Ko, Young Tag; Choi, Dong-Kug
2018-01-01
Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases. PMID:29588585
Bioavailability of bioactive food compounds: a challenging journey to bioefficacy
Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia
2013-01-01
Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361
Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.
Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia
2013-03-01
Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Mohammed, Afrah E; Smit, Inga; Pawelzik, Elke; Keutgen, Anna J; Horneburg, Bernd
2012-05-01
Tomato fruits are characterized by a good nutritional profile, including different bioactive compounds such as carotenoids, phenolic compounds and ascorbic acid. The objective of this study was to analyze the content of bioactive compounds in the fruit and the infection by Phytophthora infestans of 28 tomato genotypes from organic outdoor production. The relationship between bioactive compounds in the fruit and infection with P. infestans was estimated. Field experiments were carried out in 2004 and 2005 at two locations in central Germany. Significant variation among genotypes, locations and years was observed for the content of lycopene, ascorbic acid, total phenolic compounds, antioxidant capacity and the infection level of P. infestans. Antioxidant capacity seemed to be influenced mainly by the phenolics and was highest in small fruits, which were less infected with P. infestans. The large genetic variation among tomato genotypes for the content of bioactive compounds in their fruit allows for selection gains. None of the investigated bioactive compounds can be recommended for the indirect selection for increased field resistance against P. infestans. Copyright © 2011 Society of Chemical Industry.
Rocha, Joana; Peixe, Luisa; Gomes, Newton C.M.; Calado, Ricardo
2011-01-01
Marine invertebrates are rich sources of bioactive compounds and their biotechnological potential attracts scientific and economic interest worldwide. Although sponges are the foremost providers of marine bioactive compounds, cnidarians are also being studied with promising results. This diverse group of marine invertebrates includes over 11,000 species, 7500 of them belonging to the class Anthozoa. We present an overview of some of the most promising marine bioactive compounds from a therapeutic point of view isolated from cnidarians in the first decade of the 21st century. Anthozoan orders Alcyonacea and Gorgonacea exhibit by far the highest number of species yielding promising compounds. Antitumor activity has been the major area of interest in the screening of cnidarian compounds, the most promising ones being terpenoids (monoterpenoids, diterpenoids, sesquiterpenoids). We also discuss the future of bioprospecting for new marine bioactive compounds produced by cnidarians. PMID:22073000
Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie
2015-01-07
Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development.
Wang, Chao; Cao, Xuecheng; Zhang, Yongxian
2017-05-09
Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo.
Wang, Chao; Cao, Xuecheng; Zhang, Yongxian
2017-01-01
Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo. PMID:28404942
Improving the estimation of flavonoid intake for study of health outcomes
Dwyer, Johanna T.; Jacques, Paul F.; McCullough, Marjorie L.
2015-01-01
Imprecision in estimating intakes of non-nutrient bioactive compounds such as flavonoids is a challenge in epidemiologic studies of health outcomes. The sources of this imprecision, using flavonoids as an example, include the variability of bioactive compounds in foods due to differences in growing conditions and processing, the challenges in laboratory quantification of flavonoids in foods, the incompleteness of flavonoid food composition tables, and the lack of adequate dietary assessment instruments. Steps to improve databases of bioactive compounds and to increase the accuracy and precision of the estimation of bioactive compound intakes in studies of health benefits and outcomes are suggested. PMID:26084477
Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie
2015-01-01
Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development. PMID:25574736
Bioactive Secondary Metabolites Produced by the Fungal Endophytes of Conifers.
Stierle, Andrea A; Stierle, Donald B
2015-10-01
This is a review of bioactive secondary metabolites isolated from conifer-associated endophytic fungi from 1990-2014. This includes compounds with antimicrobial, anti-inflammatory, anti-proliferative and cytotoxic activity towards human cancer cell lines, and activity against either plant pathogens or plant insect pests. Compounds that were originally reported without associated activity were included if other studies ascribed activity to these compounds. Compounds were not included if they were exclusively phytotoxic or if they were isolated from active extracts but were not determined to be the active component of that extract.
Antimicrobial compounds from seaweeds-associated bacteria and fungi.
Singh, Ravindra Pal; Kumari, Puja; Reddy, C R K
2015-02-01
In recent decade, seaweeds-associated microbial communities have been significantly evaluated for functional and chemical analyses. Such analyses let to conclude that seaweeds-associated microbial communities are highly diverse and rich sources of bioactive compounds of exceptional molecular structure. Extracting bioactive compounds from seaweed-associated microbial communities have been recently increased due to their broad-spectrum antimicrobial activities including antibacterial, antifungal, antiviral, anti-settlement, antiprotozoan, antiparasitic, and antitumor. These allelochemicals not only provide protection to host from other surrounding pelagic microorganisms, but also ensure their association with the host. Antimicrobial compounds from marine sources are promising and priority targets of biotechnological and pharmaceutical applications. This review describes the bioactive metabolites reported from seaweed-associated bacterial and fungal communities and illustrates their bioactivities. Biotechnological application of metagenomic approach for identifying novel bioactive metabolites is also dealt, in view of their future development as a strong tool to discover novel drug targets from seaweed-associated microbial communities.
Ultrahigh pressure extraction of bioactive compounds from plants-A review.
Xi, Jun
2017-04-13
Extraction of bioactive compounds from plants is one of the most important research areas for pharmaceutical and food industries. Conventional extraction techniques are usually associated with longer extraction times, lower yields, more organic solvent consumption, and poor extraction efficiency. A novel extraction technique, ultrahigh pressure extraction, has been developed for the extraction of bioactive compounds from plants, in order to shorten the extraction time, decrease the solvent consumption, increase the extraction yields, and enhance the quality of extracts. The mild processing temperature of ultrahigh pressure extraction may lead to an enhanced extraction of thermolabile bioactive ingredients. A critical review is conducted to introduce the different aspects of ultrahigh pressure extraction of plants bioactive compounds, including principles and mechanisms, the important parameters influencing its performance, comparison of ultrahigh pressure extraction with other extraction techniques, advantages, and disadvantages. The future opportunities of ultrahigh pressure extraction are also discussed.
Natural bioactive compounds from winery by-products as health promoters: a review.
Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina
2014-09-04
The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.
Therapeutic Potential of Pterocarpus santalinus L.: An Update
Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy
2016-01-01
Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with “up-to-date” discussion. PMID:27041873
Therapeutic Potential of Pterocarpus santalinus L.: An Update.
Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy
2016-01-01
Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with "up-to-date" discussion.
Bioactive compounds in dairy products and their relation to neurodegenerative disease
USDA-ARS?s Scientific Manuscript database
Enhancement of nervous system function and cognitive ability may be aided by bioactive compounds found in dairy products, including calcium-binding phosphopeptides and peptides derived from casein and beta-lactoglobulin. These peptides inhibit angiotensin converting enzyme I, scavenge radicals, red...
Phytochemical-rich foods inhibit the growth of pathogenic trichomonads
USDA-ARS?s Scientific Manuscript database
Plants produce bioactive organic compounds known as secondary metabolites that possess numerous health benefits, including antimicrobial properties. One mechanism of action of these plant bioactive compounds targets the disruption of cell membranes. The main of objective of the present study was t...
Separation of Biologically Active Compounds by Membrane Operations.
Zhu, Xiaoying; Bai, Renbi
2017-01-01
Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The "cold" separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Extraction and determination of bioactive compounds from bee pollen.
Ares, Ana M; Valverde, Silvia; Bernal, José L; Nozal, María J; Bernal, José
2018-01-05
Since ancient times bee pollen has been considered a good source of bioactive substances and energy. Taking into account the current demand for healthy and natural foods, it is not surprising that bee pollen has been attracting commercial interest in recent years, making it one of the most widely consumed food supplements. It has been extensively reported that bee pollen contains several health-promoting compounds, such as proteins, amino acids, lipids, phenolic compounds, vitamins or minerals. Thus, this study aims to give an overview of the extraction and determination techniques of several of the above-mentioned compounds which have been published in the last few years (2011-2017). The design of the study is in accordance with the different families of bioactive compounds, and the extraction procedures together with the analytical techniques employed and their determination are discussed. A list of some of the most relevant applications is provided for each category, including a brief summary of the experimental conditions. The references included will provide the reader with a comprehensive overview of and insight into the analysis of bioactive compounds from bee pollen. Copyright © 2017 Elsevier B.V. All rights reserved.
Improving the estimation of flavonoid intake for study of health outcomes
USDA-ARS?s Scientific Manuscript database
Imprecision in estimating intakes of non-nutrient bioactive compounds such as flavonoids is a challenge in epidemiologic studies of health outcomes. The sources of this imprecision, using flavonoids as an example, include the variability of bioactive compounds in foods due to differences in growing ...
NASA Astrophysics Data System (ADS)
Firdaus; Soekamto, N. H.; Seniwati; Islam, M. F.; Sultan
2018-03-01
Bioactivity of a compound is closely related to the molecular structure of the compound concerned, its strength being the quantitative relation of the strength of the activity of the group it possesses. The combining of moieties of the active compounds will produce more active compounds. Most phenolic compounds as well as compounds containing moiety phenethyl groups have potential activity as anticancer. Combining phenolic groups and phenethyl groups in a compound will result in compounds having strong anticancer bioactivity. This study aims to combine the feruloyl and phenethyl groups to form esters and amides by synthesize of phenethyl trans-3-(4-hydroxy-3-methoxyphenyl)acrylate (5) and trans-3-(4- hydroxy-3-methoxyphenyl)-N-phenethylacrylamide (6) from ferulic acid with phenethyl alcohol and phenethylamine, and to study their bioactivity as anticancer. The synthesis of both compounds was conducted via indirect reaction, including acetylation, chlorination, esterfication/amidation, and deacetylation. Structures of products were characterized by FTIR and NMR data, and their bioactivity assay of the compounds against P388 Leukemia Murine Cells was conducted by an MTT method. Results showed that the compound 5 was obtained as a yellow gel with the IC50 of 10.79 μg/mL (36.21 μΜ), and the compound 6 was a yellowish solid with a melting point of 118-120°C and the IC50 of 29.14 μg/mL (97.79 μΜ). These compounds were more active than the analog compounds.
Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review
Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A.; Garcia-Viguera, Cristina
2014-01-01
The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health. PMID:25192288
Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul
2017-03-23
eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA).
NASA Astrophysics Data System (ADS)
Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin
2009-10-01
Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.
Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar.
Hoffmann, Jessica Fernanda; Zandoná, Giovana Paula; Dos Santos, Priscila Silveira; Dallmann, Camila Müller; Madruga, Francine Bonemann; Rombaldi, Cesar Valmor; Chaves, Fábio Clasen
2017-12-15
Butia odorata is a palm tree native to southern Brazil whose fruit (known as butiá) and leaves are used to make many food products and crafts. Butiá contain several biologically active compounds with potential health benefits. However, processing conditions can alter quality attributes including bioactive compound content. This study evaluated the stability of bioactive compounds in butiá pulp upon pasteurization, during 12months of frozen storage, and in butiá nectar after a 3-month storage period. Pulp pasteurization resulted in a reduction in phenolic, flavonoid, carotenoid, and ascorbic acid contents. After a 12-month frozen storage period, flavonoid, phenolic, and ascorbic acid contents decreased while carotenoid content remained unaltered. Carotenoid, ascorbic acid, and phenolic contents were unaffected by the 3-month storage of butiá nectar; however, flavonoid content and antioxidant potential were reduced. Despite bioactive compound degradation upon heat treatment and storage, butiá nectar remained rich in phenolics, especially (-)-epicatechin, rutin, and (+)-catechin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pinaud, Fabien [Berkeley, CA; King, David [San Francisco, CA; Weiss, Shimon [Los Angeles, CA
2011-08-16
Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.
Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul
2017-01-01
eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA). PMID:28333085
Kildgaard, Sara; Subko, Karolina; Phillips, Emma; Goidts, Violaine; de la Cruz, Mercedes; Díaz, Caridad; Gotfredsen, Charlotte H.; Frisvad, Jens C.; Nielsen, Kristian F.; Larsen, Thomas O.
2017-01-01
A marine-derived Stilbella fimetaria fungal strain was screened for new bioactive compounds based on two different approaches: (i) bio-guided approach using cytotoxicity and antimicrobial bioassays; and (ii) dereplication based approach using liquid chromatography with both diode array detection and high resolution mass spectrometry. This led to the discovery of several bioactive compound families with different biosynthetic origins, including pimarane-type diterpenoids and hybrid polyketide-non ribosomal peptide derived compounds. Prefractionation before bioassay screening proved to be a great aid in the dereplication process, since separate fractions displaying different bioactivities allowed a quick tentative identification of known antimicrobial compounds and of potential new analogues. A new pimarane-type diterpene, myrocin F, was discovered in trace amounts and displayed cytotoxicity towards various cancer cell lines. Further media optimization led to increased production followed by the purification and bioactivity screening of several new and known pimarane-type diterpenoids. A known broad-spectrum antifungal compound, ilicicolin H, was purified along with two new analogues, hydroxyl-ilicicolin H and ilicicolin I, and their antifungal activity was evaluated. PMID:28805711
Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.
Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick
2016-03-10
The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.
In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam
Muhammad, Abubakar Amali; Pauzi, Nur Aimi Syarina; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida
2013-01-01
Moringa oleifera Lam. (M. oleifera) from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro. PMID:24490175
The Evaluation and Utilization of Marine-derived Bioactive Compounds with Anti-obesity Effect.
Jin, Qiu; Yu, Huahua; Li, Pengcheng
2018-01-01
Obesity is a global epidemic throughout the world. There is thus increasing interest in searching for natural bioactive compounds with anti-obesity effect. A number of marine compounds have been regarded as potential sources of bioactive compounds and are associated with an anti-obesity effect. Marine-derived compounds with anti-obesity effect and their current applications, methods and indicators for the evaluation of anti-obesity activity are summarized in this review. in order to make contributions to the development of marine-derived functional food against obesity. In this review, an overview of marine-derived compounds with anti-obesity effect, including marine polysaccharides, marine lipid, marine peptides, marine carotenoids is intensively made with an emphasis on their efficacy and mechanism of action. Meanwhile, methods and indicators for the evaluation of anti-obesity activity are discussed. We summarize these methods into three categories: in vitro assay (including adsorption experiments and enzyme inhibitory assay), cell line study, animal experiments and clinical experiments. In addition, a brief introduction of the current applications of marine bioactive compounds with anti-obesity activity is discussed. Marine environment is a rich source of both biological and chemical diversity. In the past decades, numerous novel compounds with anti-obesity activity have been obtained from marine organisms, and many of them have been applied to industrial production such as functional foods and pharmaceuticals. Further studies are needed to explore the above-mentioned facts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.
Mamo, Gashaw
Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these bioactive compounds. In addition to their products, whole cell anaerobes have very interesting applications for enhancing the quality of life. Probiotic anaerobes have been on the market for many years and are receiving growing acceptance as health promoters. Gut anaerobes have been used to treat patients suffering from severe Clostridium difficile infection syndromes including diarrhoea and colitis which cannot be treated by other means. Whole cell anaerobes are also studied to detect and cure cancer. In recent years, evidence is emerging that anaerobes constituting the microbiome are linked to our overall health. A dysfunctional microbiome is believed to be the cause of many diseases including cancer, allergy, infection, obesity, diabetes and several other disorders. Maintaining normal microflora is believed to alleviate some of these serious health problems. Indeed, the use of probiotics and prebiotics which favourably change the number and composition of the gut microflora is known to render a health promoting effect. Our interaction with the microbiome anaerobes is complex. In fact, not only our lives but also our identities are more closely linked to the anaerobic microbial world than we may possibly imagine. We are just at the beginning of unravelling the secret of association between the microbiome and human body, and a clear understanding of the association may bring a paradigm shift in the way we diagnose and treat diseases and disorders. This chapter highlights some of the work done on bioactive compounds and whole cell applications of the anaerobes that foster human health and improve the quality of life.
Skin bioavailability of dietary vitamin E, carotenoids, polyphenols, vitamin C, zinc and selenium.
Richelle, Myriam; Sabatier, Magalie; Steiling, Heike; Williamson, Gary
2006-08-01
Dietary bioactive compounds (vitamin E, carotenoids, polyphenols, vitamin C, Se and Zn) have beneficial effects on skin health. The classical route of administration of active compounds is by topical application direct to the skin, and manufacturers have substantial experience of formulating ingredients in this field. However, the use of functional foods and oral supplements for improving skin condition is increasing. For oral consumption, some dietary components could have an indirect effect on the skin via, for example, secondary messengers. However, in the case of the dietary bioactive compounds considered here, we assume that they must pass down the gastrointestinal tract, cross the intestinal barrier, reach the blood circulation, and then be distributed to the different tissues of the body including the skin. The advantages of this route of administration are that the dietary bioactive compounds are metabolized and then presented to the entire tissue, potentially in an active form. Also, the blood continuously replenishes the skin with these bioactive compounds, which can then be distributed to all skin compartments (i.e. epidermis, dermis, subcutaneous fat and also to sebum). Where known, the distribution and mechanisms of transport of dietary bioactive compounds in skin are presented. Even for compounds that have been studied well in other organs, information on skin is relatively sparse. Gaps in knowledge are identified and suggestions made for future research.
Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity
Godoy, Luis D.; Lucas, Julianna E.; Bender, Abigail J.; Romanick, Samantha S.; Ferguson, Bradley S.
2017-01-01
Scope Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of HDACs, impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Methods and results Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. Conclusion This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. PMID:27981795
Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity.
Godoy, Luis D; Lucas, Julianna E; Bender, Abigail J; Romanick, Samantha S; Ferguson, Bradley S
2017-04-01
Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of histone deacetylases (HDACs), impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioactive annonaceous acetogenins from the bark of Xylopia aromatica.
Colman-Saizarbitoria, T; Zambrano, J; Ferrigni, N R; Gu, Z M; Ng, J H; Smith, D L; McLaughlin, J L
1994-04-01
Bioactive Annonaceous acetogenins have been isolated from the EtOH extract of the bark of Xylopia aromatica by bioactivity-directed fractionation using lethality to brine shrimp. These acetogenins include xylopianin [1 , xylopiacin [2], and xylomaticin [3], which are three new mono-tetrahydrofuran ring type acetogenins, in addition to the known compounds, annomontacin, gigantetronenin, gigantetrocin A, and annonacin. Compounds 1 and 2 are unusual in having hydroxylation at C-8; 3 has the same functionalities as annonacin but with 37 carbons instead of 35 carbons. The structures were elucidated by spectral analysis of the parent compounds and/or simple chemical derivatives. These acetogenins showed cytotoxicities, comparable to adriamycin, against three human solid tumor cell lines.
Martins, Natália; Petropoulos, Spyridon; Ferreira, Isabel C F R
2016-11-15
Garlic (Allium sativum L.) is considered one of the twenty most important vegetables, with various uses throughout the world, either as a raw vegetable for culinary purposes, or as an ingredient of traditional and modern medicine. Furthermore, it has also been proposed as one of the richest sources of total phenolic compounds, among the usually consumed vegetables, and has been highly ranked regarding its contribution of phenolic compounds to human diet. This review aims to examine all the aspects related with garlic chemical composition and quality, focusing on its bioactive properties. A particular emphasis is given on the organosulfur compounds content, since they highly contribute to the effective bioactive properties of garlic, including its derived products. The important effects of pre-harvest (genotype and various cultivation practices) and post-harvest conditions (storage conditions and processing treatments) on chemical composition and, consequently, bioactive potency of garlic are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dias, Maria Inês; Barros, Lillian; Sousa, Maria João; Oliveira, M Beatriz P P; Santos-Buelga, Celestino; Ferreira, Isabel C F R
2017-11-15
In vitro culture emerges as a sustainable way to produce bioactives for further applicability in the food industry. Herein, vegetative parts of Fragaria vesca L. (wild strawberry) obtained by in vitro culture were analyzed regarding nutritional and phytochemical compounds, as well as antioxidant activity. These samples proved to have higher content of protein, polyunsaturated fatty acids, soluble sugars, organic acids (including ascorbic acid) and tocopherols (mainly α-tocopherol) than wild grown F. vesca, as well as containing additional phenolic compounds. The antioxidant activity of hydromethanolic extracts could be correlated with the content of different phenolic groups and other compounds (sugars and organic acids). It was demonstrated that in vitro culture could enhance nutritional and bioactive compounds of Fragaria vesca L. plants, providing a very interesting biotechnological tool for potential food applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species.
Sharma, S K; Gautam, N
2015-01-01
The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65-70%) over SFA (30-35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities.
Liu, Hong; Tan, Li-Ping; Huang, Xin; Liao, Yi-Qiu; Zhang, Wei-Jian; Li, Pei-Bo; Wang, Yong-Gang; Peng, Wei; Wu, Zhong; Su, Wei-Wei; Yao, Hong-Liang
2018-05-03
Discovery and identification of three bioactive compounds affecting endothelial function in Ginkgo biloba Extract (GBE) based on chromatogram-bioactivity correlation analysis. Three portions were separated from GBE via D101 macroporous resin and then re-combined to prepare nine GBE samples. 21 compounds in GBE samples were identified through UFLC-DAD-Q-TOF-MS/MS. Correlation analysis between compounds differences and endothelin-1 (ET-1) in vivo in nine GBE samples was conducted. The analysis results indicated that three bioactive compounds had close relevance to ET-1: Kaempferol-3- O -α-l-glucoside, 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Quercetin isomers, and 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Kaempferide. The discovery of bioactive compounds could provide references for the quality control and novel pharmaceuticals development of GRE. The present work proposes a feasible chromatogram-bioactivity correlation based approach to discover the compounds and define their bioactivities for the complex multi-component systems.
Chen, Yaqi; Chen, Zhui; Wang, Yi
2015-01-01
Screening and identifying active compounds from traditional Chinese medicine (TCM) and other natural products plays an important role in drug discovery. Here, we describe a magnetic beads-based multi-target affinity selection-mass spectrometry approach for screening bioactive compounds from natural products. Key steps and parameters including activation of magnetic beads, enzyme/protein immobilization, characterization of functional magnetic beads, screening and identifying active compounds from a complex mixture by LC/MS, are illustrated. The proposed approach is rapid and efficient in screening and identification of bioactive compounds from complex natural products.
Challenges in Analyzing the Biological Effects of Resveratrol
Erdogan, Cihan Suleyman; Vang, Ole
2016-01-01
The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biological effects. Extrapolating the biological effects of dietary compounds from in vitro and in vivo animal experiments to humans may lead to over- or under-estimation of the effect and role of these compounds. The present paper will discuss a few of these challenges and suggest directions for future research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds. PMID:27294953
Miljković, Filip; Kunimoto, Ryo; Bajorath, Jürgen
2017-08-01
Computational exploration of small-molecule-based relationships between target proteins from different families. Target annotations of drugs and other bioactive compounds were systematically analyzed on the basis of high-confidence activity data. A total of 286 novel chemical links were established between distantly related or unrelated target proteins. These relationships involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. Computational analysis of large amounts of compounds and activity data has revealed unexpected relationships between diverse target proteins on the basis of compounds they share. These relationships are relevant for drug discovery efforts. Target pairs that we have identified and associated compound information are made freely available.
Sanjeewa, Kalu Kapuge Asanka; Kim, Eun-A; Son, Kwang-Tae; Jeon, You-Jin
2016-09-01
Currently, natural ingredients are becoming more attractive for the industries such as functional food, nutraceuticals, cosmeceutical and pharmaceutical industries as people starting to believe naturally occurring compounds are safer to humans than artificial compounds. Seaweeds are one of the most interesting organisms found in oceans around the earth, which are carrying great ecological importance and contribute to increase the biodiversity of ecosystems where they were originated and habitat. Within last few decades, discovery of secondary metabolites with biological activities from seaweeds has been significantly increased. Further, the unique secondary metabolites isolated from seaweeds including polysaccharides, carotenoids and polyphenols possess range of bioactive properties that make them potential ingredient for many industrial applications. Among those groups of compounds phlorotannins isolated from brown seaweeds have shown interesting bioactive properties including anti-cancer, anti-inflammation, anti-oxidant, anti-allergic, anti-wrinkling and hair growth promotion properties. Moreover, these properties associated with phlorotannins make them an ideal compounds to use as a functional ingredient in cosmeceutical products. Up to now no report has been reviewed about discuss properties of phlorotannins related to the cosmeceutical application. In the present review primary attention is given to the collect scientific data published about bioactive properties of brown algal phlorotannins related to the cosmeceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris
2016-02-05
It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph-Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality control and bioactivity evaluation through the chemical fingerprinting of bud preparations.
Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications
Elsayed, Elsayed A.; El Enshasy, Hesham; Wadaan, Mohammad A. M.; Aziz, Ramlan
2014-01-01
For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents. PMID:25505823
Wassermann, Anne Mai; Lounkine, Eugen; Glick, Meir
2013-03-25
Virtual screening using bioactivity profiles has become an integral part of currently applied hit finding methods in pharmaceutical industry. However, a significant drawback of this approach is that it is only applicable to compounds that have been biologically tested in the past and have sufficient activity annotations for meaningful profile comparisons. Although bioactivity data generated in pharmaceutical institutions are growing on an unprecedented scale, the number of biologically annotated compounds still covers only a minuscule fraction of chemical space. For a newly synthesized compound or an isolated natural product to be biologically characterized across multiple assays, it may take a considerable amount of time. Consequently, this chemical matter will not be included in virtual screening campaigns based on bioactivity profiles. To overcome this problem, we herein introduce bioturbo similarity searching that uses chemical similarity to map molecules without biological annotations into bioactivity space and then searches for biologically similar compounds in this reference system. In benchmark calculations on primary screening data, we demonstrate that our approach generally achieves higher hit rates and identifies structurally more diverse compounds than approaches using chemical information only. Furthermore, our method is able to discover hits with novel modes of inhibition that traditional 2D and 3D similarity approaches are unlikely to discover. Test calculations on a set of natural products reveal the practical utility of the approach for identifying novel and synthetically more accessible chemical matter.
Meat and fermented meat products as a source of bioactive peptides.
Stadnik, Joanna; Kęska, Paulina
2015-01-01
Bioactive peptides are short amino acid sequences, that upon release from the parent protein may play different physiological roles, including antioxidant, antihypertensive, antimicrobial, and other bioactivities. They have been identified from a range of foods, including those of animal origin, e.g., milk and muscle sources (with pork, beef, or chicken and various species of fish and marine organism). Bioactive peptides are encrypted within the sequence of the parent protein molecule and latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. Bioactive peptides derived from food sources have the potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an overview of the muscle-derived bioactive peptides, especially those of fermented meats and the potential benefits of these bioactive compounds to human health.
Abubacker, Maghdu Nainamohamed; Devi, Palaniyappan Kamala
2014-09-01
To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Nocardiopsis species: a potential source of bioactive compounds.
Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V
2016-01-01
Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications. © 2015 The Society for Applied Microbiology.
Innovative natural functional ingredients from microalgae.
Plaza, Merichel; Herrero, Miguel; Cifuentes, Alejandro; Ibáñez, Elena
2009-08-26
Nowadays, a wide variety of compounds such as polyphenols, polyunsaturated fatty acids (PUFA), or phytosterols obtained, for example, from wine, fish byproducts, or plants are employed to prepare new functional foods. However, unexplored natural sources of bioactive ingredients are gaining much attention since they can lead to the discovery of new compounds or bioactivities. Microalgae have been proposed as an interesting, almost unlimited, natural source in the search for novel natural functional ingredients, and several works have shown the possibility to find bioactive compounds in these organisms. Some advantages can be associated with the study of microalgae such as their huge diversity, the possibility of being used as natural reactors at controlled conditions, and their ability to produce active secondary metabolites to defend themselves from adverse or extreme conditions. In this contribution, an exhaustive revision is presented involving the research for innovative functional food ingredients from microalgae. The most interesting results in this promising field are discussed including new species composition and bioactivity and new processing and extraction methods. Moreover, the future research trends are critically commented.
Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species
Sharma, S. K.; Gautam, N.
2015-01-01
The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70%) over SFA (30–35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities. PMID:26199938
Bioactive compounds and encapsulation of Yanang (Tiliacora triandra) leaves.
Singthong, Jittra; Oonsivilai, Ratchadaporn; Oonmetta-Aree, Jirawan; Ningsanond, Suwayd
2014-01-01
Yanang (Tiliacora triandra) has been known as vegetable and herbal in northeast Thailand and Lao People's Democratic Republic. Extracts from Yanang leaves contain high amounts of polyphenol constituents possessing antioxidant activity. This work investigated bioactive compounds of Yanang extracts prepared by infusion with water, ethanol and acetone. Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability of bioactive compounds was evaluated using phenolic compounds, total antioxidant, carotenoids and chlorophyll. The study of the bioactivity of Yanang extracts found that extraction with water was the appropriate application. The study of Yanang encapsulation demonstrated that gum Arabic, as coating agents, protected bioactive compounds of Yanang. Optimized condition for the encapsulation was at the ratio of core to wall {1:4}, in gum Arabic concentration 10% (w/v), and inlet temperature at 160▯C. The results show that the bioactive compounds were mainly affected by the ratio of core to wall material. Besides, moisture content and particle size of encapsulation depend on inlet temperature of spray drying, and gum Arabic concentration, respectively. This optimization reveals that the encapsulation process did not lose the bioactive compounds. Yanang extract with water was the main phenolic compound and showed high antioxidant activities. This study demonstrates the potentials of using spray drying process and optimization for the encapsulation of herbal products.
Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines.
Olender, Dorota; Żwawiak, Justyna; Zaprutko, Lucjusz
2018-05-29
The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.
Zahradka, Peter
2018-01-01
Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils) are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance. PMID:29601521
The effects of marine carbohydrates and glycosylated compounds on human health.
Kang, Hee-Kyoung; Seo, Chang Ho; Park, Yoonkyung
2015-03-16
Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed.
The Effects of Marine Carbohydrates and Glycosylated Compounds on Human Health
Kang, Hee-Kyoung; Seo, Chang Ho; Park, Yoonkyung
2015-01-01
Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed. PMID:25785562
Jayasena, Dinesh D; Jung, Samooel; Bae, Young Sik; Kim, Sun Hyo; Lee, Soo Kee; Lee, Jun Heon; Jo, Cheorun
2014-07-01
This study aimed to examine the effect of bird age on the contents of endogenous bioactive compounds, including carnosine, anserine, creatine, betaine, and carnitine, in meat from a certified meat-type commercial Korean native chicken strain (KNC; Woorimatdag). Additionally, the effects of the meat type (breast or leg meat) and the state of the meat (raw or cooked) were examined. Cocks of KNC were raised under similar standard commercial conditions at a commercial chicken farm. At various ages (10, 11, 12, 13, and 14 wk), breast and leg meats from a total of 10 birds from each age group were obtained. Raw and cooked meat samples were then prepared separately and analyzed for bioactive compounds. The age of the KNC had a significant effect only on the betaine content. The breast meat of KNC had higher amounts of carnosine and anserine but had lower amounts of betaine and carnitine than the leg meat (P < 0.05). The KNC meat lost significant amounts of all bioactive compounds during cooking (P < 0.05). Leg meat had high retention percentages of carnosine and anserine after cooking, whereas breast meat showed almost complete retention of betaine and carnitine. The results of this study provide useful and rare information regarding the presence, amounts, and determinants of endogenous bioactive compounds in KNC meat, which can be useful for selection and breeding programs, and also for popularizing indigenous chicken meat. © 2014 Poultry Science Association Inc.
Chang, Qing; Peng, Yue'e; Dan, Conghui; Shuai, Qin; Hu, Shenghong
2015-03-25
A method for the rapid in situ identification of bioactive compounds in fresh plants has been developed using in vivo nanospray coupled to high-resolution mass spectrometry (HR-MS). Using a homemade in vivo nanospray ion source, the plant liquid was drawn out from a target region and ionized in situ. The ionized bioactive compounds were then identified using Q-Orbitrap HR-MS. The accurate mass measurements of these bioactive compounds were performed by full-scan or selected ion monitoring (SIM), and tandem mass spectrometry (MS/MS) was used in the structural elucidation. Without sample pretreatment, 12 bioactive compounds in 7 different plant species were identified, namely, isoalliin in onion; butylphthalide in celery; N-methylpelletierine, pelletierine, and pseudopelletierine in pomegranate; chlorogenic acid in crabapple; solamargine, solasonine, and solasodine in nightshade; aloin and aloe-emodin in aloe; and menthone in mint. This work demonstrates that in vivo nanospray HR-MS is a good method for rapid in situ identification of bioactive compounds in plants.
Spectroscopic analysis of phenolic compounds for food and feed formulations
USDA-ARS?s Scientific Manuscript database
Phenolic compounds exhibit several bioactive properties including anti-oxidant, anti-microbial, and anti-fungal characteristics with potential applications as additives in functional food and feed formulations. Phenolic compounds occur in plants as secondary metabolites and may be recovered as a co-...
Corrêa, Rúbia Carvalho Gomes; de Souza, Aloisio Henrique Pereira; Calhelha, Ricardo C; Barros, Lillian; Glamoclija, Jasmina; Sokovic, Marina; Peralta, Rosane Marina; Bracht, Adelar; Ferreira, Isabel C F R
2015-07-01
Pleurotus ostreatoroseus is a Brazilian edible mushroom whose chemical characterization and bioactivity still remain underexplored. In this study, the hydrophilic and lipophilic compounds as well as the antioxidant, anti-inflammatory and antimicrobial activities of formulations (ethanol extracts) prepared with its fruiting bodies and submerged culture mycelia were compared. The bioactive formulations contain at least five free sugars, four organic acids, four phenolic compounds and two tocopherols. The fruiting body-based formulation revealed higher reducing power, DPPH scavenging activity, β-carotene bleaching inhibition and lipid peroxidation inhibition in brain homogenates than the mycelium-based preparation, as well as higher anti-inflammatory and antimicrobial activities. The absence of hepatotoxicity was confirmed in porcine liver primary cells. These functional responses can be related to the levels of bioactive components including phenolic acids, organic acids and tocopherols.
Raghu, Rajasekaran; Lu, Kuan-Hung; Sheen, Lee-Yan
2012-01-01
Garlic (大蒜 dà suàn; the bulb of Allium sativum), bestowed with an array of organosulfur compounds finds its application in treating many ailments including cardiovascular problems, common cold, bacterial and fungal infections and cancer. Numerous epidemiological evidences document the beneficial effects of various bioactive organosulfur compounds of garlic against different types of cancer. Studies involving the animal and cell models indicate garlic bioactive compounds could be effective in treating all the stages of cancer. This review gives an update on the recent pre-clinical and clinical trials, carried out to evaluate the efficacy of various garlic bioactive compounds along with the mechanism of action pertaining to major digestive cancers including liver, gastric and colorectal cancers. The major anti-carcinogenic mechanisms are caspase dependent and/or independent induction of apoptosis, anti-proliferative, anti-metastasis, anti-oxidant and immunomodulative properties. Form the clinical trials an increase in the garlic consumption of 20 g/day reduced the risk of gastric and colorectal cancer. In summary, increased uptake of garlic in diet may prevent the incidence of digestive cancers. PMID:24716132
Microwave-Assisted Drying for the Conservation of Honeybee Pollen.
Canale, Angelo; Benelli, Giovanni; Castagna, Antonella; Sgherri, Cristina; Poli, Piera; Serra, Andrea; Mele, Marcello; Ranieri, Annamaria; Signorini, Francesca; Bientinesi, Matteo; Nicolella, Cristiano
2016-05-12
Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.
Zerrifi, Soukaina El Amrani; El Khalloufi, Fatima; Oudra, Brahim; Vasconcelos, Vitor
2018-02-09
Cyanobacteria are found globally due to their adaptation to various environments. The occurrence of cyanobacterial blooms is not a new phenomenon. The bloom-forming and toxin-producing species have been a persistent nuisance all over the world over the last decades. Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect anthropogenic influences. To control cyanobacterial blooms, various strategies, including physical, chemical, and biological methods have been proposed. Nevertheless, the use of those strategies is usually not effective. The isolation of natural compounds from many aquatic and terrestrial plants and seaweeds has become an alternative approach for controlling harmful algae in aquatic systems. Seaweeds have received attention from scientists because of their bioactive compounds with antibacterial, antifungal, anti-microalgae, and antioxidant properties. The undesirable effects of cyanobacteria proliferations and potential control methods are here reviewed, focusing on the use of potent bioactive compounds, isolated from seaweeds, against microalgae and cyanobacteria growth.
Zerrifi, Soukaina El Amrani; El Khalloufi, Fatima; Oudra, Brahim; Vasconcelos, Vitor
2018-01-01
Cyanobacteria are found globally due to their adaptation to various environments. The occurrence of cyanobacterial blooms is not a new phenomenon. The bloom-forming and toxin-producing species have been a persistent nuisance all over the world over the last decades. Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect anthropogenic influences. To control cyanobacterial blooms, various strategies, including physical, chemical, and biological methods have been proposed. Nevertheless, the use of those strategies is usually not effective. The isolation of natural compounds from many aquatic and terrestrial plants and seaweeds has become an alternative approach for controlling harmful algae in aquatic systems. Seaweeds have received attention from scientists because of their bioactive compounds with antibacterial, antifungal, anti-microalgae, and antioxidant properties. The undesirable effects of cyanobacteria proliferations and potential control methods are here reviewed, focusing on the use of potent bioactive compounds, isolated from seaweeds, against microalgae and cyanobacteria growth. PMID:29425153
Marine actinobacteria: an important source of bioactive natural products.
Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon
2014-07-01
Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization, Preparation, and Purification of Marine Bioactive Peptides
Wang, Xueqin; Yu, Huahua; Xing, Ronge
2017-01-01
Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides. PMID:28761878
Ventura, Sónia P M; E Silva, Francisca A; Quental, Maria V; Mondal, Dibyendu; Freire, Mara G; Coutinho, João A P
2017-05-24
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.
Production of Bioactive Secondary Metabolites by Marine Vibrionaceae
Mansson, Maria; Gram, Lone; Larsen, Thomas O.
2011-01-01
Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation. PMID:22131950
2017-01-01
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid–liquid extractions, IL-based liquid–liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations. PMID:28151648
Arai, Masayoshi
2016-01-01
With the development of cell biology and microbiology, it has become easy to culture many types of animal cells and microbes, and they are frequently used for phenotypic screening to explore medicinal seeds. On the other hand, it is recognized that cells and pathogenic microbes present in pathologic sites and infected regions of the human body display unique properties different from those under general culture conditions. We isolated several bioactive compounds from marine medicinal resources using constructed bioassay-guided separation focusing on the unique changes in the characteristics of cells and pathogenic microbes (Mycobacterium spp.) in the human body under disease conditions. In addition, we also carried out identification studies of target molecules of the bioactive compounds by methods utilizing the gene expression profile, transformants of cells or microbes, synthetic probe molecules of the isolated compounds, etc., since bioactive compounds isolated from the phenotypic screening system often target new molecules. This review presents our phenotypic screening systems, isolation of bioactive compounds from marine medicinal resources, and target identification of bioactive compounds.
Bioactive compounds from palm fatty acid distillate and crude palm oil
NASA Astrophysics Data System (ADS)
Estiasih, T.; Ahmadi, K.
2018-03-01
Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.
Rocha-Martin, Javier; Harrington, Catriona; Dobson, Alan D.W.; O’Gara, Fergal
2014-01-01
Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds. PMID:24918453
Chaparro, Jacqueline M.; Holm, David G.; Broeckling, Corey D.; Prenni, Jessica E.; Heuberger, Adam L.
2018-01-01
Potato (Solanum tuberosum L.) is an important global food crop that contains phytochemicals with demonstrated effects on human health. Understanding sources of chemical variation of potato tuber can inform breeding for improved health attributes of the cooked food. Here, a comprehensive metabolomics (UPLC- and GC-MS) and ionomics (ICP-MS) analysis of raw and cooked potato tuber was performed on 60 unique potato genotypes that span 5 market classes including russet, red, yellow, chip, and specialty potatoes. The analyses detected 2,656 compounds that included known bioactives (43 compounds), nutrients (42), lipids (76), and 23 metals. Most nutrients and bioactives were partially degraded during cooking (44 out of 85; 52%), however genotypes with high quantities of bioactives remained highest in the cooked tuber. Chemical variation was influenced by genotype and market class. Specifically, ~53% of all detected compounds from cooked potato varied among market class and 40% varied by genotype. The most notable metabolite profiles were observed in yellow-flesh potato which had higher levels of carotenoids and specialty potatoes which had the higher levels of chlorogenic acid as compared to the other market classes. Variation in several molecules with known association to health was observed among market classes and included vitamins (e.g., pyridoxal, ~2-fold variation), bioactives (e.g., chlorogenic acid, ~40-fold variation), medicinals (e.g., kukoamines, ~6-fold variation), and minerals (e.g., calcium, iron, molybdenum, ~2-fold variation). Furthermore, more metabolite variation was observed within market class than among market class (e.g., α-tocopherol, ~1-fold variation among market class vs. ~3-fold variation within market class). Taken together, the analysis characterized significant metabolite and mineral variation in raw and cooked potato tuber, and support the potential to breed new cultivars for improved health traits. PMID:29876353
Bioactive terpenes from marine-derived fungi.
Elissawy, Ahmed M; El-Shazly, Mohamed; Ebada, Sherif S; Singab, AbdelNasser B; Proksch, Peter
2015-04-03
Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years' reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.
Zhou, Jian-Liang; Wu, Ye-Qing; Tan, Chun-Mei; Zhu, Ming; Ma, Lin-Ke
2016-10-01
A target cell extraction-chemical profiling method based on human alveolar adenocarcinoma cell line (A549 cells) and UHPLC/LTQ Orbitrap MS for screening the anti-lung cancer bioactive compounds from Curcuma longa has been developed in this paper. According to the hypothesis that when cells are incubated together with the extract of Curcuma longa, the potential bioactive compounds in the extract should selectively combine with the cells, then the cell-binding compounds could be separated and analyzed by LC-MS. The bioactive compounds in C. longa are lipophilic components. They intend to be absorbed on the inner wall of cell culture flask when they were incubated with A549 cells, which will produce interference in the blank solution. In this paper, by using cells digestion and multi-step centrifugation and transfer strategy, the interference problem has been solved. Finally, using the developed method, three cell-binding compounds were screened out and were identified as bisdemethoxycurcumin, demethoxycurcumin, and curcumin. These compounds are the main bioactive compounds with anti-lung cancer bioactivity in C. longa. The improved method developed in this paper could avoid the false positive results due to the absorption of lipophilic compounds on the inner wall of cell culture flask, which will to be an effective complementary method for current target cell extraction-chemical profiling technology. Copyright© by the Chinese Pharmaceutical Association.
Caffrey, Conor R.; Steverding, Dietmar; Swenerton, Ryan K.; Kelly, Ben; Walshe, Deirdre; Debnath, Anjan; Zhou, Yuan-Min; Doyle, Patricia S.; Fafarman, Aaron T.; Zorn, Julie A.; Land, Kirkwood M.; Beauchene, Jessica; Schreiber, Kimberly; Moll, Heidrun; Ponte-Sucre, Alicia; Schirmeister, Tanja; Saravanamuthu, Ahilan; Fairlamb, Alan H.; Cohen, Fred E.; McKerrow, James H.; Weisman, Jennifer L.; May, Barnaby C. H.
2007-01-01
Parasitic diseases are of enormous public health significance in developing countries—a situation compounded by the toxicity of and resistance to many current chemotherapeutics. We investigated a focused library of 18 structurally diverse bis-acridine compounds for in vitro bioactivity against seven protozoan and one helminth parasite species and compared the bioactivities and the cytotoxicities of these compounds toward various mammalian cell lines. Structure-activity relationships demonstrated the influence of both the bis-acridine linker structure and the terminal acridine heterocycle on potency and cytotoxicity. The bioactivity of polyamine-linked acridines required a minimum linker length of approximately 10 Å. Increasing linker length resulted in bioactivity against most parasites but also cytotoxicity toward mammalian cells. N alkylation, but less so N acylation, of the polyamine linker ameliorated cytotoxicity while retaining bioactivity with 50% effective concentration (EC50) values similar to or better than those measured for standard drugs. Substitution of the polyamine for either an alkyl or a polyether linker maintained bioactivity and further alleviated cytotoxicity. Polyamine-linked compounds in which the terminal acridine heterocycle had been replaced with an aza-acridine also maintained acceptable therapeutic indices. The most potent compounds recorded low- to mid-nanomolar EC50 values against Plasmodium falciparum and Trypanosoma brucei; otherwise, low-micromolar potencies were measured. Importantly, the bioactivity of the library was independent of P. falciparum resistance to chloroquine. Compound bioactivity was a function of neither the potential to bis-intercalate DNA nor the inhibition of trypanothione reductase, an important drug target in trypanosomatid parasites. Our approach illustrates the usefulness of screening focused compound libraries against multiple parasite targets. Some of the bis-acridines identified here may represent useful starting points for further lead optimization. PMID:17371810
Lin, You-Tung; Pao, Cheng-Cheng; Wu, Shwu-Tzy; Chang, Chi-Yue
2015-01-01
This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR) and germinated brown rice (GBR). We used two rice cultivars (Oryza sativa L.), Taiwan Japonica 9 (TJ-9) and Taichung Indica 10 (TCI-10), as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C), long soaking time (72 h), darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR). We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity) and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol). Higher temperature (36°C) is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives. PMID:25861637
Motoyama, Takayuki; Osada, Hiroyuki
2016-12-15
The diversity of natural products is greater than that of combinatorial chemistry compounds and is similar to that of drugs. Compounds rich in sp 3 carbons, such as natural products, typically exhibit high structural complexity and high specificity to molecular targets. Microorganisms can synthesize such sp 3 carbon-rich compounds and can be used as excellent factories for making bioactive compounds. Here, we mainly focus on pathway engineering of two sp 3 carbon-rich bioactive indole alkaloids, fumitremorgin C and terpendole E. We also demonstrate the importance of activation of secondary metabolism by focusing on tenuazonic acid, a bioactive tetramic acid compound, as an example. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exploring Marine Cyanobacteria for Lead Compounds of Pharmaceutical Importance
Uzair, Bushra; Tabassum, Sobia; Rasheed, Madiha; Rehman, Saima Firdous
2012-01-01
The Ocean, which is called the “mother of origin of life,” is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria. PMID:22545008
Cyanobacteria as a Source for Novel Anti-Leukemic Compounds.
Humisto, Anu; Herfindal, Lars; Jokela, Jouni; Karkman, Antti; Bjørnstad, Ronja; Choudhury, Romi R; Sivonen, Kaarina
2016-01-01
Cyanobacteria are an inspiring source of bioactive secondary metabolites. These bioactive agents are a diverse group of compounds which are varying in their bioactive targets, the mechanisms of action, and chemical structures. Cyanobacteria from various environments, especially marine benthic cyanobacteria, are found to be rich sources for the search for novel bioactive compounds. Several compounds with anticancer activities have been discovered from cyanobacteria and some of these have succeeded to enter the clinical trials. Varying anticancer agents are needed to overcome increasing challenges in cancer treatments. Different search methods are used to reveal anticancer compounds from natural products, but cell based methods are the most common. Cyanobacterial bioactive compounds as agents against acute myeloid leukemia are not well studied. Here we examined our new results combined with previous studies of anti-leukemic compounds from cyanobacteria with emphasis to reveal common features in strains producing such activity. We report that cyanobacteria harbor specific anti-leukemic compounds since several studied strains induced apoptosis against AML cells but were inactive against non-malignant cells like hepatocytes. We noted that particularly benthic strains from the Baltic Sea, such as Anabaena sp., were especially potential AML apoptosis inducers. Taken together, this review and re-analysis of data demonstrates the power of maintaining large culture collections for the search for novel bioactivities, and also how anti-AML activity in cyanobacteria can be revealed by relatively simple and low-cost assays.
The major bioactive components of seaweeds and their mosquitocidal potential.
Yu, Ke-Xin; Jantan, Ibrahim; Ahmad, Rohani; Wong, Ching-Lee
2014-09-01
Seaweeds are one of the most widely studied natural resources for their biological activities. Novel seaweed compounds with unique chemical structures have been reported for their pharmacological properties. The urge to search for novel insecticidal compound with a new mode of action for development of botanical insecticides supports the relevant scientific research on discovering the bioactive compounds in seaweeds. The mosquitocidal potential of seaweed extracts and their isolated compounds are documented in this review paper, along with the discussion on bioactivities of the major components of seaweeds such as polysaccharides, phenolics, proteins, terpenes, lipids, and halogenated compounds. The effects of seaweed extracts and compounds toward different life stages of mosquito (egg, larva, pupa, and adult), its growth, development, and reproduction are elaborated. The structure-activity relationships of mosquitocidal compounds are discussed to extrapolate the possible chemical characteristics of seaweed compounds responsible for insecticidal properties. Furthermore, the possible target sites and mode of actions of the mosquitocidal seaweed compounds are included in this paper. The potential synergistic effects between seaweeds and commercial insecticides as well as the toxic effects of seaweed extracts and compounds toward other insects and non-target organisms in the same habitat are also described. On top of that, various factors that influence the mosquitocidal potential of seaweeds, such as abiotic and biotic variables, sample preparation, test procedures, and considerations for a precise experimental design are discussed. The potential of active seaweed extracts and compounds in the development of effective bioinsecticide are also discussed.
Food-derived bioactive peptides on inflammation and oxidative stress.
Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping
2014-01-01
Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.
Red Maple (Acer rubrum) Aerial Parts as a Source of Bioactive Phenolics.
Zhang, Yan; Ma, Hang; Yuan, Tao; Seeram, Navindra P
2015-08-01
The bark and stems of red maple (Acer rubrum) are reported to contain bioactive phenolics but its aerial parts, namely, flowers and leaves, remain largely unexplored. This is unfortunate considering that various parts of the red maple were used for traditional medicinal purposes by the indigenous peoples of eastern North America, where this species is found. Herein, we report the identification of twenty-five (1-25) phenolics, including two new galloyl derivatives (1 and 2), from red maple flowers and leaves. Of these, ten compounds (1-10), including the new compounds, were isolated and identified by NMR and HRESIMS data while the remaining fifteen compounds (11-25) were identified by HPLC-DAD analyses (by comparison with chemical standards). The isolates (1-10), along with the clinical drug, acarbose, were evaluated for their alpha-glucosidase enzyme inhibitory activities.
Health Effects of Psidium guajava L. Leaves: An Overview of the Last Decade.
Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio
2017-04-24
Today, there is increasing interest in discovering new bioactive compounds derived from ethnomedicine. Preparations of guava ( Psidium guajava L.) leaves have traditionally been used to manage several diseases. The pharmacological research in vitro as well as in vivo has been widely used to demonstrate the potential of the extracts from the leaves for the co-treatment of different ailments with high prevalence worldwide, upholding the traditional medicine in cases such as diabetes mellitus, cardiovascular diseases, cancer, and parasitic infections. Moreover, the biological activity has been attributed to the bioactive composition of the leaves, to some specific phytochemical subclasses, or even to individual compounds. Phenolic compounds in guava leaves have been credited with regulating blood-glucose levels. Thus, the aim of the present review was to compile results from in vitro and in vivo studies carried out with guava leaves over the last decade, relating the effects to their clinical applications in order to focus further research for finding individual bioactive compounds. Some food applications (guava tea and supplementary feed for aquaculture) and some clinical, in vitro, and in vivo outcomes are also included.
Health Effects of Psidium guajava L. Leaves: An Overview of the Last Decade
Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio
2017-01-01
Today, there is increasing interest in discovering new bioactive compounds derived from ethnomedicine. Preparations of guava (Psidium guajava L.) leaves have traditionally been used to manage several diseases. The pharmacological research in vitro as well as in vivo has been widely used to demonstrate the potential of the extracts from the leaves for the co-treatment of different ailments with high prevalence worldwide, upholding the traditional medicine in cases such as diabetes mellitus, cardiovascular diseases, cancer, and parasitic infections. Moreover, the biological activity has been attributed to the bioactive composition of the leaves, to some specific phytochemical subclasses, or even to individual compounds. Phenolic compounds in guava leaves have been credited with regulating blood-glucose levels. Thus, the aim of the present review was to compile results from in vitro and in vivo studies carried out with guava leaves over the last decade, relating the effects to their clinical applications in order to focus further research for finding individual bioactive compounds. Some food applications (guava tea and supplementary feed for aquaculture) and some clinical, in vitro, and in vivo outcomes are also included. PMID:28441777
Vanajothi, Ramar; Srinivasan, Pappu
2015-01-01
Luffa acutangula (Cucurbitaceae) is widely used as a traditional medicine in India and was reported to possess various pharmacological activities including its anti-proliferative effects. In this study, the bioactive compound of ethanolic extract of L. acutangula (LA) was isolated using bioassay-guided approach. Five major fractions were collected and evaluated for their anti-proliferative activity against non-small cell lung cancer cells (NCI-H460). Among the test fractions, the fraction LA/FII effectively decreased the growth of cancer cells with IC50 values of 10 µg/ml concentration. Furthermore, it significantly increased intracellular reactive oxygen species and decreased the mitochondrial membrane potential. The apoptogenic activity of fraction LA/FII was confirmed by cell shrinkage, membrane blebbing and formation of apoptotic bodies. A single bioactive compound was isolated from the active faction, LA/FII and subsequently identified as 1,8 dihydroxy-4-methylanthracene 9,10-dione (compound 1) by comparing its spectral data [Ultraviolet (UV), Infrared (IR), Nuclear magnetic resonance (NMR) and Electrospray Ionization-Mass Spectroscopy (ESI-MS)] with literature values. This is the first report on the isolation of compound 1 from this plant.
Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases.
Olas, Beata
2016-11-01
Hippophae rhamnoides (sea buckthorn) offers many health benefits. It has significant cardioprotective activity and exerts many positive healing effects on the cardiovascular system, including inhibiting blood platelet activation (especially platelet aggregation), lowering cholesterol concentration and blood pressure, and providing antioxidant activity. In addition, sea buckthorn has antibacterial and antiviral properties. The leaves and fruits of the plant, and its oils, are sources of many bioactive substances including vitamins (A, C and E), unsaturated fatty acids, phenolic compounds, especially flavonoids, and phytosterols, which bestow positive effects on the cardiovascular system. This review article summarizes the current knowledge of the biological roles of sea buckthorn in cardiovascular diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi.
Wang, Yan-Ting; Xue, Ya-Rong; Liu, Chang-Hong
2015-07-23
Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development.
A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi
Wang, Yan-Ting; Xue, Ya-Rong; Liu, Chang-Hong
2015-01-01
Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development. PMID:26213949
Antioxidant Activity of Hawaiian Marine Algae
Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.
2012-01-01
Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808
VIT-CMJ2: Endophyte of Agaricus bisporus in Production of Bioactive Compounds.
Gautam, Chandan Kumar; Madhav, Mukund; Sinha, Astha; Jabez Osborne, William
2016-06-01
Agaricus bisporus is an edible basidiomycete fungus. Both the body and the mycelium contain compounds comprising a wide range of antimicrobial molecules, contributing in improvement of immunity and tumor-retardation. The presence of endophytes capable of producing bioactive compounds was investigated in Agaricus bisporus . Endophytes from Agaricus bisporus was isolated on LB agar. The obtained isolates were characterized morphologically and biochemically. Further 16S rRNA sequencing was implemented for molecular analysis of isolates. The isolate was mass produced and the bioactive compounds were extracted using ethyl acetate, chloroform and hexane. Agar well diffusion method was carried out to seek the potential of any antimicrobial activity of the crude bioactive compounds against known pathogens. GC-MS and FT-IR analysis were performed for the identification of bioactive compounds. VIT-CMJ2 was identified as Enterobacter sp. as revealed by 16S rRNA sequencing. Chloroform extract of VIT-CMJ2 showed a maximum zone of inhibition of 19 mm against Salmonella typhi followed by hexane and ethyl acetate extracts. The GC-MS analysis revealed the presence of several bioactive compounds having effective antimicrobial activity like butyl ester, Behenicalcohol, S , S-dioxide derivatives and some others which were later confirmed by FT-IR spectral stretches. The present study shows the insight on the way endophytes interact with Agaricus bisporus ; thereby improving the nutritional profile.
VIT-CMJ2: Endophyte of Agaricus bisporus in Production of Bioactive Compounds
Gautam, Chandan Kumar; Madhav, Mukund; Sinha, Astha; Jabez Osborne, William
2016-01-01
Background Agaricus bisporus is an edible basidiomycete fungus. Both the body and the mycelium contain compounds comprising a wide range of antimicrobial molecules, contributing in improvement of immunity and tumor-retardation. Objectives The presence of endophytes capable of producing bioactive compounds was investigated in Agaricus bisporus. Materials and Methods Endophytes from Agaricus bisporus was isolated on LB agar. The obtained isolates were characterized morphologically and biochemically. Further 16S rRNA sequencing was implemented for molecular analysis of isolates. The isolate was mass produced and the bioactive compounds were extracted using ethyl acetate, chloroform and hexane. Agar well diffusion method was carried out to seek the potential of any antimicrobial activity of the crude bioactive compounds against known pathogens. GC-MS and FT-IR analysis were performed for the identification of bioactive compounds. Results VIT-CMJ2 was identified as Enterobacter sp. as revealed by 16S rRNA sequencing. Chloroform extract of VIT-CMJ2 showed a maximum zone of inhibition of 19 mm against Salmonella typhi followed by hexane and ethyl acetate extracts. The GC-MS analysis revealed the presence of several bioactive compounds having effective antimicrobial activity like butyl ester, Behenicalcohol, S , S-dioxide derivatives and some others which were later confirmed by FT-IR spectral stretches. Conclusions The present study shows the insight on the way endophytes interact with Agaricus bisporus; thereby improving the nutritional profile. PMID:28959322
Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor
Abdullah Zawawi, Muhammad Redha; Ahmad, Muhamad Aizuddin; Jaganath, Indu Bala
2017-01-01
The inhibition of dipeptidyl peptidase-IV (DPPIV) is a popular route for the treatment of type-2 diabetes. Commercially available gliptin-based drugs such as sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin were specifically developed as DPPIV inhibitors for diabetic patients. The use of Gynura bicolor in treating diabetes had been reported in various in vitro experiments. However, an understanding of the inhibitory actions of G. bicolor bioactive compounds on DPPIV is still lacking and this may provide crucial information for the development of more potent and natural sources of DPPIV inhibitors. Evaluation of G. bicolor bioactive compounds for potent DPPIV inhibitors was computationally conducted using Lead IT and iGEMDOCK software, and the best free-binding energy scores for G. bicolor bioactive compounds were evaluated in comparison with the commercial DPPIV inhibitors, sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin. Drug-likeness and absorption, distribution, metabolism, and excretion (ADME) analysis were also performed. Based on molecular docking analysis, four of the identified bioactive compounds in G. bicolor, 3-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, and trans-5-p-coumaroylquinic acid, resulted in lower free-binding energy scores when compared with two of the commercially available gliptin inhibitors. The results revealed that bioactive compounds in G. bicolor are potential natural inhibitors of DPPIV. PMID:28932239
Mas, Flore; Harper, Aimee; Horner, Rachael; Welsh, Taylor; Jaksons, Peter; Suckling, David M
2018-02-15
Crop breeding programmes generally select for traits for improved yield and human consumption preferences. Yet, they often overlook one fundamental trait essential for insect-pollinated crops: pollinator attraction. This is even more critical for hybrid plants that rely on cross-pollination between the male-fertile line and the male-sterile line to set seeds. This study investigated the role of floral odours for honey bee pollination that could explain the poor seed yield in hybrid crops. The key floral bioactive compounds that honey bees detect were identified for three vegetable hybrid crops. It was found that 30% of the variation in bioactive compound quantities was explained by variety. Differences in quantities of the bioactive compounds triggered different degrees of olfactory response and were also associated with varied appetitive response. Correlating the abundance of each bioactive compound with seed yield, it was found that aldehydes such as nonanal and decanal can have a strong negative influence on seed yield with increasing quantity. Using these methodologies to identify relevant bioactive compounds associated with honey bee pollination, plant breeding programmes should also consider selecting for floral traits attractive to honey bees to improve crop pollination for enhanced seed yield. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Efficient use of shrimp waste: present and future trends.
Kandra, Prameela; Challa, Murali Mohan; Jyothi, Hemalatha Kalangi Padma
2012-01-01
The production of shrimp waste from shrimp processing industries has undergone a dramatic increase in recent years. Continued production of this biomaterial without corresponding development of utilizing technology has resulted in waste collection, disposal, and pollution problems. Currently used chemical process releases toxic chemicals such as HCl, acetic acid, and NaOH into aquatic ecosystem as byproducts which will spoil the aquatic flora and fauna. Environmental protection regulations have become stricter. Now, there is a need to treat and utilize the waste in most efficient manner. The shrimp waste contains several bioactive compounds such as chitin, pigments, amino acids, and fatty acids. These bioactive compounds have a wide range of applications including medical, therapies, cosmetics, paper, pulp and textile industries, biotechnology, and food applications. This current review article present the utilization of shrimp waste as well as an alternative technology to replace hazardous chemical method that address the future trends in total utilization of shrimp waste for recovery of bioactive compounds.
Bioactive Compounds and Antioxidant Activity in Different Types of Berries
Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri
2015-01-01
Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271
Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina
2015-06-01
Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pharmacological importance of an ethnobotanical plant: Capsicum annuum L.
Khan, Farhan A; Mahmood, Tariq; Ali, Muhammad; Saeed, Abdul; Maalik, Aneela
2014-01-01
Capsicum annuum L., a fruit plant from tropical and subtropical regions, contains a range of essential nutrients and bioactive compounds which are known to exhibit a range of bioactivities including free radical scavenging (antioxidant), antimicrobial, antiviral, anti-inflammatory and anticancer. This review aims to give a comprehensive overview of the literature published on pharmacological behaviours of C. annuum L.
Jayarathne, Shasika; Koboziev, Iurii; Park, Oak-Hee; Oldewage-Theron, Wilna; Shen, Chwan-Li; Moustaid-Moussa, Naima
2017-01-01
Obesity is an epidemic and costly disease affecting 13% of the adult population worldwide. Obesity is associated with adipose tissue hypertrophy and hyperplasia, as well as pathologic endocrine alterations of adipose tissue including local and chronic systemic low-grade inflammation. Moreover, this inflammation is a risk factor for both metabolic syndrome (MetS) and insulin resistance. Basic and clinical studies demonstrate that foods containing bioactive compounds are capable of preventing both obesity and adipose tissue inflammation, improving obesity-associated MetS in human subjects and animal models of obesity. In this review, we discuss the anti-obesity and anti-inflammatory protective effects of some bioactive polyphenols of plant origin and omega-3 polyunsaturated fatty acids, available for the customers worldwide from commonly used foods and/or as components of commercial food supplements. We review how these bioactive compounds modulate cell signaling including through the nuclear factor-κB, adenosine monophosphate-activated protein kinase, mitogen-activated protein kinase, toll-like receptors, and G-protein coupled receptor 120 intracellular signaling pathways and improve the balance of pro- and anti-inflammatory mediators secreted by adipose tissue and subsequently lower systemic inflammation and risk for metabolic diseases. PMID:29333376
Figueroa, Jorge G; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio
2018-04-15
Industrially the avocado pulp is exploited principally as oil and paste, generating a huge quantity of peel and seed as by-products. Avocado peel is a promising inexpensive candidate for recovery phenolic compounds. The aim of this work was to identify the bioactive compounds present in an extract of avocado peel obtained by a green extraction technique. Accelerated solvent extraction was performed using water and ethanol as extraction solvents. Liquid chromatography coupled to ultra-high-definition accurate-mass spectrometry was used in order to identify the bioactive compounds. A total of sixty-one compounds belonging to eleven families were identified. Procyanidins, flavonols, hydroxybenzoic and hydroxycinnamic acids were the most common compounds. A sum of thirty-five compounds has been identified here for the first time in avocado peel. These results confirm the potential of avocado peel as a source of bioactive ingredients for its use in the food, cosmetic or pharmaceutical sector. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ultrasound-assisted extraction of bioactive compounds from lemon balm and peppermint leaves
NASA Astrophysics Data System (ADS)
Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Boričević, Ana; Borić, Nataša
2016-01-01
The aim of this study was to investigate the influence of conventional and ultrasound-assisted extraction (frequency, time, temperature) on the content of bioactive compounds as well as on the antioxidant activity of aqueous extracts from fresh lemon balm and peppermint leaves. Total phenols, flavonoids, non-flavonoids, total chlorophylls, total carotenoids, and radical scavenging capacity were determined. Moreover, the relationship between bioactive compounds and antioxidant capacity was studied by linear regression. A significant increase in all studied bioactive compounds during ultrasonic extraction for 5 to 20 min was found. With the classical extraction method, the highest amounts of total phenols, flavonoids, and antioxidant activity were determined, and the maximum amounts of total chlorophylls and carotenoids were determined during 20 min ultrasonic extraction. The correlation analysis revealed a strong, positive relationship between antioxidant activity and total phenolic compounds.
Teh, Sue-Siang; Morlock, Gertrud E
2015-11-15
Cold-pressed hemp, flax and canola seed oils are healthy oils for human consumption as these are rich in polyunsaturated fatty acids and bioactive phytochemicals. However, bioactive information on the food intake side is mainly focused on target analysis. For more comprehensive information with regard to effects, single bioactive compounds present in the seed oil extracts were detected by effect-directed assays, like bioassays or an enzymatic assay, directly linked with chromatography and further characterized by mass spectrometry. This effect-directed analysis is a streamlined method for the analysis of bioactive compounds in the seed oil extracts. All effective compounds with regard to the five assays or bioassays applied were detected in the samples, meaning also bioactive breakdown products caused during oil processing, residues or contaminants, aside the naturally present bioactive phytochemicals. The investigated cold-pressed oils contained compounds that exert antioxidative, antimicrobial, acetylcholinesterase inhibitory and estrogenic activities. This effect-directed analysis can be recommended for bioactivity profiling of food to obtain profound effect-directed information on the food intake side. Copyright © 2015 Elsevier Ltd. All rights reserved.
Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2013-06-05
This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.
Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts
Altemimi, Ammar; Lakhssassi, Naoufal; Baharlouei, Azam; Watson, Dennis G.; Lightfoot, David A.
2017-01-01
There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed. PMID:28937585
The development of microalgal biotechnology in the Czech Republic.
Masojídek, Jiří; Prášil, Ondřej
2010-12-01
Microscopic algae and cyanobacteria are excellent sources of numerous compounds, from raw biomass rich in proteins, oils, and antioxidants to valuable secondary metabolites with potential medical use. In the former Czechoslovakia, microalgal biotechnology developed rapidly in the 1960s with the main aim of providing industrial, high-yield sources of algal biomass. Unique cultivation techniques that are still in use were successfully developed and tested. Gradually, the focus changed from bulk production to more sophisticated use of microalgae, including production of bioactive compounds. Along the way, better understanding of the physiology and cell biology of productive microalgal strains was achieved. Currently, microalgae are in the focus again, mostly as possible sources of bioactive compounds and next-generation biofuels for the 21st century.
Rautiainen, Susanne; Sesso, Howard D; Manson, JoAnn E
2017-12-29
Several bioactive compounds and nutrients in foods have physiological properties that are beneficial for human health. While nutrients typically have clear definitions with established levels of recommended intakes, bioactive compounds often lack such a definition. Although a food-based approach is often the optimal approach to ensure adequate intake of bioactives and nutrients, these components are also often produced as dietary supplements. However, many of these supplements are not sufficiently studied and have an unclear role in chronic disease prevention. Randomized trials are considered the gold standard of study designs, but have not been fully applied to understand the effects of bioactives and nutrients. We review the specific role of large-scale trials to test whether bioactives and nutrients have an effect on health outcomes through several crucial components of trial design, including selection of intervention, recruitment, compliance, outcome selection, and interpretation and generalizability of study findings. We will discuss these components in the context of two randomized clinical trials, the VITamin D and OmegA-3 TriaL (VITAL) and the COcoa Supplement and Multivitamin Outcomes Study (COSMOS). We will mainly focus on dietary supplements of bioactives and nutrients while also emphasizing the need for translation and integration with food-based trials that are of vital importance within nutritional research. Copyright © 2017. Published by Elsevier Ltd.
The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field
Ianora, Adrianna; Bentley, Matthew G.; Caldwell, Gary S.; Casotti, Raffaella; Cembella, Allan D.; Engström-Öst, Jonna; Halsband, Claudia; Sonnenschein, Eva; Legrand, Catherine; Llewellyn, Carole A.; Paldavičienë, Aistë; Pilkaityte, Renata; Pohnert, Georg; Razinkovas, Arturas; Romano, Giovanna; Tillmann, Urban; Vaiciute, Diana
2011-01-01
Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality. PMID:22131962
A structural biology perspective on bioactive small molecules and their plant targets.
Kumari, Selva; van der Hoorn, Renier A L
2011-10-01
Structural biology efforts in recent years have generated numerous co-crystal structures of bioactive small molecules interacting with their plant targets. These studies include the targets of various phytohormones, pathogen-derived effectors, herbicides and other bioactive compounds. Here we discuss that this collection of structures contains excellent examples of nine collective observations: molecular glues, allostery, inhibitors, molecular mimicry, promiscuous binding sites, unexpected electron densities, natural selection at atomic resolution, and applications in structure-guided mutagenesis and small molecule design. Copyright © 2011 Elsevier Ltd. All rights reserved.
Analysis of phenolic compounds from corn, oat, and wheat bran extracts by LC-MS-PDA
USDA-ARS?s Scientific Manuscript database
Phenolic compounds are among the most common secondary metabolites produced by plants and can exhibit a range of bioactive properties including antimicrobial, antioxidant, and antihypertensive. These natural products have applications in nutraceutical, pharmaceutical and functional food or animal fe...
New Bioactive Compounds from Korean Native Mushrooms
Kim, Seong-Eun; Hwang, Byung Soon; Song, Ja-Gyeong; Lee, Seung Woong; Lee, In-Kyoung
2013-01-01
Mushrooms are ubiquitous in nature and have high nutritional attributes. They have demonstrated diverse biological effects and therefore have been used in treatments of various diseases, including cancer, diabetes, bacterial and viral infections, and ulcer. In particular, polysaccharides, including β-glucan, are considered as the major constituents responsible for the biological activity of mushrooms. Although an overwhelming number of reports have been published on the importance of polysaccharides as immunomodulating agents, not all of the healing properties found in these mushrooms could be fully accounted for. Recently, many research groups have begun investigations on biologically active small-molecular weight compounds in wild mushrooms. In this mini-review, both structural diversity and biological activities of novel bioactive substances from Korean native mushrooms are described. PMID:24493936
USDA-ARS?s Scientific Manuscript database
Oxidation of encapsulated bioactive compounds is a key challenge that limits shelf-life of bioactive containing products. The objectives of this study were to compare differences between the oxidative barrier properties of biopolymer particle based encapsulation system (zein colloidal particles) and...
Marine biotechnology for production of food ingredients.
Rasmussen, Rosalee S; Morrissey, Michael T
2007-01-01
The marine world represents a largely untapped reservoir of bioactive ingredients that can be applied to numerous aspects of food processing, storage, and fortification. Due to the wide range of environments they survive in, marine organisms have developed unique properties and bioactive compounds that, in some cases, are unparalleled by their terrestrial counterparts. Enzymes extracted from fish and marine microorganisms can provide numerous advantages over traditional enzymes used in food processing due to their ability to function at extremes of temperature and pH. Fish proteins such as collagens and their gelatin derivatives operate at relatively low temperatures and can be used in heat-sensitive processes such as gelling and clarifying. Polysaccharides derived from algae, including algins, carrageenans, and agar, are widely used for their ability to form gels and act as thickeners and stabilizers in a variety of foods. Besides applications in food processing, a number of marine-derived compounds, such as omega-3 polyunsaturated fatty acids and photosynthetic pigments, are important to the nutraceutical industry. These bioactive ingredients provide a myriad of health benefits, including reduction of coronary heart disease, anticarcinogenic and anti-inflammatory activity. Despite the vast possibilities for the use of marine organisms in the food industry, tools of biotechnology are required for successful cultivation and isolation of these unique bioactive compounds. In this chapter, recent developments and upcoming areas of research that utilize advances in biotechnology in the production of food ingredients from marine sources are introduced and discussed.
Toward automated biochemotype annotation for large compound libraries.
Chen, Xian; Liang, Yizeng; Xu, Jun
2006-08-01
Combinatorial chemistry allows scientists to probe large synthetically accessible chemical space. However, identifying the sub-space which is selectively associated with an interested biological target, is crucial to drug discovery and life sciences. This paper describes a process to automatically annotate biochemotypes of compounds in a library and thus to identify bioactivity related chemotypes (biochemotypes) from a large library of compounds. The process consists of two steps: (1) predicting all possible bioactivities for each compound in a library, and (2) deriving possible biochemotypes based on predictions. The Prediction of Activity Spectra for Substances program (PASS) was used in the first step. In second step, structural similarity and scaffold-hopping technologies are employed. These technologies are used to derive biochemotypes from bioactivity predictions and the corresponding annotated biochemotypes from MDL Drug Data Report (MDDR) database. About a one million (982,889) commercially available compound library (CACL) has been tested using this process. This paper demonstrates the feasibility of automatically annotating biochemotypes for large libraries of compounds. Nevertheless, some issues need to be considered in order to improve the process. First, the prediction accuracy of PASS program has no significant correlation with the number of compounds in a training set. Larger training sets do not necessarily increase the maximal error of prediction (MEP), nor do they increase the hit structural diversity. Smaller training sets do not necessarily decrease MEP, nor do they decrease the hit structural diversity. Second, the success of systematic bioactivity prediction relies on modeling, training data, and the definition of bioactivities (biochemotype ontology). Unfortunately, the biochemotype ontology was not well developed in the PASS program. Consequently, "ill-defined" bioactivities can reduce the quality of predictions. This paper suggests the ways in which the systematic bioactivities prediction program should be improved.
Application of ionic liquid for extraction and separation of bioactive compounds from plants.
Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho
2012-09-01
In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.
Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L
Gururaja, G. M.; Mundkinajeddu, Deepak; Dethe, Shekhar M.; Sangli, Gopala K.; Abhilash, K.; Agarwal, Amit
2015-01-01
Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety) was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF) to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml. Conclusion: This study demonstrates that M. indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica. PMID:26692750
Chen, Zong-Tsi; Chu, Heuy-Ling; Chyau, Charng-Cherng; Chu, Chin-Chen; Duh, Pin-Der
2012-12-15
Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress were investigated. According to HPLC-DAD and HPLC-MS/MS analysis, hesperidin (HD), hesperetin (HT), nobiletin (NT), and tangeretin (TT) were present in water extracts of sweet orange peel (WESP). The cytotoxic effect in 0.2mM t-BHP-induced HepG2 cells was inhibited by WESP and their bioactive compounds. The protective effect of WESP and their bioactive compounds in 0.2mM t-BHP-induced HepG2 cells may be associated with positive regulation of GSH levels and antioxidant enzymes, decrease in ROS formation and TBARS generation, increase in the mitochondria membrane potential and Bcl-2/Bax ratio, as well as decrease in caspase-3 activation. Overall, WESP displayed a significant cytoprotective effect against oxidative stress, which may be most likely because of the phenolics-related bioactive compounds in WESP, leading to maintenance of the normal redox status of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ying, Le; Kong, De-dong; Gao, Yuan-yuan; Yan, Feng; Wang, Yue-fei; Xu, Ping
2018-01-01
Phenolics, as the main bioactive compounds in tea, have been suggested to have potential in the prevention of various human diseases. However, little is known about phenolics and their bioactivity in Zhangping Narcissue tea cake which is considered the most special kind of oolong tea. To unveil its bioactivity, three phenolic-enriched extracts were obtained from Zhangping Narcissue tea cake using ethyl acetate, n-butanol, and water. Their main chemical compositions and in vitro bioactivity were analyzed by high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The ethyl acetate fraction (ZEF) consisted of higher content of phenolics, flavonoids, procyanidins, and catechin monomers (including epigallocatechin gallate (EGCG), epicatechin gallate (ECG), and gallocatechin gallate (GCG)) than n-butanol fraction (ZBF) and water fraction (ZWF). ZEF exhibited the strongest antioxidant capacity in vitro due to its abundant bioactive compounds. This was validated by Pearson correlation and hierarchical clustering analyses. ZEF also showed a remarkable inhibition on the growth, migration, and invasion of 4T1 murine breast cancer cells. PMID:29504313
Huang, Hui-Pei; Ou, Ting-Tsz; Wang, Chau-Jong
2013-01-01
Mulberry (桑葚子 sāng shèn zǐ), a traditional Chinese medicine (TCM) in Taiwan, has many bioactive substances, including polyphenol and anthocyanins compounds. Over the past decade, many scientific and medical studies have examined mulberry fruit for its antioxidation and antiinflammation effects both in vitro and in vivo. This review thus focuses on the recent advances of mulberry extracts (MEs) and their applications in the prevention and treatment of human cancer, liver disease, obesity, diabetes, and cardiovascular disease. The ME modulates several apoptotic pathways and matrix metalloproteinases (MMPs) to block cancer progression. Mulberry can increase detoxicated and antioxidant enzyme activities and regulate the lipid metabolism to treat hepatic disease resulting from alcohol consumption, high fat diet, lipopolysaccharides (LPS) and CCl4 exposure. Of the various compounds in ME, cyanidin 3-glucoside (C3G) is the most abundant, and the active compound studied in mulberry research. Herein, the antioxidant and antiinflammatory actions of C3G to improve diabetes and cardiovascular disease are also discussed. These studies provide strong evidence ME may possess the bioactivity to affect the pathogenesis of several chronic diseases. PMID:24716151
Huang, Hui-Pei; Ou, Ting-Tsz; Wang, Chau-Jong
2013-01-01
Mulberry ( sāng shèn zǐ), a traditional Chinese medicine (TCM) in Taiwan, has many bioactive substances, including polyphenol and anthocyanins compounds. Over the past decade, many scientific and medical studies have examined mulberry fruit for its antioxidation and antiinflammation effects both in vitro and in vivo. This review thus focuses on the recent advances of mulberry extracts (MEs) and their applications in the prevention and treatment of human cancer, liver disease, obesity, diabetes, and cardiovascular disease. The ME modulates several apoptotic pathways and matrix metalloproteinases (MMPs) to block cancer progression. Mulberry can increase detoxicated and antioxidant enzyme activities and regulate the lipid metabolism to treat hepatic disease resulting from alcohol consumption, high fat diet, lipopolysaccharides (LPS) and CCl4 exposure. Of the various compounds in ME, cyanidin 3-glucoside (C3G) is the most abundant, and the active compound studied in mulberry research. Herein, the antioxidant and antiinflammatory actions of C3G to improve diabetes and cardiovascular disease are also discussed. These studies provide strong evidence ME may possess the bioactivity to affect the pathogenesis of several chronic diseases.
Nebo, Liliane; Varela, Rosa M; Molinillo, José M G; Severino, Vanessa G P; Sarria, André L F; Cazal, Cristiane M; Fernandes, Maria Fátima das Graças; Fernandes, João B; Macías, Francisco A
2015-01-01
Limonoids and triterpenes are the largest groups of secondary metabolites and have notable biological activities. Meliaceae and Rutaceae are known for their high diversity of metabolites, including limonoids, and are distinguished from other families due to the frequent occurrence of such compounds. The increased interest in crop protection associated with the diverse bioactivity of these compounds has made these families attractive in the search for new allelopathic compounds. In the study reported here we evaluated the bioactivity profiles of four triterpenes (1-4) and six limonoids (5-10) from Meliaceae and Rutaceae. The compounds were assessed in a wheat coleoptile bioassay and those that had the highest activities were tested on the standard target species Lepidinum sativum (cress), Lactuca sativa (lettuce), Lycopersicon esculentum (tomato) and Allium cepa (onion). Limonoids showed phytotoxic activity and 5α,6β,8α, 12α- tetrahydro-28-norisotoonafolin (10) and gedunin (5) were the most active, with bioactivity levels similar to, and in some cases better than, those of the commercial herbicide Logran. The results indicate that these products could also be allelochemicals involved in the ecological interactions of these plant species.
Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications
Oh, Yoon Sin
2016-01-01
Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients. PMID:27483315
Dihydroresveratrol Type Dihydrostilbenoids: Chemical Diversity, Chemosystematics, and Bioactivity.
Vitalini, Sara; Cicek, Serhat S; Granica, Sebastian; Zidorn, Christian
2018-01-01
Dihydrostilbenoids, a diverse class of natural products differing from stilbenoids by the missing double bond in the ethylene chain linking the aromatic moieties, have been reported from fungi, mosses, ferns, and flowering plants. Occurrence, structure, and bioactivity of naturally occurring dihydroresveratrol type dihydrostilbenoids are discussed in this review. A Reaxys database search for dihydroresveratrol derivatives with possible substitutions on all atoms, but excluding non-natural products and compounds featuring additional rings involving the ethyl connecting chain, was performed. Structures include simple dihydroresveratrol derivatives, compounds substituted with complex side chains composed of acyl moieties and sugars, and compounds containing polycyclic cores attached to dihydrostilbenoid units. Dihydrostilbenoids have a wide spectrum of bioactivities ranging from expectable antioxidant and anti-inflammatory activities to interesting neuroprotective and anticancer activity. The anticancer activity in particular is very pronounced for some plant-derived dihydrostilbenoids and makes them interesting lead compounds for drug development. Apart from some reports on dihydroresveratrol derivatives as phytoalexins against plant-pathogenic fungi, only very limited information is available on the ecological role of these compounds for the organisms producing them. Dihydrostilbenoids are a class of natural products possessing significant biological activities; their scattered but not ubiquitous occurrence throughout the kingdoms of plants and fungi is not easily explained. We are convinced that future studies will identify new sources of dihydrostilbenoids, and we hope that the present review will inspire such studies and will help in directing such efforts to suitable source organisms and towards promising bioactivities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ferreira, Mariana C; Cantrell, Charles L; Wedge, David E; Gonçalves, Vívian N; Jacob, Melissa R; Khan, Shabana; Rosa, Carlos A; Rosa, Luiz H
2017-10-01
Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae) is threatened by extinction and is a promising target to recover endophytic fungi. The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.
Naughton, Lynn M; Romano, Stefano; O'Gara, Fergal; Dobson, Alan D W
2017-01-01
Increased incidences of antimicrobial resistance and the emergence of pan-resistant 'superbugs' have provoked an extreme sense of urgency amongst researchers focusing on the discovery of potentially novel antimicrobial compounds. A strategic shift in focus from the terrestrial to the marine environment has resulted in the discovery of a wide variety of structurally and functionally diverse bioactive compounds from numerous marine sources, including sponges. Bacteria found in close association with sponges and other marine invertebrates have recently gained much attention as potential sources of many of these novel bioactive compounds. Members of the genus Pseudovibrio are one such group of organisms. In this study, we interrogate the genomes of 21 Pseudovibrio strains isolated from a variety of marine sources, for the presence, diversity and distribution of biosynthetic gene clusters (BGCs). We expand on results obtained from antiSMASH analysis to demonstrate the similarity between the Pseudovibrio -related BGCs and those characterized in other bacteria and corroborate our findings with phylogenetic analysis. We assess how domain organization of the most abundant type of BGCs present among the isolates (Non-ribosomal peptide synthetases and Polyketide synthases) may influence the diversity of compounds produced by these organisms and highlight for the first time the potential for novel compound production from this genus of bacteria, using a genome guided approach.
Zhang, Yuping; Nie, Mingkun; Shi, Shuyun; You, Qingping; Guo, Junfang; Liu, Liangliang
2014-03-01
Radix Astragali is one of the most popular traditional medicinal herb and healthy dietary supplement. Isoflavonoids and astragalosides are the main bioactive ingredients. However, the systematic bioactive component analysis is inadequate so far. Then a facile method based on Fe3O4@SiO2-human serum albumin (Fe3O4@SiO2-HSA) magnetic solid phase fishing integrated with two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry (2D HPLC-DAD-MS(n)) was developed to fish out and identify HSA binders from Radix Astragali. The immobilized HSA displayed a high stability with 96.2% retained after ten consecutive cycles. 2D HPLC system (size exclusion chromatography×reversed phase chromatography, SEC×RP) were developed and optimised. Forty-seven bioactive compounds including thirty-four isoflavonoids and thirteen astragalosides were screened and identified or tentatively deduced based on their retention time, ultraviolet (UV), accurate molecular weight and diagnostic fragment ions. The results indicated that the integrated method could be widely applied for systematical fishing and identification of bioactive compounds, especially for low-abundance and overlapped compounds, from complex mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bioactive Natural Products of Marine Sponges from the Genus Hyrtios.
Shady, Nourhan Hisham; El-Hossary, Ebaa M; Fouad, Mostafa A; Gulder, Tobias A M; Kamel, Mohamed Salah; Abdelmohsen, Usama Ramadan
2017-05-11
Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios , reported to have various species such as Hyrtios erectus , Hyrtios reticulatus , Hyrtios gumminae , Hyrtios communis , and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.
Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction
NASA Astrophysics Data System (ADS)
Zhong, Jian-Jiang; Xiao, Jian-Hui
Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.
Parallel Worlds of Public and Commercial Bioactive Chemistry Data
2014-01-01
The availability of structures and linked bioactivity data in databases is powerfully enabling for drug discovery and chemical biology. However, we now review some confounding issues with the divergent expansions of public and commercial sources of chemical structures. These are associated with not only expanding patent extraction but also increasingly large vendor collections amassed via different selection criteria between SciFinder from Chemical Abstracts Service (CAS) and major public sources such as PubChem, ChemSpider, UniChem, and others. These increasingly massive collections may include both real and virtual compounds, as well as so-called prophetic compounds from patents. We address a range of issues raised by the challenges faced resolving the NIH probe compounds. In addition we highlight the confounding of prior-art searching by virtual compounds that could impact the composition of matter patentability of a new medicinal chemistry lead. Finally, we propose some potential solutions. PMID:25415348
Natural Products from Mangrove Actinomycetes
Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui
2014-01-01
Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926
Bioactive Compounds Found in Brazilian Cerrado Fruits
Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz
2015-01-01
Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here. PMID:26473827
Essential oils: extraction, bioactivities, and their uses for food preservation.
Tongnuanchan, Phakawat; Benjakul, Soottawat
2014-07-01
Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products. © 2014 Institute of Food Technologists®
Bioactive compounds of sea cucumbers and their therapeutic effects
NASA Astrophysics Data System (ADS)
Shi, Shujuan; Feng, Wenjing; Hu, Song; Liang, Shixiu; An, Nina; Mao, Yongjun
2016-05-01
Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.
Jiang, Yusong; Liao, Qinhong; Zou, Yong; Liu, Yiqing; Lan, Jianbin
2017-10-23
Ginger (Zingiber officinale Rosc.) is a popular flavoring that widely used in Asian, and the volatile oil in ginger rhizomes adds a special fragrance and taste to foods. The bioactive compounds in ginger, such as gingerols, diarylheptanoids, and flavonoids, are of significant value to human health because of their anticancer, anti-oxidant, and anti-inflammatory properties. However, as a non-model plant, knowledge about the genome sequences of ginger is extremely limited, and this limits molecular studies on this plant. In this study, de novo transcriptome sequencing was performed to investigate the expression of genes associated with the biosynthesis of major bioactive compounds in matured ginger rhizome (MG), young ginger rhizome (YG), and fibrous roots of ginger (FR). A total of 361,876 unigenes were generated by de novo assembly. The expression of genes involved in the pathways responsible for the biosynthesis of major bioactive compounds differed between tissues (MG, YG, and FR). Two pathways that give rise to volatile oil, gingerols, and diarylheptanoids, the "terpenoid backbone biosynthesis" and "stilbenoid, diarylheptanoid and gingerol biosynthesis" pathways, were significantly enriched (adjusted P value < 0.05) for differentially expressed genes (DEGs) (FDR < 0.005) both between the FR and YG libraries, and the FR and MG libraries. Most of the unigenes mapped in these two pathways, including curcumin synthase, phenylpropanoylacetyl-CoA synthase, trans-cinnamate 4-monooxygenase, and 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, were expressed to a significantly higher level (log 2 (fold-change) ≥ 1) in FR than in YG or MG. This study provides the first insight into the biosynthesis of bioactive compounds in ginger at a molecular level and provides valuable genome resources for future molecular studies on ginger. Moreover, our results establish that bioactive compounds in ginger may predominantly synthesized in the root and then transported to rhizomes, where they accumulate.
Lee, Jisoo; Kim, Yoo-Sun; Lee, JaeHwan; Heo, Seung Chul; Lee, Kook Lae; Choi, Sang-Woon; Kim, Yuri
2016-07-21
Walnut has been known for its health benefits, including anti-cardiovascular disease and anti-oxidative properties. However, there is limited evidence elucidating its effects on cancer stem cells (CSCs) which represent a small subset of cancer cells that provide resistance against chemotherapy. This study aimed to evaluate the anti-CSCs potential of walnut phenolic extract (WPE) and its bioactive compounds, including (+)-catechin, chlorogenic acid, ellagic acid, and gallic acid. In the present study, CD133⁺CD44⁺ cells were isolated from HCT116 cells using fluorescence-activated cell sorting (FACS) and then treated with WPE. As a result, survival of the CD133⁺CD44⁺ HCT116 cells was inhibited and cell differentiation was induced by WPE. In addition, WPE down-regulated the CSC markers, CD133, CD44, DLK1, and Notch1, as well as the β-catenin/p-GSK3β signaling pathway. WPE suppressed the self-renewal capacity of CSCs. Furthermore, the WPE exhibited stronger anti-CSC effects than its individual bioactive compounds. Finally, the WPE inhibited specific CSC markers in primary colon cancer cells isolated from primary colon tumor. These results suggest that WPE can suppress colon cancer by regulating the characteristics of colon CSCs.
Lee, Jisoo; Kim, Yoo-Sun; Lee, JaeHwan; Heo, Seung Chul; Lee, Kook Lae; Choi, Sang-Woon; Kim, Yuri
2016-01-01
Walnut has been known for its health benefits, including anti-cardiovascular disease and anti-oxidative properties. However, there is limited evidence elucidating its effects on cancer stem cells (CSCs) which represent a small subset of cancer cells that provide resistance against chemotherapy. This study aimed to evaluate the anti-CSCs potential of walnut phenolic extract (WPE) and its bioactive compounds, including (+)-catechin, chlorogenic acid, ellagic acid, and gallic acid. In the present study, CD133+CD44+ cells were isolated from HCT116 cells using fluorescence-activated cell sorting (FACS) and then treated with WPE. As a result, survival of the CD133+CD44+ HCT116 cells was inhibited and cell differentiation was induced by WPE. In addition, WPE down-regulated the CSC markers, CD133, CD44, DLK1, and Notch1, as well as the β-catenin/p-GSK3β signaling pathway. WPE suppressed the self-renewal capacity of CSCs. Furthermore, the WPE exhibited stronger anti-CSC effects than its individual bioactive compounds. Finally, the WPE inhibited specific CSC markers in primary colon cancer cells isolated from primary colon tumor. These results suggest that WPE can suppress colon cancer by regulating the characteristics of colon CSCs. PMID:27455311
Trox, Jennifer; Vadivel, Vellingiri; Vetter, Walter; Stuetz, Wolfgang; Scherbaum, Veronika; Gola, Ute; Nohr, Donatus; Biesalski, Hans Konrad
2010-05-12
In the present study, the effects of various conventional shelling methods (oil-bath roasting, direct steam roasting, drying, and open pan roasting) as well as a novel "Flores" hand-cracking method on the levels of bioactive compounds of cashew nut kernels were investigated. The raw cashew nut kernels were found to possess appreciable levels of certain bioactive compounds such as beta-carotene (9.57 microg/100 g of DM), lutein (30.29 microg/100 g of DM), zeaxanthin (0.56 microg/100 g of DM), alpha-tocopherol (0.29 mg/100 g of DM), gamma-tocopherol (1.10 mg/100 g of DM), thiamin (1.08 mg/100 g of DM), stearic acid (4.96 g/100 g of DM), oleic acid (21.87 g/100 g of DM), and linoleic acid (5.55 g/100 g of DM). All of the conventional shelling methods including oil-bath roasting, steam roasting, drying, and open pan roasting revealed a significant reduction, whereas the Flores hand-cracking method exhibited similar levels of carotenoids, thiamin, and unsaturated fatty acids in cashew nuts when compared to raw unprocessed samples.
Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals.
Encarnação, Telma; Pais, Alberto A C C; Campos, Maria G; Burrows, Hugh D
2015-01-01
Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production--some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals.
Chemical Constituents of Plants from the Genus Psychotria.
Yang, Hongmei; Zhang, Hongmei; Yang, Caiqiong; Chen, Yegao
2016-07-01
Psychotria is a genus of ca. 1500 species in the family Rubiaceae. Up to now, 41 species of the Psychotria genus have been chemically investigated, and 159 compounds, including alkaloids of indole, quinoline and benzoquinolizidine type, terpenoids, steroids, phenolics and aliphatic compounds have been isolated. These compounds show potent bioactivities, such as antimicrobial, antiviral, and antiparasitic activities. © 2016 Wiley-VHCA AG, Zürich.
Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M
2015-01-01
Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.
USDA-ARS?s Scientific Manuscript database
Human-health benefits derived from consumption of fruits and vegetables are due to the many bioactive compounds found in produce. The concentrations of these bioactive compounds are heavily influenced by genetics (i.e. cultivar) and environment, especially the many pigments and vitamins that can ch...
Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li
2017-01-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structureâactivity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...
Shaala, Lamiaa A; Youssef, Diaa T A
2015-03-25
In the course of our continuous interest in identifying bioactive compounds from marine microbes, we have investigated a tunicate-derived fungus, Penicillium sp. CYE-87. A new compound with the 1,4-diazepane skeleton, terretrione D (2), together with the known compounds, methyl-2-([2-(1H-indol-3-yl)ethyl]carbamoyl)acetate (1), tryptamine (3), indole-3-carbaldehyde (4), 3,6-diisobutylpyrazin-2(1H)-one (5) and terretrione C (6), were isolated from Penicillium sp. CYE-87. The structures of the isolated compounds were established by spectral analysis, including 1D (1H, 13C) and 2D (COSY, multiplicity edited-HSQC and HMBC) NMR and HRESIMS, as well as comparison of their NMR data with those in the literature. The compounds were evaluated for their antimigratory activity against the human breast cancer cell line (MDA-MB-231) and their antiproliferation activity against HeLa cells. Compounds 2 and 6 showed significant antimigratory activity against MDA-MB-231, as well as antifungal activity against C. albicans.
Shaala, Lamiaa A.; Youssef, Diaa T. A.
2015-01-01
In the course of our continuous interest in identifying bioactive compounds from marine microbes, we have investigated a tunicate-derived fungus, Penicillium sp. CYE-87. A new compound with the 1,4-diazepane skeleton, terretrione D (2), together with the known compounds, methyl-2-([2-(1H-indol-3-yl)ethyl]carbamoyl)acetate (1), tryptamine (3), indole-3-carbaldehyde (4), 3,6-diisobutylpyrazin-2(1H)-one (5) and terretrione C (6), were isolated from Penicillium sp. CYE-87. The structures of the isolated compounds were established by spectral analysis, including 1D (1H, 13C) and 2D (COSY, multiplicity edited-HSQC and HMBC) NMR and HRESIMS, as well as comparison of their NMR data with those in the literature. The compounds were evaluated for their antimigratory activity against the human breast cancer cell line (MDA-MB-231) and their antiproliferation activity against HeLa cells. Compounds 2 and 6 showed significant antimigratory activity against MDA-MB-231, as well as antifungal activity against C. albicans. PMID:25815893
Richter, Ingrid; Fidler, Andrew E.
2014-01-01
Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319
Braga, Monick Cristina; Vieira, Ellen Caroline Silvério; de Oliveira, Tatianne Ferreira
2018-11-01
This study evaluated the physicochemical characterization of Curcuma longa L. leaves with respect to proximate composition, mineral content, the presence of antinutritional factors, content of bioactive compounds and antioxidant capacity, and color measurements of leaves in natura and leaves subjected to microwave drying, oven drying, and freeze-drying methods. The proximate composition showed appreciable levels of protein (39.5 g.100 g -1 ), carbohydrates (44.74 g.100 g -1 ), total fiber (34.47 g.100 g -1 ), soluble fiber (22.65 g.100 g -1 ), insoluble fiber (11.81 g.100 g -1 ), ash (13.81 g.100 g -1 ), and low lipid contents (2.47 g.100 g -1 ). No cyanogenic compounds were detected in both samples. Freeze-drying stood out as the method that led to the greatest reductions of the bioactive compounds (33.12-73.86%, dry basis) and antioxidant capacity when compared to the leaves in natura. Microwave drying was the preservation method that produced dry leaves with higher content of bioactive compounds and antioxidant capacity. Therefore, microwave drying produced dehydrated Curcuma longa L. leaves with the highest bioactive compounds and antioxidant activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Strategies for designing novel functional meat products.
Arihara, Keizo
2006-09-01
In recent years, much attention has been paid to physiological functions of foods due to increasing concerns for health. Although there has been limited information of physiological functions of meat until recently, several attractive meat-based bioactive compounds, such as carnosine, anserine, l-carnitine, conjugated linoleic acid, have been studied. Emphasizing these activities is one possible approach for improving the health image of meat and developing functional meat products. This article provides potential benefits of representative meat-based bioactive compounds on human health and an overview of meat-based functional products. Strategies for designing novel functional meat products utilizing bioactive peptides and/or probiotic bacteria, is also discussed. This article focuses particularly on the possibility of meat protein-derived bioactive peptides, such as antihypertensive peptides. There are still some hurdles in developing and marketing novel functional meat products since such products are unconventional and consumers in many countries recognize meat and meat products to be bad for health. Along with accumulation of scientific data, there is an urgent need to inform consumers of the exact functional value of meat and meat products including novel functional foods.
Increasing the Coverage of Medicinal Chemistry-Relevant Space in Commercial Fragments Screening
2014-01-01
Analyzing the chemical space coverage in commercial fragment screening collections revealed the overlap between bioactive medicinal chemistry substructures and rule-of-three compliant fragments is only ∼25%. We recommend including these fragments in fragment screening libraries to maximize confidence in discovering hit matter within known bioactive chemical space, while incorporation of nonoverlapping substructures could offer novel hits in screening libraries. Using principal component analysis, polar and three-dimensional substructures display a higher-than-average enrichment of bioactive compounds, indicating increasing representation of these substructures may be beneficial in fragment screening. PMID:24405118
USDA-ARS?s Scientific Manuscript database
In an effort to improve microbial food safety, we are studying the antimicrobial activities of different classes of natural compounds including plant essential oils, apple, grape, olive, and tea extracts, bioactive components, and seashell-derived chitosans against multiple foodborne pathogens in cu...
Cistanches Herba: A Neuropharmacology Review
Gu, Caimei; Yang, Xianying; Huang, Linfang
2016-01-01
Cistanches Herba (family Orobanchaceae), commonly known as “desert ginseng” or Rou Cong Rong, is a global genus and commonly used for its neuroprotective, immunomodulatory, anti-oxidative, kidney impotence, laxative, anti-inflammatory, hepatoprotective, anti-bacterial, anti-viral, and anti-tumor effects in traditional herbal formulations in North Africa, Arabic, and Asian countries. The major bioactive compound present in this plant is phenylethanoid glycosides. In recent years, there has been great important in scientific investigation of the neuropharmacological effects of the bioactive compounds. The in vitro and in vivo studies suggests these compounds demonstrate neuropharmacological activities against a wide range of complex nervous system diseases which occurs through different mechanisms include improving immunity function and kidney aging, anti-lipid peroxidation, scavenging free radical, inducing the activation of caspase-3 and caspase-8. This review aims to summaries the various neuropharmacological effects and mechanisms of Cistanches Herba extracts and related compounds, including its efficacy as a cure for Alzheimer’s disease and Parkinson’s disease with reference to the published literature. Which provides guidance for further research on the clinical application of Cistanches Herba. PMID:27703431
Cistanches Herba: A Neuropharmacology Review.
Gu, Caimei; Yang, Xianying; Huang, Linfang
2016-01-01
Cistanches Herba (family Orobanchaceae), commonly known as "desert ginseng" or Rou Cong Rong, is a global genus and commonly used for its neuroprotective, immunomodulatory, anti-oxidative, kidney impotence, laxative, anti-inflammatory, hepatoprotective, anti-bacterial, anti-viral, and anti-tumor effects in traditional herbal formulations in North Africa, Arabic, and Asian countries. The major bioactive compound present in this plant is phenylethanoid glycosides. In recent years, there has been great important in scientific investigation of the neuropharmacological effects of the bioactive compounds. The in vitro and in vivo studies suggests these compounds demonstrate neuropharmacological activities against a wide range of complex nervous system diseases which occurs through different mechanisms include improving immunity function and kidney aging, anti-lipid peroxidation, scavenging free radical, inducing the activation of caspase-3 and caspase-8. This review aims to summaries the various neuropharmacological effects and mechanisms of Cistanches Herba extracts and related compounds, including its efficacy as a cure for Alzheimer's disease and Parkinson's disease with reference to the published literature. Which provides guidance for further research on the clinical application of Cistanches Herba .
Yahia, Elhadi M; Gutiérrez-Orozco, Fabiola; Moreno-Pérez, Marco A
2017-07-01
Wild mushrooms are important for the diet of some communities in Mexico. However, limited information exists on their chemical composition, contribution to the diet, and health effects. We characterized seventeen wild mushroom species growing in the state of Queretaro in Central Mexico. Most species analyzed were edible, but also included nonedible, medicinal, poisonous and toxic specimens. Whole mushrooms (caps and stipes) were characterized for water content, color, and total content of phenolic compounds, flavonoids and anthocyanins. In vitro antioxidant capacity was measured by FRAP and DPPH assays. Phenolic compounds were identified and quantified by HPLC-mass spectrometry. All species analyzed were found to possess antioxidant activity in vitro and a wide range of phenolic and organic compounds were identified. Our results add to the limited information available on the composition and potential nutritional and health value of wild mushrooms. Further analyses of their bioactivities are warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martínez-Ballesta, MCarment; García-Viguera, Cristina
2018-01-01
Nanotechnology is a field of research that has been stressed as a very valuable approach for the prevention and treatment of different human health disorders. This has been stressed as a delivery system for the therapeutic fight against an array of pathophysiological situations. Actually, industry has applied this technology in the search for new oral delivery alternatives obtained upon the modification of the solubility properties of bioactive compounds. Significant works have been made in the last years for testing the input that nanomaterials and nanoparticles provide for an array of pathophysiological situations. In this frame, this review addresses general questions concerning the extent to which nanoparticles offer alternatives that improve therapeutic value, while avoid toxicity, by releasing bioactive compounds specifically to target tissues affected by specific chemical and pathophysiological settings. In this regard, to date, the contribution of nanoparticles to protect encapsulated bioactive compounds from degradation as a result of gastrointestinal digestion and cellular metabolism, to enable their release in a controlled manner, enhancing biodistribution of bioactive compounds, and to allow them to target those tissues affected by biological disturbances has been demonstrated. PMID:29735897
The Sea Urchin Arbacia lixula: A Novel Natural Source of Astaxanthin
Cirino, Paola; Brunet, Christophe; Ciaravolo, Martina; Galasso, Christian; Musco, Luigi; Vega Fernández, Tomás; Sansone, Clementina; Toscano, Alfonso
2017-01-01
Several echinoderms, including sea urchins, are valuable sources of bioactive compounds but their nutraceutical potential is largely unexplored. In fact, the gonads of some sea urchin species contain antioxidants including carotenoids and polyhydroxylated naphthoquinones (PHNQ’s), such as echinochrome A. Astaxanthin is known to have particular bioactivity for the prevention of neurodegenerative diseases. This carotenoid is produced by microalgae, while several marine invertebrates can bioaccumulate or synthetize it from metabolic precursors. We determined the carotenoid content and analyzed the bioactivity potential of non-harvested Atlantic-Mediterranean sea urchin Arbacia lixula. The comparison of methanol crude extracts obtained from eggs of farmed and wild specimens revealed a higher bioactivity in farmed individuals fed with a customized fodder. HPLC-analysis revealed a high concentration of astaxanthin (27.0 μg/mg), which was the only pigment observed. This study highlights the potential of farmed A. lixula as a new source of the active stereoisomer of astaxanthin. PMID:28635649
The Stability of Bioactive Compounds in Spaceflight Foods
NASA Technical Reports Server (NTRS)
Cooper, M. R.; Douglas, G. L.
2017-01-01
The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature. Because of the limited number of foods with high concentrations of the bioactive compounds, additional menu variety, formulation optimization, and reduced temperature storage will be required to ensure delivery of several bioactive compounds in the space food system. Validation of stability to five years will enable provisioning of these functional foods within the space food system for a mission to Mars.
Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds.
Pimentel-Moral, Sandra; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Arráez-Román, David; Martínez-Férez, Antonio; Segura-Carretero, Antonio
2018-07-15
H. sabdariffa has demonstrated positive results against chronic diseases due to the presence of phytochemicals, mainly phenolic compounds. The extraction process of bioactive compounds increases the efficient collection of extracts with high bioactivity. Microwave-Assisted Extraction (MAE) constituted a "green technology" widely employed for plant matrix. In this work, the impact of temperature (50-150 °C), composition of extraction solvent (15-75% EtOH) and extraction time (5-20 min) on the extraction yield and individual compounds concentrations were evaluated. Furthermore, the characterization of 16 extracts obtained was performed by HPLC-ESI-TOF-MS. The results showed that 164 °C, 12.5 min, 45% ethanol was the best extraction condition, although glycoside flavonoids were degraded. Besides that, the optimal conditions for extraction yield were 164 °C, 60% ethanol and 22 min. Thus, temperature and solvent concentration have demonstrated to be potential factors in MAE for obtaining bioactive compounds from H. sabdariffa. Copyright © 2018 Elsevier B.V. All rights reserved.
Biofiltration for control of volatile organic compounds (VOCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, D.F.; Govind, R.
1995-10-01
Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size andmore » geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.« less
Nanotech: propensity in foods and bioactives.
Kuan, Chiu-Yin; Yee-Fung, Wai; Yuen, Kah-Hay; Liong, Min-Tze
2012-01-01
Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.
NASA Astrophysics Data System (ADS)
Rahmam., S.; Naim., M. N.; Ng., E.; Mokhtar, M. Nn; Abu Bakar, N. F.
2016-06-01
The ability of electrospray to encapsulate the bioactive compound extracted from Jasmine flower with β-Cyclodextrion (β-CD) without any thermal-assisted processing was demonstrated in this study. The extraction of Jasmine compound were conducted using sonicator at 70 000 Hz, for 10 minutes and followed by mixing of the filtered compound with β-CD. Then, the mixture was electrosprayed under a stable Taylor cone jet mode at the voltage of 4 - 5 kV, with flow rate of 0.2 ml/hour. The aluminum substrate that used for collecting the deposit was placed at 30 cm from the needle's tip to allow the occurrence of evaporation and droplet fission until the droplet transform to solid particles. Characteristics of solidified bioactive compound from Jasmine flower (non-encapsulated compound) and solidified bioactive compound with β-CD (encapsulated compound) were studied in this work. From SEM images, it can be observed that the particles size distribution of encapsulated compound deposits have better deposition array and did not aggregate with each other compared to the non-encapsulated compound. FE-SEM images of encapsulated compound deposits indicate more solid crystal looks while non-encapsulated compound was obtained in the porous form. The electrospray process in this work has successfully encapsulated the Jasmine compound with β-CD without any thermal-assisted process. The encapsulation occurrence was determined using FTIR analysis. Identical peaks that referred to the β-CD were found on the encapsulated compound demonstrated that most deposits were encapsulated with β-CD.
Effects of koji fermented phenolic compounds on the oxidative stability of fish miso.
Giri, Anupam; Osako, Kazufumi; Okamoto, Akira; Okazaki, Emiko; Ohshima, Toshiaki
2012-02-01
In the present study, Aspergillus oryzae-inoculated koji inhibited lipid oxidation in fermented fish paste rich in polyunsaturated fatty acids following a long fermentation period. The fermentation of koji by A. oryzae liberated several bioactive phenolic compounds, including kojic acid and ferulic acid, which were the most abundant. A linear correlation between several phenolic compounds and their bioactive properties, including their radical-scavenging activity, reducing power, metal-chelating activity, and ability to inhibit linoleic acid oxidation was observed. This suggested an important role of koji phenolics in the oxidative stability of fermented fish paste. The activities of different carbohydrate-cleaving enzymes, including α-amylase, cellulase, and β-glucosidase, were positively correlated with the liberation of several phenolic compounds through koji fermentation. Thus, the application of koji offers a novel strategy to enhance the oxidative stability of newly developed fermented fish miso. Application of traditional Japanese koji fermentation technique to develop an aroma enriched fish meat bases seasoning has been established. Aspergillus oryzae-inoculated koji releases several carbohydrate-cleaving enzymes, including α-amylase, cellulose, and β-glucosidase, which led to the liberation of several phenolic compounds during fermentation. Improvement of oxidative stability of the fermented fish meat paste by koji phenolics suggests a useful strategy to uplift the value of different trash fish meat-based seasoning through proper utilization of the present technique. © 2012 Institute of Food Technologists®
Chung, Min-Yu; Lim, Tae Gyu; Lee, Ki Won
2013-01-01
Cancer is one of the leading causes of death worldwide. Commonly used cancer treatments, including chemotherapy and radiation therapy, often have side effects and a complete cure is sometimes impossible. Therefore, prevention, suppression, and/or delaying the onset of the disease are important. The onset of gastroenterological cancers is closely associated with an individual’s lifestyle. Thus, changing lifestyle, specifically the consumption of fruits and vegetables, can help to protect against the development of gastroenterological cancers. In particular, naturally occurring bioactive compounds, including curcumin, resveratrol, isothiocyanates, (-)-epigallocatechin gallate and sulforaphane, are regarded as promising chemopreventive agents. Hence, regular consumption of these natural bioactive compounds found in foods can contribute to prevention, suppression, and/or delay of gastroenterological cancer development. In this review, we will summarize natural phytochemicals possessing potential antioxidant and/or anti-inflammatory and anti-carcinogenic activities, which are exerted by regulating or targeting specific molecules against gastroenterological cancers, including esophageal, gastric and colon cancers. PMID:23467658
Potential of Fruit Wastes as Natural Resources of Bioactive Compounds
Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin
2012-01-01
Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries. PMID:22942704
Potential of fruit wastes as natural resources of bioactive compounds.
Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin
2012-01-01
Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.
Van De Velde, Franco; Tarola, Anna M; Güemes, Daniel; Pirovani, María E
2013-03-25
Strawberries represent an important source of bioactive compounds due to their vitamin C and phenolic compound levels, which present high antioxidant effects, beneficial for the maintenance of consumer's health. Argentina is the second largest strawberry producer in The Common Market of the Southern Cone (MERCOSUR), covering the main export destinations of Argentinian strawberries, i.e. , Canada, United States, and European Union. Information about the bioactive compound occurrence and antioxidant capacity of these fruits is scarce or not available. Health related compounds of strawberry cultivars ( Camarosa and Selva ) from different zones of Argentina were investigated. Vitamin C content was in the same range for both studied cultivars. However, Camarosa strawberries, which are the most cultivated, consumed, and exported berries in Argentina, presented higher total phenolic and anthocyanins content, and consequently better in vitro antioxidant capacity. Moreover, there were differences in the occurrence and concentration in the phenolic compound profiles for both cultivars. Camarosa cultivar presented higher content of anthocyanidins, and Selva showed higher total ellagic acid content. The research shows that Argentina's strawberries are an interesting source of bioactive compounds comparable to those in other parts of the world.
Bioactive natural compounds from the plant endophytic fungi Pestalotiopsis spp.
Wang, Kuiwu; Lei, Jinxiu; Wei, Jiguang; Yao, Nan
2012-11-01
The plant-endophytic strains of the fungus Pestalotiopsis (Amphisphaeriaceae) are distributed throughout the world. Previous chemical investigation of members of the genus resulted in the discovery of various bioactive secondary metabolites including chromones, cytosporones, polyketides, terpenoids and coumarins with diverse structural features. The present report reviews the papers, which have appeared in the literature till now, concerning the isolation, structural elucidation, and biological activities of the secondary metabolites from Pestalotiopsis species.
Chemical constituents from roots of Taraxacum formosanum.
Leu, Yann-Lii; Wang, Yu-Li; Huang, Shih-Chin; Shi, Li-Shian
2005-07-01
Two new compounds, taraxafolide (1) and (+)-taraxafolin-B (2) together with eighteen known compounds, which include one sesquiterpene, thirteen benzenoids, two indole alkaloids, one pyridine derivative and steroid mixtures were isolated and characterized from the fresh roots of Taraxacum formosanum. Structures of new compounds were determined by spectral analysis. (+)-Taraxafolin-B had the bioactive caffeic acid moiety, but its activity was weaker than alpha-tocopherol in DPPH radicals scavenging activity assay.
Ferrentino, Giovanna; Asaduzzaman, Md; Scampicchio, Matteo Mario
2018-02-11
The recovery of high valuable compounds from food waste is becoming a tighten issue in food processing. The large amount of non-edible residues produced by food industries causes pollution, difficulties in the management, and economic loss. The waste produced during the transformation of fruits includes a huge amount of materials such as peels, seeds, and bagasse, whose disposal usually represents a problem. Research over the past 20 years revealed that many food wastes could serve as a source of potentially valuable bioactive compounds, such as antioxidants and vitamins with increasing scientific interest thanks to their beneficial effects on human health. The challenge for the recovery of these compounds is to find the most appropriate and environment friendly extraction technique able to achieve the maximum extraction yield without compromising the stability of the extracted products. Based on this scenario, the aim of the current review is twofold. The first is to give a brief overview of the most important bioactive compounds occurring in fruit wastes. The second is to describe the pro and cons of the most up-to-dated innovative and environment friendly extraction technologies that can be an alternative to the classical solvent extraction procedures for the recovery of valuable compounds from fruit processing. Furthermore, a final section will take into account published findings on the combination of some of these technologies to increase the extracts yields of bioactives.
Abdallah, Hossam M; El-Bassossy, Hany; Mohamed, Gamal A; El-Halawany, Ali M; Alshali, Khalid Z; Banjar, Zainy M
2016-02-22
Accumulation of Advanced Glycation Endproducts (AGEs) in body tissues plays a major role in the development of diabetic complications. Here, the inhibitory effect of bioactive metabolites isolated from fruit hulls of Garcinia mangostana on AGE formation was investigated through bio-guided approach using aminoguanidine (AG) as a positive control. Including G. mangostana total methanol extract (GMT) in the reaction mixture of bovine serum albumin (BSA) and glucose or ribose inhibited the fluorescent and non-fluorescent AGEs formation in a dose dependent manner. The bioassay guided fractionation of GMT revealed isolation of four bioactive constituents from the bioactive fraction; which were identified as: garcimangosone D (1), aromadendrin-8-C-glucopyranoside (2), epicatechin (3), and 2,3',4,5',6-pentahydroxybenzophenone (4). All the tested compounds significantly inhibited fluorescent and non-fluorescent AGEs formation in a dose dependent manner whereas compound 3 (epicatechin) was found to be the most potent. In search for the level of action, addition of GMT, and compounds 2-4 inhibited fructosamine (Amadori product) and protein aggregation formation in both glucose and ribose. To explore the mechanism of action, it was found that addition of GMT and only compound (3) to reaction mixture increased protein thiol in both glucose and ribose while compounds 1, 2 and 4 only increased thiol in case of ribose. In conclusion, phenolic compounds 1-4 inhibited AGEs formation at the levels of Amadori product and protein aggregation formation through saving protein thiol.
Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M
2015-01-01
Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802
Volatiles from the fungal microbiome of the marine sponge Callyspongia cf. flammea.
Barra, Lena; Barac, Paul; König, Gabriele M; Crüsemann, Max; Dickschat, Jeroen S
2017-09-13
The volatiles emitted by five fungal strains previously isolated from the marine sponge Callyspongia cf. flammea were captured with a closed-loop stripping apparatus (CLSA) and analyzed by GC-MS. Besides several widespread compounds, a series of metabolites with interesting bioactivities were found, including the quorum sensing inhibitor protoanemonin, the fungal phytotoxin 3,4-dimethylpentan-4-olide, and the insect attractant 1,2,4-trimethoxybenzene. In addition, the aromatic polyketides isotorquatone and chartabomone that are both known from Eucalyptus and a new O-desmethyl derivative were identified. The biosynthesis of isotorquatone was studied by feeding experiments with isotopically labeled precursors and its absolute configuration was determined by enantioselective synthesis of a reference compound. Bioactivity testings showed algicidal activity for some of the identified compounds, suggesting a potential ecological function in sponge defence.
Solid state fermentation (SSF): diversity of applications to valorize waste and biomass.
Lizardi-Jiménez, M A; Hernández-Martínez, R
2017-05-01
Solid state fermentation is currently used in a range of applications including classical applications, such as enzyme or antibiotic production, recently developed products, such as bioactive compounds and organic acids, new trends regarding bioethanol and biodiesel as sources of alternative energy, and biosurfactant molecules with environmental purposes of valorising unexploited biomass. This work summarizes the diversity of applications of solid state fermentation to valorize biomass regarding alternative energy and environmental purposes. The success of applying solid state fermentation to a specific process is affected by the nature of specific microorganisms and substrates. An exhaustive number of microorganisms able to grow in a solid matrix are presented, including fungus such as Aspergillus or Penicillum for antibiotics, Rhizopus for bioactive compounds, Mortierella for biodiesel to bacteria, Bacillus for biosurfactant production, or yeast for bioethanol.
Dávila-Aviña, Jorge E; Villa-Rodríguez, José A; Villegas-Ochoa, Mónica A; Tortoledo-Ortiz, Orlando; Olivas, Guadalupe I; Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A
2014-10-01
This work evaluated the effect of carnauba and mineral oil coatings on the bioactive compounds and antioxidant capacity of tomato fruits (cv. "Grandela"). Carnauba and mineral oil coatings were applied on fresh tomatoes at two maturity stages (breaker and pink) over 28 day of storage at 10 °C was evaluated. Bioactive compound and antioxidant activity assays included total phenols, total flavonoids, ascorbic acid (ASA), lycopene, DPPH radical scavenging activity (%RSA), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity assay (ORAC). The total phenolic, flavonoid and lycopene contents were significantly lower for coated fruit than control fruits. However, ascorbic acid content was highest in fruits treated with carnauba, followed by mineral oil coating and control fruits. The ORAC values were highest in breaker tomatoes coated with carnauba wax, followed by mineral oil-coated fruits and controls. No significant differences in ORAC values were observed in pink tomatoes. % RSA and TEAC values were higher for controls than for coated fruit. Edible coatings preserve the overall quality of tomatoes during storage without affecting the nutritional quality of fruit. We found that the physiological response to the coatings is in function of the maturity stage of tomatoes. The information obtained in this study support to use of edible coating as a safe and good alternative to preserve tomato quality, and that the changes of bioactive compounds and antioxidant activity of tomato fruits, was not negatively affected. This approach can be used by producers to preserve tomato quality.
Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds
Fan, Meiqi; Nath, Amit Kumar; Tang, Yujiao; Choi, Young-Jin; Debnath, Trishna; Choi, Eun-Ju
2018-01-01
This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment. PMID:29757237
A Review of Nanoliposomal Delivery System for Stabilization of Bioactive Omega-3 Fatty Acids
Hadian, Zahra
2016-01-01
Currently, bioactive compounds are required in the design and production of functional foods, with the aim of improving the health status of consumers all around the world. Various epidemiological and clinical studies have demonstrated the salutary role of eicosapentaenoic acid (EPA, 22:6 n−3) and docosahexaenoic acid (DHA, 22:5 n−3) in preventing diseases and reducing mortality from cardiovascular diseases. The unsaturated nature of bioactive lipids leads to susceptibility to oxidation under environmental conditions. Oxidative deterioration of omega-3 fatty acids can cause the reduction in their nutritional quality and sensory properties. Encapsulation of these fatty acids could create a barrier against reaction with harmful environmental factors. Currently, fortification of foods containing bioactive omega-3 fatty acids has found great application in the food industries of different countries. Previous studies have suggested that nano-encapsulation has significant effects on the stability of physical and chemical properties of bioactive compounds. Considering the functional role of omega-3 fatty acids, this study has provided a literature review on applications of nanoliposomal delivery systems for encapsulation of these bioactive compounds. PMID:26955449
Enzyme-assisted extraction of bioactives from plants.
Puri, Munish; Sharma, Deepika; Barrow, Colin J
2012-01-01
Demand for new and novel natural compounds has intensified the development of plant-derived compounds known as bioactives that either promote health or are toxic when ingested. Enhanced release of these bioactives from plant cells by cell disruption and extraction through the cell wall can be optimized using enzyme preparations either alone or in mixtures. However, the biotechnological application of enzymes is not currently exploited to its maximum potential within the food industry. Here, we discuss the use of environmentally friendly enzyme-assisted extraction of bioactive compounds from plant sources, particularly for food and nutraceutical purposes. In particular, we discuss an enzyme-assisted extraction of stevioside from Stevia rebaudiana, as an example of a process of potential value to the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.
El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A
2008-07-01
In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time.
Watanabe, Fumio; Yabuta, Yukinori; Tanioka, Yuri; Bito, Tomohiro
2013-07-17
The usual dietary sources of vitamin B12 are animal-source based foods, including meat, milk, eggs, fish, and shellfish, although a few plant-based foods such as certain types of dried lavers (nori) and mushrooms contain substantial and considerable amounts of vitamin B12, respectively. Unexpectedly, detailed characterization of vitamin B12 compounds in foods reveals the presence of various corrinoids that are inactive in humans. The majority of edible blue-green algae (cyanobacteria) and certain edible shellfish predominately contain an inactive corrinoid known as pseudovitamin B12. Various factors affect the bioactivity of vitamin B12 in foods. For example, vitamin B12 is partially degraded and loses its biological activity during cooking and storage of foods. The intrinsic factor-mediated gastrointestinal absorption system in humans has evolved to selectively absorb active vitamin B12 from naturally occurring vitamin B12 compounds, including its degradation products and inactive corrinoids that are present in daily meal foods. The objective of this review is to present up-to-date information on various factors that can affect the bioactivity of vitamin B12 in foods. To prevent vitamin B12 deficiency in high-risk populations such as vegetarians and elderly subjects, it is necessary to identify plant-source foods that contain high levels of bioactive vitamin B12 and, in conjunction, to prepare the use of crystalline vitamin B12-fortified foods.
Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts
USDA-ARS?s Scientific Manuscript database
Rice bran contains several bioactive components that have been linked to the promotion of human health. Brown rice bran contains lipophilic components that include the tocotrienols and gamma-oryzanol. Pigmented or colored rice bran contains different phenolic compounds including anthocyanins (purp...
Mena, Pedro; Tassotti, Michele; Martini, Daniela; Rosi, Alice; Brighenti, Furio; Del Rio, Daniele
2017-11-09
Coffee is an important source of bioactive compounds, including caffeine, phenolic compounds (mainly chlorogenic acids), trigonelline, and diterpenes. Several studies have highlighted the preventive effects of coffee consumption on major cardiometabolic diseases, but the impact of coffee dosage on markers of cardiometabolic risk is not well understood. Moreover, the pool of coffee-derived circulating metabolites and the contribution of each metabolite to disease prevention still need to be evaluated in real-life settings. The aim of this study will be to define the bioavailability and beneficial properties of coffee bioactive compounds on the basis of different levels of consumption, by using an innovative experimental design. The contribution of cocoa-based products containing coffee to the pool of circulating metabolites and their putative bioactivity will also be investigated. A three-arm, crossover, randomized trial will be conducted. Twenty-one volunteers will be randomly assigned to consume three treatments in a random order for 1 month: 1 cup of espresso coffee/day, 3 cups of espresso coffee/day, and 1 cup of espresso coffee plus 2 cocoa-based products containing coffee twice per day. The last day of each treatment, blood and urine samples will be collected at specific time points, up to 24 hours following the consumption of the first product. At the end of each treatment the same protocol will be repeated, switching the allocation group. Besides the bioavailability of the coffee/cocoa bioactive compounds, the effect of the coffee/cocoa consumption on several cardiometabolic risk factors (anthropometric measures, blood pressure, inflammatory markers, trimethylamine N-oxide, nitric oxide, blood lipids, fasting indices of glucose/insulin metabolism, DNA damage, eicosanoids, and nutri-metabolomics) will be investigated. Results will provide information on the bioavailability of the main groups of phytochemicals in coffee and on their modulation by the level of consumption. Findings will also show the circulating metabolites and their bioactivity when coffee consumption is substituted with the intake of cocoa-based products containing coffee. Finally, the effect of different levels of 1-month coffee consumption on cardiometabolic risk factors will be elucidated, likely providing additional insights on the role of coffee in the protection against chronic diseases. ClinicalTrials.gov, NCT03166540 . Registered on May 21, 2017.
[New natural products from the marine-derived Aspergillus fungi-A review].
Zhao, Chengying; Liu, Haishan; Zhu, Weiming
2016-03-04
Marine-derived fungi were the main source of marine microbial natural products (NPs) due to their complex genetic background, chemodiversity and high yield of NPs. According to our previous survey for marine microbial NPs from 2010 to 2013, Aspergillus fungi have received the most of attention among all the marine-derived fungi, which accounted for 31% NPs of the marine fungal origins. This paper reviewed the sources, chemical structures and bioactivites of all the 512 new marine NPs of Aspergillus fungal origins from 1992 to 2014. These marine NPs have diverse chemical structures including polyketides, fatty acids, sterols and terpenoids, alkaloids, peptides, and so on, 36% of which displayed bioactivities such as cytotoxicity, antimicrobial activity, antioxidant and insecticidal activity. Nitrogen compounds are the major secondary metabolites accounting for 52% NPs from the marine-derived Aspergillus fungi. Nitrogen compounds are also the class with the highest ratio of bioactive compounds, 40% of which are bioactive. Plinabulin, a dehydrodiketopiperazine derivative of halimide had been ended its phase II trial and has received its phase III study from the third quarter of 2015 for the treatment of advanced, metastatic non-small cell lung cancer.
Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products
Corinaldesi, Cinzia; Barone, Giulio; Marcellini, Francesca; Dell’Anno, Antonio; Danovaro, Roberto
2017-01-01
The oceans encompass a wide range of habitats and environmental conditions, which host a huge microbial biodiversity. The unique characteristics of several marine systems have driven a variety of biological adaptations, leading to the production of a large spectrum of bioactive molecules. Fungi, fungi-like protists (such as thraustochytrids) and bacteria are among the marine organisms with the highest potential of producing bioactive compounds, which can be exploited for several commercial purposes, including cosmetic and cosmeceutical ones. Mycosporines and mycosporine-like amino acids, carotenoids, exopolysaccharides, fatty acids, chitosan and other compounds from these microorganisms might represent a sustainable, low-cost and fast-production alternative to other natural molecules used in photo-protective, anti-aging and skin-whitening products for face, body and hair care. Here, we review the existing knowledge of these compounds produced by marine microorganisms, highlighting the marine habitats where such compounds are preferentially produced and their potential application in cosmetic and cosmeceutical fields. PMID:28417932
Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds
Borrás-Linares, Isabel; Stojanović, Zorica; Quirantes-Piné, Rosa; Arráez-Román, David; Švarc-Gajić, Jaroslava; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio
2014-01-01
In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis) samples, obtained by microwave-assisted extraction (MAE), was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC–ESI-QTOF-MS). The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina). PMID:25391044
Borges, Cristine Vanz; Amorim, Vanusia Batista de Oliveira; Ramlov, Fernanda; Ledo, Carlos Alberto da Silva; Donato, Marcela; Maraschin, Marcelo; Amorim, Edson Perito
2014-02-15
The banana is an important, widely consumed fruit, especially in areas of rampant undernutrition. Twenty-nine samples were analysed, including 9 diploids, 13 triploids and 7 tetraploids, in the Active Germplasm Bank, at Embrapa Cassava & Fruits, to evaluate the bioactive compounds. The results of this study reveal the presence of a diversity of bioactive compounds, e.g., catechins; they are phenolic compounds with high antioxidant potential and antitumour activity. In addition, accessions with appreciable amounts of pVACs were identified, especially compared with the main cultivars that are currently marketed. The ATR-FTIR, combined with principal components analysis, identified accessions with distinct metabolic profiles in the fingerprint regions of compounds important for human health. Likewise, starch fraction characterisation allowed discrimination of accessions according to their physical, chemical, and functional properties. The results of this study demonstrate that the banana has functional characteristics endowing it with the potential to promote human health. Copyright © 2013 Elsevier Ltd. All rights reserved.
Green coffee seed residue: A sustainable source of antioxidant compounds.
Castro, A C C M; Oda, F B; Almeida-Cincotto, M G J; Davanço, M G; Chiari-Andréo, B G; Cicarelli, R M B; Peccinini, R G; Zocolo, G J; Ribeiro, P R V; Corrêa, M A; Isaac, V L B; Santos, A G
2018-04-25
Oil extraction from green coffee seeds generates residual mass that is discarded by agribusiness and has not been previously studied. Bioactive secondary metabolites in coffee include antioxidant phenolic compounds, such as chlorogenic acids. Coffee seeds also contain caffeine, a pharmaceutically important methylxanthine. Here, we report the chemical profile, antioxidant activity, and cytotoxicity of hydroethanolic extracts of green Coffea arabica L. seed residue. The extracts of the green seeds and the residue have similar chemical profiles, containing the phenolic compounds chlorogenic acid and caffeine. Five monoacyl and three diacyl esters of trans-cinnamic acids and quinic acid were identified by ultra-performance liquid chromatography/electrospray ionization-quadruple time of flight mass spectrometry. The residue extract showed antioxidant potential in DPPH, ABTS, and pyranine assays and low cytotoxicity. Thus, coffee oil residue has great potential for use as a raw material in dietary supplements, cosmetic and pharmaceutical products, or as a source of bioactive compounds. Copyright © 2017. Published by Elsevier Ltd.
Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products.
Corinaldesi, Cinzia; Barone, Giulio; Marcellini, Francesca; Dell'Anno, Antonio; Danovaro, Roberto
2017-04-12
The oceans encompass a wide range of habitats and environmental conditions, which host a huge microbial biodiversity. The unique characteristics of several marine systems have driven a variety of biological adaptations, leading to the production of a large spectrum of bioactive molecules. Fungi, fungi-like protists (such as thraustochytrids) and bacteria are among the marine organisms with the highest potential of producing bioactive compounds, which can be exploited for several commercial purposes, including cosmetic and cosmeceutical ones. Mycosporines and mycosporine-like amino acids, carotenoids, exopolysaccharides, fatty acids, chitosan and other compounds from these microorganisms might represent a sustainable, low-cost and fast-production alternative to other natural molecules used in photo-protective, anti-aging and skin-whitening products for face, body and hair care. Here, we review the existing knowledge of these compounds produced by marine microorganisms, highlighting the marine habitats where such compounds are preferentially produced and their potential application in cosmetic and cosmeceutical fields.
Therapeutic Properties of Bioactive Compounds from Different Honeybee Products
Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno
2017-01-01
Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects. PMID:28701955
Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites
Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark
2011-01-01
Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194
Wojdyło, Aneta; Figiel, Adam; Legua, Pilar; Lech, Krzysztof; Carbonell-Barrachina, Ángel A; Hernández, Francisca
2016-09-15
The aim of this study was to determine the effect of different dying methods, such as convective drying (CD: 50, 60, 70 °C), vacuum-microwave drying (VMD: 120, 480, 480-120 W), a combination of convective pre-drying and vacuum-microwave finish drying [(CPD (60 °C)-VMFD (480-120 W)], and freeze-drying (FD) on key quality parameters of dried jujube fruits (cv. "GAL", "MSI", and "PSI"). The parameters studied included bioactive compounds (flavan-3-ols and flavonols, identified by LC-PDA-MS, and vitamin C), antioxidant capacity (ABTS and FRAP), and sensory attributes (e.g. hardness, jujube-ID, and sweetness). The best quality of the dried product (high contents of bioactive compounds and high intensity of key sensory attributes) was found in fruits treated by FD and VMD 480-120 W. The best cultivars were "PSI" and "GAL" from the point of view of bioactive content and sensory quality, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biologically active quinoline and quinazoline alkaloids part I.
Shang, Xiao-Fei; Morris-Natschke, Susan L; Liu, Ying-Qian; Guo, Xiao; Xu, Xiao-Shan; Goto, Masuo; Li, Jun-Cai; Yang, Guan-Zhou; Lee, Kuo-Hsiung
2018-05-01
Quinoline and quinazoline alkaloids, two important classes of N-based heterocyclic compounds, have attracted tremendous attention from researchers worldwide since the 19th century. Over the past 200 years, many compounds from these two classes were isolated from natural sources, and most of them and their modified analogs possess significant bioactivities. Quinine and camptothecin are two of the most famous and important quinoline alkaloids, and their discoveries opened new areas in antimalarial and anticancer drug development, respectively. In this review, we survey the literature on bioactive alkaloids from these two classes and highlight research achievements prior to the year 2008 (Part I). Over 200 molecules with a broad range of bioactivities, including antitumor, antimalarial, antibacterial and antifungal, antiparasitic and insecticidal, antiviral, antiplatelet, anti-inflammatory, herbicidal, antioxidant and other activities, were reviewed. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids. © 2017 Wiley Periodicals, Inc.
Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids
Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine
2013-01-01
Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section. PMID:24022731
Wang, Hui; Jiang, Mingyue; Li, Shujun; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo
2017-09-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure-activity relationships (QSARs) for CAAS compounds against Aspergillus niger ( A. niger ) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models ( R 2 = 0.9346 for A. niger , R 2 = 0.9590 for P. citrinum, ) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi.
Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo
2017-01-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758
[ANTIOXIDANT POTENTIAL OF MELIPONA BEECHEII HONEY AND ITS RELATIONSHIP TO HEALTH: A REVIEW].
Cauich Kumul, Roger; Ruiz Ruiz, Jorge Carlos; Ortíz Vázquez, Elizabeth; Segura Campos, Maira Rubi
2015-10-01
The present article provides a literature review about the biological potential of Melipona beecheii. The objective is to project some tendecies in research about nutraceutical aspects related to the bioactive compounds presents in the honey of this stingless bee species, known for its medicinal properties traditional, in the Yucatan Peninsula. Currently, there is strong evidence that M. beecheii honey has bioactive compounds such as proteins, flavonoids and polyphenols with high antioxidant activity. The scientific evidence allows to propose to the honey of stingless bee species as a potential alternative for the obtention of bioactive compounds with antioxidant activity in the Yucatan Peninsula and natural food being proposed to reduce some diseases associated with stress oxidative physiological human cells. However, there is still information that explains such antioxidant activity, therefore, according to the literature reviewed, sees the need to address nutraceuticals and functional aspects correlated with the bioactive compounds present in this honey bee. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Martínez-Romero, Domingo; Zapata, Pedro J; Guillén, Fabián; Paladines, Diego; Castillo, Salvador; Valero, Daniel; Serrano, María
2017-02-15
The effect of Aloe vera gel (AV) and Aloe arborescens gel (AA) alone or in combination with rosehip oil (RO) at 2% on ethylene production, respiration rate, quality parameters, bioactive compounds and antioxidant activity during plum postharvest storage was studied. Coated plums showed a delay in ethylene production and respiration rate at 20°C and during cold storage and subsequent shelf life, the main effect being observed for those fruits coated with AA+RO. Quality parameters such as softening, colour and maturity index was also delayed during storage by the use of the coatings, which led to a 2-fold increase in plum storability. Accumulation of bioactive compounds was also delayed although at the end of the experiment the content of bioactive compounds was higher than those found for control fruits at the estimated shelf life. The most effective coating for maintaining plum quality and bioactive compounds was AA+RO. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of culinary processing time on saffron's bioactive compounds (Crocus sativus L.).
Rodríguez-Neira, Lidia; Lage-Yusty, María Asunción; López-Hernández, Julia
2014-12-01
Saffron, the dried stigmas of Crocus sativus L., is used as a condiment spice. The major bioactive compounds are crocins, picrocrocin and safranal, which are responsible for the sensory profile of saffron (color, flavor and aroma, respectively), and also health-promoting properties. In this paper, the effect on the bioactive compounds of different cooking times in boiling water at 100 °C in samples of Saffron from La Mancha (safranal, picrocrocin, trans-crocin 4, cis-crocin 4 and trans-crocin 3) was investigated. Performance characteristics of High Performance Liquid Chromatography with Variable Wavelength Detector method, parameters of linearity, limits of detection and quantification are reported. High Performance Liquid Chromatography-Photo Diode Array-Mass Spectrometry was used as a confirmatory technique in crocins identification. When the samples are subjected to different cooking times, they present different behaviors, depending on the bioactive compound. In this way, no changes were observed in the concentration of picrocrocin, while heat culinary treatment adversely affects the concentrations of crocins and safranal.
The Contribution of Buckwheat Genetic Resources to Health and Dietary Diversity
Sytar, Oksana; Brestic, Marian; Zivcak, Marek; Tran, Lam-Son Phan
2016-01-01
Despite several reports on the beneficial effects of buckwheat in prevention of human diseases, little attention has been devoted to the variability of biochemical and physiological traits in different buckwheat genetic resources. This review describes the biochemical evaluation of buckwheat genetic resources and the identification of elite genotypes for plant breeding and exploitation. The various types of bioactive compounds present in different varieties provide basic background information needed for the efficient production of buckwheat foods with added value. In this review, we will provide an integrated view of the biochemistry of bioactive compounds of buckwheat plants of different origin, especially of fagopyrin, proteins and amino acids, as well as of other phenolic compounds including rutin and chlorogenic acid. In addition to the genetic background, the effect of different growth conditions is discussed. The health effects of fagopyrin, phenolic acids, specific proteins and rutin are also presented. PMID:27252586
NASA Astrophysics Data System (ADS)
Dayuti, S.
2018-04-01
Red alga was widely used in several fields, including food, feed, phamacy and industrial point of view. The chemical analysis showed that red alga contained terpenoid, acetogenic, and aromatic compounds, which have a wide range of biological activities, such as anti-micobial, anti-inflammatory and anti-viral. The objectives of this research was to evaluate the effect of extraction solvent and time on antibacterial activity of red alga (Gracilaria verrucosa), and to explore the bioactive compound contained within Gracilaria verrucosa. The method in this study used descriptive reseach. These findings revealed that the highest inhibition activity among all extracts was obtained with the ratio of methanol:aquades (75:25) and extraction time around 72 hours against Escherichia coli and Salmonella typhimurium. The bioactive compounds of Gracilaria verrucosa tested by phytochemical analysisi consisted of flavonoid, alkaloid, and saponin. Those secondary metabolites may be approximated as antibactial substances.
Saponins from seeds of Genus Camellia: Phytochemistry and bioactivity.
Guo, Na; Tong, Tuantuan; Ren, Ning; Tu, Youying; Li, Bo
2018-05-01
Camellia seeds have been traditionally used as oil raw materials in Asia, and are known for a wide spectrum of applications. Oleanane-type triterpene saponins are the major specialised metabolites in Camellia seeds, and more than seventy saponins have been isolated and characterized. These natural compounds have caught much attention due to their various biological and pharmacological activities, including modulation of gastrointestinal system, anti-cancer, anti-inflammation, anti-microorganism, antioxidation, neuroprotection, hypolipidemic effects, foaming and detergence, as well as helping the accumulation of pollutants by plants. These compounds have a promising application in medicine, agriculture, industry and environmental protection. The present paper summarized the information from current publications on Camellia seed saponins, with a focus on the advances made in chemical structures, determination methods, bioactivities and toxicity. We hope this article will stimulate further investigations on these compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.
Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery?
2015-01-01
High-throughput biology has contributed a wealth of data on chemicals, including natural products (NPs). Recently, attention was drawn to certain, predominantly synthetic, compounds that are responsible for disproportionate percentages of hits but are false actives. Spurious bioassay interference led to their designation as pan-assay interference compounds (PAINS). NPs lack comparable scrutiny, which this study aims to rectify. Systematic mining of 80+ years of the phytochemistry and biology literature, using the NAPRALERT database, revealed that only 39 compounds represent the NPs most reported by occurrence, activity, and distinct activity. Over 50% are not explained by phenomena known for synthetic libraries, and all had manifold ascribed bioactivities, designating them as invalid metabolic panaceas (IMPs). Cumulative distributions of ∼200,000 NPs uncovered that NP research follows power-law characteristics typical for behavioral phenomena. Projection into occurrence–bioactivity–effort space produces the hyperbolic black hole of NPs, where IMPs populate the high-effort base. PMID:26505758
Sampath, Chethan; Zhu, Yingdong; Sang, Shengmin; Ahmedna, Mohamed
2016-02-15
Methylglyoxal (MGO) is known to be a major precursor of advanced glycation end products (AGEs) which are linked to diabetes and its related complications. Naturally occurring bioactive compounds could play an important role in countering AGEs thereby minimizing the risk associated with their formation. In this study, eight specific bioactive compounds isolated from apple, tea and ginger were evaluated for their AGEs scavenging activity using Human Retinal Pigment Epithelial (H-RPE) cells treated with MGO. Among the eight specific compounds evaluated, (-)-epigallocatechin 3-gallate (EGCG) from tea, phloretin in apple, and [6]-shogaol and [6]-gingerol from ginger were found to be most effective in preventing MGO-induced cytotoxicity in the epithelial cells. Investigation of possible underlying mechanisms suggests that that these compounds could act by modulating key regulative detoxifying enzymes via modifying nuclear factor-erythroid 2-related factor 2 (Nrf2) function. MGO-induced cytotoxicity led to increased levels of AGEs causing increase in Nε-(Carboxymethyl) lysine (CML) and glutathione (GSH) levels and over expression of receptor for advanced glycation end products (RAGE). Data also showed that translocation of Nrf2 from cytosol to nucleus was inhibited, which decreased the expression of detoxifying enzyme like heme oxygenase-1 (HO-1). The most potent bioactive compounds scavenged dicarbonyl compounds, inhibited AGEs formation and significantly reduced carbonyl stress by Nrf2 related pathway and restoration of HO-1 expression. These findings demonstrated the protective effect of bioactive compounds derived from food sources against MGO-induced carbonyl stress through activation of the Nrf2 related defense pathway, which is of significant importance for therapeutic interventions in complementary treatment/management of diabetes-related complications. Copyright © 2016. Published by Elsevier GmbH.
Kandasamy, Saravanan; Ramu, Sasikala; Aradhya, Somaradhya Mallikarjuna
2016-03-15
Pseudostem and rhizome are the significant bio-waste generated (43.48%) from the banana plant post fruit harvest, which are usually left in the plantation or incinerated and wasted. Amounts used in production for consumption are negligible. However, the material has an important part to play in indigenous systems of medicine. Based on the huge volume of bio-waste generated and its traditional medicinal use, it is worth exploiting it as a source of natural bioactive compounds. In the current study, sequential extracts from banana pseudostem (BPS) and rhizome (BR), and isolated compounds including chlorogenic acid, 4-epicyclomusalenone and cycloeucalenol acetate, were tested for their antimicrobial activity, antiplatelet aggregation and cytotoxicity. Isolated compounds and crude extracts exhibited strong antimicrobial activity against a wide range of bacterial and fungal strains, platelet aggregation induced by collagen and cytotoxicity towards human liver cancer (HepG2) cells. Banana plant bio-waste, pseudostem and rhizome may serve as a potential source of multifunctional bioactive compounds and functional ingredient in food and other allied industries. © 2015 Society of Chemical Industry.
Otvos, Reka A; Mladic, Marija; Arias-Alpizar, Gabriela; Niessen, Wilfried M A; Somsen, Govert W; Smit, August B; Kool, Jeroen
2016-06-01
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel expressed in different regions of the central nervous system (CNS). The α7-nAChR has been associated with Alzheimer's disease, epilepsy, and schizophrenia, and therefore is extensively studied as a drug target for the treatment of these diseases. Important sources for new compounds in drug discovery are natural extracts. Since natural extracts are complex mixtures, identification of the bioactives demands the use of analytical techniques to separate a bioactive from inactive compounds. This study describes screening methodology for identifying bioactive compounds in mixtures acting on the α7-nAChR. The methodology developed combines liquid chromatography (LC) coupled via a split with both an at-line calcium (Ca(2+))-flux assay and high-resolution mass spectrometry (MS). This allows evaluation of α7-nAChR responses after LC separation, while parallel MS enables compound identification. The methodology was optimized for analysis of agonists and positive allosteric modulators, and was successfully applied to screening of the hallucinogen mushroom Psilocybe Mckennaii The crude mushroom extract was analyzed using both reversed-phase and hydrophilic interaction liquid chromatography. Matching retention times and peak shapes of bioactives found with data from the parallel MS measurements allowed rapid pinpointing of accurate masses corresponding to the bioactives. © 2016 Society for Laboratory Automation and Screening.
Varsha, Kontham Kulangara; Nishant, Gopalan; Sneha, Srambikal Mohandas; Shilpa, Ganesan; Devendra, Leena; Priya, Sulochana; Nampoothiri, Kesavan Madhavan
2016-12-01
A bioactive compound was purified from the culture medium of a new strain of Lactococcus BSN307 by solvent extraction followed by chromatographic techniques. This bioactive compound was identified to belong to phenazine class of compounds by MS, NMR and FTIR. The phenazine compound showed antifungal activity against Aspergillus niger , Penicillium chrysogenum as well as Fusarium oxysporum by disc diffusion assay in addition to antioxidant potential as demonstrated by DPPH scavenging assay. The compound demonstrated selective cytotoxicity against cancer cell lines HeLa and MCF-7 where IC 50 was achieved with 20 and 24 µg/mL respectively. At the same time no cytotoxicity was occurred in normal H9c2 cells. The bioactive found to be inhibitory to both leucine and proline aminopeptidases and thus revealed its potential as metalloenzyme inhibitor. This study, for the first time reports the production of phenazine class of compounds by lactic acid bacteria.
Biologically active components and nutraceuticals in the Monascus-fermented rice: a review.
Lin, Yii-Lih; Wang, Teng-Hsu; Lee, Min-Hsiung; Su, Nan-Wei
2008-01-01
Monascus-fermented rice has traditionally been used as a natural food colorant and food preservative of meat and fish for centuries. It has recently become a popular dietary supplement because of many of its bioactive constituents being discovered, including a series of active drug compounds, monacolins, indicated as the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors for reducing serum cholesterol level. The controversy of its safety has been provoked because a mycotoxin, citrinin, is also produced along with the Monascus secondary metabolites by certain strains or under certain cultivation conditions. This review introduces the basic production process and addresses on the compounds with bioactive functions. Current advances in avoiding the harmful ingredient citrinin are also discussed.
Garlic and onions: Their cancer prevention properties
Nicastro, Holly L.; Ross, Sharon A.; Milner, John A.
2015-01-01
The Allium genus includes garlic, onions, shallots, leeks, and chives. These vegetables are popular in cuisines worldwide and are valued for their potential medicinal properties. Epidemiological studies, while limited in their abilities to assess Allium consumption, indicate some associations of Allium vegetable consumption with decreased risk of cancer, particularly cancers of the gastrointestinal tract. Limited intervention studies have been conducted to support these associations. The majority of supportive evidence on Allium vegetables cancer preventive effects comes from mechanistic studies. These studies highlight potential mechanisms of individual sulfur-containing compounds and of various preparations and extracts of these vegetables, including decreased bioactivation of carcinogens, antimicrobial activities, and redox modification. Allium vegetables and their components have effects at each stage of carcinogenesis and affect many biological processes that modify cancer risk. This review discusses the cancer preventive effects of Allium vegetables, particularly garlic and onions, and their bioactive sulfur compounds and highlights research gaps. PMID:25586902
Parveen, Iffat; Wang, Mei; Zhao, Jianping; Chittiboyina, Amar G; Tabanca, Nurhayat; Ali, Abbas; Baerson, Scott R; Techen, Natascha; Chappell, Joe; Khan, Ikhlas A; Pan, Zhiqiang
2015-11-01
Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including bioactive flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in foliar tissues. Despite this chemical diversity, relatively few enzymes associated with any biosynthetic pathway from ginkgo have been characterized to date. In the present work, predicted transcripts potentially encoding enzymes associated with the biosynthesis of diterpenoid and terpenoid compounds, including putative terpene synthases, were first identified by mining publicly-available G. biloba RNA-seq data sets. Recombinant enzyme studies with two of the TPS-like sequences led to the identification of GbTPS1 and GbTPS2, encoding farnesol and bisabolene synthases, respectively. Additionally, the phylogenetic analysis revealed the two terpene synthase genes as primitive genes that might have evolved from an ancestral diterpene synthase.
Functional food productions: release the potential of bioactive compounds through food processing
USDA-ARS?s Scientific Manuscript database
Epidemiological studies of bioactive compounds from plant-based foods have consistently pointed to undisputed benefits of consumption of plant-based foods on human health particularly regarding cardiovascular diseases and cancers. However, in order to attain the dosage required from these studies, p...
NASA Astrophysics Data System (ADS)
Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei
2016-12-01
With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.
Jiang, Zhong-Ke; Tuo, Li; Huang, Da-Lin; Osterman, Ilya A; Tyurin, Anton P; Liu, Shao-Wei; Lukyanov, Dmitry A; Sergiev, Petr V; Dontsova, Olga A; Korshun, Vladimir A; Li, Fei-Na; Sun, Cheng-Hang
2018-01-01
Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza , and Thespesia populnea , were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter , and Verrucosispora . Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola , and Mycobacterium . Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola . A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one "ESKAPE" resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein biosynthesis as result of translation stalling. Meanwhile, Streptomyces strain 3BQP-1 produces bioactive compound inducing SOS-response due to DNA damage. In conclusion, this study proved mangrove plants harbored a high diversity of cultivable endophytic actinobacteria, which can be a promising source for discovery of novel species and bioactive compounds.
Jiang, Zhong-ke; Tuo, Li; Huang, Da-lin; Osterman, Ilya A.; Tyurin, Anton P.; Liu, Shao-wei; Lukyanov, Dmitry A.; Sergiev, Petr V.; Dontsova, Olga A.; Korshun, Vladimir A.; Li, Fei-na; Sun, Cheng-hang
2018-01-01
Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein biosynthesis as result of translation stalling. Meanwhile, Streptomyces strain 3BQP-1 produces bioactive compound inducing SOS-response due to DNA damage. In conclusion, this study proved mangrove plants harbored a high diversity of cultivable endophytic actinobacteria, which can be a promising source for discovery of novel species and bioactive compounds. PMID:29780376
Oszmiański, Jan; Lachowicz, Sabina
2016-08-22
The aim of this study was to evaluate the production of dried fruits and juices from chokeberry as potential sources of bioactive compounds with beneficial effects on human health. Dry powders and juices from chokeberry were analyzed for the contents of sugars with high-performance liquid chromatography coupled with an evaporative light scattering detector (HPLC-ELSD method), and the antioxidant capacity was analyzed by the FRAP (ferric-reducing ability of plasma) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) tests. Polyphenols were then identified by high performance liquid chromatography (HPLC) coupled with a tandem mass spectrometer and a photodiode-array detector (LC-PDA-ESI-MS/MS), and their quantitative analysis was carriedmore » out by UPLC-MS/MS (using a Q/TOF detector and a PDA detector). A total of 27 polyphenolic compounds was identified in chokeberry products, including 7 anthocyanins, 11 flavonols, 5 phenolic acids, 3 flavan-3-ols and 1 flavanone. Three anthocyanin derivatives were reported for the first time from chokeberry fruit. A higher activity of the bioactive compounds was determined in dried fruit pomace and in juice obtained from crushed fruits than in those from the whole fruits. In addition, the pomace was found to be a better material for the production of dry powders, compared to chokeberry fruits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oszmiański, Jan; Lachowicz, Sabina
The aim of this study was to evaluate the production of dried fruits and juices from chokeberry as potential sources of bioactive compounds with beneficial effects on human health. Dry powders and juices from chokeberry were analyzed for the contents of sugars with high-performance liquid chromatography coupled with an evaporative light scattering detector (HPLC-ELSD method), and the antioxidant capacity was analyzed by the FRAP (ferric-reducing ability of plasma) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) tests. Polyphenols were then identified by high performance liquid chromatography (HPLC) coupled with a tandem mass spectrometer and a photodiode-array detector (LC-PDA-ESI-MS/MS), and their quantitative analysis was carriedmore » out by UPLC-MS/MS (using a Q/TOF detector and a PDA detector). A total of 27 polyphenolic compounds was identified in chokeberry products, including 7 anthocyanins, 11 flavonols, 5 phenolic acids, 3 flavan-3-ols and 1 flavanone. Three anthocyanin derivatives were reported for the first time from chokeberry fruit. A higher activity of the bioactive compounds was determined in dried fruit pomace and in juice obtained from crushed fruits than in those from the whole fruits. In addition, the pomace was found to be a better material for the production of dry powders, compared to chokeberry fruits.« less
Oszmiański, Jan; Lachowicz, Sabina
2016-08-22
The aim of this study was to evaluate the production of dried fruits and juices from chokeberry as potential sources of bioactive compounds with beneficial effects on human health. Dry powders and juices from chokeberry were analyzed for the contents of sugars with high-performance liquid chromatography coupled with an evaporative light scattering detector (HPLC-ELSD method), and the antioxidant capacity was analyzed by the FRAP (ferric-reducing ability of plasma) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) tests. Polyphenols were identified by high performance liquid chromatography (HPLC) coupled with a tandem mass spectrometer and a photodiode-array detector (LC-PDA-ESI-MS/MS), and their quantitative analysis was carried out by UPLC-MS/MS (using a Q/TOF detector and a PDA detector). A total of 27 polyphenolic compounds was identified in chokeberry products, including 7 anthocyanins, 11 flavonols, 5 phenolic acids, 3 flavan-3-ols and 1 flavanone. Three anthocyanin derivatives were reported for the first time from chokeberry fruit. A higher activity of the bioactive compounds was determined in dried fruit pomace and in juice obtained from crushed fruits than in those from the whole fruits. In addition, the pomace was found to be a better material for the production of dry powders, compared to chokeberry fruits.
Subramani, Ramesh; Kumar, Rohitesh; Prasad, Pritesh; Aalbersberg, William; Retheesh, S T
2013-04-01
To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites.
Subramani, Ramesh; Kumar, Rohitesh; Prasad, Pritesh; Aalbersberg, William
2013-01-01
Objective To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. Methods The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. Results Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. Conclusions Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites. PMID:23620853
Methoxyflavones from New Lingzhi Medicinal Mushroom, Ganoderma lingzhi (Agaricomycetes).
Shimizu, Kuniyoshi; Amen, Yhiya M; Kaifuchi, Satoru
2016-01-01
Ganoderma lingzhi is one of the most famous medicinal fungi in the world. It has been used in folk medicine, especially in East Asian countries. It is also a white-rot fungus with strong wood degradation ability, especially against lignin. Different classes of bioactive natural products have been reported in Ganoderma, including triterpenes, polysaccharides, sterols, and peptides. The triterpenes and polysaccharides are the primary bioactive compounds of Ganoderma. We report for the first time the presence of 3 methoxyflavones as minor constituents in G. linghzi. The 3 compounds were identified based on different spectroscopic techniques, including 1- and 2-dimensional nuclear magnetic resonance (1H-1H correlation spectroscopy, heteronuclear single quantum coherence, and heteronuclear multiple bond correlation) and mass spectrometry (high-resolution electrospray ionization mass spectrometry). Our report provides an approach to a possible biosynthetic pathway for biosynthetic genes in the mushrooms. Another great possibility is that these compounds may exist or be formed through degradation of the components in the woody substrate, such as lignin, and then subsequently translocate to the fruiting bodies.
Pusnik, Mascha; Imeri, Minire; Deppierraz, Grégoire; Bruinink, Arie; Zinn, Manfred
2016-01-01
A profound in vitro evaluation not only of the cytotoxic but also of bioactive potential of a given compound or material is crucial for predicting potential effects in the in vivo situation. However, most of the current methods have weaknesses in either the quantitative or qualitative assessment of cytotoxicity and/or bioactivity of the test compound. Here we describe a novel assay combining the ISO 10993-5 agar diffusion test and the scratch also termed wound healing assay. In contrast to these original tests this assay is able to detect and distinguish between cytotoxic, cell migration modifying and cytotoxic plus cell migration modifying compounds, and this at higher sensitivity and in a quantitative way. PMID:26861591
Singh, Arashdeep; Sharma, Savita
2017-09-22
Whole grains provide energy, nutrients, fibers, and bioactive compounds that may synergistically contribute to their protective effects. A wide range of these compounds is affected by germination. While some compounds, such as β-glucans are degraded, others, like antioxidants and total phenolics are increased by means of biological activation of grains. The water and oil absorption capacity as well as emulsion and foaming capacity of biologically activated grains are also improved. Application of biological activation of grains is of emerging interest, which may significantly enhance the nutritional, functional, and bioactive content of grains, as well as improve palatability of grain foods in a natural way. Therefore, biological activation of cereals can be a way to produce food grains enriched with health-promoting compounds and enhanced functional attributes.
Metabolic profiling of sourdough fermented wheat and rye bread.
Koistinen, Ville M; Mattila, Outi; Katina, Kati; Poutanen, Kaisa; Aura, Anna-Marja; Hanhineva, Kati
2018-04-09
Sourdough fermentation by lactic acid bacteria is commonly used in bread baking, affecting several attributes of the final product. We analyzed whole-grain wheat and rye breads and doughs prepared with baker's yeast or a sourdough starter including Candida milleri, Lactobacillus brevis and Lactobacillus plantarum using non-targeted metabolic profiling utilizing LC-QTOF-MS. The aim was to determine the fermentation-induced changes in metabolites potentially contributing to the health-promoting properties of whole-grain wheat and rye. Overall, we identified 118 compounds with significantly increased levels in sourdough, including branched-chain amino acids (BCAAs) and their metabolites, small peptides with high proportion of BCAAs, microbial metabolites of phenolic acids and several other potentially bioactive compounds. We also identified 69 compounds with significantly decreased levels, including phenolic acid precursors, nucleosides, and nucleobases. Intensive sourdough fermentation had a higher impact on the metabolite profile of whole-grain rye compared to milder whole-grain wheat sourdough fermentation. We hypothesize that the increased amount of BCAAs and potentially bioactive small peptides may contribute to the insulin response of rye bread, and in more general, the overall protective effect against T2DM and CVD.
Rangel-Huerta, Oscar D.; Pastor-Villaescusa, Belen; Aguilera, Concepcion M.; Gil, Angel
2015-01-01
The prevalence of cardiovascular diseases (CVD) is rising and is the prime cause of death in all developed countries. Bioactive compounds (BAC) can have a role in CVD prevention and treatment. The aim of this work was to examine the scientific evidence supporting phenolic BAC efficacy in CVD prevention and treatment by a systematic review. Databases utilized were Medline, LILACS and EMBASE, and all randomized controlled trials (RCTs) with prospective, parallel or crossover designs in humans in which the effects of BAC were compared with that of placebo/control were included. Vascular homeostasis, blood pressure, endothelial function, oxidative stress and inflammatory biomarkers were considered as primary outcomes. Cohort, ecological or case-control studies were not included. We selected 72 articles and verified their quality based on the Scottish Intercollegiate Guidelines Network, establishing diverse quality levels of scientific evidence according to two features: the design and bias risk of a study. Moreover, a grade of recommendation was included, depending on evidence strength of antecedents. Evidence shows that certain polyphenols, such as flavonols can be helpful in decreasing CVD risk factors. However, further rigorous evidence is necessary to support the BAC effect on CVD prevention and treatment. PMID:26132993
USDA-ARS?s Scientific Manuscript database
Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis) and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims of this study were to characterize extracts from greenhouse grown or commercially purchased herbs for th...
NASA Astrophysics Data System (ADS)
Kunimoto, Ryo; Bajorath, Jürgen
2017-09-01
Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.
Li, D Q; Zhao, J; Li, S P
2014-06-06
Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Bioactive Compounds in Some Culinary Aromatic Herbs and Their Effects on Human Health.
Guiné, Raquel P F; Gonçalves, Fernando J
2016-01-01
Culinary herbs are herbaceous (leafy) plants that add flavour and colour to all types of meals. There is a wide variety of herbs that are used for culinary purposes worldwide, which are also recognized for their beneficial health effects, and thus have also been used in folk medicine. Besides their nutritional value herbs are rich in many phytochemical components with bioactive effects, thus improving human health. The aim of the present work was to make a general overview of some of these herbs, including their gastronomic usage, their chemical composition in bioactive components and their reported health effects. This work showed that the health effects are very diverse and differ according to the herb in question. However, some of the most frequently citted biological activities include antioxidant, antimicrobial, and antiviral effects.
Southan, Christopher; Várkonyi, Péter; Muresan, Sorel
2009-07-06
Since 2004 public cheminformatic databases and their collective functionality for exploring relationships between compounds, protein sequences, literature and assay data have advanced dramatically. In parallel, commercial sources that extract and curate such relationships from journals and patents have also been expanding. This work updates a previous comparative study of databases chosen because of their bioactive content, availability of downloads and facility to select informative subsets. Where they could be calculated, extracted compounds-per-journal article were in the range of 12 to 19 but compound-per-protein counts increased with document numbers. Chemical structure filtration to facilitate standardised comparisons typically reduced source counts by between 5% and 30%. The pair-wise overlaps between 23 databases and subsets were determined, as well as changes between 2006 and 2008. While all compound sets have increased, PubChem has doubled to 14.2 million. The 2008 comparison matrix shows not only overlap but also unique content across all sources. Many of the detailed differences could be attributed to individual strategies for data selection and extraction. While there was a big increase in patent-derived structures entering PubChem since 2006, GVKBIO contains over 0.8 million unique structures from this source. Venn diagrams showed extensive overlap between compounds extracted by independent expert curation from journals by GVKBIO, WOMBAT (both commercial) and BindingDB (public) but each included unique content. In contrast, the approved drug collections from GVKBIO, MDDR (commercial) and DrugBank (public) showed surprisingly low overlap. Aggregating all commercial sources established that while 1 million compounds overlapped with PubChem 1.2 million did not. On the basis of chemical structure content per se public sources have covered an increasing proportion of commercial databases over the last two years. However, commercial products included in this study provide links between compounds and information from patents and journals at a larger scale than current public efforts. They also continue to capture a significant proportion of unique content. Our results thus demonstrate not only an encouraging overall expansion of data-supported bioactive chemical space but also that both commercial and public sources are complementary for its exploration.
Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds
Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer
2016-01-01
Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed. PMID:27144573
Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.
Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer
2016-05-02
Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.
Kunig, Verena; Potowski, Marco; Gohla, Anne; Brunschweiger, Andreas
2018-06-27
DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
NASA Astrophysics Data System (ADS)
Chaikham, Pittaya; Apichartsrangkoon, Arunee
2012-06-01
In this study, longan juice was subjected to a high pressure of 500 MPa for 30 min and compared with a juice pasteurized at 90°C/2 min. Probiotic Lactobacillus casei 01 was fortified into both juices and the shelf life of these products was studied. Their bioactive components such as ascorbic acid, gallic acid and ellagic acid were analyzed by High Performance Liquid Chromatography (HPLC). Total phenolic compounds and 2,2-Diphenyl-1-picrythydrazyl radical-scavenging activity were determined by colorimetric and spectrophotometric methods. It was found that the pressurized longan juice retained higher amounts of bioactive compounds than the pasteurized juice. In terms of storage stability, bioactive compounds in both processed juices decreased according to the increase in storage time. The survivability of probiotic L. casei 01 in both processed juices declined from 9 to 6 log CFU/mL after 4 weeks of storage.
Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.
Arcan, Iskender; Yemenicioğlu, Ahmet
2014-08-13
To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.
Secondary metabolites from marine-derived microorganisms.
Chen, Gang; Wang, Hai-Feng; Pei, Yue-Hu
2014-01-01
In the search for novel and bioactive molecules for drug discovery, marine-derived natural resources, especially marine microorganisms are becoming an important and interesting research area. This study covers the literature published after 2008 on secondary metabolites of marine-derived microorganisms. The emphasis was on new compounds with the relevant biological activities, strain information, and country of origin. New compounds without biological activity were not included.
Liu, Changhong; Liu, Wei; Chen, Wei; Yang, Jianbo; Zheng, Lei
2015-04-15
Tomato is an important health-stimulating fruit because of the antioxidant properties of its main bioactive compounds, dominantly lycopene and phenolic compounds. Nowadays, product differentiation in the fruit market requires an accurate evaluation of these value-added compounds. An experiment was conducted to simultaneously and non-destructively measure lycopene and phenolic compounds content in intact tomatoes using multispectral imaging combined with chemometric methods. Partial least squares (PLS), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) were applied to develop quantitative models. Compared with PLS and LS-SVM, BPNN model considerably improved the performance with coefficient of determination in prediction (RP(2))=0.938 and 0.965, residual predictive deviation (RPD)=4.590 and 9.335 for lycopene and total phenolics content prediction, respectively. It is concluded that multispectral imaging is an attractive alternative to the standard methods for determination of bioactive compounds content in intact tomatoes, providing a useful platform for infield fruit sorting/grading. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention
Martí, Raúl; Roselló, Salvador; Cebolla-Cornejo, Jaime
2016-01-01
A diet rich in vegetables has been associated with a reduced risk of many diseases related to aging and modern lifestyle. Over the past several decades, many researches have pointed out the direct relation between the intake of bioactive compounds present in tomato and a reduced risk of suffering different types of cancer. These bioactive constituents comprise phytochemicals such as carotenoids and polyphenols. The direct intake of these chemoprotective molecules seems to show higher efficiencies when they are ingested in its natural biological matrix than when they are ingested isolated or in dietary supplements. Consequently, there is a growing trend for improvement of the contents of these bioactive compounds in foods. The control of growing environment and processing conditions can ensure the maximum potential accumulation or moderate the loss of bioactive compounds, but the best results are obtained developing new varieties via plant breeding. The modification of single steps of metabolic pathways or their regulation via conventional breeding or genetic engineering has offered excellent results in crops such as tomato. In this review, we analyse the potential of tomato as source of the bioactive constituents with cancer-preventive properties and the result of modern breeding programs as a strategy to increase the levels of these compounds in the diet. PMID:27331820
Bioactive capacity of some Romanian wild edible mushrooms consumed mainly by local communities.
Vamanu, Emanuel
2018-02-01
Wild edible mushrooms are considered as a cheap food source, but rich in bioactive compounds, especially in phenolic compounds. The purpose of the study was to determine the antioxidant and antimicrobial activity and the content of polyphenolcarboxylic acids in 10 species of mushrooms commonly used (consumed) in Romania and two controls. The effect against free radicals, lipid peroxidation and reducing power were determined. The antimicrobial effect was revealed on some strains with pathogenic effect by disk diffusion assay. The antioxidant capacity expressed in vitro was correlated both with the presence of the main polyphenolcarboxylic acids, and also with the presence of other bioactive molecules (flavonoids, carotenoid compounds, etc.).
Isolation, Bioactivity, and Production of ortho-Hydroxydaidzein and ortho-Hydroxygenistein
Chang, Te-Sheng
2014-01-01
Daidzein and genistein are two major components of soy isoflavones. They exist abundantly in plants and possess multiple bioactivities. In contrast, ortho-hydroxydaidzein (OHD) and ortho-hydroxygenistein (OHG), including 6-hydroxydaidzein (6-OHD), 8-hydroxydaidzein (8-OHD), 3′-hydroxydaidzein (3′-OHD), 6-hydroxygenistein (6-OHG), 8-hydroxygenistein (8-OHG), and 3′-hydroxygenistein (3′-OHG), are rarely found in plants. Instead, they are usually isolated from fermented soybean foods or microbial fermentation broth feeding with soybean meal. Accordingly, the bioactivity of OHD and OHG has been investigated less compared to that of soy isoflavones. Recently, OHD and OHG were produced by genetically engineering microorganisms through gene cloning of cytochrome P450 (CYP) enzyme systems. This success opens up bioactivity investigation and industrial applications of OHD and OHG in the future. This article reviews isolation of OHD and OHG from non-synthetic sources and production of the compounds by genetically modified microorganisms. Several bioactivities, such as anticancer and antimelanogenesis-related activities, of OHD and OHG, are also discussed. PMID:24705463
USDA-ARS?s Scientific Manuscript database
Daikon radish microgreens constitute a good source of bioactive compounds. However, the quality deteriorates rapidly during postharvest storage. In this study, we investigated the effects of light exposure and modified atmosphere packaging conditions on changes in sensorial quality and retention of ...
USDA-ARS?s Scientific Manuscript database
The consumption of soybeans and soybean products has increased in the last few years due to the functional properties of bioactive compounds such as lunasin, Bowman Birk Inhibitor (BBI), lectin, saponins, and isoflavones. The objective of this study was to determine the effect of germination of soy...
USDA-ARS?s Scientific Manuscript database
We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates identified using molecular methods into 21 genera and 43 species. The most frequent taxa were Geomyces...
USDA-ARS?s Scientific Manuscript database
Chondriotin sulfate (CS) has been widely used for medical and nutraceutical purposes due to its roles in maintaining tissue structural integrity. We investigated if CS disaccharides may act as a bioactive compound and modulate gut microbial composition in mice. Our data show that CS disaccharides su...
Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)
USDA-ARS?s Scientific Manuscript database
Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...
Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko
2016-11-01
To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Hyun Jung; Jayasena, Dinesh D; Kim, Sun Hyo; Kim, Hyun Joo; Heo, Kang Nyung; Song, Ji Eun; Jo, Cheorun
2015-01-01
The aim of this research was to compare the bioactive compound content and quality traits of breast meat from male and female Korean native ducks (KND) and commercial ducks (CD, Cherry Valley). Meat from three 6-wk old birds of each sex from KND and CD were evaluated for carcass and breast weights, pH, color, cooking loss, shear force, and bioactive compound (creatine, carnosine, anserine, betaine, and L-carnitine) content. KND showed significantly higher carcass weights than CD whereas no such difference (p>0.05) was found between male and female ducks. The breed and sex had no significant effects on the breast weight, pH value, and shear force. However, KND had significantly lower cooking loss values than did CD. Creatine, anserine, and L-carnitine contents were significantly higher in KND than in CD and were predominant in female ducks compared to males. The results of this study provide rare information regarding the amounts and the determinants of several bioactive compounds in duck meat, which can be useful for selection and breeding programs, and for popularizing indigenous duck meat.
[Multiple emulsions; bioactive compounds and functional foods].
Jiménez-Colmenero, Francisco
2013-01-01
The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars
NASA Astrophysics Data System (ADS)
Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun
2014-03-01
Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.
Kadam, Shekhar U; Tiwari, Brijesh K; Smyth, Thomas J; O'Donnell, Colm P
2015-03-01
The objective of this study was to investigate the effect of key extraction parameters of extraction time (5-25 min), acid concentration (0-0.06 M HCl) and ultrasound amplitude (22.8-114 μm) on yields of bioactive compounds (total phenolics, fucose and uronic acid) from Ascophyllumnodosum. Response surface methodology was employed to optimize the extraction variables for bioactive compounds' yield. A second order polynomial model was fitted well to the extraction experimental data with (R(2)>0.79). Extraction yields of 143.12 mgGAE/gdb, 87.06 mg/gdb and 128.54 mg/gdb were obtained for total phenolics, fucose and uronic acid respectively at optimized extraction conditions of extraction time (25 min), acid concentration (0.03 M HCl) and ultrasonic amplitude (114 μm). Mass spectroscopy analysis of extracts show that ultrasound enhances the extraction of high molecular weight phenolic compounds from A. nodosum. This study demonstrates that ultrasound assisted extraction (UAE) can be employed to enhance extraction of bioactive compounds from seaweed. Copyright © 2014 Elsevier B.V. All rights reserved.
Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E
2015-01-01
Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.
Wegh, Robin S; Berendsen, Bjorn J A; Driessen-Van Lankveld, Wilma D M; Pikkemaat, Mariël G; Zuidema, Tina; Van Ginkel, Leen A
2017-11-01
A non-targeted workflow is reported for the isolation and identification of antimicrobial active compounds using bioassay-directed screening and LC coupled to high-resolution MS. Suspect samples are extracted using a generic protocol and fractionated using two different LC conditions (A and B). The behaviour of the bioactive compound under these different conditions yields information about the physicochemical properties of the compound and introduces variations in co-eluting compounds in the fractions, which is essential for peak picking and identification. The fractions containing the active compound(s) obtained with conditions A and B are selected using a microbiological effect-based bioassay. The selected bioactive fractions from A and B are analysed using LC combined with high-resolution MS. Selection of relevant signals is automatically carried out by selecting all signals present in both bioactive fractions A and B, yielding tremendous data reduction. The method was assessed using two spiked feed samples and subsequently applied to two feed samples containing an unidentified compound showing microbial growth inhibition. In all cases, the identity of the compound causing microbiological inhibition was successfully confirmed.
Chagas, Vinicyus Teles; França, Lucas Martins; Malik, Sonia; Paes, Antonio Marcus de Andrade
2015-01-01
Syzygium cumini (Myrtaceae) is a worldwide medicinal plant traditionally used in herbal medicines due to its vaunted properties against cardiometabolic disorders, which include: antihyperglycemic, hypolipemiant, antiinflammatory, cardioprotective, and antioxidant activities. These properties have been attributed to the presence of bioactive compounds such as phenols, flavonoids, and tannins in different parts of the plant, albeit the knowledge on their mechanisms of action is scarce. This mini-review highlights the cardiometabolic properties of S. cumini by correlating its already identified phytochemicals with their described mechanisms of action. Data herein compiled show that some compounds target multiple metabolic pathways; thereby, becoming potential pharmacological tools. Moreover, the lack of clinical trials on S. cumini usage makes it a fruitful field of interest for both scientific community and pharmaceutical industry.
Chagas, Vinicyus Teles; França, Lucas Martins; Malik, Sonia; Paes, Antonio Marcus de Andrade
2015-01-01
Syzygium cumini (Myrtaceae) is a worldwide medicinal plant traditionally used in herbal medicines due to its vaunted properties against cardiometabolic disorders, which include: antihyperglycemic, hypolipemiant, antiinflammatory, cardioprotective, and antioxidant activities. These properties have been attributed to the presence of bioactive compounds such as phenols, flavonoids, and tannins in different parts of the plant, albeit the knowledge on their mechanisms of action is scarce. This mini-review highlights the cardiometabolic properties of S. cumini by correlating its already identified phytochemicals with their described mechanisms of action. Data herein compiled show that some compounds target multiple metabolic pathways; thereby, becoming potential pharmacological tools. Moreover, the lack of clinical trials on S. cumini usage makes it a fruitful field of interest for both scientific community and pharmaceutical industry. PMID:26578965
Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick
2013-04-01
The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance.
Elez-Martínez, Pedro; Soliva-Fortuny, Robert; Martín-Belloso, Olga
2009-05-01
Novel non-thermal processing technologies such as high-intensity pulsed electric field (HIPEF) treatments may be applied to pasteurize plant-based liquid foods as an alternative to conventional heat treatments. In recent years, there has been an increasing interest in HIPEF as a way of preserving and extending the shelf-life of liquid products without the quality damage caused by heat treatments. However, less attention has been paid to the effects of HIPEF on minor constituents of these products, namely bioactive compounds. This review is a state-of-the-art update on the effects of HIPEF treatments on health-related compounds in plants of the Mediterranean diet such as fruit juices, and Spanish gazpacho. The relevance of HIPEF-processing parameters on retaining plant-based bioactive compounds will be discussed.
Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity
Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han
2015-01-01
Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734
Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity.
Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S; Chan, Kok-Gan; Lee, Learn-Han
2015-01-01
Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.
Friedman, Mendel
2015-08-19
The culinary and medicinal mushroom Hericium erinaceus is widely consumed in Asian countries, but apparently not in the United States, for its nutritional and health benefits. To stimulate broader interest in the reported beneficial properties, this overview surveys and consolidates the widely scattered literature on the chemistry (isolation and structural characterization) of polysaccharides and secondary metabolites such as erinacines, hericerins, hericenones, resorcinols, steroids, mono- and diterpenes, and volatile aroma compounds, nutritional composition, food and industrial uses, and exceptional nutritional and health-promoting aspects of H. erinaceus. The reported health-promoting properties of the mushroom fruit bodies, mycelia, and bioactive pure compounds include antibiotic, anticarcinogenic, antidiabetic, antifatigue, antihypertensive, antihyperlipodemic, antisenescence, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties and improvement of anxiety, cognitive function, and depression. The described anti-inflammatory, antioxidative, and immunostimulating properties in cells, animals, and humans seem to be responsible for the multiple health-promoting properties. A wide range of research advances and techniques are described and evaluated. The collated information and suggestion for further research might facilitate and guide further studies to optimize the use of the whole mushrooms and about 70 characterized actual and potential bioactive secondary metabolites to help prevent or treat human chronic, cognitive, and neurological diseases.
Recovery of Anthocyanins Using Membrane Technologies: A Review.
Martín, Julia; Díaz-Montaña, Enrique Jacobo; Asuero, Agustin G
2018-05-04
Anthocyanins are naturally occurring polyphenolic compounds and give many flowers, fruits and vegetable their orange, red, purple and blue colors. Besides their color attributes, anthocyanins have received much attention in recent years due to the growing evidence of their antioxidant capacity and health benefits on humans. However, these compounds usually occur in low concentrations in mixtures of complex matrices, and therefore large-scale harvesting is needed to obtain sufficient amounts for their practical usage. Effective fractionation or separation technologies are therefore essential for the screening and production of these bioactive compounds. In this context, membrane technologies have become popular due to their operational simplicity, the capacity to achieve good simultaneous separation/pre-concentration and matrix reduction with lower temperature and lower operating cost in comparison to other sample preparation methods. Membrane fractionation is based on the molecular or particle sizes (pressure-driven processes), on their charge (electrically driven processes) or are dependent on both size and charge. Other non-pressure-driven membrane processes (osmotic pressure and vapor pressure-driven) have been developed in recent years and employed as alternatives for the separation or fractionation of bioactive compounds at ambient conditions without product deterioration. These technologies are applied either individually or in combination as an integrated membrane system to meet the different requirements for the separation of bioactive compounds. The first section of this review examines the basic principles of membrane processes, including the different types of membranes, their structure, morphology and geometry. The most frequently used techniques are also discussed. Last, the specific application of these technologies for the separation, purification and concentration of phenolic compounds, with special emphasis on anthocyanins, are also provided.
USDA-ARS?s Scientific Manuscript database
Tree nuts contain an array of phytochemicals including carotenoids, phenolic acids, phytosterols and polyphenolic compounds such as flavonoids, proanthocyanidins (PAC) and stilbenes, all of which are included in nutrient databases, as well as phytates, sphingolipids, alkylphenols and lignans, which ...
[Chemical constituents of Carya cathayensis and their antitumor bioactivity].
Wu, De-lin; Chen, Shi-yun; Liu, Jing-song; Jin, Chuan-shan; Xu, Feng-qing
2011-07-01
To investigate the chemical constituents of Carya cathayensis and their antitumor bioactivity. The compounds were isolated by Sephadex LH-20 and silica gel column chromatography. Their structures were identified by physicochemical properties and spectroscopic analysis. Then their cytotoxic activity was studied. Five compounds were elucidated as chrysophanol (1), physcion (2), beta-sitosterol (3), pinostrobin(4), 4,8-dihydroxy-1-tetralone (5). Compounds 2 and 5 are isolated from Carya cathayensis for the first time. In the MTT antitumor experiments, the compounds 1,4 and 5 have the cytotoxic activity to KB cell.
Natural Product Libraries to Accelerate the High Throughput Discovery of Therapeutic Leads±
Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Estee, Samarkand A.; Loveridge, Steven T.; Vervoort, Helene C.; Tenney, Karen; Liu, Junke; Ang, Kenny Kean-Hooi; Ratnam, Joseline; Bray, Walter M.; Gassner, Nadine C.; Shen, Young Y.; Lokey, R. Scott; McKerrow, James H.; Boundy-Mills, Kyria; Nukanto, Arif; Kanti, Atit; Julistiono, Heddy; Kardono, Leonardus B. S.; Bjeldanes, Leonard F.; Crews, Phillip
2011-01-01
A high throughput (HT) paradigm generating LC-MS-UV-ELSD based natural product libraries to discover compounds with new bioactivities and or molecular structures is presented. To validate this methodology an extract of the Indo Pacific marine sponge Cacospongia mycofijiensis was evaluated using assays involving cytoskeletal profiling, tumor cell lines, and parasites. Twelve known compounds were identified including the latrunculins (1–4, 10), fijianolides (5, 8–9), mycothiazole (11), the aignopsanes (6–7) and sacrotride A (13). Compounds 1–4, 5, 8–11 exhibited bioactivity not previously reported against the parasite T. brucei, while 11 showed selectivity for lymphoma (U937) tumor cell lines. Four new compounds were also discovered including: aignopsanoic acid B (13), apo latrunculin T (14), 20-methoxy-fijianolide A (15) and aignopsane ketal (16). Compounds 13 and 16 represent important derivatives of the aignopsane class, 14 exhibited inhibition of T. brucei without disrupting microfilament assembly and 15 demonstrated modest microtubule stabilizing effects. The use of removable well plate libraries to avoid false positives from extracts enriched with only 1–2 major metabolites is also discussed. Overall, these results highlight the advantages of applying modern methods in natural products-based research to accelerate the HT discovery of therapeutic leads and or new molecular structures using LC-MS-UV-ELSD based libraries. PMID:22129061
Valcarcel, Jesus; Reilly, Kim; Gaffney, Michael; O'Brien, Nora M
2016-02-01
In addition to their high carbohydrate content, potatoes are also an important dietary source of vitamin C and bioactive secondary metabolites, including phenolic compounds and carotenoids, which have been suggested to play a role in human health. The expression of genes encoding key enzymes involved in the synthesis of these compounds was assessed by reverse transcription-quantitative polymerase chain reaction and compared to the accumulation of the corresponding product in seven potato varieties showing contrasting levels of metabolite accumulation. Strong positive correlations were found between phenolic content in the flesh of tubers and transcript levels of phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. The expression of PAL and CHS was also related to that of AN1, a transcription factor involved in the synthesis of anthocyanins, suggesting that these genes are regulated in a coordinated manner. No clear relationship was found between transcript levels of phytoene synthase (PSY) or L-galactono-1,4-lactone dehydrogenase (GLDH) genes and total carotenoid or vitamin C accumulation, respectively. Data indicate that levels of total phenolic and flavonoid compounds in potato are controlled primarily by PAL and CHS gene expression. Transcript levels of PSY and GLDH did not control accumulation of carotenoids or vitamin C. © 2015 Society of Chemical Industry.
Bravo, Jimena; Juániz, Isabel; Monente, Carmen; Caemmerer, Bettina; Kroh, Lothar W; De Peña, M Paz; Cid, Concepción
2012-12-26
The main hydrophilic antioxidant compounds (3-, 4-, and 5-monocaffeoylquinic and 3,4-, 3,5-, and 4,5-dicaffeoylquinic acids, caffeine, and browned compounds, including melanoidins) and the antioxidant capacity (Folin-Ciocalteu, ABTS, DPPH, Fremy's salt, and TEMPO) were evaluated in Arabica and Robusta spent coffee obtained from the preparation of coffee brews with the most common coffeemakers (filter, espresso, plunger, and mocha). All spent coffee grounds, with the exception of those from the mocha coffeemaker, had relevant amounts of total caffeoylquinic acids (6.22-13.24 mg/g of spent coffee), mainly dicaffeoylquinic acids (3.31-5.79 mg/g of spent coffee), which were 4-7-fold higher than in their respective coffee brews. Caffeine ranged from 3.59 to 8.09 mg/g of spent coffee. The antioxidant capacities of the aqueous spent coffee extracts were 46.0-102.3% (filter), 59.2-85.6% (espresso), and <42% (plunger) in comparison to their respective coffee brews. This study obtained spent coffee extracts with antioxidant properties that can be used as a good source of hydrophilic bioactive compounds.
Fruit Seeds of the Rosaceae Family: A Waste, New Life, or a Danger to Human Health?
Senica, Mateja; Stampar, Franci; Veberic, Robert; Mikulic-Petkovsek, Maja
2017-12-06
In fruit production seeds are mostly regarded as waste, but for plants they represent a beginning of new life. Seeds accumulate toxic or health-beneficial compounds, and the elucidation of their metabolic profile is especially important to people who consume the entire fruit, including the seeds. The present research quantifies the levels of bioactive compounds (phenolics and cyanogenic glycosides (CGG)) in fruit seeds of 35 cultivars belonging to 6 different fruit species. High-performance liquid chromatography and mass spectrophotometry were used to detect and identify the studied compounds. Significant differences in the content of individual bioactive compounds as well as their groups were recorded (p < 0.05). For the first time neoamygdalin and prunasin were detected in a number of fruit cultivars. All fruit seeds, except pears, accumulated from 2- to 46-fold higher levels of CGG than phenolics. On average, seeds contained from 75.46 to 1648.14 μg/g phenolics and from 46.39 to 4374.31 μg/g CGG. The study also clarifies the new lethal dose for cyanogenic glycosides.
Bioactive secondary metabolites from marine microbes for drug discovery.
Nikapitiya, Chamilani
2012-01-01
The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.
Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds
Zhukova, Natalia V.
2014-01-01
The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731
High therapeutic potential of Spilanthes acmella: A review
Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong
2013-01-01
Spilanthes acmella, a well known antitoothache plant with high medicinal usages, has been recognized as an important medicinal plant and has an increasingly high demand worldwide. From its traditional uses in health care and food, extensive phytochemical studies have been reported. This review provides an overview and general description of the plant species, bioactive metabolites and important pharmacological activities including the preparation, purification and in vitro large-scale production. Structure-activity relationships of the bioactive compounds have been discussed. Considering data from the literature, it could be demonstrated that S. acmella possesses diverse bioactive properties and immense utilization in medicine, health care, cosmetics and as health supplements. As a health food, it is enriched with high therapeutic value with high potential for further development. PMID:27092032
Llorent-Martínez, E J; Ortega-Barrales, P; Zengin, G; Mocan, A; Simirgiotis, M J; Ceylan, R; Uysal, S; Aktumsek, A
2017-09-01
The genus Lathyrus has great importance in terms of food and agricultural areas. In this study, the in vitro antioxidant activity (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC and metal chelating) and enzyme inhibitory activity evaluation (acetylcholinesterase, butyrylcholinesterase, α-amylase and α-glucosidase) of L. cicera and L. digitatus were investigated, as well as their phytochemical profiles. The screening of the main phytochemical compounds in aerial parts of L. cicera and L. digitatus was carried out by high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MS n ), observing that flavonoids represent the highest percentage of identified compounds, with abundance of tri- and tetra-glycosilated flavonoids, including acylated ones, especially in L. cicera. Generally, L. digitatus exhibited stronger antioxidant and enzyme inhibitory activities in correlation with its higher level of phenolics. The high number of phenolic compounds and the results of the antioxidant and enzyme assays suggest that these plants may be further used as sources of bioactive compounds, and for the preparation of new nutraceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.
A database of natural products and chemical entities from marine habitat
Babu, Padavala Ajay; Puppala, Suma Sree; Aswini, Satyavarapu Lakshmi; Vani, Metta Ramya; Kumar, Chinta Narasimha; Prasanna, Tallapragada
2008-01-01
Marine compound database consists of marine natural products and chemical entities, collected from various literature sources, which are known to possess bioactivity against human diseases. The database is constructed using html code. The 12 categories of 182 compounds are provided with the source, compound name, 2-dimensional structure, bioactivity and clinical trial information. The database is freely available online and can be accessed at http://www.progenebio.in/mcdb/index.htm PMID:19238254
EVALUATION OF ULTRAFINE PARTICLES AS PART OF A HEALTH EFFECTS EXPOSURE STUDY
Ambient particulate matter (PM) is a complex mixture that includes bioactive and toxic compounds of natural and anthropogenic origin. Numerous epidemiological studies have reported associations between exposure to ambient levels of PM and various indices of cardiopulmonary morbi...
Ksouri, Riadh; Ksouri, Wided Megdiche; Jallali, Inès; Debez, Ahmed; Magné, Christian; Hiroko, Isoda; Abdelly, Chedly
2012-12-01
Salt-tolerant plants grow in a wide variety of saline habitats, from coastal regions, salt marshes and mudflats to inland deserts, salt flats and steppes. Halophytes living in these extreme environments have to deal with frequent changes in salinity level. This can be done by developing adaptive responses including the synthesis of several bioactive molecules. Consequently, several salt marsh plants have traditionally been used for medical, nutritional, and even artisanal purposes. Currently, an increasing interest is granted to these species because of their high content in bioactive compounds (primary and secondary metabolites) such as polyunsaturated fatty acids, carotenoids, vitamins, sterols, essential oils (terpenes), polysaccharides, glycosides, and phenolic compounds. These bioactive substances display potent antioxidant, antimicrobial, anti-inflammatory, and anti-tumoral activities, and therefore represent key-compounds in preventing various diseases (e.g. cancer, chronic inflammation, atherosclerosis and cardiovascular disorder) and ageing processes. The ongoing research will lead to the utilisation of halophytes as a new source of healthy products as functional foods, nutraceuticals or active principles in several industries. This contribution focuses on the ethnopharmacological uses of halophytes in traditional medicine and reviews recent investigations on their biological activities and nutraceuticals. The work is distributed according to the different families of nutraceuticals (lipids, vitamins, proteins, glycosides, phenolic compounds, etc.) discussing the analytical techniques employed for their determination. Information about the claimed health promoting effects of the different families of nutraceuticals is also provided together with data on their application.
de Almeida, Buana C; Araújo, Bruno Q; Carvalho, Adonias A; Freitas, Sâmya Danielle L; Maciel, Dayany da S Alves; Ferreira, Ari José S; Tempone, Andre G; Martins, Ligia F; Alexandre, Tatiana R; Chaves, Mariana H; Lago, João Henrique G
2016-12-01
'Carnauba' wax is a natural product obtained from the processing of the powder exuded from Copernicia prunifera (Miller) H. E. Moore (Arecaceae). This material is widely used in the Brazilian folk medicine, including the treatment of rheumatism and syphilis. To investigate the antiprotozoal activity of hexane and EtOH extracts from the 'carnauba' wax as well as from the isolated compounds from the bioactive extracts. Two different samples of 'carnauba' (C. prunifera) waxes - types 1 and 4 - were individually extracted using hexane (EH) and EtOH (EE). Aliquots of hexane (type 1 - EH-1 and EH-4) and EtOH (type 4 - EE-1 and EE-4) extracts were tested against promastigote (2-200 μg/mL in DMSO during 48 h at 24 °C) and amastigote (3-150 μg/mL in DMSO during 120 h at 37 °C) forms of Leishmania infantum as well as against trypomastigote (3-150 μg/mL in DMSO during 24 h at 37 °C) forms of Trypanosoma cruzi. Bioactive extracts EH-1 and EE-4 were subjected to a bioactivity-guided fractionation to afford three dammarane-type triterpenoids (1-3). The in vitro antiprotozoal activities of the obtained compounds were evaluated as described above. Additionally, the cytotoxicity activity of compounds 1-3 against mammalian conjunctive cells (NCTC - 2-200 μg/mL in DMSO during 48 h at 37 °C) was determined. From the bioactive hexane and EtOH extracts from the 'carnauba' (C. prunifera) wax, were isolated three dammarane-type triterpenoids: (24R*)-methyldammar-25-ene-3β,20-diol (carnaubadiol, 1), (24R*)-methyldammara-20,25-dien-3-one (2) and (24R*)-methyldammara-20,25-dien-3α-ol (3). These compounds were identified based on the analysis of NMR and MS spectroscopic data. Compounds 1-3 were effective against the intracellular amastigotes of L. infantum, with IC 50 values ranging from 8 to 52 μM, while compounds 1 and 3 displayed activity against trypomastigote forms of T. cruzi with IC 50 values of 15 and 35 μM, respectively. The mammalian cytotoxicity assay demonstrated no damage to NCTC conjunctive cells up to 200 μM, except for compound 1, which demonstrated a CC 50 value of 34 μM. Based on the results, it was possible to conclude that the detected antiprotozoal bioactivity of 'carnauba' (C. prunifera) wax extracts could be related to the presence of the natural dammarane triterpenoid derivatives. The results suggested that these compounds could be used as promising scaffolds for drug design studies for leishmaniasis and Chagas disease.
Spirolactones: Recent Advances in Natural Products, Bioactive Compounds and Synthetic Strategies.
Quintavalla, Arianna
2018-01-01
The spirocyclic compounds have always aroused a great interest because this motif is present as structural core in a number of natural products and bioactive compounds. In particular, the spirolactone moiety has been recognized in a wide array of natural and non-natural scaffolds showing a variety of useful pharmacological properties. Extensive literature search using SciFinder (Databases: CA Plus, CAS Registry, CAS React, Chemlist, Chemcat and Medline) and Web of Science (Database: Web of Science Core Collection) was conducted. Nowadays, many efforts are being devoted to the discovery of new natural products containing the promising spirolactone framework and to the disclosure of the potential bioactivities of these chemical entities. Moreover, the medicinal relevance of many spirolactones makes these scaffolds attractive targets for the design and development of innovative and efficient synthetic strategies, enabling the construction of complex and variably substituted products. This review gives an overview on the recent advances in the spirolactones field, in terms of new compounds isolated from natural sources, recently determined bioactivity profiles and innovative synthetic approaches. The collected data demonstrate the key role played by spirolactones in medicinal chemistry and the great attention still devoted by the scientific community to these compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Health-promoting components of fruits and vegetables in the diet.
Liu, Rui Hai
2013-05-01
Regular consumption of fruits, vegetables, whole grains, and other plant foods has been negatively correlated with the risk of the development of chronic diseases. There is a huge gap between the average consumption of fruits and vegetables in Americans and the amount recommended by the 2010 Dietary Guidelines for Americans. The key is to encourage consumers to increase the total amount to 9 to 13 servings of fruits and vegetables in all forms available. Fresh, processed fruits and vegetables including frozen and canned, cooked, 100% fruit juices and 100% vegetable juices, as well as dry fruits are all considered as servings of fruits and vegetables per day. A wide variety of fruits, vegetables, whole grains, and other plant foods provide a range of nutrients and different bioactive compounds including phytochemicals, vitamins, minerals, and fibers. Potatoes serve as one of the low-fat foods with unique nutrients and phytochemical profiles, particularly rich in vitamin C, vitamin B-6, potassium, manganese, and dietary fibers. Potatoes provide 25% of vegetable phenolics in the American diet, the largest contributors among the 27 vegetables commonly consumed in the United States, including flavonoids (quercetin and kaempferol), phenolic acids (chlorogenic acid and caffeic acid), and carotenoids (lutein and zeaxanthin). More and more evidence suggests that the health benefits of fruits, vegetables, whole grains, and other plant foods are attributed to the synergy or interactions of bioactive compounds and other nutrients in whole foods. Therefore, consumers should obtain their nutrients, antioxidants, bioactive compounds, and phytochemicals from a balanced diet with a wide variety of fruits, vegetables, whole grains, and other plant foods for optimal nutrition, health, and well-being, not from dietary supplements.
Health-Promoting Components of Fruits and Vegetables in the Diet12
Liu, Rui Hai
2013-01-01
Regular consumption of fruits, vegetables, whole grains, and other plant foods has been negatively correlated with the risk of the development of chronic diseases. There is a huge gap between the average consumption of fruits and vegetables in Americans and the amount recommended by the 2010 Dietary Guidelines for Americans. The key is to encourage consumers to increase the total amount to 9 to 13 servings of fruits and vegetables in all forms available. Fresh, processed fruits and vegetables including frozen and canned, cooked, 100% fruit juices and 100% vegetable juices, as well as dry fruits are all considered as servings of fruits and vegetables per day. A wide variety of fruits, vegetables, whole grains, and other plant foods provide a range of nutrients and different bioactive compounds including phytochemicals, vitamins, minerals, and fibers. Potatoes serve as one of the low-fat foods with unique nutrients and phytochemical profiles, particularly rich in vitamin C, vitamin B-6, potassium, manganese, and dietary fibers. Potatoes provide 25% of vegetable phenolics in the American diet, the largest contributors among the 27 vegetables commonly consumed in the United States, including flavonoids (quercetin and kaempferol), phenolic acids (chlorogenic acid and caffeic acid), and carotenoids (lutein and zeaxanthin). More and more evidence suggests that the health benefits of fruits, vegetables, whole grains, and other plant foods are attributed to the synergy or interactions of bioactive compounds and other nutrients in whole foods. Therefore, consumers should obtain their nutrients, antioxidants, bioactive compounds, and phytochemicals from a balanced diet with a wide variety of fruits, vegetables, whole grains, and other plant foods for optimal nutrition, health, and well-being, not from dietary supplements. PMID:23674808
Yan, Shi-Kai; Wu, Yan-Wen; Liu, Run-Hui; Zhang, Wei-Dong
2007-01-01
Major bioactive components in various Calculus Bovis, including natural, artificial and in-vitro cultured Calculus Bovis, were comparatively studied. An approach of high-performance liquid chromatography coupled with ultraviolet and evaporative light scattering detections (HPLC/UV/ELSD) was established to simultaneously determinate six bioactive components thereof, including five bile acids (cholic acid, deoxycholic acid, ursodeoxycholic, chenodeoxycholic acid, hyodeoxycholic acid) and bilirubin. ELSD and UV detector were applied to detect bile acids and bilirubin respectively. The assay was performed on a C(18) column with water-acetonitrile gradient elution and the investigated constituents were authenticated by comparing retention times and mass spectra with those of reference compounds. The proposed method was applied to analyze twenty-one Calculus Bovis extraction samples, and produced data with acceptable linearity, precision, repeatability and accuracy. The result indicated the variations among Calculus Bovis samples under different developmental conditions. Artificial and in-vitro cultured Calculus Bovis, especially in-vitro cultured ones, which contain total bioactive constituents no less than natural products and have the best batch-to-batch uniformity, suffice to be used as substitutes of natural Calculus Bovis.
Kim, Jun Ho; Yu, Su Hyun; Cho, Yun Jeong; Pan, Jeong Hoon; Cho, Hyung Taek; Kim, Jeong Ho; Bong, Hyejin; Lee, Yeojin; Chang, Moon Han; Jeong, Ye Jin; Choi, Garam; Kim, Young Jun
2017-01-18
S-Allylcysteine (SAC), produced in large amounts during the aging process of garlic via enzymatic hydrolysis, is known as a key compound responsible for the multiple pharmacological activities of aged black garlic. This study investigated the effects of enzyme- and high hydrostatic pressure (HHP)-assisted extraction on the content of the bioactive compounds, including SAC, in black garlic juice (BGJ) and evaluated the antidiabetic effects of SAC-enriched BGJ in streptozotocin (STZ)-treated mice. The aging process increased the contents of SAC, total polyphenols, and total flavonoids in garlic juice. More importantly, pretreatment of pectinase cocktail with HHP resulted in a greater increase in those compounds during aging. Enzyme-treated BGJ reduced hyperglycemia and improved islet architecture and β-cell function in STZ-treated mice. Moreover, these effects were more potent than those of BGJ prepared by the conventional aging process. These findings provide useful information for the production of black garlic with improved bioactivities.
Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick
2013-01-01
The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844
Peanuts as functional food: a review.
Arya, Shalini S; Salve, Akshata R; Chauhan, S
2016-01-01
Peanut is an important crop grown worldwide. Commercially it is used mainly for oil production but apart from oil, the by-products of peanut contains many other functional compounds like proteins, fibers, polyphenols, antioxidants, vitamins and minerals which can be added as a functional ingredient into many processed foods. Recently it has also revealed that peanuts are excellent source of compounds like resveratrol, phenolic acids, flavonoids and phytosterols that block the absorption of cholesterol from diet. It is also a good source of Co-enzyme Q10 and contains all the 20 amino acids with highest amount of arginine. These bioactive compounds have been recognized for having disease preventive properties and are thought to promote longevity. The processing methods like roasting and boiling have shown increase in the concentration of these bioactive compounds. In the present paper an overview on peanut bioactive constituents and their health benefits are presented.
Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries.
Suleria, Hafiz Ansar Rasul; Osborne, Simone; Masci, Paul; Gobe, Glenda
2015-10-14
Recent trends in functional foods and supplements have demonstrated that bioactive molecules play a major therapeutic role in human disease. Nutritionists and biomedical and food scientists are working together to discover new bioactive molecules that have increased potency and therapeutic benefits. Marine life constitutes almost 80% of the world biota with thousands of bioactive compounds and secondary metabolites derived from marine invertebrates such as tunicates, sponges, molluscs, bryozoans, sea slugs and many other marine organisms. These bioactive molecules and secondary metabolites possess antibiotic, antiparasitic, antiviral, anti-inflammatory, antifibrotic and anticancer activities. They are also inhibitors or activators of critical enzymes and transcription factors, competitors of transporters and sequestrants that modulate various physiological pathways. The current review summaries the widely available marine-based nutraceuticals and recent research carried out for the purposes of isolation, identification and characterization of marine-derived bioactive compounds with various therapeutic potentials.
Marine-Based Nutraceuticals: An Innovative Trend in the Food and Supplement Industries
Suleria, Hafiz Ansar Rasul; Osborne, Simone; Masci, Paul; Gobe, Glenda
2015-01-01
Recent trends in functional foods and supplements have demonstrated that bioactive molecules play a major therapeutic role in human disease. Nutritionists and biomedical and food scientists are working together to discover new bioactive molecules that have increased potency and therapeutic benefits. Marine life constitutes almost 80% of the world biota with thousands of bioactive compounds and secondary metabolites derived from marine invertebrates such as tunicates, sponges, molluscs, bryozoans, sea slugs and many other marine organisms. These bioactive molecules and secondary metabolites possess antibiotic, antiparasitic, antiviral, anti-inflammatory, antifibrotic and anticancer activities. They are also inhibitors or activators of critical enzymes and transcription factors, competitors of transporters and sequestrants that modulate various physiological pathways. The current review summaries the widely available marine-based nutraceuticals and recent research carried out for the purposes of isolation, identification and characterization of marine-derived bioactive compounds with various therapeutic potentials. PMID:26473889
Monosaccharides as Scaffolds for the Synthesis of Novel Compounds
NASA Astrophysics Data System (ADS)
Murphy, Paul V.; Velasco-Torrijos, Trinidad
This chapter focuses on monosaccharides and scaffolds their derivatives as scaffolds for the synthesis of primarily bioactive compounds. Such carbohydrate derivatives have been designed to modulate mainly protein-protein and peptide-protein interactions although modulators of carbohydrate-protein and carbohydrate-nucleic acid interactions have also been of interest. The multiple hydroxyl groups that are present on saccharides have made pyranose, furanose and iminosugars ideal templates or scaffolds to which recognition or pharmacophoric groups can be grafted to generate novel compounds for medicinal chemistry. The synthesis of compounds for evaluations require strategies for regioselective reactions of saccharide hydroxyl groups and use of orthogonally stable protecting groups. Syntheses have been carried out on the solid phase and in solution. Also the use of uronic acids, amino sugars and sugar amino acids has facilitated the synthesis of peptidomimetics and prospecting libraries as they enable, through presence of amino or carboxylic acid groups, chemoselective approaches to be employed in solution and on solid phase. Sugar amino acids are readily incorporated, as peptide isosteres, to generate sugar-peptide hybrids or for the synthesis of novel carbopeptoids . The synthesis of new cyclic compounds, derived in part from saccharides, and their application as scaffolds is an emerging area and recent examples include spirocyclic compounds, benzodiazepine-saccharide hybrids and macrolide-saccharide hybrids. Potent bioactive saccharide derivatives have been identified that include enzyme inhibitors , somatostatin receptor ligands, integrin ligands, anti-viral compounds, shiga toxin inhibitors and cell growth inhibitors. Some saccharide derivatives have demonstrated improved cellular permeability when compared with peptides and are in clinical trials.
Mokhtari, Mona; Jackson, Michael D; Brown, Alistair S; Ackerley, David F; Ritson, Nigel J; Keyzers, Robert A; Munkacsi, Andrew B
2018-06-06
Pathogenic fungi continue to develop resistance against current antifungal drugs. To explore the potential of agricultural waste products as a source of novel antifungal compounds, we obtained an unbiased GC-MS profile of 151 compounds from 16 commercial and experimental cultivars of feijoa peels. Multivariate analysis correlated 93% of the compound profiles with antifungal bioactivities. Of the 18 compounds that significantly correlated with antifungal activity, 5 had not previously been described from feijoa. Two novel cultivars were the most bioactive, and the compound 4-cyclopentene-1,3-dione, detected in these cultivars, was potently antifungal (IC 50 = 1-2 μM) against human-pathogenic Candida species. Haploinsufficiency and fluorescence microscopy analyses determined that the synthesis of chitin, a fungal-cell-wall polysaccharide, was the target of 4-cyclopentene-1,3-dione. This fungal-specific mechanism was consistent with a 22-70-fold reduction in antibacterial activity. Overall, we identified the agricultural waste product of specific cultivars of feijoa peels as a source of potential high-value antifungal compounds.
Cappato, Leandro P; Ferreira, Marcus Vinicius S; Moraes, Jeremias; Pires, Roberto P S; Rocha, Ramon S; Silva, Ramon; Neto, Roberto P C; Tavares, Maria Inês B; Freitas, Mônica Q; Rodrigues, Flavio N; Calado, Veronica M A; Raices, Renata S L; Silva, Marcia C; Cruz, Adriano G
2018-10-15
Whey acerola-flavoured drink was subjected to Ohmic Heating (OH) under different operational conditions (45, 60, 80 V at 60 Hz and 10, 100, 1000 Hz with 25 V, 65 °C/30 min) and conventional pasteurization (65 °C/30 min). Bioactive compounds (total phenolics, DPPH, FRAP, ACE levels), fatty acid profile, volatile compounds (CG-MS), thermal behaviors (DSC) and water mobility (TD-NMR) were performed. Reduction of frequency (1000-10 Hz) resulted in a lower bioactive compounds and antioxidant capacity of the samples, except for the DPPH values. Concerning the thermal behaviors, fatty acids profile and volatile compounds, different findings were observed as a function of the parameters used (voltage and frequency). In respect of TD-NMR parameters, OH led to a slightly reduction of the relaxation time when compared to the conventional treatment, suggesting more viscous beverages. Overall, OH may be interesting option to whey acerola-flavoured drink processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dhakal, Dipesh; Pokhrel, Anaya Raj; Shrestha, Biplav; Sohng, Jae Kyung
2017-01-01
Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications. PMID:28663748
Thi, Nhuan Do; Hwang, Eun-Sun
2014-09-01
The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols.
Thi, Nhuan Do; Hwang, Eun-Sun
2014-01-01
The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols. PMID:25320718
Epigenetic diet: impact on the epigenome and cancer
Hardy, Tabitha M; Tollefsbol, Trygve O
2011-01-01
A number of bioactive dietary components are of particular interest in the field of epigenetics. Many of these compounds display anticancer properties and may play a role in cancer prevention. Numerous studies suggest that a number of nutritional compounds have epigenetic targets in cancer cells. Importantly, emerging evidence strongly suggests that consumption of dietary agents can alter normal epigenetic states as well as reverse abnormal gene activation or silencing. Epigenetic modifications induced by bioactive dietary compounds are thought to be beneficial. Substantial evidence is mounting proclaiming that commonly consumed bioactive dietary factors act to modify the epigenome and may be incorporated into an ‘epigenetic diet’. Bioactive nutritional components of an epigenetic diet may be incorporated into one’s regular dietary regimen and used therapeutically for medicinal or chemopreventive purposes. This article will primarily focus on dietary factors that have been demonstrated to influence the epigenome and that may be used in conjunction with other cancer prevention and chemotherapeutic therapies. PMID:22022340
Potential Bioactive Compounds from Seaweed for Diabetes Management.
Sharifuddin, Yusrizam; Chin, Yao-Xian; Lim, Phaik-Eem; Phang, Siew-Moi
2015-08-21
Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes' activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.
Potential Bioactive Compounds from Seaweed for Diabetes Management
Sharifuddin, Yusrizam; Chin, Yao-Xian; Lim, Phaik-Eem; Phang, Siew-Moi
2015-01-01
Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes’ activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents. PMID:26308010
Anisha, C; Radhakrishnan, E K
2017-06-01
Endophytic fungi associated with rhizomes of four cultivars of Zingiber officinale were identified by molecular and morphological methods and evaluated for their activity against soft rot pathogen Pythium myriotylum and clinical pathogens. The volatile bioactive metabolites produced by these isolates were identified by GC-MS analysis of the fungal crude extracts. Understanding of the metabolites produced by endophytes is also important in the context of raw consumption of ginger as medicine and spice. A total of fifteen isolates were identified from the four varieties studied. The various genera identified were Acremonium sp., Gliocladiopsis sp., Fusarium sp., Colletotrichum sp., Aspergillus sp., Phlebia sp., Earliella sp., and Pseudolagarobasidium sp. The endophytic community was unique to each variety, which could be due to the varying host genotype. Fungi from phylum Basidiomycota were identified for the first time from ginger. Seven isolates showed activity against Pythium, while only two showed antibacterial activity. The bioactive metabolites identified in the fungal crude extracts include tyrosol, benzene acetic acid, ergone, dehydromevalonic lactone, N-aminopyrrolidine, and many bioactive fatty acids and their derivatives which included linoleic acid, oleic acid, myristic acid, n-hexadecanoic acid, palmitic acid methyl ester, and methyl linoleate. The presence of these varying bioactive endophytic fungi may be one of the reasons for the differences in the performance of the different ginger varieties.
Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi
Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi
2016-01-01
In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799
Jellyfish Bioactive Compounds: Methods for Wet-Lab Work
Frazão, Bárbara; Antunes, Agostinho
2016-01-01
The study of bioactive compounds from marine animals has provided, over time, an endless source of interesting molecules. Jellyfish are commonly targets of study due to their toxic proteins. However, there is a gap in reviewing successful wet-lab methods employed in these animals, which compromises the fast progress in the detection of related biomolecules. Here, we provide a compilation of the most effective wet-lab methodologies for jellyfish venom extraction prior to proteomic analysis—separation, identification and toxicity assays. This includes SDS-PAGE, 2DE, gel chromatography, HPLC, DEAE, LC-MS, MALDI, Western blot, hemolytic assay, antimicrobial assay and protease activity assay. For a more comprehensive approach, jellyfish toxicity studies should further consider transcriptome sequencing. We reviewed such methodologies and other genomic techniques used prior to the deep sequencing of transcripts, including RNA extraction, construction of cDNA libraries and RACE. Overall, we provide an overview of the most promising methods and their successful implementation for optimizing time and effort when studying jellyfish. PMID:27077869
Jellyfish Bioactive Compounds: Methods for Wet-Lab Work.
Frazão, Bárbara; Antunes, Agostinho
2016-04-12
The study of bioactive compounds from marine animals has provided, over time, an endless source of interesting molecules. Jellyfish are commonly targets of study due to their toxic proteins. However, there is a gap in reviewing successful wet-lab methods employed in these animals, which compromises the fast progress in the detection of related biomolecules. Here, we provide a compilation of the most effective wet-lab methodologies for jellyfish venom extraction prior to proteomic analysis-separation, identification and toxicity assays. This includes SDS-PAGE, 2DE, gel chromatography, HPLC, DEAE, LC-MS, MALDI, Western blot, hemolytic assay, antimicrobial assay and protease activity assay. For a more comprehensive approach, jellyfish toxicity studies should further consider transcriptome sequencing. We reviewed such methodologies and other genomic techniques used prior to the deep sequencing of transcripts, including RNA extraction, construction of cDNA libraries and RACE. Overall, we provide an overview of the most promising methods and their successful implementation for optimizing time and effort when studying jellyfish.
Meighani, Hossein; Ghasemnezhad, Mahmood; Bakhshi, Davood
2015-07-01
The effect of three different coatings; resin wax (Britex Ti), carnauba wax (Xedasol M14), and chitosan (1 and 2 % w/v) on postharvest quality of pomegranate fruits were investigated. Fruits quality characteristics and bioactive compounds were evaluated during 40, 80 and 120 days storage at 4.5 °C and 3 additional days at 20 °C. The results showed that uncoated fruits showed higher respiration rate, weight loss, L* and b* values of arils, total soluble solids (TSS)/titratable acidity (TA), and pH than coated fruits during storage. Coating treatments could delay declining TSS and TA percent, a* value of arils, as well as bioactive compounds such as total phenolics, flavonoids and anthocyanins content and antioxidant activity. The coated fruits with commercial resin and carnauba waxes showed significantly lower respiration rate and weight loss than other treatments, however carnauba wax could maintain considerably higher fruits quality and bioactive compounds than other coating treatments. The results suggested that postharvest application of carnauba wax have a potential to extend storage life of pomegranate fruits by reducing respiration rate, water loss and maintaining fruit quality.
Kim, Sun Hyo; Heo, Kang Nyung
2015-01-01
The aim of this research was to compare the bioactive compound content and quality traits of breast meat from male and female Korean native ducks (KND) and commercial ducks (CD, Cherry Valley). Meat from three 6-wk old birds of each sex from KND and CD were evaluated for carcass and breast weights, pH, color, cooking loss, shear force, and bioactive compound (creatine, carnosine, anserine, betaine, and L-carnitine) content. KND showed significantly higher carcass weights than CD whereas no such difference (p>0.05) was found between male and female ducks. The breed and sex had no significant effects on the breast weight, pH value, and shear force. However, KND had significantly lower cooking loss values than did CD. Creatine, anserine, and L-carnitine contents were significantly higher in KND than in CD and were predominant in female ducks compared to males. The results of this study provide rare information regarding the amounts and the determinants of several bioactive compounds in duck meat, which can be useful for selection and breeding programs, and for popularizing indigenous duck meat. PMID:26761808
Mashabela, Madonna N; Selahle, Kamogelo M; Soundy, Puffy; Crosby, Kevin M; Sivakumar, Dharini
2015-11-01
In this study, influence of 3 types of photo-selective nets (pearl, red and yellow) and a standard black net on marketable yield, fruit quality and bioactive compounds after postharvest storage was investigated. Percentage marketable fruits were higher in green sweet peppers produced under the pearl nets. Fruits produced under the pearl nets showed higher fruit mass, firmness, chlorophyll content, ascorbic acid content, antioxidant scavenging activity after postharvest storage. Red/far red photon ratio under the pearl net could have improved the ascorbic acid content and the antioxidant scavenging activity in green peppers. Green sweet peppers grown under the pearl nets had higher hue values and maintained green color longer. Our results showed the impact of modified light quality on the bioactive compounds of green sweet pepper during postharvest storage. Green sweet peppers are rich in phytochemicals. Marketability of green sweet peppers is affected partially due to ripening after postharvest storage and decay. Maintenance of green color, fruit mass, firmness, and nutritional composition are important parameters that attract consumers. This research shows the influence of light quality during production on the fruit quality parameters and bioactive compounds after postharvest storage. © 2015 Institute of Food Technologists®
Honda, Toshio
2012-01-01
Synthesis of biologically active compounds, including natural products and pharmaceutical agents, is an important and interesting research area since the large structural diversity and complexity of bioactive compounds make them an important source of leads and scaffolds in drug discovery and development. Many structurally and also biologically interesting compounds, including marine natural products, have been isolated from nature and have also been prepared on the basis of a computational design for the purpose of developing medicinal chemistry. In order to obtain a wide variety of derivatives of biologically active compounds from the viewpoint of medicinal chemistry, it is essential to establish efficient synthetic procedures for desired targets. Newly developed reactions should also be used for efficient synthesis of desired compounds. Thus, recent progress in the synthesis of biologically active compounds by focusing on the development of new reactions is summarized in this review article.
Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi
2018-04-01
The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.
Duval, Johanna; Destandau, Emilie; Pecher, Virginie; Poujol, Marion; Tranchant, Jean-François; Lesellier, Eric
2016-05-20
Nowadays, a large portion of synthetic products (active cosmetic and therapeutic ingredients) have their origin in natural products. Kniphofia uvaria is a plant from Africa which has proved in the past by in-vivo tests an antioxidant activity due to compounds present in roots. Recently, we have observed anthraquinones in K. uvaria seeds extracts. These derivatives are natural colorants which could have interesting bioactive potential. The aim of this study was to obtain an extract enriched in anthraquinones from K. uvaria seeds which mainly contains glycerides. First, the separation of the seed compounds was studied by using supercritical fluid chromatography (SFC) in the goal to provide a rapid quantification method of these bioactive compounds. A screening of numerous polar stationary phases was achieved for selecting the most suited phase to the separation of the four anthraquinones founded in the seeds. A gradient elution was optimized for improving the separation of the bioactive compounds from the numerous other families of major compounds of the extracts (fatty acids, di- and triglycerides). Besides, a non-selective and green Supercritical Fluid Extraction (SFE) with pure CO2 was applied to seeds followed by a Centrifugal Partition Chromatography (CPC). The CPC system was optimized by using the Arizona phase system, to enrich the extract in anthraquinones. Two systems were selected to isolate the bioactive compounds from the oily extract with varied purity target. The effect of the injection mode for these very viscous samples was also studied. Finally, in order to directly apply a selective process of extraction to the seeds, the super/subcritical fluid extraction was optimized to increase the anthraquinone yield in the final extract, by studying varied modifier compositions and nature, as well as different temperatures and backpressures. Conditions suited to favour an enrichment factor bases on the ratio of anthraquinone and trilycerides extracted are described. Copyright © 2016 Elsevier B.V. All rights reserved.
Tejasari, Dr
2007-09-01
The potential ability of ginger bioactive compounds in increasing the ratio of T-cell surface molecules of CD3+CD4+:CD3+CD8+ was investigated using dual tagging FITC and PE of monoclonal antibody anti-human with its fluorescence measured by flow cytometer. Oleoresin was extracted using sinkhole distillation technique. Its components namely, gingerol in fraction-1, shogaol in fraction 2 and zingeron in fraction-3 were separated by column vacuum chromatography method. The doses of oleoresin, gingerol, shogaol, and zingeron tested were 50, 100,150, 200, and 250 μg/ml. Lymphocytes (2x106 cell/ml) from human peripheral blood were isolated using ficoll density gradient technique, and cultured in the presence of the compounds in RPMI-1640 medium and phytohemaglutinin (PHA) mitogen for 96 h under normal conditions. Percentages of T-cell surface molecules (CD4+ and CD8+) were determined using dual-tagging FITC and PE fluorescents labeled on monoclonal antibody anti human. The fluorescence-labeled bands on the T-cell surface molecules were counted using flow cytometer. The experiment revealed that oleoresin and its three fractions increased the percentage of CD3+CD4+. The compound in fraction 3 of oleoresin at 200 μg/ml increased by the highest percentage of CD3+CD4+ of 9%, but slightly decreased the percentage of CD3+CD8+. These ginger bioactive compounds increased the ratio of CD3+CD4:CD3+CD8+ T-cells with the highest increment of 30% from effects of 200 μg/ml fraction 3 of oleoresin. This in vitro finding revealed that ginger bioactive compounds potentially increased cellular and humoral immune response. Further clinical studies are needed to confirm the benefits of these ginger bioactive compounds as a potential functional food for testing on HIV infected patients.
Immense essence of excellence: marine microbial bioactive compounds.
Bhatnagar, Ira; Kim, Se-Kwon
2010-10-15
Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.
Immense Essence of Excellence: Marine Microbial Bioactive Compounds
Bhatnagar, Ira; Kim, Se-Kwon
2010-01-01
Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414
Hayes, Maria; Tiwari, Brijesh K
2015-09-17
Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.
Hayes, Maria; Tiwari, Brijesh K.
2015-01-01
Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these. PMID:26393573
Chen, I-Jen; Foloppe, Nicolas
2013-12-15
Computational conformational sampling underpins much of molecular modeling and design in pharmaceutical work. The sampling of smaller drug-like compounds has been an active area of research. However, few studies have tested in details the sampling of larger more flexible compounds, which are also relevant to drug discovery, including therapeutic peptides, macrocycles, and inhibitors of protein-protein interactions. Here, we investigate extensively mainstream conformational sampling methods on three carefully curated compound sets, namely the 'Drug-like', larger 'Flexible', and 'Macrocycle' compounds. These test molecules are chemically diverse with reliable X-ray protein-bound bioactive structures. The compared sampling methods include Stochastic Search and the recent LowModeMD from MOE, all the low-mode based approaches from MacroModel, and MD/LLMOD recently developed for macrocycles. In addition to default settings, key parameters of the sampling protocols were explored. The performance of the computational protocols was assessed via (i) the reproduction of the X-ray bioactive structures, (ii) the size, coverage and diversity of the output conformational ensembles, (iii) the compactness/extendedness of the conformers, and (iv) the ability to locate the global energy minimum. The influence of the stochastic nature of the searches on the results was also examined. Much better results were obtained by adopting search parameters enhanced over the default settings, while maintaining computational tractability. In MOE, the recent LowModeMD emerged as the method of choice. Mixed torsional/low-mode from MacroModel performed as well as LowModeMD, and MD/LLMOD performed well for macrocycles. The low-mode based approaches yielded very encouraging results with the flexible and macrocycle sets. Thus, one can productively tackle the computational conformational search of larger flexible compounds for drug discovery, including macrocycles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Jae Sun; Kim, Yun Na; Kim, Na-Hyun; Heo, Jeong-Doo; Yang, Min Hye; Rho, Jung-Rae; Jeong, Eun Ju
2017-01-01
Background: Limonium tetragonum, a naturally salt-tolerant halophyte, has been studied recently and is of much interest to researchers due to its potent antioxidant and hepatoprotective activities. Objective: In the present study, we attempted to elucidate bioactive compounds from ethyl acetate (EtOAc) soluble fraction of L. tetragonum extract. Furthermore, the simultaneous analysis method of bioactive EtOAc fraction of L. tetragonum has been developed using high-performance liquid chromatography (HPLC). Materials and Methods: Thirteen compounds have been successfully isolated from EtOAc fraction of L. tetragonum, and the structures of 1–13 were elucidated by extensive one-dimensional and two-dimensional spectroscopic methods including 1H-NMR, 13C-NMR, 1H-1H COSY, heteronuclear single quantum coherence, heteronuclear multiple bond correlation, and nuclear Overhauser effect spectroscopy. Hepatoprotection of the isolated compounds against liver fibrosis was evaluated by measuring inhibition on hepatic stellate cells (HSCs) undergoing proliferation. Results: Compounds 1–13 were identified as gallincin (1), apigenin-3-O-β-D-galactopyranoside (2), quercetin (3), quercetin-3-O-β-D-galactopyranoside (4), (−)-epigallocatechin (5), (−)-epigallocatechin-3-gallate (6), (−)-epigallocatechin-3-(3″-O-methyl) gallate (7), myricetin-3-O-β-D-galactopyranoside (8), myricetin-3-O-(6″-O-galloyl)-β-D-galactopyranoside (9), myricetin-3-O-α-L-rhamnopyranoside (10), myricetin-3-O-(2″-O-galloyl)-α-L-rhamnopyranoside (11), myricetin-3-O-(3″-O-galloyl)-α-L-rhamnopyranoside (12), and myricetin-3-O-α-L-arabinopyranoside (13), respectively. All compounds except for 4, 8, and 10 are reported for the first time from this plant. Conclusion: Myricetin glycosides which possess galloyl substituent (9, 11, and 12) showed most potent inhibitory effects on the proliferation of HSCs. SUMMARY In the present study, we have successfully isolated 13 compounds from bioactive fraction of Limonium tetragonum. The structures of compounds isolated have been fully elucidated, and hepatoprotective activities of compounds against liver fibrosis were evaluated by measuring inhibition on hepatic stellate cells undergoing proliferation. Furthermore, the simultaneous analysis method of bioactive ethyl acetate fraction of L. tetragonum has been developed using HPLC. Ten compounds identified herein are reported for the first time from this plant. Abbreviations used: HSQC: Heteronuclear single quantum coherence; HMBC: Heteronuclear multiple bond correlation; NOESY: Nuclear Overhauser effect spectroscopy; EGCG: Epigallocatechin-3-gallate; EGC: Epigallocatechin; HSC: Hepatic stellate cell; MTT: 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide. PMID:29200710
Littoral lichens as a novel source of potentially bioactive Actinobacteria.
Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T
2015-10-30
Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.
Littoral lichens as a novel source of potentially bioactive Actinobacteria
Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T.
2015-01-01
Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria. PMID:26514347
Triterpenoidal saponins: bioactive secondary metabolites from Zygophyllum coccineum L
USDA-ARS?s Scientific Manuscript database
Phytochemical investigation of the aerial parts of Zygophyllum coccineum L., led to the isolation of nine ursane-type triterpene saponins (1-9) including one new: zygophylloside S (1), together with known flavonoid glycoside (10), and sterol glycoside (11). The isolated compounds were tested for ant...
USDA-ARS?s Scientific Manuscript database
Tissues of plants in the family Brassicaceae contain glucosinolates, compounds whose hydrolysis results in the release of various bioactive products including isothiocyanates. The broad spectrum of biological activity of these glucosinolate hydrolysis products has led to the promotion of brassicace...
Environmental Designer Drugs: When Transformation May Not Eliminate Risk
2015-01-01
Environmental transformation processes, including those occurring in natural and engineered systems, do not necessarily drastically alter molecular structures of bioactive organic contaminants. While the majority of generated transformation products are likely benign, substantial conservation of structure in transformation products can imply conservation or even creation of bioactivity across multiple biological end points and thus incomplete mitigation of ecological risk. Therefore, focusing solely on parent compound removal for contaminants of higher relative risk, the most common approach to fate characterization, provides no mechanistic relationship to potential biological effects and is inadequate as a comprehensive metric for reduction of ecological risks. Here, we explore these phenomena for endocrine-active steroid hormones, focusing on examples of conserved bioactivity and related implications for fate assessment, regulatory approaches, and research opportunities. PMID:25216024
[Studies on bioactive constituents of whole herbs of Vernonia cinerea].
Zhu, Hua-xu; Tang, Yu-ping; Pan, Lin-mei; Min, Zhi-da
2008-08-01
To study the constituents of the whole herbs of Vernonia cinerea. by bio-activity guided isolation with PC-12 model. The constituents were separated by column chromatography and the structures were elucidated by spectroscopic methods. Four compounds were identified to be (+)-lirioresinol B (1), stigmasterol (2), stigmasterol-3-O-beta-D-glucoside (3), 4-sulfo-benzocyclobutene (4), and their NGF inducing activity were also investigated. Compounds 1, 3, 4 were isolated from this genus for the first time, and compound 4 was identified as a new natural product. Compounds 1, 3, 4 showed cytotoxicity on PC-12, and compounds 2, 3, 4 showed inhibition activity. Compound 4 showed a specific effect on the survival of TrkA fibroblasts, and resulted in the inducing NGF activity.
[Study on alkaloids of Corydalis ochotensis and their antitumor bioactivity].
Yu, Jia-jia; Cong, Deng-li; Jiang, Ying; Zhou, Yuan; Wang, Yan; Zhao, Chun-fang
2014-10-01
To investigate the chemical constituents of Corydalis ochotensis and their antitumor bioactivity. The compounds were isolated by silica gel column chromatography and recrystallization. Their structures were identified by spectroscopic analysis (NMR) and physicochemical properties. Their cytotoxic activity was studied by MTT. Six compounds were elucidated as protopine (1), ochotensimine (2), fumariline (3), sanguinarine (4), tetrahydroberberine (5) and berberine (6). Compound 1 had excellent inhibitory activity on HepG2, SW480 and A549 cells, and compound 4 had excellent inhibitory activity on Hep2, HepG2, SW480 and A549 cells. Compounds 3, 4 and 5 are isolated from this plant for the first time; In the MTT antitumor experiments,compounds 1 and 4 show an antitumor activity.
Palmeri, Rosa; Restuccia, Cristina; Monteleone, Julieta Ines; Sperlinga, Elisa; Siracusa, Laura; Serafini, Mauro; Finamore, Alberto; Spagna, Giovanni
2017-06-01
Olive leaves represent a quantitatively significant by-product of agroindustry. They are rich in phenols, mainly oleuropein, which can be hydrolyzed into several bioactive compounds, including hydroxytyrosol. In this study, water extract from olive leaves 'Biancolilla' was analyzed for polyphenol profile, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and protective effect on differentiated Caco-2 cells. The efficacy of two enzymatic treatments in promoting the release of bioactive phenols was investigated: a) enzymatic extract from Wickerhamomyces anomalus, characterized by β-glucosidase and esterase activities; b) commercial β-glucosidase. Composition and bioactivity of the resulting extracts were compared. The results showed that the yeast-treated extract presented hydroxytyrosol content and DPPH radical scavenging activity comparable to those obtained using commercial β-glucosidase; however, it was showed the additional presence of hydroxycinnamic acids. In experiments on Caco-2 cells, the leaf extracts promoted the recovery of cell membrane barrier at different minimum effective concentrations. The high specificity of W. anomalus enzymatic extract may represent an effective tool for the release of bioactive phenols from olive by-products.
Bradley, Paul M; Journey, Celeste A; Romanok, Kristin M; Barber, Larry B; Buxton, Herbert T; Foreman, William T; Furlong, Edward T; Glassmeyer, Susan T; Hladik, Michelle L; Iwanowicz, Luke R; Jones, Daniel K; Kolpin, Dana W; Kuivila, Kathryn M; Loftin, Keith A; Mills, Marc A; Meyer, Michael T; Orlando, James L; Reilly, Timothy J; Smalling, Kelly L; Villeneuve, Daniel L
2017-05-02
Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L -1 to greater than 10 μg L -1 , with 77 and 278 having median detected concentrations greater than 100 ng L -1 and 10 ng L -1 , respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102 847 ng L -1 , respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log 10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L -1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L -1 .
Bradley, Paul M.; Journey, Celeste A.; Romanok, Kristin; Barber, Larry B.; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Glassmeyer, Susan T.; Hladik, Michelle L.; Iwanowicz, Luke R.; Jones, Daniel K.; Kolpin, Dana W.; Kuivila, Kathryn M.; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Reilly, Timothy J.; Smalling, Kelly L.; Villeneuve, Daniel L.
2017-01-01
Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L–1 to greater than 10 μg L–1, with 77 and 278 having median detected concentrations greater than 100 ng L–1 and 10 ng L–1, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L–1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001–0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L–1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L–1.
[Prebiotics in infant health].
Chirdo, Fernando G; Menéndez, Ana M; Pita Martín de Portela, María L; Sosa, Patricia; Toca, María del C; Trifone, Liliana; Vecchiarelli, Carmen
2011-02-01
The composition of human milk is the main base for the development of infant formulas concerning its macronutrients and micronutrients contents and bioactive compounds. Technological advances in the composition of human milk have identified a great number of bioactive compounds such as prebiotics which are responsible for immunological protection and the prevention of different pathologies. In order to achieve similar benefits, they are part of the contents of infant formulas.
Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah
2016-11-01
The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management. Copyright © 2016 Elsevier B.V. All rights reserved.
Rodrigues, Maria João; Gangadhar, Katkam N; Zengin, Gokhan; Mollica, Adriano; Varela, João; Barreira, Luísa; Custódio, Luísa
2017-09-01
Several Juncus species are traditionally used as sedative and to treat health problems like insomnia. This work was based on the hypothesis that Juncus acutus, J. maritimus and J. inflexus may have molecules with bioactivities relevant for the improvement of cognitive functions and thus with potential use as food additives and/or nutraceuticals. Therefore leaves and roots extracts of those species were evaluated for radical scavenging (RSA) and metal chelating activities, and for in vitro inhibition of acetyl-(AChE) and butyrylcholinesterase (BuChE). The bioactive compound was isolated and identified by HPLC-DAD, and its anticholinesterase capacity was determined by different assays. Docking studies were performed to elucidate its inhibitory mechanism. The dichloromethane root extract of J. acutus had the highest RSA against DPPH and ABTS radicals, and the dichloromethane extract of J. maritimus leaves had the uppermost FRAP. The dichloromethane extract from J. acutus leaves had the strongest BuChE inhibition. Juncunol was the bioactive compound, exhibiting dual anticholinesterase capacity on enzyme-based assays and AChE inhibition in neuronal and glial cells in vitro. Molecular docking studies indicate juncunol as a competitive reversible inhibitor. Our results suggest that Juncus spp. can be sources of bioactive compounds with application in the food industry as cognitive-enhancer nutraceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Features of Modularly Assembled Compounds That Impart Bioactivity Against an RNA Target
Rzuczek, Suzanne G.; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A.; Kodadek, Thomas; Disney, Matthew D.
2013-01-01
Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the non-coding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)exp. Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). Based on activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely PTAs, are optimal. Notably, we determined that r(CUG)exp is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived and faster on rates than the protein that binds r(CUG)exp, the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets. PMID:24032410
Features of modularly assembled compounds that impart bioactivity against an RNA target.
Rzuczek, Suzanne G; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A; Kodadek, Thomas; Disney, Matthew D
2013-10-18
Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell-permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the noncoding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)(exp). Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated, including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). On the basis of activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely, PTAs, are optimal. Notably, we determined that r(CUG)(exp) is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived. Moreover, they have faster on rates than the protein that binds r(CUG)(exp), the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets.
Mandrone, Manuela; Coqueiro, Aline; Poli, Ferruccio; Antognoni, Fabiana; Choi, Young Hae
2018-05-24
This paper describes the use of 1 H NMR profiling and chemometrics in order to facilitate the selection of medicinal plants as potential sources of collagenase inhibitors. A total of 49 plants with reported ethnobotanical uses, such as the healing of wounds and burns, treatment of skin-related diseases, rheumatism, arthritis, and bone diseases, were initially chosen as potential candidates. The in vitro collagenase inhibitory activity of hydroalcoholic extracts of these plants was tested. Moreover, their phytochemical profiles were analyzed by 1 H NMR and combined with the inhibitory activity data by an orthogonal partial least squares model. The results showed a correlation between the bioactivity and the concentration of phenolics, including flavonoids, phenylpropanoids, and tannins, in the extracts. Considering the eventual false-positive effect on the bioactivity given by tannins, a tannin removal procedure was performed on the most active extracts. After this procedure, Alchemilla vulgaris was the most persistently active, proving to owe its activity to compounds other than tannins. Thus, this plant was selected as the most promising and further investigated through bioassay-guided fractionation, which resulted in the isolation of a flavonoid, quercetin-3- O - β -glucuronide, as confirmed by NMR and HRMS spectra. This compound showed not only a higher activity than other flavonoids with the same aglycone moiety, but was also higher than doxycycline (positive control), the only Federal Drug Administration-approved collagenase inhibitor. The approach employed in this study, namely the integration of metabolomics and bioactivity-guided fractionation, showed great potential as a tool for plant selection and identification of bioactive compounds in natural product research. Georg Thieme Verlag KG Stuttgart · New York.
Medicinal plants and phytochemicals with anti-obesogenic potentials: A review.
Mopuri, Ramgopal; Islam, Md Shahidul
2017-05-01
Human mortality has been significantly increased in last few decades due to the increased prevalence of obesity and associated chronic disorders such as type 2 diabetes, non-alcoholic fatty liver disease, coronary heart disease and atherosclerosis. Apart from genetic and medicine or drug related side effects, nearly 90-95% people became obese due to the imbalanced calorie intake and lack of nutritional knowledge. The anti-obesogenic drugs, Orlistat and Sibutramine, which have been duly approved by Food and Drug Administration (FDA), USA, work very well on diet-induced obesity however they are not getting popular to the people with overweight/obesity due to the higher cost and severe side effects. In contrast, plant based drugs have been considered as a better alternative due to their lower cost and negligible side effects. A number of medicinal plants and their bioactive constituents have received attention from scientists not only for their anti-obesity activity in vitro and in vivo but also in clinical trials. However, there is no systematic review of data available in the scientific domain in order to guide researchers to conduct further in depth research. In our present review, we differentiated the anti-obesogenic effects of various medicinal plant extracts, fractions and their bioactive compounds at in vitro, in vivo and clinical conditions. During our review, we could also identify the most effective plants with strong anti-obesogenic effects at in vitro or in vivo studies with lack of clinical trials when no one tried to isolate pure bioactive compounds from these plants. Hence, scientific community, government agencies/pharmaceutical industries should work together not only to isolate pure bioactive compounds but also to conduct clinical trials including toxicity to develop better alternative anti-obesity drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Small Molecule based Musculoskeletal Regenerative Engineering
Lo, Kevin W.-H.; Jiang, Tao; Gagnon, Keith A.; Nelson, Clarke; Laurencin, Cato T.
2014-01-01
Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past four years in the area of small bioactive molecule for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve. PMID:24405851
Biological Activities of Polyphenols from Grapes
Xia, En-Qin; Deng, Gui-Fang; Guo, Ya-Jun; Li, Hua-Bin
2010-01-01
The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included. PMID:20386657
Maksimovic, Svetolik; Tadic, Vanja; Skala, Dejan; Zizovic, Irena
2017-06-01
Helichrysum italicum presents a valuable source of natural bioactive compounds. In this work, a literature review of terpenes, phenolic compounds, and other less common phytochemicals from H. italicum with regard to application of different separation methods is presented. Data including extraction/separation methods and experimental conditions applied, obtained yields, number of identified compounds, content of different compound groups, and analytical techniques applied are shown as corresponding tables. Numerous biological activities of both isolates and individual compounds are emphasized. In addition, the data reported are discussed, and the directions for further investigations are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tan, Justin J. Y.; Pan, Jing; Sun, Lihan; Zhang, Junying; Wu, Chunyong; Kang, Lifeng
2017-01-01
Androgenetic alopecia (AGA) is characterized by a progressive and patterned transformation of thick, pigmented terminal scalp hairs into short, hypo-pigmented vellus-like hairs. The use of Minoxidil and Finasteride to treat AGA are often associated with complications in safety and efficacy. However, herbal remedies are deemed to have lesser side effects in many societies. This study aims to identify potential hair growth properties of individual compounds from a Chinese proprietary medicine known as Yangxue Shengfa capsule (YSC), used in China for many years for improving AGA. Six marker compounds, including 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), Chlorogenic acid, Emodin, Ferulic acid, Isoimperatorin, and Paeoniflorin were used for simultaneous HPLC quantification and anti-AGA in-vitro screening. Simultaneous quantification of these components was performed on 75% (v/v) methanol extracts of YSC, using a Welch Ultimate XB-C18 column and gradient elution. Five compounds significantly promoted cell proliferation in cultured immortalized human Dermal Papilla Cells (DPC). Multiple genes associated with the progression of AGA, including IGF-1, DKK-1, and TGF-β1, were found to be regulated by some of these compounds. Interestingly, Ferulic acid and Emodin demonstrated good pharmacological properties against AGA, thereby concluding the potential of these bioactives to be used in the treatment against AGA. PMID:28450835
USDA-ARS?s Scientific Manuscript database
Bacteria employ various strategies to evade protozoan predation, including production and release of bioactive compounds. This capability may be instrumental in determining bacterial resistance to protozoan grazing, thereby enhancing survival of producing strains in soil environments. A limited numb...
EVALUATION OF COARSE, FINE, AND ULTRAFINE PARTICLES AS PART OF A HEALTH EFFECTS EXPOSURE STUDY
Ambient PM is a complex mixture that includes bioactive and toxic compounds of natural and anthropogenic origin, several of which have been theorized to be causative or contributory to the adverse effects of PM inhalation. Numerous epidemiological studies have reported associ...
USDA-ARS?s Scientific Manuscript database
Swertia mussotii Franch. is an important traditional Tibetan medicinal plant with pharmacological properties useful for the treatment of various ailments, such as hepatitis. Secoiridoids, including swertiamarin, are the major bioactive compounds in S. mussotii. The development of genomic resources ...
Activation of ERK signaling and induction of colon cancer cell death by piperlongumine
USDA-ARS?s Scientific Manuscript database
Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objectiv...
New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens
H. M. T.Bandara Herath; Melissa Jacob; A. Alpus Wilson; Hamed K. Abbas; N.P. Dhammika Nanayakkara Nanayakkara
2012-01-01
Ethyl acetate extracts of Armillaria tabescens (strain JNB-OZ344) showed significant fungistatic and bacteristatic activities against several major human pathogens including Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analysis of these extracts led to the isolation and identification of four new compounds,...
Clinical applications of bioactive milk components
Newburg, David S.
2015-01-01
Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications. PMID:26011900
Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite.
Ricciardi, M R; Licchetta, R; Mirabilii, S; Scarpari, M; Parroni, A; Fabbri, A A; Cescutti, P; Reverberi, M; Fanelli, C; Tafuri, A
2017-01-01
Despite improvements that occurred in the last decades in the acute myeloid leukemia (AML) treatment, clinical results are still unsatisfactory. More effective therapies are required, and innovative approaches are ongoing, including the discovery of novel antileukemia natural compounds. Several studies have described the activity of extracts from mushrooms which produce compounds that exhibited immunological and antitumor activities. The latter has been demonstrated to be promoted in vitro by mushroom polysaccharides via induction of apoptosis. However, the antileukemia activity of these compounds on primary cells is still not reported. In the present study, we examined the in vitro effects of Tramesan (TR), a bioactive compound extracted from Trametes versicolor , on leukemic cell lines and primary cells. Our results demonstrated that TR induced a marked growth inhibition of leukemic cell lines and primary cells from AML patients. The antiproliferative effects of TR were associated in primary AML cells with a significant increase of apoptosis. No significant cytotoxic effects were observed in normal peripheral blood mononuclear cells (MNC) from healthy donors. Our data demonstrated a cytotoxic activity of TR on leukemia cells prompting further translational applications. Ongoing studies are elucidating the molecular mechanisms underlying its antileukemic activity.
Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite
Scarpari, M.; Parroni, A.; Fabbri, A. A.; Cescutti, P.; Reverberi, M.; Fanelli, C.
2017-01-01
Despite improvements that occurred in the last decades in the acute myeloid leukemia (AML) treatment, clinical results are still unsatisfactory. More effective therapies are required, and innovative approaches are ongoing, including the discovery of novel antileukemia natural compounds. Several studies have described the activity of extracts from mushrooms which produce compounds that exhibited immunological and antitumor activities. The latter has been demonstrated to be promoted in vitro by mushroom polysaccharides via induction of apoptosis. However, the antileukemia activity of these compounds on primary cells is still not reported. In the present study, we examined the in vitro effects of Tramesan (TR), a bioactive compound extracted from Trametes versicolor, on leukemic cell lines and primary cells. Our results demonstrated that TR induced a marked growth inhibition of leukemic cell lines and primary cells from AML patients. The antiproliferative effects of TR were associated in primary AML cells with a significant increase of apoptosis. No significant cytotoxic effects were observed in normal peripheral blood mononuclear cells (MNC) from healthy donors. Our data demonstrated a cytotoxic activity of TR on leukemia cells prompting further translational applications. Ongoing studies are elucidating the molecular mechanisms underlying its antileukemic activity. PMID:29270245
Current trends of tropical fruit waste utilization.
Cheok, Choon Yoong; Mohd Adzahan, Noranizan; Abdul Rahman, Russly; Zainal Abedin, Nur Hanani; Hussain, Norhayati; Sulaiman, Rabiha; Chong, Gun Hean
2018-02-11
Recent rapid growth of the world's population has increased food demands. This phenomenon poses a great challenge for food manufacturers in maximizing the existing food or plant resources. Nowadays, the recovery of health benefit bioactive compounds from fruit wastes is a research trend not only to help minimize the waste burden, but also to meet the intensive demand from the public for phenolic compounds which are believed to have protective effects against chronic diseases. This review is focused on polyphenolic compounds recovery from tropical fruit wastes and its current trend of utilization. The tropical fruit wastes include in discussion are durian (Durio zibethinus), mangosteen (Garcinia mangostana L.), rambutan (Nephelium lappaceum), mango (Mangifera indica L.), jackfruit (Artocarpus heterophyllus), papaya (Carica papaya), passion fruit (Passiflora edulis), dragon fruit (Hylocereus spp), and pineapple (Ananas comosus). Highlights of bioactive compounds in different parts of a tropical fruit are targeted primarily for food industries as pragmatic references to create novel innovative health enhancement food products. This information is intended to inspire further research ideas in areas that are still under-explored and for food processing manufacturers who would like to minimize wastes as the norm of present day industry (design) objective.
Clinical applications of bioactive milk components.
Hill, David R; Newburg, David S
2015-07-01
Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications.
Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M; Nording, Malin L
2015-01-01
Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005-2.1 pg on column), limit of quantification (0.0005-4.2 pg on column), inter- and intraday accuracy (85-115%) and precision (< 5%), recovery (40-109%) and stability (40-105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting was displayed by TXB2. Furthermore, postprandial responsiveness was detected for seven compounds (POEA, SEA, 9(10)-DiHOME, 12(13)-DiHOME, 13-oxo-ODE, 9-HODE, and 13-HODE). Hence, the data confirm that the UPLC-ESI-MS/MS method performance was sufficient to detect i) a shift, in the current case most notably in the postprandial bioactive lipid metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation.
Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M.; Nording, Malin L.
2015-01-01
Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005–2.1 pg on column), limit of quantification (0.0005–4.2 pg on column), inter- and intraday accuracy (85–115%) and precision (< 5%), recovery (40–109%) and stability (40–105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting was displayed by TXB2. Furthermore, postprandial responsiveness was detected for seven compounds (POEA, SEA, 9(10)-DiHOME, 12(13)-DiHOME, 13-oxo-ODE, 9-HODE, and 13-HODE). Hence, the data confirm that the UPLC-ESI-MS/MS method performance was sufficient to detect i) a shift, in the current case most notably in the postprandial bioactive lipid metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation. PMID:26186333
Jachna, Tiphaine J; Hermes, Vanessa S; Flôres, Simone H; Rios, Alessandro O
2016-03-15
Pindo palm (Butia capitata, Becc. 1916) is a tropical fruit native to South America and is relatively rich in bioactive compounds. It is often consumed as juice. The aim of this study was, first, to identify the degradation of these compounds by pasteurization and by cold storage (4 °C) of pindo palm juice. Physicochemical properties and concentrations of phenolic compounds, carotenoids and vitamin C have been evaluated on fresh and pasteurized juices. Moreover, another objective was to characterize the nutritional composition and the bioactive compounds of pindo palm pomace, the by-product of juice processing. The results demonstrated a degradation of carotenoids with pasteurization and a degradation of vitamin C with both pasteurization and cold storage of juices. Furthermore, the evaluation of pindo palm pomace showed that it is relatively rich in total phenols (20.06 g gallic acid equivalents kg(-1) dry matter) and in β-carotene (0.22 g kg(-1) dry matter). Thus, from the nutrition viewpoint, it does not seem interesting to pasteurize juice. On the other hand, extraction of carotenoids and phenolic compounds from the pomace appears to be a relevant process. © 2015 Society of Chemical Industry.
Sardari, Soroush; Feizi, Samaneh; Rezayan, Ali Hossein; Azerang, Parisa; Shahcheragh, Seyyed Mohammad; Ghavami, Ghazaleh; Habibi, Azizollah
2017-01-01
Thiosemicarbazides are potent intermediates for the synthesis of pharmaceutical and bioactive materials and thus, they are used extensively in the field of medicinal chemistry. The imine bond (-N=CH-) in this compounds are useful in organic synthesis, in particular for the preparation of heterocycles and non-natural β-aminoacids. In this paper the synthesis of some new thiosemicarbazide derivatives by condensation reaction of various aldehydes or ketones with 4-phenylthiosemicarbazide or thiosemicarbazide is reported. This synthesis method has the advantages of high yields and good bioactivity. The structures of these compounds were confirmed by IR, mass, 1 H NMR, 13 C NMR, and single-crystal X-ray diffraction studies. All of these compounds were tested for their in-vitro anti-mycobacterial activity. The influence of the functional group and position of substituent on anti-bacterial activity of compounds is investigated too. The preliminary results indicated that all of the tested compounds showed good activity against the test organism. The compounds 11 and 30 showed the highest anti-tubercular activity (0.39 μg/mL). This synthesis method has the advantages of high yields and good bioactivity.
Salvador, Cátia; Martins, M Rosário; Caldeira, A Teresa
2015-02-01
Different compounds of edible mushrooms are responsible for their bioactivity. The ability to synthesize polysaccharides, namely protein-polysaccharide (PPS) complexes, is related to the antioxidant capacity of these compounds and present great interest in preventing a number of diseases, including cancer, cardiovascular and auto-immune diseases, and accelerated aging. Amanita ponderosa are wild edible mushrooms that grow in Mediterranean "montado" areas [Portuguese name given to cork oak (Quercus suber) and holm oak (Quercus ilex) forests]. The aim of this study was to evaluate the production of PPS complexes obtained from A. ponderosa cultures using a new microanalytical approach to quickly and easily monitor the production process. Microanalysis using Fourier-transform infrared using attenuated total reflection and Raman spectroscopy of PPS samples showed spectra compatible with identification of this type of compound in culture extracts. PPS separated by size-exclusion chromatography showed seven main complexes. Molecular weights of the main PPS complexes isolated from cultures ranged between 1.5 and 20 kDa and did not present toxicity against Artemia salina, demonstrating the potential of A. ponderosa as a source of biologically active compounds with nutraceutical value. Application of this microanalytical approach to monitoring the production of PPS compounds can be successfully applied in biotechnological processes.
Rodriguez-Furlán, Cecilia; Hicks, Glenn R; Norambuena, Lorena
2014-01-01
The plant endomembrane trafficking system is a highly complex set of processes. This complexity presents a challenge for its study. Classical plant genetics often struggles with loss-of-function lethality and gene redundancy. Chemical genomics allows overcoming many of these issues by using small molecules of natural or synthetic origin to inhibit specific trafficking proteins thereby affecting the processes in a tunable and reversible manner. Bioactive chemicals identified by high-throughput phenotype screens must be characterized in detail starting with understanding of the specific trafficking pathways affected. Here, we describe approaches to characterize bioactive compounds that perturb vesicle trafficking. This should equip researchers with practical knowledge on how to identify endomembrane-specific trafficking pathways that may be perturbed by specific compounds and will help to eventually identify molecular targets for these small molecules.
Macagnan, Fernanda Teixeira; da Silva, Leila Picolli; Hecktheuer, Luisa Helena
2016-07-01
There is a growing need for a global consensus on the definition of dietary fibre and the use of appropriate methodologies for its determination in different food matrices. Oligosaccharides (prebiotic effect) and bioactive compounds (antioxidant effect) are important constituents of dietary fibre, which enhance its beneficial effects in the body, such as those related to maintaining intestinal health. These dietary components need to be quantified and addressed in conjunction with fibre in nutritional studies due to the close relationship between them and their common destiny in the human body. This review discusses updates to the concept of dietary fibre, with an emphasis on biological and methodological aspects, and highlights the physiological importance of fibre as a carrier of bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lordan, Sinéad; Ross, R Paul; Stanton, Catherine
2011-01-01
The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases.
Lordan, Sinéad; Ross, R. Paul; Stanton, Catherine
2011-01-01
The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases. PMID:21747748
Granato, Daniel; Shahidi, Fereidoon; Wrolstad, Ronald; Kilmartin, Paul; Melton, Laurence D; Hidalgo, Francisco J; Miyashita, Kazuo; Camp, John van; Alasalvar, Cesarettin; Ismail, Amin B; Elmore, Stephen; Birch, Gordon G; Charalampopoulos, Dimitris; Astley, Sian B; Pegg, Ronald; Zhou, Peng; Finglas, Paul
2018-10-30
As many studies are exploring the association between ingestion of bioactive compounds and decreased risk of non-communicable diseases, the scientific community continues to show considerable interest in these compounds. In addition, as many non-nutrients with putative health benefits are reducing agents, hydrogen donors, singlet oxygen quenchers or metal chelators, measurement of antioxidant activity using in vitro assays has become very popular over recent decades. Measuring concentrations of total phenolics, flavonoids, and other compound (sub)classes using UV/Vis spectrophotometry offers a rapid chemical index, but chromatographic techniques are necessary to establish structure-activity. For bioactive purposes, in vivo models are required or, at the very least, methods that employ distinct mechanisms of action (i.e., single electron transfer, transition metal chelating ability, and hydrogen atom transfer). In this regard, better understanding and application of in vitro screening methods should help design of future research studies on 'bioactive compounds'. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bioactive natural products in cancer prevention and therapy: Progress and promise.
Bishayee, Anupam; Sethi, Gautam
2016-10-01
Natural products represent a rich source for the discovery and development of cancer preventive and anticancer drugs. Nearly, 80% of all drugs approved by the United States Food and Drug Administration during the last three decades for cancer therapy are either natural products per se or are based thereon, or mimicked natural products in one form or another. With the advent and refinement of new technologies, such as genetic techniques for production of secondary plant metabolites, combinatorial synthesis and high-throughput screening, it is expected that novel compounds from natural sources, including medicinal plants, would be identified and developed as safe and effective chemopreventive and anticancer drugs. Numerous bioactive natural compounds have been shown to be useful in prevention and therapy of cancer by targeting various signaling molecules and pathways. Extensive literature underscores the anticancer and chemopreventive activity of a plethora of naturally occurring agents, including phytochemicals. Several of these molecules have been tested in clinical trials and some of them have shown promise in combination therapy when administered along with standard chemotherapeutic agents. Thus, accelerated chemopreventive and chemotherapeutic drug development from natural sources is of great importance. In this special theme issue, contributions from eminent scientists and scholars around the world presented critical analysis of the current progress and promise of natural bioactive constituents in cancer prevention and therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Therapeutic potential of dairy bioactive peptides: A contemporary perspective.
Sultan, Saira; Huma, Nuzhat; Butt, Masood Sadiq; Aleem, Muhammad; Abbas, Munawar
2018-01-02
Dairy products are associated with numerous health benefits. These are a good source of nutrients such as carbohydrates, protein (bioactive peptides), lipids, minerals, and vitamins, which are essential for growth, development, and maintenance of the human body. Accordingly, dairy bioactive peptides are one of the targeted compounds present in different dairy products. Dairy bioactive compounds can be classified as antihypertensive, anti-oxidative, immmunomodulant, anti-mutagenic, antimicrobial, opoid, anti-thrombotic, anti-obesity, and mineral-binding agents, depending upon biological functions. These bioactive peptides can easily be produced by enzymatic hydrolysis, and during fermentation and gastrointestinal digestion. For this reason, fermented dairy products, such as yogurt, cheese, and sour milk, are gaining popularity worldwide, and are considered excellent source of dairy peptides. Furthermore, fermented and non-fermented dairy products are associated with lower risks of hypertension, coagulopathy, stroke, and cancer insurgences. The current review article is an attempt to disseminate general information about dairy peptides and their health claims to scientists, allied stakeholders, and, certainly, readers.
Koutsoukas, Alexios; Paricharak, Shardul; Galloway, Warren R J D; Spring, David R; Ijzerman, Adriaan P; Glen, Robert C; Marcus, David; Bender, Andreas
2014-01-27
Chemical diversity is a widely applied approach to select structurally diverse subsets of molecules, often with the objective of maximizing the number of hits in biological screening. While many methods exist in the area, few systematic comparisons using current descriptors in particular with the objective of assessing diversity in bioactivity space have been published, and this shortage is what the current study is aiming to address. In this work, 13 widely used molecular descriptors were compared, including fingerprint-based descriptors (ECFP4, FCFP4, MACCS keys), pharmacophore-based descriptors (TAT, TAD, TGT, TGD, GpiDAPH3), shape-based descriptors (rapid overlay of chemical structures (ROCS) and principal moments of inertia (PMI)), a connectivity-matrix-based descriptor (BCUT), physicochemical-property-based descriptors (prop2D), and a more recently introduced molecular descriptor type (namely, "Bayes Affinity Fingerprints"). We assessed both the similar behavior of the descriptors in assessing the diversity of chemical libraries, and their ability to select compounds from libraries that are diverse in bioactivity space, which is a property of much practical relevance in screening library design. This is particularly evident, given that many future targets to be screened are not known in advance, but that the library should still maximize the likelihood of containing bioactive matter also for future screening campaigns. Overall, our results showed that descriptors based on atom topology (i.e., fingerprint-based descriptors and pharmacophore-based descriptors) correlate well in rank-ordering compounds, both within and between descriptor types. On the other hand, shape-based descriptors such as ROCS and PMI showed weak correlation with the other descriptors utilized in this study, demonstrating significantly different behavior. We then applied eight of the molecular descriptors compared in this study to sample a diverse subset of sample compounds (4%) from an initial population of 2587 compounds, covering the 25 largest human activity classes from ChEMBL and measured the coverage of activity classes by the subsets. Here, it was found that "Bayes Affinity Fingerprints" achieved an average coverage of 92% of activity classes. Using the descriptors ECFP4, GpiDAPH3, TGT, and random sampling, 91%, 84%, 84%, and 84% of the activity classes were represented in the selected compounds respectively, followed by BCUT, prop2D, MACCS, and PMI (in order of decreasing performance). In addition, we were able to show that there is no visible correlation between compound diversity in PMI space and in bioactivity space, despite frequent utilization of PMI plots to this end. To summarize, in this work, we assessed which descriptors select compounds with high coverage of bioactivity space, and can hence be used for diverse compound selection for biological screening. In cases where multiple descriptors are to be used for diversity selection, this work describes which descriptors behave complementarily, and can hence be used jointly to focus on different aspects of diversity in chemical space.
Characterization of bioactive peptides obtained from marine invertebrates.
Lee, Jung Kwon; Jeon, Joong-Kyun; Kim, Se-Kwon; Byun, Hee-Guk
2012-01-01
Bioactive peptides as products of hydrolysis of diverse marine invertebrate (shellfish, crustacean, rotifer, etc.) proteins are the focus of current research. After much research on these muscles and by-products, some biologically active peptides were identified and applied to useful compounds for human utilization. This chapter reviews bioactive peptides from marine invertebrates in regarding to their bioactivities. Additionally, specific characteristics of antihypertensive, anti-Alzheimer, antioxidant, antimicrobial peptide enzymatic production, methods to evaluate bioactivity capacity, bioavailability, and safety concerns of peptides are reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.
Adefegha, Stephen Adeniyi
2017-12-27
Functional foods describe the importance of foods in promoting health and preventing diseases aside their primary role of providing the body with the required amount of essential nutrients such as proteins, carbohydrates, vitamins, fats, and oils needed for its healthy survival. This review explains the interaction of functional food bioactive compounds including polyphenols (phenolic acids [hydroxybenzoic acids and hydroxycinnamic acids], flavonoids [flavonols, flavones, flavanols, flavanones, isoflavones, proanthocyanidins], stilbenes, and lignans), terpenoids, carotenoids, alkaloids, omega-3 and polyunsaturated fatty acids, among others with critical enzymes (α- amylase, α- glucosidase, angiotensin-I converting enzyme [ACE], acetylcholinesterase [AChE], and arginase) linked to some degenerative diseases (type-2 diabetes, cardiovascular diseases [hypertension], neurodegenerative diseases [Alzheimer's disease] and erectile dysfunction). Different functional food bioactive compounds may synergistically/additively confer an overwhelming protection against these degenerative diseases by modulating/altering the activities of these critical enzymes of physiological importance.
Utilization of protein-rich residues in biotechnological processes.
Pleissner, Daniel; Venus, Joachim
2016-03-01
A drawback of biotechnological processes, where microorganisms convert biomass constituents, such as starch, cellulose, hemicelluloses, lipids, and proteins, into wanted products, is the economic feasibility. Particularly the cost of nitrogen sources in biotechnological processes can make up a large fraction of total process expenses. To further develop the bioeconomy, it is of considerable interest to substitute cost-intensive by inexpensive nitrogen sources. The aim of this mini-review was to provide a comprehensive insight of utilization methods of protein-rich residues, such as fish waste, green biomass, hairs, and food waste. The methods described include (i) production of enzymes, (ii) recovery of bioactive compounds, and/or (iii) usage as nitrogen source for microorganisms in biotechnological processes. In this aspect, the utilization of protein-rich residues, which are conventionally considered as waste, allows the development of value-adding processes for the production of bioactive compounds, biomolecules, chemicals, and materials.
Fisch, Katja M.; Hertzer, Cora; Böhringer, Nils; Wuisan, Zerlina G.; Schillo, Dorothee; Bara, Robert; Kaligis, Fontje; Wägele, Heike; König, Gabriele M.; Schäberle, Till F.
2017-01-01
The species diversity of marine heterobranch sea slugs found on field trips around Bunaken Island (North Sulawesi, Indonesia) and adjacent islands of the Bunaken National Marine Park forms the basis of this review. In a survey performed in 2015, 80 species from 23 families were collected, including 17 new species. Only three of these have been investigated previously in studies from Indonesia. Combining species diversity with a former study from 2003 reveals in total 140 species from this locality. The diversity of bioactive compounds known and yet to be discovered from these organisms is summarized and related to the producer if known or suspected (might it be down the food chain, de novo synthesised from the slug or an associated bacterium). Additionally, the collection of microorganisms for the discovery of natural products of pharmacological interest from this hotspot of biodiversity that is presented here contains more than 50 species that have never been investigated before in regard to bioactive secondary metabolites. This highlights the great potential of the sea slugs and the associated microorganisms for the discovery of natural products of pharmacological interest from this hotspot of biodiversity. PMID:29215579
Woo, Minji; Noh, Jeong Sook; Cho, Eun Ju; Song, Yeong Ok
2018-05-16
This study investigated the inhibitory effects of kimchi bioactive compounds against endoplasmic reticulum (ER) stress-induced apoptosis in amyloid beta (Aβ)-injected mice. Mice received a single intracerebroventricular injection of Aβ 25-35 , except for the normal group. Mice were subjected to oral administration of 10 mg of capsaicin, 50 mg of 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA), 50 mg of quercetin, 50 mg of ascorbic acid, or 200 mg of kimchi methanol extract (KME) per kilogram of body weight for 2 weeks ( n = 7 per group). In the in vitro blood-brain barrier (BBB) permeability test, all bioactive compounds penetrated the BBB except ascorbic acid. The protein expression level of APP, BACE, and p-Tau elevated by Aβ injection was decreased by kimchi bioactive compounds ( P < 0.05). Quercetin, HDMPPA, and KME decreased oxidative stress, as indicated by ROS and TBARS levels ( P < 0.05). The protein expression level of ER stress markers GRP78, p-PERK, p-eIF2α, XBP1, and CHOP and the proapoptotic molecules Bax, p-JNK, and cleaved caspases-3 and -9 decreased ( P < 0.05). In contrast, the protein expression level of antiapoptotic molecules Bcl2 and cIAP increased ( P < 0.05). These results were supported by histological analysis.
Bae, Haejin; Jayaprakasha, G K; Jifon, John; Patil, Bhimanagouda S
2012-10-15
Peppers (Capsicum spp.) are a rich source of diverse bioactive compounds with potential health-promoting properties. This study investigated the extraction efficiency of five solvents on antioxidant activities from cayenne (CA408 and Mesilla), jalapeño (Ixtapa) and serrano (Tuxtlas) pepper cultivars. Freeze-dried peppers were extracted using a Soxhlet extractor with five solvents: hexane, ethyl acetate, acetone, methanol, and methanol:water (80:20). The levels of specific bioactive compounds (phenolics, capsaicinoids, carotenoids and flavonoids) were determined by HPLC and antioxidant activities were assayed by three methods. For all pepper cultivars tested, hexane extracts had the highest levels of capsaicinoids and carotenoids, but methanol extracts had the maximum levels of flavonoids. Hexane extracts showed higher 2,2-diphenyl-1-pricrylhydrozyl (DPPH) radical-scavenging activity and higher reducing power, and acetone extracts (from Mesilla pepper) had a high reducing power. All pepper extracts, except hexane, were effective in preventing deoxyribose degradation, and the inhibition was increased by high concentrations of extracts. The results of the present study indicated that, among the different measures of antioxidant activity, DPPH radical-scavenging activity was strongly correlated with total bioactive compounds (capsaicinoids, carotenoids, flavonoids and total phenolics) in pepper cultivars. Copyright © 2012 Elsevier Ltd. All rights reserved.
Anisha, C; Sachidanandan, P; Radhakrishnan, E K
2018-03-01
The bioactivity spectrum of fungal endophytes isolated from Zingiber officinale was analyzed against clinical pathogens and against the phytopathogen Pythium myriotylum, which causes Pythium rot in ginger. One of the isolates GFM13 showed broad bioactivity against various pathogens tested including P. myriotylum. The spore suspension as well as the culture filtrate of the endophytic fungal isolate was found to effectively protect ginger rhizomes from Pythium rot. By molecular identification, the fungal endophyte was identified as Paraconiothyrium sp. The bioactive compound produced by the isolate was separated by bioactivity-guided fractionation and was identified by GC-MS as danthron, an anthraquinone derivative. PCR amplification showed the presence of non-reducing polyketide synthase gene (NR-PKS) in the endophyte GFM13, which is reported to be responsible for the synthesis of anthraquinones in fungi. This is the first report of danthron being produced as the biologically active component of Paraconiothyrium sp. Danthron is reported to have wide pharmaceutical and agronomic applications which include its use as a fungicide in agriculture. The broad-spectrum antimicrobial activity of danthron and the endophytic origin of Paraconiothyrium sp. offer immense applications of the study.
Ganesan, Palanivel; Arulselvan, Palanisamy; Choi, Dong-Kug
2017-01-01
Type 2 diabetes mellitus (T2DM) is a major chronic disease that is prevalent worldwide, and it is characterized by an increase in blood glucose, disturbances in the metabolism, and alteration in insulin secretion. Nowadays, food-based therapy has become an important treatment mode for type 2 diabetes, and phytobioactive compounds have gained an increasing amount of attention to this end because they have an effect on multiple biological functions, including the sustained secretion of insulin and regeneration of pancreatic islets cells. However, the poor solubility and lower permeability of these phyto products results in a loss of bioactivity during processing and oral delivery, leading to a significant reduction in the bioavailability of phytobioactive compounds to treat T2DM. Recently, nanotechnological systems have been developed for use as various types of carrier systems to improve the delivery of bioactive compounds and thus obtain a greater bioavailability. Furthermore, carrier systems in most nanodelivery systems are highly biocompatible, with nonimmunologic behavior, a high degree of biodegradability, and greater mucoadhesive strength. Therefore, this review focuses on the various types of nanodelivery systems that can be used for phytobioactive compounds in treating T2DM with greater antidiabetic effects. There is also additional focus on improving the effects of various phytobioactive compounds through nanotechnological delivery to ensure a highly efficient treatment of type 2 diabetes. PMID:28223801
Ren, Wei; Han, Lingyu; Luo, Mengyi; Bian, Baolin; Guan, Ming; Yang, Hui; Han, Chao; Li, Na; Li, Tuo; Li, Shilei; Zhang, Yangyang; Zhao, Zhenwen; Zhao, Haiyu
2018-04-28
Traditional Chinese medicines (TCMs) are undoubtedly treasured natural resources for discovering effective medicines in treating and preventing various diseases. However, it is still extremely difficult for screening the bioactive compounds due to the tremendous constituents in TCMs. In this work, the chemical composition of toad venom was comprehensively analyzed using ultra-high performance liquid chromatography (UPLC) coupled with high-resolution LTQ-Orbitrap mass spectrometry and 93 compounds were detected. Among them, 17 constituents were confirmed by standard substances and 8 constituents were detected in toad venom for the first time. Further, a compound database of toad venom containing the fullest compounds was further constructed using UPLC coupled with high-sensitivity Qtrap MS. Then a target cell-based approach for screening potential bioactive compounds from toad venom was developed by analyzing the target cell extracts. The reliability of this method was validated by negative controls and positive controls. In total, 17 components in toad venom were discovered to interact with the target cancer cells. Further, in vitro pharmacological trials were performed to confirm the anti-cancer activity of four of them. The results showed that the six bufogenins and seven bufotoxins detected in our research represented a promising resource to explore bufogenins/bufotoxins-based anticancer agents with low cardiotoxic effect. The target cell-based screening method coupled with the compound database of toad venom constructed by UPLC-Qtrap-MS with high sensitivity provide us a new strategy to rapidly screen and identify the potential bioactive constituents with low content in natural products, which was beneficial for drug discovery from other TCMs. ᅟ Graphical abstract.
Wang, Qing-Hui; Guo, Shuai; Yang, Xue-Yan; Zhang, Yi-Fan; Shang, Ming-Ying; Shang, Ying-Hui; Xiao, Jun-Jun; Cai, Shao-Qing
2017-03-01
Four prenylated flavonoids compounds 1-4, named sinopodophyllines A-D, and a flavonoid glycoside (compound 13), sinopodophylliside A, together with 19 known compounds (compounds 5-12 and 14-24) were isolated from the fruits of Sinopodophyllum hexandrum. The structures of new compounds were elucidated by extensive spectroscopic analysis, including HRESIMS, 1D and 2D NMR. Compounds 1-6, 9-11, and 14-17 were tested for their cytotoxicity against human breast-cancer T47D, MCF-7 and MDA-MB-231 cells in vitro, and compounds 2, 5, 6, 10 and 11 showed significant cytotoxicity (IC 50 values < 10 μmol·L -1 ) against T47D cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Bioactive natural products from Chinese marine flora and fauna.
Zhou, Zhen-Fang; Guo, Yue-Wei
2012-09-01
In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail.
Sajid, Imran; Shaaban, Khaled A; Hasnain, Shahida
2013-01-01
A newly isolated strain Streptomyces sp. BG5 was investigated for the production of bioactive compounds. The strain exhibited broad-spectrum activity against an array of nine test organisms including gram-positive bacteria, gram-negative bacteria, and fungal and microalgal pathogens, along with a moderate cytotoxic response (28.9% mortality) in a microwell cytotoxicity assay against the brine shrimp Artimia salina. The morphological, physiological, and biochemical characterization of the Streptomyces sp. BG5 strongly suggested it to be a member of the genus Streptomyces. The nucleotide sequence of 16S rRNA gene (1433 pb) of the Streptomyces sp. BG5 (Gene bank accession number EU301836) exhibited high similarity (98%) with Streptomyces matensis. The large-scale fermentation of Streptomyces sp. BG5 and subsequent extraction, isolation, and purification of the crude extract afforded three pure compounds. The structures of these compounds were identified as ochromycinone (1a), emycin D (2), and 1-acetyl-β-carbolin (3), based on nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and by comparison with reference data from the literature.
Santangelo, Carmela; Zicari, Alessandra; Mandosi, Elisabetta; Scazzocchio, Beatrice; Mari, Emanuela; Morano, Susanna; Masella, Roberta
2016-04-14
Gestational diabetes mellitus (GDM) is a serious problem growing worldwide that needs to be addressed with urgency in consideration of the resulting severe complications for both mother and fetus. Growing evidence indicates that a healthy diet rich in fruit, vegetables, nuts, extra-virgin olive oil and fish has beneficial effects in both the prevention and management of several human diseases and metabolic disorders. In this review, we discuss the latest data concerning the effects of dietary bioactive compounds such as polyphenols and PUFA on the molecular mechanisms regulating glucose homoeostasis. Several studies, mostly based on in vitro and animal models, indicate that dietary polyphenols, mainly flavonoids, positively modulate the insulin signalling pathway by attenuating hyperglycaemia and insulin resistance, reducing inflammatory adipokines, and modifying microRNA (miRNA) profiles. Very few data about the influence of dietary exposure on GDM outcomes are available, although this approach deserves careful consideration. Further investigation, which includes exploring the 'omics' world, is needed to better understand the complex interaction between dietary compounds and GDM.
Murrell, Daniel S; Cortes-Ciriano, Isidro; van Westen, Gerard J P; Stott, Ian P; Bender, Andreas; Malliavin, Thérèse E; Glen, Robert C
2015-01-01
In silico predictive models have proved to be valuable for the optimisation of compound potency, selectivity and safety profiles in the drug discovery process. camb is an R package that provides an environment for the rapid generation of quantitative Structure-Property and Structure-Activity models for small molecules (including QSAR, QSPR, QSAM, PCM) and is aimed at both advanced and beginner R users. camb's capabilities include the standardisation of chemical structure representation, computation of 905 one-dimensional and 14 fingerprint type descriptors for small molecules, 8 types of amino acid descriptors, 13 whole protein sequence descriptors, filtering methods for feature selection, generation of predictive models (using an interface to the R package caret), as well as techniques to create model ensembles using techniques from the R package caretEnsemble). Results can be visualised through high-quality, customisable plots (R package ggplot2). Overall, camb constitutes an open-source framework to perform the following steps: (1) compound standardisation, (2) molecular and protein descriptor calculation, (3) descriptor pre-processing and model training, visualisation and validation, and (4) bioactivity/property prediction for new molecules. camb aims to speed model generation, in order to provide reproducibility and tests of robustness. QSPR and proteochemometric case studies are included which demonstrate camb's application.Graphical abstractFrom compounds and data to models: a complete model building workflow in one package.
2014-01-01
Production of coffee beans is an important lifeline for the economy of several countries in Latin America, Africa, and Asia. The brew from this well sought for cash crop is readily consumed due to its good sensory qualities owing to the presence of many micronutrients. Some of these chemical compounds possess biological activities, including antiproliferative, antioxidant, and antimicrobial effects. Four representative groups of these micronutrients, namely, caffeine, chlorogenic acid, diterpenes, and trigonelline, play key roles in these bioactive effects of coffee. In order to guarantee the quality of coffee products and to protect consumer interest and safeguard their well-being, it is extremely important to employ sensitive and accurate analytical methods in the characterization and quantitative determination of these bioactive constituents. This review aims to present recent applications in this regard. PMID:24967266
Banik, Bidhyut K; Durmic, Zoey; Erskine, William; Revell, Clinton K; Vadhanabhuti, Joy; McSweeney, Christopher S; Padmanabha, Jagadish; Flematti, Gavin R; Algreiby, Azizah A; Vercoe, Philip E
2016-06-01
Methanogenic archaea (methanogens) are common inhabitants of the mammalian intestinal tract. In ruminants, they are responsible for producing abundant amounts of methane during digestion of food, but selected bioactive plants and compounds may inhibit this activity. Recently, we have identified that, Biserrula pelecinus L. (biserrula) is one such plant and the current study investigated the specific anti-methanogenic activity of the plant. Bioassay-guided extraction and fractionation, coupled with in vitro fermentation batch culture were used to select the most bioactive fractions of biserrula. The four fractions were then tested against five species of methanogens grown in pure culture. Fraction bioactivity was assessed by measuring methane production and amplification of the methanogen mcrA gene. Treatments that showed bioactivity were subcultured in fresh broth without the bioactive fraction to distinguish between static and cidal effects. All four fractions were active against pure cultures, but the F2 fraction was the most consistent inhibitor of both methane production and cell growth, affecting four species of methanogens and also producing equivocal-cidal effects on the methanogens. Other fractions had selective activity affecting only some methanogens, or reducing either methane production or methanogenic cell growth. In conclusion, the anti-methanogenic activity of biserrula can be linked to compounds contained in selected bioactive fractions, with the F2 fraction strongly affecting key rumen methanogens. Further study is required to identify the specific plant compounds in biserrula that are responsible for the anti-methanogenic activity. These findings will help devise novel strategies to control methanogen populations and activity in the rumen, and consequently contribute in reducing greenhouse gas emissions from ruminants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Onoda, Toshihisa; Li, Wei; Sasaki, Tatsunori; Miyake, Megumi; Higai, Koji; Koike, Kazuo
2016-06-20
Masiningan is a traditional medicine consisting of six crude drugs that have been used for treating constipation and diabetes mellitus in both Japan and China. Masiningan has been reported to have significant PTP1B inhibitory activity and to affect cells in the insulin-signaling pathway. The aim of the present study is to identify the PTP1B inhibitory compounds in Masiningan. Bioactivity peaks were identified by analytical HPLC profiling and PTP1B inhibitory activity profiling of sub-fractions from Masiningan extract. The bioactive compounds were isolated by tracking two identified bioactive peaks, and the chemical structures were determined by spectroscopic analyses. The bioactive compounds were further investigated for their inhibitory effect against PTP1B by enzymatic kinetic analysis, molecular docking simulation, inhibitory selectivity against other PTPs, and cellular activity in the insulin signal transduction pathway. From Masiningan, magnolol (1) and chrysophanol (2) were isolated as compounds that exhibited significant dose-dependent inhibitory activities against PTP1B, with IC50 values of 24.6 and 12.3μM, respectively. Kinetic analysis revealed that 1 is a non-competitive and that 2 is a competitive PTP1B inhibitor. In the molecular docking simulation, compound 2 was stably positioned in the active pocket of PTP1B, and the CDOCKER energy was calculated to be 24.3411kcal/mol. Both compounds demonstrated remarkably high selectivity against four PTPs and revealed cellular activity against the insulin signal transduction pathway. Magnolol (1) and chrysophanol (2) were identified as the principle PTP1B inhibitory active compounds in Masiningan, and their actions were investigated in detail. These findings demonstrated the effectiveness of Masiningan on diabetes mellitus through the inhibition of PTP1B at a molecular level as well as the potential of magnolol (1) and chrysophanol (2) as lead compounds in future anti-diabetes drug development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fungal immunomodulatory proteins in the context of biomedicine.
Uribe-Echeverry, Paula Tatiana; Lopez-Gartner, German Ariel
2017-06-01
Fungi represent a large group of biodiverse microorganisms with potential applications ranging from industrial fields to the treatment for human diseases. A large number of pharmacologically active compounds including terpenoids, polysaccharides and proteins have been derived from these microorganisms. Fungal Immunomodulatory Proteins (FIPs) are a group of active compounds that are being considered for the treatment of asthma, allergy, autoimmune diseases and cancer. Here, we discuss the discovery, heterologous production bioactive mechanisms of action and their potential use in biomedicine.
Toxins and bioactive compounds from cyanobacteria and their implications on human health.
Rao, P V Lakshmana; Gupta, Nidhi; Bhaskar, A S B; Jayaraj, R
2002-07-01
Many species of cyanobacteria (blue-green algae) produce secondary metabolites with potent biotoxic or cytotoxic properties. These metabolites differ from the intermediates and cofactor compounds that are essential for cell structural synthesis and energy transduction. The mass growth of cyanobacteria which develop in fresh, brackish and, marine waters commonly contain potent toxins. Cyanobacterial toxins or cyanotoxins are responsible for or implicated in animal poisoning, human gastroenteritis, dermal contact irritations and primary liver cancer in humans. These toxins (microcystins, nodularins, saxitoxins, anatoxin-a, anatoxin-a(s), cylindrospermopsin) are structurally diverse and their effects range from liver damage, including liver cancer to neurotoxicity. Several incidents of human illness and more recently, the death of 60 haemodialysis patients in Caruaru, Brazil, have been linked to the presence of microcystins in water. In response to the growing concern about the non-lethal acute and chronic effects of microcystins, World Health Organization has recently set a new provisional guideline value for microcystin-LR of 1.0 microg/L in drinking water. Cyanobacteria including microcystin-producing strains produce a large number of peptide compounds, e.g. micropeptins, cyanopeptolins, microviridin, circinamide, aeruginosin, with varying bioactivities and potential pharmacological application. This article discusses briefly cyanobacterial toxins and their implications on human health.
Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; McDougall, Gordon J; Stewart, Derek; Karjalainen, Reijo O
2017-05-01
The non-edible parts of horticultural crops, such as leaves, contain substantial amounts of valuable bioactive compounds which are currently only little exploited. For example, strawberry (Fragaria × ananassa) leaves may be a promising bioresource for diverse health-related applications. However, product standardization sets a real challenge, especially when the leaf material comes from varying cultivars. The first step towards better quality control of berry fruit leaf-based ingredients and supplements is to understand metabolites present and their stability in different plant cultivars, so this study surveyed the distribution of potentially bioactive strawberry leaf metabolites in six different strawberry cultivars. Non-targeted metabolite profiling analysis using LC/qTOF-ESI-MS with data processing via principal component analysis and k-means clustering analysis was utilized to examine differences and commonalities between the leaf metabolite profiles. Quercetin and kaempferol derivatives were the dominant flavonol groups in strawberry leaves. Previously described and novel caffeic and chlorogenic acid derivatives were among the major phenolic acids. In addition, ellagitannins were one of the distinguishing compound classes in strawberry leaves. In general, strawberry leaves also contained high levels of octadecatrienoic acid derivatives, precursors of valuable odour compounds. The specific bioactive compounds found in the leaves of different strawberry cultivars offer the potential for the selection of optimized leaf materials for added-value food and non-food applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Alshaibani, Muhanna; Zin, Noraziah; Jalil, Juriyati; Sidik, Nik; Ahmad, Siti Junaidah; Kamal, Nurkhalida; Edrada-Ebel, Ruangelie
2017-07-28
In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo -( L -Val- L -Pro), cyclo -( L -Leu- L -Pro), cyclo -( L -Phe- L -Pro), cyclo -( L -Val- L -Phe), and N -(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus , with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.
Nosrati, Nagisa; Bakovic, Marica; Paliyath, Gopinadhan
2017-09-25
A unique feature of bioactive food ingredients is their broad antioxidant function. Antioxidants having a wide spectrum of chemical structure and activity beyond basic nutrition; display different health benefits by the prevention and progression of chronic diseases. Functional food components are capable of enhancing the natural antioxidant defense system by scavenging reactive oxygen and nitrogen species, protecting and repairing DNA damage, as well as modulating the signal transduction pathways and gene expression. Major pathways affected by bioactive food ingredients include the pro-inflammatory pathways regulated by nuclear factor kappa B (NF-κB), as well as those associated with cytokines and chemokines. The present review summarizes the importance of plant bioactives and their roles in the regulation of inflammatory pathways. Bioactives influence several physiological processes such as gene expression, cell cycle regulation, cell proliferation, cell migration, etc., resulting in cancer prevention. Cancer initiation is associated with changes in metabolic pathways such as glucose metabolism, and the effect of bioactives in normalizing this process has been provided. Initiation and progression of inflammatory bowel diseases (IBD) which increase the chances of developing of colorectal cancers can be downregulated by plant bioactives. Several aspects of the potential roles of microRNAs and epigenetic modifications in the development of cancers have also been presented.
Conventional and unconventional extraction methods applied to the plant, Thymus serpyllum L
NASA Astrophysics Data System (ADS)
Đukić, D.; Mašković, P.; Vesković Moračanin, S.; Kurćubić, V.; Milijašević, M.; Babić, J.
2017-09-01
This study deals with the application of two conventional and three non-conventional extraction approaches for isolation of bioactive compounds from the plant Thymus serpyllum L. The extracts obtained were tested regarding their chemical profile (content of phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins) and antioxidant activities. Subcritical water extract of Thymus serpyllum L. generally had the highest concentrations of the chemical bioactive compounds examined and the best antioxidant properties.
Chiral Alkyl Halides: Underexplored Motifs in Medicine
Gál, Bálint; Bucher, Cyril; Burns, Noah Z.
2016-01-01
While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation. PMID:27827902
Effect of post-harvest treatment on bioactive phytochemicals of Thai black rice.
Norkaew, Orranuch; Boontakham, Pittayaporn; Dumri, Kanchana; Noenplab, Acharaporn Na Lampang; Sookwong, Phumon; Mahatheeranont, Sugunya
2017-02-15
Because black rice is rich in antioxidants, appropriate methods of post-harvest treatment are necessary for maintaining these bioactive phytochemicals. Drying methods, storage temperatures, storage duration, and packaging methods affected the contents of some bioactive compounds in the two varieties of Thai black rice used in this research. Sun drying reduces the loss of anthocyanins and γ-oryzanols more than does hot air drying. Glutinous black rice stored as paddy at cool room temperature retains more anthocyanins, γ-oryzanols, and vitamin E than does paddy stored at room temperature. Nylon/LLDPE pouches containing N2 are the most suitable packaging for preserving the key aroma compound 2-acetyl-1-pyrroline (2AP), total phenolic, and anthocyanin contents of unpolished aromatic black rice. These pouches also retard the formation of some common off-flavor compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nikolouli, Katerina; Mossialos, Dimitris
2012-08-01
Non-ribosomal peptide synthetases (NRPS) and type-I polyketide synthases (PKS-I) are multimodular enzymes involved in biosynthesis of oligopeptide and polyketide secondary metabolites produced by microorganisms such as bacteria and fungi. New findings regarding the mechanisms underlying NRPS and PKS-I evolution illustrate how microorganisms expand their metabolic potential. During the last decade rapid development of bioinformatics tools as well as improved sequencing and annotation of microbial genomes led to discovery of novel bioactive compounds synthesized by NRPS and PKS-I through genome-mining. Taking advantage of these technological developments metagenomics is a fast growing research field which directly studies microbial genomes or specific gene groups and their products. Discovery of novel bioactive compounds synthesized by NRPS and PKS-I will certainly be accelerated through metagenomics, allowing the exploitation of so far untapped microbial resources in biotechnology and medicine.
Wang, Ruoxi; Tian, Zhigang; Chen, Lingyun
2011-03-15
Novel microparticles (3-5 μm) were created by pre-emulsifying barley proteins with a homogenizer followed a microfluidizer system. These microparticles exhibited a high oil carrying capacity (encapsulation efficiency, 93-97%; loading efficiency, 46-49%). Microparticle degradation and bioactive compound release behaviours were studied in the simulated gastro-intestinal (GI) tract. The data revealed that nano-encapsulations (20-30 nm) were formed as a result of enzymatic degradation of barley protein microparticle bulk matrix in the simulated gastric tract. These nano-encapsulations delivered β-carotene to a simulated human intestinal tract intact, where they were degraded by pancreatic enzymes and steadily released the β-carotene. These uniquely structured microparticles may provide a new strategy for the nutraceutical and pharmaceutical industries to develop targeted delivery systems for lipophilic bioactive compounds. Copyright © 2011 Elsevier B.V. All rights reserved.
Cocoa Shell: A By-Product with Great Potential for Wide Application.
Panak Balentić, Jelena; Ačkar, Đurđica; Jokić, Stela; Jozinović, Antun; Babić, Jurislav; Miličević, Borislav; Šubarić, Drago; Pavlović, Nika
2018-06-09
Solving the problem of large quantities of organic waste, which represents an enormous ecological and financial burden for all aspects of the process industry, is a necessity. Therefore, there is an emerged need to find specific solutions to utilize raw materials as efficiently as possible in the production process. The cocoa shell is a valuable by-product obtained from the chocolate industry. It is rich in protein, dietary fiber, and ash, as well as in some other valuable bioactive compounds, such as methylxanthines and phenolics. This paper gives an overview of published results related to the cocoa shell, mostly on important bioactive compounds and possible applications of the cocoa shell in different areas. The cocoa shell, due to its nutritional value and high-value bioactive compounds, could become a desirable raw material in a large spectrum of functional, pharmaceutical, or cosmetic products, as well as in the production of energy or biofuels in the near future.
Vi, Minhthuan; Yang, Xueqin; Zeng, Xianlu; Chen, Rui'an; Guo, Liqiong; Lin, Junfang; He, Qianyun; Zheng, Qianwang; Wei, Tao
2018-01-01
Hericium erinaceus is a popular culinary and medicinal mushroom in China because of its broad beneficial effects. In this study we evaluated the effects of stimulation with 7 growth regulators at 5 different concentrations on improving the production of nutritional and bioactive compounds by H. erinaceus. Results showed that among all the tested regulators, gibberellic acid (GA) increased protein content (165%), free amino acids (100%), polysaccharides (108%), and polyphenols (26%). Spraying nephthyl acetic acid increased polysaccharides and triterpenoids to 4.37 and 17.27 g/100 g, respectively. Spraying chitosan significantly increased polyphenols by 42%. The addition of triacontanol, indole acetic acid, and 2,4-dichlorophenoxyacetic acid improved the production of proteins, free amino acids, polysaccharides, and polyphenols, but not to the extent that GA did. These results indicate that adding certain growth regulators can effectively improve the production of nutritional and bioactive compounds in H. erinaceus.
Enriching screening libraries with bioactive fragment space.
Zhang, Na; Zhao, Hongtao
2016-08-01
By deconvoluting 238,073 bioactive molecules in the ChEMBL library into extended Murcko ring systems, we identified a set of 2245 ring systems present in at least 10 molecules. These ring systems belong to 2221 clusters by ECFP4 fingerprints with a minimum intracluster similarity of 0.8. Their overlap with ring systems in commercial libraries was further quantified. Our findings suggest that success of a small fragment library is driven by the convergence of effective coverage of bioactive ring systems (e.g., 10% coverage by 1000 fragments vs. 40% by 2million HTS compounds), high enrichment of bioactive ring systems, and low molecular complexity enhancing the probability of a match with the protein targets. Reconciling with the previous studies, bioactive ring systems are underrepresented in screening libraries. As such, we propose a library of virtual fragments with key functionalities via fragmentation of bioactive molecules. Its utility is exemplified by a prospective application on protein kinase CK2, resulting in the discovery of a series of novel inhibitors with the most potent compound having an IC50 of 0.5μM and a ligand efficiency of 0.41kcal/mol per heavy atom. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emerging concepts promising new horizons for marine biodiscovery and synthetic biology.
Reen, F Jerry; Gutiérrez-Barranquero, José A; Dobson, Alan D W; Adams, Claire; O'Gara, Fergal
2015-05-13
The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions.
Emerging Concepts Promising New Horizons for Marine Biodiscovery and Synthetic Biology
Reen, F. Jerry; Gutiérrez-Barranquero, José A.; Dobson, Alan D. W.; Adams, Claire; O’Gara, Fergal
2015-01-01
The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions. PMID:25984990
USDA-ARS?s Scientific Manuscript database
Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in leaf tissues. Relatively few genes associated with biosynthetic pathwa...
The use of marine-derived bioactive compounds as potential hepatoprotective agents
Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K
2015-01-01
The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871
Bioactive Compounds in Functional Meat Products.
Pogorzelska-Nowicka, Ewelina; Atanasov, Atanas G; Horbańczuk, Jarosław; Wierzbicka, Agnieszka
2018-01-31
Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional constituents were chosen: (i) fatty acids; (ii) minerals; (iii) vitamins; (iv) plant antioxidants; (v) dietary fibers; (vi) probiotics and (vii) bioactive peptides. Each of them is discussed in term of their impact on human health as well as some quality attributes of the final products.
Two new bioactive monotetrahydrofuran Annonaceous acetogenins from the bark of Xylopia aromatica.
Colman-Saizarbitoria, T; Gu, Z M; McLaughlin, J L
1994-12-01
Xylopien [1] and xylomatenin [2], two new bioactive monotetrahydrofuran Annonaceous acetogenins, have been isolated from an EtOH extract of the bark of Xylopia aromatica, using bioactivity-directed fractionation employing lethality to brine shrimp. These new compounds each have a double bond in the hydrocarbon chain and have been identified as C-23, C-24 dehydro analogs of xylopiacin and xylomaticin. Their structures were elucidated by spectral analyses of the parent compounds and/or simple chemical derivatives. Their absolute stereochemistries have been established by 1H- and 2D nmr experiments utilizing the production of Mosher esters. These acetogenins showed cytotoxic potencies superior to adriamycin against three human solid tumor cell lines.
Anti-angiogenic activity and phytochemical screening of fruit fractions from Vitex agnus castus.
Certo, Giovanna; Costa, Rosaria; D'Angelo, Valeria; Russo, Marina; Albergamo, Ambrogina; Dugo, Giacomo; Germanò, Maria Paola
2017-12-01
Although the antitumour activity of Vitex agnus castus fruits has been already addressed, no work has yet assessed their anti-angiogenic potential. To this purpose, several extractive fractions of such fruits were tested on zebrafish embrios by EAP assay, so that only the bioactive fractions could be subsequently tested on the chick chorioallantoic membrane by CAM assay. Bioactive fractions were also phytochemically screened to identify those bioactive compounds responsible for anti-angiogenic activity. A marked inhibition of vessel formation was detected only in zebrafish embryos treated with chloroform or ethyl acetate fractions. Considering CAM assay, chloroform fraction induced a strong reduction of microvasculature and haemoglobin content; while lower anti-angiogenic effects of the ethyl acetate fraction were determined. Phytochemical analyses confirmed the presence of several bioactive anti-angiogenic compounds. Overall, obtained preliminary results highlighted a potential anti-angiogenic activity of V. agnus castus fruits.
Taha, Mahmoud N; Krawinkel, Michael B; Morlock, Gertrud E
2015-05-15
Extraction parameters, chemical fingerprint, and the single compounds' activity levels were considered for the selection of active botanicals. For an initial survey, the total bioactivity (i.e., total reducing capacity, total flavonoids contents and free radical scavenging capacity) of 21 aqueous and 21 ethanolic plant extracts was investigated. Ethanolic extracts showed a higher yield and were further analyzed by HPTLC in detail to obtain fingerprints of single flavonoids and further bioactive components. Exemplarily shown for turmeric (Curcuma longa) and milk thistle (Silybum marianum), effect-directed analysis (EDA) was performed using three selected (bio)assays, the Aliivibrio fischeri bioassay, the Bacillus subtilis bioassay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH*) assay. As a proof of principle, the bioactive components found in the extracts were confirmed by HPTLC-MS. Bioassays in combination with planar chromatography directly linked to the known, single effective compounds like curcumin and silibinin. However, also some unknown bioactive components were discovered and exemplarily characterized, which demonstrated the strength of this kind of EDA. HPTLC-UV/Vis/FLD-EDA-MS could become a useful tool for selection of active botanicals and for the activity profiling of the active ingredients therein. The flexibility in effect-directed detections allows a comprehensive survey of effective ingredients in samples. This streamlined methodology comprised a non-targeted, effect-directed screening first, followed by a highly targeted characterization of the discovered bioactive compounds. HPTLC-EDA-MS can also be recommended for bioactivity profiling of food on the food intake side, as not only effective phytochemicals, but also unknown bioactive degradation products during food processing or contamination products or residues or metabolites can be detected. Thus, an efficient survey on potential food intake effects on wellness could be obtained. Having performed both, sum parameter assays and HPTLC analysis, a comparison of both approaches was made and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Polyphenolic composition and antioxidant activity of the under-utilised Prunus mahaleb L. fruit.
Blando, Federica; Albano, Clara; Liu, Yazheng; Nicoletti, Isabella; Corradini, Danilo; Tommasi, Noemi; Gerardi, Carmela; Mita, Giovanni; Kitts, David D
2016-06-01
The identification of novel plant-based functional foods or nutraceutical ingredients that possess bioactive properties with antioxidant function has recently become important to the food, nutraceutical and cosmetic industries. This study evaluates the polyphenolic composition, identifies bioactive compounds and assays the total antioxidant capacity of Prunus mahaleb L. fruits collected from different populations and sampling years in the countryside around Bari (Apulia Region, Italy). We identified nine polyphenolic compounds including major anthocyanins, coumaric acid derivatives and flavonols from P. mahaleb fruits. The anthocyanin content (in some populations > 5 g kg(-1) fresh weight; FW) in the fruit was comparable to that reported for so-called superfruits such as bilberries, chokeberries and blackcurrants. Coumaric acid derivatives comprised a large portion of the total polyphenolic content in the P. mahaleb fruits. Antioxidant activities, assessed using ORAC and TEAC assays, measured up to 150 and 45 mmol Trolox equivalents kg(-1) FW, respectively. Therefore antioxidant capacity of P. mahaleb fruits is relatively high and comparable to that of superfruit varieties that are often used in commercial nutraceutical products. Our findings suggest that mahaleb fruit (currently not consumed fresh or used in other ways) could serve as a source of bioactive compounds and therefore find interest from the functional food and nutraceutical industries, as a natural food colorant and antioxidant ingredient in the formulation of functional foods. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Manosroi, Aranya; Chutoprapat, Romchat; Sato, Yuji; Miyamoto, Kukizo; Hsueh, Kesyin; Abe, Masahiko; Manosroi, Worapaka; Manosroi, Jiradej
2011-03-01
Bioactive compounds [ferulic acid (F), gamma-oryzanol (O) and phytic acid (P)] in rice bran have been widely used as antioxidants in skin care products. However, one of the major problems of antioxidants is the deterioration of their activities during long exposure to air and light. Niosomes have been used to entrap many degradable active agents not only for stability improvement, but also for increasing skin hydration. The objective of this study was to determine antioxidant activities [by in vitro ORAC (oxygen radical absorbance capacity) and ex vivo lipid peroxidation inhibition assay] and in vivo human skin hydration effects of gel and cream containing the rice bran extracts entrapped in niosomes. Gel and cream containing the rice bran extracts entrapped in niosomes showed higher antioxidant activity (ORAC value) at 20-28 micromol of Trolox equivalents (TE) per gram of the sample than the placebo gel and cream which gave 16-18 micromolTE/g. Human sebum treated with these formulations showed more lipid peroxidation inhibition activity than with no treatment of about 1.5 times. The three different independent techniques including corneometer, vapometer and confocal Raman microspectroscopy (CRM) indicated the same trend in human skin hydration enhancement of the gel or cream formulations containing the rice bran extracts entrapped in niosomes of about 20, 3 and 30%, respectively. This study has demonstrated the antioxidant activities and skin hydration enhancement of the rice bran bioactive compounds when entrapped in niosomes and incorporated in cream formulations.
Kim, Jinhee; Soh, Soon Yil; Shin, Juha; Cho, Chi-Woung; Choi, Young Hee; Nam, Sang-Yong
2015-10-01
Bioactives extracted from cactus (Opuntia ficus-indica) stems were investigated for their chemopreventive activities using human cancer cells in vitro. The bioactives present in crude extracts were detected and quantified using high-performance liquid chromatography. Among all the extracts, such as hexane, ethyl acetate (EtOAc), acetone, methanol (MeOH), and MeOH:water (80:20), the MeOH extract had the highest amount of polyphenolic compounds and the acetone extract exhibited the most potent effect at scavenging the 2,2,-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS(•+) ) radical. In addition, most of the extracts, with the exception of hexane, exhibited significant cytotoxicity in human SW480 colon and MCF7 breast cancer cells. Overall, the SW480 cells were more sensitive than the MCF7 cells to the cytotoxic effect of the O. ficus-indica extracts (OFEs). Cell death by OFE treatment caused significant inhibition of cyclooxygenase-2 and increased the Bax/Bcl2 ratio in both SW480 and MCF7 cell lines. However, degradation of poly (ADP-ribose) polymerase was significantly increased by OFE only in the MCF7 cells, thereby inducing apoptosis. These findings demonstrate the health-benefit roles, including anti-oxidative and anti-proliferative activities as well as pro-apoptotic effects, of bioactive compounds in OFEs, suggesting a chemopreventive role in human cancer cells. © 2014 Society of Chemical Industry.
Prakash, Chandra; Sharma, Raman; Gleave, Michelle; Nedderman, Angus
2008-11-01
Drug induced toxicity remains one of the major reasons for failures of new pharmaceuticals, and for the withdrawal of approved drugs from the market. Efforts are being made to reduce attrition of drug candidates, and to minimize their bioactivation potential in the early stages of drug discovery in order to bring safer compounds to the market. Therefore, in addition to potency and selectivity; drug candidates are now selected on the basis of acceptable metabolism/toxicology profiles in preclinical species. To support this, new approaches have been developed, which include extensive in vitro methods using human and animal hepatic cellular and subcellular systems, recombinant human drug metabolizing enzymes, increased automation for higher-throughput screens, sensitive analytical technologies and in silico computational models to assess the metabolism aspects of the new chemical entities. By using these approaches many compounds that might have serious adverse reactions associated with them are effectively eliminated before reaching clinical trials, however some toxicities such as those caused by idiosyncratic responses, are not detected until a drug is in late stages of clinical trials or has become available to the market. One of the proposed mechanisms for the development of idiosyncratic drug toxicity is the bioactivation of drugs to form reactive metabolites by drug metabolizing enzymes. This review discusses the different approaches to, and benefits of using existing in vitro techniques, for the detection of reactive intermediates in order to minimize bioactivation potential in drug discovery.
Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.
2014-01-01
Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases. PMID:25257784
Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B
2014-09-25
Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer's and Parkinson's. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases.
Bioactive compounds isolated from submerged fermentations of the Chilean fungus Stereum rameale.
Aqueveque, Pedro; Céspedes, Carlos Leonardo; Becerra, José; Dávila, Marcelo; Sterner, Olov
2015-01-01
Liquid fermentations of the fungus Stereum rameale (N° 2511) yielded extracts with antibacterial activity. The antibacterial activity reached its peak after 216 h of stirring. Bioassay-guided fractionation methods were employed for the isolation of the bioactive metabolites. Three known compounds were identified: MS-3 (1), vibralactone (2) and vibralactone B (3). The three compounds showed antibacterial activity as a function of their concentration. Minimal bactericidal concentrations (MBC) of compound 1 against Gram-positive bacteria were as follows: Bacillus cereus (50 μg/mL), Bacillus subtilis (10 μg/mL) and Staphylococcus aureus (100 μg/mL). Compounds 2 and 3 were active only against Gram-negative bacteria. The MBC of compound 2 against Escherichia coli was 200 μg/mL. Compound 3 inhibited significantly the growth of E. coli and Pseudomonas aeruginosa, with MBC values of 50 and 100 μg/mL, respectively.
A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance.
Abubakar, Ibrahim Babangida; Malami, Ibrahim; Yahaya, Yakubu; Sule, Sahabi Manga
2018-05-25
Alpinia officinarum Hance is a perennial plant that has been traditionally used for many decades to treat several ailments including inflammation, pain, stomach-ache, cold, amongst others. Pharmacological studies over the years have demonstrated remarkable bioactivities that could be further explored for development of new therapeutic agents against various ailments. The paper critically reviewed the ethno-medicinal uses, pharmacology, and phytochemistry of A. officinarum. Keywords including A. officinarum and its synonyms were searched using electronic databases including ISI web of knowledge, Science direct, Scopus, PubMed, Google scholar and relevant database for Masters and Doctoral theses. A. officinarum is prepared in Asia, Turkey, Morocco and Iran as a decoction, infusion or juice as a single preparation or in combination with other herbs, food or drinks for the treatment of general health problems including cold, inflammation, digestive disorders, etc. Pharmacological studies revealed the potent in vitro and in vivo bioactivities of various parts of A. officinarum that include anti-inflammatory, cytotoxicity, homeostasis, lipid regulation, antioxidant, antiviral, antimicrobial, antiosteoporosis, etc. Over 90 phytochemical constituents have been identified and isolated from A. officinarum comprising vastly of phenolic compounds especially diarylheptanoids isolated from the rhizome and considered the most active bioactive components. In vitro and in vivo studies have confirmed the potency of A. officinarum. However, further studies are required to establish the mechanisms mediating its bioactivities in relation to the medicinal uses as well as investigating any potential toxicity for future clinical studies. Copyright © 2018 Elsevier B.V. All rights reserved.
A Review Study on Macrolides Isolated from Cyanobacteria.
Wang, Mengchuan; Zhang, Jinrong; He, Shan; Yan, Xiaojun
2017-04-26
Cyanobacteria are rich sources of structurally-diverse molecules with promising pharmacological activities. Marine cyanobacteria have been proven to be true producers of some significant bioactive metabolites from marine invertebrates. Macrolides are a class of bioactive compounds isolated from marine organisms, including marine microorganisms in particular. The structural characteristics of macrolides from cyanobacteria mainly manifest in the diversity of carbon skeletons, complexes of chlorinated thiazole-containing molecules and complex spatial configuration. In the present work, we systematically reviewed the structures and pharmacological activities of macrolides from cyanobacteria. Our data would help establish an effective support system for the discovery and development of cyanobacterium-derived macrolides.
Vallejo, María José; Salazar, Lizeth; Grijalva, Marcelo
2017-01-01
Medicinal and aromatic plants (MAPs) are known and have been long in use for a variety of health and cosmetics applications. Potential pharmacological usages that take advantage of bioactive plant-derived compounds' antimicrobial, antifungal, anti-inflammatory, and antioxidant properties are being developed and many new ones explored. Some phytochemicals could trigger ROS-mediated cytotoxicity and apoptosis in cancer cells. A lot of effort has been put into investigating novel active constituents for cancer therapeutics. While other plant-derived compounds might enhance antioxidant defenses by either radical scavenging or stimulation of intracellular antioxidant enzymes, the generation of reactive oxygen species (ROS) leading to oxidative stress is one of the strategies that may show effective in damaging cancer cells. The biochemical pathways involved in plant-derived bioactive compounds' properties are complex, and in vitro platforms have been useful for a comprehensive understanding of the mechanism of action of these potential anticancer drugs. The present review aims at compiling the findings of particularly interesting studies that use cancer cell line models for assessment of antioxidant and oxidative stress modulation properties of plant-derived bioactive compounds.
Chiang, Yin-Ru; Li, Ann; Leu, Yann-Lii; Fang, Jia-You; Lin, Yin-Ku
2013-11-21
Indigo naturalis is effective in treating nail psoriasis coexisting with microorganism infections. This study examines the antimicrobial effects of indigo naturalis prepared from Strobilanthes formosanus Moore. Eight bacterial and seven fungal strains were assayed using the agar diffusion method to examine the effects of indigo naturalis and its bioactive compounds. The bioactive compounds of indigo naturalis were purified sequentially using GFC, TLC, and HPLC. Their structures were identified using mass spectrometry and NMR spectroscopy. UPLC-MS/MS was applied to compare the metabolome profiles of indigo naturalis ethyl-acetate (EA) extract and its source plant, Strobilanthes formosanus Moore. The results of in vitro antimicrobial assays showed that indigo naturalis EA-extract significantly (≥1 mg/disc) inhibits Gram-positive bacteria (Staphylococcus aureus, S. epidermis and methicillin-resistant S. aureus (MRSA)) and mildly inhibits non-dermatophytic onychomycosis pathogens (Aspergillus fumigates and Candida albicans), but has little effect on dermatophyes. Isatin and tryptanthrin were identified as the bioactive compounds of indigo naturalis using S. aureus and S. epidermis as the bioassay model. Both bioactive ingredients had no effect on all tested fungi. In summary, indigo naturalis prepared from Strobilanthes formosanus Moore exhibits antimicrobial effects on Staphylococcus and non-dermatophytic onychomycosis pathogens. Tryptanthrin and isatin may be its major bioactive ingredients against Staphylococcus and the inhibitory effect on MRSA may be due to other unidentified ingredients.
Zhang, Shihua; Xuan, Hongdong; Zhang, Liang; Fu, Sicong; Wang, Yijun; Yang, Hua; Tai, Yuling; Song, Youhong; Zhang, Jinsong; Ho, Chi-Tang; Li, Shaowen; Wan, Xiaochun
2017-09-01
Tea is one of the most consumed beverages in the world. Considerable studies show the exceptional health benefits (e.g. antioxidation, cancer prevention) of tea owing to its various bioactive components. However, data from these extensively published papers had not been made available in a central database. To lay a foundation in improving the understanding of healthy tea functions, we established a TBC2health database that currently documents 1338 relationships between 497 tea bioactive compounds and 206 diseases (or phenotypes) manually culled from over 300 published articles. Each entry in TBC2health contains comprehensive information about a bioactive relationship that can be accessed in three aspects: (i) compound information, (ii) disease (or phenotype) information and (iii) evidence and reference. Using the curated bioactive relationships, a bipartite network was reconstructed and the corresponding network (or sub-network) visualization and topological analyses are provided for users. This database has a user-friendly interface for entry browse, search and download. In addition, TBC2health provides a submission page and several useful tools (e.g. BLAST, molecular docking) to facilitate use of the database. Consequently, TBC2health can serve as a valuable bioinformatics platform for the exploration of beneficial effects of tea on human health. TBC2health is freely available at http://camellia.ahau.edu.cn/TBC2health. © The Author 2016. Published by Oxford University Press.
Biological Targets and Mechanisms of Action of Natural Products from Marine Cyanobacteria
Salvador-Reyes, Lilibeth A.
2015-01-01
Marine cyanobacteria are an ancient group of organisms and prolific producers of bioactive secondary metabolites. These compounds are presumably optimized by evolution over billions of years to exert high affinity for their intended biological target in the ecologically relevant organism but likely also possess activity in different biological contexts such as human cells. Screening of marine cyanobacterial extracts for bioactive natural products has largely focused on cancer cell viability; however, diversification of the screening platform led to the characterization of many new bioactive compounds. Targets of compounds have oftentimes been elusive if the compounds were discovered through phenotypic assays. Over the past few years, technology has advanced to determine mechanism of action (MOA) and targets through reverse chemical genetic and proteomic approaches, which has been applied to certain cyanobacterial compounds and will be discussed in this review. Some cyanobacterial molecules are the most-potent-in-class inhibitors and therefore may become valuable tools for chemical biology to probe protein function but also be templates for novel drugs, assuming in vitro potency translates into cellular and in vivo activity. Our review will focus on compounds for which the direct targets have been deciphered or which were found to target a novel pathway, and link them to disease states where target modulation may be beneficial. PMID:25571978
Shu, Xiaoyun; Tang, Yuping; Jiang, Chenxue; Shang, Erxing; Fan, Xinshen; Ding, Anwei
2012-11-01
A high performance liquid chromatographic (HPLC) method with diode array detection (DAD) was established for simultaneous determination of seven main bioactive components in San-ao decoction and its series of formulae (San-ao decoction, Wu-ao decoction, Qi-ao decoction and Jia-wei San-ao decoction). Seven compounds were analyzed simultaneously with a XTerra C(18) column (4.6 mm × 250 mm, 5 µm) using a linear gradient elution of a mobile phase containing acetonitrile (A) and a buffer solution (0.02 mol/L potassium dihydrogen phosphate and adjusted to pH 3 using phosphoric acid) (B); the flow rate was 1.0 mL/min. The sample was detected with DAD at 210, 254 and 360 nm and the column was maintained at 30 °C. All the compounds showed good linearity (r2 > 0.9984) in the tested concentration range. The precisions were evaluated by intra-day and inter-day tests, and relative standard deviation (R.S.D.) values within the range of 0.83%–2.53% and 0.64%–2.77% were reported, respectively. The recoveries of the quantified compounds were observed to cover a range from 95.34% and 104.82% with R.S.D. values less than 2.72%. The validated method was successfully applied for the simultaneous determination of seven main bioactive components including ephedrine (1), amygdalin (2), liquiritin (3), benzoic acid (4), isoliquiritin (5), formononetin (6) and glycyrrhizic acid (7) in San-ao decoction and its series of formulae. The results also showed a wide variation in the content of the identified active compounds in these samples, which could also be helpful to illustrate the drug interactions after some herbs combined in different formulations.
Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2017-06-01
Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.
Chávez-Santoscoy, Rocio A.; Lazo-Vélez, Marco A.; Serna-Sáldivar, Sergio O.; Gutiérrez-Uribe, Janet A.
2016-01-01
Cereal-based products can be used as vehicles for the delivery of relevant bioactive compounds since they are staple foods for most cultures throughout the world. The health promoting benefits of flavonoids and saponins contained in black bean seed coats have been previously described. In the present work, the effect of adding flavonoids and saponins from black bean seed coat to the typical yeast-leavened whole wheat bread formulation in terms of bread features, organoleptic properties and phytochemical profile was studied. The retention of bioactive compounds was determined and the inhibitory effects of in vitro enzyme digested samples on two colon cancer cell lines (Caco-2 and HT29) was evaluated. The addition of bioactive compounds did not significantly affect baking properties or texture parameters. Among organoleptic properties of enriched breads, only crumb color was affected by the addition of bioactive compounds. However, the use of whole wheat flour partially masked the effect on color. More than 90% of added flavonoids and saponins and 80% of anthocyanins were retained in bread after baking. However, saponins were reduced more than 50% after the in vitro enzyme digestion. The black bean seed coat phytochemicals recovered after in vitro enzyme digestion of enriched breads significantly reduced by 20% the viability of colon cancer cells without affecting standard fibroblast cells (p < 0.05). PMID:26901186
Chávez-Santoscoy, Rocio A; Lazo-Vélez, Marco A; Serna-Sáldivar, Sergio O; Gutiérrez-Uribe, Janet A
2016-02-17
Cereal-based products can be used as vehicles for the delivery of relevant bioactive compounds since they are staple foods for most cultures throughout the world. The health promoting benefits of flavonoids and saponins contained in black bean seed coats have been previously described. In the present work, the effect of adding flavonoids and saponins from black bean seed coat to the typical yeast-leavened whole wheat bread formulation in terms of bread features, organoleptic properties and phytochemical profile was studied. The retention of bioactive compounds was determined and the inhibitory effects of in vitro enzyme digested samples on two colon cancer cell lines (Caco-2 and HT29) was evaluated. The addition of bioactive compounds did not significantly affect baking properties or texture parameters. Among organoleptic properties of enriched breads, only crumb color was affected by the addition of bioactive compounds. However, the use of whole wheat flour partially masked the effect on color. More than 90% of added flavonoids and saponins and 80% of anthocyanins were retained in bread after baking. However, saponins were reduced more than 50% after the in vitro enzyme digestion. The black bean seed coat phytochemicals recovered after in vitro enzyme digestion of enriched breads significantly reduced by 20% the viability of colon cancer cells without affecting standard fibroblast cells (p < 0.05).
Alvin, A; Kalaitzis, J A; Sasia, B; Neilan, B A
2016-05-01
To initiate a genetic and bioactivity-based screening programme of culturable endophytes to identify micro-organisms capable of producing bioactive polyketides and peptides. Fungal endophytes were isolated from flowers, leaves and roots of Rhoeo spathacea, revealing a community consisting of Colletotrichum sp., Fusarium sp., Guignardia sp., Phomopsis sp., Phoma sp. and Microdochium sp. Genetic screening showed that all isolates had polyketide synthase (PKS) genes and most had nonribosomal peptide synthetase (NRPS) genes. Ethyl acetate extracts of the fungal isolates exhibited antiproliferative activity against at least one of the seven bacterial and mycobacterial test strains. Nuclear Magnetic Resonance -guided fractionation of the crude extract from a Fusarium sp. strain which exhibited strong antiproliferative activity against Mycobacterium tuberculosis resulted in the isolation of the polyketide javanicin. This compound was active against Myco. tuberculosis (MIC = 25 μg ml(-1)) and Mycobacterium phlei (MIC = 50 μg ml(-1)). The medicinal plant R. spathacea hosts a variety of fungal endophytes capable of producing antibacterial and antimycobacterial compounds. There is a positive correlation between the presence of PKS and/or NRPS encoding genes in endophytes and the bioactivity of their respective organic extracts. This is the first report on the fungal endophytic diversity of R. spathacea, and the isolation of an antimycobacterial compound from the plant which has been traditionally used for the treatment of tuberculosis symptoms. © 2016 The Society for Applied Microbiology.
Tommonaro, Giuseppina; Speranza, Giovanna; De Prisco, Rocco; Iodice, Carmine; Crudele, Egle; Abbamondi, Gennaro Roberto; Nicolaus, Barbara
2017-12-01
The antioxidant properties and bioactive compound contents of fresh new tomato hybrids before and after in vitro digestion were investigated. To this aim, the antioxidant activities of lipophilic, hydrophilic and polyphenolic extracts of tomato hybrids were determined by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DMPD (N,N-dimethyl-p-phenylenediamine dihydrochloride) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods respectively, while the bioactive compound contents were estimated via Folin-Ciocalteu (polyphenols), pH differential (anthocyanins) and high-performance liquid chromatography (lycopene and β-carotene) methods. After the digestion process, a marked loss (ranging from 37 to 77%) of antioxidant capacity linked to the hydrophilic fraction was observed. In contrast, the lipophilic and methanolic fractions showed an increase in antioxidant activity (ranging from 9 to 40%) after gastric digestion, and a rapid decrease was observed after total digestion. Moreover, the presence of anthocyanins and carotenoids after simulated digestion was a notable result. The bioavailability of bioactive metabolites from nutraceutical food and their healthful properties in humans are strictly dependent on the digestion process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents.
Jabeur, Inès; Pereira, Eliana; Barros, Lillian; Calhelha, Ricardo C; Soković, Marina; Oliveira, M Beatriz P P; Ferreira, Isabel C F R
2017-10-01
The nutritional and bioactive composition of plants have aroused much interest not only among scientists, but also in people's daily lives. Apart from the health benefits, plants are a source of pigments that can be used as natural food colorants. In this work, the nutritional composition of Hibiscus sabdariffa L. was analysed, as well as its bioactive compounds and natural pigments. Glucose (sugar), malic acid (organic acid), α-tocopherol (tocopherol) and linoleic acid (fatty acid) were the major constituents in the corresponding classes. 5-(Hydroxymethyl) furfural was the most abundant non-anthocyanin compound, while delphinidin-3-O-sambubioside was the major anthocyanin both in its hydroethanolic extract and infusion. H. sabdariffa extracts showed antioxidant and antimicrobial activities, highlighting that the hydroethanol extract presents not only lipid peroxidation inhibition capacity, but also bactericidal/fungicidal inhibition ability for all the bacteria and fungi tested. Furthermore, both extracts revealed the absence of toxicity using porcine primary liver cells. The studied plant species was thus not only interesting for nutritional purposes but also for bioactive and colouring applications in food, cosmetic and pharmaceutical industries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of the Biosynthetic Potential of Endophytes in Traditional Chinese Anticancer Herbs
Miller, Kristin I.; Qing, Chen; Sze, Daniel Man Yuen; Neilan, Brett A.
2012-01-01
Traditional Chinese medicine encompasses a rich empirical knowledge of the use of plants for the treatment of disease. In addition, the microorganisms associated with medicinal plants are also of interest as the producers of the compounds responsible for the observed plant bioactivity. The present study has pioneered the use of genetic screening to assess the potential of endophytes to synthesize bioactive compounds, as indicated by the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes. The total DNA extracts of 30 traditional Chinese herbs, were screened for functional genes involved in the biosynthesis of bioactive compounds. The four PCR screens were successful in targeting four bacterial PKS, six bacterial NRPS, ten fungal PKS and three fungal NRPS gene fragments. Analysis of the detected endophyte gene fragments afforded consideration of the possible bioactivity of the natural products produced by endophytes in medicinal herbs. This investigation describes a rapid method for the initial screening of medicinal herbs and has highlighted a subset of those plants that host endophytes with biosynthetic potential. These selected plants can be the focus of more comprehensive endophyte isolation and natural product studies. PMID:22629306
Hernández-Carrión, M; Vázquez-Gutiérrez, J L; Hernando, I; Quiles, A
2014-01-01
Rojo Brillante is an astringent oriental persimmon variety with high levels of bioactive compounds such as soluble tannins, carotenoids, phenolic acids, and dietary fiber. The purpose of this study was to investigate the effects of high hydrostatic pressure (HHP) and pasteurization on the structure of the fruit and on the extractability of certain bioactive compounds. The microstructure was studied using light microscopy, transmission electron microscopy, and low temperature scanning electron microscopy, and certain physicochemical properties (carotenoid and total soluble tannin content, antioxidant activity, fiber content, color, and texture properties) were measured. The structural changes induced by HHP caused a rise in solute circulation in the tissues that could be responsible for the increased carotenoid level and the unchanged antioxidant activity in comparison with the untreated persimmon. In contrast, the changes that took place during pasteurization lowered the tannin content and antioxidant activity. Consequently, HHP treatment could improve the extraction of potentially bioactive compoundsxsts from persimmons. A high nutritional value ingredient to be used when formulating new functional foods could be obtained using HHP. © 2013 Institute of Food Technologists®
Chaita, Eliza; Gikas, Evagelos; Aligiannis, Nektarios
2017-03-01
In drug discovery, bioassay-guided isolation is a well-established procedure, and still the basic approach for the discovery of natural products with desired biological properties. However, in these procedures, the most laborious and time-consuming step is the isolation of the bioactive constituents. A prior identification of the compounds that contribute to the demonstrated activity of the fractions would enable the selection of proper chromatographic techniques and lead to targeted isolation. The development of an integrated HPTLC-based methodology for the rapid tracing of the bioactive compounds during bioassay-guided processes, using multivariate statistics. Materials and Methods - The methanol extract of Morus alba was fractionated employing CPC. Subsequently, fractions were assayed for tyrosinase inhibition and analyzed with HPTLC. PLS-R algorithm was performed in order to correlate the analytical data with the biological response of the fractions and identify the compounds with the highest contribution. Two methodologies were developed for the generation of the dataset; one based on manual peak picking and the second based on chromatogram binning. Results and Discussion - Both methodologies afforded comparable results and were able to trace the bioactive constituents (e.g. oxyresveratrol, trans-dihydromorin, 2,4,3'-trihydroxydihydrostilbene). The suggested compounds were compared in terms of R f values and UV spectra with compounds isolated from M. alba using typical bioassay-guided process. Chemometric tools supported the development of a novel HPTLC-based methodology for the tracing of tyrosinase inhibitors in M. alba extract. All steps of the experimental procedure implemented techniques that afford essential key elements for application in high-throughput screening procedures for drug discovery purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Wen, Chao; Wang, Dongshan; Li, Xing; Huang, Tao; Huang, Cheng; Hu, Kaifeng
2018-02-20
The anti-hyperlipidemic effects of crude crabapple extracts derived from Malus 'Red jade', Malus hupehensis (Pamp.) Rehd. and Malus prunifolia (Willd.) Borkh. were evaluated on high-fat diet induced obese (HF DIO) mice. The results revealed that some of these extracts could lower serum cholesterol levels in HF DIO mice. The same extracts were also parallelly analyzed by LC-MS in both positive and negative ionization modes. Based on the pharmacological results, 22 LC-MS variables were identified to be correlated with the anti-hyperlipidemic effects using partial least square discriminant analysis (PLS-DA) and independent samples t-test. Further, under the guidance of the bioactivity-correlated LC-MS signals, 10 compounds were targetedly isolated and enriched using UPLC-DAD-MS-SPE and identified/elucidated by NMR together with MS/MS as citric acid(1), p-coumaric acid(2), hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7), gentiopicroside(8), ursolic acid(9) and 8-epiloganic acid(10). Among these 10 compounds, 6 compounds, hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7) and ursolic acid(9), were individually studied and reported to indeed have effects on lowering the serum lipid levels. These results demonstrated the efficiency of this strategy for drug discovery. In contrast to traditional routes to discover bioactive compounds in the plant extracts, targeted isolation and identification of bioactive compounds in the crude plant extracts using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA of LC-MS data brings forward a new efficient dereplicated approach to natural products research for drug discovery. Copyright © 2017 Elsevier B.V. All rights reserved.
Abiri, Rambod; Silva, Abraão Lincoln Macedo; de Mesquita, Ludmilla Santos Silva; de Mesquita, José Wilson Carvalho; Atabaki, Narges; de Almeida, Eduardo Bezerra; Shaharuddin, Noor Azmi; Malik, Sonia
2018-07-01
Artemisia vulgaris is one of the important medicinal plant species of the genus Artemisia, which is usually known for its volatile oils. The genus Artemisia has become the subject of great interest due to its chemical and biological diversity as well as the discovery and isolation of promising anti-malarial drug artemisinin. A. vulgaris has a long history in treatment of human ailments by medicinal plants in various parts of the world. This medicinal plant possesses a broad spectrum of therapeutic properties including: anti-malarial, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-tumoral, immunomodulatory, hepatoprotective, anti-spasmodic and anti-septic. These activities are mainly attributed to the presence of various classes of secondary metabolites, including flavonoids, sesquiterpene lactones, coumarins, acetylenes, phenolic acids, organic acids, mono- and sesquiterpenes. Studies related to A. vulgaris morphology, anatomy and phytochemistry has gained a significant interest for better understanding of production and accumulation of therapeutic compounds in this species. Recently, phytochemical and pharmacological investigations have corroborated the therapeutic potential of bioactive compounds of A. vulgaris. These findings provided further evidence for gaining deeper insight into the identification and isolation of novel compounds, which act as alternative sources of anti-malarial drugs in a cost-effective manner. Considering the rising demand and various medical applications of A. vulgaris, this review highlights the recent reports on the chemistry, biological activities and biotechnological interventions for controlled and continuous production of bioactive compounds from this plant species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marine Algicolous Endophytic Fungi - A Promising Drug Resource of the Era.
Sarasan, Manomi; Puthumana, Jayesh; Job, Neema; Han, Jeonghoon; Lee, Jae-Seong; Philip, Rosamma
2017-06-28
Endophytic fungi have currently been acknowledged as the most promising source of bioactive compounds for drug discovery, and considerable progress has been made in exploring their diversity, species richness, and bioprospecting. Fungal endophytes from unique environmental settings offer a pool of potentially useful medicinal entities. Owing to the constant stresses imposed on macroalgae by marine environments, it is believed that algae and their associated endophytic symbionts represent a good source of structurally diverse bioactive secondary metabolites. Despite the proven significance of active metabolites of algal endophytes, little have been exploited. This review highlights the latest discoveries in algicolous endophytic research, with particular focus on the bioactive metabolites from algal endophytes. Compounds are classified according to their reported biological activities, like anticancer, antibacterial, antifungal, and antioxidant properties. Present experimental evidence suggests that a majority of the bioactive metabolites were reported from Phaeophyceae followed by Rhodophyceae and Chlorophyceae. An intensive search for newer and more effective bioactive metabolites has generated a treasure trove of publications, and this review partially covers the literature published up to 2016.
Er, Chin Ming; Sunar, N M; Leman, A M; Othman, N
2015-01-01
Indoor air pollution by airborne fungi has risen to become a common issue all over the world and it is hazardous to indoor occupants' health as it is associated with a series of respiratory-related and skin-related diseases. Selected bioactive compounds from the food industry have been suggested to be effective against individual fungus isolated from indoor environment. However, the techniques used to evaluate these compounds were lengthy and unsuitable against total airborne fungi. Therefore, this paper describes an assay to assess the effectiveness of a bioactive compound to inhibit growth of total airborne fungi.•A combination and modification of previous methods and the NIOSH Manual Analytical Standard Method (NMAM 0800) is proposed.•This method concurrently samples the total airborne fungi and evaluates the ability of bioactive compounds (potassium sorbate in this paper), as a biocide, to treat these indoor airborne fungi.•The current method shortens the time of evaluation from 30 days to only 5 days and employs the counting of colony forming units (CFUs) to ease the measurement of the growth of fungi.
Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed
2017-04-15
Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Bioactive compounds from orange epicarp to enrich fish burgers.
Spinelli, Sara; Lecce, Lucia; Likyova, Desislava; Del Nobile, Matteo Alessandro; Conte, Amalia
2018-05-01
The orange industry produces considerable amounts of by-products, traditionally used for animal feed or fuel production. Most of these by-products could be used as functional ingredients. To assess the potential food application of orange epicarp, different percentages of micro-encapsulated orange extract were added to fresh fish burgers. Then, an in vitro digestion was also carried out, before and after micro-encapsulation, to measure the bio-accessibility of the active compounds. A significant increase of bio-accessibility of bioactive compounds has been observed in the orange epicarp extract after micro-encapsulation by spray-drying. From the sensory point of view, the fish sample enriched with 50 g kg -1 micro-encapsulated extract was the most comparable to the control burger, even if it showed a higher phenolic, flavonoid and carotenoid bio-accessibility. Orange epicarp may be used as a food additive to enhance the health content of food products. The micro-encapsulation is a valid technique to protect the bioactive compounds and increase their bio-accessibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Robles-Sánchez, R M; Islas-Osuna, M A; Astiazarán-García, H; Vázquez-Ortiz, F A; Martín-Belloso, O; Gorinstein, S; González-Aguilar, G A
2009-04-01
To measure bioactive compound losses due to minimal processing, mature green fresh-cut mangoes (Mangifera indica L.) cv. "Ataulfo" were subjected to an antioxidant treatment and stored at 5 degrees C during 15 d. Quality index, total phenols, flavonoids, beta-carotene, ascorbic acid, vitamin E, and antioxidant activity were measured during the storage period of fruits. Antioxidant capacity was estimated using ORAC(FL), TEAC, and DPPH assays. The dipping treatments with ascorbic acid (AA) + citric acid (CA) + CaCl2 affected positively quality delaying deterioration of fresh-cut mango as compared with whole fruit. However, dipping treatment affected the consumer preferences of fresh-cut mangoes. The highest vitamin C, beta-carotene, and vitamin E losses were observed after 10 d, being similar in whole and fresh-cut mangoes. The antioxidant activity was not significantly affected by storage time. We conclude that fresh-cut mangoes retained their bioactive compound content during storage and their antioxidant and nutritional properties make them a good source of these compounds.
Meng, Jiang; Leung, Kelvin Sze-Yin; Dong, Xiao-Ping; Zhou, Yi-Sheng; Jiang, Zhi-Hong; Zhao, Zhong-Zhen
2009-12-01
An on-line high performance liquid chromatography (HPLC)-diode array detector (DAD)-electrospray ionization mass spectrometry (ESI-MS) method has been developed to quantify simultaneously eight bioactive chemical components in Houttuynia cordata Thunb and related Saururaceae medicinal plants. Simultaneous separation of these eight compounds was achieved on a C(18) analytical column with gradient elution of acetonitrile and 0.2% acetic acid (v/v) at a flow rate of 0.6 mL/min and being detected at 280 nm. These eight compounds were completely separated within 90 min. Good linear regression relationship (r(2)>0.9978) within test ranges was shown in all calibration curves. Good repeatabilty for the quantification of these eight compounds in H.cordata was also demonstrated in this method, with intra- and inter-day variations less than 3.0%. The method established was successfully applied to quantify eight bioactive compounds in closely related species of H.cordata, which provides a new basis for quality assessment of H.cordata.
Adhikari, Bhaskar Mani; Bajracharya, Alina; Shrestha, Ashok K
2016-01-01
Stinging nettle (Urtica dioica. L) is a wild, unique herbaceous perennial flowering plant with Stinging hairs. It has a long history of use as a food sources as a soup or curries, and also used as a fiber as well as a medicinal herb. The current aim was to analyze the composition and bioactive compounds in Nepalese Stinging nettle. Chemical analysis showed the relatively higher level of crude protein (33.8%), crude fiber (9.1%), crude fat (3.6%), total ash (16.2%), carbohydrate (37.4%), and relatively lower energy value (307 kcal/100 g) as compared to wheat and barley flours. Analysis of nettle powder showed significantly higher level of bioactive compounds: phenolic compounds as 129 mg Gallic acid equivalent/g; carotenoid level 3497 μg/g; tannin 0.93 mg/100 g; anti-oxidant activity 66.3 DPPH inhibition (%), as compared to wheat and barley. This study further established that nettle plants as very good source of energy, proteins, high fiber, and a range of health benefitting bioactive compounds.
Mena, Pedro; Tassotti, Michele; Andreu, Lucía; Nuncio-Jáuregui, Nallely; Legua, Pilar; Del Rio, Daniele; Hernández, Francisca
2018-06-01
Prickly pear is an important source of bioactive compounds. However, a comprehensive characterization of the phytochemical profile of its aerial botanical parts, considering genotypic differences, has not been conducted. This study evaluated the phytochemical composition of four botanical parts (fruit pulp and skin, and young and adult cladodes) of six cultivars. Analysis was carried out by using two non-targeted UHPLC-ESI-MS n experimental conditions and assisted with multivariate analysis to facilitate data interpretation. Up to 41 compounds, mainly (poly)phenolic molecules, were identified and quantified, 23 compounds being reported for the first time in Opuntia ficus-indica. Phenolic composition varied significantly depending on the part of the plant. Betalains were detected only in the fruit of a red cultivar. This study provided novel insights in terms of identification of bioactives and thorough characterization of botanical parts of prickly pears. This information may be used for the development of prickly pear-derived products with high levels of bioactive compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vitale, Rosa Maria; Rispoli, Vincenzo; Desiderio, Doriana; Sgammato, Roberta; Thellung, Stefano; Canale, Claudio; Vassalli, Massimo; Carbone, Marianna; Ciavatta, Maria Letizia; Mollo, Ernesto; Felicità, Vera; Arcone, Rosaria; Gavagnin Capoggiani, Margherita; Masullo, Mariorosario; Florio, Tullio; Amodeo, Pietro
2018-03-07
Multitargeting or polypharmacological approaches, looking for single chemical entities retaining the ability to bind two or more molecular targets, are a potentially powerful strategy to fight complex, multifactorial pathologies. Unfortunately, the search for multiligand agents is challenging because only a small subset of molecules contained in molecular databases are bioactive and even fewer are active on a preselected set of multiple targets. However, collections of natural compounds feature a significantly higher fraction of bioactive molecules than synthetic ones. In this view, we searched our library of 1175 natural compounds from marine sources for molecules including a 2-aminoimidazole+aromatic group motif, found in known compounds active on single relevant targets for Alzheimer's disease (AD). This identified two molecules, a pseudozoanthoxanthin (1) and a bromo-pyrrole alkaloid (2), which were predicted by a computational approach to possess interesting multitarget profiles on AD target proteins. Biochemical assays experimentally confirmed their biological activities. The two compounds inhibit acetylcholinesterase, butyrylcholinesterase, and β-secretase enzymes in high- to sub-micromolar range. They are also able to prevent and revert β-amyloid (Aβ) aggregation of both Aβ 1-40 and Aβ 1-42 peptides, with 1 being more active than 2. Preliminary in vivo studies suggest that compound 1 is able to restore cholinergic cortico-hippocampal functional connectivity.
Zhao, Huading; Hu, Xin; Chen, Xiaoqin; Shi, Shuyun; Jiang, Xinyu; Liang, Xuejuan; Chen, Wei; Zhang, Shuihan
2015-06-12
Due to the complexity of natural products, efficient identification of bioactive compounds, especially for minor compounds, would require a huge effort. Here, we developed an effective strategy based on combining major constituents' knockout with high-performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS) to comprehensively identify minor antioxidants in Malus doumeri, one of the longest known and most used tonic plant in Taiwan. First, five major compounds (I-V) in M. doumeri were knocked out by two-step stepwise high-speed countercurrent chromatography (HSCCC). Second, minor antioxidants were screened by 1,1-diphenyl-2-picrylhydrazyl radical-HPLC (DPPH-HPLC) assay. Third, structures of thirty minor antioxidants, including 11 dihydrochalcones, 4 flavanones, 3 flavonols, 2 flavones, 3 aurones and 7 phenolic acids, were unambiguously or tentatively identified by matching their characteristic UV spectra, accurate mass signals and key diagnostic fragment ions with standards or previously reported compounds. Twenty-six of them, as far as was known, were discovered from M. doumeri for the first time. The results indicated that the proposed method was a useful approach to explore minor bioactive compounds from complex natural products. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.
Shah, Falgun; Greene, Nigel
2014-01-21
The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds.
Bioactive natural products from Chinese marine flora and fauna
Zhou, Zhen-fang; Guo, Yue-wei
2012-01-01
In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail. PMID:22941288
Liu, J Y; Song, Y C; Zhang, Z; Wang, L; Guo, Z J; Zou, W X; Tan, R X
2004-11-09
Aspergillus fumigatus CY018 was recognized as an endophytic fungus for the first time in the leaf of Cynodon dactylon. By bioassay-guided fractionation, the EtOAc extract of a solid-matrix steady culture of this fungus afforded two new metabolites, named asperfumoid (1) and asperfumin (2), together with six known bioactive compounds including monomethylsulochrin, fumigaclavine C, fumitremorgin C, physcion, helvolic acid and 5alpha,8alpha-epidioxy-ergosta-6,22-diene-3beta-ol as well as other four known compounds ergosta-4,22-diene-3beta-ol, ergosterol, cyclo(Ala-Leu) and cyclo(Ala-Ile). Through detailed spectroscopic analyses including HRESI-MS, homo- and hetero-nuclear correlation NMR experiments (HMQC, COSY, NOESY and HMBC), the structures of asperfumoid and asperfumin were established to be spiro-(3-hydroxyl-2,6-dimethoxyl-2,5-diene-4-cyclohexone-(1,3')-5'-methoxyl-7'-methyl-(1'H, 2'H, 4'H)-quinoline-2',4'-dione) and 5-hydroxyl-2-(6-hydroxyl-2-methoxyl-4-methylbenzoyl)-3,6-dimethoxyl-benzoic methyl ester, respectively. All of the 12 isolates were subjected to in vitro bioactive assays against three human pathogenic fungi Candida albicans, Tricophyton rubrum and Aspergillus niger. As a result, asperfumoid, fumigaclavine C, fumitremorgin C, physcion and helvolic acid were shown to inhibit C. albicans with MICs of 75.0, 31.5, 62.5, 125.0 and 31.5 microg/mL, respectively.
Nothias, Louis-Félix; Boutet-Mercey, Stéphanie; Cachet, Xavier; De La Torre, Erick; Laboureur, Laurent; Gallard, Jean-François; Retailleau, Pascal; Brunelle, Alain; Dorrestein, Pieter C; Costa, Jean; Bedoya, Luis M; Roussi, Fanny; Leyssen, Pieter; Alcami, José; Paolini, Julien; Litaudon, Marc; Touboul, David
2017-10-27
A supercritical fluid chromatography-based targeted purification procedure using tandem mass spectrometry and molecular networking was developed to analyze, annotate, and isolate secondary metabolites from complex plant extract mixture. This approach was applied for the targeted isolation of new antiviral diterpene esters from Euphorbia semiperfoliata whole plant extract. The analysis of bioactive fractions revealed that unknown diterpene esters, including jatrophane esters and phorbol esters, were present in the samples. The purification procedure using semipreparative supercritical fluid chromatography led to the isolation and identification of two new jatrophane esters (13 and 14) and one known (15) and three new 4-deoxyphorbol esters (16-18). The structure and absolute configuration of compound 16 were confirmed by X-ray crystallography. This compound was found to display antiviral activity against Chikungunya virus (EC 50 = 0.45 μM), while compound 15 proved to be a potent and selective inhibitor of HIV-1 replication in a recombinant virus assay (EC 50 = 13 nM). This study showed that a supercritical fluid chromatography-based protocol and molecular networking can facilitate and accelerate the discovery of bioactive small molecules by targeting molecules of interest, while minimizing the use of toxic solvents.
Li, Xiong; Zhang, Yufeng; Zeng, Xing; Yang, Liu; Deng, Yuanhui
2011-09-15
In this study, a fast and reliable method based on an ultra-high-pressure liquid chromatography coupled with photodiode-array detection (PDA) and a linear ion trap high-resolution mass spectrometer (LTQ-Orbitrap XL) has been developed for the identification of bioactive constituents in the whole plant of Sarcandra glabra and its related four preparations. By accurate mass measurements within 5 ppm error for each molecular ion and subsequent fragment ions in routine analysis, 50 compounds, including organic acids, caffeoyl derivatives, flavonoids, coumarins and terpenoids, were identified or tentatively characterized. Among them, 6,7,8-trihydroxycoumarin-O-rhamnopyranoside (17), (2R)-naringenin-6-C-B-D-glucopyranosyl-(6→1)-apiose (25) and (2S)-naringenin-6-C-B-D-glucopyranosyl-(6→1)-apiose (27) were tentatively identified as new compounds. Besides, 21 of these compounds were coexisting in four preparations of Sarcandra glabra. Fragmentation behaviors of the four major categories of compounds were also investigated. This established UPLC-PDA/ESI-MS(n) method was reliable and effective for the separation and identification of the major constituents and would be the basis for quality control of Sarcandra glabra and its related preparations. Copyright © 2011 John Wiley & Sons, Ltd.
Muniyan, Rajiniraja; Gurunathan, Jayaraman
2016-12-01
The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.
Aqua mediated synthesis of bio-active compounds.
Panda, Siva S
2013-05-01
Recently the aqueous medium has attracted the interest of organic chemists, and many. Moreover, in the past 20 years, the drug-discovery process has undergone extraordinary changes, and high-throughput biological screening of potential drug candidates has led to an ever-increasing demand for novel drug-like compounds. Noteworthy advantages were observed during the course of study on aqua mediated synthesis of compounds of medicinal importance. The established advantages of water as a solvent for reactions are, water is the most abundant and available resource on the planet and many biochemical processes occur in aqueous medium. This review will focus on describing new developments in the application of water in medicinal chemistry for the synthesis of bio-active compounds possessing various biological properties.
Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen
2014-01-01
Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623
Analysis of low molecular weight compounds by MALDI-FTICR-MS.
Wang, Hao-Yang; Chu, Xu; Zhao, Zhi-Xiong; He, Xiao-Shuang; Guo, Yin-Long
2011-05-15
This review focuses on recent applications of matrix-assisted laser desorption ionization-Fourier-transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) in qualitative and quantitative analysis of low molecular weight compounds. The scope of the work includes amino acids, small peptides, mono and oligosaccharides, lipids, metabolic compounds, small molecule phytochemicals from medicinal herbs and even the volatile organic compounds from tobacco. We discuss both direct analysis and analysis following derivatization. In addition we review sample preparation strategies to reduce interferences in the low m/z range and to improve sensitivities by derivatization with charge tags. We also present coupling of head space techniques with MALDI-FTICR-MS. Furthermore, omics analyses based on MALDI-FTICR-MS were also discussed, including proteomics, metabolomics and lipidomics, as well as the relative MS imaging for bio-active low molecular weight compounds. Finally, we discussed the investigations on dissociation/rearrangement processes of low molecular weight compounds by MALDI-FTICR-MS. Copyright © 2011 Elsevier B.V. All rights reserved.
Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan
2015-01-01
Objective: To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. Materials and Methods: The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20–60°C), time (20–40 min) and power (200–350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. Results: The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. Conclusion: The results of quantification showed that the guava leaves are the potential source of antioxidant compounds. PMID:26246720
Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan
2015-01-01
To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20-60°C), time (20-40 min) and power (200-350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. The results of quantification showed that the guava leaves are the potential source of antioxidant compounds.
2017-01-01
Mangifera indica (family Anacardiaceae), commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described. PMID:29456572
Phenolic Compounds in the Potato and Its Byproducts: An Overview
Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito
2016-01-01
The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compounds exhibited health-promoting effects in humans. However, the use of the potato in the food industry submits this vegetable to different processes that can alter the phenolic content. Moreover, many of these compounds with high bioactivity are located in the potato’s skin, and so are eliminated as waste. In this review the most recent articles dealing with phenolic compounds in the potato and potato byproducts, along with the effects of harvesting, post-harvest, and technological processes, have been reviewed. Briefly, the phenolic composition, main extraction, and determination methods have been described. In addition, the “alternative” food uses and healthy properties of potato phenolic compounds have been addressed. PMID:27240356
Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B
2009-06-01
Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.
Marine actinomycetes: an ongoing source of novel bioactive metabolites.
Subramani, Ramesh; Aalbersberg, William
2012-12-20
Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1-2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes. Copyright © 2012 Elsevier GmbH. All rights reserved.
Influence of growth stage and season on the antioxidant constituents of Cosmos caudatus.
Mediani, Ahmed; Abas, Faridah; Ping, Tan Chin; Khatib, Alfi; Lajis, Nordin H
2012-12-01
The impact of tropical seasons (dry and wet) and growth stages (8, 10 and 12 weeks) of Cosmos caudatus on the antioxidant activity (AA), total phenolic content (TPC) as well as the level of bioactive compounds were evaluated using high performance liquid chromatography (HPLC). The plant morphology (plant height) also showed variation between the two seasons. Samples planted from June to August (during the dry season) exhibited a remarkably higher bioactivity and height than those planted from October to December (during the wet season). The samples that were harvested at eight weeks of age during the dry season showed the highest bioactivity with values of 26.04 g GAE/100 g and 22.1 μg/ml for TPC and IC₅₀, respectively. Identification of phytochemical constituents in the C. caudatus extract was carried out by liquid chromatography coupled with diode array detection and electrospray tandem mass (LC-DAD-ESIMS/MS) technique and the confirmation of constituents was achieved by comparison with literature data and/or co-chromatography with authentic standards. Six compounds were indentified including quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, rutin, quercetin 3-O-arabinofuranoside, quercetin 3-O-galactoside and chlorogenic acid. Their concentrations showed significant variance among the 8, 10 and 12-week-old herbs during both seasons.
Chemical Biology Probes from Advanced DNA-encoded Libraries.
Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas
2016-02-19
The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.
Thermophilic and alkaliphilic Actinobacteria: biology and potential applications
Shivlata, L.; Satyanarayana, Tulasi
2015-01-01
Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937
Bioactivities and Health Benefits of Wild Fruits
Li, Ya; Zhang, Jiao-Jiao; Xu, Dong-Ping; Zhou, Tong; Zhou, Yue; Li, Sha; Li, Hua-Bin
2016-01-01
Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits. PMID:27527154
Yuan, Jinbin; Chen, Yang; Liang, Jian; Wang, Chong-Zhi; Liu, Xiaofei; Yan, Zhihong; Tang, Yi; Li, Jiankang; Yuan, Chun-Su
2016-12-01
Ginseng is one of the most widely used natural medicines in the world. Recent studies have suggested Panax ginseng has a wide range of beneficial effects on aging, central nervous system disorders, and neurodegenerative diseases. However, knowledge about the specific bioactive components of ginseng is still limited. This work aimed to screen for the bioactive components in Panax ginseng that act against neurodegenerative diseases, using the target cell-based bioactivity screening method. Firstly, component analysis of Panax ginseng extracts was performed by UPLC-QTOF-MS, and a total of 54 compounds in white ginseng were characterized and identified according to the retention behaviors, accurate MW, MS characteristics, parent nucleus, aglycones, side chains, and literature data. Then target cell-based bioactivity screening method was developed to predict the candidate compounds in ginseng with SH-SY5Y cells. Four ginsenosides, Rg 2 , Rh 1 , Ro, and Rd, were observed to be active. The target cell-based bioactivity screening method coupled with UPLC-QTOF-MS technique has suitable sensitivity and it can be used as a screening tool for low content bioactive constituents in natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
Abu-Reidah, Ibrahim M; Arráez-Román, David; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2013-12-01
The aim of this work was to characterise the phenolic compounds in artichoke (hearts) by using HPLC coupled to DAD-ESI-QTOF-MS, which proved useful in characterising 61 phenolic and other polar compounds. Notably, of the 61 compounds characterised, 34 new phenolic compounds with their isomers have been tentatively characterised in artichoke for the first time, namely: 3 hydroxybenzoic acids, 17 hydroxycinnamic acids, 4 lignans, 7 flavones, 2 flavonols, and 1 phenol derivative. Moreover, a total of 28 isomers of previously described phenolics have also been detected. The data compiled from the qualitative polyphenol characterisation indicate that the artichoke extract analysed (Blanca de Tudela variety) could be regarded as a bioactive functional food and also as a promising source of antioxidant phenolic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cais-Sokolińska, Dorota; Pikul, Jan; Wójtowski, Jacek; Danków, Romualda; Teichert, Joanna; Czyżak-Runowska, Grażyna; Bagnicka, Emilia
2015-04-01
The composition of bioactive components in dairy products depends on their content in raw milk and the processing conditions. The experimental material consisted of the milk of dairy goats supplemented with 120 g d(-1) per head of false flax cake. The aim of the study was to evaluate the quality of kefir produced from goat's milk with a higher content of bioactive components resulting from supplementation of the goats' diet with false flax cake. The administration of false flax cake to goats had a positive effect on the fatty acid profile of the raw milk, causing an increase in the proportion of polyunsaturated fatty acids (PUFA), including conjugated linoleic acid (CLA) and n-3 fatty acids. Their increased percentage was detected in the kefir after production as well as after storage. The processing value of the harvested milk did not differ from the qualitative characteristics of milk from goats of the control group. Increasing the proportion of bioactive components in goat's milk did not result in changes in the acidity, texture, colour, flavour, aroma or consistency of the kefir obtained. Milk and kefir obtained after the administration of false flax cake to goats contain bioactive components (PUFA including CLA, n-3 and monoenic trans fatty acids) in significant amounts. Kefir from experimental goat's milk did not differ in quality from kefir made from the milk of the control group. © 2014 Society of Chemical Industry.
Chemical constituents from Piper wallichii.
Shi, Yan-Ni; Yang, Lian; Zhao, Jin-Hua; Shi, Yi-Ming; Qu, Yan; Zhu, Hong-Tao; Wang, Dong; Yang, Chong-Ren; Li, Xing-Cong; Xu, Min; Zhang, Ying-Jun
2015-01-01
Fifteen known compounds including four triterpenoids (1-4), one sterol (5), one diketopiperazine alkaloid (6) and nine phenolics (7-15) were isolated from the stems of Piper wallichii. Their structures were elucidated by means of spectroscopic analysis, and acidic hydrolysis in case of the 2-oxo-3β,19α,23-trihydroxyurs-12-en-28-oic acid β-D-glucopyranosyl ester (1). The structure of compound 1 was fully assigned by 1D and 2D NMR experiments for the first time. All isolates were tested for their antibacterial, antifungal, anti-inflammatory and antiplatelet aggregation bioactivities.
Espresso coffee residues: a valuable source of unextracted compounds.
Cruz, Rebeca; Cardoso, Maria M; Fernandes, Luana; Oliveira, Marta; Mendes, Eulália; Baptista, Paula; Morais, Simone; Casal, Susana
2012-08-15
Espresso spent coffee grounds were chemically characterized to predict their potential, as a source of bioactive compounds, by comparison with the ones from the soluble coffee industry. Sampling included a total of 50 samples from 14 trademarks, collected in several coffee shops and prepared with distinct coffee machines. A high compositional variability was verified, particularly with regard to such water-soluble components as caffeine, total chlorogenic acids (CGA), and minerals, supported by strong positive correlations with total soluble solids retained. This is a direct consequence of the reduced extraction efficiency during espresso coffee preparation, leaving a significant pool of bioactivity retained in the extracted grounds. Besides the lipid (12.5%) and nitrogen (2.3%) contents, similar to those of industrial coffee residues, the CGA content (478.9 mg/100 g), for its antioxidant capacity, and its caffeine content (452.6 mg/100 g), due to its extensive use in the food and pharmaceutical industries, justify the selective assembly of this residue for subsequent use.
Juçara fruit (Euterpe edulis Mart.): Sustainable exploitation of a source of bioactive compounds.
Schulz, Mayara; da Silva Campelo Borges, Graciele; Gonzaga, Luciano Valdemiro; Oliveira Costa, Ana Carolina; Fett, Roseane
2016-11-01
Juçara (Euterpe edulis Martius) is a palm tree widely distributed in the Atlantic Forest, which produces round fruits that recently gained worldwide attention, mainly for its resemblance to fruits of Euterpe oleracea and Euterpe precatoria Martius used to produce açaí. Juçara fruits stand out for their high nutritional value, which contain different kinds of nutrients, including fatty acids, protein, fibers, minerals and vitamins, and bioactive compounds such as anthocyanins, non-anthocyanin flavonoids and phenolic acids, which are associated with potent biological activities. The main objective of this work is to present the available compositional data regarding juçara fruits to produce a comprehensive source of recent information on important chemical constituents and the potential health benefits of these fruits in reference to the species E. oleracea and E. precatoria. In addition, information on botanical aspects, production chain and markets are presented. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pérez-Burillo, S; Giménez, R; Rufián-Henares, J A; Pastoriza, S
2018-05-15
White tea is highly consumed due to its sensory properties and health benefits, although most scientific reports don't include the analysis of both properties. Therefore, the objective of the present study was to unravel the best brewing conditions for optimal extraction of the bioactive compounds and antioxidant capacity, while realising the best sensory properties. Infusions of eighty commercial teas (sold in bags or leaves) were obtained at different time-temperature ratios, studying bioactive compounds (caffeine and individual catechins), antioxidant capacity and sensory analysis. Brewing at 98 °C for 7 min was the best condition to obtain a high content of antioxidant polyphenols and pleasant sensory properties. Those teas sold in bags give rise to tea brews with almost double antioxidant capacity. In conclusion, it is very important to link sensory and chemical data to obtain optimal sensorial quality and the highest healthy properties in white tea infusions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anticancer activity of Carica papaya: a review.
Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K
2013-01-01
Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keser, Serhat; Celik, Sait; Turkoglu, Semra; Yilmaz, Ökkes; Turkoglu, Ismail
2014-01-01
Aim: The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. Materials and Methods: For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin—Cioacalteu’s reagent. Results: The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by high-performance liquid chromatography in the hawthorn extract. Conclusion: It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed the highest activity in reducing power and metal chelating activity assays. In addition, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. PMID:26401347
Wang, Hong; Wang, Junhong; Qiu, Caisheng; Ye, Yutong; Guo, Xinbo; Chen, Gu; Li, Tong; Wang, Yufu; Fu, Xiong; Liu, Rui Hai
2017-01-01
Flaxseed (Linum usitatissimum L.) is a rich source of nutritive and bioactive compounds. The research evaluated the disparity in phytochemical profiles along with total and cellular antioxidant activities between oil and fiber flaxseeds. There were significant differences in total phenolics, total flavonoids and antioxidant activities among the six cultivars of fiber and oil flaxseed, respectively. Four phytochemical compounds including caffeic acid, p-coumaric acid and ferulic acid, and secoisolariciresinol diglucoside (SDG) were identified and quantified in the cultivars of oil and fiber flaxseed by HPLC analysis. Notably, the average of total phenolic and flavonoid contents, along with total antioxidant activities between fiber and oil flaxseeds were not different significantly; even the cellular antioxidant activity of fiber flaxseed was superior to oil flaxseed. These results suggest that fiber flaxseeds would be valuable candidates as functional products and dietary supplements production owing to the higher bioactive values as well as oil flaxseeds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Keser, Serhat; Celik, Sait; Turkoglu, Semra; Yilmaz, Ökkes; Turkoglu, Ismail
2014-01-01
The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin-Cioacalteu's reagent. The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by high-performance liquid chromatography in the hawthorn extract. It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed the highest activity in reducing power and metal chelating activity assays. In addition, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents.
Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues.
Cruz, Rebeca; Gomes, Teresa; Ferreira, Anabela; Mendes, Eulália; Baptista, Paula; Cunha, Sara; Pereira, José Alberto; Ramalhosa, Elsa; Casal, Susana
2014-02-15
The antioxidant activity and individual bioactive compounds of lettuce, cultivated with 2.5-30% (v/v) of fresh or composted espresso spent coffee grounds, were assessed. A progressive enhancement of lettuce's antioxidant capacity, evaluated by radical scavenging effect and reducing power, was exhibited with the increment of fresh spent coffee amounts, while this pattern was not so clear with composted treatments. Total reducing capacity also improved, particularly for low spent coffee concentrations. Additionally, very significant positive correlations were observed for all carotenoids in plants from fresh spent coffee treatments, particularly for violaxanthin, evaluated by HPLC. Furthermore, chlorophyll a was a good discriminating factor between control group and all spent coffee treated samples, while vitamin E was not significantly affected. Espresso spent coffee grounds are a recognised and valuable source of bioactive compounds, proving herein, for the first time, to potentiate the antioxidant pool and quality of the vegetables produced. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pina-Pérez, M C; Rivas, A; Martínez, A; Rodrigo, D
2017-11-15
Algae are a valuable and never-failing source of bioactive compounds. The increasing efforts to use ingredients that are as natural as possible in the formulation of innovative products has given rise to the introduction of macro and microalgae in food industry. To date, scarce information has been published about algae ingredients as antimicrobials in food. The antimicrobial potential of algae is highly dependent on: (i) type, brown algae being the most effective against foodborne bacteria; (ii) the solvent used in the extraction of bioactive compounds, ethanolic and methanolic extracts being highly effective against Gram-positive and Gram-negative bacteria; and (iii) the concentration of the extract. The present paper reviews the main antimicrobial potential of algal species and their bioactive compounds in reference and real food matrices. The validation of the algae antimicrobial potential in real food matrices is still a research niche, being meat and bakery products the most studied substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct isolation of flavonoids from plants using ultra-small anatase TiO2 nanoparticles
Kurepa, Jasmina; Nakabayashi, Ryo; Paunesku, Tatjana; Suzuki, Makoto; Saito, Kazuki; Woloschak, Gayle E.; Smalle, Jan A.
2013-01-01
Summary Surface functionalization of nanoparticles has become an important tool for the in vivo delivery of bioactive agents to their target sites. Here we describe the reverse strategy, nanoharvesting, in which nanoparticles are used as a tool to isolate and enrich bioactive compounds from living cells. Anatase TiO2 nanoparticles smaller than 20 nm form strong bonds with molecules carrying enediol and especially catechol groups. We show that these nanoparticles can enter plant cells, conjugate enediol and catechol group-rich flavonoids in situ, and exit plant cells as flavonoid-nanoparticle conjugates. The source plant tissues remain viable after treatment. As predicted by the surface chemistry of anatase TiO2 nanoparticles, the quercetin-based flavonoids were enriched amongst the nanoharvested flavonoid species. Nanoharvesting eliminates the use of organic solvents, allows spectral identification of the isolated compounds, and offers a new avenue for the use of nanomaterials for the coupled isolation and testing of bioactive properties of plant-made compounds. PMID:24147867
Hwang, Eun-Sun
2017-12-01
The effects of different cooking methods on total bioactive compound content were determined, and in vitro antioxidant activity in 80% ethanolic extracts of Brussels sprouts was evaluated by spectrophotometric methods. Compared to uncooked, steamed, and microwaved Brussels sprouts extracted with 80% ethanol contained higher amounts of total polyphenols. Uncooked Brussels sprouts contained the highest amounts of total flavonoids. Microwaved Brussels sprouts contained the highest amounts of total carotenoids (0.35 mg/g) and chlorophylls (3.01 mg/g), followed by steamed and uncooked samples. Uncooked fresh Brussels sprouts showed the highest antioxidant activity followed by microwaved and steamed sprouts. Antioxidant activity was measured with the 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and hydroxyl racial scavenging assays as well as the reducing power activity assay, and antioxidant activity was found to increase in a concentration-dependent manner. Based on these results, cooking or heat treatment may decrease antioxidant activities, although their effect on bioactive compound content remains controversial.
Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Adamus, Grażyna
2015-01-01
This manuscript presents the synthesis and structural characterisation of novel biodegradable polymeric controlled-release systems of pesticides with potentially higher resistance to weather conditions in comparison to conventional forms of pesticides. Two methods for the preparation of pesticide-oligomer conjugates using the transesterification reaction were developed. The first method of obtaining conjugates, which consist of bioactive compounds with the carboxyl group and polyhydroxyalkanoates (PHAs) oligomers, is "one-pot" transesterification. In the second method, conjugates of bioactive compounds with hydroxyl group and polyhydroxyalkanoates oligomers were obtained in two-step method, through cyclic poly(3-hydroxybutyrate) oligomers. The obtained pesticide-PHA conjugates were comprehensively characterised using GPC, 1H NMR and mass spectrometry techniques. The structural characterisation of the obtained products at the molecular level with the aid of mass spectrometry confirmed that both of the synthetic strategies employed led to the formation of conjugates in which selected pesticides were covalently bonded to PHA oligomers via a hydrolysable ester bond.
Lin, Yan; Kuang, Yi; Li, Kai; Wang, Shuang; Ji, Shuai; Chen, Kuan; Song, Wei; Qiao, Xue; Ye, Min
2017-10-15
Glycyrrhiza inflata (licorice) has been used to treat liver diseases for a long history. However, the bioactive compounds are still not clear. In this work, 77 compounds, including 9 new ones, were isolated from the EtOAc extract of the roots and rhizomes of G. inflata. The Nrf2 activation activities of all compounds were screened using ARE-luciferase reporter assay on HepG2C8 cells. The results indicated a number of chalcones were potent Nrf2 activators, including 11 (licochalcone A, 4.07-fold), 12 (licochalcone B, 5.17-fold), and 19 (echinatin, 4.09-fold). Further studies indicated that 11, 12 and 19 remarkably attenuated CCl 4 -induced acute liver injury in mice (10 or 50mg/kg, 7days, ig.). These compounds could be promising hepatoprotective natural agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ribeiro, L F; Ribani, R H; Francisco, T M G; Soares, A A; Pontarolo, R; Haminiuk, C W I
2015-12-15
The aim of this study was to characterize grape pomace (GP) from winemaking byproducts of different grape samples (Cabernet Sauvignon-CS; Merlot-ME; Mix composed of 65% Bordeaux, 25% Isabel and 10% BRS Violet-MI and Terci-TE) with a view to exploiting its potential as a source of bioactive compounds and an alternative to the reuse of waste. Bioactive compounds such as individual phenolic compounds and polyunsaturated fatty acids (PUFA) were identified and quantified by spectrophotometric, chromatographic and spectral analyses. The sample of MI had the highest concentrations for total phenolic compounds and total flavonoids, while TE had the highest content for total monomeric anthocyanins. For all samples it was possible to identify 13 different anthocyanins by high performance liquid chromatography (HPLC) and mass spectrometry (MS). Moreover, the GP samples showed phenolic acids; flavan-3-ols such as catechin; flavonols such as quercetin, rutin and kaempferol; and stilbenes such as trans-resveratrol. Therefore, grape pomace can be considered a source for the recovery of phenolic compounds having antioxidant activity as well as a rich source of PUFA. Thus it can be used as an ingredient in the development of new food products, since it is suitable for human consumption, and a viable alternative both to adding nutritional value to food and to reduce environmental contamination. Copyright © 2015. Published by Elsevier B.V.
Zhang, Yufeng; Xiao, Shun; Sun, Lijuan; Ge, Zhiwei; Fang, Fengkai; Zhang, Wen; Wang, Yi; Cheng, Yiyu
2013-05-13
A high throughput method was developed for rapid screening and identification of bioactive compounds from traditional Chinese medicine, marine products and other natural products. The system, integrated with five-channel chromatographic separation and dual UV-MS detection, is compatible with in vitro 96-well microplate based bioassays. The stability and applicability of the proposed method was validated by testing radical scavenging capability of a mixture of seven known compounds (rutin, dihydroquercetin, salvianolic acid A, salvianolic acid B, glycyrrhizic acid, rubescensin A and tangeretin). Moreover, the proposed method was successfully applied to the crude extracts of traditional Chinese medicine and a marine sponge from which 12 bioactive compounds were screened and characterized based on their anti-oxidative or anti-tumor activities. In particular, two diterpenoid derivatives, agelasine B and (-)-agelasine D, were identified for the first time as anti-tumor compounds from the sponge Agelas mauritiana, showing a considerable activity toward MCF-7 cells (IC50 values of 7.84±0.65 and 10.48±0.84 μM, respectively). Our findings suggested that the integrated system of 5-channel parallel chromatography coupled with on-line mass spectrometry and microplate based assays can be a versatile and high efficient approach for the discovery of active compounds from natural products. Copyright © 2013 Elsevier B.V. All rights reserved.
Antifouling potential of Nature-inspired sulfated compounds
NASA Astrophysics Data System (ADS)
Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel
2017-02-01
Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.
Antifouling potential of Nature-inspired sulfated compounds
Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel
2017-01-01
Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL−1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL−1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL−1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents. PMID:28205590
Maksup, Sarunyaporn; Pongpakpian, Sarintip; Roytrakul, Sittiruk; Cha-Um, Suriyan; Supaibulwatana, Kanyaratt
2018-01-01
Brown rice (BR) and germinated brown rice (GBR) are considered as prime sources of carbohydrate and bioactive compounds for more than half of the populations worldwide. Several studies have reported on the proteomics of BR and GBR; however, the proteomic profiles related to the synthesis of bioactive compounds are less well documented. In the present study, BR and GBR were used in a comparative analysis of the proteomic and bioactive compound profiles for two famous Thai rice varieties: Khao Dawk Mali 105 (KDML) and Mali Daeng (MD). The proteomes of KDML and MD revealed differences in the expression patterns of proteins after germination. Total phenolic compound content, anthocyanin contents and antioxidant activity of red rice MD was approximately 2.6-, 2.2- and 9.2-fold higher, respectively, compared to that of the white rice KDML. Moreover, GBR of MD showed higher total anthocyanin content and greater antioxidant activity, which is consistent with the increase expression of several proteins involved in the biosynthesis of phenolic compounds and protection against oxidative stress. Red rice MD exhibits higher nutrient values compared to white rice KDML and the appropriate germination of brown rice could represent a method for improving health-related benefits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Cao, Yang; Zhang, Hongxia; Jin, Yifan; Zhang, Yihe; Hayford, Frank
2018-01-01
The human gut is densely populated with diverse microbial communities that are essential to health. Prebiotics and fiber have been shown to possess the ability to modulate the gut microbiota. One of the plants being considered as a potential source of prebiotic is yacon. Yacon is an underutilized plant consumed as a traditional root-based fruit in South America. Yacon mainly contains fructooligosaccharides (FOS) and inulin. Therefore, it has bifidogenic benefits for gut health, because FOS are not easily broken down by digestive enzymes. Bioactive chemical compounds and extracts isolated from yacon have been studied for their various nutrigenomic properties, including as a prebiotic for intestinal health and their antimicrobial and antioxidant effects. This article reviewed scientific studies regarding the bioactive chemical compounds and nutrigenomic properties of extracts and isolated compounds from yacon. These findings may help in further research to investigate yacon-based nutritional products. Yacon can be considered a potential prebiotic source and a novel functional food. However, more detailed epidemiological, animal, and human clinical studies, particularly mechanism-based and phytopharmacological studies, are lacking for the development of evidence-based functional food products. PMID:29649123
Cao, Yang; Ma, Zheng Feei; Zhang, Hongxia; Jin, Yifan; Zhang, Yihe; Hayford, Frank
2018-04-12
The human gut is densely populated with diverse microbial communities that are essential to health. Prebiotics and fiber have been shown to possess the ability to modulate the gut microbiota. One of the plants being considered as a potential source of prebiotic is yacon. Yacon is an underutilized plant consumed as a traditional root-based fruit in South America. Yacon mainly contains fructooligosaccharides (FOS) and inulin. Therefore, it has bifidogenic benefits for gut health, because FOS are not easily broken down by digestive enzymes. Bioactive chemical compounds and extracts isolated from yacon have been studied for their various nutrigenomic properties, including as a prebiotic for intestinal health and their antimicrobial and antioxidant effects. This article reviewed scientific studies regarding the bioactive chemical compounds and nutrigenomic properties of extracts and isolated compounds from yacon. These findings may help in further research to investigate yacon-based nutritional products. Yacon can be considered a potential prebiotic source and a novel functional food. However, more detailed epidemiological, animal, and human clinical studies, particularly mechanism-based and phytopharmacological studies, are lacking for the development of evidence-based functional food products.
Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus
Zhang, Guanghui; Zhang, Jing; Liu, Hui; Chen, Wei; Wang, Xiao; Li, Yahe
2017-01-01
Abstract Background: The plants in the Erigeron genus of the Compositae (Asteraceae) family are commonly called fleabanes, possibly due to the belief that certain chemicals in these plants repel fleas. In the traditional Chinese medicine, Erigeron breviscapus, which is native to China, was widely used in the treatment of cerebrovascular disease. A handful of bioactive compounds, including scutellarin, 3,5-dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid, have been isolated from the plant. With the purpose of finding novel medicinal compounds and understanding their biosynthetic pathways, we propose to sequence the genome of E. breviscapus. Findings: We assembled the highly heterozygous E. breviscapus genome using a combination of PacBio single-molecular real-time sequencing and next-generation sequencing methods on the Illumina HiSeq platform. The final draft genome is approximately 1.2 Gb, with contig and scaffold N50 sizes of 18.8 kb and 31.5 kb, respectively. Further analyses predicted 37 504 protein-coding genes in the E. breviscapus genome and 8172 shared gene families among Compositae species. Conclusions: The E. breviscapus genome provides a valuable resource for the investigation of novel bioactive compounds in this Chinese herb. PMID:28431028
The genus Nonomuraea: A review of a rare actinomycete taxon for novel metabolites.
Sungthong, Rungroch; Nakaew, Nareeluk
2015-05-01
The genus Nonomuraea is a rare actinomycete taxon with a long taxonomic history, while its generic description was recently emended. The genus is less known among the rare actinomycete genera as its taxonomic position was revised several times. It can be found in diverse ecological niches, while most of its member species were isolated from soil samples. However, new trends to discover the genus in other habitats are increasing. Generic abundance of the genus was found to be dependent on geographical changes. Novel sources together with selective and invented isolation techniques might increase a chance to explore the genus and its novel candidates. Interestingly, some of its members have been revealed as a valuable source of novel metabolites for medical and industrial purposes. Broad-range of potent bioactive compounds including antimicrobial, anticancer, and antipsychotic substances, broad-spectrum antibiotics and biocatalysts can be synthesized by the genus. In order to investigate biosynthetic pathways of the bioactive compounds and self-resistant mechanisms to these compounds, the links from genes to metabolites have yet been needed for further discovery and biotechnological development of the genus Nonomuraea. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deletre, Emilie; Chandre, Fabrice; Barkman, Barbara; Menut, Chantal; Martin, Thibaud
2016-01-01
In tropical countries, netting is an effective sustainable tool for protecting horticultural crops against Lepidoptera, although not against small pests such as Bemisia tabaci, while smaller mesh netting can be used in temperate regions. A solution is to combine a net with a repellent. Previously we identified repellent essential oils: lemongrass (Cymbopogon citratus), cinnamon (Cinnamomum zeylanicum), cumin (Cuminum cyminum) and citronella (Cymbopogon winternarius). The present study was designed to identify the active compounds of these essential oils, characterise their biological activity and examine their potential for coating nets. We investigated the efficiency and toxicity of nets dipped in different solutions. We then studied the repellent effect with an olfactometer and the irritant effect by videotracking. Geraniol and citronellol were the most promising net coatings owing to their repellent effect. The repellency, irritancy or toxicity varied with the product and concentration, and these features were independent, indicating that the repellent and the irritant/toxic mechanisms were not the same. The combined effects of these different compounds account for the bioactivity of the mixture, suggesting interactions between the compounds. This new sustainable strategy for protecting vegetable crops against whiteflies is discussed, in addition to the use of companion plants that could produce such bioactive compounds. © 2015 Society of Chemical Industry.
Teerasripreecha, Dungporn; Phuwapraisirisan, Preecha; Puthong, Songchan; Kimura, Kiyoshi; Okuyama, Masayuki; Mori, Haruhide; Kimura, Atsuo; Chanchao, Chanpen
2012-03-30
Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G(2)), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC(50) values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC(50) values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs.
A Virtual Screening Approach For Identifying Plants with Anti H5N1 Neuraminidase Activity
2016-01-01
Recent outbreaks of highly pathogenic and occasional drug-resistant influenza strains have highlighted the need to develop novel anti-influenza therapeutics. Here, we report computational and experimental efforts to identify influenza neuraminidase inhibitors from among the 3000 natural compounds in the Malaysian-Plants Natural-Product (NADI) database. These 3000 compounds were first docked into the neuraminidase active site. The five plants with the largest number of top predicted ligands were selected for experimental evaluation. Twelve specific compounds isolated from these five plants were shown to inhibit neuraminidase, including two compounds with IC50 values less than 92 μM. Furthermore, four of the 12 isolated compounds had also been identified in the top 100 compounds from the virtual screen. Together, these results suggest an effective new approach for identifying bioactive plant species that will further the identification of new pharmacologically active compounds from diverse natural-product resources. PMID:25555059
Germinated brown rice and its bio-functional compounds.
Cho, Dong-Hwa; Lim, Seung-Taik
2016-04-01
Brown rice (BR) contains bran layers and embryo, where a variety of nutritional and biofunctional components, such as dietary fibers, γ-oryzanol, vitamins, and minerals, exist. However, BR is consumed less than white rice because it has an inferior eating texture when cooked. Germination is one of the techniques used to improve the texture of the cooked BR. In addition, it induces numerous changes in the composition and chemical structure of the bioactive components. Moreover, many studies reported that the germination could induce the formation of new bioactive compounds, such as gamma-aminobutyric acid (GABA). The consumption of germinated brown rice (GBR) is increasing in many Asian countries because of its improved eating quality and potential health-promoting functions. However, there is still a lack of studies on the compositional and functional changes of the bioactive components during germination. This review contains recent research findings, especially on the bioactive components in GBR. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil.
Ribeiro da Silva, Larissa Morais; Teixeira de Figueiredo, Evania Altina; Silva Ricardo, Nagila Maria Pontes; Pinto Vieira, Icaro Gusmao; Wilane de Figueiredo, Raimundo; Brasil, Isabella Montenegro; Gomes, Carmen L
2014-01-15
This study aimed to quantify the levels of resveratrol, coumarin, and other bioactives in pulps and by-products of twelve tropical fruits from Brazil obtained during pulp production process. Pineapple, acerola, monbin, cashew apple, guava, soursop, papaya, mango, passion fruit, surinam cherry, sapodilla, and tamarind pulps were evaluated as well as their by-products (peel, pulp's leftovers, and seed). Total phenolic, anthocyanins, yellow flavonoids, β-carotene and lycopene levels were also determined. Resveratrol was identified in guava and surinam cherry by-products and coumarin in passion fruit, guava and surinam cherry by-products and mango pulp. These fruit pulp and by-products could be considered a new natural source of both compounds. Overall, fruit by-products presented higher (P<0.05) bioactive content than their respective fruit pulps. This study provides novel information about tropical fruits and their by-products bioactive composition, which is essential for the understanding of their nutraceutical potential and future application in the food industry. Published by Elsevier Ltd.
Niveshika; Verma, Ekta; Mishra, Arun K.; Singh, Angad K.; Singh, Vinay K.
2016-01-01
Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Further characterization was done using electrospray ionization mass spectroscopy (ESIMS) and nuclear magnetic resonance (NMR) and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy) -5, 8, 13, 16–tetraaza–hexacene - 2, 3 dicarboxylic acid (EMTAHDCA). Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T, and 1LC4) and OmpF porin protein (4GCP, 4GCQ, and 4GCS) which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs. PMID:27965634
Comparison and Analysis of Toxcast Data with In Vivo Data for ...
The ToxCast program has generated a great wealth of in vitro high throughput screening (HTS) data on a large number of compounds, providing a unique resource of information on the bioactivity of these compounds. However, analysis of these data are ongoing, and interpretation and use of the ToxCast data such as for safety assessment of food related compounds remains undetermined. To fill this gap, we conducted a case study of 2 food-related compounds to better understand the ToxCast data and its potential use in chemical safety assessment by comparison between ToxCast and traditional, in vivo toxicology data using the Risk21 approach. Risk21 is an exposure driven flexible risk assessment framework developed by ILSI HESI. Prior work (Karmaus et. al., 2016) looking at all food-relevant compounds in ToxCast showed that food contact substances had high bioactivity in ToxCast assays. To better understand these chemicals based on their indirect food use, exposure and availability of traditional toxicology data, two compounds, dibutyltin dichloride and sodium pyrithione, were selected from a list of the food contact substances with the greatest activity in ToxCast. Exposure and hazard data were compiled and analyzed for both compounds. Comparison between in vitro HTS and in vivo data for sodium pyrithione showed that concentrations that elicited bioactivity in ToxCast assays corresponded to low- and no- observed adverse effect doses in animals. For dibutyltin dichlori
Bioactive compounds and quality parameters of natural cloudy lemon juices.
Uçan, Filiz; Ağçam, Erdal; Akyildiz, Asiye
2016-03-01
In this study, bioactive compounds (phenolic and carotenoid) and some quality parameters (color, browning index and hydroxymethylfurfural (HMF)) of natural cloudy lemon juice, pasteurized (90 °C/15 s) and storage stability of concentrated lemon juice (-25 °C/180 days) were carried out. Fifteen phenolic compounds were determined in the lemon juice and the most abounded phenolic compounds were hesperidin, eriocitrin, chlorogenic acid and neoeriocitrin. In generally, phenolic compound concentrations of lemon juice samples increased after the pasteurization treatment. Four carotenoid compounds (β-carotene, β-cryptoxanthin, lutein and zeaxanthin) were detected in natural cloudy lemon juice. Lutein and β-cryptoxanthin were the most abounded carotenoid compounds in the lemon juice. Color values of the lemon juices were not affected by processing and storage periods. HMF and browning index of the lemon juices increased with concentration and storage. According to the results, storing at -25 °C was considered as sufficient for acceptable quality limits of natural cloudy lemon juice.
Natural products to improve quality of life targeting for colon drug delivery.
Kim, Hyunjo
2012-03-01
The colon is largely being investigated as a site for administration of protein and peptides, which are degraded by digestive enzymes in the upper GIT. Also for local diseases of the colon such as inflammatory bowel disease, colorectal cancer and ameobiasis, drug administration to the site of action can not only reduce the dose to be administered, but also decrease the side effects. Inflammatory Bowel Disease (IBD) such as Ulcerative colitis and Crohn's disease are characterized by chronic intestinal inflammation. Intestinal bacteria initiate the activation of intestinal inflammatory processes, which are mediated by pro-inflammatory cytokines and chemokine. Increased chemokine expression has also been observed in epithelial cells, endothelial cells, and smooth muscle cells. Future trials of specific agents capable of inhibiting chemokine synthesis and secretion or blocking chemokine-chemokine receptor interaction will be important to study in patients with ulcerative colitis and Crohn's disease. Many important bioactive compounds have been discovered from natural sources using bioactivity directed fractionation and isolation (BDFl) Continuing discovery has also been facilitated by the recent development of new bioassay methods. These bioactive compounds are mostly plant secondary metabolites, and many naturally occurring pure compounds have become medicines, dietary supplements, and other useful commercial products. The present review includes various approaches investigated for colon drug delivery and their site specificity. To achieve successful colonic delivery, a drug needs to be protected from absorption and the environment of the upper gastrointestinal tract and then be abruptly released into the proximal colon, which is considered the optimum site for colon targeted delivery of drugs.
NASA Astrophysics Data System (ADS)
Laeliocattleya, R. A.; Estiasih, T.; Griselda, G.; Muchlisyiyah, J.
2018-03-01
Banana has various benefits for health. One local variety of banana is candi banana (Musa paradisiaca). The aim of this research was to study the content of the bioactive compounds of phenolics, flavonoids, tannin, carotenoids and the antioxidant activity of extract ethanol and ethyl acetate of candi banana. Powdered candi banana was extracted using ethanol and ethyl acetate in an ultrasonic bath. The results showed that the content of phenolics, flavonoids, tannin and carotenoids in ethanol extract were 58.76 ± 3.19 mg/kg, 416.08 ± 18.79 mg/kg, 209.83 ± 15.87 mg/kg and 74.55 ± 4.31 mg/kg, respectively. The content of phenolics, flavonoids, tannin and carotenoids in ethyl acetate extract were 0.83 ± 0.12 mg/kg, 4.31 ± 0.66 mg/kg, 49.97 ± 2.43 mg/kg and 304.40 ± 16.62 mg/kg. While the antioxidant activity (IC50) of ethanol extract and ethyl acetate were 3374.13 ± 123.46 ppm and 40318.19 ± 1014.90 ppm. This research showed that type of solvents of ethanol and ethyl acetate affected the content of bioactive compounds and antioxidant activity of candi banana. The antioxidant activity of ethanol extract was higher than that of ethyl acetate extract. It showed that ethanol was a better solvent than ethyl acetate to extract bioactive compounds in candi banana.
Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.
García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R
2018-03-01
Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.
Bioactive compounds: historical perspectives, opportunities, and challenges.
Patil, Bhimanagouda S; Jayaprakasha, G K; Chidambara Murthy, K N; Vikram, Amit
2009-09-23
Mom's conventional wisdom of eating fruits and vegetables to lead a healthy life has evolved with scientific, fact-finding research during the past four decades due to advances in science of "Foods for Health". Epidemiological and prospective studies have demonstrated the vital role of fruits, vegetables, and nuts in reducing the risk of cancer and cardiovascular diseases. In recent years, several meta-analyses strongly suggested that by adding one serving of fruits and vegetables to daily diet, the risk of cardiovascular diseases will be decreased up to 7%. The multidisciplinary and partnership efforts of agriculture and medical scientists across the globe stimulated interest in establishing certain interdisciplinary centers and institutes focusing on "Foods for Health". While the consumption of various healthy foods continues, several questions about toxicity, bioavailability, and food-drug interactions of bioactive compounds are yet to be fully understood on the basis of scientific evidence. Recent research on elucidation of the molecular mechanisms to understand the "proof of the concept" will provide the perfect answer when consumers are ready for a "consumer-to-farm" rather than the current "farm-to-consumer" approach. The multidisciplinary research and educational efforts will address the role of healthy foods to improve eye, brain, and heart health while reducing the risk of cancer. Through this connection, this review is an attempt to provide insight and historical perspectives on some of the bioactive compounds from the day of discovery to their current status. The bioactive compounds discussed in this review are flavonoids, carotenoids, curcumin, ascorbic acid, and citrus limonoids.
Patil, Mangesh; Choudhari, Amit S.; Pandita, Savita; Islam, Md Ataul; Raina, Prerna; Kaul-Ghanekar, Ruchika
2017-01-01
Background: The altered expression of histone deacetylase family member 8 (HDAC8) has been found to be linked with various cancers, thereby making its selective inhibition a potential strategy in cancer therapy. Recently, plant secondary metabolites, particularly phenolic compounds, have been shown to possess HDAC inhibitory activity. Objective: In the present work, we have evaluated the potential of cinnamaldehyde (CAL), cinnamic acid (CA), and cinnamyl alcohol (CALC) (bioactives of Cinnamomum) as well as aqueous cinnamon extract (ACE), to inhibit HDAC8 activity in vitro and in silico. Materials and Methods: HDAC8 inhibitory activity of ACE and cinnamon bioactives was determined in vitro using HDAC8 inhibitor screening kit. Trichostatin A (TSA), a well-known anti-cancer agent and HDAC inhibitor, was used as a positive control. In silico studies included molecular descriptor Analysis molecular docking absorption, distribution, metabolism, excretion, and toxicity prediction, density function theory calculation and synthetic accessibility program. Results: Pharmacoinformatics studies implicated that ACE and its Bioactives (CAL, CA, and CALC) exhibited comparable activity with that of TSA. The highest occupied molecular orbitals and lowest unoccupied molecular orbitals along with binding energy of cinnamon bioactives were comparable with that of TSA. Molecular docking results suggested that all the ligands maintained two hydrogen bond interactions within the active site of HDAC8. Finally, the synthetic accessibility values showed that cinnamon bioactives were easy to synthesize compared to TSA. Conclusion: It was evident from both the experimental and computational data that cinnamon bioactives exhibited significant HDAC8 inhibitory activity, thereby suggesting their potential therapeutic implications against cancer. SUMMARY Pharmacoinformatics studies revealed that cinnamon bioactives bound to the active site of HDAC8 enzyme in a way similar to that of TSAThe molecular descriptors of cinnamon compounds successfully correlated with TSA values. The binding interactions and energies were also found to be close to TSASynthetic accessibility values showed that cinnamon bioactives were easy to synthesize compared to TSA. Abbreviations used: ACE: Aqueous Cinnamon Extract; DFT: Density Function Theory; CAL: Cinnamaldehyde; CA: Cinnamic Acid; CALC: Cinnamyl Alcohol; MW: Molecular Weight; ROTBs: Rotatable Bonds; ROF: Lipinski's Rule of Five; TSA: Trichostatin A; PDB: Protein Data Bank; RMSD: Root Mean Square Deviation; HBA: Hydrogen Bond Acceptor; HBD: Hydrogen Bond Donor; ADMET: Absorption, Distribution, Metabolism, Excretion and Toxicity; FO: Frontier Orbital; HOMOs: Highest Occupied Molecular Orbitals; LUMOs: Lowest Unoccupied Molecular Orbitals; BE: Binding Energy. PMID:29142427
Opuntia ficus-indica (L.) Miller as a source of bioactivity compounds for health and nutrition.
Aragona, M; Lauriano, E R; Pergolizzi, S; Faggio, C
2017-08-14
Plants with beneficial properties are known in traditional medicine. Nowadays, in spite of widespread availability of synthetic compounds, the search goes towards natural compounds to lower cost and few side effects. The increasing interest in preventive medicine encourages use of nutraceuticals, bioactive compounds of vegetable origin with important nutritional values. Among the medicinal plants, Opuntia ficus-indica (L.) Miller (Family Cactaceae, subfamily Opuntiodeae, Genus Opuntia, subgenus Platyopuntia, species Opuntia ficus-indica (L.) Miller) is widely known for its beneficial properties. The aim of the present review is to stress the major classes of Opuntia components and their medical interest through emphasis on some of their biological effects, particularly those having the most promising expected health benefits and therapeutic impacts on fish and mammals.
2011-01-01
Background Since the classic Hopkins and Groom druggable genome review in 2002, there have been a number of publications updating both the hypothetical and successful human drug target statistics. However, listings of research targets that define the area between these two extremes are sparse because of the challenges of collating published information at the necessary scale. We have addressed this by interrogating databases, populated by expert curation, of bioactivity data extracted from patents and journal papers over the last 30 years. Results From a subset of just over 27,000 documents we have extracted a set of compound-to-target relationships for biochemical in vitro binding-type assay data for 1,736 human proteins and 1,654 gene identifiers. These are linked to 1,671,951 compound records derived from 823,179 unique chemical structures. The distribution showed a compounds-per-target average of 964 with a maximum of 42,869 (Factor Xa). The list includes non-targets, failed targets and cross-screening targets. The top-278 most actively pursued targets cover 90% of the compounds. We further investigated target ranking by determining the number of molecular frameworks and scaffolds. These were compared to the compound counts as alternative measures of chemical diversity on a per-target basis. Conclusions The compounds-per-protein listing generated in this work (provided as a supplementary file) represents the major proportion of the human drug target landscape defined by published data. We supplemented the simple ranking by the number of compounds assayed with additional rankings by molecular topology. These showed significant differences and provide complementary assessments of chemical tractability. PMID:21569515
Pan, Yuanjie; Tikekar, Rohan V; Nitin, N
2013-06-25
Oxidation of encapsulated bioactive compounds in emulsions is one of the key challenges that limit shelf life of emulsion containing products. Oxidation in these emulsions is triggered by permeation of free radicals generated at the emulsion interface. The objective of this study was to evaluate the role of antioxidant properties of common emulsifiers (lecithin and Tween 20) in reducing permeation of free radicals across the emulsion interface. Radical permeation rates were correlated with oxidative stability of a model bioactive compound (curcumin) encapsulated in these emulsions. Rate of permeation of peroxyl radicals from the aqueous phase to the oil phase of emulsion was inversely proportional to the antioxidant properties of emulsifiers. The rate of radical permeation was significantly higher (p<0.05) for emulsions stabilized using Tween 20 and oxidized lecithin compared to native lecithin that showed higher antioxidant activity. Free radical permeation rate correlated with stability of curcumin in emulsions and was significantly higher (p<0.05) in lecithin stabilized emulsions as compared to Tween 20 emulsions. Overall, this study demonstrates that antioxidant activity of emulsifiers significantly influences permeation of free radicals across the emulsion interface and the rate of oxidation of bioactive encapsulant. Copyright © 2013 Elsevier B.V. All rights reserved.
Antioxidant Bioactive Compounds Changes in Fruit of Quince Genotypes Over Cold Storage.
Moradi, Samira; Koushesh Saba, Mahmoud; Mozafari, Ali Akbar; Abdollahi, Hamid
2016-07-01
Quince fruit has many benefits to human health and is excellent source of bioactive compounds. The fruit of 15 quince genotypes stored at 2 °C for 5 mo to study fruit quality changes during cold storage. Fruit were sampled monthly and stored at 20 °C for 24 h. Fruit ascorbic acid (AA), total phenol (TP), and total flavonoid (TF) concentrations, total antioxidant activity (TAA), flesh browning (FB) incidence, polyphenol oxidase (PPO), peroxidase (POX), and superoxide dismutase (SOD) activities were measured during storage. A high variation in bioactive compounds was observed across genotypes. The range of 26.8 to 44.4 mg/100 g FW for AA, 86.7% to 98.2% for TAA, 157.7 to 380.7 mg GAE 100(-1) g FW for TP, and 5.3 to 10.7 mg/100 g FW for TF were observed across genotypes at harvest time. The overall AA, TAA, TP, TF, and SOD decreased while PPO and POX increased during storage. FB was first observed after 4 mo and increased thereafter while the FB index was different across genotypes. Higher bioactive content may prevent or reduce FB index so that a negative correlation was found between FB and AA, TAA, TP, TF, and SOD. © 2016 Institute of Food Technologists®
Namiesnik, Jacek; Vearasilp, Kann; Nemirovski, Alina; Leontowicz, Hanna; Leontowicz, Maria; Pasko, Pawel; Martinez-Ayala, Alma Leticia; González-Aguilar, Gustavo A; Suhaj, Milan; Gorinstein, Shela
2014-03-01
The aim of this study was to investigate the possibility to use the bioactive components from cape gooseberry (Physalis peruviana), blueberry (Vaccinium corymbosum), and cranberry (Vaccinium macrocarpon) extracts as a novel source against oxidation in food supplementation. The quantitative analysis of bioactive compounds (polyphenols, flavonoids, flavanols, carotenoids, and chlorophyll) was based on radical scavenging spectrophometric assays and mass spectrometry. The total phenolic content was the highest (P < 0.05) in water extract of blueberries (46.6 ± 4.2 mg GAE/g DW). The highest antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and Cupric reducing antioxidant capacity were in water extracts of blueberries, showing 108.1 ± 7.2 and 131.1 ± 9.6 μMTE/g DW with correlation coefficients of 0.9918 and 0.9925, and by β-carotene linoleate assay at 80.1 ± 6.6 % with correlation coefficient of 0.9909, respectively. The water extracts of berries exhibited high binding properties with human serum albumin in comparison with quercetin. In conclusion, the bioactive compounds from a relatively new source of gooseberries in comparison with blueberries and cranberries have the potential as food supplementation for human health. The antioxidant and binding activities of berries depend on their bioactive compounds.
Bravo, Karent; Sepulveda-Ortega, Stella; Lara-Guzman, Oscar; Navas-Arboleda, Alejandro A; Osorio, Edison
2015-05-01
Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued for its organoleptic properties and bioactive compounds. Considering that the presence of phenolics and ascorbic acid could contribute to its functional capacity, it is important to investigate the quality parameters, bioactive contents and functional properties with respect to genotype and ripening time. In this study the genotype effect was evaluated in 15 cultivars for two different harvest times. Changes during maturation were recorded in two commercial cultivars within seven levels of maturity. Multivariate statistical analysis suggested that phenolic content and ORAC value were mainly affected by harvest time and that ascorbic acid content and DPPH level were mainly affected by genotype. In addition, acidity, phenolic content, ORAC value and inhibition of LDL oxidation decreased with maturity, but soluble solids content, ascorbic acid content, β-carotene content and DPPH-scavenging activity were higher in mature fruits. The phenolic content, ascorbic acid content and antioxidant properties of Cape gooseberry fruit were strongly affected by cultivar, harvest time and maturity state. Consequently, the harvest time must be scheduled carefully to gain the highest proportion of bioactive compounds according to the specific cultivar and the environment where it is grown. © 2014 Society of Chemical Industry.
Bioactive compounds and antioxidant activity of wolfberry infusion
Sun, Yujing; Rukeya, Japaer; Tao, Wenyang; Sun, Peilong; Ye, Xingqian
2017-01-01
An infusion of the wolfberry (Lycium barbarum L.) is a traditional Asian herbal tea. This is the most commonly consumed form of dried wolfberry worldwide, yet little scientific information on wolfberry infusions is available. We investigated the effects of making infusions with hot water on the color, the content of bioactive compounds (polysaccharides, polyphenols, flavonoids and carotenoids) and the antioxidant ability of wolfberry infusions. The contents of bioactive compounds and the antioxidant activity of a wolfberry infusion increased with increased infusion temperature and time. Total polysaccharides content (TPOC), total polyphenols (TPC), total flavonoids (TFC) and total carotenoids contents (TCC) were important for determining the antioxidant capacity of wolfberry infusions with the contribution to antioxidant activity in the order TPC > TFC > TCC > TPOC. Hierarchical cluster analysis indicated preparation conditions of 100 °C for 1~3 h, 90 °C for 2~3 h and 80 °C for 2.5~3 h were equivalent as regards the value of TPC, TPOC, TFC, TCC, FRAP, DPPH and ABTS. The results of this study suggest the length of time of making a wolfberry infusion in actual real life practice is too short and different dietary habits associated with the intake of wolfberry infusion might provide the same bioactive nutrients. PMID:28102295
Natural products from filamentous fungi and production by heterologous expression.
Alberti, Fabrizio; Foster, Gary D; Bailey, Andy M
2017-01-01
Filamentous fungi represent an incredibly rich and rather overlooked reservoir of natural products, which often show potent bioactivity and find applications in different fields. Increasing the naturally low yields of bioactive metabolites within their host producers can be problematic, and yield improvement is further hampered by such fungi often being genetic intractable or having demanding culturing conditions. Additionally, total synthesis does not always represent a cost-effective approach for producing bioactive fungal-inspired metabolites, especially when pursuing assembly of compounds with complex chemistry. This review aims at providing insights into heterologous production of secondary metabolites from filamentous fungi, which has been established as a potent system for the biosynthesis of bioactive compounds. Numerous advantages are associated with this technique, such as the availability of tools that allow enhanced production yields and directing biosynthesis towards analogues of the naturally occurring metabolite. Furthermore, a choice of hosts is available for heterologous expression, going from model unicellular organisms to well-characterised filamentous fungi, which has also been shown to allow the study of biosynthesis of complex secondary metabolites. Looking to the future, fungi are likely to continue to play a substantial role as sources of new pharmaceuticals and agrochemicals-either as producers of novel natural products or indeed as platforms to generate new compounds through synthetic biology.
Margalef, Maria; Pons, Zara; Iglesias-Carres, Lisard; Quiñones, Mar; Bravo, Francisca Isabel; Arola-Arnal, Anna; Muguerza, Begoña
2017-02-01
Studying the flavanol metabolism is essential to identify bioactive compounds, as beneficial effects of flavanols have been attributed to their metabolic products. However, host-related factors, including pathological conditions, may affect flavanol metabolism and, thus, their bioactivity. This study aims to elucidate whether hypertension affects grape seed flavanol metabolism, influencing their bioactivity in relation to hypertension. Grape seed flavanols' effect on blood pressure (BP) was studied in spontaneously hypertensive rats (SHR) and healthy Wistar rats 6 h after grape seed extract administration (375 mg/kg). Animals were then sacrificed, and plasma bioavailability and aorta distribution of flavanol metabolites were studied by HPLC-MS/MS in both the groups. Grape seed flavanols were only able to decrease BP in SHR. Plasma total flavanol metabolites showed similar levels, being the difference noticed in specific metabolites' concentrations. Specifically, microbial metabolites showed quantitative and qualitative differences between both health states. Moreover, aorta total concentrations were found decreased in SHR. Interestingly, flavanol microbial metabolites were specifically increased SHR aortas, showing qualitative differences in small phenolic forms. This study demonstrates important differences in bioactivity and target tissue metabolite levels between healthy and diseased rats, indicating potential metabolites responsible of the anti-hypertensive effect. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cyanobactins from Cyanobacteria: Current Genetic and Chemical State of Knowledge.
Martins, Joana; Vasconcelos, Vitor
2015-11-13
Cyanobacteria are considered to be one of the most promising sources of new, natural products. Apart from non-ribosomal peptides and polyketides, ribosomally synthesized and post-translationally modified peptides (RiPPs) are one of the leading groups of bioactive compounds produced by cyanobacteria. Among these, cyanobactins have sparked attention due to their interesting bioactivities and for their potential to be prospective candidates in the development of drugs. It is assumed that the primary source of cyanobactins is cyanobacteria, although these compounds have also been isolated from marine animals such as ascidians, sponges and mollusks. The aim of this review is to update the current knowledge of cyanobactins, recognized as being produced by cyanobacteria, and to emphasize their genetic clusters and chemical structures as well as their bioactivities, ecological roles and biotechnological potential.
Manach, Claudine; Milenkovic, Dragan; Van de Wiele, Tom; Rodriguez-Mateos, Ana; de Roos, Baukje; Garcia-Conesa, Maria Teresa; Landberg, Rikard; Gibney, Eileen R; Heinonen, Marina; Tomás-Barberán, Francisco; Morand, Christine
2017-06-01
Bioactive compounds in plant-based foods have health properties that contribute to the prevention of age-related chronic diseases, particularly cardiometabolic disorders. Conclusive proof and understanding of these benefits in humans is essential in order to provide effective dietary recommendations but, so far, the evidence obtained from human intervention trials is limited and contradictory. This is partly due to differences between individuals in the absorption, distribution, metabolism and excretion of bioactive compounds, as well as to heterogeneity in their biological response regarding cardiometabolic health outcomes. Identifying the main factors underlying inter-individual differences, as well as developing new and innovative methodologies to account for such variability constitute an overarching goal to ultimately optimize the beneficial health effects of plant food bioactives for each and every one of us. In this respect, this position paper from the COST Action FA1403-POSITIVe examines the main factors likely to affect the individual responses to consumption of plant food bioactives and presents perspectives for assessment and consideration of inter-individual variability. © 2016 The Authors. Molecular Nutrition & Food Research published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The reducibility of heLa cell viability by Sargassum polycystum extracts
NASA Astrophysics Data System (ADS)
Firdaus, M.; Setijawati, D.; Islam, I.; Nursyam, H.; Kartikaningsih, H.; Yufidasari, H. S.; Prihanto, A. A.; Nurdiani, R.; Jaziri, A. A.
2018-04-01
Cervical cancer is the second largest cause of death-related cancer in women. The efficacy of cancer drugs is still low. Bioactive of brown seaweed has been studied by in vitro and in vivo as anticancer. The aim of this study was to evaluate the cytotoxicity of Sargassum polycystum extracts on HeLa cell, to recognize bioactive on extract and estimate the interaction between the bioactive and target protein. S. polycystum was found from Talango Island waters and HeLa cell was obtained from Indonesian Science Institute. Sample was extracted by ethanol, ethyl acetate and hexane, concentrated and finally, extracts were assayed on HeLa cell. The viability of this cell was quantified on ELISA-Reader. The bioactive compounds of the extract were elucidated by GC-MS. The interaction between bioactive and target protein was evaluated by using in silico method. The result showed that the lowest viability of HeLa cell on n-hexane extracts treatment. The n-hexane extract of this seaweed contained benzenepropanoic acid. This compound reduced HeLa cell viability by reducing of thrombin concentration. In conclusion, the benzene propanoic acid of S. polycystum was the cytotoxic agent and it is potential agent for anti-cervical cancer.
Gaur, Tanvi; Rao, P B
2017-01-01
The antibacterial activity, phenolic profile, and bioactive compounds of fruiting bodies from 2 strains (MA1 and MA2) of the giant mushroom Macrocybe gigantea were evaluated to access their nutraceutical efficacy. The antibacterial activity was higher in MA2 against all selected pathogenic bacteria. Selected phenolics were analyzed by high-performance liquid chromatography coupled with ultraviolet-visible detection. Gallic acid, ferulic acid, quercetin, p-hydroxy benzoic acid, cinnamic acid, and rutin contents (micrograms per gram dry weight) were quantified. Quercetin and rutin were absent in both strains of M. gigantea. M. gigantea MA2 showed relatively higher phenolic content (915.8 μg/g dry weight) than M. gigantea MA1 (854.4 μg/g dry weight). Among the phenolics, gallic acid is found in the largest amount; in M. gigantea MA2, it was 847.9 ± 2.67 μg/g dry weight. Gas chromatography-mass spectrometry analysis showed the presence of bioactive compounds in both strains; most compounds were antibacterial. Thus, the selected strains of M. gigantea can combat oxidative damage and can be used in foods, pharmaceuticals, and cosmetics because of their antioxidant potential.
Di Vaio, Claudio; Marallo, Nadia; Graziani, Giulia; Ritieni, Alberto; Di Matteo, Antonio
2015-08-15
Fruit quality traits (fresh weight, dry weight, soluble solids content, titratable acidity and firmness) as well as the content of bioactive compounds (phenolic compounds) and total antioxidant activity were evaluated in four commercial cultivars of peach (Greta, Ufo 4, Rome Star and Ufo 6) and four of nectarine (Neve, Planet 1, Maria Carla and Mesembrina) differing in fruit shape (standard or flat) and flesh colour (white or yellow), important cultivars of the Italian and foreign market. The higher fruit organoleptic quality and nutritional profile of flat peach and nectarine cultivars make them candidates for exploiting new market opportunities and the chance to improve profits of farmers. The results showed that assayed quality parameters differed greatly among cultivars. In particular, flesh color and fruit shape accounted for most of the variation in traits underlying organoleptic and nutritional quality. Overall data suggested that the flat white-fleshed nectarine Planet 1, the yellow-fleshed nectarine Mesembrina and the yellow-fleshed peach Ufo 6, because of their profiles in terms of soluble solids content, titratable acidity and bioactive compounds, have the greatest potential to meet current consumer requirements. © 2014 Society of Chemical Industry.
Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues.
Babbar, Neha; Oberoi, Harinder Singh; Sandhu, Simranjeet Kaur
2015-01-01
The growing interest in the substitution of synthetic food antioxidants by natural ones has fostered research in identifying new low-cost antioxidants having commercial potential. Fruits such as mango, banana, and those belonging to the citrus family leave behind a substantial amount of residues in the form of peels, pulp, seeds, and stones. Due to lack of infrastructure to handle a huge quantity of available biomass, lack of processing facilities, and high processing cost, these residues represent a major disposal problem, especially in developing countries. Because of the presence of phenolic compounds, which impart nutraceutical properties to fruit residues, such residues hold tremendous potential in food, pharmaceutical, and cosmetic industries. The biological properties such as anticarcinogenicity, antimutagenicity, antiallergenicity, and antiageing activity have been reported for both natural as well as synthetic antioxidants. Special attention is focused on extraction of bioactive compounds from inexpensive or residual sources. The purpose of this review is to characterize different phenolics present in the fruit residues, discuss the antioxidant potential of such residues and the assays used in determination of antioxidant properties, discuss various methods for efficient extraction of the bioactive compounds, and highlight the importance of fruit residues as potential nutraceutical resources and biopreservatives.
NASA Astrophysics Data System (ADS)
Irimia, Anamaria; Ioanid, Ghiocel Emil; Zaharescu, Traian; Coroabă, Adina; Doroftei, Florica; Safrany, Agnes; Vasile, Cornelia
2017-01-01
The efficiency of the activation of the cellulose/chitin mix substrate by cold plasma or γ-radiation exposure in order to modify it with bioactive compounds was studied. The eugenol or vegetable oils such as grape seed oil and rosehip seed oil have been grafted onto activated substrate. The examination of modified cellulose/chitin mix substrate by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy confirms that the structural and morphological changes took place in both cases. The grafting degrees of the surface layer estimated from XPS data varied from 31.1% to 58.7% for air cold plasma activation and from 9.7% to 22.8% for γ-irradiation treatment. They depend both on bioactive compound used and procedure of substrate activation. Higher grafting degree are obtain by using vegetable oils than in the case of modification with eugenol and the air cold plasma activation seems to be much efficient than γ-irradiation. By grafting the polymeric substrate with bioactive compounds, antimicrobial and antioxidant properties have been conferred. Such materials can be considered promising for food packaging applications and medical textiles and also the applied procedures are environmental friendly ones.
GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC
Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.
2014-01-01
Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744
Liu, Chi-Ming; Kao, Chiu-Li; Tseng, Yu-Ting; Lo, Yi-Ching; Chen, Chung-Yi
2017-09-05
Ginger has many bioactive compounds with pharmacological activities. However, few studies are known about these bioactive compounds activity in chemoresistant cells. The aim of the present study was to investigate the anticancer properties of ginger phytochemicals in docetaxel-resistant human prostate cancer cells in vitro. In this study, we isolated 6-gingerol, 10-gingerol, 4-shogaol, 6-shogaol, 10-shogaol, and 6-dehydrogingerdione from ginger. Further, the antiproliferation activity of these compounds was examined in docetaxel-resistant (PC3R) and sensitive (PC3) human prostate cancer cell lines. 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol at the concentration of 100 μM significantly inhibited the proliferation in PC3R but 6-gingerol, 6-shogaol, and 10-shogaol displayed similar activity in PC3. The protein expression of multidrug resistance associated protein 1 (MRP1) and glutathione-S-transferase (GSTπ) is higher in PC3R than in PC3. In summary, we isolated the bioactive compounds from ginger. Our results showed that 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol inhibit the proliferation of PC3R cells through the downregulation of MRP1 and GSTπ protein expression.
Soejarto, D.D.; Gyllenhaal, C.; Kadushin, M.R.; Southavong, B.; Sydara, K.; Bouamanivong, S.; Xaiveu, M.; Zhang, H.-J.; Franzblau, S.G.; Tan, Ghee T.; Pezzuto, J.M.; Riley, M.C.; Elkington, B.G.; Waller, D.P.
2012-01-01
Context An ethnobotany-based approach in the selection of raw plant materials to study was implemented. Objective To acquire raw plant materials using ethnobotanical field interviews as starting point to discover new bioactive compounds from medicinal plants of the Lao People’s Democratic Republic. Methods Using semi-structured field interviews with healers in the Lao PDR, plant samples were collected, extracted, and bio-assayed to detect bioactivity against cancer, HIV/AIDS, TB, malaria. Plant species demonstrating activity were recollected and the extracts subjected to a bioassay-guided isolation protocol to isolate and identify the active compounds. Results Field interviews with 118 healers in 15 of 17 provinces of Lao PDR yielded 753 collections (573 species) with 955 plant samples. Of these 955, 50 extracts demonstrated activity in the anticancer, 10 in the anti-HIV, 30 in the anti-TB, and 52 in the antimalarial assay. Recollection of actives followed by bioassay-guided isolation processes yielded a series of new and known in vitro-active anticancer and antimalarial compounds from 5 species. Discussion Laos has a rich biodiversity, harboring an estimated 8000–11,000 species of plants. In a country highly dependent on traditional medicine for its primary health care, this rich plant diversity serves as a major source of their medication. Conclusions Ethnobotanical survey has demonstrated the richness of plant-based traditional medicine of Lao PDR, taxonomically and therapeutically. Biological assays of extracts of half of the 955 samples followed by in-depth studies of a number of actives have yielded a series of new bioactive compounds against the diseases of cancer and malaria. PMID:22136442
Unique antimicrobial spectrum of ophiobolin K produced by Aspergillus ustus.
Sohsomboon, Natthapat; Kanzaki, Hiroshi; Nitoda, Teruhiko
2018-03-01
A co-cultivation study of two fungal strains showed that Aspergillus ustus could inhibit Aspergillus repens growth. The bioactive compound responsible for the observed activity was purified and identified as a sesterterpene, ophiobolin K. Ophiobolin K exhibited marked inhibition against both fungi and bacteria, especially A. repens, A. glaucus and gram-positive bacteria including Bacillus subtilis, Staphylococcus aureus, and Micrococcus luteus.