivities and ranking NMs by their bioactivities to inform targeted testing planning....

  15. Design properties of hydrogel tissue-engineering scaffolds

    PubMed Central

    Zhu, Junmin; Marchant, Roger E

    2011-01-01

    This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626

  16. Inducing bioactivity of dental ceramic/bioactive glass composites by Nd:YAG laser.

    PubMed

    Beketova, Anastasia; Poulakis, Nikolaos; Bakopoulou, Athina; Zorba, Triantafillia; Papadopoulou, Lambrini; Christofilos, Dimitrios; Kantiranis, Nikolaos; Zachariadis, George A; Kontonasaki, Eleana; Kourouklis, Gerasimos A; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2016-11-01

    Aims of this study were to investigate the optimal conditions of laser irradiation of a novel Bioactive Glass/Dental Ceramic-BP67 composite for acceleration of hydroxyapatite-HA formation and to assess cellular responses on the precipitated HA region. BP67 (Bioactive Glass: 33.3%, Dental Ceramic: 66.7%) was fabricated by the sol-gel method. A laser assisted biomimetic-LAB process was applied to BP67 sintered specimens immersed in 1.5-times concentrated simulated body fluid-1.5×-SBF. The effect of various energy densities of pulsed nanosecond Nd-YAG (1064nm) laser and irradiation exposure times (30min, 1 and 3h) were evaluated for HA precipitation. The HA film was characterized by FTIR, XRD, SEM and micro Raman techniques. ICP-AES was used for revealing changes in chemical composition of the 1.5×-SBF during irradiation. Cell viability and morphological characteristics of periodontal ligament fibroblasts-PDLFs, human gingival fibroblasts-HGFs and SAOS-2 osteoblasts on the HA surface were evaluated by MTT assays and SEM. At optimal energy fluence of 1.52J/cm 2 and irradiation time for 3h followed by immersion in 1.5×-SBF at 60°C, a dense HA layer was formed on laser-irradiated BP67 within 7 days. The resulting HA film was tightly bonded to the underlying substrate and had mineral composition similar to cementum. MTT assay showed a consistent reduction of cell proliferation on the HA layer in comparison to conventional control ceramic and BP67 for all 3 cell lines studied. These findings suggest LAB is an effective method for acceleration of HA formation on materials with low bioactivity, while cellular responses need further investigation. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Development of implants composed of bioactive materials for bone repair

    NASA Astrophysics Data System (ADS)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  18. Release characteristics and bioactivity of gelatin-tricalcium phosphate membranes covalently immobilized with nerve growth factors.

    PubMed

    Chen, Pei-Ru; Chen, Ming-Hong; Lin, Feng-Huei; Su, Wen-Yu

    2005-11-01

    The gelatin-tricalcium phosphate membranes were cross-linking with low concentration glutaraldehyde solution (GTG). This material has good mechanical property, biocompatibility, and is feasible for surgical manipulation. For axonal regeneration, nerve growth factors (NGF) were immobilized onto the composite (GTG) with carbodiimide. The purpose of this study was to evaluate the release characteristics and bioactivity of NGF after covalent immobilization onto the GTG membranes (GEN). NGF immobilized onto and released from the composite was quantified using ELISA method. PC 12 cells were cultured on the GTG and GEN composites. Cell survival, cytotoxicity, and cellular activity were evaluated by total protein content, LDH activity, and MTT assay respectively. Neurite outgrowth assay was used to evaluate the biological activity of NGF released from GEN composite. From ELISA measurement, the releasing curve for NGF showing two distinctive parts with different slopes indicated that NGF were released from the composite in diffusion-controlled mechanism and degradation-controlled mechanism respectively. While culturing with PC 12 cells, LDH leakage results implied that whether GTG composite cross-linked with NGF or not showed little cytotoxicity. The total protein content and cellular activity of PC 12 cells were lower on GTG and GEN membranes than control group. However, 56%+/-3.98 of PC 12 cells showed significant neurite outgrowth on GEN membranes which was statistically higher than GTG without NGF immobilization. In addition, sustained release of bioactive NGF for two months had been demonstrated by neurite outgrowth assay. From these experiments, it can be concluded that the technique used in the present study is capable of immobilizing NGF onto GTG membranes covalently and remaining the bioactivity of NGF. Therefore, GEN composite can be materials for sustained release of bioactive NGF and a candidate for future therapeutic application in nerve repair.

  19. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.

    PubMed

    McClements, David Julian

    2012-06-15

    Many bioactive components intended for oral ingestion (pharmaceuticals and nutraceuticals) are hydrophobic molecules with low water-solubilities and high melting points, which poses considerable challenges to the formulation of oral delivery systems. Oil-in-water emulsions are often suitable vehicles for the encapsulation and delivery of this type of bioactive component. The bioactive component is usually dissolved in a carrier lipid phase by either dilution and/or heating prior to homogenization, and then the carrier lipid and water phases are homogenized to form an emulsion consisting of small oil droplets dispersed in water. The successful development of this kind of emulsion-based delivery system depends on a good understanding of the influence of crystals on the formation, stability, and properties of emulsions. This review article addresses the physicochemical phenomena associated with the encapsulation, retention, crystallization, release, and absorption of hydrophobic bioactive components within emulsions. This knowledge will be useful for the rational formulation of effective emulsion-based delivery systems for oral delivery of crystalline hydrophobic bioactive components in the food, health care, and pharmaceutical industries. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Biological response on a titanium implant-grade surface functionalized with modular peptides☆

    PubMed Central

    Yazici, H.; Fong, H.; Wilson, B.; Oren, E.E.; Amos, F.A.; Zhang, H.; Evans, J.S.; Snead, M.L.; Sarikaya, M.; Tamerler, C.

    2015-01-01

    Titanium (Ti) and its alloys are among the most successful implantable materials for dental and orthopedic applications. The combination of excellent mechanical and corrosion resistance properties makes them highly desirable as endosseous implants that can withstand a demanding biomechanical environment. Yet, the success of the implant depends on its osteointegration, which is modulated by the biological reactions occurring at the interface of the implant. A recent development for improving biological responses on the Ti-implant surface has been the realization that bifunctional peptides can impart material binding specificity not only because of their molecular recognition of the inorganic material surface, but also through their self-assembly and ease of biological conjugation properties. To assess peptide-based functionalization on bioactivity, the present authors generated a set of peptides for implant-grade Ti, using cell surface display methods. Out of 60 unique peptides selected by this method, two of the strongest titanium binding peptides, TiBP1 and TiBP2, were further characterized for molecular structure and adsorption properties. These two peptides demonstrated unique, but similar molecular conformations different from that of a weak binder peptide, TiBP60. Adsorption measurements on a Ti surface revealed that their disassociation constants were 15-fold less than TiBP60. Their flexible and modular use in biological surface functionalization were demonstrated by conjugating them with an integrin recognizing peptide motif, RGDS. The functionalization of the Ti surface by the selected peptides significantly enhanced the bioactivity of osteoblast and fibroblast cells on implant-grade materials. PMID:23159566

  1. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing.

    PubMed

    Sivasubramanian, Srinivasan; Chandrasekar, Gayathri; Svensson Akusjärvi, Sara; Thangam, Ramar; Sathuvan, Malairaj; Kumar, R B S; Hussein, Hawraa; Vincent, Savariar; Madhan, Balaraman; Gunasekaran, Palani; Kitambi, Satish S

    2017-01-01

    The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented with other features including non-toxicity, biocompatibility, and safety.

  2. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing

    PubMed Central

    Sivasubramanian, Srinivasan; Chandrasekar, Gayathri; Svensson Akusjärvi, Sara; Thangam, Ramar; Sathuvan, Malairaj; Kumar, R. B. S.; Hussein, Hawraa; Vincent, Savariar; Madhan, Balaraman; Gunasekaran, Palani; Kitambi, Satish S.

    2017-01-01

    The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented with other features including non-toxicity, biocompatibility, and safety. PMID:28769790

  3. Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces.

    PubMed

    Profeta, A C; Mannocci, F; Foxton, R; Watson, T F; Feitosa, V P; De Carlo, B; Mongiorgi, R; Valdré, G; Sauro, S

    2013-07-01

    This study aimed at evaluating the therapeutic bioactive effects on the bond strength of three experimental bonding agents containing modified Portland cement-based micro-fillers applied to acid-etched dentin and submitted to aging in simulated body fluid solution (SBS). Confocal laser (CLSM) and scanning electron microscopy (SEM) were also performed. A type-I ordinary Portland cement was tailored using different compounds such as sodium-calcium-aluminum-magnesium silicate hydroxide (HOPC), aluminum-magnesium-carbonate hydroxide hydrates (HCPMM) and titanium oxide (HPCTO) to create three bioactive micro-fillers. A resin blend mainly constituted by Bis-GMA, PMDM and HEMA was used as control (RES-Ctr) or mixed with each micro-filler to create three experimental bonding agents: (i) Res-HOPC, (ii) Res-HCPMM and (iii) Res-HPCTO. The bonding agents were applied onto 37% H3PO4-etched dentin and light-cured for 30s. After build-ups, they were prepared for micro-tensile bond strength (μTBS) and tested after 24h or 6 months of SBS storage. SEM analysis was performed after de-bonding, while CLSM was used to evaluate the ultra-morphology/nanoleakage and the mineral deposition at the resin-dentin interface. High μTBS values were achieved in all groups after 24h. Only Res-HOPC and Res-HCPMM showed stable μTBS after SBS storage (6 months). All the resin-dentin interfaces created using the bonding agents containing the bioactive micro-fillers tested in this study showed an evident reduction of nanoleakage and mineral deposition after SBS storage. Resin bonding systems containing specifically tailored Portland cement micro-fillers may promote a therapeutic mineral deposition within the hybrid layer and increase the durability of the resin-dentin bond. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives.

    PubMed

    Grimm, Fabian A; Iwata, Yasuhiro; Sirenko, Oksana; Chappell, Grace A; Wright, Fred A; Reif, David M; Braisted, John; Gerhold, David L; Yeakley, Joanne M; Shepard, Peter; Seligmann, Bruce; Roy, Tim; Boogaard, Peter J; Ketelslegers, Hans B; Rohde, Arlean M; Rusyn, Ivan

    2016-08-21

    Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of U nknown or V ariable composition, C omplex reaction products, and B iological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health impacts of both existing substances and their chemical alternatives.

  5. Evaluating the capacity to generate and preserve nitric oxide bioactivity in highly purified earthworm erythrocruorin: a giant polymeric hemoglobin with potential blood substitute properties.

    PubMed

    Roche, Camille J; Talwar, Abhinav; Palmer, Andre F; Cabrales, Pedro; Gerfen, Gary; Friedman, Joel M

    2015-01-02

    The giant extracellular hemoglobin (erythrocruorin) from the earth worm (Lumbricus terrestris) has shown promise as a potential hemoglobin-based oxygen carrier (HBOC) in in vivo animal studies. An important beneficial characteristic of this hemoglobin (LtHb) is the large number of heme-based oxygen transport sites that helps overcome issues of osmotic stress when attempting to provide enough material for efficient oxygen delivery. A potentially important additional property is the capacity of the HBOC either to generate nitric oxide (NO) or to preserve NO bioactivity to compensate for decreased levels of NO in the circulation. The present study compares the NO-generating and NO bioactivity-preserving capability of LtHb with that of human adult hemoglobin (HbA) through several reactions including the nitrite reductase, reductive nitrosylation, and still controversial nitrite anhydrase reactions. An assignment of a heme-bound dinitrogen trioxide as the stable intermediate associated with the nitrite anhydrase reaction in both LtHb and HbA is supported based on functional and EPR spectroscopic studies. The role of the redox potential as a factor contributing to the NO-generating activity of these two proteins is evaluated. The results show that LtHb undergoes the same reactions as HbA and that the reduced efficacy for these reactions for LtHb relative to HbA is consistent with the much higher redox potential of LtHb. Evidence of functional heterogeneity in LtHb is explained in terms of the large difference in the redox potential of the isolated subunits. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Bioactive glass/polymer composites for bone and nerve repair and regeneration

    NASA Astrophysics Data System (ADS)

    Mohammadkhah, Ali

    Bioactive glasses have several attractive properties in hard and soft tissue repair but their brittleness limited their use, as scaffolding materials, for applications in load-bearing hard tissue repair. At the same time, because of their bioactive properties, they are being studied more often for soft tissue repair. In the present work, a new glass/polymer composite scaffold was developed for the repair of load-bearing bones with high flexural strength and without brittle behavior. The new composites have 2.5 times higher flexural strength and ˜100 times higher work of fracture (without catastrophic failure) compared to a similar bare glass scaffold. Also the use of two known bioactive glasses (13-93-B3 and 45S5) was investigated in developing glass/Poly(epsilon-caprolactone) (PCL) composite films for peripheral nerve repair. It was found that a layer of globular hydroxyapatite (HA) formed on both sides of the composites. The borate glass in the composites was fully reacted in SBF and different ions were released into the solution. The addition of bioactive glass particles to the PCL lowered its elastic modulus and yield strength, but the composites remained intact after the 14 day period in SBF at 37°C. Finally, in an effort to design a better bioactive glass, new borosilicate glass compositions were developed that possess advantages of borate and silicate bioactive glasses at the same time. It was found that replacing small amounts of B2O3 with SiO2 improved glass formation, resistance to nucleation and crystallization, and increased the release rate of boron and silicon in vitro. This new borosilicate glass could be a good alternative to existing silicate and borate bioactive glasses.

  7. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration.

    PubMed

    Bailey, Brennan M; Nail, Lindsay N; Grunlan, Melissa A

    2013-09-01

    In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior, including regeneration. Thus a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight "hybrid" hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer (methacrylated star polydimethylsiloxane, PDMSstar-MA) and organic macromer (poly(ethylene glycol)diacrylate, PEG-DA) as well as both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt.% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt.% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four "zones" perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Edible packaging materials.

    PubMed

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  9. Fumed silica nanoparticle mediated biomimicry for optimal cell-material interactions for artificial organ development.

    PubMed

    de Mel, Achala; Ramesh, Bala; Scurr, David J; Alexander, Morgan R; Hamilton, George; Birchall, Martin; Seifalian, Alexander M

    2014-03-01

    Replacement of irreversibly damaged organs due to chronic disease, with suitable tissue engineered implants is now a familiar area of interest to clinicians and multidisciplinary scientists. Ideal tissue engineering approaches require scaffolds to be tailor made to mimic physiological environments of interest with specific surface topographical and biological properties for optimal cell-material interactions. This study demonstrates a single-step procedure for inducing biomimicry in a novel nanocomposite base material scaffold, to re-create the extracellular matrix, which is required for stem cell integration and differentiation to mature cells. Fumed silica nanoparticle mediated procedure of scaffold functionalization, can be potentially adapted with multiple bioactive molecules to induce cellular biomimicry, in the development human organs. The proposed nanocomposite materials already in patients for number of implants, including world first synthetic trachea, tear ducts and vascular bypass graft. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. TheraCal LC: From Biochemical and Bioactive Properties to Clinical Applications

    PubMed Central

    Rabi, Tarek

    2018-01-01

    Background Direct pulp capping is a popular treatment modality among dentists. TheraCal LC is a calcium silicate-based material that is designed as a direct/indirect pulp capping material. The material might be very attractive for clinicians because of its ease of handling. Unlike other calcium silicate-based materials, TheraCal LC is resin-based and does not require any conditioning of the dentine surface. The material can be bonded with different types of adhesives directly after application. There has been considerable research performed on this material since its launching; however, there are no review articles that collates information and data obtained from these studies. This review discusses the various characteristics of the material with the aim of establishing a better understanding for its clinical use. Methods A search was conducted using search engines (PubMed and Cochrane databases) in addition to reference mining of the articles that was used to locate other papers. The process of searching for the relevant studies was performed using the keywords pulp protection, pulp capping, TheraCal, and calcium silicates. Only articles in English published in peer-reviewed journals were included in the review. Conclusion This review underlines the fact that further in vitro and in vivo studies are required before TheraCal LC can be used as a direct pulp capping material. PMID:29785184

  11. Effect of heat treatment on the properties of SiO2-CaO-MgO-P 2O 5 bioactive glasses.

    PubMed

    Zhou, Yue; Li, Hongying; Lin, Kaili; Zhai, Wanying; Gu, Weiming; Chang, Jiang

    2012-09-01

    Since the invention of 45S5 Bioglass, researchers never stopped exploring new generation bioactive glass (BG) materials for wider applications in regenerative medicine, among which a novel SiO(2)-CaO-MgO-P(2)O(5) bioactive glass (BG20) is an excellent candidate. However, apart from their biocompatibility and bioactivity, a porous structure is also a must for a tissue engineering scaffold in successfully fixing bone defect. The porosity is the outcome of the high temperature (500-1,000 °C) treatment in the fabricating process of the bioglass scaffold. Under the high temperature, the amorphous glass material will become crystallized at certain percentage in the glass matrix, and possibly leading to consequent changes in the mechanical strength, biodegradability and bioactivity. To elucidate the effect of phase transition on the change of the properties of BG20, the experiments in this report were designed to fine-tuning the heat treating temperatures to fabricate a series of BG20 powders with different crystallization structures. X-ray diffraction revealed a positive correlation between the heating temperature and the crystallization, as well as the compressive strength of the materials. In vitro degradation and ion analysis by ICP-AES demonstrated a similar releasing behavior of different ions including Mg(2+), Ca(2+) and Si(4+), which in common is the tendency of decreasing of the ion concentration along with the increasing of the treating temperature. Cell proliferation assay using both mouse fibroblasts (NIH3T3) and bone marrow stromal cells (BMSCs) showed little toxicity of the ionic extract of the BG20 powders at all the treating temperatures, while fibroblasts demonstrated a significant promoting in the percentage of proliferation. Furthermore, reverse-transcription and polymerase chain reaction analysis on two representative marker genes for early osteogenesis and endochondral ossification, respectively, type I collagen alpha 1 and Indian Hedge-hog, showed an interesting induction of both genes over their basal levels by the treatment of the ionic extract of BG20, implying its important capability in regulating the fate of differentiation of the BMSCs as a novel biomaterial in bone tissue engineering.

  12. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L

    PubMed Central

    Gururaja, G. M.; Mundkinajeddu, Deepak; Dethe, Shekhar M.; Sangli, Gopala K.; Abhilash, K.; Agarwal, Amit

    2015-01-01

    Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety) was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF) to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml. Conclusion: This study demonstrates that M. indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica. PMID:26692750

  13. VIT-CMJ2: Endophyte of Agaricus bisporus in Production of Bioactive Compounds

    PubMed Central

    Gautam, Chandan Kumar; Madhav, Mukund; Sinha, Astha; Jabez Osborne, William

    2016-01-01

    Background Agaricus bisporus is an edible basidiomycete fungus. Both the body and the mycelium contain compounds comprising a wide range of antimicrobial molecules, contributing in improvement of immunity and tumor-retardation. Objectives The presence of endophytes capable of producing bioactive compounds was investigated in Agaricus bisporus. Materials and Methods Endophytes from Agaricus bisporus was isolated on LB agar. The obtained isolates were characterized morphologically and biochemically. Further 16S rRNA sequencing was implemented for molecular analysis of isolates. The isolate was mass produced and the bioactive compounds were extracted using ethyl acetate, chloroform and hexane. Agar well diffusion method was carried out to seek the potential of any antimicrobial activity of the crude bioactive compounds against known pathogens. GC-MS and FT-IR analysis were performed for the identification of bioactive compounds. Results VIT-CMJ2 was identified as Enterobacter sp. as revealed by 16S rRNA sequencing. Chloroform extract of VIT-CMJ2 showed a maximum zone of inhibition of 19 mm against Salmonella typhi followed by hexane and ethyl acetate extracts. The GC-MS analysis revealed the presence of several bioactive compounds having effective antimicrobial activity like butyl ester, Behenicalcohol, S , S-dioxide derivatives and some others which were later confirmed by FT-IR spectral stretches. Conclusions The present study shows the insight on the way endophytes interact with Agaricus bisporus; thereby improving the nutritional profile. PMID:28959322

  14. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Treesearch

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  15. Biotransformation Strategy To Reduce Allergens in Propolis

    PubMed Central

    Gardana, Claudio; Barbieri, Andrea; Simonetti, Paolo

    2012-01-01

    Propolis (bee glue) is a resinous, sticky, dark-colored material produced by honeybees. Propolis today, due to its medicinal properties, is increasingly popular and is extensively used in food, beverages, and cosmetic products. Besides its numerous positive properties, propolis may also have adverse effects, such as, principally, allergic eczematous contact dermatitis in apiarists and in consumers with an allergic predisposition. In this study, we found appropriate conditions for removing caffeate esters, which are the main allergenic components, from raw propolis. The proposed method consists of the resuspension of propolis in a food grade solvent, followed by a biotransformation based on the cinnamoyl esterase activity of Lactobacillus helveticus. We showed that the reduction of caffeate esters by L. helveticus did not affect the content of flavonoids, which are the main bioactive molecules of propolis. Furthermore, we verified that the biotransformation of propolis did not cause a loss of antimicrobial activity. Finally, we demonstrated that the ability of L. helveticus to hydrolyze caffeate esters in propolis is strain specific. In conclusion, the proposed strategy is simple, employs food grade materials, and is effective in selectively removing allergenic molecules without affecting the bioactive fraction of propolis. This is the first study demonstrating that the allergenic caffeate esters of propolis can be eliminated by means of a bacterial biotransformation procedure. PMID:22522681

  16. In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate.

    PubMed

    Sugino, Atsushi; Ohtsuki, Chikara; Miyazaki, Toshiki

    2008-11-01

    The use of polymethylmethacrylate (PMMA)-based bone cement is popular in orthopedics for the fixation of artificial joints with bone. However, it has a major problem with prostheses loosening because of coverage by fibrous tissue after long-term implantation. Recently, a bioactive bone cement has been developed that shows direct bonding to living bone through modification of PMMA resin with gamma-methacryloxypropyltrimethoxysilane (MPS) and calcium acetate. The cement is designed to exhibit bioactivity, through incorporation of silanol groups and calcium ions. Thus, it has the potential to form a layer of bone-like hydroxyapatite, which is essential for achieving direct bonding to living bone. This type of modification allows the cement to show spontaneous hydroxyapatite formation on its surface in a simulated body fluid after one day, and there is evidence of osteoconduction of the cement in rabbit tibia for periods of more than three weeks. However, the influence of the dissolved ions from the modified cement has not yet been clarified. Thus, the authors focused on the dissolution of the modified PMMA-based bone cement and its tissue response in muscle and bone by comparison with the behavior of non-modified PMMA-based bone cement. One week after implantation in the latissimus dorsi of a rabbit, the modified PMMA-based bone cement showed more inflammatory width than the commercial cement. However, four weeks after implantation, the inflammatory width of both cements was essentially the same. The osteoconductivity around the modified cement was higher than that for the conventional cement after four weeks implantation. These results indicate that the initial dissolution of calcium acetate from the modified cement to form the hydroxyapatite induced the acute inflammation around tissue, but also developed the osteoconductivity. It is suggested that the initial inflammation can be effective for inducing osteoconduction through a bone healing reaction when the material provides an environment that promotes bone formation.

  17. Biocompatibility Investigation of New Endodontic Materials Based on Nanosynthesized Calcium Silicates Combined with Different Radiopacifiers.

    PubMed

    Cetenovic, Bojana; Prokic, Bogomir; Vasilijic, Sasa; Dojcinovic, Biljana; Magic, Marko; Jokanovic, Vukoman; Markovic, Dejan

    2017-03-01

    The aim of this article was to analyze biocompatibility and bioactivity of new endodontic materials on the basis of nanosynthesized calcium silicates (ALBO-MPCA 1 and ALBO-MPCA 2 ) combined with different radiopacifiers in comparison with MTA + . Morphology of the samples was studied by scanning electron microscopy, and the pH and ion release analysis were also assessed. Biocompatibility of materials' eluates (24-hour, 7-day, and 21-day) was conducted by using MTT test. Twelve New Zealand white rabbits were used for intraosseous implantation. Four calvarial defects per animal were created and filled with freshly prepared investigated materials. Samples mostly consisted of agglomerates built up from nanoparticles, preferably spherical and rod-like. There was no significant difference among pH values of materials' eluates after 24 hours (P > .05). The amount of calcium and aluminum ion release decreased, whereas the amount of magnesium and bismuth (ALBO-MPCA 1 , MTA + ) and barium (ALBO-MPCA 2 ) increased during 21-day period. The metabolic activity of cells increased after the extraction time, except in case of undiluted elutes of ALBO-MPCA 2 and ALBO-MPCA 1 (21-day). Histologic analysis of the samples revealed newly formed bone tissue with moderate inflammation for all investigated materials, which subsided during 90-day period to mild. Both MTA + and ALBO-MPCA 1 were in direct contact with the newly formed bone tissue. After 90 days, statistically significant difference in hard tissue formation was observed in comparison of MTA + and ALBO-MPCA 1 with control group (P < .05). Experimental materials ALBO-MPCA 1 and ALBO-MPCA 2 possess both biocompatibility and bioactivity. Because ALBO-MPCA 1 provokes favorable biological response, it is especially good candidate for further clinical investigations. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Nanoengineering of bioactive glasses: hollow and dense nanospheres

    NASA Astrophysics Data System (ADS)

    Luz, Gisela M.; Mano, João F.

    2013-02-01

    The possibility of engineering bioactive glass (BG) nanoparticles into suitable sizes and shapes represents a significant achievement regarding the development of new osteoconductive biomaterials for therapeutic strategies to replace or regenerate damaged mineralised tissues. Herein we report the structural and chemical evolution of sol-gel derived BG nanoparticles for both the binary (SiO2:CaO (mol%) = 70:30) and ternary (SiO2:CaO:P2O5 (mol%) = 55:40:5) formulations, in order to understand how the particles formation can be directed. Hollow BG nanospheres were obtained through Ostwald ripening. The presence of a non ionic surfactant, poly(ethylene glycol) (PEG), allowed the formation of dense BG nanospheres with controllable diameters depending on the molecular weight of PEG. A deep insight into the genesis of BG nanoparticles formation is essential to design BG based materials with controlled compositions, morphologies and sizes at the nanoscale, in order to improve their performance in orthopaedic applications including bone tissue engineering.

  19. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK).

    PubMed

    Ren, Yufu; Sikder, Prabaha; Lin, Boren; Bhaduri, Sarit B

    2018-04-01

    Polyetheretherketone (PEEK) with great thermal and chemical stability, desirable mechanical properties and promising biocompatibility is being widely used as orthopedic and dental implant materials. However, the bioinert surface of PEEK can hinder direct osseointegration between the host tissue and PEEK based implants. The important signatures of this paper are as follows. First, we report for the formation of osseointegrable amorphous magnesium phosphate (AMP) coating on PEEK surface using microwave energy. Second, coatings consist of nano-sized AMP particles with a stacked thickness of 800nm. Third, coatings enhance bioactivity in-vitro and induce significantly high amount of bone-like apatite coating, when soaked in simulated body fluid (SBF). Fourth, the as-deposited AMP coatings present no cytotoxicity effects and are beneficial for cell adhesion at early stage. Finally, the high levels of expression of osteocalcin (OCN) in cells cultured on AMP coated PEEK samples indicate that AMP coatings can promote new bone formation and hence osseointegration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    PubMed

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    PubMed Central

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  2. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.

    PubMed

    Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.

  3. In Vitro Bioactivity and Antimicrobial Tuning of Bioactive Glass Nanoparticles Added with Neem (Azadirachta indica) Leaf Powder

    PubMed Central

    Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

  4. A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration.

    PubMed

    Wang, Chao; Cao, Xuecheng; Zhang, Yongxian

    2017-05-09

    Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo.

  5. A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration

    PubMed Central

    Wang, Chao; Cao, Xuecheng; Zhang, Yongxian

    2017-01-01

    Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo. PMID:28404942

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytkina, D. N., E-mail: darya-lytkina@yandex.ru; Shapovalova, Y. G., E-mail: elena.shapovalova@ro.ru; Rasskazova, L. A., E-mail: ly-2207@mail.ru

    Relevance of the work is due to the need for new materials that are used in medicine (orthopedics, surgery, dentistry, and others) as a substitute for natural bone tissue injuries, fractures, etc. The aim of presented work is developing of a method of producing biocompatible materials based on polyesters of hydroxycarboxylic acids and calcium phosphate ceramic (hydroxyapatite, HA) with homogeneous distribution of the inorganic component. Bioactive composites based on poly-L-lactide (PL) and hydroxyapatite with homogeneous distribution were prepared. The results of scanning electron microscopy confirm homogeneous distribution of the inorganic filler in the polymer matrix. The positive effect of ultrasoundmore » on the homogeneity of the composites was determined. The rate of hydrolysis of composites was evaluated. The rate of hydrolysis of polylactide as an individual substance is 7 times lower than the rate of hydrolysis of the polylactide as a part of the composite. It was found that materials submarines HA composite and do not cause a negative response in the cells of the immune system, while contributing to anti-inflammatory cytokines released by cells.« less

  7. Functional food productions: release the potential of bioactive compounds through food processing

    USDA-ARS?s Scientific Manuscript database

    Epidemiological studies of bioactive compounds from plant-based foods have consistently pointed to undisputed benefits of consumption of plant-based foods on human health particularly regarding cardiovascular diseases and cancers. However, in order to attain the dosage required from these studies, p...

  8. ITPI: Initial Transcription Process-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula

    PubMed Central

    Zhang, Baixia; Li, Yanwen; Zhang, Yanling; Li, Zhiyong; Bi, Tian; He, Yusu; Song, Kuokui; Wang, Yun

    2016-01-01

    Identification of bioactive components is an important area of research in traditional Chinese medicine (TCM) formula. The reported identification methods only consider the interaction between the components and the target proteins, which is not sufficient to explain the influence of TCM on the gene expression. Here, we propose the Initial Transcription Process-based Identification (ITPI) method for the discovery of bioactive components that influence transcription factors (TFs). In this method, genome-wide chip detection technology was used to identify differentially expressed genes (DEGs). The TFs of DEGs were derived from GeneCards. The components influencing the TFs were derived from STITCH. The bioactive components in the formula were identified by evaluating the molecular similarity between the components in formula and the components that influence the TF of DEGs. Using the formula of Tian-Zhu-San (TZS) as an example, the reliability and limitation of ITPI were examined and 16 bioactive components that influence TFs were identified. PMID:27034696

  9. Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking.

    PubMed

    Ren, Jun; Tian, Kaikai; Jia, Lingyun; Han, Xiuyou; Zhao, Mingshan

    2016-10-19

    A strategy for photoinduced covalent immobilization of proteins on phenol-functionalized surfaces is described. Under visible light irradiation, the reaction can be completed within seconds at ambient temperature, with high yields in aqueous solution of physiological conditions. Protein immobilization is based on a ruthenium-catalyzed radical cross-linking reaction between proteins and phenol-modified surfaces, and the process has proven mild enough for lipase, Staphylococcus aureus protein A, and streptavidin to preserve their bioactivity. This strategy was successfully applied to antibody immobilization on different material platforms, including agarose beads, cellulose membranes, and glass wafers, thus providing a generic procedure for rapid biomodification of surfaces.

  10. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    PubMed Central

    Terriza, Antonia; Vilches-Pérez, José I.; González-Caballero, Juan L.; de la Orden, Emilio; Yubero, Francisco; Barranco, Angel; Gonzalez-Elipe, Agustín R.; Vilches, José; Salido, Mercedes

    2014-01-01

    New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors. PMID:28788538

  11. Rechargeable anticandidal denture material with sustained release in saliva.

    PubMed

    Malakhov, A; Wen, J; Zhang, B-X; Wang, H; Geng, H; Chen, X-D; Sun, Y; Yeh, C-K

    2016-07-01

    Candida-induced denture stomatitis is a common debilitating problem among denture wearers. Previously, we described the fabrication of a new denture material that released antifungal drugs when immersed in phosphate buffered saline. Here, we use more clinically relevant immersion conditions (human saliva; 37°C) and measure miconazole release and bioactivity. Disks were prepared by grafting PNVP [poly(N-vinyl-2-pyrrolidinone)] onto PMMA [poly(methylmethacrylate)] using plasma initiation (PMMA-g-PNVP) and then loaded with miconazole. Drug-loaded disks were immersed in 10-100% human saliva (1-30 days). Miconazole release was measured and then tested for bioactivity vs miconazole-sensitive and miconazole-resistant Candida isolates. HPLC was used to quantify miconazole levels in saliva. Miconazole-loaded disks released antifungal drug for up to 30 days. Higher drug release was found with higher concentrations of saliva, and, interestingly, miconazole solubility was increased with higher saliva concentrations. The released miconazole retained its anticandidal activity. After immersion, the residual miconazole could be quenched and the disks recharged. Freshly recharged disks displayed the same release kinetics and bioactivity as the original disks. Quenched disks could also be charged with chlorhexidine that displayed anticandidal activity. These results suggest that PMMA-g-PNVP is a promising new denture material for long-term management of denture stomatitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.

    PubMed

    Li, Ailing; Qiu, Dong

    2011-12-01

    The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content.

  13. Sodium Is Not Essential for High Bioactivity of Glasses

    PubMed Central

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S.; Wilson, Rory M.; Law, Robert V.; Hill, Robert G.; Karpukhina, Natalia

    2017-01-01

    This study aims to demonstrate that excellent bioactivity of glass can be achieved without the presence of an alkali metal component in glass composition. In vitro bioactivity of two sodium-free glasses based on the quaternary system SiO2-P2O5-CaO-CaF2 with 0 and 4.5 mol% CaF2 content was investigated and compared with the sodium containing glasses with equivalent amount of CaF2. The formation of apatite after immersion in Tris buffer was followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 31P and 19F solid state MAS-NMR. The dissolution study was completed by ion release measurements in Tris buffer. The results show that sodium free bioactive glasses formed apatite at 3 hours of immersion in Tris buffer, which is as fast as the corresponding sodium containing composition. This signifies that sodium is not an essential component in bioactive glasses and it is possible to make equally degradable bioactive glasses with or without sodium. The results presented here also emphasize the central role of the glass compositions design which is based on understanding of structural role of components and/or predicting the network connectivity of glasses. PMID:29271977

  14. Sodium Is Not Essential for High Bioactivity of Glasses.

    PubMed

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S; Wilson, Rory M; Law, Robert V; Hill, Robert G; Karpukhina, Natalia

    2017-12-01

    This study aims to demonstrate that excellent bioactivity of glass can be achieved without the presence of an alkali metal component in glass composition. In vitro bioactivity of two sodium-free glasses based on the quaternary system SiO 2 -P 2 O 5 -CaO-CaF 2 with 0 and 4.5 mol% CaF 2 content was investigated and compared with the sodium containing glasses with equivalent amount of CaF 2 . The formation of apatite after immersion in Tris buffer was followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 31 P and 19 F solid state MAS-NMR. The dissolution study was completed by ion release measurements in Tris buffer. The results show that sodium free bioactive glasses formed apatite at 3 hours of immersion in Tris buffer, which is as fast as the corresponding sodium containing composition. This signifies that sodium is not an essential component in bioactive glasses and it is possible to make equally degradable bioactive glasses with or without sodium. The results presented here also emphasize the central role of the glass compositions design which is based on understanding of structural role of components and/or predicting the network connectivity of glasses.

  15. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications

    NASA Astrophysics Data System (ADS)

    Jorfi, Mehdi; Skousen, John L.; Weder, Christoph; Capadona, Jeffrey R.

    2015-02-01

    To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing.

  16. Progress Towards Biocompatible Intracortical Microelectrodes for Neural Interfacing Applications

    PubMed Central

    Jorfi, Mehdi; Skousen, John L.; Weder, Christoph; Capadona, Jeffrey R.

    2015-01-01

    To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing. PMID:25460808

  17. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.

    PubMed

    Wang, Xu; Gu, Zhipeng; Jiang, Bo; Li, Li; Yu, Xixun

    2016-04-01

    For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization.

  18. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection.

    PubMed

    Liu, Xin; Xie, Zongping; Zhang, Changqing; Pan, Haobo; Rahaman, Mohamed N; Zhang, Xin; Fu, Qiang; Huang, Wenhai

    2010-02-01

    The objective of this work was to evaluate borate bioactive glass scaffolds (with a composition in the system Na(2)O-K(2)O-MgO-CaO-B(2)O(3)-P(2)O(5)) as devices for the release of the drug Vancomycin in the treatment of bone infection. A solution of ammonium phosphate, with or without dissolved Vancomycin, was used to bond borate glass particles into the shape of pellets. The in vitro degradation of the pellets and their conversion to a hydroxyapatite-type material in a simulated body fluid (SBF) were investigated using weight loss measurements, chemical analysis, X-ray diffraction, and scanning electron microscopy. The results showed that greater than 90% of the glass in the scaffolds degraded within 1 week, to form poorly crystallized hydroxyapatite (HA). Pellets loaded with Vancomycin provided controlled release of the drug over 4 days. Vancomycin-loaded scaffolds were implanted into the right tibiae of rabbits infected with osteomyelitis. The efficacy of the treatment was assessed using microbiological examination and histology. The HA formed in the scaffolds in vivo, resulting from the conversion of the glass, served as structure to support the growth of new bone and blood vessels. The results in this work indicate that bioactive borate glass could provide a promising biodegradable and bioactive material for use as both a drug delivery system and a scaffold for bone repair.

  19. Addressing Challenges to Enhance the Bioactives of Withania somnifera through Organ, Tissue, and Cell Culture Based Approaches

    PubMed Central

    Singh, Pritika; Guleri, Rupam; Angurala, Amrita; Kaur, Kuldeep; Kaur, Kulwinder; Kaul, Sunil C.; Wadhwa, Renu

    2017-01-01

    Withania somnifera is a highly valued medicinal plant in traditional home medicine and is known for a wide range of bioactivities. Its commercial cultivation is adversely affected by poor seed viability and germination. Infestation by various pests and pathogens, survival under unfavourable environmental conditions, narrow genetic base, and meager information regarding biosynthesis of secondary metabolites are some of the other existing challenges in the crop. Biotechnological interventions through organ, tissue, and cell culture provide promising options for addressing some of these issues. In vitro propagation facilitates conservation and sustainable utilization of the existing germplasms and broadening the genetic base. It would also provide means for efficient and rapid mass propagation of elite chemotypes and generating uniform plant material round the year for experimentation and industrial applications. The potential of in vitro cell/organ cultures for the production of therapeutically valuable compounds and their large-scale production in bioreactors has received significant attention in recent years. In vitro culture system further provides distinct advantage for studying various cellular and molecular processes leading to secondary metabolite accumulation and their regulation. Engineering plants through genetic transformation and development of hairy root culture system are powerful strategies for modulation of secondary metabolites. The present review highlights the developments and sketches current scenario in this field. PMID:28299323

  20. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

    PubMed Central

    Mohammadi, Hossein; Sepantafar, Mohammadmajid

    2016-01-01

    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  1. Large-scale randomized clinical trials of bioactives and nutrients in relation to human health and disease prevention - Lessons from the VITAL and COSMOS trials.

    PubMed

    Rautiainen, Susanne; Sesso, Howard D; Manson, JoAnn E

    2017-12-29

    Several bioactive compounds and nutrients in foods have physiological properties that are beneficial for human health. While nutrients typically have clear definitions with established levels of recommended intakes, bioactive compounds often lack such a definition. Although a food-based approach is often the optimal approach to ensure adequate intake of bioactives and nutrients, these components are also often produced as dietary supplements. However, many of these supplements are not sufficiently studied and have an unclear role in chronic disease prevention. Randomized trials are considered the gold standard of study designs, but have not been fully applied to understand the effects of bioactives and nutrients. We review the specific role of large-scale trials to test whether bioactives and nutrients have an effect on health outcomes through several crucial components of trial design, including selection of intervention, recruitment, compliance, outcome selection, and interpretation and generalizability of study findings. We will discuss these components in the context of two randomized clinical trials, the VITamin D and OmegA-3 TriaL (VITAL) and the COcoa Supplement and Multivitamin Outcomes Study (COSMOS). We will mainly focus on dietary supplements of bioactives and nutrients while also emphasizing the need for translation and integration with food-based trials that are of vital importance within nutritional research. Copyright © 2017. Published by Elsevier Ltd.

  2. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters.

    PubMed

    Oliveira, Camila Areias de; Peres, Daniela D'Almeida; Graziola, Fabiana; Chacra, Nádia Araci Bou; Araújo, Gabriel Lima Barros de; Flórido, Ana Catarina; Mota, Joana; Rosado, Catarina; Velasco, Maria Valéria Robles; Rodrigues, Luís Monteiro; Fernandes, Ana Sofia; Baby, André Rolim

    2016-01-01

    The encapsulation of natural ingredients, such as rutin, can offer improvements in sun protection effectiveness. This strategy can provide enhanced flavonoid content and produces an improved bioactive compound with new physical and functional characteristics. As an alternative to common synthetic-based sunscreens, rutin-entrapped gelatin nanoparticles (GNPs) were designed and associated with ethylhexyl dimethyl PABA (EHDP), ethylhexyl methoxycinnamate (EHMC) and methoxydibenzoylmethane (BMDBM) in sunscreen formulations. The purpose of this study was to develop rutin-loaded gelatin nanoparticles and characterize their physicochemical, thermal, functional and safety properties. Rutin-loaded gelatin nanoparticles increased antioxidant activity by 74% relative to free-rutin (FR) solution. Also, this new ingredient upgraded the Sun Protection Factor (SPF) by 48%, indicating its potential as a raw material for bioactive sunscreens. The safety profile indicated that GNPs and glutaraldehyde (GTA) decreased HaCaT cell viability in a concentration/time-dependent manner. However, both blank nanoparticles (B-NC) and rutin-loaded nanoparticles (R-NC) had good performance on skin compatibility tests. These results functionally characterized rutin-loaded nanoparticles as a safe SPF enhancer in sunscreens, especially in association with UV filters. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Microinjector for blasocysts

    DOEpatents

    Remenyik, Carl J.; Woychik, Richard P.; Patek, David R.; Hawk, James A.; Turner, John C.

    1999-01-01

    An electromechanical device for driving the tip of a microinjection cannula, or needle, through the outer barrier of a blastocyst, cell, or cell nucleus for the injection of cells or other bioactive materials. Either a flexible frame or a ram moving within a base member is employed. Cannula motion is achieved by means of a piezoelectric stack and spring return system. The thrust motion over a predetermined microscopic distance is achieved without cannula setback prior to the thrust movement. Instead of specially prepared beveled and tipped needles, standard unimproved cannulas or needles can be used.

  4. Microinjector for blasocysts

    DOEpatents

    Remenyik, C.J.; Woychik, R.P.; Patek, D.R.; Hawk, J.A.; Turner, J.C.

    1999-03-02

    An electromechanical device is disclosed for driving the tip of a microinjection cannula, or needle, through the outer barrier of a blastocyst, cell, or cell nucleus for the injection of cells or other bioactive materials. Either a flexible frame or a ram moving within a base member is employed. Cannula motion is achieved by means of a piezoelectric stack and spring return system. The thrust motion over a predetermined microscopic distance is achieved without cannula setback prior to the thrust movement. Instead of specially prepared beveled and tipped needles, standard unimproved cannulas or needles can be used. 6 figs.

  5. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.

    PubMed

    Wu, Chengtie

    2009-05-01

    CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.

  6. Calcium silicate-based drug delivery systems.

    PubMed

    Zhu, Ying-Jie; Guo, Xiao-Xuan; Sham, Tsun-Kong

    2017-02-01

    Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery. Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy. Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed.

  7. Dentine Tubule Occlusion by Novel Bioactive Glass-Based Toothpastes

    PubMed Central

    Hill, Robert G.; Chen, Xiaojing

    2018-01-01

    There are numerous over-the-counter (OTC) and professionally applied (in-office) products and techniques currently available for the treatment of dentine hypersensitivity (DH), but more recently, the use of bioactive glasses in toothpaste formulations have been advocated as a possible solution to managing DH. Aim. The aim of the present study, therefore, was to compare several bioactive glass formulations to investigate their effectiveness in an established in vitro model. Materials and Methods. A 45S5 glass was synthesized in the laboratory together with several other glass formulations: (1) a mixed glass (fluoride and chloride), (2) BioMinF, (3) a chloride glass, and (4) an amorphous chloride glass. The glass powders were formulated into five different toothpaste formulations. Dentine discs were sectioned from extracted human teeth and prepared for the investigation by removing the cutting debris (smear layer) following sectioning using a 6% citric acid solution for 2 minutes. Each disc was halved to provide test and control halves for comparison following the brushing of the five toothpaste formulations onto the test halves for each toothpaste group. Following the toothpaste application, the test discs were immersed in either artificial saliva or exposed to an acid challenge. Results. The dentine samples were analyzed using scanning electron microscopy (SEM), and observation of the SEM images indicated that there was good surface coverage following artificial saliva immersion. Furthermore, although the acid challenge removed the hydroxyapatite layer on the dentine surface for most of the samples, except for the amorphous chloride glass, there was evidence of tubular occlusion in the dentine tubules. Conclusions. The conclusions from the study would suggest that the inclusion of bioactive glass into a toothpaste formulation may be an effective approach to treat DH. PMID:29849637

  8. Combined effect of magnesia and zirconia on the bioactivity of calcium silicate ceramics at C\\S ratio less than unity.

    PubMed

    Ewais, Emad M M; Amin, Amira M M; Ahmed, Yasser M Z; Ashor, Eman A; Hess, Ulrike; Rezwan, Kurosch

    2017-01-01

    This paper describes the effect of magnesia in the presence of zirconia on the bioactivity, microstructure and physico-mechanical properties of calcium silicate composition adjusted at calcia/silica ratio(C/S) of 0.5. A mixture from calcium carbonate and silica was conducted at C/S of 0.5. 20wt.% of magnesia and 5-25wt.% of ZrO 2 were added. Each mixture was mixed with ethanol in a planetary ball mill, dried, formed and fired at a temperature of 1325±5°C. Phase composition, FE-SEM, and physico-mechanical properties of the fired specimens were determined and explained. The in vitro bioactivities of these specimens were investigated by analysis of their abilities to form apatite in the simulated body fluid (SBF) for a short time (7days) using SEM-EDS. The findings indicated that the surface of the specimens containing 5 and 15wt.% ZrO 2 were completely covered by single and multilayered hydroxyapatite (HA) precipitate typical to "cauliflower" morphology, respectively. The surface of the specimen containing 25wt.% ZrO 2 did not cover, but there are some scattered HA precipitate. The differences among the results were rationalized based on the phase composition. Vickers hardness and fracture toughness of the specimens of highly promised bioactivity were 2.32-2.57GPa and 1.80-1.50MPa. m 1/2 , respectively. The properties of these specimens are similar to the properties of human cortical bone. Consequently, these composites might be used as bone implant materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.

    PubMed

    Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša

    2017-03-06

    Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).

  10. Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment.

    PubMed

    Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2016-04-11

    Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.

  11. Novel control methods for insect pests: development of a microencapsulation procedure for proteinaceous bioactives intended for oral delivery.

    PubMed

    Richards, Elaine H; Wontner-Smith, Tim; Bradish, Hannah; Dani, M Paulina; Cotterill, Jane V

    2015-09-01

    The objective was to develop an environmentally favourable microcapsule suitable for delivery of proteinaceous bioactive agents ('bioinsecticides') to pest insects. Utilising feeding bioassays, we determined that microspheres made of alginate can be produced in a variety of sizes and are palatable and non-toxic to larvae of the lepidopteran pest Lacanobia oleracea. Dehydrated microspheres were also readily ingested by larvae. Using a novel feeding bioassay and alginate microspheres containing a fluorescent marker material (coumarin 7 encapsulated in styrene maleic anhydride beads), we determined that the microspheres successfully deliver the marker to the insect gut. Moreover, the alginate microspheres rapidly break down in the alkaline conditions of the insect gut and release their contents, the beads passing through the gut in 2-3 h. Using bovine serum albumin as a test protein and western blotting, it was determined that alginate can successfully encapsulate protein, and that the microspheres can be stored in a CaCl2 solution for up to 24 days without extensive leakage. Importantly, it was also determined that alginate and the microsphere-making procedure developed do not inactivate rVPr1 (an insect immunosuppressive protein and potential bioinsecticide). An alginate-based microsphere has potential to deliver the proteinaceous bioactive rVPr1 to pest insects. © 2014 Crown copyright. Pest Management Science © 2014 Society of Chemical Industry.

  12. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review

    PubMed Central

    Liu, Jie; Gray, Warren D.; Davis, Michael E.; Luo, Ying

    2012-01-01

    Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure–function relationship of ligand–dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics. PMID:23741608

  13. Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials.

    PubMed

    Pino, M; Stingelin, N; Tanner, K E

    2008-11-01

    The skirt of an artificial cornea must integrate the implant to the host sclera, a major failure of present devices. Thus, it is highly desirable to encourage the metabolic activity of the cornea by using more bioactive, flexible skirt materials. Here we describe attempts to increase the bioactivity of polyether ether ketone (PEEK), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE) films. The effectiveness of different strength NaOH pre-treatments to initiate apatite deposition on PEEK, HDPE and UHMWPE is investigated. We find that exposure of PEEK, HDPE and UHMWPE films to NaOH solutions induces the formation of potential nuclei for apatite (calcium phosphate), from which the growth of an apatite coating is stimulated when subsequently immersing the polymer films in 1.5 strength Simulated Body Fluid (SBF). As immersion time in SBF increases, further nucleation and growth produces a thicker and more compact apatite coating that can be expected to be highly bioactive. Interestingly, the apatite growth is found to also be dependent on both the concentration of NaOH solution and the structure of the polymer surface.

  14. SpirPep: an in silico digestion-based platform to assist bioactive peptides discovery from a genome-wide database.

    PubMed

    Anekthanakul, Krittima; Hongsthong, Apiradee; Senachak, Jittisak; Ruengjitchatchawalya, Marasri

    2018-04-20

    Bioactive peptides, including biological sources-derived peptides with different biological activities, are protein fragments that influence the functions or conditions of organisms, in particular humans and animals. Conventional methods of identifying bioactive peptides are time-consuming and costly. To quicken the processes, several bioinformatics tools are recently used to facilitate screening of the potential peptides prior their activity assessment in vitro and/or in vivo. In this study, we developed an efficient computational method, SpirPep, which offers many advantages over the currently available tools. The SpirPep web application tool is a one-stop analysis and visualization facility to assist bioactive peptide discovery. The tool is equipped with 15 customized enzymes and 1-3 miscleavage options, which allows in silico digestion of protein sequences encoded by protein-coding genes from single, multiple, or genome-wide scaling, and then directly classifies the peptides by bioactivity using an in-house database that contains bioactive peptides collected from 13 public databases. With this tool, the resulting peptides are categorized by each selected enzyme, and shown in a tabular format where the peptide sequences can be tracked back to their original proteins. The developed tool and webpages are coded in PHP and HTML with CSS/JavaScript. Moreover, the tool allows protein-peptide alignment visualization by Generic Genome Browser (GBrowse) to display the region and details of the proteins and peptides within each parameter, while considering digestion design for the desirable bioactivity. SpirPep is efficient; it takes less than 20 min to digest 3000 proteins (751,860 amino acids) with 15 enzymes and three miscleavages for each enzyme, and only a few seconds for single enzyme digestion. Obviously, the tool identified more bioactive peptides than that of the benchmarked tool; an example of validated pentapeptide (FLPIL) from LC-MS/MS was demonstrated. The web and database server are available at http://spirpepapp.sbi.kmutt.ac.th . SpirPep, a web-based bioactive peptide discovery application, is an in silico-based tool with an overview of the results. The platform is a one-stop analysis and visualization facility; and offers advantages over the currently available tools. This tool may be useful for further bioactivity analysis and the quantitative discovery of desirable peptides.

  15. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012.

    PubMed

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-07

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development.

  16. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides.

    PubMed

    Agyei, Dominic; Tsopmo, Apollinaire; Udenigwe, Chibuike C

    2018-06-01

    There are emerging advancements in the strategies used for the discovery and development of food-derived bioactive peptides because of their multiple food and health applications. Bioinformatics and peptidomics are two computational and analytical techniques that have the potential to speed up the development of bioactive peptides from bench to market. Structure-activity relationships observed in peptides form the basis for bioinformatics and in silico prediction of bioactive sequences encrypted in food proteins. Peptidomics, on the other hand, relies on "hyphenated" (liquid chromatography-mass spectrometry-based) techniques for the detection, profiling, and quantitation of peptides. Together, bioinformatics and peptidomics approaches provide a low-cost and effective means of predicting, profiling, and screening bioactive protein hydrolysates and peptides from food. This article discuses the basis, strengths, and limitations of bioinformatics and peptidomics approaches currently used for the discovery and analysis of food-derived bioactive peptides.

  17. Bioactive calcium silicate ceramics and coatings.

    PubMed

    Liu, Xuanyong; Morra, Marco; Carpi, Angelo; Li, Baoe

    2008-10-01

    CaO-SiO2 based ceramics have been regarded as potential candidates for artificial bone due to their excellent bone bioactivity and biocompatibility. However, they cannot be used as implants under a heavy load because of their poor mechanical properties, in particular low fracture toughness. Plasma spraying CaO-SiO2 based ceramic coatings onto titanium alloys can expand their application to the hard tissue replacement under a heavy load. Plasma sprayed wollastonite, dicalcium silicate and diopside coatings have excellent bone bioactivity and high bonding strength to titanium alloys. It is possible that these plasma sprayed CaO-SiO2 based ceramic coatings will be applied in clinic after they are widely and systematically researched.

  18. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites †

    PubMed Central

    O’Donnell, Justin N.R.; Schumacher, Gary E.; Antonucci, Joseph M.; Skrtic, Drago

    2009-01-01

    Our studies of amorphous calcium phosphate (ACP)-based materials over the last decade have yielded bioactive polymeric composites capable of protecting teeth from demineralization or even regenerating lost tooth mineral. The anti-cariogenic/re-mineralizing potential of these ACP composites originates from their propensity, when exposed to the oral environment, to release in a sustained manner sufficient levels of mineral-forming calcium and phosphate ions to promote formation of stable apatitic tooth mineral. However, the less than optimal ACP filler/resin matrix cohesion, excessive polymerization shrinkage and water sorption of these experimental materials can adversely affect their physicochemical and mechanical properties, and, ultimately, limit their lifespan. This study demonstrates the effects of chemical structure and composition of the methacrylate monomers used to form the matrix phase of composites on degree of vinyl conversion (DVC) and water sorption of both copolymers and composites and the release of mineral ions from the composites. Modification of ACP surface via introducing cations and/or polymers ab initio during filler synthesis failed to yield mechanically improved composites. However, moderate improvement in composite’s mechanical stability without compromising its remineralization potential was achieved by silanization and/or milling of ACP filler. Using ethoxylated bisphenol A dimethacrylate or urethane dimethacrylate as base monomers and adding moderate amounts of hydrophilic 2-hydroxyethyl methacrylate or its isomer ethyl-α-hydroxymethacrylate appears to be a promising route to maximize the remineralizing ability of the filler while maintaining high DVC. Exploration of the structure/composition/property relationships of ACP fillers and polymer matrices is complex but essential for achieving a better understanding of the fundamental mechanisms that govern dissolution/re-precipitation of bioactive ACP fillers, and, ultimately, the suitability of the composites for clinical evaluation. PMID:21966588

  19. Design of Bioactive Peptides from Naturally Occurring μ-Conotoxin Structures*

    PubMed Central

    Stevens, Marijke; Peigneur, Steve; Dyubankova, Natalia; Lescrinier, Eveline; Herdewijn, Piet; Tytgat, Jan

    2012-01-01

    To date, cone snail toxins (“conotoxins”) are of great interest in the pursuit of novel subtype-selective modulators of voltage-gated sodium channels (Navs). Navs participate in a wide range of electrophysiological processes. Consequently, their malfunctioning has been associated with numerous diseases. The development of subtype-selective modulators of Navs remains highly important in the treatment of such disorders. In current research, a series of novel, synthetic, and bioactive compounds were designed based on two naturally occurring μ-conotoxins that target Navs. The initial designed peptide contains solely 13 amino acids and was therefore named “Mini peptide.” It was derived from the μ-conotoxins KIIIA and BuIIIC. Based on this Mini peptide, 10 analogues were subsequently developed, comprising 12–16 amino acids with two disulfide bridges. Following appropriate folding and mass verification, blocking effects on Navs were investigated. The most promising compound established an IC50 of 34.1 ± 0.01 nm (R2-Midi on Nav1.2). An NMR structure of one of our most promising compounds was determined. Surprisingly, this structure does not reveal an α-helix. We prove that it is possible to design small peptides based on known pharmacophores of μ-conotoxins without losing their potency and selectivity. These data can provide crucial material for further development of conotoxin-based therapeutics. PMID:22773842

  20. Bioinformatics: Cheap and robust method to explore biomaterial from Indonesia biodiversity

    NASA Astrophysics Data System (ADS)

    Widodo

    2015-02-01

    Indonesia has a huge amount of biodiversity, which may contain many biomaterials for pharmaceutical application. These resources potency should be explored to discover new drugs for human wealth. However, the bioactive screening using conventional methods is very expensive and time-consuming. Therefore, we developed a methodology for screening the potential of natural resources based on bioinformatics. The method is developed based on the fact that organisms in the same taxon will have similar genes, metabolism and secondary metabolites product. Then we employ bioinformatics to explore the potency of biomaterial from Indonesia biodiversity by comparing species with the well-known taxon containing the active compound through published paper or chemical database. Then we analyze drug-likeness, bioactivity and the target proteins of the active compound based on their molecular structure. The target protein was examined their interaction with other proteins in the cell to determine action mechanism of the active compounds in the cellular level, as well as to predict its side effects and toxicity. By using this method, we succeeded to screen anti-cancer, immunomodulators and anti-inflammation from Indonesia biodiversity. For example, we found anticancer from marine invertebrate by employing the method. The anti-cancer was explore based on the isolated compounds of marine invertebrate from published article and database, and then identified the protein target, followed by molecular pathway analysis. The data suggested that the active compound of the invertebrate able to kill cancer cell. Further, we collect and extract the active compound from the invertebrate, and then examined the activity on cancer cell (MCF7). The MTT result showed that the methanol extract of marine invertebrate was highly potent in killing MCF7 cells. Therefore, we concluded that bioinformatics is cheap and robust way to explore bioactive from Indonesia biodiversity for source of drug and another pharmaceutical material.

  1. The self-setting properties and in vitro bioactivity of tricalcium silicate.

    PubMed

    Zhao, Wenyuan; Wang, Junying; Zhai, Wanyin; Wang, Zheng; Chang, Jiang

    2005-11-01

    In this study, tricalcium silicate (Ca(3)SiO(5)), as a new promising injectable bioactive material, was employed to investigate its physical and chemical properties for an injectable bioactive cement filler. The workable Ca(3)SiO(5) pastes with a liquid to powder (L/P) ratio of 0.8--.2 mlg(-1)could be injected for 15--60 min (nozzle diameter 2.0mm). The setting process yielded cellular structures with compressive strength of 6.4--20.2 MPa after 2--28 days. The in vitro bioactivity of Ca(3)SiO(5) paste was investigated by soaking in simulated body fluid (SBF) for various periods. The result showed that the Ca(3)SiO(5) paste could induce hydroxyapatite (HA) formation and dissolve slowly in SBF. The result of indirect cytotoxicity evaluation indicated that Ca(3)SiO(5) paste had a stimulatory effect on cell growth in a certain concentration range. The exothermic process showed that Ca(3)SiO(5) had lower heat evolution rate during the hydration as compared to calcium phosphate cement (CPC). Our results indicated that Ca(3)SiO(5) paste was bioactive and dissolvable, and it is a progressive candidate for further investigation as injectable tissue repairing substitute.

  2. Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics.

    PubMed

    Du, Rui Lin; Chang, Jiang; Ni, Si Yu; Zhai, Wan Yin; Wang, Jun Ying

    2006-04-01

    Zinc-containing glass is prepared by the substitution of CaO in 58S bioactive glass with 0.5 and 4 wt% ZnO, and glass-ceramics are obtained by heat-treating the glass at 1,200 C. The bending strength and in vitro bioactivity of the glass and glass-ceramics are evaluated. The results indicate that Zn promotes the crystallization of SiO(2) and wollastonite in glass-ceramics, and proper crystallization can enhance the bending strength of the glass-ceramic. The in vitro results show that ZnO in glass retards the hydroxyapatite (HA) nucleation at the initial stage of simulated body fluid (SBF) soaking, but does not affect the growth of HA after long periods of soaking, and the ionic products of 58S4Z glass can stimulate the proliferation of osteoblast at certain concentrations. Osteoblasts attach well on both glass samples and glass-ceramic samples, but the high Si ion concentration released from glass samples restrains the proliferation of osteoblasts after 3 days of culture. In contrast, osteoblasts show good proliferation on glass-ceramic samples, and ZnO in glass-ceramics promotes the proliferation rate. The results in this study suggest that the glass and glass-ceramics with different ZnO content might be used as bioactive bone implant materials in different applications.

  3. A Critical Review of Bioactive Food Components, and of their Functional Mechanisms, Biological Effects and Health Outcomes.

    PubMed

    Perez-Gregorio, Rosa; Simal-Gandara, Jesus

    2017-01-01

    Eating behaviours are closely related to some medical conditions potentially leading to death such as cancer, cardiovascular disease and diabetes. Healthy eating practices, maintaining a normal weight, and regular physical activity could prevent up to 80% of coronary heart disease, 90% of type-2 diabetes and onethird of all cancers [1]. Over the last two decades, the food industry has invested much effort in research and development of healthier, more nutritious foods. These foods are frequently designated "functional" when they contain nutritional components required for healthy living or "nutraceuticals" when intended to treat or prevent disease or disorders through a variety of bioactive (e.g., antioxidant, antimicrobial, immunomodulatory, hypocholesterolaemic) functions that are performed by functional enzymes, probiotics, prebiotics, fibres, phytosterols, peptides, proteins, isoflavones, saponins or phytic acid, among other substances. Some agricultural and industrial residues have proven to be excellent choices as raw materials for producing bioactive compounds and have been proposed as potentially safe natural sources of antimicrobials and/or antioxidants for the food industry. Functional food ingredients containing bioactive compounds could be used as plant extracts by pharmaceutical and food industries. Bioactive food components influence health outcomes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation.

    PubMed

    Kaur, Gurbinder; Pandey, Om P; Singh, Kulvir; Homa, Dan; Scott, Brian; Pickrell, Gary

    2014-01-01

    Bioactive glass and glass-ceramics are used in bone repair applications and are being developed for tissue engineering applications. Bioactive glasses/Bioglass are very attractive materials for producing scaffolds devoted to bone regeneration due to their versatile properties, which can be properly designed depending on their composition. An important feature of bioactive glasses, which enables them to work for applications in bone tissue engineering, is their ability to enhance revascularization, osteoblast adhesion, enzyme activity and differentiation of mesenchymal stem cells as well as osteoprogenitor cells. An extensive amount of research work has been carried out to develop silicate, borate/borosilicate bioactive glasses and phosphate glasses. Along with this, some metallic glasses have also been investigated for biomedical and technological applications in tissue engineering. Many trace elements have also been incorporated in the glass network to obtain the desired properties, which have beneficial effects on bone remodeling and/or associated angiogenesis. The motivation of this review is to provide an overview of the general requirements, composition, structure-property relationship with hydroxyapatite formation and future perspectives of bioglasses.Attention has also been given to developments of metallic glasses and doped bioglasses along with the techniques used for their fabrication. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  5. [Scintigraphic detection of osteoblast activity after implantation of BAS-0 bioactive glass-ceramic material into long bone defects].

    PubMed

    Sponer, P; Urban, K; Urbanová, E

    2006-06-01

    The aim of the study was to demonstrate, by three-phase bone scintigraphy, radionuclide uptake at the site of defects in long bones filled with the non-resorbable bioactive glass-ceramic material BAS-0 at a long follow-up. Twenty patients, 14 men and 6 women, operated on between 1990 and 2000 for benign bone tumors or tumor-like lesions localized in the femur, tibia or humerus were comprised in the study. Their average age at the time of operation was 14 years (range, 8 to 24). The diagnoses based on histological examination included juvenile bone cysts in 11, aneurysmal bone cyst in five, non-ossifying fibroma in two, and fibrous dysplasia in two patients. The lesions were localized in the femur, humerus and tibia in 11, five and four patients, respectively. The metaphysis was affected in eight and the diaphysis in 12 patients. Clinical, radiological and scintigraphic examinations were carried out at 2 to 12 years (7 years on average) after surgery. The clinical evaluation included subjective complaints and objective findings. Radiographs were made in standard projections and the osteo-integration of glass-ceramic material was investigated. Three-phase bone scans were made and the healthy and the affected limbs in each patient were compared by means of an index. Radionuclide uptake was considered normal when the index value was equal to 1.0, mildly increased at an index value of 1.2, moderately increased at 1.2-1.5 and markedly increased at an index value higher than 1.5. The clinical evaluation showed that, in the patients with glass-ceramic filling of metaphyses, six had no subjective complaints and two reported transient pain. In the patients with implants in diaphyses, subjective complaints were recorded in nine and no complaints in three patients. No inflammatory changes in soft tissues were found. No restriction in weightbearing of the limb treated was reported by any of the patients. On radiography, 18 patients were free from any disease residue or recurrence. Two patients had a residual defect. The bioactive glass-ceramic material BAS-0 was completely incorporated in all patients. On three-phase bone scans, radionuclide distribution on the flow phase and soft tissue phase was symmetrical in both limbs of all patients. For the metaphyseal location of implants, the delayed images demonstrated physiological radionuclide distribution in one patient, mildly increased distribution (index up to 1.2) in four, increased uptake (index up to 1.5) in two patients, and highly increased uptake (index above 1.5) in one patient. For the diaphyseal location of implants, the delayed scans demonstrated slightly increased radionuclide distribution in two, markedly increased in two and highly increased uptake in eight patients. The tissue during incorporation of a non-resorbable synthetic material is influenced by stress-shielding. This changes local mechanical signals, which has a negative effect on the adjacent bone tissue. Stress accumulating at the interface of a rigid implant and bone tissue may result in pain, and is detected by scintigraphy as an increased nucleotide uptake, particularly in diaphyseal grafts. This paper presents problems associated with implantation of the non-resorbable bioactive glass-ceramic material BAS-0 in the treatment of diaphyseal defects of long bones. The results show that, for filling of the defects described herein, non-resorbable glass-ceramic materials are not suitable.

  6. Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer.

    PubMed

    Corrêa, Rúbia Carvalho Gomes; de Souza, Aloisio Henrique Pereira; Calhelha, Ricardo C; Barros, Lillian; Glamoclija, Jasmina; Sokovic, Marina; Peralta, Rosane Marina; Bracht, Adelar; Ferreira, Isabel C F R

    2015-07-01

    Pleurotus ostreatoroseus is a Brazilian edible mushroom whose chemical characterization and bioactivity still remain underexplored. In this study, the hydrophilic and lipophilic compounds as well as the antioxidant, anti-inflammatory and antimicrobial activities of formulations (ethanol extracts) prepared with its fruiting bodies and submerged culture mycelia were compared. The bioactive formulations contain at least five free sugars, four organic acids, four phenolic compounds and two tocopherols. The fruiting body-based formulation revealed higher reducing power, DPPH scavenging activity, β-carotene bleaching inhibition and lipid peroxidation inhibition in brain homogenates than the mycelium-based preparation, as well as higher anti-inflammatory and antimicrobial activities. The absence of hepatotoxicity was confirmed in porcine liver primary cells. These functional responses can be related to the levels of bioactive components including phenolic acids, organic acids and tocopherols.

  7. Bioactive Hydrogels Made from Step-Growth Derived PEG-Peptide Macromers

    PubMed Central

    Miller, Jordan S.; Shen, Colette J.; Legant, Wesley R.; Baranski, Jan D.; Blakely, Brandon L.; Chen, Christopher S.

    2010-01-01

    Synthetic hydrogels based on poly(ethylene glycol) (PEG) have been used as biomaterials for cell biology and tissue engineering investigations. Bioactive PEG-based gels have largely relied on heterobifunctional or multi-arm PEG precursors that can be difficult to synthesize and characterize or expensive to obtain. Here, we report an alternative strategy, which instead uses inexpensive and readily available PEG precursors to simplify reactant sourcing. This new approach provides a robust system in which to probe cellular interactions with the microenvironment. We used the step-growth polymerization of PEG diacrylate (PEGDA, 3400 Da) with bis-cysteine matrix metalloproteinase (MMP)-sensitive peptides via Michael-type addition to form biodegradable photoactive macromers of the form acrylate-PEG-(peptide-PEG)m-acrylate. The molecular weight (MW) of these macromers is controlled by the stoichiometry of the reaction, with a high proportion of resultant macromer species greater than 500 kDa. In addition, the polydispersity of these materials was nearly identical for three different MMP-sensitive peptide sequences subjected to the same reaction conditions. When photopolymerized into hydrogels, these high MW materials exhibit increased swelling and sensitivity to collagenase-mediated degradation as compared to previously published PEG hydrogel systems. Cell-adhesive acrylate-PEG-CGRGDS was synthesized similarly and its immobilization and stability in solid hydrogels was characterized with a modified Lowry assay. To illustrate the functional utility of this approach in a biological setting, we applied this system to develop materials that promote angiogenesis in an ex vivo aortic arch explant assay. We demonstrate the formation and invasion of new sprouts mediated by endothelial cells into the hydrogels from embedded embryonic chick aortic arches. Furthermore, we show that this capillary sprouting and three-dimensional migration of endothelial cells can be tuned by engineering the MMP-susceptibility of the hydrogels and the presence of functional immobilized adhesive ligands (CGRGDS vs. CGRGES peptide). The facile chemistry described and significant cellular responses observed suggest the usefulness of these materials in a variety of in vitro and ex vivo biologic investigations, and may aid in the design or refinement of material systems for a range of tissue engineering approaches. PMID:20138664

  8. Functionally graded bioactive glass coating on magnesia partially stabilized zirconia (Mg-PSZ) for enhanced biocompatibility.

    PubMed

    Rahaman, Mohamed N; Li, Yadong; Bal, B Sonny; Huang, Wenhai

    2008-06-01

    The coating of magnesia partially stabilized zirconia (Mg-PSZ) with a bioactive glass was investigated for enhancing the bioactivity and bone-bonding ability of Mg-PSZ orthopedic implants. Individual coatings of three different bioactive glasses were prepared by depositing a concentrated suspension of the glass particles on Mg-PSZ substrates, followed by sintering at temperatures between 750 degrees C and 850 degrees C. Two silicate-based glass compositions (designated 13-93 and 6P68), and a borosilicate glass composition (H12) were investigated. The microstructure and adhesive strength of the coatings were characterized, and the in vitro bioactivity of the glasses was compared by measuring their conversion kinetics to hydroxyapatite in an aqueous phosphate solution at 37 degrees C. The 6P68 glass provided the highest adhesive strength (40 +/- 2 MPa) but showed very limited bioactivity, whereas the H12 glass had lower adhesive strength (18 +/- 2 MPa) but the highest bioactivity. A functionally graded coating, consisting of a 6P68 interfacial layer and an H12 surface layer, was developed to provide a coating with high adhesive strength coupled with rapid in vitro bioactivity.

  9. Bioactive gel-glasses with distinctly different compositions: Bioactivity, viability of stem cells and antibiofilm effect against Streptococcus mutans.

    PubMed

    Siqueira, Renato L; Maurmann, Natasha; Burguêz, Daniela; Pereira, Daniela P; Rastelli, Alessandra N S; Peitl, Oscar; Pranke, Patricia; Zanotto, Edgar D

    2017-07-01

    In this study, an evaluation was performed to determine the in vitro bioactivity, viability of stem cells, and antibiofilm effect against Streptococcus mutans of two bioactive gel-glass 60SiO 2 -36CaO-4P 2 O 5 (BG-A) and 80SiO 2 -15CaO-5P 2 O 5 (BG-B) compositions. Both materials were bioactive and undergo the formation of hydroxycarbonate apatite (HCA) on their surfaces when immersed in simulated body fluid (SBF) after 12h, but the BG-A composition showed a more significant formation rate. The pH variation of the samples during the test in SBF indicated that an abrupt change had occurred for the BG-A composition within the first few hours, and the pH was subsequently maintained over time, supporting its stronger antibacterial effects against S. mutans. For the in vitro viability test using mesenchymal stem cells (MSCs), the BG-B showed significantly higher cell viability compared to the BG-A composition at concentrations of 0.125, 1.25 and 12.50mg/mL for 2days. These results indicated that the higher solubility of the BG-A glass favors bioactivity and antibacterial effects. However, as a result of rapid degradation, the increase in the concentration of ions in the cell culture medium was not favorable for cell proliferation. Thus, by varying the composition of glasses, and consequently their dissolution rate, it is possible to favor bioactivity, antimicrobial activity or stem cell proliferation for a particular application of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform

    PubMed Central

    Ramasamy, Sakthivel; Bennet, Devasier; Kim, Sanghyo

    2014-01-01

    This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS) system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered. PMID:25525360

  11. Bioactive technologies for hemocompatibility.

    PubMed

    Tanzi, Maria Cristina

    2005-07-01

    The contact of any biomaterial with blood gives rise to multiple pathophysiologic defensive mechanisms such as activation of the coagulation cascade, platelet adhesion and activation of the complement system and leukocytes. The reduction of these events is of crucial importance for the successful clinical performance of a cardiovascular device. This can be achieved by improving the hemocompatibility of the device materials or by pharmacologic inhibition of the key enzymes responsible for the activation of the cascade reactions, or a combination of both. Different strategies have been developed during the last 20 years, and this article attempts to review the most significant, by dividing them into three main categories: bioinert or biopassive, biomimetic and bioactive strategies. With regard to bioactive strategies, particular attention is given to heparin immobilization and recent related technologies. References from both scientific literature and commercial sites are provided. Future development and studies are suggested.

  12. [Multiple emulsions; bioactive compounds and functional foods].

    PubMed

    Jiménez-Colmenero, Francisco

    2013-01-01

    The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  13. Bioactivity and structural properties of nanostructured bulk composites containing Nb2O5 and natural hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Bonadio, T. G. M.; Sato, F.; Medina, A. N.; Weinand, W. R.; Baesso, M. L.; Lima, W. M.

    2013-06-01

    In this work, we investigate the bioactivity and structural properties of nanostructured bulk composites that are composed of Nb2O5 and natural hydroxyapatite (HAp) and are produced by mechanical alloying and powder metallurgy. X-ray diffraction and Raman spectroscopy data showed that the milling process followed by a heat treatment at 1000 °C induced chemical reactions along with the formation of the CaNb2O6, PNb9O25 and Ca3(PO4)2 phases. Rietveld refinement indicated significant changes in each phase weight fraction as a function of HAp concentration. These changes influenced the in vitro bioactivity of the material. XRD and FTIR analyses indicated that the composites exhibited bioactivity characteristics by forming a carbonated apatite layer when the composites were immersed in a simulated body fluid. The formed layers had a maximum thickness of 13 μm, as measured by confocal Raman spectroscopy and as confirmed by scanning electron microscopy. The results of this work suggest that the tested bulk composites are promising biomaterials for use in implants.

  14. A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants.

    PubMed

    Maçon, Anthony L B; Kim, Taek B; Valliant, Esther M; Goetschius, Kathryn; Brow, Richard K; Day, Delbert E; Hoppe, Alexander; Boccaccini, Aldo R; Kim, Ill Yong; Ohtsuki, Chikara; Kokubo, Tadashi; Osaka, Akiyoshi; Vallet-Regí, Maria; Arcos, Daniel; Fraile, Leandro; Salinas, Antonio J; Teixeira, Alexandra V; Vueva, Yuliya; Almeida, Rui M; Miola, Marta; Vitale-Brovarone, Chiara; Verné, Enrica; Höland, Wolfram; Jones, Julian R

    2015-02-01

    The aim of this study was to propose and validate a new unified method for testing dissolution rates of bioactive glasses and their variants, and the formation of calcium phosphate layer formation on their surface, which is an indicator of bioactivity. At present, comparison in the literature is difficult as many groups use different testing protocols. An ISO standard covers the use of simulated body fluid on standard shape materials but it does not take into account that bioactive glasses can have very different specific surface areas, as for glass powders. Validation of the proposed modified test was through round robin testing and comparison to the ISO standard where appropriate. The proposed test uses fixed mass per solution volume ratio and agitated solution. The round robin study showed differences in hydroxyapatite nucleation on glasses of different composition and between glasses of the same composition but different particle size. The results were reproducible between research facilities. Researchers should use this method when testing new glasses, or their variants, to enable comparison between the literature in the future.

  15. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  16. Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants.

    PubMed

    Ulum, Mokhamad F; Nasution, Ahmad K; Yusop, Abdul H; Arafat, Andril; Kadir, Mohammed Rafiq A; Juniantito, Vetnizah; Noviana, Deni; Hermawan, Hendra

    2015-10-01

    Iron-bioceramic composites have been developed as biodegradable implant materials with tailored degradation behavior and bioactive features. In the current work, in vivo bioactivity of the composites was comprehensively studied by using sheep animal model. Five groups of specimens (Fe-HA, Fe-TCP, Fe-BCP composites, and pure-Fe and SS316L as controls) were surgically implanted into medio proximal region of the radial bones. Real-time ultrasound analysis showed a decreased echo pattern at the peri-implant biodegradation site of the composites indicating minimal tissue response during the wound healing process. Peripheral whole blood biomarkers monitoring showed a normal dynamic change of blood cellular responses and no stress effect was observed. Meanwhile, the released Fe ion concentration was increasing along the implantation period. Histological analysis showed that the composites corresponded with a lower inflammatory giant cell count than that of SS316L. Analysis of the retrieved implants showed a thicker degradation layer on the composites compared with pure-Fe. It can be concluded that the iron-bioceramic composites are bioactive and induce a preferable wound healing process. © 2014 Wiley Periodicals, Inc.

  17. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry.

    PubMed

    Zhou, Xiao-Ming; Shimanovich, Ulyana; Herling, Therese W; Wu, Si; Dobson, Christopher M; Knowles, Tuomas P J; Perrett, Sarah

    2015-06-23

    Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions.

  18. Bio-functionalization of biomedical metals.

    PubMed

    Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C

    2017-01-01

    Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions. Copyright © 2016. Published by Elsevier B.V.

  19. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles

    PubMed Central

    MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria

    2014-01-01

    Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023

  20. In vivo outcomes of tissue-engineered osteochondral grafts.

    PubMed

    Bal, B Sonny; Rahaman, Mohamed N; Jayabalan, Prakash; Kuroki, Keiichi; Cockrell, Mary K; Yao, Jian Q; Cook, James L

    2010-04-01

    Tissue-engineered osteochondral grafts have been synthesized from a variety of materials, with some success at repairing chondral defects in animal models. We hypothesized that in tissue-engineered osteochondral grafts synthesized by bonding mesenchymal stem cell-loaded hydrogels to a porous material, the choice of the porous scaffold would affect graft healing to host bone, and the quality of cell restoration at the hyaline cartilage surface. Bone marrow-derived allogeneic mesenchymal stem cells were suspended in hydrogels that were attached to cylinders of porous tantalum metal, allograft bone, or a bioactive glass. The tissue-engineered osteochondral grafts, thus created were implanted into experimental defects in rabbit knees. Subchondral bone restoration, defect fill, bone ingrowth-implant integration, and articular tissue quality were compared between the three subchondral materials at 6 and 12 weeks. Bioactive glass and porous tantalum were superior to bone allograft in integrating to adjacent host bone, regenerating hyaline-like tissue at the graft surface, and expressing type II collagen in the articular cartilage.

  1. Predicting hepatotoxicity using ToxCast in vitro bioactivity and ...

    EPA Pesticide Factsheets

    Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors then used supervised machine learning to predict their hepatotoxic effects.Results: A set of 677 chemicals were represented by 711 in vitro bioactivity descriptors (from ToxCast assays), 4,376 chemical structure descriptors (from QikProp, OpenBabel, PADEL, and PubChem), and three hepatotoxicity categories (from animal studies). Hepatotoxicants were defined by rat liver histopathology observed after chronic chemical testing and grouped into hypertrophy (161), injury (101) and proliferative lesions (99). Classifiers were built using six machine learning algorithms: linear discriminant analysis (LDA), Naïve Bayes (NB), support vector classification (SVM), classification and regression trees (CART), k-nearest neighbors (KNN) and an ensemble of classifiers (ENSMB). Classifiers of hepatotoxicity were built using chemical structure, ToxCast bioactivity, and a hybrid representation. Predictive performance was evaluated using 10-fold cross-validation testing and in-loop, filter-based, feature subset selection. Hybrid classifiers had the best balanced accuracy for predicting hypertrophy (0.78±0.08), injury (0.73±0.10) and proliferative lesions (0.72±0.09). Though chemical and bioactivity class

  2. Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor

    PubMed Central

    Abdullah Zawawi, Muhammad Redha; Ahmad, Muhamad Aizuddin; Jaganath, Indu Bala

    2017-01-01

    The inhibition of dipeptidyl peptidase-IV (DPPIV) is a popular route for the treatment of type-2 diabetes. Commercially available gliptin-based drugs such as sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin were specifically developed as DPPIV inhibitors for diabetic patients. The use of Gynura bicolor in treating diabetes had been reported in various in vitro experiments. However, an understanding of the inhibitory actions of G. bicolor bioactive compounds on DPPIV is still lacking and this may provide crucial information for the development of more potent and natural sources of DPPIV inhibitors. Evaluation of G. bicolor bioactive compounds for potent DPPIV inhibitors was computationally conducted using Lead IT and iGEMDOCK software, and the best free-binding energy scores for G. bicolor bioactive compounds were evaluated in comparison with the commercial DPPIV inhibitors, sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin. Drug-likeness and absorption, distribution, metabolism, and excretion (ADME) analysis were also performed. Based on molecular docking analysis, four of the identified bioactive compounds in G. bicolor, 3-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, and trans-5-p-coumaroylquinic acid, resulted in lower free-binding energy scores when compared with two of the commercially available gliptin inhibitors. The results revealed that bioactive compounds in G. bicolor are potential natural inhibitors of DPPIV. PMID:28932239

  3. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure-activity relationship.

    PubMed

    Wang, Hui; Jiang, Mingyue; Li, Shujun; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-09-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure-activity relationships (QSARs) for CAAS compounds against Aspergillus niger ( A. niger ) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models ( R 2  = 0.9346 for A. niger , R 2  = 0.9590 for P. citrinum, ) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi.

  4. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    PubMed Central

    Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758

  5. BIOPEP database and other programs for processing bioactive peptide sequences.

    PubMed

    Minkiewicz, Piotr; Dziuba, Jerzy; Iwaniak, Anna; Dziuba, Marta; Darewicz, Małgorzata

    2008-01-01

    This review presents the potential for application of computational tools in peptide science based on a sample BIOPEP database and program as well as other programs and databases available via the World Wide Web. The BIOPEP application contains a database of biologically active peptide sequences and a program enabling construction of profiles of the potential biological activity of protein fragments, calculation of quantitative descriptors as measures of the value of proteins as potential precursors of bioactive peptides, and prediction of bonds susceptible to hydrolysis by endopeptidases in a protein chain. Other bioactive and allergenic peptide sequence databases are also presented. Programs enabling the construction of binary and multiple alignments between peptide sequences, the construction of sequence motifs attributed to a given type of bioactivity, searching for potential precursors of bioactive peptides, and the prediction of sites susceptible to proteolytic cleavage in protein chains are available via the Internet as are other approaches concerning secondary structure prediction and calculation of physicochemical features based on amino acid sequence. Programs for prediction of allergenic and toxic properties have also been developed. This review explores the possibilities of cooperation between various programs.

  6. New mixes based on collagen extracts with bioactive properties, for treatment of seeds in sustainable agriculture.

    PubMed

    Gaidau, Carmen; Niculescu, Mihaela; Stepan, Emil; Epure, Doru-Gabriel; Gidea, Mihai

    2013-01-01

    The world's population, areas intended for the production of bio-mass and bio-fuels and the food demand of mankind are on a continuous ascending trend. In this context, an increased efficiency in obtaining large and steady productions, in compliance with the requirements of sustainable development of the agricultural eco-system, is a priority. To be effective, the seed treatment will fulfill the following requirements: shall disinfect and protect the seeds against the pests and pathogen agents found in the soil, shall ensure the system protection, shall not pollute the soil, water and environment, shall have no remnant effect onto the environment and onto the crops and shall be bio-degradable, easy to transport and to use. This paper aims at presenting new collagen based materials for cereal seed treatment, which generates an increase of the quality and protection indicators for treated seeds. Creation of a new and advanced technology for treatment of cereal seeds, by using pesticide-collagen hydrolysate mixes has the objectives of increasing seed quality indexes; reducing pesticide consumption, which will in turn decrease environmental pollution and the cost of treatment for cereal seeds; achieving a better management of resources; reducing production expenses while preserving the environment. The technologies developed for protein raw material processing and characteristics of collagen hydrolysates with bioactive properties are presented. The future route for ecological treatment of seeds is the use of microencapsulated plant extracts (thyme and cinnamon essential oils) with insecticidal and antifungal properties in a shell made using collagen hydrolysate.

  7. Safety and efficacy evaluation of gelatin-based nanoparticles associated with UV filters.

    PubMed

    Oliveira, Camila Areias de; Dario, Michelli Ferrera; Sarruf, Fernanda Daud; Mariz, Inês Fátima Afonso; Velasco, Maria Valéria Robles; Rosado, Catarina; Baby, André Rolim

    2016-04-01

    The safety and efficacy assessment of nanomaterials is a major concern of industry and academia. These materials, due to their nanoscale size, can have chemical, physical, and biological properties that differ from those of their larger counterparts. The encapsulation of natural ingredients can provide marked improvements in sun protection efficacy. This strategy promotes solubility enhancement of flavonoids and yields an improved active ingredient with innovative physical, physicochemical and functional characteristics. Rutin, a flavonoid, has chemical and functional stability in topical vehicles exerting a synergistic effect in association with ultraviolet (UV) filters. However, the solubility of rutin is a limiting factor. Additionally, this bioactive compound does not have tendency to permeate across the stratum corneum. As an alternative to common synthetic based sunscreens, rutin-entrapped gelatin nanoparticles were designed. The present study investigated the pre-clinical safety of gelatin nanoparticles (GNPs) using an in vitro method and also assessed the clinical safety and efficacy of the association of GNPs with three commonly used chemical UV filters (ethylhexyl dimethyl PABA, ethylhexyl methoxycinnamate and methoxydibenzoylmethane). The non-irritant and adequate safety profile under sun-exposed skin conditions of the nanomaterials and the emulsions qualified the products for clinical efficacy assays. The in vivo results indicated that the GNPs increased the antioxidant protection of the emulsions developed. However, the presence of rutin in the nanosized material did not enhance performance on the SPF test. In conclusion, these findings characterized the nanomaterials as an innovative platform for multifunctional bioactive sunscreens. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Improvement of the titanium implant biological properties by coating with poly (ε-caprolactone)-based hybrid nanocomposites synthesized via sol-gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ε-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of themore » obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.« less

  9. Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks.

    PubMed

    Olivon, Florent; Allard, Pierre-Marie; Koval, Alexey; Righi, Davide; Genta-Jouve, Gregory; Neyts, Johan; Apel, Cécile; Pannecouque, Christophe; Nothias, Louis-Félix; Cachet, Xavier; Marcourt, Laurence; Roussi, Fanny; Katanaev, Vladimir L; Touboul, David; Wolfender, Jean-Luc; Litaudon, Marc

    2017-10-20

    Natural products represent an inexhaustible source of novel therapeutic agents. Their complex and constrained three-dimensional structures endow these molecules with exceptional biological properties, thereby giving them a major role in drug discovery programs. However, the search for new bioactive metabolites is hampered by the chemical complexity of the biological matrices in which they are found. The purification of single constituents from such matrices requires such a significant amount of work that it should be ideally performed only on molecules of high potential value (i.e., chemical novelty and biological activity). Recent bioinformatics approaches based on mass spectrometry metabolite profiling methods are beginning to address the complex task of compound identification within complex mixtures. However, in parallel to these developments, methods providing information on the bioactivity potential of natural products prior to their isolation are still lacking and are of key interest to target the isolation of valuable natural products only. In the present investigation, we propose an integrated analysis strategy for bioactive natural products prioritization. Our approach uses massive molecular networks embedding various informational layers (bioactivity and taxonomical data) to highlight potentially bioactive scaffolds within the chemical diversity of crude extracts collections. We exemplify this workflow by targeting the isolation of predicted active and nonactive metabolites from two botanical sources (Bocquillonia nervosa and Neoguillauminia cleopatra) against two biological targets (Wnt signaling pathway and chikungunya virus replication). Eventually, the detection and isolation processes of a daphnane diterpene orthoester and four 12-deoxyphorbols inhibiting the Wnt signaling pathway and exhibiting potent antiviral activities against the CHIKV virus are detailed. Combined with efficient metabolite annotation tools, this bioactive natural products prioritization pipeline proves to be efficient. Implementation of this approach in drug discovery programs based on natural extract screening should speed up and rationalize the isolation of bioactive natural products.

  10. Marine-Derived Bioactive Peptides for Biomedical Sectors: A Review.

    PubMed

    Ruiz-Ruiz, Federico; Mancera-Andrade, Elena I; Iqbal, Hafiz M N

    2017-01-01

    Marine-based resources such as algae and other marine by-products have been recognized as rich sources of structurally diverse bioactive peptides. Evidently, their structural characteristics including unique amino acid residues are responsible for their biological activity. Several of the above-mentioned marine-origin species show multi-functional bioactivities that are useful for a new discovery and/or reinvention of biologically active ingredients, nutraceuticals and/or pharmaceuticals. Therefore, in recent years, marine-derived bioactive peptides have gained a considerable attention with high-value biomedical and/or pharmaceutical potentials. Furthermore, a wider spectrum of bioactive peptides can be produced through proteolytic-assisted hydrolysis of various marine resources under controlled physicochemical (pH and temperature of the reaction media) environment. Owing to their numerous health-related beneficial effects and therapeutic potential in the treatment and/or prevention of many diseases, such marine-derived bioactive peptides exhibit a wider spectrum of biological activities such as anti-cancerous, anti-proliferative, anti-coagulant, antibacterial, antifungal, and anti-tumor activities among many others. Based on emerging evidence of marine-derived peptide mining, the above-mentioned marine resources contain noteworthy levels of high-value protein. The present review article mainly summarizes the marine-derived bioactive peptides and emphasizing their potential applications in biomedical and/or pharmaceutical sectors of the modern world. In conclusion, recent literature has provided evidence that marine-derived bioactive peptides play a critical role in human health along with many possibilities of designing new functional nutraceuticals and/or pharmaceuticals to clarify potent mechanisms of action for a wider spectrum of diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Influence of 45S5 Bioactive Glass in A Standard Calcium Phosphate Collagen Bone Graft Substitute on the Posterolateral Fusion of Rabbit Spine.

    PubMed

    Pugely, Andrew J; Petersen, Emily B; DeVries-Watson, Nicole; Fredericks, Douglas C

    2017-01-01

    Spinal fusion surgery is an effective but costly treatment for select spinal pathology. Historically iliac crest bone graft (ICBG) has remained the gold standard for achieving successful arthrodesis. Given well-established morbidity autograft harvest, multiple bone graft replacements, void fillers, and extenders have been developed. The objective of this study was to evaluate the in vivo efficacy and safety of two mineralized collagen bone void filler materials similar in composition. Both bone void fillers were composed of hydroxyapatite (HA), tricalcium phosphate (TCP) and bovine collagen. The first test article (Bi-Ostetic bioactive glass foam or "45S5") also contained 45S5 bioactive glass particles while the second test article (Formagraft or "FG") did not. 45S5 and FG were combined with bone marrow aspirate and iliac crest autograft and compared to ICBG in an established posterolateral spine fusion rabbit model. Sixty-nine mature New Zealand White rabbits were divided into 3 test cohorts: ICBG, 45S5, and FG. A Posterolateral fusion model previous validated was utilized to assess fusion efficacy. The test groups were evaluated for spine fusion rate, new bone formation, graft resorption and inflammatory response using radiographic, μCT, biomechanical and histological endpoints at 4, 8 and 12 weeks following implantation. There were 4 clinical complications unrelated to the graft materials and were evenly split between groups (ICBG graft harvest complications; hind limb mobility, chronic pain) and were euthanized. These omissions did not affect the overall outcome of the study. Radiographic scoring of the fusion sites indicated a normal healing response in all test groups, with no adverse reactions and similar progressions of new bone formation observed over time. All groups demonstrated significantly less range of motion in both flexion/extension and lateral bending compared to normal not-fused controls, which supports fusion results observed in the other endpoints. Fusion occurred earlier in the 45S5 group: ICBG 0%, FG 0%, and 45S5 20% at 4 weeks; ICBG 43%, FG 38%, and 45S5 50% at 8 weeks; and ICBG 50%, FG 56%, and 45S5 56% at 12 weeks. Histopathology analysis of the fusion masses, from each test article and time point, indicated an expected normal response for resorbable calcium phosphate (HA/TCP) and collagen graft material. Mild inflammation with macrophage and multinucleated giant cell response to the graft material was evident in all test groups. This study has confirmed the biocompatibility, safety, efficacy and bone healing characteristics of the HA-TCP collagen (with or without 45S5 bioactive glass) composites. The results show that the 3 test groups had equivalent long-term fusion performance and outcome at 12 weeks. However, the presence of 45S5 bioactive glass seemed to accelerate the fusion process as evidenced by the higher fusion rates at 4 and 8 weeks for the HA-TCP-collagen composite containing bioactive glass particles. The results also demonstrate that the HA-TCP-45S5 bioactive glass-collagen composite used as an extender closely mirrors the healing characteristics (i.e. amount and quality of bone) of the 100% autograft group.

  12. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012

    PubMed Central

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-01

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development. PMID:25574736

  13. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  14. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin.

    PubMed

    Aramwit, Pornanong; Ekasit, Sanong; Yamdech, Rungnapha

    2015-10-01

    Silk sericin is recently shown to possess various biological activities for biomedical applications. While various sericin carriers were developed for drug delivery system, very few researches considered sericin as a bioactive molecule itself. In this study, sericin incorporated in the chitosan-based microspheres was introduced as a bioactive molecule and bioactive carrier at the same time. The chitosan/sericin (CH/SS) microspheres at different composition (80/20, 70/30, 60/40, and 50/50) were successfully fabricated using anhydroustri-polyphosphate (TPP) as a polyanionic crosslinker. The microspheres with an average size of 1-4 μm and narrow size distribution were obtained. From FT-IR spectra, the presence of both chitosan and sericin in the microspheres confirmed the occurrence of ionic interaction that crosslink them within the microspheres. We also found that the CH/SS microspheres prepared at 50/50 could encapsulate sericin at the highest percentage (37.28%) and release sericin in the most sustained behavior, possibly due to the strong ionic interaction of the positively charged chitosan and the negatively charged sericin. On the other hand, the composition of CH/SS had no effect on the degradation rate of microspheres. All microspheres continuously degraded and remained around 20% after 14 days of enzymatic degradation. This explained that the ionic crosslinkings between chitosan and sericin could be demolished by the enzyme and hydrolysis. Furthermore, we have verified that all CH/SS microspheres at any concentrations showed non-toxicity to L929 mouse fibroblast cells. Therefore, we suggested that the non-toxic ionic-crosslinked CH/SS microspheres could be incorporated in wound dressing material to achieve the sustained release of sericin for accelerated wound healing.

  15. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe.

    PubMed

    Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul

    2017-03-23

    eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA).

  16. Nano-Carbon-Based Systems for the Delivery of Bioactive Agents:. Pros and Cons

    NASA Astrophysics Data System (ADS)

    Nayak, Tapas R.; Pastorin, Giorgia

    2013-09-01

    Nanotechnology has become a distinctive field of research, aimed to modernize the way scientists have addressed urgent needs and sophisticated problems, towards the achievement of unprecedented discoveries. Amidst the myriad of materials extensively used in the modern society, carbon-based systems seem to embody a significant role especially where endurance and strength are required: carbon nanoparticles, nanotubes, graphite, diamonds and fullerenes et al. In addition to the above advantages, this review also emphasizes some concerns on the carbonnanosystems and which are mainly attributable to the lack of an exhaustive characterization and to the potential hazardous effects deriving from their potential accumulation in the environment and inside the body.

  17. Control over Structure and Function of Peptide Amphiphile Supramolecular Assemblies through Molecular Design and Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Tantakitti, Faifan

    Supramolecular chemistry is a powerful tool to create a material of a defined structure with tunable properties. This strategy has led to catalytically active, bioactive, and environment-responsive materials, among others, that are valuable in applications ranging from sensor technology to energy and medicine. Supramolecular polymers formed by peptide amphiphiles (PAs) have been especially relevant in tissue regeneration due to their ability to form biocompatible structures and mimic many important signaling molecules in biology. These supramolecular polymers can form nanofibers that create networks which mimic natural extracellular matrices. PA materials have been shown to induce growth of blood vessels, bone, cartilage, and nervous tissue, among others. The work described in this thesis not only studied the relationship between molecular structure and functions of PA assemblies, but also uncovered a powerful link between the energy landscape of their supramolecular self-assembly and the ability of PA materials to interact with cells. In chapter 2, it is argued that fabricating fibrous nanostructures with defined mechanical properties and decoration with bioactive molecules is not sufficient to create a material that can effectively communicate with cells. By systemically placing the fibronectin-derived RGDS epitope at increasing distances from the surface of PA nanofibers through a linker of one to five glycine residues, integrin-mediated RGDS signaling was enhanced. The results suggested that the spatial presentation of an epitope on PA nanofibers strongly influences the bioactivity of the PA substrates. In further improving functionality of a PA-based scaffold to effectively direct cell growth and differentiation, chapter 3 explored the use of a cell microcarrier to compartmentalize and simultaneously tune insoluble and soluble signals in a single matrix. PA nanofibers were incorporated at the surface of the microcarrier in order to promote cell adhesion, while a controlled local release of the soluble growth factor bone morphogenetic protein 4 (BMP-4) was realized from the particle's core composed of cross-linked alginate. The alginate-core and PA-shell microparticles were found to allow independent tuning of the bioactivity of a PA and a release of the growth factor for specific signaling to cells. Using microcarriers which encapsulated BMP-4 and coated with RGDS PA nanofibers, it was shown that a control over spatial distribution, proliferation, and osteogenic differentiation of premyoblastic cells on the surface of microcarriers can be effectively achieved. Finally, in drastic contrast to the traditional approach to material development based on altering molecular structure, chapter 4 presents the energy landscapes in which supramolecular assemblies of unique architecture exist in different thermodynamic wells. Experimental results and calculations revealed that the energy landscapes are rooted in competing interactions between PA monomers, namely beta-sheet hydrogen bonds and repulsion among charged groups. Switching off or on the repulsive electrostatic interactions by changing the ionic strength promoted or suppressed the dominant ?-sheet hydrogen bonding interactions respectively. However, the dominant forces can prevail if the assemblies are above a certain size and thereby can exist in a kinetically trapped state. Preparative pathways involving dilution, annealing, and addition of salt were investigated in which the structures belonging to different energy states could be accessed and demonstrated that these energy landscapes involving competitive interactions was applicable not only to PA systems but also to a non-peptide supramolecular system based on pi-orbital overlaps as the dominant attraction among molecules and electrostatic repulsion. In chapter 5, structure and biological function relationships of long or short PA nanofibers are reported, and such fibers were prepared from identical monomers based on knowledge of their energy landscapes described in chapter 4. Biological experiments were performed to compare the cytotoxicity of solutions containing short or long PA assemblies, as well as the ability of PA substrates to support cell adhesion and growth. In one assay, short fibers killed cells faster than long fibers and a study of interactions between lipid membrane and PA fibers suggested that cell death occurred through disruption of cell membrane by intact fibers, as opposed to single PA monomers. In another assay, long fibers induced better cell-spreading than short ones when immobilized on a surface. Mechanical measurements on the PA substrates indicated a higher ability of long fibers to sustain a higher pulling force exerted by cells. In summary, this thesis highlights that function in PA supramolecular materials is not only connected to chemical structure but also to the positions of specific materials within their respective energy landscapes.

  18. Mineral trioxide aggregate: part 2 - a review of the material aspects.

    PubMed

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-03-01

    The purpose of this two-part series is to review the composition, properties, and products of mineral trioxide aggregate (MTA) materials. PubMed and MedLine electronic databases were used to identify scientific papers from January 1991 to May 2010. Based on the selected inclusion criteria, citations were referenced from the scientific peer-reviewed dental literature. Mineral trioxide aggregate is a refined form of the parent compound, Portland cement (PC), and demonstrates a strong biocompatibility due to the high pH level and the material's ability to form hydroxyapatite. Mineral trioxide aggregate materials provide better microleakage protection than traditional endodontic materials as observed in findings from dye-leakage, fluid-filtration, protein-leakage, and bacterial penetration-leakage studies and has been recognized as a bioactive material. Various MTA commercial products are available, including gray mineral trioxide aggregate (GMTA), white mineral trioxide aggregate (WMTA), and mineral trioxide aggregate-Angelus (AMTA). Although these materials are indicated for various dental uses and applications, long-term in-vivo clinical studies are needed. Part 1 of this article highlighted and discussed the composition and characteristics of the material. Part 2 provides an overview of commercially available MTA materials.

  19. A multifunctional cotton fabric using TiO2 and PCMs: introducing thermal comfort and self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Scacchetti, F. A. P.; Pinto, E.; Soares, G.

    2017-10-01

    The development of materials with multiple functionalities is a market imperative that places new challenges on textile processing. The purpose of this study was to establish the conditions to obtain a cotton material that is comfortable, with self-cleaning and antimicrobial properties. For this purpose, microcapsules of phase change materials (mPCM) and titanium dioxide nanoparticles (TiO2 NP) were applied. The resulting fabrics were characterized with resource to infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), contact angle and scanning electron microscopy (SEM). The self-cleaning properties of treated fabrics were also analysed based on the photocatalytic ability of coated fabrics. Therefore, the decomposition of methyl orange (MO) and the degradation of red wine and curry spots under the irradiation of a solar simulator were analysed. Thus, the incorporation of TiO2 particles into the cotton fabric promoted self-cleaning and antibacterial characteristics, but the presence of PCM combined with TiO2 increases the bioactivity of materials.

  20. Osteogenic differentiation of 3D cultured mesenchymal stem cells induced by bioactive peptides.

    PubMed

    Lukasova, Vera; Buzgo, Matej; Sovkova, Vera; Dankova, Jana; Rampichova, Michala; Amler, Evzen

    2017-08-01

    Bioactive peptides derived from receptor binding motifs of native proteins are a potent source of bioactive molecules that can induce signalling pathways. These peptides could substitute for osteogenesis promoting supplements. The work presented here compares three kinds of bioactive peptides derived from collagen III, bone morphogenetic protein 7 (BMP-7) and BMP-2 with their potential osteogenic activity on the model of porcine mesenchymal stem cells (pMSCs). pMSCs were cultured on electrospun polycaprolactone nanofibrous scaffolds with different concentrations of the bioactive peptides without addition of any osteogenic supplement. Analysis of pMSCs cultures included measurement of the metabolic activity and proliferation, immunofluorescence staining and also qPCR. Results showed no detrimental effect of the bioactive peptides to cultured pMSCs. Based on qPCR analysis, the bioactive peptides are specific for osteogenic differentiation with no detectable expression of collagen II. Our results further indicate that peptide derived from BMP-2 protein promoted the expression of mRNA for osteocalcin (OCN) and collagen I significantly compared to control groups and also supported deposition of OCN as observed by immunostaining method. The data suggest that bioactive peptide with an amino acid sequence of KIPKASSVPTELSAISTLYL derived from BMP-2 protein was the most potent for triggering osteogenic differentiation of pMSCs. © 2017 John Wiley & Sons Ltd.

  1. Designer biomaterials for mechanobiology

    NASA Astrophysics Data System (ADS)

    Li, Linqing; Eyckmans, Jeroen; Chen, Christopher S.

    2017-12-01

    Biomaterials engineered with specific bioactive ligands, tunable mechanical properties and complex architecture have emerged as powerful tools to probe cell sensing and response to physical properties of their material surroundings, and ultimately provide designer approaches to control cell function.

  2. Encapsulation with structured triglycerides

    USDA-ARS?s Scientific Manuscript database

    Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...

  3. Corrosion resistance and in-vitro bioactivity of BaO containing Na2O-CaO-P2O5 phosphate glass-ceramic coating prepared on 316 L, duplex stainless steel 2205 and Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-03-01

    The phosphate glass with composition 11Na2O-15BaO-29CaO-45P2O5 was coated on biomedical implant materials such as stainless steel 316 L, duplex stainless steel (DSS) 2205 and Ti6Al4V alloy by thermal enamelling method. The structural properties and composition of glass coated substrates were studied by x-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) analysis. The coatings were partially crystalline in nature with porous structure and pore size varied from micro to nanometer range. The polarization curve was obtained for uncoated and coated substrates from electrochemical corrosion test which was conducted at 37 °C in Hank’s balanced salt solution (HBSS). The corrosion resistance of 316 L substrate increased after coating, whereas it decreased in case of DSS 2205 and Ti6Al4V. The XRD and SEM/EDS studies indicated the bioactive hydroxyapatite (HAp) layer formation on all the coated surfaces after electrochemical corrosion test, which improved the corrosion resistance. The observed electrochemical corrosion behavior can be explained based on protective HAp layer formation, composition and diffusion of ions on glass coated surfaces. The in-vitro bioactivity test was carried out at 37 °C in HBS solution for 14 days under static conditions for uncoated and coated substrates. pH and ion release rate measurements from the coated samples were conducted to substantiate the electrochemical corrosion test. The lower ion release rates of Na+ and Ca2+ from coated 316 L supported its higher electrochemical corrosion resistance among coated samples. Among the uncoated substrates, DSS showed higher electrochemical corrosion resistance. Amorphous calcium-phosphate (ACP) layer formation on all the coated substrates after in-vitro bioactivity test was confirmed by XRD, SEM/EDS and ion release measurements. The present work is a comparative study of corrosion resistance and bioactivity of glass coated and uncoated biomedical implants such as 316 L, DSS and Ti6Al4V.

  4. A monoclonal antibody targeting amyloid β (Aβ) restores complement factor I bioactivity: Potential implications in age-related macular degeneration and Alzheimer's disease.

    PubMed

    Lashkari, Kameran; Teague, Gianna; Chen, Hong; Lin, Yong-Qing; Kumar, Sanjay; McLaughlin, Megan M; López, Francisco J

    2018-01-01

    Activation of the alternative complement cascade has been implicated in the pathogenesis of age related macular degeneration (AMD) and Alzheimer's disease (AD). Amyloid β (Aβ), a component of drusen, may promote complement activation by inhibiting CFI bioactivity. We determined whether Aβ reduced CFI bioactivity and whether antibodies against Aβ including a monoclonal antibody, GSK933776 could restore CFI bioactivity. We also measured CFI bioactivity in plasma of subjects with AMD and AD. In support of the GSK933776 development program in AMD (geographic atrophy), we developed a quantitative assay to measure CFI bioactivity based on its ability to cleave C3b to iC3b, and repeated it in presence or absence of Aβ and anti-Aβ antibodies. Using this assay, we measured CFI bioactivity in plasma of 194 subjects with AMD, and in samples from subjects with AD that had been treated with GSK933776 as part of the GSK933776 development program in AD. Aβ reduced the CFI bioactivity by 5-fold and pre-incubation with GSK933776 restored CFI bioactivity. In subjects with AMD, plasma CFI levels and bioactivity were not significantly different from non-AMD controls. However, we detected a positive linear trend, suggesting increasing activity with disease severity. In subjects with AD, we observed a 10% and 27% increase in overall CFI bioactivity after treatment with GSK933776 during the second and third dose. Our studies indicate that CFI enzymatic activity can be inhibited by Aβ and be altered in proinflammatory diseases such as AMD and AD, in which deposition of Aβ and activation of the alternative complement cascade are believed to play a key role in the disease process.

  5. Essential oils: extraction, bioactivities, and their uses for food preservation.

    PubMed

    Tongnuanchan, Phakawat; Benjakul, Soottawat

    2014-07-01

    Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products. © 2014 Institute of Food Technologists®

  6. Development of a bioactive glass-polymer composite for wound healing applications.

    PubMed

    Moura, D; Souza, M T; Liverani, L; Rella, G; Luz, G M; Mano, J F; Boccaccini, A R

    2017-07-01

    This study reports the production and characterization of a composite material for wound healing applications. A bioactive glass obtained by sol-gel process and doped with two different metal ions was investigated. Silver (Ag) and cobalt (Co) were chosen due to their antibacterial and angiogenic properties, respectively, very beneficial in the wound healing process. Poly(ε-caprolactone) (PCL) fibers were produced by electrospinning (ES) from a polymeric solution using acetone as a solvent. After optimization of the ES parameters, two main suspensions were prepared, namely: PCL containing bioactive glass nanoparticles (BG-NP) and PCL with Ag 2 O and CoO doped BG-NP (DP BG-NP), which were processed with different concentrations of BG-NP (0.25%, 0.5% and 0.75wt%). The composite membranes were characterized in terms of morphology, fiber diameter, weight loss, mineralization potential and mechanical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Biodegradable/biocompatible coated metal implants for orthopedic applications.

    PubMed

    Saleh, Mohamed M; Touny, A H; Al-Omair, Mohammed A; Saleh, M M

    2016-05-12

    Biocompatible metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Although metals and their alloys are widely and successfully used in producing biomedical implants due to their good mechanical properties and corrosion resistance, they have a lack in bioactivity. Therefore coating of the metal surface with calcium phosphates (CaP) is a benign way to achieve well bioactivity and get controlled corrosion properties. The biocompatibility and bioactivity calcium phosphates (CaP) in bone growth were guided them to biomedical treatment of bone defects and fractures. Many techniques have been used for fabrication of CaP coatings on metal substrates such as magnesium and titanium. The present review will focus on the synthesis of CaP and their relative forms using different techniques especially electrochemical techniques. The latter has always been known of its unique way of optimizing the process parameters that led to a control in the structure and characteristics of the produced materials.

  8. Characterization and antibacterial properties of porous fibers containing silver ions

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-11-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  9. Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface

    PubMed Central

    Ilie, Ioana; Ilie, Razvan; Mocan, Teodora; Bartos, Dana; Mocan, Lucian

    2012-01-01

    During the last decade, due to advances in functionalization chemistry, novel nanobiomaterials with applications in tissue engineering and regenerative medicine have been developed. These novel materials with their unique physical and chemical properties are bioactive hierarchical structures that hold great promise for future development of human tissues. Thus, various nanomaterials are currently being intensively explored in the directed differentiation of stem cells, the design of novel bioactive scaffolds, and new research avenues towards tissue regeneration. This paper illustrates the latest achievements in the applications of nanotechnology in tissue engineering in the field of regenerative medicine. PMID:22619557

  10. Silk sericin: A versatile material for tissue engineering and drug delivery.

    PubMed

    Lamboni, Lallepak; Gauthier, Mario; Yang, Guang; Wang, Qun

    2015-12-01

    Sericin is an inexpensive glycoprotein obtained as a by-product in the silk industry. Its variable amino acid composition and diverse functional groups confer upon it attractive bioactive properties, which are particularly interesting for biomedical applications. Because of its antioxidant character, moisturizing ability, and mitogenic effect on mammalian cells, sericin is useful in cell culture and tissue engineering. Its positive effects on keratinocytes and fibroblasts have led to the development of sericin-based biomaterials for skin tissue repair, mainly as wound dressings. Additionally, sericin can be used for bone tissue engineering owing to its ability to induce nucleation of bone-like hydroxyapatite. Stable silk sericin biomaterials, such as films, sponges, and hydrogels, are prepared by cross-linking, ethanol precipitation, or blending with other polymers. Sericin may also be employed for drug delivery because its chemical reactivity and pH-responsiveness facilitate the fabrication of nano- and microparticles, hydrogels, and conjugated molecules, improving the bioactivity of drugs. Here, we summarized the recent advancements in the study of silk sericin for application in tissue engineering and drug delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests

    PubMed Central

    Efremova, Ludmila V.; Vasilchenko, Alexey S.; Rakov, Eduard G.; Deryabin, Dmitry G.

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., “membrane stress”) as a clue to graphene oxide's mechanism of toxicity. PMID:26221608

  12. Nanostructuring Biomaterials with Specific Activities towards Digestive Enzymes for Controlled Gastrointestinal Absorption of Lipophilic Bioactive Molecules.

    PubMed

    Joyce, Paul; Whitby, Catherine P; Prestidge, Clive A

    2016-11-01

    This review describes the development of novel lipid-based biomaterials that modulate fat digestion for the enhanced uptake of encapsulated lipophilic bioactive compounds (e.g. drugs and vitamins). Specific focus is directed towards analysing how key material characteristics affect the biological function of digestive lipases and manipulate lipolytic digestion. The mechanism of lipase action is a complex, interfacial process, whereby hydrolysis can be controlled by the ability for lipase to access and adsorb to the lipid-in-water interface. However, significant conjecture exists within the literature regarding parameters that influence the activities of digestive lipases. Important findings from recent investigations that strategically examined the interplay between the interfacial composition of the lipid microenvironment and lipolysis kinetics in simulated biophysical environments are presented. The correlation between lipolysis and the rate of solubilisation and absorption of lipophilic compounds in the gastrointestinal tract (GIT) is detailed. Greater insights into the mechanism of lipase action have provided a new approach for designing colloidal carriers that orally deliver poorly soluble compounds, directly impacting the pharmaceutical and food industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biological Effects of Spirulina (Arthrospira) Biopolymers and Biomass in the Development of Nanostructured Scaffolds

    PubMed Central

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2014-01-01

    Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatty acids, minerals, oligoelements, and sterols. Some of these compounds are bioactive and have anti-inflammatory, antibacterial, antioxidant, and antifungal properties. These compounds can be used in tissue engineering, the interdisciplinary field that combines techniques from cell science, engineering, and materials science and which has grown in importance over the past few decades. Spirulina biomass can be used to produce polyhydroxyalkanoates (PHAs), biopolymers that can substitute synthetic polymers in the construction of engineered extracellular matrices (scaffolds) for use in tissue cultures or bioactive molecule construction. This review describes the development of nanostructured scaffolds based on biopolymers extracted from microalgae and biomass from Spirulina production. These scaffolds have the potential to encourage cell growth while reducing the risk of organ or tissue rejection. PMID:25157367

  14. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests.

    PubMed

    Efremova, Ludmila V; Vasilchenko, Alexey S; Rakov, Eduard G; Deryabin, Dmitry G

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., "membrane stress") as a clue to graphene oxide's mechanism of toxicity.

  15. In vitro functional properties of crude extracts and isolated compounds from banana pseudostem and rhizome.

    PubMed

    Kandasamy, Saravanan; Ramu, Sasikala; Aradhya, Somaradhya Mallikarjuna

    2016-03-15

    Pseudostem and rhizome are the significant bio-waste generated (43.48%) from the banana plant post fruit harvest, which are usually left in the plantation or incinerated and wasted. Amounts used in production for consumption are negligible. However, the material has an important part to play in indigenous systems of medicine. Based on the huge volume of bio-waste generated and its traditional medicinal use, it is worth exploiting it as a source of natural bioactive compounds. In the current study, sequential extracts from banana pseudostem (BPS) and rhizome (BR), and isolated compounds including chlorogenic acid, 4-epicyclomusalenone and cycloeucalenol acetate, were tested for their antimicrobial activity, antiplatelet aggregation and cytotoxicity. Isolated compounds and crude extracts exhibited strong antimicrobial activity against a wide range of bacterial and fungal strains, platelet aggregation induced by collagen and cytotoxicity towards human liver cancer (HepG2) cells. Banana plant bio-waste, pseudostem and rhizome may serve as a potential source of multifunctional bioactive compounds and functional ingredient in food and other allied industries. © 2015 Society of Chemical Industry.

  16. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste.

    PubMed

    Vodnar, Dan Cristian; Călinoiu, Lavinia Florina; Dulf, Francisc Vasile; Ştefănescu, Bianca Eugenia; Crişan, Gianina; Socaciu, Carmen

    2017-09-15

    The purpose of the research was to identify the bioactive compounds and to evaluate the antioxidant, antimutagenic and antimicrobial activities of the major Romanian agro-industrial wastes (apple peels, carrot pulp, white- and red-grape peels and red-beet peels and pulp) for the purpose of increasing the wastes' value. Each type of waste material was analyzed without (fresh) and with thermal processing (10min, 80°C). Based on the obtained results, the thermal process enhanced the total phenolic content. The highest antioxidant activity was exhibited by thermally processed red-grape waste followed by thermally processed red-beet waste. Linoleic acid was the major fatty acid in all analyzed samples, but its content decreased significantly during thermal processing. The carrot extracts have no antimicrobial effects, while the thermally processed red-grape waste has the highest antimicrobial effect against the studied strains. The thermally processed red-grape sample has the highest antimutagenic activity toward S. typhimurium TA98 and TA100. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival.

    PubMed

    Liang, Kang; Richardson, Joseph J; Doonan, Christian J; Mulet, Xavier; Ju, Yi; Cui, Jiwei; Caruso, Frank; Falcaro, Paolo

    2017-07-10

    A bioactive synthetic porous shell was engineered to enable cells to survive in an oligotrophic environment. Eukaryotic cells (yeast) were firstly coated with a β-galactosidase (β-gal), before crystallization of a metal-organic framework (MOF) film on the enzyme coating; thereby producing a bioactive porous synthetic shell. The β-gal was an essential component of the bioactive shell as it generated nutrients (that is, glucose and galactose) required for cell viability in nutrient-deficient media (lactose-based). Additionally, the porous MOF coating carried out other vital functions, such as 1) shielding the cells from cytotoxic compounds and radiation, 2) protecting the non-native enzymes (β-gal in this instance) from degradation and internalization, and 3) allowing for the diffusion of molecules essential for the survival of the cells. Indeed, this bioactive porous shell enabled the survival of cells in simulated extreme oligotrophic environments for more than 7 days, leading to a decrease in cell viability less than 30 %, versus a 99 % decrease for naked yeast. When returned to optimal growth conditions the bioactive porous exoskeleton could be removed and the cells regained full growth immediately. The construction of bioactive coatings represents a conceptually new and promising approach for the next-generation of cell-based research and application, and is an alternative to synthetic biology or genetic modification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method.

    PubMed

    Padilla, S; Sánchez-Salcedo, S; Vallet-Regí, M

    2005-10-01

    Hydroxyapatite (HA)/glass mixtures have shown a faster bioactive behaviour than HA itself. On the other hand, the gel-casting method is a simple and reproducible colloidal method to produce ceramic pieces with complex shapes. In this work, pieces of HA/glass mixtures were prepared by the gel-casting method. A study for obtaining concentrated slurries of these mixtures is reported; the bioactivity and biocompatibility of the obtained pieces have been studied also. The influence of pH, dispersant concentration, the content and milling of glass, and the way to prepare the suspensions were investigated. The lowest viscosity and better rheological properties were achieved with the lowest glass content, when the glass was added after the dispersion of the HA powder and when the glass was not milled after calcination. Fluid suspensions with a high solid content (50 vol.%) could be prepared and well-shaped pieces were obtained from these slurries. These pieces showed in vitro bioactive behavior in simulated body fluid; additionally, the proliferation and spreading assays with osteoblastic cells (HOS) showed that the pieces are biocompatible. The results obtained indicate that the gel-casting of HA/glass mixtures produces bioactive and biocompatible pieces with the required shapes. Therefore, these materials could be good candidates for clinical applications and scaffolds for tissue engineering. (c) 2005 Wiley Periodicals, Inc.

  19. Molecular characterisation of a bio-based active packaging containing Origanum vulgare L. essential oil using pyrolysis gas chromatography-mass spectrometry.

    PubMed

    Llana-Ruíz-Cabello, María; Pichardo, Silvia; Jiménez-Morillo, Nicasio T; Bermúdez, José M; Aucejo, Susana; González-Vila, Francisco J; Cameán, Ana M; González-Pérez, José A

    2016-07-01

    Environmental, economic and safety challenges motivate shift towards safer materials for food packaging. New bioactive packaging techniques, i.e. addition of essential plant oils (EOs), are gaining attention by creating barriers to protect products from spoilage. Analytical pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) was used to fingerprint a bioactive polylactic acid (PLA) with polybutylene succinate (PBS) (950 g kg(-1) :50 g kg(-1) ) film extruded with variable quantities (0, 20, 50 and 100 g kg(-1) ) of Origanum vulgare EO. Main PLA:PBS pyrolysis products were lactide enantiomers and monomer units from the major PLA fraction and succinic acid anhydride from the PBS fraction. Oregano EO pyrolysis released cymene, terpinene and thymol/carvacrol peaks as diagnostic peaks for EO. In fact, linear correlation coefficients better than 0.950R(2) value (P < 0.001) were found between the chromatographic area of the diagnostic peaks and the amount of oregano EO in the bioplastic. The pyrolytic behaviour of a bio-based active package polymer including EO is studied in detail. Identified diagnostic compounds provide a tool to monitor the quantity of EO incorporated into the PLA:PBS polymeric matrix. Analytical pyrolysis is proposed as a rapid technique for the identification and quantification of additives within bio-based plastic matrices. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Strategies for designing novel functional meat products.

    PubMed

    Arihara, Keizo

    2006-09-01

    In recent years, much attention has been paid to physiological functions of foods due to increasing concerns for health. Although there has been limited information of physiological functions of meat until recently, several attractive meat-based bioactive compounds, such as carnosine, anserine, l-carnitine, conjugated linoleic acid, have been studied. Emphasizing these activities is one possible approach for improving the health image of meat and developing functional meat products. This article provides potential benefits of representative meat-based bioactive compounds on human health and an overview of meat-based functional products. Strategies for designing novel functional meat products utilizing bioactive peptides and/or probiotic bacteria, is also discussed. This article focuses particularly on the possibility of meat protein-derived bioactive peptides, such as antihypertensive peptides. There are still some hurdles in developing and marketing novel functional meat products since such products are unconventional and consumers in many countries recognize meat and meat products to be bad for health. Along with accumulation of scientific data, there is an urgent need to inform consumers of the exact functional value of meat and meat products including novel functional foods.

  1. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala).

    PubMed

    Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-06-01

    Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.

  2. Bioactivity tests of calcium phosphates with variant molar ratios of main components.

    PubMed

    Pluta, Klaudia; Sobczak-Kupiec, Agnieszka; Półtorak, Olga; Malina, Dagmara; Tyliszczak, Bożena

    2018-03-09

    Calcium phosphates constitute attractive materials of biomedical applications. Among them particular attention is devoted to bioactive hydroxyapatite (HAp) and bioresorbable tricalcium phosphate (TCP) that possess ability to bind to living bones and can be used clinically as important bone substitutes. Notably, in vivo bone bioactivity can be predicted from apatite formation of bone immersed in SBF fluids. Thus, analyses of behavior of calcium phosphates immersed in various bio fluids are of great importance. Recently, stoichiometric HAp and TCP structures have been widely studied, whereas only limited number of publications have been devoted to analyses of nonstoichiometric calcium phosphates. Here, we report physicochemical analysis of natural and synthetic phosphates with variable Ca/P molar ratios. Subsequently attained structures were subjected to incubation in either artificial saliva or Ringer's fluids. Both pH and conductivity of such fluids were determined before and after incubation. Furthermore, the influence of the Ca/P values on such parameters was exemplified. Physicochemical analysis of received materials was performed by XRD and FT-IR characterization techniques. Their potential antibacterial activity and behavior in the presence of infectious microorganisms as Escherichia coli and Staphylococcus aureus was also evaluated. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  3. Effects of dehydration methods on quality characteristics of yellow passion fruit co-products.

    PubMed

    Silva, Neiton C; Duarte, Claudio R; Barrozo, Marcos As

    2017-11-01

    The production and processing of fruits generate a large amount of residues, which are usually disposed of or under-used, representing losses of raw material and energy. The present paper investigates the effect of four dehydration techniques (convective, infrared, microwave and freeze-drying) on yellow passion fruit (Passiflora edulis f. flavicarpa) co-products and the influence of the main variables on moisture removal and bioactive compounds. The compounds analyzed were total phenolics, total flavonoids, ascorbic acid and pectin. The content of phenolics and flavonoids increased after dehydration in all techniques investigated and the process temperatures directly affected the ascorbic acid content. Microwave dehydration showed the best results for most bioactive compounds analyzed, if performed in suitable process conditions. However, the highest levels of pectin content were obtained by freeze-drying and convective dehydration. This study reinforces the importance of the adequate use of passion fruit co-products due to the high levels of bioactive compounds in this material. Microwave dehydration presented the best results, which indicates the potential use of this technique for a better exploitation of fruit co-products. Larger quantities of pectin were extracted from samples dehydrated through methodologies with long-time process and low temperatures, such as convective drying and freeze-drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.

    PubMed

    Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E

    2010-11-01

    The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ∼1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium. © 2010 Wiley Periodicals, Inc.

  5. A chemical–biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6gc01147k Click here for additional data file.

    PubMed Central

    Grimm, Fabian A.; Iwata, Yasuhiro; Sirenko, Oksana; Chappell, Grace A.; Wright, Fred A.; Reif, David M.; Braisted, John; Gerhold, David L.; Yeakley, Joanne M.; Shepard, Peter; Seligmann, Bruce; Roy, Tim; Boogaard, Peter J.; Ketelslegers, Hans B.; Rohde, Arlean M.

    2016-01-01

    Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health impacts of both existing substances and their chemical alternatives. PMID:28035192

  6. Current technologies and new insights for the recovery of high valuable compounds from fruits by-products.

    PubMed

    Ferrentino, Giovanna; Asaduzzaman, Md; Scampicchio, Matteo Mario

    2018-02-11

    The recovery of high valuable compounds from food waste is becoming a tighten issue in food processing. The large amount of non-edible residues produced by food industries causes pollution, difficulties in the management, and economic loss. The waste produced during the transformation of fruits includes a huge amount of materials such as peels, seeds, and bagasse, whose disposal usually represents a problem. Research over the past 20 years revealed that many food wastes could serve as a source of potentially valuable bioactive compounds, such as antioxidants and vitamins with increasing scientific interest thanks to their beneficial effects on human health. The challenge for the recovery of these compounds is to find the most appropriate and environment friendly extraction technique able to achieve the maximum extraction yield without compromising the stability of the extracted products. Based on this scenario, the aim of the current review is twofold. The first is to give a brief overview of the most important bioactive compounds occurring in fruit wastes. The second is to describe the pro and cons of the most up-to-dated innovative and environment friendly extraction technologies that can be an alternative to the classical solvent extraction procedures for the recovery of valuable compounds from fruit processing. Furthermore, a final section will take into account published findings on the combination of some of these technologies to increase the extracts yields of bioactives.

  7. Mechanisms of red blood cells agglutination in antibody-treated paper.

    PubMed

    Jarujamrus, Purim; Tian, Junfei; Li, Xu; Siripinyanond, Atitaya; Shiowatana, Juwadee; Shen, Wei

    2012-05-07

    Recent reports on using bio-active paper and bio-active thread to determine human blood type have shown a tremendous potential of using these low-cost materials to build bio-sensors for blood diagnosis. In this work we focus on understanding the mechanisms of red blood cell agglutination in the antibody-loaded paper. We semi-quantitatively evaluate the percentage of antibody molecules that are adsorbed on cellulose fibres and can potentially immobilize red blood cells on the fibre surface, and the percentage of the molecules that can desorb from the cellulose fibre surface into the blood sample and cause haemagglutination reaction in the bulk of a blood sample. Our results show that 34 to 42% of antibody molecules in the papers treated with commercial blood grouping antibodies can desorb from the fibre surface. When specific antibody molecules are released into the blood sample via desorption, haemagglutination reaction occurs in the blood sample. The reaction bridges the red cells in the blood sample bulk to the layer of red cells immobilized on the fibre surface by the adsorbed antibody molecules. The desorbed antibody also causes agglutinated lumps of red blood cells to form. These lumps cannot pass through the pores of the filter paper. The immobilization and filtration of agglutinated red cells give reproducible identification of positive haemagglutination reaction. Results from this study provide information for designing new bio-active paper-based devices for human blood typing with improved sensitivity and specificity.

  8. Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations.

    PubMed

    Malavasi, Gianluca; Pedone, Alfonso; Menziani, Maria Cristina

    2013-04-18

    The structural properties of phosphosilicate glasses based on the 45S5 Bioglass doped with gallium and aluminum (46.2 SiO2·24.3Na2O·26.9CaO·2.6P2O5·1.0X2O3, X = Ga or Al) are investigated by means of classical molecular dynamics simulations. Structural features of the two compositions are compared with those of the original 45S5 Bioglass in order to relate them to the different known bioactivities of these materials. Differences in the coordination environments of Ga and Al, network connectivity, and ion aggregation reveal a microscopic model of these glasses which supports the interpretation of the experimental data and provides new insight into the different biological behaviors of Ga- and Al-containing phosphosilicate glasses. Although Ga is found predominantly in a 4-fold coordination environment, small amounts of 5- and 6-fold coordinated atoms have been detected depending on the interatomic potential model employed. This suggests its possible intermediate role in phosphosilicate glasses. On the contrary, Al plays a network former role and leads to glasses with a more polymerized structure. Interestingly, the results show an increased propensity for aggregation of the Ca(2+) and PO4(3-) ions in the Al-containing phosphosilicate glasses with respect to the Ga-containing ones. This leads to insoluble calcium-phosphate-rich regions not detected in the bioactive glasses.

  9. Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva.

    PubMed

    Cao, Wan; Cao, Jun; Ye, Li-Hong; Xu, Jing-Jing; Hu, Shuai-Shuai; Peng, Li-Qing

    2015-12-01

    This article describes the use of the mesoporous molecular sieve KIT-6 as a sorbent in miniaturized matrix solid-phase dispersion (MSPD) in combination with ultra-performance LC for the determination of bioactive flavonoids in toothpaste, Scutellariae Radix, and saliva. In this study, for the first time, KIT-6 was used as a sorbent material for this mode of extraction. Compared with common silica-based sorbents (C18 and activated silica gel), the proposed KIT-6 dispersant with a three-dimensional cubic Ia3d structure and highly ordered arrays of mesoporous channels exhibits excellent adsorption capability of the tested compounds. In addition, several experimental variables, such as the mass ratio of sample to dispersant, grinding time, and elution solvent, were optimized to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low consumption of samples, dispersants and elution solvents, thereby meeting "green chemistry" requirements. Under the optimized conditions, the recoveries of three bioactive flavonoids obtained by analyzing the spiked samples were from 89.22 to 101.17%. Also, the LODs and LOQs for determining the analytes were in the range of 0.02-0.04 μg/mL and 0.07-0.13 μg/mL, respectively. Finally, the miniaturized matrix solid-phase dispersion method was successfully applied to the analysis of target solutes in real samples, and satisfactory results were obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In vitro bioavailability and cellular bioactivity studies of flavonoids and flavonoid-rich plant extracts: questions, considerations and future perspectives.

    PubMed

    Gonzales, Gerard Bryan

    2017-08-01

    In vitro techniques are essential in elucidating biochemical mechanisms and for screening a wide range of possible bioactive candidates. The number of papers published reporting in vitro bioavailability and bioactivity of flavonoids and flavonoid-rich plant extracts is numerous and still increasing. However, even with the present knowledge on the bioavailability and metabolism of flavonoids after oral ingestion, certain inaccuracies still persist in the literature, such as the use of plant extracts to study bioactivity towards vascular cells. There is therefore a need to revisit, even question, these approaches in terms of their biological relevance. In this review, the bioavailability of flavonoid glycosides, the use of cell models for intestinal absorption and the use of flavonoid aglycones and flavonoid-rich plant extracts in in vitro bioactivity studies will be discussed. Here, we focus on the limitations of current in vitro systems and revisit the validity of some in vitro approaches, and not on the detailed mechanism of flavonoid absorption and bioactivity. Based on the results in the review, there is an apparent need for stricter guidelines on publishing data on in vitro data relating to the bioavailability and bioactivity of flavonoids and flavonoid-rich plant extracts.

  11. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis.

    PubMed

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-15

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis.

    PubMed

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-06-21

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.

  13. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-01

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials.

  14. Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity.

    PubMed

    Dasgupta, Queeny; Movva, Sahitya; Chatterjee, Kaushik; Madras, Giridhar

    2017-08-07

    This work reports the synthesis of a novel, aspirin-loaded, linear poly (anhydride ester) and provides mechanistic insights into the release of aspirin from this polymer for anti-inflammatory activity. As compared to conventional drug delivery systems that rely on diffusion based release, incorporation of bioactives in the polymer backbone is challenging and high loading is difficult to achieve. In the present study, we exploit the pentafunctional sugar alcohol (xylitol) to provide sites for drug (aspirin) attachment at its non-terminal OH groups. The terminal OH groups are polymerized with a diacid anhydride. The hydrolysis of the anhydride and ester bonds under physiological conditions release aspirin from the matrix. The resulting poly(anhydride ester) has high drug loading (53%) and displays controlled release kinetics of aspirin. The polymer releases 8.5 % and 20%, of the loaded drug in one and four weeks, respectively and has a release rate constant of 0.0035h -0.61 . The release rate is suitable for its use as an anti-inflammatory agent without being cytotoxic. The polymer exhibits good cytocompatibility and anti-inflammatory properties and may find applications as injectable or as an implantable bioactive material. The physical insights into the release mechanism can provide development of other drug loaded polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A nanotectonics approach to produce hierarchically organized bioactive glass nanoparticles-based macrospheres

    NASA Astrophysics Data System (ADS)

    Luz, Gisela M.; Mano, João F.

    2012-09-01

    Bioactive particles have been widely used in a series of biomedical applications due to their ability to promote bone-bonding and elicit favorable biological responses in therapies associated with the replacement and regeneration of mineralized tissues. In this work hierarchical architectures are prepared by an innovative methodology using SiO2-CaO sol-gel based nanoparticles. Inspired by colloidal crystals, spherical aggregates were formed on biomimetic superhydrophobic surfaces using bioactive glass nanoparticles (BG-NPs) able to promote bone regeneration. A highly ordered organization, a common feature of mineralized structures in Nature, was achieved at both nano- and microlevels, being the crystallization degree of the structures controlled by the evaporation rates taking place at room temperature (RT) or at 4 °C. The crystallization degree of the structures influenced the Ca/P ratio of the apatitic film formed at their surface, after 7 days of immersion in SBF. This allows the regulation of bioactive properties and the ability to release potential additives that could be also incorporated in such particles with a high efficiency. Such a versatile method to produce bioactive particles with controlled size and internal structure could open new possibilities in designing new spherical devices for orthopaedic applications, including tissue engineering.

  16. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems

    PubMed Central

    Torres, Carlos; Vázquez, Luis; Reglero, Guillermo; Fornari, Tiziana

    2017-01-01

    Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association. PMID:28555156

  17. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe

    PubMed Central

    Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul

    2017-01-01

    eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA). PMID:28333085

  18. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials

    PubMed Central

    Aduba, Donald C.; Yang, Hu

    2017-01-01

    Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development. PMID:28952482

  19. Hypoxia Inducible Factor-Stabilizing Bioactive Glasses for Directing Mesenchymal Stem Cell Behavior

    PubMed Central

    Azevedo, Maria M.; Tsigkou, Olga; Nair, Rekha; Jones, Julian R.; Jell, Gavin

    2015-01-01

    Oxygen tension is a known regulator of mesenchymal stem cell (MSC) plasticity, differentiation, proliferation, and recruitment to sites of injury. Materials capable of affecting the MSC oxygen-sensing pathway, independently of the environmental oxygen pressure, are therefore of immense interest to the tissue engineering (TE) and regenerative medicine community. In this study, we describe the evaluation of the effect of hypoxia inducible factor (HIF)-stabilizing bioactive glasses (BGs) on human MSCs. The dissolution products from these hypoxia-mimicking BGs stabilized HIF-1α in a concentration-dependent manner, altered cell proliferation and metabolism, and upregulated a number of genes involved in the hypoxic response (HIF1A, HIF2A, and VHL), MSC survival (SAG and BCL2), extracellular matrix remodeling (MMP1), and angiogenesis (VEGF and PDGF). These HIF-stabilizing materials can therefore be used to improve MSC survival and enhance regeneration in a number of TE strategies. PMID:25167933

  20. Bioactive-glass in Oral and Maxillofacial Surgery

    PubMed Central

    Profeta, Andrea Corrado; Huppa, Christoph

    2015-01-01

    The use of synthetic materials to repair craniofacial defects is increasing today and will increase further in the future. Because of the complexity of the anatomy in the head and neck region, reconstruction and augmentation of this area pose a challenge to the surgeon. This review discusses key facts and applications of traditional reconstruction bone substitutes, also offering comparative information. It then describes the properties and clinical applications of bioactive-glass (B-G) and its variants in oral and maxillofacial surgery, and provides clinical findings. The discussion of each compound includes a description of its composition and structure, the advantages and shortcomings of the material, and its current uses in the field of osteoplastic and reconstructive surgery. With a better understanding of the available alloplastic implants, the surgeon can make a more informed decision as to which implant would be most suitable in a particular patient. PMID:26889342

  1. Expanding the biomass derived chemical space

    PubMed Central

    Brun, Nicolas; Hesemann, Peter

    2017-01-01

    Biorefinery aims at the conversion of biomass and renewable feedstocks into fuels and platform chemicals, in analogy to conventional oil refinery. In the past years, the scientific community has defined a number of primary building blocks that can be obtained by direct biomass decomposition. However, the large potential of this “renewable chemical space” to contribute to the generation of value added bio-active compounds and materials still remains unexplored. In general, biomass derived building blocks feature a diverse range of chemical functionalities. In order to be integrated into value-added compounds, they require additional functionalization and/or covalent modification thereby generating secondary building blocks. The latter can be thus regarded as functional components of bio-active molecules or materials and represent an expansion of the renewable chemical space. This perspective highlights the most recent developments and opportunities for the synthesis of secondary biomass derived building blocks and their application to the preparation of value added products. PMID:28959397

  2. FUNCTIONAL BIOMATERIALS: Design of Novel Biomaterials

    NASA Astrophysics Data System (ADS)

    Sakiyama-Elbert, Se; Hubbell, Ja

    2001-08-01

    The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.

  3. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna

    2011-05-01

    Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.

  4. Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses.

    PubMed

    He, X; Zhang, Y Z; Mansell, J P; Su, B

    2008-07-01

    Zirconia toughened alumina (ZTA) has been regarded as the next generation orthopedic graft material due to its excellent mechanical properties and biocompatibility. Porous ZTA ceramics with good interconnectivity can potentially be used as bone grafts for load-bearing applications. In this work, three-dimensional (3D) interconnected porous ZTA ceramics were fabricated using a direct foaming method with egg white protein as binder and foaming agent. The results showed that the porous ZTA ceramics possessed a bimodal pore size distribution. Their mechanical properties were comparable to those of cancellous bone. Due to the bio-inertness of alumina and zirconia ceramics, surface bioactivation of the ZTA foams was carried out in order to improve their bioactivity. A simple NaOH soaking method was employed to change the surface chemistry of ZTA through hydroxylation. Treated samples were tested by conducting osteoblast-like cell culture in vitro. Improvement on cells response was observed and the strength of porous ZTA has not been deteriorated after the NaOH treatment. The porous 'bioactivated' ZTA ceramics produced here could be potentially used as non-degradable bone grafts for load-bearing applications.

  5. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  6. Grid Based Technologies for in silico Screening and Drug Design.

    PubMed

    Potemkin, Vladimir; Grishina, Maria

    2018-03-08

    Various techniques for rational drug design are presented in the paper. The methods are based on a substitution of antipharmacophore atoms of the molecules of training dataset by new atoms and/or group of atoms increasing the atomic bioactivity increments obtained at a SAR study. Furthermore, a design methodology based on the genetic algorithm DesPot for discrete optimization and generation of new drug candidate structures is described. Additionally, wide spectra of SAR approaches (3D/4D QSAR interior and exterior-based methods - BiS, CiS, ConGO, CoMIn, high-quality docking method - ReDock) using MERA force field and/or AlteQ quantum chemical method for correct prognosis of bioactivity and bioactive probability is described. The design methods are implemented now at www.chemosophia.com web-site for online computational services. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. FIFRA Scientific Advisory Panel Minutes No. 21015-04. A set of scientific issues being considered by the Environmental Protection Agency regarding integrated endocrine bioactivity and exposure-based prioritization & screening

    USDA-ARS?s Scientific Manuscript database

    On December 2-4, 2014, the US Environmental Protection Agency convened a public meeting of the FIFRA Scientific Advisory Panel (SAP) to address scientific issues associated with the agency’s “Integrated Endocrine Bioactivity and Exposure-Based Prioritization and Screening” methods. EPA is proposing ...

  8. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    PubMed

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  9. Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers

    PubMed Central

    Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan

    2009-01-01

    Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225

  10. Creation of bioactive glass (13-93) scaffolds for structural bone repair using a combined finite element modeling and rapid prototyping approach.

    PubMed

    Xiao, Wei; Zaeem, Mohsen Asle; Bal, B Sonny; Rahaman, Mohamed N

    2016-11-01

    There is a clinical need for synthetic bioactive materials that can reliably repair intercalary skeletal tissue loss in load-bearing bones. Bioactive glasses have been investigated as one such material but their mechanical response has been a concern. Previously, we created bioactive silicate glass (13-93) scaffolds with a uniform grid-like microstructure which showed a compressive strength comparable to human cortical bone but a much lower flexural strength. In the present study, finite element modeling (FEM) was used to re-design the scaffold microstructure to improve its flexural strength without significantly lowering its compressive strength and ability to support bone infiltration in vivo. Then scaffolds with the requisite microstructures were created by a robotic deposition method and tested in four-point bending and compression to validate the FEM simulations. In general, the data validated the predictions of the FEM simulations. Scaffolds with a porosity gradient, composed of a less porous outer region and a more porous inner region, showed a flexural strength (34±5MPa) that was more than twice the value for the uniform grid-like microstructure (15±5MPa) and a higher compressive strength (88±20MPa) than the grid-like microstructure (72±10MPa). Upon implantation of the scaffolds for 12weeks in rat calvarial defects in vivo, the amount of new bone that infiltrated the pore space of the scaffolds with the porosity gradient (37±16%) was similar to that for the grid-like scaffolds (35±6%). These scaffolds with a porosity gradient that better mimics the microstructure of human long bone could provide more reliable implants for structural bone repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants.

    PubMed

    Ballarre, Josefina; Manjubala, Inderchand; Schreiner, Wido H; Orellano, Juan Carlos; Fratzl, Peter; Ceré, Silvia

    2010-04-01

    In this study, we report a hybrid organic-inorganic TEOS-MTES (tetraethylorthosilicate-methyltriethoxysilane) sol-gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO(2) colloidal particles to the TEOS-MTES sol (10 or 30 mol.%) leads to thicker films and also acts as a film reinforcement. Also, the addition of bioactive glass-ceramic particles is considered responsible for enhancing osseointegration. In vitro assays for bioactivity in simulated body fluid showed the presence of crystalline hydroxyapatite (HA) crystals on the surface of the double coating with 10mol.% SiO(2) samples on stainless steel after 30 days of immersion. The HA crystal lattice parameters are slightly different from stoichiometric HA. In vivo implantation experiments were carried out in a rat model to observe the osteointegration of the coated implants. The coatings promote the development of newly formed bone in the periphery of the implant, in both the remodellation zone and the marrow zone. The quality of the newly formed bone was assessed for mechanical and structural integrity by nanoindentation and small-angle X-ray scattering experiments. The different amount of colloidal silica present in the inner layer of the coating slightly affects the material quality of the newly formed bone but the nanoindentation results reveal that the lower amount of silica in the coating leads to mechanical properties similar to cortical bone. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications

    NASA Astrophysics Data System (ADS)

    Machado López, M. M.; Espitia Cabrera, M. I.; Faure, J.; Contreras García, M. E.

    2016-04-01

    Titanium and its alloys are widely used as implant materials because of their mechanical properties and non-toxic behavior. Unfortunately, they are not bioinert, which means that they can release ions and can only fix the bone by mechanical anchorage, this can lead to the encapsulation of dense fibrous tissue in the body. The bone fixation is required in clinical conditions treated by orthopedic and dental medicine. The proposal is to coat metallic implants with bioactive materials to establish good interfacial bonds between the metal substrate and bone by increasing bioactivity. Bioactive glasses, ceramics specifically 45 S5 Bioglass, have drawn attention as a serious functional biomaterial because osseointegration capacity. The EPD method of bioglass gel precursor was proposed in the present work as a new method to obtain 45S5/Ti6A14V for dental applications. The coatings, were thermally treated at 700 and 800°C and presented the 45 S5 bioglass characteristic phases showing morphology and uniformity with no defects, quantification percentages by EDS of Si, Ca, Na, P and O elements in the coating scratched powders, showed a good proportional relationship demonstrating the obtention of the 45S5 bioglass. The corrosion tests were carried out in Hank's solution. By Tafel extrapolation, Ti6Al4V alloy showed good corrosion resistance in Hank's solution media, by the formation of a passivation layer on the metal surface, however, in the system 45S5/Ti6Al4V there was an increase in the corrosion resistance; icon-, Ecorr and corrosion rate decreased, the mass loss and the rate of release of ions, were lower in this system than in the titanium alloy without coating.

  13. Self assembling bioactive materials for cell adhesion in tissue repair

    NASA Astrophysics Data System (ADS)

    Hwang, Julia J.

    This work involved the study of biodegradable and biocompatible materials that have the potential to modify tissue engineering scaffolds through self assembly, generating multiple layers that deliver bioactivity. Diblock biomaterials containing cholesteryl moieties and oligomers of lactic acid units were found to form single crystals when precipitated from hot ethanol and smectic liquid crystalline phases when cast as a film. Cell culture experiments on these films with 3T3 and 3T6 fibroblasts indicated that these ordered materials form surfaces with specific chemistries that favored cell adhesion, spreading, and proliferation suggesting the potential of mediating human tissue repair. The author believes the cholesteryl moieties found on the surface play a key role in determining cell behavior. Cholesteryl-(L-lactic acid) diblock molecules were then functionalized with moieties including vitamin Bx, cholesterol, and the anti-inflammatory drug indomethacin. An unstable activated ester between indomethacin and the diblock molecule resulted in the release of indomethacin into the culture medium which inhibited the proliferation of 3T3 fibroblasts. Finally, a series of molecules were designed to incorporate dendrons based on amino acids at the termini of the diblock structures. It was determined that lysine, a basic amino acid, covalently coupled to cholesteryl-(L-lactic acid) can promote cell adhesion and spreading while negatively charged and zwitterionic 2nd generation dendrons based on aspartic acid do not. Incorporation of the well known arginine-glycine-aspartic acid (RGD) sequence, which is found in many adhesive proteins, to the dendrons imparted integrin-mediated cell adhesion as evidenced by the formation of stress fibers. We also explored the capacity of integrin receptors to bind to ligands that are not the linear form of RGD, but have R, G, and D spatially positioned to mimic the linear RGD environments. For this purpose, the arms of the 2 nd generation lysine dendrons were functionalized with R, G, and D to yield an 'R,G,D library' of molecules. These materials were found to promote adhesion of 3T3 fibroblasts through integrin receptors. A dendron is multifunctional and allows a large degree of functionality in chemical design.

  14. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry

    PubMed Central

    2015-01-01

    Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions. PMID:26030507

  15. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria.

    PubMed

    Munukka, Eveliina; Leppäranta, Outi; Korkeamäki, Mika; Vaahtio, Minna; Peltola, Timo; Zhang, Di; Hupa, Leena; Ylänen, Heimo; Salonen, Jukka I; Viljanen, Matti K; Eerola, Erkki

    2008-01-01

    Bioactive glasses (BAGs) have been studied for decades for clinical use, and they have found many dental and orthopedic applications. BAGs have also been shown to have an antibacterial effect e.g., on some oral microorganisms. In this extensive work we show that six powdered BAGs and two sol-gel derived materials have a clear antibacterial effect on 29 clinically important bacterial species. We also incorporated a rapid and accurate flow cytometric (FCM) method to calculate and standardize the numbers of viable bacteria inoculated in the suspensions used in the tests for antibacterial activity. In all materials tested growth inhibition could be demonstrated, although the concentration and time needed for the effect varied depending on the BAG. The most effective glass was S53P4, which had a clear growth-inhibitory effect on all pathogens tested. The sol-gel derived materials CaPSiO and CaPSiO II also showed a strong antibacterial effect. In summary, BAGs were found to clearly inhibit the growth of a wide selection of bacterial species causing e.g., infections on the surfaces of prostheses in the body after implantation.

  16. Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides - An In Silico Study

    PubMed Central

    Dave, Lakshmi A.; Montoya, Carlos A.; Rutherfurd, Shane M.; Moughan, Paul J.

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein. PMID:24901416

  17. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.

    PubMed

    Erol, M M; Mouriňo, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R

    2012-02-01

    The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    PubMed

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications.

  19. Impact of high-intensity pulsed electric fields on bioactive compounds in Mediterranean plant-based foods.

    PubMed

    Elez-Martínez, Pedro; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2009-05-01

    Novel non-thermal processing technologies such as high-intensity pulsed electric field (HIPEF) treatments may be applied to pasteurize plant-based liquid foods as an alternative to conventional heat treatments. In recent years, there has been an increasing interest in HIPEF as a way of preserving and extending the shelf-life of liquid products without the quality damage caused by heat treatments. However, less attention has been paid to the effects of HIPEF on minor constituents of these products, namely bioactive compounds. This review is a state-of-the-art update on the effects of HIPEF treatments on health-related compounds in plants of the Mediterranean diet such as fruit juices, and Spanish gazpacho. The relevance of HIPEF-processing parameters on retaining plant-based bioactive compounds will be discussed.

  20. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  1. 3D-Printed Bioactive Ca3SiO5 Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration.

    PubMed

    Yang, Chen; Wang, Xiaoya; Ma, Bing; Zhu, Haibo; Huan, Zhiguang; Ma, Nan; Wu, Chengtie; Chang, Jiang

    2017-02-22

    Silicate bioactive materials have been widely studied for bone regeneration because of their eminent physicochemical properties and outstanding osteogenic bioactivity, and different methods have been developed to prepare porous silicate bioactive ceramics scaffolds for bone-tissue engineering applications. Among all of these methods, the 3D-printing technique is obviously the most efficient way to control the porous structure. However, 3D-printed bioceramic porous scaffolds need high-temperature sintering, which will cause volume shrinkage and reduce the controllability of the pore structure accuracy. Unlike silicate bioceramic, bioactive silicate cements such as tricalcium silicate (Ca 3 SiO 5 and C 3 S) can be self-set in water to obtain high mechanical strength under mild conditions. Another advantage of using C 3 S to prepare 3D scaffolds is the possibility of simultaneous drug loading. Herein, we, for the first time, demonstrated successful preparation of uniform 3D-printed C 3 S bone cement scaffolds with controllable 3D structure at room temperature. The scaffolds were loaded with two model drugs and showed a loading location controllable drug-release profile. In addition, we developed a surface modification process to create controllable nanotopography on the surface of pore wall of the scaffolds, which showed activity to enhance rat bone-marrow stem cells (rBMSCs) attachment, spreading, and ALP activities. The in vivo experiments revealed that the 3D-printed C 3 S bone cement scaffolds with nanoneedle-structured surfaces significantly improved bone regeneration, as compared to pure C 3 S bone cement scaffolds, suggesting that 3D-printed C 3 S bone cement scaffolds with controllable nanotopography surface are bioactive implantable biomaterials for bone repair.

  2. Molecular Design of Squalene/Squalane Countertypes via the Controlled Oligomerization of Isoprene and Evaluation of Vaccine Adjuvant Applications.

    PubMed

    Adlington, Kevin; El Harfi, Jaouad; Li, Jianing; Carmichael, Kim; Guderian, Jeffrey A; Fox, Christopher B; Irvine, Derek J

    2016-01-11

    The potential to replace shark-derived squalene in vaccine adjuvant applications with synthetic squalene/poly(isoprene) oligomers, synthesized by the controlled oligomerization of isoprene is demonstrated. Following on from our previous work regarding the synthesis of poly(isoprene) oligomers, we demonstrate the ability to tune the molecular weight of the synthetic poly(isoprene) material beyond that of natural squalene, while retaining a final backbone structure that contained a minimum of 75% of 1,4 addition product and an acceptable polydispersity. The synthesis was successfully scaled from the 2 g to the 40 g scale both in the bulk (i.e., solvent free) and with the aid of additional solvent by utilizing catalytic chain transfer polymerization (CCTP) as the control method, such that the target molecular weight, acceptable dispersity levels, and the desired level of 1,4 addition in the backbone structure and an acceptable yield (∼60%) are achieved. Moreover, the stability and in vitro bioactivity of nanoemulsion adjuvant formulations manufactured with the synthetic poly(isoprene) material are evaluated in comparison to emulsions made with shark-derived squalene. Emulsions containing the synthetic poly(isoprene) achieved smaller particle size and equivalent or enhanced bioactivity (stimulation of cytokine production in human whole blood) compared to corresponding shark squalene emulsions. However, as opposed to the shark squalene-based emulsions, the poly(isoprene) emulsions demonstrated reduced long-term size stability and induced hemolysis at high concentrations. Finally, we demonstrate that the synthetic oligomeric poly(isoprene) material could successfully be hydrogenated such that >95% of the double bonds were successfully removed to give a representative poly(isoprene)-derived squalane mimic.

  3. In vitro assessment of estrogen, androgen, and glucocorticoid bioactivity in a nationwide screen of United States stream waters

    EPA Science Inventory

    In vitro bioassays can identify environmental samples contaminated with bioactive chemicals that interact with steroid receptors and provide a cumulative, effect-based measurement of contamination. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR...

  4. Novel hybrid materials for preparation of bone tissue engineering scaffolds.

    PubMed

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Łatkiewicz, Anna; Nowakowska, Maria

    2015-09-01

    The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.

  5. Effect of ozone and granular activated coal (GAC) on the bioactivity of drinking water.

    PubMed

    Sallanko, Jarmo; Iivari, Pekka; Heiska, Eeva

    2009-02-15

    In this research, the appearance of easily biodegradable organic material in ozonation and granular activated coal (GAC) filtration was studied. The amount of bioactivity was measured by conventional AOC analyses used in two different modes and also using quite a new growth potential (GP) method. GAC filtration without ozone doubled the amount of AOC of the chemically treated surface water, whereas by ozonation with GAC filtration it was possible to halve the amount of the AOC. The measurement of GP was noticeably simpler than measuring AOC, but for wider use more parallel studies are needed for the comparability of the results of the analysis.

  6. Bioactive Glasses: Where Are We and Where Are We Going?

    PubMed

    Baino, Francesco; Hamzehlou, Sepideh; Kargozar, Saeid

    2018-03-19

    Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today's achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  7. Bioactive Glasses: Where Are We and Where Are We Going?

    PubMed Central

    Hamzehlou, Sepideh

    2018-01-01

    Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today’s achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine. PMID:29562680

  8. Effects of borate-based bioactive glass on neuron viability and neurite extension.

    PubMed

    Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B

    2014-08-01

    Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth. © 2013 Wiley Periodicals, Inc.

  9. Evaluation of quality of kefir from milk obtained from goats supplemented with a diet rich in bioactive compounds.

    PubMed

    Cais-Sokolińska, Dorota; Pikul, Jan; Wójtowski, Jacek; Danków, Romualda; Teichert, Joanna; Czyżak-Runowska, Grażyna; Bagnicka, Emilia

    2015-04-01

    The composition of bioactive components in dairy products depends on their content in raw milk and the processing conditions. The experimental material consisted of the milk of dairy goats supplemented with 120 g d(-1) per head of false flax cake. The aim of the study was to evaluate the quality of kefir produced from goat's milk with a higher content of bioactive components resulting from supplementation of the goats' diet with false flax cake. The administration of false flax cake to goats had a positive effect on the fatty acid profile of the raw milk, causing an increase in the proportion of polyunsaturated fatty acids (PUFA), including conjugated linoleic acid (CLA) and n-3 fatty acids. Their increased percentage was detected in the kefir after production as well as after storage. The processing value of the harvested milk did not differ from the qualitative characteristics of milk from goats of the control group. Increasing the proportion of bioactive components in goat's milk did not result in changes in the acidity, texture, colour, flavour, aroma or consistency of the kefir obtained. Milk and kefir obtained after the administration of false flax cake to goats contain bioactive components (PUFA including CLA, n-3 and monoenic trans fatty acids) in significant amounts. Kefir from experimental goat's milk did not differ in quality from kefir made from the milk of the control group. © 2014 Society of Chemical Industry.

  10. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate

    PubMed Central

    Caetano, Guilherme; Vyas, Cian; Diver, Carl; Bártolo, Paulo

    2018-01-01

    The design of bioactive scaffolds with improved mechanical and biological properties is an important topic of research. This paper investigates the use of polymer-ceramic composite scaffolds for bone tissue engineering. Different ceramic materials (hydroxyapatite (HA) and β-tri-calcium phosphate (TCP)) were mixed with poly-ε-caprolactone (PCL). Scaffolds with different material compositions were produced using an extrusion-based additive manufacturing system. The produced scaffolds were physically and chemically assessed, considering mechanical, wettability, scanning electron microscopy and thermal gravimetric tests. Cell viability, attachment and proliferation tests were performed using human adipose derived stem cells (hADSCs). Results show that scaffolds containing HA present better biological properties and TCP scaffolds present improved mechanical properties. It was also possible to observe that the addition of ceramic particles had no effect on the wettability of the scaffolds. PMID:29342890

  11. Investigation of boundary conditions for biomimetic HA deposition on titanium oxide surfaces.

    PubMed

    Lindgren, M; Astrand, M; Wiklund, U; Engqvist, H

    2009-07-01

    To improve the clinical outcome of metal implants, i.e. earlier loading and reduction of the incidence of revision surgery, better bone bonding ability is wanted. One method to achieve this is to change the surface chemistry to give a surface that facilitates bone bonding in vivo, i.e. a bioactive surface. Crystalline titanium oxide has recently been proven to be bioactive in vitro and is an interesting option to the more common hydroxylapatite (HA) coatings on implants. A materials possible in vitro bioactivity is tested through soaking in simulated body fluid and studies of possible HA formation on the surface. For bioactive materials, the formed HA layer can also be used as a coating. The aim of the current paper is to investigate some boundary conditions for HA formation on crystalline titanium oxide surfaces regarding influence from coating thickness, soaking time and soaking temperature. The influence from soaking time and temperature on the HA growth were investigated on oxidised Ti samples, (24 h at 800 degrees C) resulting in a rutile surface structure. The oxidised samples were tested at three temperatures (4, 37 and 65 degrees C) and four times (1 h, 1 day, 1 week and 4 weeks). The influence from titanium coating thickness on the HA growth was investigated via depositing thin films of crystalline titanium dioxide on Ti plates using a reactive magnetron sputtering process. Four different PVD runs with coating thicknesses between 19 and 74 nm were tested. The soaking temperature had an effect on the HA formation and growth on both rutile surfaces and native oxide on Ti substrates. Higher temperatures lead to easier formation of HA. It was even possible, at 65 degrees C, to grow HA on native titanium oxide from soaking in PBS. The coating quality was better for HA formed at 65 degrees C compared to 37 degrees C. All PVD-coatings showed HA growth after 1 week in PBS at 37 degrees C, thus even very thin coatings of crystalline titanium oxide coatings are bioactive.

  12. Biomimetic silica encapsultation of living cells

    NASA Astrophysics Data System (ADS)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  13. Chemical-Gene Interactions from ToxCast Bioactivity Data Expands Universe of Literature Network-Based Associations (SOT)

    EPA Science Inventory

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets....

  14. Extraction and Determination of Quercetin from Ginkgo biloba by DESs-Based Polymer Monolithic Cartridge.

    PubMed

    Wang, Xiaoqin; Li, Guizhen; Ho Row, Kyung

    2017-09-01

    Deep eutectic solvents (DES) were formed from choline chloride (ChCl). DES-modified polymer monolithic (DES-M), template molecular polymer monolithic and non-DES-M without a molecular template were synthesized in identical process. These polymer materials were characterized by field emission scanning electron microscopy and Fourier transform infrared spectroscopy. The significant selective adsorption properties of the polymers were assessed by an absorption capacity experiment and solid-phase extraction (SPE). The optimized extraction procedure was as follows: ultrasonic time (30 min), optimal solvent (ethanol) and liquid to material ratio (20 mL g-1). Under this condition, the amount of quercetin extracted from Ginkgo biloba was 290.8 mg g-1. The purification of G. biloba was achieved by the SPE process. Based on the results, DESs-based monolithic cartridges can be used for simple and efficient extraction and as a pre-concentration technique for the purification of bioactive compounds or drugs in aqueous environments with high affinity and selectivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Additive manufacturing techniques for the production of tissue engineering constructs.

    PubMed

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods.

    PubMed

    Lone, Ayesha; Anany, Hany; Hakeem, Mohammed; Aguis, Louise; Avdjian, Anne-Claire; Bouget, Marina; Atashi, Arash; Brovko, Luba; Rochefort, Dominic; Griffiths, Mansel W

    2016-01-18

    Due to lack of adequate control methods to prevent contamination in fresh produce and growing consumer demand for natural products, the use of bacteriophages has emerged as a promising approach to enhance safety of these foods. This study sought to control Listeria monocytogenes in cantaloupes and RTE meat and Escherichia coli O104:H4 in alfalfa seeds and sprouts under different storage conditions by using specific lytic bacteriophage cocktails applied either free or immobilized. Bacteriophage cocktails were introduced into prototypes of packaging materials using different techniques: i) immobilizing on positively charged modified cellulose membranes, ii) impregnating paper with bacteriophage suspension, and iii) encapsulating in alginate beads followed by application of beads onto the paper. Phage-treated and non-treated samples were stored for various times and at temperatures of 4°C, 12°C or 25°C. In cantaloupe, when free phage cocktail was added, L. monocytogenes counts dropped below the detection limit of the plating technique (<1 log CFU/g) after 5 days of storage at both 4°C and 12°C. However, at 25°C, counts below the detection limit were observed after 3 and 6h and a 2-log CFU/g reduction in cell numbers was seen after 24h. For the immobilized Listeria phage cocktail, around 1-log CFU/g reduction in the Listeria count was observed by the end of the storage period for all tested storage temperatures. For the alfalfa seeds and sprouts, regardless of the type of phage application technique (spraying of free phage suspension, bringing in contact with bacteriophage-based materials (paper coated with encapsulated bacteriophage or impregnated with bacteriophage suspension)), the count of E. coli O104:H4 was below the detection limit (<1 log CFU/g) after 1h in seeds and about a 1-log cycle reduction in E. coli count was observed on the germinated sprouts by day 5. In ready-to-eat (RTE) meat, LISTEX™ P100, a commercial phage product, was able to significantly reduce the growth of L. monocytogenes at both storage temperatures, 4°C and 10°C, for 25 days regardless of bacteriophage application format (immobilized or non-immobilized (free)). In conclusion, the developed phage-based materials demonstrated significant antimicrobial effect, when applied to the artificially contaminated foods, and can be used as prototypes for developing bioactive antimicrobial packaging materials capable of enhancing the safety of fresh produce and RTE meat. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds

    PubMed Central

    Andreu, Vanesa; Mendoza, Gracia; Arruebo, Manuel; Irusta, Silvia

    2015-01-01

    A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management. PMID:28793497

  18. Effect of various additives on microstructure, mechanical properties, and in vitro bioactivity of sodium oxide-calcium oxide-silica-phosphorus pentoxide glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2013-09-01

    The partial substitution of MgO, TiO2, or CaF2 for CaO in the Na2O-CaO-SiO2-P2O5 (45S5) system was conducted by the sol-gel method and a comparative study on structural, mechanical properties, and bioactivity of the glasses was reported. Based on thermogravimetric and differential thermal analysis, the gels were sintered with a suitable heat treatment procedure. The glass-ceramic properties were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and so on, and the bioactivity of the glass-ceramic was evaluated by in vitro assays in simulated body fluid (SBF). Results indicate that with the partial substitution of MgO, TiO2, CaF2 for CaO in glass composition, the mechanical properties of the glass-ceramics have been significantly improved. Furthermore, CaF2 promotes glass crystallization and the crystallization does not inhibit the glass-ceramic bioactivity. All samples possess bioactivity; however, the bioactivity of these glass-ceramics is quite different. Compared with 45S5, the introduction of MgO decreases the ability of apatite induction. The addition of TiO2 does not significantly improve the bioactivity, and the replacement of CaO by CaF2 shows a higher bioactivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).

    PubMed

    Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L

    2003-07-01

    Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.

  20. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

Top