Sample records for biobased products

  1. 48 CFR 52.223-1 - Biobased Product Certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....223-1 Biobased Product Certification. As prescribed in 23.406(a), insert the following provision: Biobased Product Certification (DEC 2007) As required by the Farm Security and Rural Investment Act of 2002... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Biobased Product...

  2. Biobased lubricant additives

    USDA-ARS?s Scientific Manuscript database

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  3. Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products.

    PubMed

    Sherwood, James; Clark, James H; Farmer, Thomas J; Herrero-Davila, Lorenzo; Moity, Laurianne

    2016-12-29

    Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond.

  4. Advanced biomass science and technology for bio-based products: proceedings

    Treesearch

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  5. Production of bio-based materials using photobioreactors with binary cultures

    DOEpatents

    Beliaev, Alex S; Pinchuk, Grigoriy E; Hill, Eric A; Fredrickson, Jim K

    2013-08-27

    A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors or CO.sub.2 and/or bicarbonate. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. The present invention provides a method of cultivation that does not need sparging of a closed bioreactor to remove or add a gaseous byproduct or nutrient from a liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.

  6. Production of bio-based materials using photobioreactors with binary cultures

    DOEpatents

    Beliaev, Alex S.; Pinchuk, Grigoriy E.; Hill, Eric A.

    2017-01-31

    A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors or CO.sub.2 and/or bicarbonate. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. The present invention provides a method of cultivation that does not need sparging of a closed bioreactor to remove or add a gaseous byproduct or nutrient from a liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.

  7. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    PubMed

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Health, safety, and ecological implications of using biobased floor-stripping products.

    PubMed

    Massawe, Ephraim; Geiser, Kenneth; Ellenbecker, Michael; Marshall, Jason

    2007-05-01

    The main objective of the study reported here was to investigate the ecological, health, and safety (EHS) implications of using biobased floor strippers as alternatives to solvent-based products such as Johnson Wax Professional (Pro Strip). The authors applied a quick EHS-scoring technique developed by the Surface Solution Laboratory (SSL) of the Toxics Use Reduction Institute (TURI) to some alternative, biobased products that had previously performed as well as or close to as well as the currently used product. The quick technique is considered an important step in EHS assessment, particularly for toxics use reduction planners and advocates who may not have the resources to subject many alternative products or processes at once to detailed EHS analysis. Taking this step narrows available options to a manageable number. (Technical-performance experiments were also conducted, but the results are not discussed or reported in this paper). The cost of switching to biobased floor strippers was assessed and compared with the cost of using the traditional product, both at full strength and at the dilution ratios recommended by the respective manufacturers. The EHS analysis was based on a framework consisting of five parameters: volatile organic compounds (VOCs); pH; global-warming potential (GWP); ozone depletion potential (ODP); and safety scores in areas such as flammability, stability, and special hazards, based on ratings from the Hazardous Material Classification System (HMIS) and the National Fire Protection Association (NFPA). Total EHS scores were calculated with data derived from the material safety data sheets. For most cleaning products previously investigated by the TURI SSL, the investigators have demonstrated that the five key parameters used in the study reported here can successfully be used for quick screening of the EHS impacts of cleaning alternatives. All eight biobased, or green, products evaluated in the study had better EHS-screening scores than did

  9. Bio-based products from solar energy and carbon dioxide.

    PubMed

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. [Progress in bio-based polyamides].

    PubMed

    Huang, Zhengqiang; Cui, Zhe; Zhang, Heming; Fu, Peng; Zhao, Qingxiang; Liu, Minying

    2016-06-25

    Bio-based polyamides are environment-friendly polymers. The precursors of bio-based polyamides come from bio-based materials such as castor oil, glucose and animal oil. Bio-based polyamides precursors include bio-based amino acids, bio-based lactams, bio-based diprotic acid and bio-based diamines. In this paper, we discussed the route of the precursors of bio-based polyamides that come from bio-based materials. We discussed the properties of bio-based polyamides. Bio-based PA11and bio-based PA1010 are well-known bio-based polyamides; we discussed the origin materials of the precursors, the route of manufacturing bio-based PA11 and PA1010, and their modifications status. The variety, classification and commercial production of bio-based polyamides were described in details, as well as bio-based polyamides development in China.

  11. Establishment of a Graduate Certificate Program in Biobased Industrial Products – Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John R. Schlup

    2005-11-04

    A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented coursemore » of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration

  12. New bioactive and biobased product applications of pectin

    USDA-ARS?s Scientific Manuscript database

    Pectin is well known for its bioactive health-promoting properties and use in biobased products. Recent reports have demonstrated that pectin and pectic fractions have potential as prebiotics, prevent pathogenic bacterial adhesion, increase prostate specific antigen doubling time in patients with re...

  13. Computational Methods to Assess the Production Potential of Bio-Based Chemicals.

    PubMed

    Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M; Herrgård, Markus J

    2018-01-01

    Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.

  14. 48 CFR 52.223-2 - Affirmative Procurement of Biobased Products Under Service and Construction Contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Biobased Products Under Service and Construction Contracts. 52.223-2 Section 52.223-2 Federal Acquisition... CONTRACT CLAUSES Text of Provisions and Clauses 52.223-2 Affirmative Procurement of Biobased Products Under Service and Construction Contracts. As prescribed in 23.406(b), insert the following clause: Affirmative...

  15. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    PubMed Central

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  16. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    PubMed

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-07-28

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  17. Finding the Bio in Biobased Products: Electrophoretic Identification of Wheat Proteins in Processed Products

    USDA-ARS?s Scientific Manuscript database

    Verification of the bio-content in bio-based or green products identifies genuine products, exposes counterfeit copies, supports or refutes content claims and ensures consumer confidence. When the bio-content includes protein, elemental nitrogen analysis is insufficient for verification since non-pr...

  18. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    PubMed

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Editorial: from plant biotechnology to bio-based products.

    PubMed

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Current status of bio-based materials industry in China].

    PubMed

    Diao, Xiaoqian; Weng, Yunxuan; Huang, Zhigang; Yang, Nan; Wang, Xiyuan; Zhang, Min; Jin, Yujuan

    2016-06-25

    In recent years, bio-based materials are becoming a new dominant industry leading the scientific and technological innovation, and economic development of the world. We reviewed the new development of bio-based materials industry in China, analyzed the entire market of bio-based materials products comprehensively, and also stated the industry status of bio-based chemicals, such as lactic acid, 1,3-propanediol, and succinic acid; biodegradable bio-based polymers, such as co-polyester of diacid and diol, polylactic acid, carbon dioxide based copolymer, polyhydroxyalknoates, polycaprolactone, and thermoplastic bio-based plastics; non-biodegradable bio-based polymers, such as bio-based polyamide, polytrimethylene terephthalate, bio-based polyurethane, and bio-based fibers.

  1. BIOBASED MATERIALS

    EPA Science Inventory

    Biobased materials refer to products that mainly consist of a substance (or substances) derived from living matter (biomass) and either occur naturally or are synthesized, or it may refer to products made by processes that use biomass. Following a strict definition, many common m...

  2. Biobased products research at the National Center for Agricultural Utilization Research

    USDA-ARS?s Scientific Manuscript database

    Recent research by our group at the NCAUR has concerned the research and development of biobased products, most of which are derived from the residues produced during agricultural processing. These include: novel sophorolipids from yeast as natural emulsifiers and surfactants for certified organic...

  3. Types, production and assessment of biobased food packaging materials

    USDA-ARS?s Scientific Manuscript database

    Food packaging performs an essential function, but packaging materials can have a negative impact on the environment. This book describes the latest advances in bio-based food packaging materials. Book provides a comprehensive review on bio-based, biodegradable and recycled materials and discusses t...

  4. [Preface for special issue on bio-based materials (2016)].

    PubMed

    Weng, Yunxuan

    2016-06-25

    Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.

  5. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Microbial conversion of biomass into bio-based polymers.

    PubMed

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 75 FR 6795 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...The U.S. Department of Agriculture (USDA) is proposing to amend the Guidelines for Designating Biobased Products for Federal Procurement (Guidelines) to add nine sections that will designate the following items within which biobased products would be afforded Federal procurement preference: Disposable tableware; expanded polystyrene foam recycling products; heat transfer fluids; ink removers and cleaners; mulch and compost materials; multipurpose lubricants; office paper; topical pain relief products; and turbine drip oils. USDA is also proposing minimum biobased contents for each of these items.

  8. DO BIO-BASED PRODUCTS MOVE US TOWARD SUSTAINABILITY? A LOOK AT THREE CASE STUDIES

    EPA Science Inventory

    The movement to buy "environmentally-friendly" products was recently reinvigorated by the signing of the 2002 Farm Act that requires all federal agencies to give preference to products that are made (in whole or significant part) from bio-based material. This paper add...

  9. 7 CFR 2902.7 - Determining biobased content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Determining biobased content. 2902.7 Section 2902.7 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT General § 2902...

  10. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    NASA Astrophysics Data System (ADS)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  11. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    PubMed Central

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-ichi

    2015-01-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon. PMID:25648201

  12. 7 CFR 2902.7 - Determining biobased content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....7 Determining biobased content. (a) Certification requirements. For any product offered for... the weight (mass) of the total organic carbon in the material or product. (d) Products with the same...

  13. Turning biobased materials into polymer precursors through catalytic decarboxylation

    USDA-ARS?s Scientific Manuscript database

    Biobased carboxylic acids have the potential to become the needed feedstock for the production of biobased polymers. By removal of the oxygen atoms, the same monomer feedstocks that polymer producers already use, and are familiar with, can be developed which will allow practitioners to continue the ...

  14. DO BIO-BASED PRODUCTS MOVE US TOWARD SUSTAINABILITY? A LOOK AT THREE USEPA CASE STUDIES

    EPA Science Inventory


    Do Bio-Based Products Move Us Toward Sustainability? A Look at Three Case Studies within the US EPA
    Mary Am Curran
    US Environmental Protection Agency, Office of Research & Development, Cincinnati, OH 45268; curran.maryann@epagov
    Abstract The movement to buy "...

  15. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.

    PubMed

    Kawaguchi, Hideo; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation. Copyright © 2016. Published by Elsevier Ltd.

  16. Modules for in vitro metabolic engineering: Pathway assembly for bio-based production of value-added chemicals.

    PubMed

    Taniguchi, Hironori; Okano, Kenji; Honda, Kohsuke

    2017-06-01

    Bio-based chemical production has drawn attention regarding the realization of a sustainable society. In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals. This method involves the reconstitution of natural or artificial metabolic pathways by assembling purified/semi-purified enzymes in vitro . Enzymes from distinct sources can be combined to construct desired reaction cascades with fewer biological constraints in one vessel, enabling easier pathway design with high modularity. Multiple modules have been designed, built, tested, and improved by different groups for different purpose. In this review, we focus on these in vitro metabolic engineering modules, especially focusing on the carbon metabolism, and present an overview of input modules, output modules, and other modules related to cofactor management.

  17. Towards a carbon-negative sustainable bio-based economy.

    PubMed

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Van Breusegem, Frank; De Mey, Marjan; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  18. Towards a carbon-negative sustainable bio-based economy

    PubMed Central

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Breusegem, Frank Van; Mey, Marjan De; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy. PMID:23761802

  19. A Circular Bioeconomy with Biobased Products from CO2 Sequestration.

    PubMed

    Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G

    2016-06-01

    The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Biobased adhesives and non-conventional bonding

    Treesearch

    Charles Frihart

    2010-01-01

    Biobased adhesives fall into several major classes based upon their chemical structures. Starches are used in large volume, especially in the paper products industries, but cellulosics generally do not have the strength and water resistance needed for most wood products. Several authors have covered cellulosics adhesives (Baumann and Conner 2002, Pizzi 2006). However...

  1. Current Trends in Biobased Lubricant Development

    USDA-ARS?s Scientific Manuscript database

    Biobased lubricants are those comprising ingredients derived from natural raw materials such as those harvested from farms, forests, etc. Biolubricants provide a number of benefits over petroleum-based products including: biodegradability, renewability, and non-toxicity. As a result, manufacture ...

  2. Biobased Lubricant Development - Problems and Opportunities

    USDA-ARS?s Scientific Manuscript database

    Biobased lubricants are those comprising ingredients derived from natural sources such as those harvested from farms, forests, etc. Biolubricants provide a number of economic, environmental and health benefits over petroleum-based products. Among these are: biodegradability, renewability and non-t...

  3. Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources.

    PubMed

    Qiu, Yibin; Lei, Peng; Zhang, Yatao; Sha, Yuanyuan; Zhan, Yijing; Xu, Zongqi; Li, Sha; Xu, Hong; Ouyang, Pingkai

    2018-01-01

    The Jerusalem artichoke is a perennial plant that belongs to the sunflower family. As a non-grain crop, Jerusalem artichoke possesses a number of desirable characteristics that make it a valuable feedstock for biorefinery, such as inulin content, rapid growth, strong adaptability, and high yields. This review provides a comprehensive introduction to renewable Jerusalem artichoke-based biomass resources and recent advances in bio-based product conversion. Furthermore, we discuss the latest in the development of inulinase-producing microorganisms and enhanced inulin hydrolysis capacity of microbes by genetic engineering, which lead to a more cost-effective Jerusalem artichoke biorefinery. The review is aimed at promoting Jerusalem artichoke industry and new prospects for higher value-added production.

  4. Bio-based production of monomers and polymers by metabolically engineered microorganisms.

    PubMed

    Chung, Hannah; Yang, Jung Eun; Ha, Ji Yeon; Chae, Tong Un; Shin, Jae Ho; Gustavsson, Martin; Lee, Sang Yup

    2015-12-01

    Recent metabolic engineering strategies for bio-based production of monomers and polymers are reviewed. In the case of monomers, we describe strategies for producing polyamide precursors, namely diamines (putrescine, cadaverine, 1,6-diaminohexane), dicarboxylic acids (succinic, glutaric, adipic, and sebacic acids), and ω-amino acids (γ-aminobutyric, 5-aminovaleric, and 6-aminocaproic acids). Also, strategies for producing diols (monoethylene glycol, 1,3-propanediol, and 1,4-butanediol) and hydroxy acids (3-hydroxypropionic and 4-hydroxybutyric acids) used for polyesters are reviewed. Furthermore, we review strategies for producing aromatic monomers, including styrene, p-hydroxystyrene, p-hydroxybenzoic acid, and phenol, and propose pathways to aromatic polyurethane precursors. Finally, in vivo production of polyhydroxyalkanoates and recombinant structural proteins having interesting applications are showcased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Bio-based and biodegradable plastics for use in crop production.

    PubMed

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  6. Life cycle of the corn-soybean agroecosystem for biobased production.

    PubMed

    Landis, Amy E; Miller, Shelie A; Theis, Thomas L

    2007-02-15

    Biobased product life cycle assessments (LCAs) have focused largely on energy (fossil fuel) usage and greenhouse gas emissions during the agriculture and production stages. This paper compiles a more comprehensive life cycle inventory (LCI) for use in future bioproduct LCAs that rely on corn or soybean crops as feedstocks. The inventory includes energy, C, N, P, major pesticides, and U.S. EPA criteria air pollutants that result from processes such as fertilizer production, energy production, and on-farm chemical and equipment use. Agroecosystem material flows were modeled using a combination of GREET (the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model), a linear fractionation model that describes P biogeochemical cycling, and Monte Carlo Analysis. Results show that the dominant air emissions resulted from crop farming, fertilizers, and on-farm nitrogen flows (e.g., N20 and NO). Seed production and irrigation provided no more than 0.002% to any of the inventory emissions or energy flows and may be neglected in future LCAs of corn or soybeans as feedstocks from the U.S. Corn Belt. Lime contributes significantly (17% of total emissions) to air emissions and should not be neglected in bioproduct LCAs.

  7. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Production of Plant Phthalate and its Hydrogenated Derivative from Bio-Based Platform Chemicals.

    PubMed

    Lu, Rui; Lu, Fang; Si, Xiaoqin; Jiang, Huifang; Huang, Qianqian; Yu, Weiqiang; Kong, Xiangtao; Xu, Jie

    2018-04-06

    Direct transformation of bio-based platform chemicals into aromatic dicarboxylic acids and their derivatives, which are widely used for the manufacture of polymers, is of significant importance for the sustainable development of the plastics industry. However, limited successful chemical processes have been reported. This study concerns a sustainable route for the production of phthalate and its hydrogenated derivative from bio-based malic acid and erythritol. The key Diels-Alder reaction is applied to build a substituted cyclohexene structure. The dehydration reaction of malic acid affords fumaric acid with 96.6 % yield, which could be used as the dienophile, and 1,3-butadiene generated in situ through erythritol deoxydehydration serves as the diene. Starting from erythritol and dibutyl fumarate, a 74.3 % yield of dibutyl trans-4-cyclohexene-1,2-dicarboxylate is obtained. The palladium-catalyzed dehydrogenation of the cycloadduct gives a 77.8 % yield of dibutyl phthalate. Dibutyl trans-cyclohexane-1,2-dicarboxylate could be formed in nearly 100 % yield under mild conditions by hydrogenation of the cycloadduct. Furthermore, fumaric acid and fumarate, with trans configurations, were found to be better dienophiles for this Diels-Alder reaction than maleic acid and maleate, with cis configuration, based on the experimental and computational results. This new route will pave the way for the production of environmental friendly plastic materials from plants. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biobased Epoxy Resins from Deconstructed Native Softwood Lignin.

    PubMed

    van de Pas, Daniel J; Torr, Kirk M

    2017-08-14

    The synthesis of novel epoxy resins from lignin hydrogenolysis products is reported. Native lignin in pine wood was depolymerized by mild hydrogenolysis to give an oil product that was reacted with epichlorohydrin to give epoxy prepolymers. These were blended with bisphenol A diglycidyl ether or glycerol diglycidyl ether and cured with diethylenetriamine or isophorone diamine. The key novelty of this work lies in using the inherent properties of the native lignin in preparing new biobased epoxy resins. The lignin-derived epoxy prepolymers could be used to replace 25-75% of the bisphenol A diglycidyl ether equivalent, leading to increases of up to 52% in the flexural modulus and up to 38% in the flexural strength. Improvements in the flexural strength were attributed to the oligomeric products present in the lignin hydrogenolysis oil. These results indicate lignin hydrogenolysis products have potential as sustainable biobased polyols in the synthesis of high performance epoxy resins.

  10. 77 FR 10939 - Driving Innovation and Creating Jobs in Rural America Through Biobased and Sustainable Product...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... Related to Executive Order 13514. (a) Agencies shall include and report on biobased acquisition as part of the sustainable acquisition goals and milestones in the Strategic Sustainability Performance Plan... Budget (OMB) shall emphasize biobased purchasing in the fiscal year 2012 and 2013 Sustainability/Energy...

  11. [Development and perspective of bio-based chemical fiber industry].

    PubMed

    Li, Zengjun

    2016-06-25

    Bio-based fiber is environment friendly, reproducible, easily biodegradable. Therefore, rapid development of bio-based fiber industry is an obvious in progress to replace petrochemical resources, develop sustainable economy, build resource saving and environment friendly society. This article describes the current development of bio-based fiber industry, analyzes existing problems, indicates the trends and objectives of bio-based fiber materials technology innovation and recommends developing bio-based fibers industry of our country.

  12. Bio-based wood adhesives research: Advances and outlooks

    USDA-ARS?s Scientific Manuscript database

    In the past three decades, concerns related to the environment and human health risks and interests in resources recycling and sustainability have propelled the resurgence of the research on bio-based adhesives, especially those based on agricultural and forest products and byproducts. In this concl...

  13. 76 FR 53113 - Guidelines for Designating Biobased Products for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    .... Information regarding the Federal biobased preferred procurement program (one part of the BioPreferred Program... Request: Extension of a currently approved information collection. Abstract: The USDA BioPreferred Program... that then permit USDA to designate items for preferred procurement under the BioPreferred Program. Once...

  14. Catalytic modification of fats and oils to value-added biobased products

    USDA-ARS?s Scientific Manuscript database

    Biobased materials derived from fats and oils can be relatively benign to the environment because they tend to have good biodegradability. Oils are used in a myriad of applications, including foods, cosmetics, paints, biodegradable lubricants and polymers, biodiesel, and more. For many of these ap...

  15. Cascade use indicators for selected biopolymers: Are we aiming for the right solutions in the design for recycling of bio-based polymers?

    PubMed

    Hildebrandt, Jakob; Bezama, Alberto; Thrän, Daniela

    2017-04-01

    When surveying the trends and criteria for the design for recycling (DfR) of bio-based polymers, priorities appear to lie in energy recovery at the end of the product life of durable products, such as bio-based thermosets. Non-durable products made of thermoplastic polymers exhibit good properties for material recycling. The latter commonly enjoy growing material recycling quotas in countries that enforce a landfill ban. Quantitative and qualitative indicators are needed for characterizing progress in the development towards more recycling friendly bio-based polymers. This would enable the deficits in recycling bio-based plastics to be tracked and improved. The aim of this paper is to analyse the trends in the DfR of bio-based polymers and the constraints posed by the recycling infrastructure on plastic polymers from a systems perspective. This analysis produces recommendations on how life cycle assessment indicators can be introduced into the dialogue between designers and recyclers in order to promote DfR principles to enhance the cascading use of bio-based polymers within the bioeconomy, and to meet circular economy goals.

  16. Cascade use indicators for selected biopolymers: Are we aiming for the right solutions in the design for recycling of bio-based polymers?

    PubMed Central

    Hildebrandt, Jakob; Bezama, Alberto; Thrän, Daniela

    2017-01-01

    When surveying the trends and criteria for the design for recycling (DfR) of bio-based polymers, priorities appear to lie in energy recovery at the end of the product life of durable products, such as bio-based thermosets. Non-durable products made of thermoplastic polymers exhibit good properties for material recycling. The latter commonly enjoy growing material recycling quotas in countries that enforce a landfill ban. Quantitative and qualitative indicators are needed for characterizing progress in the development towards more recycling friendly bio-based polymers. This would enable the deficits in recycling bio-based plastics to be tracked and improved. The aim of this paper is to analyse the trends in the DfR of bio-based polymers and the constraints posed by the recycling infrastructure on plastic polymers from a systems perspective. This analysis produces recommendations on how life cycle assessment indicators can be introduced into the dialogue between designers and recyclers in order to promote DfR principles to enhance the cascading use of bio-based polymers within the bioeconomy, and to meet circular economy goals. PMID:28097922

  17. Bio-based Hydraulic Fluids

    DTIC Science & Technology

    2008-04-17

    DEHULL, FLAKE HEXANE EXTRACTION PRESS HEXANE DISTILLATION CRUDE OIL 0.1-3% phosphatides 1% fatty acids 1 ppm chlorophyll DEGUM (H2 O, H3 PO4...program www.bfrl.nist.gov/oae/bees.html 617 April 2008 Seed Oils and Their Fatty Acid and Genetic Varieties Source: Leissner, O. et al (1989) Vegetable...Oils and Fats, Karlshammn, Sweden 717 April 2008 Bio-based Oil Process Volatile impurities: odor (aldehydes & ketones) fatty acids Bio-based Oil CRACK

  18. Development of expert system for biobased polymer material selection: food packaging application.

    PubMed

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.

  19. Boron brings big benefits to bio-based blends

    USDA-ARS?s Scientific Manuscript database

    The solution to the problems with bio-based lubrication can be approached by a combination of blending and additive strategies. However, many additives do not show efficacy when used in bio-based lubricants. Additive addition also lowers the bio-based content of the blend, which in turn limits the a...

  20. Preparation of biobased sponges from un-tanned hides

    USDA-ARS?s Scientific Manuscript database

    One of our research endeavors to address ongoing challenges faced by the U.S. hide and leather industries is to develop innovative uses and novel biobased products from hides to improve prospective markets and to secure a viable future for hides and leather industries. We had previously investigate...

  1. Safety Aspects of Bio-Based Nanomaterials.

    PubMed

    Catalán, Julia; Norppa, Hannu

    2017-12-01

    Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  2. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  3. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production.

    PubMed

    Zhuang, Kai H; Herrgård, Markus J

    2015-09-01

    In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. 75 FR 63695 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... manufacturing in rural communities; and to enhance the Nation's energy security by substituting biobased... items used in products or systems designed or procured for combat or combat-related missions, which will... least part of its environmental information responsibilities. The BEES tool is designed to evaluate...

  5. 76 FR 43808 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... thermal shipping containers, including durable and non-durable thermal shipping containers as... able to utilize this Web site as one tool to determine the availability of qualifying biobased products... containers and the subcategories are (1) durable thermal shipping containers, and (2) non-durable thermal...

  6. 129Xe NMR studies of biochar made from biobased materials

    USDA-ARS?s Scientific Manuscript database

    Biochar is created by pyrolysis of biobased materials under controlled oxidative environments. The product is charcoal-like and can be used as filtration medium, sequestrant for metallic ions, soil conditioner, and other applications. In our work we have found 129Xe NMR to be an excellent technique...

  7. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of biofuels and bio-based chemicals

    USDA-ARS?s Scientific Manuscript database

    An exponential increase in our understanding of genomes, proteomes, and metabolomes provides greater impetus to address critical biotechnological issues such as sustainable production of biofuels and bio-based chemicals and, in particular, the development of improved microbial biocatalysts for use i...

  8. Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy.

    PubMed

    Arnold, Stefanie; Moss, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-10-01

    Lignocellulosic biomass is an important feedstock for a potential future bio-based economy. Owing to its compact structure, suitable decomposition technologies will be necessary to make it accessible for biotechnological conversion. While chemical and enzymatic hydrolysis are currently established methods, a promising alternative is provided by fast pyrolysis. The main resulting product thereof, referred to as pyrolysis oil, is an energy-rich and easily transportable liquid. Many of the identified constituents of pyrolysis oil, however, have previously been reported to display adverse effects on microbial growth. In this Opinion we discuss relevant biological, biotechnological, and technological challenges that need to be addressed to establish pyrolysis oil as a reliable microbial feedstock for a bio-based economy of the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    PubMed

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Methacrylamide grafted elastomer composites reinforced with biobased particles

    USDA-ARS?s Scientific Manuscript database

    Modulus of rubber can be improved with grafting of unsaturated monomers. To increase the modulus of bio-based rubber composites, methacrylamide was grafted onto natural rubber composites reinforced with bio-based hydrophilic particles. Rubber particles in water were modified with methacrylamide usin...

  11. Fast-responding bio-based shape memory thermoplastic polyurethanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan

    Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less

  12. Fast-responding bio-based shape memory thermoplastic polyurethanes

    DOE PAGES

    Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan; ...

    2017-05-31

    Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less

  13. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.

    PubMed

    Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan

    2017-07-14

    Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.

  14. Bio-based Industries Joint Undertaking: The catalyst for sustainable bio-based economic growth in Europe.

    PubMed

    Mengal, Philippe; Wubbolts, Marcel; Zika, Eleni; Ruiz, Ana; Brigitta, Dieter; Pieniadz, Agata; Black, Sarah

    2018-01-25

    This article discusses the preparation, structure and objectives of the Bio-based Industries Joint Undertaking (BBI JU). BBI JU is a public-private partnership (PPP) between the European Commission (EC) and the Bio-based Industries Consortium (BIC), the industry-led private not-for-profit organisation representing the private sectors across the bio-based industries. The model of the public-private partnership has been successful as a new approach to supporting research and innovation and de-risking investment in Europe. The BBI JU became a reality in 2014 and represents the largest industrial and economic cooperation endeavour financially ever undertaken in Europe in the area of industrial biotechnologies. It is considered to be one of the most forward-looking initiatives under Horizon 2020 and demonstrates the circular economy in action. The BBI JU will be the catalyst for this strategy to mobilise actors across Europe including large industry, small and medium-sized enterprises (SMEs), all types of research organisations, networks and universities. It will support regions and in doing so, the European Union Member States and associated countries in the implementation of their bioeconomy strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings

    DTIC Science & Technology

    2015-04-01

    ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use in Composites and...copyright notation hereon. ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use...4. TITLE AND SUBTITLE Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  16. Processing and characterization of bio-based composites

    NASA Astrophysics Data System (ADS)

    Lu, Hong

    Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.

  17. Integrating separation and conversion - Conversion of biorefinery process streams to biobased chemicals and fuels

    Treesearch

    Joseph J. Bozell; Berenger Biannic; Diana Cedeno; Thomas Elder; Omid Hosseinaei; Lukas Delbeck; Jae-Woo Kim; C.J. O' Lenick; Timothy Young

    2014-01-01

    Abstract The concept of the integrated biorefinery is critical to developing a robust biorefining industry in the USA.Within this model, the biorefinery will produce fuel as a highvolume output addressing domestic energy needs and biobased chemical products (high-value organics) as an output providing necessary economic support for fuel production. This paper will...

  18. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods.

    PubMed

    Cutter, Catherine Nettles

    2006-09-01

    It has been well documented that vacuum or modified atmosphere packaging materials, made from polyethylene- or other plastic-based materials, have been found to improve the stability and safety of raw or further processed muscle foods. However, recent research developments have demonstrated the feasibility, utilization, and commercial application of a variety of bio-based polymers or bio-polymers made from a variety of materials, including renewable/sustainable agricultural commodities, and applied to muscle foods. A variety of these bio-based materials have been shown to prevent moisture loss, drip, reduce lipid oxidation and improve flavor attributes, as well as enhancing the handling properties, color retention, and microbial stability of foods. With consumers demanding more environmentally friendly packaging and a desire for more natural products, bio-based films or bio-polymers will continue to play an important role in the food industry by improving the quality of many products, including fresh or further processed muscle foods.

  19. Green Thermosetting Factory: Novel Star-Shaped Biobased Systems and Their Thermosetting Resins; Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Jahandideh, Arash

    Increasing attentions toward sustainable development, economic and environmental issues have led to many attempts at replacing the petroleum-based materials with renewables. Substitution of petroleum-based platforms with green alternative technologies is beneficiary in different ways. Using bio-renewables reduces the dependency of the national plastic industry to the petroleum resources and substantially promotes the environmental profile and sustainability of the product. It is expected that the emergence of the corn-based thermosetting industry generates substantial profits for the corn production sector. Developments in the emerging biobased thermosets are spectacular from a technological point of view. However, there are still several disadvantages associated with the current biobased thermosetting resins, e.g. low processability, environmental issues, expensive sources and poor thermomechanical properties. Use of natural fibers not only contributes to the production of a more environmentally friendly product, but also has advantages such as low-weight product and low manufacturing costs. The results of this study show a possibility of production of biocomposites made from natural fibers and star-shaped resin, synthesized from corn-based materials (lactic acid and itaconic acid) and different multihydroxyl core molecules. These resins were synthesized via two-steps strategy: polycondensation of the monomers with the core molecules followed by end-functionalization of the branches by methacrylic anhydride or itaconic acid. The results have shown that these resin are capable of competing with or even surpassing fossil fuel based resins in terms of cost and eco-friendliness aspect. Inexpensive biobased raw material, better environmental profile, low viscosity, and better processability of the matrix along with better thermomechanical properties of the produced biocomposites are of advantages expected for these systems.

  20. Environmentally friendly and biobased lubricants

    USDA-ARS?s Scientific Manuscript database

    Biobased and environmentally friendly lubricants are finding applications in many areas ranging from hydraulic fluids to grease. They offer excellent biodegradability and very low ecotoxicity; high viscosity index; improved tribological properties; lower volatility and flash points relative to petro...

  1. A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals.

    PubMed

    Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai

    2015-12-01

    In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. © 2015 Authors; published by Portland Press Limited.

  2. Structure-triboproperty in biobased amphiphiles

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils and their derivatives are amphiphilic and display a number of properties critical to their application in tribological processes. Among such properties are: viscosity, viscosity index, oxidation stability, cold flow, boundary friction, etc. The properties of these biobased amphiphiles...

  3. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.

    PubMed

    Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia

    2016-04-01

    The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  5. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology.

    PubMed

    Shih, Patrick M

    2018-08-01

    Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The physical properties, morphology and viscoelasticity of biobased sponges prepared from un-tanned hides

    USDA-ARS?s Scientific Manuscript database

    One of our research endeavors to address ongoing challenges faced by the U.S. hide and leather industries is to develop innovative uses and novel biobased products from hides to improve prospective markets and to secure a viable future for hides and leather industries. We had previously investigate...

  7. The Future of Ethenolysis in Biobased Chemistry.

    PubMed

    Spekreijse, Jurjen; Sanders, Johan P M; Bitter, Johannes H; Scott, Elinor L

    2017-02-08

    The desire to utilise biobased feedstocks and develop more sustainable chemistry poses new challenges in catalysis. A synthetically useful catalytic conversion is ethenolysis, a cross metathesis reaction with ethylene. In this Review, the state of the art of ethenolysis in biobased chemistry was extensively examined using methyl oleate as a model compound for fatty acids. Allied to this, the ethenolysis of fatty acid, polymers and more challenging substrates are reviewed. To determine the limiting factors for the application of ethenolysis on biomass, the influence of reaction parameters were investigated and the bottlenecks for reaching high turnover numbers identified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. To be, or not to be biodegradable… that is the question for the bio-based plastics.

    PubMed

    Prieto, Auxiliadora

    2016-09-01

    Global warming, market and production capacity are being the key drivers for selecting the main players for the next decades in the market of bio-based plastics. The drop-in bio-based polymers such as the bio-based polyethylene terephtalate (PET) or polyethylene (PE), chemically identical to their petrochemical counterparts but having a component of biological origin, are in the top of the list. They are followed by new polymers such as PHA and PLA with a significant market growth rate since 2014 with projections to 2020. Research will provide improved strains designed through synthetic and systems biology approaches; furthermore, the use of low-cost substrates will contribute to the widespread application of these bio- based polymers. The durability of plastics is not considered anymore as a virtue, and interesting bioprospecting strategies to isolate microorganisms for assimilating the recalcitrant plastics will pave the way for in vivo strategies for plastic mineralization. In this context, waste management of bio-based plastic will be one of the most important issues in the near future in terms of the circular economy. There is a clear need for standardized labelling and sorting instructions, which should be regulated in a coordinated way by policymakers and material producers. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.

    PubMed

    Iwata, Tadahisa

    2015-03-09

    Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of PLA hybrid yarns for biobased self-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Köhler, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight materials are a necessity in various industries. Lightweight design is in the key interest of the mobility sector, e.g. the automotive and aerospace industry. This trend applies also for the consumer industries, e.g. sporting goods. In addition, the worldwide demand for replacing fossil-based materials has led to a significant growth of bioplastics. Due to their low mechanical performance and durability, their use is still limited. Therefore, it is necessary to develop biobased, sustainable polymeric materials with high stiffness, high impact and high durability without impairing recyclability at a similar price level of non-biobased solutions. Biobased self-reinforced polymer composites offer these unique properties.

  11. Sustainable Systems Analysis of Production and Transportation Scenarios for Conventional and Bio-based Energy Commodities

    NASA Astrophysics Data System (ADS)

    Doran, E. M.; Golden, J. S.; Nowacek, D. P.

    2013-12-01

    International commerce places unique pressures on the sustainability of water resources and marine environments. System impacts include noise, emissions, and chemical and biological pollutants like introduction of invasive species into key ecosystems. At the same time, maritime trade also enables the sustainability ambition of intragenerational equity in the economy through the global circulation of commodities and manufactured goods, including agricultural, energy and mining resources (UN Trade and Development Board 2013). This paper presents a framework to guide the analysis of the multiple dimensions of the sustainable commerce-ocean nexus. As a demonstration case, we explore the social, economic and environmental aspects of the nexus framework using scenarios for the production and transportation of conventional and bio-based energy commodities. Using coupled LCA and GIS methodologies, we are able to orient the findings spatially for additional insight. Previous work on the sustainable use of marine resources has focused on distinct aspects of the maritime environment. The framework presented here, integrates the anthropogenic use, governance and impacts on the marine and coastal environments with the natural components of the system. A similar framework has been highly effective in progressing the study of land-change science (Turner et al 2007), however modification is required for the unique context of the marine environment. This framework will enable better research integration and planning for sustainability objectives including mitigation and adaptation to climate change, sea level rise, reduced dependence on fossil fuels, protection of critical marine habitat and species, and better management of the ocean as an emerging resource base for the production and transport of commodities and energy across the globe. The framework can also be adapted for vulnerability analysis, resilience studies and to evaluate the trends in production, consumption and

  12. From petrochemistry to biotech: a European perspective on the bio-based economy

    PubMed Central

    Landeweerd, Laurens; Surette, Monique; van Driel, Corry

    2011-01-01

    This paper gives an account of the issues at play in Europe with regard to the transition to a bio-based economy. Agricultural crops have always been used for the production of food, feed, fibre and fuel. The Model T Ford—the first mass produced car—originally ran on bioethanol, and wood has been in use as a source for energy ever since the discovery of fire. What is new is that the balance between agricultural uses is changing under the pressure of an increasing need for food and feed, as well as the new need for biofuels and biomaterials. At the basis of this change lie several serious issues related to the current use of bio-based feedstock to secure energy supply, the future depletion of natural resources and global climate change. Innovations in industrial biotechnology are expected to play a crucial role in dealing with these issues in biomass use.

  13. Encapsulation of a model compound in pectin delays its release from a biobased polymeric material

    USDA-ARS?s Scientific Manuscript database

    A model compound was encapsulated in pectin and then extruded with thermoplastic starch to form a composite. The intended product was a food-contact tray made of biobased polymers infused with an anti-microbial agent; however, caffeine was used as the model compound in the preliminary work. The mode...

  14. Life-cycle analysis of bio-based aviation fuels.

    PubMed

    Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q

    2013-12-01

    Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Novel renewable products for biorefineries

    USDA-ARS?s Scientific Manuscript database

    A biorefinery integrates unit operations to convert biomass into a variety of biobased products, including fuels, chemicals, energy, and feed. Government policy initiatives over the last 1-2 decades have emphasized the production of biobased fuels, and consequently the number of dry-grind ethanol bi...

  16. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films

    PubMed Central

    Pant, Astrid F.; Sängerlaub, Sven; Müller, Kajetan

    2017-01-01

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86). PMID:28772849

  17. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.

    PubMed

    Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan

    2017-05-03

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).

  18. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  19. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    PubMed

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). Copyright © 2013 Elsevier Inc. All rights reserved.

  20. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Investigation of tribological properties of biobased polymers and polymeric composites

    NASA Astrophysics Data System (ADS)

    Bhuyan, Satyam Kumar

    Worldwide potential demands for replacing petroleum derived raw materials with renewable plant-based ones in the production of valuable polymeric materials and composites are quite significant from the social and environmental standpoints. Therefore, using low-cost renewable resources has deeply drawn the attention of many researchers. Among them, natural oils are expected to be ideal alternative feedstock since oils, derived from plant and animal sources, are found in profusion in the world. The important feature of these types of materials is that they can be designed and tailored to meet different requirements. The real challenge lies in finding applications which would use sufficiently large quantities of these materials allowing biodegradable polymers to compete economically in the market. Lack of material and tribological characterizations have created an awareness to fulfill this essential objective. In order to understand the viability of biobased polymers in structural applications, this thesis work elucidates the study of friction and wear characteristics of polymers and polymeric composites made out of natural oil available profusely in plants and animals. The natural oils used in this study were soybean and tung oil. Various monomeric components like styrene, divinely benzene etc. were used in the synthesis of biobased polymers through Rh-catalyzed isomerization techniques. For the different polymeric composites, spent germ, a byproduct of ethanol production, is used as the filler and an organoclay called montmorillonite is used as the reinforcing agent in the polymer matrix. The effect of crosslinker concentration, filler composition and reinforcement agent concentration was studied under dry sliding. A ball-on-flat tribometer with a probe made out of steel, silicon nitride or diamond was used for most of the experimental work to measure friction and generate wear. The wear tracks were quantified with an atomic force microscope and a contact

  2. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  3. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    PubMed Central

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  4. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    PubMed

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 7 CFR 2902.40 - Laundry products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... The minimum biobased content shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable... May 14, 2009, procuring agencies, in accordance with this part, will give a procurement preference for...

  6. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa

    2016-03-01

    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  7. Investigation of biobased and petroleum base oils in the entire spectrum of lubrication regimes

    USDA-ARS?s Scientific Manuscript database

    The tribological properties of biobased and petroleum-based base oils in the entire lubrication regime were investigated. High oleic sunflower oil (HOSuO) and commercially available polyalphaolefin (PAO-6) were selected to represent biobased and petroleum-based base oils, respectively. These two oil...

  8. Structure - Property Relationships of Furanyl Thermosetting Polymer Materials Derived from Biobased Feedstocks

    NASA Astrophysics Data System (ADS)

    Hu, Fengshuo

    Biobased thermosetting polymers have drawn significant attention due to their potential positive economic and ecological impacts. New materials should mimic the rigid, phenylic structures of incumbent petroleum-based thermosetting monomers and possess superior thermal and mechanical properties. Furans and triglycerides derived from cellulose, hemicellulose and plant oils are promising candidates for preparing such thermosetting materials. In this work, furanyl diepoxies, diamines and di-vinyl esters were synthesized using biobased furanyl materials, and their thermal and mechanical properties were investigated using multiple techniques. The structure versus property relationship showed that, compared with the prepared phenylic analogues, biobased furanyl thermosetting materials possess improved glassy storage modulus (E '), advanced fracture toughness, superior high-temperature char yield and comparable glass transition temperature (Tg) properties. An additive molar function analysis of the furanyl building block to the physical properties, such as Tg and density, of thermosetting polymers was performed. The molar glass transition function value (Yg) and molar volume increment value (Va,i) of the furanyl building block were obtained. Biobased epoxidized soybean oil (ESO) was modified using different fatty acids at varying molar ratios, and these prepared materials dramatically improved the critical strain energy release rate (G1c) and the critical stress intensity factor (K1c) values of commercial phenylic epoxy resins, without impairing their Tg and E ' properties. Overall, it was demonstrated that biobased furans and triglycerides possess promising potential for use in preparing high-performance thermosetting materials, and the established methodologies in this work can be utilized to direct the preparation of thermosetting materials with thermal and mechanical properties desired for practical applications.

  9. Unravelling emotional viewpoints on a bio-based economy using Q methodology.

    PubMed

    Sleenhoff, Susanne; Cuppen, Eefje; Osseweijer, Patricia

    2015-10-01

    A transition to a bio-based economy will affect society and requires collective action from a broad range of stakeholders. This includes the public, who are largely unaware of this transition. For meaningful public engagement people's emotional viewpoints play an important role. However, what the public's emotions about the transition are and how they can be taken into account is underexposed in public engagement literature and practice. This article aims to unravel the public's emotional views of the bio-based economy as a starting point for public engagement. Using Q methodology with visual representations of a bio-based economy we found four emotional viewpoints: (1) compassionate environmentalist, (2) principled optimist, (3) hopeful motorist and (4) cynical environmentalist. These provide insight into the distinct and shared ways through which members of the public connect with the transition. Implications for public engagement are discussed. © The Author(s) 2014.

  10. Biobased polymers for corrosion protection of metals

    USDA-ARS?s Scientific Manuscript database

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  11. Latent heat characteristics of biobased oleochemical carbonates

    USDA-ARS?s Scientific Manuscript database

    Oleochemical carbonates represent biobased materials that can be readily prepared through a carbonate interchange reaction between renewably available C10-C18 fatty alcohols. Although these carbonates have commercial use in cosmetics and lubricant applications, they have not been examined as phase ...

  12. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  13. 78 FR 34867 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... products for which USDA has biobased content test data. Because the submission of product samples for... certification to use the USDA Certified Biobased Product label. These test results are also considered when.... Outreach. To augment its own research, USDA consults with industry and Federal stakeholders to the...

  14. 78 FR 19393 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... products for which USDA has biobased content test data. Because the submission of product samples for... certification to use the USDA Certified Biobased Product label. These test results are also considered when.... Outreach. To augment its own research, USDA consults with industry and Federal stakeholders to the...

  15. Water-assisted extrusion of bio-based PETG/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Naeun; Lee, Sangmook

    2018-02-01

    Bio-based polyethylene terephthalate glycol-modified (PETG)/clay nanocomposites were prepared using the water-assisted extrusion process. The effects of different types of clay and clay mixing methods (with or without the use of water) and the resulting nanocomposites properties were investigated by measuring the rheological and tensile properties and morphologies. The valuable properties were achieved when Cloisite 30B was mixed in a slurry state. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nano-clay was well dispersed within the PETG matrix. This shows that the slurry process could be an effective exfoliation method for many nanocomposites systems as well as for bio-based PETG/clay nanocomposites.

  16. Bio-based Polymer Foam from Soyoil

    NASA Astrophysics Data System (ADS)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  17. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives

    ERIC Educational Resources Information Center

    Silverman, Julian R.

    2016-01-01

    As nonrenewable resources deplete and educators seek relevant interdisciplinary content for organic chemistry instruction, biobased laboratory experiments present themselves as potential alternatives to petroleum-based transformations, which offer themselves as sustainable variations on important themes. Following the principles of green chemistry…

  18. Intumescent formulations based on lignin and phosphinates for the bio-based textiles

    NASA Astrophysics Data System (ADS)

    Mandlekar, N.; Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Malucelli, G.; Guan, J.

    2017-10-01

    This study investigates new intumescent formulations based on lignin and phosphinates to improve the flame retardant properties of Polyamide 11, while preserving the bio-based characteristics of this latter. Lignin has the advantage of being a bio-based compound and can be effectively used as carbon source for the design of intumescent systems in combination with other flame retardant additives. Metal phosphinates belong to a novel class of phosphorus flame retardants. Despite their increasing use, there is lack of scientific understanding as far as their fire retardancy mechanism is considered, especially in char forming polymeric materials. In this context, Polyamide 11 was melt blended with lignin and metal phosphinates. The possibility of melt spinning the prepared blends were assessed through melt flow index (MFI) tests; thermogravimetric (TG) analyses and cone calorimetry tests were exploited for investigating the thermal stability and the combustion behaviour of the obtained products, respectively. MFI results indicate that some formulations are suitable for melt spinning processes to generate flame retardant multifilament. Furthermore, the combination of lignin and phosphinates provides charring properties to polyamide 11. Finally, cone calorimetry data confirmed that the designed intumescent formulations could remarkably reduce PHRR through formation of protective char layer, hence slowing down the combustion process.

  19. Potential for Biobased Adhesives in Wood Bonding

    Treesearch

    Charles R. Frihart

    2016-01-01

    There has been a resurgence of interest and research on using bio-based materials as wood adhesives; however, they have achieved only limited market acceptance. To better understand this low level of replacement, it is important to understand why adhesives work or fail in moisture durability tests. A holistic model for wood adhesives has been developed that clarifies...

  20. Porous structures from bio-based polymers via supercritical drying

    USDA-ARS?s Scientific Manuscript database

    Natural biobased polymers (biopolymers or biomacromolecules) such as polysaccharides, proteins, and polylactic acid derived from plant and animal sources are interesting materials due to their abundance, renewability, low cost, biodegradability, biocompatibility, and interesting chemistry. Many biop...

  1. 3D printing of new biobased unsaturated polyesters by microstereo-thermallithography.

    PubMed

    Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Farinha, Dina; Faneca, Henrique; Simões, Pedro N; Serra, Arménio C; Bártolo, Paulo J; Coelho, Jorge F J

    2014-09-01

    New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area.

  2. HFRR investigation of biobased and petroleum based oils

    USDA-ARS?s Scientific Manuscript database

    Biobased oils come in a wide range of chemical structures as do petroleum based oils. In addition, a distinct structural difference exists between these two broad categories of oils. Previous work has shown that, in spite of the structural differences, these two categories of oils display similar pr...

  3. Opportunity and development of bio-based composites

    Treesearch

    Zhiyong Cai; Jerrold E. Winandy

    2005-01-01

    Our forests are a naturally renewable resource that has been used as a principal source of bio-energy and building materials for centuries. The rapid growth of world population has now resulted in substantial increases in demand and in consumption of all raw materials. This now provides a unique opportunity of developing new bio-based composites. The 100-year history...

  4. Novel bio-based and biodegradable polymer blends

    NASA Astrophysics Data System (ADS)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  5. Production of bio-based fiber gums from the waste streams resulting from the commercial processing of corn bran and oat hulls

    USDA-ARS?s Scientific Manuscript database

    The U.S. food and non-food industries would benefit from the development of a domestically produced crude, semi-pure and pure bio-based fiber gum from corn bran and oat hulls processing waste streams. When corn bran and oat hulls are processed to produce a commercial cellulose enriched fiber gel, th...

  6. Bio-based renewable additives for anti-icing applications (phase one).

    DOT National Transportation Integrated Search

    2016-09-04

    The performance and impacts of several bio-based anti-icers along with a traditional chloride-based anti-icer (salt brine) were evaluated. : A statistical design of experiments (uniform design) was employed for developing anti-icing liquids consistin...

  7. Production of succinic acid by metabolically engineered microorganisms.

    PubMed

    Ahn, Jung Ho; Jang, Yu-Sin; Lee, Sang Yup

    2016-12-01

    Succinic acid (SA) has been recognized as one of the most important bio-based building block chemicals due to its numerous potential applications. For the economical bio-based production of SA, extensive research works have been performed on developing microbial strains by metabolic engineering as well as fermentation and downstream processes. Here we review metabolic engineering strategies applied for bio-based production of SA using representative microorganisms, including Saccharomyces cerevisiae, Pichia kudriavzevii, Escherichia coli, Mannheimia succiniciproducens, Basfia succiniciproducens, Actinobacillus succinogenes, and Corynebacterium glutamicum. In particular, strategies employed for developing engineered strains of these microorganisms leading to the best performance indices (titer, yield, and productivity) are showcased based on the published papers as well as patents. Those processes currently under commercialization are also analyzed and future perspectives are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Structure and Properties of Melt-spun Bio-based Polyamide/Eu(TTA)3Phen Composite fibers

    NASA Astrophysics Data System (ADS)

    Li, Yunye; Lou, Pengfei; Jia, Qingxiu

    2018-02-01

    In this paper, the bio-based polyamide (PA ) was melt polymerized from four bio-based monomers. Composites of the bio-based PA and europium complex Eu(TTA)3Phen were prepared through solution mixing using N, N-Dimethylformamide (DMF) and formic acid as the mixed solvent, and then composite fibers were obtained by melt spinning method. The structure and properties of the melt-spun composite fibers were characterized by FTIR and SEM. The results indicated that the Eu(TTA)3Phen complex, with the average diameter below 300 nm, was homogeneously dispersed in the PA matrix. FTIR spectra indicated that the coordination bond between carbonyl of BDIS and Eu(TTA)3Phen complex formed, which was also confirmed by the mechanical properties. The initial modulus and breaking strength of these fibers can arrived at 2.5GPa and 0.3GPa, respectively.

  9. Hydrogenated cottonseed oil as raw material for biobased materials

    USDA-ARS?s Scientific Manuscript database

    There has been a lot of recent interest in using vegetable oils as biodegradable and renewable raw materials for the syntheses of various biobased materials. Although most of the attention has been paid to soybean oil thus far, cottonseed oil is a viable alternative. An advantage of cottonseed oil...

  10. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    PubMed

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  11. Bacterial cellulose as an example product for sustainable production and consumption.

    PubMed

    Jang, Woo Dae; Hwang, Ji Hyeon; Kim, Hyun Uk; Ryu, Jae Yong; Lee, Sang Yup

    2017-09-01

    Life cycle of bacterial cellulose. Sustainable production and consumption of bio-based products are showcased using bacterial cellulose as an example. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.

    PubMed

    Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao

    2016-07-20

    A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP.

  13. Biobased polyalphaolefin base oil: Chemical, physical and tribological properties

    USDA-ARS?s Scientific Manuscript database

    The properties of a biobased polyalphaolefin with a viscosity of 40 cSt at 100°C (BPAO-40) was investigated relative to a commercial petroleum based polyalphaolefin of similar viscosity at 100°C (PAO-40). BPAO-40 was synthesized by oligomerization of a mixture of alpha olefins, with and without term...

  14. 75 FR 71491 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... shipping containers. USDA is also proposing minimum biobased contents for each of these items. DATES: USDA... availability. USDA recognizes that the performance needs for a given application are important criteria in... information to procuring agencies on the availability, relative price, performance, and environmental and...

  15. Biobased alkylphenols from lignins via a two-step pyrolysis - Hydrodeoxygenation approach.

    PubMed

    de Wild, P J; Huijgen, W J J; Kloekhorst, A; Chowdari, R K; Heeres, H J

    2017-04-01

    Five technical lignins (three organosolv, Kraft and soda lignin) were depolymerised to produce monomeric biobased aromatics, particularly alkylphenols, by a new two-stage thermochemical approach consisting of dedicated pyrolysis followed by catalytic hydrodeoxygenation (HDO) of the resulting pyrolysis oils. Pyrolysis yielded a mixture of guaiacols, catechols and, optionally, syringols in addition to alkylphenols. HDO with heterogeneous catalysts (Ru/C, CoMo/alumina, phosphided NiMO/C) effectively directed the product mixture towards alkylphenols by, among others, demethoxylation. Up to 15wt% monomeric aromatics of which 11wt% alkylphenols was obtained (on the lignin intake) with limited solid formation (<3wt% on lignin oil intake). For comparison, solid Kraft lignin was also directly hydrotreated for simultaneous depolymerisation and deoxygenation resulting in two times more alkylphenols. However, the alkylphenols concentration in the product oil is higher for the two-stage approach. Future research should compare direct hydrotreatment and the two-stage approach in more detail by techno-economic assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biobased methacrylic acid via selective catalytic decarboxylation of itaconic acid

    USDA-ARS?s Scientific Manuscript database

    We report a bio-based route to methacrylic acid via selective decarboxylation of itaconic acid utilizing catalytic ruthenium carbonyl propionate in an aqueous solvent system. High selectivity (>90%) was achieved at low catalyst loading (0.1 mol %) with high substrate concentration (5.5 M) at low tem...

  17. Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites.

    PubMed

    Mistretta, Maria Chiara; Botta, Luigi; Morreale, Marco; Rifici, Sebastiano; Ceraulo, Manuela; La Mantia, Francesco Paolo

    2018-04-17

    The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties), suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families) and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate) were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE) as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives.

  18. Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites

    PubMed Central

    Mistretta, Maria Chiara; Rifici, Sebastiano; Ceraulo, Manuela

    2018-01-01

    The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties), suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families) and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate) were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE) as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives. PMID:29673143

  19. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    PubMed

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  20. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals.

    PubMed

    Schwartz, Thomas J; Shanks, Brent H; Dumesic, James A

    2016-04-01

    Advances in metabolic engineering have allowed for the development of new biological catalysts capable of selectively de-functionalizing biomass to yield platform molecules that can be upgraded to biobased chemicals using high efficiency continuous processing allowed by heterogeneous chemical catalysis. Coupling these disciplines overcomes the difficulties of selectively activating COH bonds by heterogeneous chemical catalysis and producing petroleum analogues by biological catalysis. We show that carboxylic acids, pyrones, and alcohols are highly flexible platforms that can be used to produce biobased chemicals by this approach. More generally, we suggest that molecules with three distinct functionalities may represent a practical upper limit on the extent of functionality present in the platform molecules that serve as the bridge between biological and chemical catalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, Richard

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process controlmore » Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.« less

  2. Eco-Challenges of Bio-Based Polymer Composites

    PubMed Central

    Avella, Maurizio; Buzarovska, Aleksandra; Errico, Maria Emanuela; Gentile, Gennaro; Grozdanov, Anita

    2009-01-01

    In recent years bio-based polymer composites have been the subject of many scientific and research projects, as well as many commercial programs. Growing global environmental and social concern, the high rate of depletion of petroleum resources and new environmental regulations have forced the search for new composites and green materials, compatible with the environment. The aim of this article is to present a brief review of the most suitable and commonly used biodegradable polymer matrices and NF reinforcements in eco-composites and nanocomposites, with special focus on PLA based materials.

  3. Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine.

    PubMed

    Bi, Yan-Hong; Duan, Zhang-Qun; Li, Xiang-Qian; Wang, Zhao-Yu; Zhao, Xi-Rong

    2015-02-11

    Biobased ionic liquids with cholinium as the cation and amino acids as the anions, which could be prepared from renewable biomaterials by simple neutralization reactions, have recently been described as promising and green solvents. Herein, they were successfully used as the reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with l-serine for phosphatidylserine synthesis for the first time. Our results indicated that the highest phosphatidylserine yield of 86.5% was achieved. Moreover, 75% original activity of the enzyme was maintained after being used for 10 batches. The present work could be considered an alternative enzymatic strategy for preparing phosphatidylserine. Additionally, the excellent results make the biobased ionic liquids more promising candidates for use as environmentally friendly solvents in biocatalysis fields.

  4. Feasibility Study for the Use of Green, Bio-Based, Efficient Reactive Sorbent Material to Neutralize Chemical Warfare Agents

    DTIC Science & Technology

    2012-08-02

    REPORT Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents 14. ABSTRACT 16...way cellulose, lignin and hemicelluloses interact as well as whole wood dissolution occurs in ILs. The present project was conducted to 1. REPORT...Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents Report Title ABSTRACT Over the

  5. Design, characterization and modeling of biobased acoustic foams

    NASA Astrophysics Data System (ADS)

    Ghaffari Mosanenzadeh, Shahrzad

    Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube

  6. Opportunities for using bio-based fibers for value-added composites

    Treesearch

    Zhiyong Cai; Jerrold E. Winandy

    2006-01-01

    Efficient and economical utilization of various bio-based materials is an effective way to improve forest management, promote long-term sustainability, and restore native ecosystems. However, the dilemma is how to deal with lesser used, undervalued or no-value bio-resources such as small diameter trees, agricultural residues (wheat straw, rice straw, and corn stalk),...

  7. Synthesis and characterization of poly (lactic acid)/chitosan nanocomposites based on renewable resources as biobased-material

    NASA Astrophysics Data System (ADS)

    Suryani; Agusnar, H.; Wirjosentono, B.; Rihayat, T.; Salisah, Z.

    2018-01-01

    Biobased becomes one of the new breakthrough in the smart engineering, especially in biomedical applications, such as tissue engineering that serves as a supporting physical structure to trigger the growth of skin tissue. From various studies which had been done, it was known that the optimal Biobased healed wounds or injuries in a relatively short time. In this study, a Biobased natural polymer based e.g Poly(Lactic Acid) (PLA)/Chitosan Nanocomposites was made. PLA was synthesized from saba banana (Musa acuminata) as raw material using Ring-Opening Polymerization (ROP) method. PLA was mixed with Chitosan with Chitosan concentration variations of 1%, 3%, and 5% to form a nanocomposites. The analysis result showed that Chitosan concentration in PLA/Chitosan Nanocomposites sample affected the value of tensile strength. The highest value of tensile strength was obtained on a sample of 100 ml volume with a concentration of 3%, which was 120.396 MPa. The highest percentage of elongation was obtained in 100 ml volume sample with 5% concentration, which was 26.3686%. In the hydrophilicity test, the highest percentage of water absorption was obtained in a 200 ml volume sample with 5% concentration, which was 44.615%. The addition of Chitosan to the sample affected the functional group bonding, where there was a functional group of NH2 at the wave number of 2923.92 cm-1. The sample characteristics based on water absorption indicated that the sample was potentially to be used as Biobased construction material.

  8. Bio-Based Nano Composites from Plant Oil and Nano Clay

    NASA Astrophysics Data System (ADS)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  9. Bio-based materials with novel characteristics for tissue engineering applications - A review.

    PubMed

    Bedian, Luis; Villalba-Rodríguez, Angel M; Hernández-Vargas, Gustavo; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2017-05-01

    Recently, a wider spectrum of bio-based materials and materials-based novel constructs and systems has been engineered with high interests. The key objective is to help for an enhanced/better quality of life in a secure way by avoiding/limiting various adverse effects of some in practice traditional therapies. In this context, different methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, bio-based therapeutic constructs are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable materials-based novel constructs for multipurpose applications is essential and a core demand to tackle many human health related diseases. Bio-based materials possess several complementary functionalities, e.g. unique chemical structure, bioactivity, non-toxicity, biocompatibility, biodegradability, recyclability, etc. that position them well in the modern world's materials sector. In this context, the utilization of biomaterials provides extensive opportunities for experimentation in the field of interdisciplinary and multidisciplinary scientific research. With an aim to address the global dependence on petroleum-based polymers, researchers have been redirecting their interests to the engineering of biological materials for targeted applications in different industries including cosmetics, pharmaceuticals, and other biotechnological or biomedical applications. Herein, we reviewed biotechnological advancements at large and tissue engineering from a biomaterials perspective in particular and envision directions of future developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. From D-sorbitol to five-membered bis(cyclo-carbonate) as a platform molecule for the synthesis of different original biobased chemicals and polymers.

    PubMed

    Furtwengler, Pierre; Avérous, Luc

    2018-06-14

    Bis(cyclo-carbonate) was successfully synthesized from D-sorbitol (Sorb-BisCC) through an environmentally friendly process with dimethyl carbonate (DMC) as a reactant. In agreement with green chemistry principles, solvent free reactions were catalyzed and took place at low temperature. The reaction yield was increased until 50%, with the use of 1.3.5-triazabicyclo[4.4.0]dec-5-ene as catalyst and a continuous DMC feed to limit the side-reactions or the loss of reactant by azeotropic flux with a reactional subsidiary product. The obtained Sorb-BisCC is a remarkable platform molecule which could compete with others polycyclic platform molecules (isosorbide). Sorb-BisCC can be e.g., used to synthesize different chemicals such as short and long polyols, or novel biobased non-isocyanate polyurethanes (NIPU). Two Sorb-BisCC molecules have been coupled to obtain novel cyclic diols with pendant side chains. Polyether polyols were also obtained by anionic ring opening polymerization. According to the synthesis conditions, these synthetized polyether polyols range from partially to highly cross-linked materials. Finally, NIPU were synthesized with short and biobased fatty diamines. These different modifications and synthesis highlight the versatility of the Sorb-BisCC and demonstrated its high potential as building block. Sorb-BisCC can be considered as a platform molecule to open the way to different original and biobased chemical architectures.

  11. 7 CFR 2902.26 - Lip care products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No later than May 14, 2009, procuring agencies, in... products. [73 FR 27973, May 14, 2008] ...

  12. Latent Heat Characteristics of Biobased Oleochemical Carbonates as Novel Phase Change Materials

    USDA-ARS?s Scientific Manuscript database

    Oleochemical carbonates are biobased materials that were readily prepared through a carbonate interchange reaction between renewable C10-C18 fatty alcohols and dimethyl or diethyl carbonate in the presence of a catalyst. These carbonates have various commercial uses in cosmetic, fuel additive and l...

  13. Molecular characterisation of a bio-based active packaging containing Origanum vulgare L. essential oil using pyrolysis gas chromatography-mass spectrometry.

    PubMed

    Llana-Ruíz-Cabello, María; Pichardo, Silvia; Jiménez-Morillo, Nicasio T; Bermúdez, José M; Aucejo, Susana; González-Vila, Francisco J; Cameán, Ana M; González-Pérez, José A

    2016-07-01

    Environmental, economic and safety challenges motivate shift towards safer materials for food packaging. New bioactive packaging techniques, i.e. addition of essential plant oils (EOs), are gaining attention by creating barriers to protect products from spoilage. Analytical pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) was used to fingerprint a bioactive polylactic acid (PLA) with polybutylene succinate (PBS) (950 g kg(-1) :50 g kg(-1) ) film extruded with variable quantities (0, 20, 50 and 100 g kg(-1) ) of Origanum vulgare EO. Main PLA:PBS pyrolysis products were lactide enantiomers and monomer units from the major PLA fraction and succinic acid anhydride from the PBS fraction. Oregano EO pyrolysis released cymene, terpinene and thymol/carvacrol peaks as diagnostic peaks for EO. In fact, linear correlation coefficients better than 0.950R(2) value (P < 0.001) were found between the chromatographic area of the diagnostic peaks and the amount of oregano EO in the bioplastic. The pyrolytic behaviour of a bio-based active package polymer including EO is studied in detail. Identified diagnostic compounds provide a tool to monitor the quantity of EO incorporated into the PLA:PBS polymeric matrix. Analytical pyrolysis is proposed as a rapid technique for the identification and quantification of additives within bio-based plastic matrices. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Environmental performance of bio-based and biodegradable plastics: the road ahead.

    PubMed

    Lambert, Scott; Wagner, Martin

    2017-11-13

    Future plastic materials will be very different from those that are used today. The increasing importance of sustainability promotes the development of bio-based and biodegradable polymers, sometimes misleadingly referred to as 'bioplastics'. Because both terms imply "green" sources and "clean" removal, this paper aims at critically discussing the sometimes-conflicting terminology as well as renewable sources with a special focus on the degradation of these polymers in natural environments. With regard to the former we review innovations in feedstock development (e.g. microalgae and food wastes). In terms of the latter, we highlight the effects that polymer structure, additives, and environmental variables have on plastic biodegradability. We argue that the 'biodegradable' end-product does not necessarily degrade once emitted to the environment because chemical additives used to make them fit for purpose will increase the longevity. In the future, this trend may continue as the plastics industry also is expected to be a major user of nanocomposites. Overall, there is a need to assess the performance of polymer innovations in terms of their biodegradability especially under realistic waste management and environmental conditions, to avoid the unwanted release of plastic degradation products in receiving environments.

  15. 7 CFR 3201.40 - Laundry products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Laundry products. 3201.40 Section 3201.40 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.40 Laundry products. (a)...

  16. 7 CFR 2902.40 - Laundry products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Laundry products. 2902.40 Section 2902.40 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 2902.40 Laundry products. (a)...

  17. 7 CFR 3201.40 - Laundry products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Laundry products. 3201.40 Section 3201.40 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.40 Laundry products. (a)...

  18. 7 CFR 3201.40 - Laundry products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Laundry products. 3201.40 Section 3201.40 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.40 Laundry products. (a)...

  19. 7 CFR 3201.62 - Bath products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Bath products. 3201.62 Section 3201.62 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.62 Bath products. (a)...

  20. 7 CFR 3201.62 - Bath products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Bath products. 3201.62 Section 3201.62 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.62 Bath products. (a)...

  1. 7 CFR 3201.62 - Bath products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Bath products. 3201.62 Section 3201.62 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.62 Bath products. (a)...

  2. 77 FR 72653 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... cleaners; automotive care products; engine crankcase oil; gasoline fuel additives; metal cleaners and... crankcase oil; gasoline fuel additives; metal cleaners and corrosion removers; microbial cleaning products... for biobased feed stock? Does manufacturing of products within this product category increase...

  3. Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis.

    PubMed

    Kim, Jae-Han; Block, David E; Shoemaker, Sharon P; Mills, David A

    2010-05-01

    Commercialization of lignocellulosic biomass as a feedstock for bio-based chemical production is problematic due to the high processing costs of pretreatment and saccharifying enzymes combined with low product yields. Such low product yield can be attributed, in large part, to the incomplete utilization of the various carbohydrate sugars found in the lignocellulosic biomass. In this study, we demonstrate that Lactobacillus brevis is able to simultaneously metabolize all fermentable carbohydrates in acid pre-processed rice straw hydrolysate, thereby allowing complete utilization of all released sugars. Inhibitors present in rice straw hydrolysate did not affect lactic acid production. Moreover, the activity of exogenously added cellulases was not reduced in the presence of growing cultures of L. brevis. These factors enabled the use of L. brevis in a process termed simultaneous saccharification and mixed sugar fermentation (SSMSF). In SSMSF with L. brevis, sugars present in rice straw hydrolysate were completely utilized while the cellulase maintained its maximum activity due to the lack of feedback inhibition from glucose and/or cellobiose. By comparison to a sequential hydrolysis and fermentation process, SSMSF reduced operation time and the amount of cellulase enzyme necessary to produce the same amount of lactic acid.

  4. 7 CFR 3201.59 - Topical pain relief products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Topical pain relief products. 3201.59 Section 3201.59... MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.59 Topical pain relief products. (a) Definition. Products that can be balms, creams...

  5. 7 CFR 3201.59 - Topical pain relief products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Topical pain relief products. 3201.59 Section 3201.59... MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.59 Topical pain relief products. (a) Definition. Products that can be balms, creams...

  6. 7 CFR 3201.59 - Topical pain relief products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Topical pain relief products. 3201.59 Section 3201.59... MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.59 Topical pain relief products. (a) Definition. Products that can be balms, creams...

  7. Bio-Based Transparent Conductive Film Consisting of Polyethylene Furanoate and Silver Nanowires for Flexible Optoelectronic Devices.

    PubMed

    Lam, Jeun-Yan; Shih, Chien-Chung; Lee, Wen-Ya; Chueh, Chu-Chen; Jang, Guang-Way; Huang, Cheng-Jyun; Tung, Shih-Huang; Chen, Wen-Chang

    2018-05-30

    Exploiting biomass has raised great interest as an alternative to the fossil resources for environmental protection. In this respect, polyethylene furanoate (PEF), one of the bio-based polyesters, thus reveals a great potential to replace the commonly used polyethylene terephthalate (PET) on account of its better mechanical, gas barrier, and thermal properties. Herein, a bio-based, flexible, conductive film is successfully developed by coupling a PEF plastic substrate with silver nanowires (Ag NWs). Besides the appealing advantage of renewable biomass, PEF also exhibits a good transparency around 90% in the visible wavelength range, and its constituent polar furan moiety is revealed to enable an intense interaction with Ag NWs to largely enhance the adhesion of Ag NWs grown above, as exemplified by the superior bending and peeling durability than the currently prevailing PET substrate. Finally, the efficiency of conductive PEF/Ag NWs film in fabricating efficient flexible organic thin-film transistor and organic photovoltaic (OPV) is demonstrated. The OPV device achieves a power conversion efficiency of 6.7%, which is superior to the device based on ITO/PEN device, manifesting the promising merit of the bio-based PEF for flexible electronic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. 7 CFR 3201.89 - Animal cleaning products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Animal cleaning products. 3201.89 Section 3201.89... Designated Items § 3201.89 Animal cleaning products. (a) Definition. Products designed to clean, condition, or remove substances from animal hair or other parts of an animal. (b) Minimum biobased content. The...

  10. 7 CFR 3201.89 - Animal cleaning products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Animal cleaning products. 3201.89 Section 3201.89... Designated Items § 3201.89 Animal cleaning products. (a) Definition. Products designed to clean, condition, or remove substances from animal hair or other parts of an animal. (b) Minimum biobased content. The...

  11. Biotechnological Production of Organic Acids from Renewable Resources.

    PubMed

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  12. 78 FR 20783 - Designation of Product Categories for Federal Procurement; Withdrawal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... Designation of Product Categories for Federal Procurement; Withdrawal AGENCY: Office of Procurement and.... Department of Agriculture (USDA) is withdrawing the final rule ``Designation of Product Categories for... product categories within which biobased products will be afforded Federal procurement preference, was...

  13. Polysulfide and bio-based EP additive performance in vegetable vs. paraffinic base oils

    USDA-ARS?s Scientific Manuscript database

    Twist compression test (TCT) and 4-ball extreme pressure (EP) methods were used to investigate commercial polysulfide (PS) and bio-based polyester (PE) EP additives in paraffinic (150N) and refined soybean (SOY) base oils of similar viscosity. Binary blends of EP additive and base oil were investiga...

  14. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.

    PubMed

    Ng, I-Son; Tan, Shih-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu

    2017-10-01

    Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN, and ZFN) used in editing the genomes of nuclear, mitochondria, and chloroplast of microalgae are thoroughly surveyed. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 7 CFR 2902.26 - Lip care products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Lip care products. 2902.26 Section 2902.26 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 2902.26 Lip care products. (a)...

  16. 7 CFR 3201.26 - Lip care products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Lip care products. 3201.26 Section 3201.26 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.26 Lip care products. (a...

  17. 7 CFR 3201.26 - Lip care products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Lip care products. 3201.26 Section 3201.26 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.26 Lip care products. (a...

  18. 7 CFR 3201.26 - Lip care products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Lip care products. 3201.26 Section 3201.26 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.26 Lip care products. (a...

  19. A study of the use of bio-based technologies (lubricant and grease) in rail applications.

    DOT National Transportation Integrated Search

    2014-05-01

    The objective of the project was to study the efficacy of using bio-based lubricant and grease technologies in railroad applications : (locomotives and maintenance of way equipment). Several commercially available rail curve greases were identified a...

  20. ‘GREENER’ SURFACTANTS FROM BIO-BASED WASTE AS EFFICIENT ALTERNATIVES TO NONYLPHENOL ETHOXYLATES

    EPA Science Inventory

    All bio-based surfactants synthesized over the course of the project will be tested for their ability to lower the surface tension at the air-water interface using a Du Nüoy ring tensiometer. The cleaning efficiency of the surfactants will be tested at the Toxics Use Reduc...

  1. 7 CFR 3202.4 - Criteria for product eligibility to use the certification mark.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... biobased content, as described in paragraphs (b)(1) through (b)(4) of this section. (1) BioPreferred... products that are not BioPreferred Products. (i) If the product is not an intermediate ingredient or...

  2. 7 CFR 3202.4 - Criteria for product eligibility to use the certification mark.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... biobased content, as described in paragraphs (b)(1) through (b)(4) of this section. (1) BioPreferred... products that are not BioPreferred Products. (i) If the product is not an intermediate ingredient or...

  3. 7 CFR 3202.4 - Criteria for product eligibility to use the certification mark.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biobased content, as described in paragraphs (b)(1) through (b)(4) of this section. (1) BioPreferred... products that are not BioPreferred Products. (i) If the product is not an intermediate ingredient or...

  4. Predictive Methods for Dense Polymer Networks: Combating Bias with Bio-Based Structures

    DTIC Science & Technology

    2016-03-16

    Informatics Tools Acknowledgements: Air Force Office of Scientific Research, Air Force Research Laboratory, Office of Naval Research, Strategic...Sources and Methods • Bio-based cyanate esters have been made from anethole, resveratrol, eugenol, cresol, lignin, vanillin, and even creosote oils ...not large by informatics standards, it nonetheless represents a significant amount of synthetic effort. Because the data is limited, minimizing

  5. 7 CFR 3201.105 - Microbial cleaning products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Microbial cleaning products. 3201.105 Section 3201.105 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.105 Microbia...

  6. 7 CFR 3201.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Expanded polystyrene (EPS) foam recycling products... FOR FEDERAL PROCUREMENT Designated Items § 3201.53 Expanded polystyrene (EPS) foam recycling products... with this part, will give a procurement preference for qualifying biobased EPS foam recycling products...

  7. 7 CFR 3201.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Expanded polystyrene (EPS) foam recycling products... FOR FEDERAL PROCUREMENT Designated Items § 3201.53 Expanded polystyrene (EPS) foam recycling products... with this part, will give a procurement preference for qualifying biobased EPS foam recycling products...

  8. 7 CFR 2902.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Expanded polystyrene (EPS) foam recycling products... FEDERAL PROCUREMENT Designated Items § 2902.53 Expanded polystyrene (EPS) foam recycling products. (a..., will give a procurement preference for qualifying biobased EPS foam recycling products. By that date...

  9. 7 CFR 3201.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Expanded polystyrene (EPS) foam recycling products... FOR FEDERAL PROCUREMENT Designated Items § 3201.53 Expanded polystyrene (EPS) foam recycling products... with this part, will give a procurement preference for qualifying biobased EPS foam recycling products...

  10. Biosurfactants' Production from Renewable Natural Resources: Example of Innovativeand Smart Technology in Circular Bioeconomy

    NASA Astrophysics Data System (ADS)

    Satpute, Surekha K.; Płaza, Grażyna A.; Banpurkar, Arun G.

    2017-03-01

    A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant's production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.

  11. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Ploykrathok, T.; Chanyotha, S.

    2017-06-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.

  12. Improved natural rubber composites reinforced with a complex filler network of biobased nanoparticles and ionomer

    USDA-ARS?s Scientific Manuscript database

    Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...

  13. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    PubMed

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  14. Bio-based polycarbonate as synthetic toolbox

    NASA Astrophysics Data System (ADS)

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-06-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity.

  15. Bio-based polycarbonate as synthetic toolbox

    PubMed Central

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  16. Osteoblasts Growth Behaviour on Bio-Based Calcium Carbonate Aragonite Nanocrystal

    PubMed Central

    Zakaria, Zuki Abu Bakar

    2014-01-01

    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process. PMID:24734228

  17. Bio-based production of methacrylic acid

    USDA-ARS?s Scientific Manuscript database

    Methacrylic acid (MAA) is an important industrial chemical commodity, with annual production exceeding 3 million metric tons and a market value surpassing $9 billion. The primary use of MAA is the conversion to ester derivatives, which are further converted into numerous useful polymers. Despite the...

  18. Novel biobased photo-crosslinked polymer networks prepared from vegetable oil and 2,5-furan diacrylate

    USDA-ARS?s Scientific Manuscript database

    Novel biobased crosslinked polymer networks were prepared from vegetable oil with 2,5-furan diacrylate as a difunctional stiffener through UV photopolymerization, and the mechanical properties of the resulting films were evaluated. The vegetable oil raw materials used were acrylated epoxidized soybe...

  19. Diffusion coefficients of water in biobased hydrogel polymer matrices by nuclear magnetic resonance imaging

    USDA-ARS?s Scientific Manuscript database

    The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...

  20. Fermentative production of isobutene.

    PubMed

    van Leeuwen, Bianca N M; van der Wulp, Albertus M; Duijnstee, Isabelle; van Maris, Antonius J A; Straathof, Adrie J J

    2012-02-01

    Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO(2) + 2H(2)O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO(2). The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 Euro kg(-1), which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.

  1. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    PubMed

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Key parameters in testing biodegradation of bio-based materials in soil.

    PubMed

    Briassoulis, D; Mistriotis, A

    2018-09-01

    Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Phase Behavior and Physical Properties of New Biobased Ionic Liquid Crystals.

    PubMed

    Toledo Hijo, Ariel A C; Maximo, Guilherme J; Costa, Mariana C; Cunha, Rosiane L; Pereira, Jorge F B; Kurnia, Kiki A; Batista, Eduardo A C; Meirelles, Antonio J A

    2017-04-13

    Protic ionic liquids (PILs) have emerged as promising compounds and attracted the interest of the industry and the academy community, due to their easy preparation and unique properties. In the context of green chemistry, the use of biocompounds, such as fatty acids, for their synthesis could disclose a possible alternative way to produce ILs with a low or nontoxic effect and, consequently, expanding their applicability in biobased processes or in the development of bioproducts. This work addressed efforts to a better comprehension of the complex solid-[liquid crystal]-liquid thermodynamic equilibrium of 20 new PILs synthesized by using fatty acids commonly found in vegetable oils, as well as their rheological profile and self-assembling ability. The work revealed that their phase equilibrium and physical properties are significantly impacted by the structure of the ions used for their synthesis. The use of unsaturated fatty acids and bis(2-hydroxyethyl)ammonium for the synthesis of these biobased ILs led to a drastic decreasing of their melting temperatures. Also, the longest alkyl chain fatty acids promoted higher self-assembling and more stable mesophases. Besides their sustainable appeal, the marked high viscosity, non-Newtonian profile, and very low critical micellar concentration values of the PIL crystals here disclosed make them interesting renewable compounds with potential applications as emulsifiers, stabilizers, thickeners, or biolubricants.

  4. 7 CFR 2902.59 - Topical pain relief products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... other topical treatments used for the relief of muscle, joint, headache, and nerve pain, as well as... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in...

  5. Isosorbide as the structural component of bio-based unsaturated polyesters for use as thermosetting resins.

    PubMed

    Sadler, Joshua M; Toulan, Faye R; Nguyen, Anh-Phuong T; Kayea, Ronald V; Ziaee, Saeed; Palmese, Giuseppe R; La Scala, John J

    2014-01-16

    In recent years, the development of renewable bio-based resins has gained interest as potential replacements for petroleum based resins. Modified carbohydrate-based derivatives have favorable structural features such as fused bicyclic rings that offer promising candidates for the development of novel renewable polymers with improved thermomechanical properties when compared to early bio-based resins. Isosorbide is one such compound and has been utilized as the stiffness component for the synthesis of novel unsaturated polyesters (UPE) resins. Resin blends of BioUPE systems with styrene were shown to possess viscosities (120-2200 cP) amenable to a variety of liquid molding techniques, and after cure had Tgs (53-107 °C) and storage moduli (430-1650 MPa) that are in the desired range for composite materials. These investigations show that BioUPEs containing isosorbide can be tailored during synthesis of the prepolymer to meet the needs of different property profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. 7 CFR 2902.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Providing product information to Federal agencies. 2902.6 Section 2902.6 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR...

  7. 77 FR 33269 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... under such a contract.'' Thus, Federal contractors, as well as Federal agencies, are expressly subject... generally to procure such a product composed of the highest percentage of recovered materials content... those product categories that contain the highest biobased content. In addition, as the program matures...

  8. Biomass feedstock production systems: economic and environmental benefits

    Treesearch

    Mark D. Coleman; John A. Stanturf

    2006-01-01

    The time is ripe for expanding bioenergy production capacity and developing a bio-based economy. Modern society has created unprecedented demands for energy and chemical products that are predominately based on geologic sources. However, there is a growing consensus that constraints on the supply of petroleum and the negative environmental consequences of burning...

  9. Opportunities in the industrial biobased products industry.

    PubMed

    Carole, Tracy M; Pellegrino, Joan; Paster, Mark D

    2004-01-01

    Approximately 89 million metric t of organic chemicals and lubricants, the majority of which are fossil based, are produced annually in the United States. The development of new industrial bioproducts, for production in stand-alone facilities or biorefineries, has the potential to reduce our dependence on imported oil and improve energy security. Advances in biotechnology are enabling the optimization of feedstock composition and agronomic characteristics and the development of new and improved fermentation organisms for conversion of biomass to new end products or intermediates. This article reviews recent biotechnology efforts to develop new industrial bioproducts and improve renewable feedstocks and key market opportunities.

  10. PCB in the environment: bio-based processes for soil decontamination and management of waste from the industrial production of Pleurotus ostreatus.

    PubMed

    Siracusa, Giovanna; Becarelli, Simone; Lorenzi, Roberto; Gentini, Alessandro; Di Gregorio, Simona

    2017-10-25

    Polychlorinated biphenyls (PCBs) are hazardous soil contaminants for which a bio-based technology for their recovery is essential. The objective of this study was to validate the exploitation of spent mushroom substrate (SMS), a low or null cost organic waste derived from the industrial production of P. ostreatus, as bulking agent in a dynamic biopile pilot plant. The SMS shows potential oxidative capacity towards recalcitrant compounds. The aim was consistent with the design of a process of oxidation of highly chlorinated PCBs, which is independent from their reductive dehalogenation. Feasibility was verified at a mesocosm scale and validated at pilot scale in a dynamic biopile pilot plant treating ten tons of a historically contaminated soil (9.28±0.08mg PCB/kg soil dry weight). Mixing of the SMS with the soil was required for the depletion of the contaminants. At the pilot scale, after eight months of incubation, 94.1% depletion was recorded. A positive correlation between Actinobacteria and Firmicutes active metabolism, soil laccase activity and PCB removal was observed. The SMS was found to be exploitable as a versatile low cost organic substrate capable of activating processes for the oxidation of highly chlorinated PCBs. Moreover, its exploitation as bulking agent in biopiles is a valuable management strategy for the re-utilisation of an organic waste deriving from the industrial cultivation of edible mushrooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis and characterization of a novel bio-based resin from maleated soybean oil polyols

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Yang, L. T.; Zhang, H.

    2017-02-01

    In this paper, a novel bio-based resin was prepared by the radical copolymerization of maleated soybean oil polyols (MSBOP) and styrene (ST). Structure of the product was studied by Fourier transformation infrared spectrometer (FT-IR), and the result was found to be consistent with that of theoretical structure. Swelling experiments indicated that the crosslinking degree increased with the increase of hydroxyl value. Thermal analysis by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TG) revealed that glass transition temperature (Tg) of the polymer increased with increasing hydroxyl values, and that its thermal stability showed a good correlation with the hydroxyl value. The tensile strength and impact strength were significantly affected by the hydroxyl value of soybean oil polyols. With increasing hydroxyl value, the tensile strength presented an increasing trend, while the impact strength showed a decreasing one. Moreover, the property of the polymer from elastomer to plastic character also depended on the functionality of the hydroxyl value of soybean oil polyols.

  12. Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity.

    PubMed

    Ma, Songqi; Liu, Xiaoqing; Fan, Libo; Jiang, Yanhua; Cao, Lijun; Tang, Zhaobin; Zhu, Jin

    2014-02-01

    A bio-based epoxy resin (denoted TEIA) with high epoxy value (1.16) and low viscosity (0.92 Pa s, 258C) was synthesized from itaconic acid and its chemical structure was confirmed by 1H NMR and 13C NMR spectroscopy. Its curing reaction with poly(propylene glycol) bis(2-aminopropyl ether) (D230) and methyl hexahydrophthalic anhydride (MHHPA) was investigated. For comparison, the commonly used diglycidyl ether of bisphenol A (DGEBA) was also cured with the same curing agents. The results demonstrated that TEIA showed higher curing reactivity towards D230/MHHPA and lower viscosity compared with DGEBA, resulting in the better processability. Owing to its high epoxy value and unique structure, comparable or better glass transition temperature as well as mechanical properties could be obtained for the TEIA-based network relative to the DGEBA-based network. The results indicated that itaconic acid is a promising renewable feedstock for the synthesis of bio-based epoxy resin with high performance.

  13. Development Of Sustainable Biobased Products And Bioenergy In Cooperation With The Midwest Consortium For Sustainable Biobased Products And Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Ladisch; Randy Woodson

    2009-03-18

    Collaborative efforts of Midwest Consortium have been put forth to add value to distiller's grains by further processing them into fermentable sugars, ethanol, and a protein rich co-product consistent with a pathway to a biorenewables industry (Schell et al, 2008). These studies were recently published in the enclosed special edition (Volume 99, Issue 12) of Bioresource Technology journal. Part of them have demonstrated the utilization of distillers grains as additional feedstock for increased ethanol production in the current dry grind process (Kim et al., 2008a, b; Dien et al.,2008, Ladisch et al., 2008a, b). Results showed that both liquid hotmore » water (LHW) pretreatment and ammonia fiber expansion (AFEX) were effective for enhancing digestibility of distiller's grains. Enzymatic digestion of distiller's grains resulted in more than 90% glucose yield under standard assay conditions, although the yield tends to drop as the concentration of dry solids increases. Simulated process mass balances estimated that hydrolysis and fermentation of distillers grains can increase the ethanol yield by 14% in the current dry milling process (Kim et al., 2008c). Resulting co-products from the modified process are richer in protein and oil contents than conventional distiller's grains, as determined both experimentally and computationally. Other research topics in the special edition include water solubilization of DDGS by transesterification reaction with phosphite esters (Oshel el al., 2008) to improve reactivity of the DDGS to enzymes, hydrolysis of soluble oligomers derived from DDGS using functionalized mesoporous solid catalysts (Bootsma et al., 2008), and ABE (acetone, butanol, ethanol) production from DDGS by solventogenic Clostridia (Ezeji and Blaschek, 2008). Economic analysis of a modified dry milling process, where the fiber and residual starch is extracted and fermented to produce more ethanol from the distillers grains while producing highly concentrated

  14. Freshness maintenance of cherries ready for consumption using convenient, microperforated, bio-based packaging.

    PubMed

    Koutsimanis, Georgios; Harte, Janice; Almenar, Eva

    2015-03-30

    Current consumer demand for high-quality ready-to-eat fresh fruit in convenient bio-based packaging was met utilizing sanitized stem-free sweet cherries and a polylactic acid (PLA) cup with a PLA peelable microperforated lid. The newly developed packaging system was compared with the petroleum-based macroperforated bag currently used for retail. After 27 days of storage at 1 °C, the PLA package maintained the cherry firmness, compared with a 50% reduction of the controls. No fungal decay was detected in the cherries stored in PLA, while the controls were non-marketable after 21 days. The PLA package allowed minimal weight loss (0.8%), compared with a weight loss of approximately 16% in the controls. Differences in the cherry aroma, color, acidity, soluble solids content, pH and quality index were also caused by the packaging type. A consumer sensory evaluation showed that cherries stored in PLA packages were more acceptable than those of the controls for appearance, texture, flavor and overall acceptability. The new package matched both the consumer demand for high-quality fresh fruit ready for consumption in convenient bio-based packaging and the extended fruit marketability and consumer satisfaction desired by industry. © 2014 Society of Chemical Industry.

  15. Impact of structure and functionality of core polyol in highly functional biobased epoxy resins.

    PubMed

    Pan, Xiao; Webster, Dean C

    2011-09-01

    Highly functional biobased epoxy resins were prepared using dipentaerythritol (DPE), tripentaerythritol (TPE), and sucrose as core polyols that were substituted with epoxidized soybean oil fatty acids, and the impact of structure and functionality of the core polyol on the properties of the macromolecular resins and their epoxy-anhydride thermosets was explored. The chemical structures, functional groups, molecular weights, and compositions of epoxies were characterized using nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI MS). The epoxies were also studied for their bulk viscosity, intrinsic viscosity, and density. Crosslinked with dodecenyl succinic anhydride (DDSA), epoxy-anhydride thermosets were evaluated using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile tests, and tests of coating properties. Epoxidized soybean oil (ESO) was used as a control. Overall, the sucrose-based thermosets exhibited the highest moduli, having the most rigid and ductile performance while maintaining the highest biobased content. DPE/TPE-based thermosets showed modestly better thermosetting performance than the control ESO thermoset. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals.

    PubMed

    Kong, Xiaohua; Zhao, Liyan; Curtis, Jonathan M

    2016-11-05

    High solids content polyurethane (PU) nanocomposites with enhanced thermal and mechanical properties were produced by incorporating of low fractions of cellulose nanocrystals (CNC) in a solvent-free process. This involved the use of a simple procedure to produce well dispersed and stable suspensions of CNC in biobased polyols, which were then used to produce PU-CNC nanocomposites. Transmission electron microscopy revealed that individual CNC particles were dispersed homogenously within the PU matrix. FTIR results suggested that CNC particles are covalently bonded to the PU molecular chains during polymerization. The thermal mechanical properties of the nanocomposites are significantly improved over pure PU as indicated by differential scanning calorimetry and dynamic mechanical analysis. Compared to pure PU, the PU nanocomposites made with the addition of only 0.5% of CNC had glass transition temperatures that were 6°C higher, their Young's moduli were about 10% higher and their abrasion resistance was higher by about 25%. The optimal composition contains only 0.5% CNC (w/w) which indicates that there is good potential for utilization of low levels of CNC for reinforcement of PU composites made using biobased polyols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Mango and acerola pulps as antioxidant additives in cassava starch bio-based film.

    PubMed

    Souza, Carolina O; Silva, Luciana T; Silva, Jaff R; López, Jorge A; Veiga-Santos, Pricila; Druzian, Janice I

    2011-03-23

    The objective of this study was to investigate the feasibility of incorporating mango and acerola pulps into a biodegradable matrix as a source of polyphenols, carotenoids, and other antioxidant compounds. We also sought to evaluate the efficacy of mango and acerola pulps as antioxidants in film-forming dispersions using a response surface methodology design experiment. The bio-based films were used to pack palm oil (maintained for 45 days of storage) under accelerated oxidation conditions (63% relative humidity and 30 °C) to simulate a storage experiment. The total carotenoid, total polyphenol, and vitamin C contents of films were evaluated, while the total carotenoid, peroxide index, conjugated diene, and hexanal content of the packaged product (palm oil) were also monitored. The same analysis also evaluated palm oil packed in films without antioxidant additives (C1), palm oil packed in low-density polyethylene films (C2), and palm oil with no package (C3) as a control. Although the film-forming procedure affected the antioxidant compounds, the results indicated that antioxidants were effective additives for protecting the packaged product. A lower peroxide index (36.12%), which was significantly different from that of the control (p<0.05), was detected in products packed in film formulations containing high concentration of additives. However, it was found that the high content of vitamin C in acerola pulp acted as a prooxidant agent, which suggests that the use of rich vitamin C pulps should be avoided as additives for films.

  18. 77 FR 69381 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished... fertilizer formulas that will improve the efficiency and the effectiveness of the chemicals, including... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in...

  19. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems

    USDA-ARS?s Scientific Manuscript database

    There is increasing demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has made great gains in production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as Conservation ...

  2. The Seven Challenges for Transitioning into a Bio-based Circular Economy in the Agri-food Sector.

    PubMed

    Borrello, Massimiliano; Lombardi, Alessia; Pascucci, Stefano; Cembalo, Luigi

    2016-01-01

    Closed-loop agri-food supply chains have a high potential to reduce environmental and economic costs resulting from food waste disposal. This paper illustrates an alternative to the traditional supply chain of bread based on the principles of a circular economy. Six circular interactions among seven actors (grain farmers, bread producers, retailers, compostable packaging manufacturers, insect breeders, livestock farmers, consumers) of the circular filière are created in order to achieve the goal of "zero waste". In the model, two radical technological innovations are considered: insects used as animal feed and polylactic acid compostable packaging. The main challenges for the implementation of the new supply chain are identified. Finally, some recent patents related to bread sustainable production, investigated in the current paper, are considered. Recommendations are given to academics and practitioners interested in the bio-based circular economy model approach for transforming agri-food supply chains.

  3. 7 CFR 3201.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Web site will provide information as to the availability, relative price, biobased content... marketing claims. Manufacturers and vendors are reminded that their advertising, labeling, and other marketing claims, including claims regarding health and environmental benefits of the product, must conform...

  4. The effect of biobased plastic resins containing chichen feather fibers on the growth and flowering of Begonia boliviensis

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate growth and flowering of Begoniaboliviensis A. DC. 'Bonfire' when grown in medium mixed with pellets made from biobased plastic resins containing chicken feather fibers. We also analyzed macro- and macro-elements in soil and leaf tissues during different develope...

  5. Hydrolysis of Hemicellulose and Derivatives-A Review of Recent Advances in the Production of Furfural.

    PubMed

    Delbecq, Frederic; Wang, Yantao; Muralidhara, Anitha; El Ouardi, Karim; Marlair, Guy; Len, Christophe

    2018-01-01

    Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i) non-catalytic routes like use of critical solvents or hot water pretreatment, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration making use of various solid acid catalysts; (iv) feedstock dehydration making use of supported catalysts, (v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production.

  6. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    USDA-ARS?s Scientific Manuscript database

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  7. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach.

    PubMed

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten; Djomo, Sylvestre Njakou; Corona, Andrea; Dalgaard, Tommy

    2017-11-15

    This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJ EtOH +1kg LA ", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP 100 ), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C 5 sugar to boost bioethanol yield and that the use of residual streams in the energy

  8. Biorefineries for the production of top building block chemicals and their derivatives.

    PubMed

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho; Lee, Sang Yup

    2015-03-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Single step purification of concanavalin A (Con A) and bio-sugar production from jack bean using glucosylated magnetic nano matrix.

    PubMed

    Kim, Ho Myeong; Cho, Eun Jin; Bae, Hyeun-Jong

    2016-08-01

    Jack bean (JB, Canavalia ensiformis) is the source of bio-based products, such as proteins and bio-sugars that contribute to modern molecular biology and biomedical research. In this study, the use of jack bean was evaluated as a source for concanavalin A (Con A) and bio-sugar production. A novel method for purifying Con A from JBs was successfully developed using a glucosylated magnetic nano matrix (GMNM) as a physical support, which facilitated easy separation and purification of Con A. In addition, the enzymatic conversion rate of 2% (w/v) Con A extracted residue to bio-sugar was 98.4%. Therefore, this new approach for the production of Con A and bio-sugar is potentially useful for obtaining bio-based products from jack bean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hydrolysis of hemicellulose and derivatives – A review of recent advances in the production of furfural

    NASA Astrophysics Data System (ADS)

    Delbecq, Frederic; Wang, Yantao; Muralidhara, Anitha; El Ouardi, Karim; Marlair, Guy; Len, Christophe

    2018-05-01

    Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: i) non-catalytic routes like use of critical solvents or hot water pretreatment, ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, iii) feedstock dehydration making use of various solid acid catalysts; iv) feedstock dehydration making use of supported catalysts, v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production.

  11. Plant cell wall sugars: sweeteners for a bio-based economy.

    PubMed

    Van de Wouwer, Dorien; Boerjan, Wout; Vanholme, Bartel

    2018-02-12

    Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development. This article is protected by copyright. All rights reserved.

  12. Towards reinforcement solutions for urban fibre/fabric waste using bio-based biodegradable resins.

    NASA Astrophysics Data System (ADS)

    Agrawal, Pramod; Hermes, Alina; Bapeer, Solaf; Luiken, Anton; Bouwhuis, Gerrit; Brinks, Ger

    2017-10-01

    The main research question is how to systematically define and characterize urban textile waste and how to effectively utilise it to produce reinforcement(s) with selected bio-based biodegradable resin(s). Several composite samples have been produced utilising predominantly natural and predominantly synthetic fibres by combining loose fibres with PLA, nonwoven fabric with PLA, woven fabric with PLA, two-layer composite & four-layer composite samples. Physio-chemical characterisations according to the established standards have been conducted. The present work is a step toward the circular economy and closing the loop in textile value chain.

  13. Azolla domestication towards a biobased economy?

    PubMed

    Brouwer, Paul; Bräutigam, Andrea; Külahoglu, Canan; Tazelaar, Anne O E; Kurz, Samantha; Nierop, Klaas G J; van der Werf, Adrie; Weber, Andreas P M; Schluepmann, Henriette

    2014-05-01

    Due to its phenomenal growth requiring neither nitrogen fertilizer nor arable land and its biomass composition, the mosquito fern Azolla is a candidate crop to yield food, fuels and chemicals sustainably. To advance Azolla domestication, we research its dissemination, storage and transcriptome. Methods for dissemination, cross-fertilization and cryopreservation of the symbiosis Azolla filiculoides-Nostoc azollae are tested based on the fern spores. To study molecular processes in Azolla including spore induction, a database of 37 649 unigenes from RNAseq of microsporocarps, megasporocarps and sporophytes was assembled, then validated. Spores obtained year-round germinated in vitro within 26 d. In vitro fertilization rates reached 25%. Cryopreservation permitted storage for at least 7 months. The unigene database entirely covered central metabolism and to a large degree covered cellular processes and regulatory networks. Analysis of genes engaged in transition to sexual reproduction revealed a FLOWERING LOCUS T-like protein in ferns with special features induced in sporulating Azolla fronds. Although domestication of a fern-cyanobacteria symbiosis may seem a daunting task, we conclude that the time is ripe and that results generated will serve to more widely access biochemicals in fern biomass for a biobased economy. No claim to original European Union works. New Phytologist © 2014 New Phytologist Trust.

  14. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  15. Hydrolysis of Hemicellulose and Derivatives—A Review of Recent Advances in the Production of Furfural

    PubMed Central

    Delbecq, Frederic; Wang, Yantao; Muralidhara, Anitha; El Ouardi, Karim; Marlair, Guy; Len, Christophe

    2018-01-01

    Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i) non-catalytic routes like use of critical solvents or hot water pretreatment, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration making use of various solid acid catalysts; (iv) feedstock dehydration making use of supported catalysts, (v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production. PMID:29868554

  16. Integrated techno-economic and environmental analysis of butadiene production from biomass.

    PubMed

    Farzad, Somayeh; Mandegari, Mohsen Ali; Görgens, Johann F

    2017-09-01

    In this study, lignocellulose biorefineries annexed to a typical sugar mill were investigated to produce either ethanol (EtOH) or 1,3-butadiene (BD), utilizing bagasse and trash as feedstock. Aspen simulation of the scenarios were developed and evaluated in terms of economic and environmental performance. The minimum selling prices (MSPs) for bio-based BD and EtOH production were 2.9-3.3 and 1.26-1.38-fold higher than market prices, respectively. Based on the sensitivity analysis results, capital investment, Internal Rate of Return and extension of annual operating time had the greatest impact on the MSP. Monte Carlo simulation demonstrated that EtOH and BD productions could be profitable if the average of ten-year historical price increases by 1.05 and 1.9-fold, respectively. The fossil-based route was found inferior to bio-based pathway across all investigated environmental impact categories, due to burdens associated with oil extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Smart, Sustainable, and Ecofriendly Chemical Design of Fully Bio-Based Thermally Stable Thermosets Based on Benzoxazine Chemistry.

    PubMed

    Froimowicz, Pablo; R Arza, Carlos; Han, Lu; Ishida, Hatsuo

    2016-08-09

    A smart synthetic chemical design incorporating furfurylamine, a natural renewable amine, into a partially bio-based coumarin-containing benzoxazine is presented. The versatility of the synthetic approach is shown to be flexible and robust enough to be successful under more ecofriendly reaction conditions by replacing toluene with ethanol as the reaction solvent and even under solventless conditions. The chemical structure of this coumarin-furfurylamine-containing benzoxazine is characterized by FTIR, (1) H NMR spectroscopy and two-dimensional (1) H-(1) H nuclear Overhauser effect spectroscopy (2D (1) H-(1) H NOESY). The thermal properties of the resin toward polymerization are characterized by differential scanning calorimetry (DSC) and the thermal stability of the resulting polymers by thermogravimetric analysis (TGA). The results reveal that the furanic moiety induces a co-operative activating effect, thus lowering the polymerization temperature and also contributes to a better thermal stability of the resulting polymers. These results, in addition to those of natural renewable benzoxazine resins reviewed herein, highlight the positive and beneficial implication of designing novel bio-based polybenzoxazine and possibly other thermosets with desirable and competitive properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Facile Fabrication of 100% Bio-Based and Degradable Ternary Cellulose/PHBV/PLA Composites

    PubMed Central

    Wang, Jinwu

    2018-01-01

    Modifying bio-based degradable polymers such as polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials. PMID:29495315

  19. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    PubMed

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  20. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels.

    PubMed

    Cheon, Seungwoo; Kim, Hye Mi; Gustavsson, Martin; Lee, Sang Yup

    2016-12-01

    As climate change has become one of the major global risks, our heavy dependence on petroleum-derived fuels has received much public attention. To solve such problems, production of sustainable fuels has been intensively studied over the past years. Thanks to recent advances in synthetic biology and metabolic engineering technologies, bio-based platforms for advanced biofuels production have been developed using various microorganisms. The strategies for production of advanced biofuels have converged upon four major metabolic routes: the 2-ketoacid pathway, the fatty acid synthesis (FAS) pathway, the isoprenoid pathway, and the reverse β-oxidation pathway. Additionally, the polyketide synthesis pathway has recently been attracting interest as a promising alternative biofuel production route. In this article, recent trends in advanced biofuels production are reviewed by categorizing them into three types of advanced biofuels: alcohols, biodiesel and jet fuel, and gasoline. Focus is given on the strategies of employing synthetic biology and metabolic engineering for the development of microbial strains producing advanced fuels. Finally, the prospects for future advances needed to achieve much more efficient bio-based production of advanced biofuels are discussed, focusing on designing advanced biofuel production pathways coupled with screening, modifying, and creating novel enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.

    PubMed

    Yamada, Ryosuke; Wakita, Kazuki; Mitsui, Ryosuke; Ogino, Hiroyasu

    2017-09-01

    Utilization of renewable feedstocks for the production of bio-based chemicals such as d-lactic acid by engineering metabolic pathways in the yeast Saccharomyces cerevisiae has recently become an attractive option. In this study, to realize efficient d-lactic acid production by S. cerevisiae, the expression of 12 glycolysis-related genes and the Leuconostoc mesenteroides d-LDH gene was optimized using a previously developed global metabolic engineering strategy, and repeated batch fermentation was carried out using the resultant strain YPH499/dPdA3-34/DLDH/1-18. Stable d-lactic acid production through 10 repeated batch fermentations was achieved using YPH499/dPdA3-34/DLDH/1-18. The average d-lactic acid production, productivity, and yield with 10 repeated batch fermentations were 60.3 g/L, 2.80 g/L/h, and 0.646, respectively. The present study is the first report of the application of a global metabolic engineering strategy for bio-based chemical production, and it shows the potential for efficient production of such chemicals by global metabolic engineering of the yeast S. cerevisiae. Biotechnol. Bioeng. 2017;114: 2075-2084. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.

  3. Designing new functional cosmetic ingredients from polyglycerol, a versatile bio-based platform for improved sustainability.

    PubMed

    Fevola, Michael J; Sun, Frank C; York, Stacey E

    Polyglycerol (PG) is a well-known cosmetic ingredient and important precursor for the synthesis of a variety of cosmetic ingredients, such as surfactants, emulsifiers, and conditioning agents for hair and skin. When derived from renewable resources, PG can provide a more sustainable platform for the development of new ingredients with improved performance in cosmetic applications. This paper will discuss recent advances in the utilization of bio-based PG ingredients as alternatives to traditional ethoxylate chemistries for mild nonionic surfactants, substantive humectants, and micellar thickeners.

  4. Integrated biomass technologies: future vision for optimally using wood and biomass

    Treesearch

    Jerrold E. Winandy; Alan W. Rudie; R. Sam Williams; Theodore H. Wegner

    2008-01-01

    Exciting new opportunities are emerging for sustainably meeting many global energy needs and simultaneously creating high value biobased consumer and construction products from wood, forest and agricultural residues, and other biobased materials. In addition to traditional value added biobased products, such as lumber, paper, paperboard, and composites, opportunities...

  5. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical

    USDA-ARS?s Scientific Manuscript database

    Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (> 80 g L**-1) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (> 200 g L**-...

  6. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    PubMed Central

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.

    2018-01-01

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass—namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production. PMID:29381705

  7. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes.

    PubMed

    Nag, Ambarish; St John, Peter C; Crowley, Michael F; Bomble, Yannick J

    2018-01-01

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass-namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.

  8. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less

  9. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    DOE PAGES

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.; ...

    2018-01-30

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less

  10. Improved synthesis of phosphatidylserine using bio-based solvents, limonene and p-cymene.

    PubMed

    Bi, Yan-Hong; Duan, Zhang-Qun; Du, Wen-Ying; Wang, Zhao-Yu

    2015-01-01

    The bio-based solvents limonene and p-cymene obtained from citrus waste were innovatively employed as the reaction media for enzymatic synthesis of phosphatidylserine. (R)-(+)-Limonene, which is available in large quantities from citrus waste, and its close derivative p-cymene, are promising green solvents. Herein, they were successfully employed as reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine for phosphatidylserine synthesis for the first time. A 95 % yield of phosphatidylserine was achieved after 12 h and the side-reactions (which are the undesirable hydrolysis of phosphatidylcholine and phosphatidylserine) did not happen. This work presents an alternative strategy for preparing phosphatidylserine that possesses obvious advantages over the traditional processes in terms of high efficiency combined with environmental friendliness.

  11. LCA of 1,4-Butanediol Produced via Direct Fermentation of Sugars from Wheat Straw Feedstock within a Territorial Biorefinery

    PubMed Central

    Forte, Annachiara; Zucaro, Amalia; Basosi, Riccardo; Fierro, Angelo

    2016-01-01

    The bio-based industrial sector has been recognized by the European Union as a priority area toward sustainability, however, the environmental profile of bio-based products needs to be further addressed. This study investigated, through the Life Cycle Assessment (LCA) approach, the environmental performance of bio-based 1,4-butanediol (BDO) produced via direct fermentation of sugars from wheat straw, within a hypothetical regional biorefinery (Campania Region, Southern Italy). The aim was: (i) to identify the hotspots along the production chain; and (ii) to assess the potential environmental benefits of this bio-based polymer versus the reference conventional product (fossil-based BDO). Results identified the prevailing contribution to the total environmental load of bio-based BDO in the feedstock production and in the heat requirement at the biorefinery plant. The modeled industrial bio-based BDO supply chain, showed a general reduction of the environmental impacts compared to the fossil-based BDO. The lowest benefits were gained in terms of acidification and eutrophication, due to the environmental load of the crop phase for feedstock cultivation. PMID:28773687

  12. Pennycress (Thlaspi arvense): A new oilseed for biofuel production in Europe and the U.S.

    USDA-ARS?s Scientific Manuscript database

    Recently the interest toward potential new oilseeds is rapidly increasing; in particular, non-food crops that do not compete with food production are highly required by farmers and biobased industries. In the last decade, a “potential weed,” field pennycress (Thlaspi arvense, hereafter pennycress) h...

  13. Bioenergy and biobased products hold promise of reducing pollution emissions

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Trees and other plants have, of course, long been useful for the wood and agricultural benefits they provide. Now, this organic matter is gaining new cachet as “biomass.”Some scientists hope that this stuff can be converted into practically a panacea of goods, including transportation fuels, electricity, commercial products such as chemicals, glues, and paints, and other materials—reducing societal dependence on petrochemical products.

  14. Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals.

    PubMed

    Cao, Liming; Yuan, Daosheng; Xu, Chuanhui; Chen, Yukun

    2017-10-19

    Cellulose nanocrystals represent a promising and environmentally friendly reinforcing nanofiller for polymers, especially for rubbers and elastomers. Here, a simple approach via latex mixing is used to fabricate biobased, healable rubber with high strength based on epoxidized natural rubber (ENR). Tunicate cellulose nanocrystals (t-CNs) isolated from marine biomass with a high aspect ratio are used to improve both mechanical properties and self-healing behavior of the material. By introducing dynamic hydrogen bond supramolecular networks between oxygenous groups of ENR and hydroxyl groups on the t-CN surface, together with chain interdiffusion in permanently but slightly cross-linked rubber, self-healing and mechanical properties are facilitated significantly in the resulting materials. Macroscopic tensile healing behavior and microscopic morphology analyses are carried out to evaluate the performance of the materials. Both t-CN content and healing time have significant influence on healing behavior. The results indicate that a synergistic effect between molecular interdiffusion and dynamic hydrogen bond supramolecular networks leads to the improved self-healing behavior.

  15. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Michael; Ruhl, Robert

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes thatmore » > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.« less

  16. Towards Sustainable C-H Functionalization Reactions: The Emerging Role of Bio-Based Reaction Media.

    PubMed

    Santoro, Stefano; Marrocchi, Assunta; Lanari, Daniela; Ackermann, Lutz; Vaccaro, Luigi

    2018-04-18

    In the last decade, transition-metal catalyzed C-H functionalization reactions have progressed enourmosly, becoming a useful tool in organic synthesis and a practibable alternative to well-established methodologies. Very recently, research efforts have also been devoted to developing more sustainable C-H functionalization protocols, in order to increase their applicability. One of the most promising approaches in this sense is represented by the substitution of common reaction media with bio-based solvents. In the present contribution a general perspective on the benefits of this approach is given, followed by selected literature examples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Newly invented biobased materials from low-carbon, diverted waste fibers: research methods, testing, and full-scale application in a case study structure

    Treesearch

    Julee A Herdt; John Hunt; Kellen Schauermann

    2016-01-01

    This project demonstrates newly invented, biobased construction materials developed by applying lowcarbon, biomass waste sources through the Authors’ engineered fiber processes and technology. If manufactured and applied large-scale the project inventions can divert large volumes of cellulose waste into high-performance, low embodied energy, environmental construction...

  18. Heat resistant soy adhesives for structural wood products

    Treesearch

    Christopher G. Hunt; Charles Frihart; Jane O' Dell

    2009-01-01

    Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening and depolymerization of biobased polymers at elevated temperatures should be an advantage of biobased adhesives compared to fossil fuel-based adhesives. Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening...

  19. 76 FR 3789 - Voluntary Labeling Program for Biobased Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... manufacturer or vendor has provided relevant information on the product for the USDA BioPreferred Program Web... labeling component of the BioPreferred Program. The final rule also applies to other entities (e.g., trade... Procurement Program (one part of the BioPreferred\\SM\\ Program) is available on the Internet at http://www...

  20. Sustainability Product Properties in Building Information Models

    DTIC Science & Technology

    2012-09-01

    Covrlhovses, Oota c enters, Hospitals IAcvle care and Children’s), Hotels/ Mote ~, Hovses of Worship, K- 12 Schools, Med1cal Offic&s, Offices, Restdence Holts...RenewableContent n/a n/a 70 RenewableMaterial n/a n/a Cotton BiobasedContent n/a n/a 70 BiobasedMaterial n/a n/a Cotton RawMaterialLocation n/a n/a

  1. Combining metabolic engineering and electrocatalysis: Application to the production of polyamides from sugar

    DOE PAGES

    Suastegui, Miguel; Matthiesen, John E.; Carraher, Jack M.; ...

    2016-01-14

    Here, biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L –1 in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94more » % yield despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine.« less

  2. Improved solubility of DNA in recyclable and reusable bio-based deep eutectic solvents with long-term structural and chemical stability.

    PubMed

    Mondal, Dibyendu; Sharma, Mukesh; Mukesh, Chandrakant; Gupta, Vishal; Prasad, Kamalesh

    2013-10-25

    The solubility of DNA in bio-based deep eutectic solvents (DESs) consisting of mixtures of choline chloride with levulinic acid, glycerol, ethylene glycol, sorbitol and resorcinol was investigated. The macromolecule was found to be soluble and chemically and structurally stable in DESs consisting of mixtures containing glycerol and ethylene glycol. Furthermore recyclability of the DESs was demonstrated over three consecutive reuses in DNA dissolution.

  3. Synthesis, properties and applications of bio-based materials

    NASA Astrophysics Data System (ADS)

    Srinivasan, Madhusudhan

    Bio-based feedstock have become very significant as they offer a value proposition in terms of carbon balance and also in terms of endowing biodegradability where needed. Thus a lot of attention is being given to the modification such feedstock for different applications. Soybean oil is one such feedstock. The oil is a triglyceride ester composed of different fatty acids, which are common to other plant oils. Thus soybean oil serves as a platform for plant oils, as modifications of this oil, can in theory be extended to cover other plant oils. Methyl oleate was used as a model fatty acid ester, to synthesize hydroxyesters with ethylene glycol via a two stage oxidative cleavage of the double bonds. Ozone was chosen as the oxidant due to its many advantages. The first stage involved oxidation of the double bond to aldehydes, ozonides and acetals, which were subsequently converted to hydroxyesters (hydroxy values of 220 - 270) in near quantitative yield by treatment with Oxone. This method could be extended to soybean oil to make "polyols" which could find applications in resin syntheses. Silylation was employed as another platform to functionalize soybean oil and fatty acid methyl esters with a reactive silane (vinyltrimethoxy silane). This simple modification produced materials that are cured by atmospheric moisture and are useful as coatings. The silylation was controlled by varying the grafting time, cure temperature and the concentration of the silane. Products with gel content as high as 90% could be achieved. The coating exhibited good adhesion to metal, glass, concrete and paper. Steel panels coated with these coatings exhibited good stability against corrosion in high humidity conditions and moderate stability against a salt spray. The silylation was also successfully utilized to improve the tensile strength of the blend of biodegradable polyester, poly (butylene adipate-co-terephthalate) with talc. A reactive extrusion process was employed to graft vinyl

  4. Biocatalysts and methods for conversion of hemicellulose hydrolysates to biobased products

    DOEpatents

    Preston, James F

    2015-03-31

    The invention relates to processes and biocatalysts for producing ethanol and other useful products from biomass and/or other materials. Initial processing of lignocellulosic biomass frequently yields methylglucuronoxylose (MeGAX) and related products which are resistant to further processing by common biocatalysts. Strains of Enterobacter asburiae are shown to be useful in bioprocessing of MeGAX and other materials into useful bioproducts such as ethanol, acetate, lactate, and many others. Genetic engineering may be used to enhance production of desired bioproducts.

  5. Fermentative Production of Cysteine by Pantoea ananatis

    PubMed Central

    Takumi, Kazuhiro; Ziyatdinov, Mikhail Kharisovich; Samsonov, Viktor

    2016-01-01

    ABSTRACT Cysteine is a commercially important amino acid; however, it lacks an efficient fermentative production method. Due to its cytotoxicity, intracellular cysteine levels are stringently controlled via several regulatory modes. Managing its toxic effects as well as understanding and deregulating the complexities of regulation are crucial for establishing the fermentative production of cysteine. The regulatory modes include feedback inhibition of key metabolic enzymes, degradation, efflux pumps, and the transcriptional regulation of biosynthetic genes by a master cysteine regulator, CysB. These processes have been extensively studied using Escherichia coli for overproducing cysteine by fermentation. In this study, we genetically engineered Pantoea ananatis, an emerging host for the fermentative production of bio-based materials, to identify key factors required for cysteine production. According to this and our previous studies, we identified a major cysteine desulfhydrase gene, ccdA (formerly PAJ_0331), involved in cysteine degradation, and the cysteine efflux pump genes cefA and cefB (formerly PAJ_3026 and PAJ_p0018, respectively), which may be responsible for downregulating the intracellular cysteine level. Our findings revealed that ccdA deletion and cefA and cefB overexpression are crucial factors for establishing fermentative cysteine production in P. ananatis and for obtaining a higher cysteine yield when combined with genes in the cysteine biosynthetic pathway. To our knowledge, this is the first demonstration of cysteine production in P. ananatis, which has fundamental implications for establishing overproduction in this microbe. IMPORTANCE The efficient production of cysteine is a major challenge in the amino acid fermentation industry. In this study, we identified cysteine efflux pumps and degradation pathways as essential elements and genetically engineered Pantoea ananatis, an emerging host for the fermentative production of bio-based materials, to

  6. Fermentative Production of Cysteine by Pantoea ananatis.

    PubMed

    Takumi, Kazuhiro; Ziyatdinov, Mikhail Kharisovich; Samsonov, Viktor; Nonaka, Gen

    2017-03-01

    Cysteine is a commercially important amino acid; however, it lacks an efficient fermentative production method. Due to its cytotoxicity, intracellular cysteine levels are stringently controlled via several regulatory modes. Managing its toxic effects as well as understanding and deregulating the complexities of regulation are crucial for establishing the fermentative production of cysteine. The regulatory modes include feedback inhibition of key metabolic enzymes, degradation, efflux pumps, and the transcriptional regulation of biosynthetic genes by a master cysteine regulator, CysB. These processes have been extensively studied using Escherichia coli for overproducing cysteine by fermentation. In this study, we genetically engineered Pantoea ananatis , an emerging host for the fermentative production of bio-based materials, to identify key factors required for cysteine production. According to this and our previous studies, we identified a major cysteine desulfhydrase gene, ccdA (formerly PAJ_0331), involved in cysteine degradation, and the cysteine efflux pump genes cefA and cefB (formerly PAJ_3026 and PAJ_p0018, respectively), which may be responsible for downregulating the intracellular cysteine level. Our findings revealed that ccdA deletion and cefA and cefB overexpression are crucial factors for establishing fermentative cysteine production in P. ananatis and for obtaining a higher cysteine yield when combined with genes in the cysteine biosynthetic pathway. To our knowledge, this is the first demonstration of cysteine production in P. ananatis , which has fundamental implications for establishing overproduction in this microbe. IMPORTANCE The efficient production of cysteine is a major challenge in the amino acid fermentation industry. In this study, we identified cysteine efflux pumps and degradation pathways as essential elements and genetically engineered Pantoea ananatis , an emerging host for the fermentative production of bio-based materials, to

  7. 7 CFR 2902.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Web site. An informational USDA Web site implementing section 9002 can be found at: http://www.biobased.oce.usda.gov. USDA will maintain a voluntary Web-based information site for manufacturers and... information. This Web site will provide information as to the availability, relative price, biobased content...

  8. Chemoenzymatic Synthesis of Oligo(L-cysteine) for Use as a Thermostable Bio-Based Material.

    PubMed

    Ma, Yinan; Sato, Ryota; Li, Zhibo; Numata, Keiji

    2016-01-01

    Oligomerization of thiol-unprotected L-cysteine ethyl ester (Cys-OEt) catalyzed by proteinase K in aqueous solution has been used to synthesize oligo(L-cysteine) (OligoCys) with a well-defined chemical structure and relatively large degree of polymerization (DP) up to 16-17 (average 8.8). By using a high concentration of Cys-OEt, 78.0% free thiol content was achieved. The thermal properties of OligoCys are stable, with no glass transition until 200 °C, and the decomposition temperature could be increased by oxidation. Chemoenzymatically synthesized OligoCys has great potential for use as a thermostable bio-based material with resistance to oxidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions.

    PubMed

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin

    2018-02-12

    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 7 CFR 2902.14 - Penetrating lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES... product as a percent of the weight (mass) of the total organic carbon in the finished product. (c... biobased products provide information for the BioPreferred Web site of qualifying biobased products about...

  11. 7 CFR 2902.14 - Penetrating lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES... product as a percent of the weight (mass) of the total organic carbon in the finished product. (c... biobased products provide information for the BioPreferred Web site of qualifying biobased products about...

  12. Multi-Product Microalgae Biorefineries: From Concept Towards Reality.

    PubMed

    't Lam, G P; Vermuë, M H; Eppink, M H M; Wijffels, R H; van den Berg, C

    2018-02-01

    Although microalgae are a promising biobased feedstock, industrial scale production is still far off. To enhance the economic viability of large-scale microalgae processes, all biomass components need to be valorized, requiring a multi-product biorefinery. However, this concept is still too expensive. Typically, downstream processing of industrial biotechnological bulk products accounts for 20-40% of the total production costs, while for a microalgae multi-product biorefinery the costs are substantially higher (50-60%). These costs are high due to the lack of appropriate and mild technologies to access the different product fractions such as proteins, carbohydrates, and lipids. To reduce the costs, simplified processes need to be developed for the main unit operations including harvesting, cell disruption, extraction, and possibly fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The potential of the aquatic water fern Azolla within a biobased economy

    NASA Astrophysics Data System (ADS)

    Nierop, Klaas G. J.; Jongerius, Anna L.; Bijl, Peter K.; Bruijnincx, Pieter C. A.; Klein Gebbink, Robertus J. M.; Reichart, Gert-Jan

    2014-05-01

    Azolla is a free-floating freshwater fern capable of fixing atmospheric carbon dioxide and nitrogen, the latter of which through its symbiosis with the cyanobacteria Anabaena azollae. It is currently ranked among the fastest growing plants on Earth and occurs in both tropical and temperate freshwater ecosystems. Therefore, it is non-directly competitive with food crops. In addition, Azolla does not require inorganic fertilizers, which makes it a potential and unique source of biomass for the sustainable production of fuels and chemicals that are currently derived from fossil (fuel) sources. The biochemical composition of Azolla allows the production of biofuel or biobased chemicals that are of interest to the chemical industry. Of Azolla, two extractable groups of compounds are of particular interest, i.e. the polyphenols (condensed tannins and ester-bound caffeic acid) and the lipids. The antioxidant property of polyphenols and their application to the treatment of cancer, diabetes and cardiovascular diseases has further contributed to the growth of the polyphenol market. In addition, they can be chemically transformed into aromatic platform and specialty chemicals. The composition of the lipid fraction of Azolla is characterized by highly specific compounds consisting of C26-C36 carbon chains all bearing a ω20-hydroxy group. Such compounds produce an oil fraction upon hydrous pyrolysis, or, alternatively, are well suited to be converted to e.g. various specialty chemicals that are hardly available from both natural sources. Indeed, upon chemical conversion these lipids may yield components for fuels, plastics, cosmetics, and lubricants. Another group of interesting compounds within the lipid group are the polyunsaturated fatty acids (PUFAs). The demand for PUFAs has witnessed a significant increase over the last three years, particularly due to their benefits as cholesterol lowering agents. Here we will present some of the thermal and chemical conversions of the

  14. 7 CFR 2902.33 - Carpets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Carpets. (a) Definition. Floor coverings composed of woven, tufted, or knitted fiber and a backing system... manufacturers of these qualifying biobased products provide information for the BioPreferred Web site of qualifying biobased products about the intended uses of the product, information on whether or not the...

  15. 7 CFR 2902.33 - Carpets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Carpets. (a) Definition. Floor coverings composed of woven, tufted, or knitted fiber and a backing system... manufacturers of these qualifying biobased products provide information for the BioPreferred Web site of qualifying biobased products about the intended uses of the product, information on whether or not the...

  16. 7 CFR 3201.84 - Inks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the... of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated...

  17. 7 CFR 3201.84 - Inks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the... of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated...

  18. 77 FR 6791 - Biomass Research and Development Technical Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... DEPARTMENT OF ENERGY Biomass Research and Development Technical Advisory Committee AGENCY: Energy... announces an open meeting of the Biomass Research and Development Technical Advisory Committee. The Federal... leading to the production of biobased fuels and biobased products. Tentative Agenda Update on USDA Biomass...

  19. Polymerization and Structure of Bio-Based Plastics: A Computer Simulation

    NASA Astrophysics Data System (ADS)

    Khot, Shrikant N.; Wool, Richard P.

    2001-03-01

    We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation

  20. Opening Furan for Tailoring Properties of Bio-based Poly(Furfuryl Alcohol) Thermoset.

    PubMed

    Falco, Guillaume; Guigo, Nathanael; Vincent, Luc; Sbirrazzuoli, Nicolas

    2018-06-11

    This work shows how furan ring-opening reactions were controlled by polymerization conditions to tune the cross-link density in bio-based poly(furfuryl alcohol) (PFA). The influence of water and isopropyl alcohol (IPA) on the polymerization of furfuryl alcohol, and particularly on furan ring-opening, was investigated by means of 13 C NMR and FT-IR spectroscopy. Results indicated that formation of open structures were favored in the presence of solvents, thus leading to modification of the thermo-mechanical properties compared to PFA cross-linked without solvent. Dynamic mechanical analyses showed that when slightly more open structures were present in PFA it resulted in an important decrease of the cross-link density. Despite lower glass-transition temperature and lower elastic modulus for PFA polymerized with solvent, the thermal stability remains very high (>350 °C) even with more open structures in PFA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preface: Biocatalysis and Agricultural Biotechnology

    USDA-ARS?s Scientific Manuscript database

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  2. New advances in the integrated management of food processing by-products in Europe: sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU).

    PubMed

    Fava, Fabio; Zanaroli, Giulio; Vannini, Lucia; Guerzoni, Elisabetta; Bordoni, Alessandra; Viaggi, Davide; Robertson, Jim; Waldron, Keith; Bald, Carlos; Esturo, Aintzane; Talens, Clara; Tueros, Itziar; Cebrián, Marta; Sebők, András; Kuti, Tunde; Broeze, Jan; Macias, Marta; Brendle, Hans-Georg

    2013-09-25

    By-products generated every year by the European fruit and cereal processing industry currently exceed several million tons. They are disposed of mainly through landfills and thus are largely unexploited sources of several valuable biobased compounds potentially profitable in the formulation of novel food products. The opportunity to design novel strategies to turn them into added value products and food ingredients via novel and sustainable processes is the main target of recently EC-funded FP7 project NAMASTE-EU. NAMASTE-EU aims at developing new laboratory-scale protocols and processes for the exploitation of citrus processing by-products and wheat bran surpluses via the production of ingredients useful for the formulation of new beverage and food products. Among the main results achieved in the first two years of the project, there are the development and assessment of procedures for the selection, stabilization and the physical/biological treatment of citrus and wheat processing by-products, the obtainment and recovery of some bioactive molecules and ingredients and the development of procedures for assessing the quality of the obtained ingredients and for their exploitation in the preparation of new food products. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  4. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade.

    PubMed

    Van Hecke, Wouter; Kaur, Guneet; De Wever, Heleen

    2014-11-15

    The review presents the state-of-the-art in the applications of in-situ product recovery (ISPR) in whole-cell biotechnology over the last 10years. It summarizes various ISPR-integrated fermentation processes for the production of a wide spectrum of bio-based products. A critical assessment of the performance of various ISPR concepts with respect to the degree of product enrichment, improved productivity, reduced process flows and increased yields is provided. Requirements to allow a successful industrial implementation of ISPR are also discussed. Finally, supporting technologies such as online monitoring, mathematical modeling and use of recombinant microorganisms with ISPR are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. 77 FR 47047 - Biomass Research and Development Technical Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... research and development leading to the production of biobased fuels and biobased products. Tentative... Research and Development Technical Advisory Committee. To attend the meeting and/or to make oral statements... at the beginning of the meeting. Reasonable provision will be made to include the scheduled oral...

  6. 7 CFR 2902.10 - Mobile equipment hydraulic fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2902.10 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in... requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred...

  7. 7 CFR 2902.10 - Mobile equipment hydraulic fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2902.10 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in... requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred...

  8. 7 CFR 2902.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 2902.28 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in... that manufacturers of these qualifying biobased products provide information for the BioPreferred Web...

  9. 7 CFR 2902.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 2902.28 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in... that manufacturers of these qualifying biobased products provide information for the BioPreferred Web...

  10. Scalable production of mechanically tunable block polymers from sugar

    PubMed Central

    Xiong, Mingyong; Schneiderman, Deborah K.; Bates, Frank S.; Hillmyer, Marc A.; Zhang, Kechun

    2014-01-01

    Development of sustainable and biodegradable materials is essential for future growth of the chemical industry. For a renewable product to be commercially competitive, it must be economically viable on an industrial scale and possess properties akin or superior to existing petroleum-derived analogs. Few biobased polymers have met this formidable challenge. To address this challenge, we describe an efficient biobased route to the branched lactone, β-methyl-δ-valerolactone (βMδVL), which can be transformed into a rubbery (i.e., low glass transition temperature) polymer. We further demonstrate that block copolymerization of βMδVL and lactide leads to a new class of high-performance polyesters with tunable mechanical properties. Key features of this work include the creation of a total biosynthetic route to produce βMδVL, an efficient semisynthetic approach that employs high-yielding chemical reactions to transform mevalonate to βMδVL, and the use of controlled polymerization techniques to produce well-defined PLA–PβMδVL–PLA triblock polymers, where PLA stands for poly(lactide). This comprehensive strategy offers an economically viable approach to sustainable plastics and elastomers for a broad range of applications. PMID:24912182

  11. Consumer acceptance of fresh blueberries in bio-based packages.

    PubMed

    Almenar, Eva; Samsudin, Hayati; Auras, Rafael; Harte, Janice

    2010-05-01

    Instrumental analyses have shown that non-vented bio-based containers made from poly(lactic acid) (PLA) have the capability to enhance blueberry shelf life as compared with commercial vented petroleum-based clamshell containers. However, consumer preference has not been explored so far. In this study, two sensory evaluations, triangle and paired preference tests, were performed after storing fruit in both containers at 3 and 10 degrees C for 7 and 14 days. In addition, physicochemical analyses were performed after each tasting in order to correlate instrumental findings with consumer preference. The results of the triangle test showed the capability of the consumer to differentiate (P < or = 0.001) between blueberries from different packages at both storage temperatures. A consumer preference for flavour, texture, external appearance and overall quality (P < or = 0.001) of blueberries packaged in PLA containers was observed in the paired comparison test. The instrumental analyses showed that blueberries in the PLA packages exhibited a weight loss below the limit for marketable life, a stable soluble solid content and titratable acidity and no fungal growth during storage. Consumers distinguished between blueberries from different packages and preferred those packaged in the PLA containers. The instrumental analyses showed that the usable life of the berries was extended in the PLA containers. A correlation between consumer preference and instrumental evaluations was found.

  12. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... production of biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based... biomass for conversion to biofuels, bioenergy, and biobased products. [75 FR 33498, June 14, 2010, as...

  13. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... production of biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based... biomass for conversion to biofuels, bioenergy, and biobased products. [75 FR 33498, June 14, 2010, as...

  14. 7 CFR 3430.701 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... production of biofuels at prices competitive with fossil fuels; (b) High-value biobased products— (1) To enhance the economic viability of biofuels and power, (2) To serve as substitutes for petroleum-based... biomass for conversion to biofuels, bioenergy, and biobased products. [75 FR 33498, June 14, 2010, as...

  15. 7 CFR 2902.47 - Gear lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF... based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of... requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred...

  16. 7 CFR 2902.47 - Gear lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF... based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of... requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred...

  17. 7 CFR 2902.38 - Firearm lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No later than May 14... require the use of biobased firearm lubricants. [73 FR 27994, May 14, 2008] ...

  18. In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid – Important steps towards biobased production of adipic acid

    PubMed Central

    Westman, Gunnar; Eriksson, Leif A.; Mapelli, Valeria

    2018-01-01

    The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocellulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2-hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them. PMID:29474495

  19. Life cycle assessment and sustainable engineering in the context of near net shape grown components: striving towards a sustainable way of future production.

    PubMed

    Kämpfer, Christoph; Seiler, Thomas-Benjamin; Beger, Anna-Lena; Jacobs, Georg; Löwer, Manuel; Moser, Franziska; Reimer, Julia; Trautz, Martin; Usadel, Björn; Wormit, Alexandra; Hollert, Henner

    2017-01-01

    Technical product harvesting (TEPHA) is a newly developing interdisciplinary approach in which bio-based production is investigated from a technical and ecological perspective. Society's demand for ecologically produced and sustainably operable goods is a key driver for the substitution of conventional materials like metals or plastics through bio-based alternatives. Technical product harvesting of near net shape grown components describes the use of suitable biomass for the production of technical products through influencing the natural shape of plants during their growth period. The use of natural materials may show positive effects on the amount of non-renewable resource consumption. This also increases the product recyclability at the end of its life cycle. Furthermore, through the near net shape growth of biomass, production steps can be reduced. As a consequence such approaches may save energy and the needed resources like crude oil, coal or gas. The derived near net shape grown components are not only considered beneficial from an environmental point of view. They can also have mechanical advantages through an intrinsic topology optimization in contrast to common natural materials, which are influenced in their shape after harvesting. In order to prove these benefits a comprehensive, interdisciplinary scientific strategy is needed. Here, both mechanical investigations and life cycle assessment as a method of environmental evaluation are used.

  20. 7 CFR 2902.27 - Films.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in... manufacturers of these qualifying biobased products provide information for the BioPreferred Web site of...

  1. Novel Biobased Sodium Shellac for Wrapping Disperse Multiscale Emulsion Particles.

    PubMed

    Luo, Qingming; Li, Kai; Xu, Juan; Li, Kun; Zheng, Hua; Liu, Lanxiang; Zhang, Hong; Sun, Yanlin

    2016-12-14

    As a result of amphipathic oligomers driven by different forces including hydrophobic interaction, electrostatic interaction, H-bond, and heat, multiscale emulsion particles can be wrapped. In this paper we attempted to use sodium shellac as a novel biobased wrapping material. The H + , Ca + , and spray-drying methods were employed to solidify the complex vitamin E (VE) emulsion with sodium shellac to fabricate the beads. The VE loading and encapsulation efficiency were used to evaluate the wrapping process. The results show that the microscale VE emulsion particles could easily be wrapped by these three means. However, due to the high solid content of the nanoscale emulsion particles, it was difficult to wrap them by spray-drying method. The beads solidified by H + had higher VE loading and encapsulation efficiency than those solidified by other methods and even grabbed the hydrophobic molecule VE from the emulsion micelles. At an R VS of 1:4, these two parameters, which are obtained by the nanoscale emulsion particle wrapping process, could reach 18.9 and 64.3% supported by the single driving force of hydrophobic interaction. Above all, this research introduced a novel wrapping material driven by different forces that can aggregate and wrap the emulsion micelles. It can be widely used in the medical, food, and cosmetics industries.

  2. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water.

    PubMed

    García-Álvarez, Joaquín; Hevia, Eva; Capriati, Vito

    2018-06-19

    There is a strong imperative to reduce the release of volatile organic compounds (VOCs) into the environment, and many efforts are currently being made to replace conventional hazardous VOCs in favour of safe, green and bio-renewable reaction media that are not based on crude petroleum. Recent ground-breaking studies from a few laboratories worldwide have shown that both Grignard and (functionalised) organolithium reagents, traditionally handled under strict exclusion of air and humidity and in anhydrous VOCs, can smoothly promote both nucleophilic additions to unsaturated substrates and nucleophilic substitutions in water and other bio-based solvents (glycerol, deep eutectic solvents), competitively with protonolysis, at room temperature and under air. The chemistry of polar organometallics in the above protic media is a complex phenomenon influenced by several factors, and understanding its foundational character is surely stimulating in the perspective of the development of a sustainable organometallic chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Short and long term behaviour of externally bonded fibre reinforced polymer laminates with bio-based resins for flexural strengthening of concrete beams

    NASA Astrophysics Data System (ADS)

    McSwiggan, Ciaran

    The use of bio-based resins in composites for construction is emerging as a way to reduce of embodied energy produced by a structural system. In this study, two types of bio-based resins were explored: an epoxidized pine oil resin blend (EP) and a furfuryl alcohol resin (FA) derived from corn cobs and sugar cane. Nine large-scale reinforced concrete beams strengthened using externally bonded carbon and glass fibre reinforced bio-based polymer (CFRP and GFRP) sheets were tested. The EP resin resulted in a comparable bond strength to conventional epoxy (E) when used in wet layup, with a 7% higher strength for CFRP. The FA resin, on the other hand, resulted in a very weak bond, likely due to concrete alkalinity affecting curing. However, when FA resin was used to produce prefabricated cured CFRP plates which were then bonded to concrete using conventional epoxy paste, it showed an excellent bond strength. The beams achieved an increase in peak load ranging from 18-54% and a 9-46% increase in yielding load, depending on the number of FRP layers and type of fibres and resin. Additionally, 137 concrete prisms with a mid-span half-depth saw cut were used to test CFRP bond durability, and 195 CFRP coupons were used to examine tensile strength durability. Specimens were conditioned in a 3.5% saline solution at 23, 40 or 50°C, for up to 240 days. Reductions in bond strength did not exceed 15%. Bond failure of EP was adhesive with traces of cement paste on CFRP, whereas that of FA was cohesive with a thicker layer of concrete on CFRP, suggesting that the bond between FA and epoxy paste is excellent. EP tension coupons had similar strength and modulus to E resin, whereas FA coupons had a 9% lower strength and 14% higher modulus. After 240 days of exposure, maximum reductions in tensile strength were 8, 19 and 10% for EP, FA and E resins, respectively. Analysis of Variance (ANOVA) was also performed to assess the significance of the reductions observed. High degrees of

  4. 7 CFR 2902.23 - Sorbents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in... information on the BioPreferred Web site of qualifying biobased products about the intended uses of the...

  5. 7 CFR 2902.22 - Fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in... information on the BioPreferred Web site of qualifying biobased products about the intended uses of the...

  6. 7 CFR 2902.23 - Sorbents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in... information on the BioPreferred Web site of qualifying biobased products about the intended uses of the...

  7. 7 CFR 2902.34 - Carpet and upholstery cleaners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... upholstery cleaners shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased... compliance date. No later than May 14, 2009, procuring agencies, in accordance with this part, will give a...

  8. 7 CFR 2902.29 - Disposable cutlery.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased content of at least 48 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No later than May 14, 2009, procuring agencies, in accordance with...

  9. 7 CFR 2902.39 - Floor strippers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased content of at least 78 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No later than May 14, 2009, procuring agencies, in accordance with...

  10. 7 CFR 2902.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased content of at least 58 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No later than May 14, 2009, procuring agencies, in accordance with...

  11. Fostering the Bioeconomic Revolution ... in Biobased Products and Bioenergy: An Environmental Approach

    DTIC Science & Technology

    2001-01-01

    crops, we can use fermentation and chemistry to make hundreds of products including: • Alcohols, such as ethanol, glycols, and sorbitol. Ethanol is...organic acid that is a component of vinegar and that is an important starting substance for making textile fibers, vinyl plastics, polyesters, and other...C2H5OH: a colorless liquid that is the product of fermentation used in alcoholic beverages, industrial processes, and as a fuel additive. Also known as

  12. Effect of new type of synthetic waxes on reduced production and compaction temperature of asphalt mixture with reclaimed asphalt

    NASA Astrophysics Data System (ADS)

    Valentová, Tereza; Benešová, Lucie; Mastný, Jan; Valentin, Jan

    2017-09-01

    Lower mixing and paving temperatures of asphalt mixtures, which are an important issue in recent years, with respect to increased energy demand of civil engineering structures during their processing, allow reduction of this demand and result in minimized greenhouse gas production. In present time, there are many possibilities how to achieve reduction of production temperature during the mixing and paving of an asphalt mixture. The existing solutions distinguish in target operating temperature behaviour which has to be achieved in terms of good workability. This paper is focused on technical solutions based on use of new types of selected synthetic and bio-based waxes. In case of bio-based additive sugar cane wax was used, which is free of paraffins and is reclaimed as waste product during processing of sugar cane. The used waxes are added to bituminous binder in form of free-flowing granules or fine-grained powder. Synthetic waxes are represented by new series of Fischer-Tropsch wax in form of fine granules as well as by polyethylene waxes in form of fine-grained powder or granules. Those waxes were used to modify a standard paving grade bitumen dosed into asphalt mixture of ACsurf type containing up to 30 % of reclaimed asphalt (RA).

  13. 7 CFR 2902.9 - Funding for testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products within items USDA...

  14. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    NASA Astrophysics Data System (ADS)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  15. 77 FR 25632 - Guidelines for Designating Biobased Products for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... guidelines will not affect products that have already been designated for Federal procurement preference. Any... technological limitations. USDA recognizes that, in general, the Federal government does not purchase large... decision to clarify the terminology used in the BioPreferred program by avoiding, to the extent possible...

  16. 7 CFR 3201.9 - Funding for testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... General § 3201.9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products within...

  17. 7 CFR 3201.9 - Funding for testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... General § 3201.9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products within...

  18. 7 CFR 3201.9 - Funding for testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... General § 3201.9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products within...

  19. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks

    NASA Astrophysics Data System (ADS)

    Altuna, F. I.; Antonacci, J.; Arenas, G. F.; Pettarin, V.; Hoppe, C. E.; Williams, R. J. J.

    2016-04-01

    Green laser irradiation successfully activated self-healing processes in epoxy-acid networks modified with low amounts of gold nanoparticles (NPs). A bio-based polymer matrix, obtained by crosslinking epoxidized soybean oil (ESO) with an aqueous citric acid (CA) solution, was self-healed through molecular rearrangements produced by transesterification reactions of β-hydroxyester groups generated in the polymerization reaction. The temperature increase required for the triggering of these thermally activated reactions was attained by green light irradiation of the damaged area. Compression force needed to assure a good contact between crack faces was achieved by volume dilatation generated by the same temperature rise. Gold NPs dispersed in the polymer efficiently generated heat in the presence of electromagnetic radiation under plasmon resonance, acting as nanometric heating sources and allowing remote activation of the self-healing in the crosslinked polymer.

  20. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    PubMed

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Understanding the Effect of the Dianhydride Structure on the Properties of Semiaromatic Polyimides Containing a Biobased Fatty Diamine

    PubMed Central

    2017-01-01

    In this work we report the effect of the hard block dianhydride structure on the overall properties of partially biobased semiaromatic polyimides. For the study, four polyimides were synthesized using aliphatic fatty dimer diamine (DD1) as the soft block and four different commercially available aromatic dianhydrides as the hard block: 4,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (BPADA), 4,4′-oxidiphthalic anhydride (ODPA), 4,4′-(Hexafluoroisopropylidene) diphthalic anhydride (6FDA), and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA). The polymers synthesized were fully organo-soluble thermoplastic branched polyimides with glass transition temperatures close to room temperature. The detailed analysis took into account several aspects of the dianhydrides structure (planarity, rigidity, bridging group between the phtalimides, and electronic properties) and related them to the results obtained by differential scanning calorimetry, rheology, fluorescence and broadband dielectric spectroscopy. Moreover, the effects of physical parameters (crystallization and electronic interactions) on the relaxation behavior are discussed. Despite the presence of the bulky branched soft block given by the dimer diamine, all polyimides showed intermolecular charge transfer complexes, whose extent depends on the electronic properties of the dianhydride hard block. Furthermore, the results showed that polyimides containing flexible and bulky hard blocks turned out fully amorphous while the more rigid dianhydride (BPDA) led to a nanophase separated morphology with low degree of crystallinity resulting in constrained segmental relaxation with high effect on its mechanical response with the annealing time. This work represents the first detailed report on the development and characterization of polyimides based on a biobased fatty dimer diamine. The results highlight the potential of polymer property design by controlled engineering of the aromatic

  2. Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems.

    PubMed

    Gao, Chengcheng; Pollet, Eric; Avérous, Luc

    2017-02-10

    Plasticized alginate films with different biobased polyols (glycerol and sorbitol) and their mixtures were successfully prepared by thermo-mechanical mixing instead of the usual casting-evaporation procedure. The microstructure and properties of the different plasticized alginate formulations were investigated by SEM, FTIR, XRD, DMTA and uniaxial tensile tests. SEM and XRD results showed that native alginate particles were largely destructured with the plasticizers (polyols and water), under a thermo-mechanical input. With increasing amount of plasticizers, the samples showed enhanced homogeneity while their thermal and mechanical properties decreased. Compared to sorbitol, glycerol resulted in alginate films with a higher flexibility due to its better plasticization efficiency resulting from its smaller size and higher hydrophilic character. Glycerol and sorbitol mixtures seemed to be an optimum to obtain the best properties. This work showed that thermo-mechanical mixing is a promising method to produce, at large scale, plasticized alginate-based films with improved properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.

    PubMed

    Rohles, Christina Maria; Gießelmann, Gideon; Kohlstedt, Michael; Wittmann, Christoph; Becker, Judith

    2016-09-13

    The steadily growing world population and our ever luxurious life style, along with the simultaneously decreasing fossil resources has confronted modern society with the issue and need of finding renewable routes to accommodate for our demands. Shifting the production pipeline from raw oil to biomass requires efficient processes for numerous platform chemicals being produced with high yield, high titer and high productivity. In the present work, we established a de novo bio-based production process for the two carbon-5 platform chemicals 5-aminovalerate and glutarate on basis of the lysine-hyperproducing strain Corynebacterium glutamicum LYS-12. Upon heterologous implementation of the Pseudomonas putida genes davA, encoding 5-aminovaleramidase and davB, encoding lysine monooxygenase, 5-aminovalerate production was established. Related to the presence of endogenous genes coding for 5-aminovalerate transaminase (gabT) and glutarate semialdehyde dehydrogenase, 5-aminovalerate was partially converted to glutarate. Moreover, residual L-lysine was secreted as by-product. The issue of by-product formation was then addressed by deletion of the lysE gene, encoding the L-lysine exporter. Additionally, a putative gabT gene was deleted to enhance 5-aminovalerate production. To fully exploit the performance of the optimized strain, fed-batch fermentation was carried out producing 28 g L(-1) 5-aminovalerate with a maximal space-time yield of 0.9 g L(-1) h(-1). The present study describes the construction of a recombinant microbial cell factory for the production of carbon-5 platform chemicals. Beyond a basic proof-of-concept, we were able to specifically increase the production flux of 5-aminovalerate thereby generating a strain with excellent production performance. Additional improvement can be expected by removal of remaining by-product formation and bottlenecks, associated to the terminal pathway, to generate a strain being applicable as centerpiece for a bio-based

  4. Microbial biosurfactants with their high-value functional properties

    USDA-ARS?s Scientific Manuscript database

    Microbial world is a rich source for finding valuable industrial chemicals and ingredients. Specifically, many microbial metabolites are surface-active compounds that can be developed into bio-based surfactants, detergents, and emulsifiers. Techno-economic analyses for the production of bio-based ...

  5. Cell-free metabolic engineering: production of chemicals by minimized reaction cascades.

    PubMed

    Guterl, Jan-Karl; Garbe, Daniel; Carsten, Jörg; Steffler, Fabian; Sommer, Bettina; Reiße, Steven; Philipp, Anja; Haack, Martina; Rühmann, Broder; Koltermann, Andre; Kettling, Ulrich; Brück, Thomas; Sieber, Volker

    2012-11-01

    The limited supply of fossil resources demands the development of renewable alternatives to petroleum-based products. Here, biobased higher alcohols such as isobutanol are versatile platform molecules for the synthesis of chemical commodities and fuels. Currently, their fermentation-based production is limited by the low tolerance of microbial production systems to the end products and also by the low substrate flux into cell metabolism. We developed an innovative cell-free approach, utilizing an artificial minimized glycolytic reaction cascade that only requires one single coenzyme. Using this toolbox the cell-free production of ethanol and isobutanol from glucose was achieved. We also confirmed that these streamlined cascades functioned under conditions at which microbial production would have ceased. Our system can be extended to an array of industrially-relevant molecules. Application of solvent-tolerant biocatalysts potentially allows for high product yields, which significantly simplifies downstream product recovery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Characterization of a Bio-Based, Biodegradable Class of Copolymers, Poly[(R)-3-Hydroxybutyrate-Co-(R)-3- Hydroxyhexanoate], and Application Development

    NASA Astrophysics Data System (ADS)

    Sobieski, Brian

    As modern society begins to focus on sustainability and renewable resources there is a growing need for the polymer industry to develop more environmentally friendly materials and practices. Part of this movement can be seen in the use of recycled materials in new products and in the development of bio-based, biodegradable polymers. Bio-based, biodegradable polymers are produced from renewable carbon sources, such as vegetable oils, typically polymerized using fermentation reactions via bacteria, and are able to be consumed by bacteria in landfills to completely convert the polymers to water and CO2. One class of such polymers are poly(hydroxyalkanoate)'s (PHAs), which are chiral, aliphatic polyesters. Within this class of polyesters are poly(hydroxybutyrate) (PHB) and the copolymer poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx), which have received extensive study due to their material properties as thermoplastics. Although the properties of PHB have been widely explored, much still remains to be understood about these promising biodegradable polymers. Specifically, PHB and its copolymers exhibit physical gelation in most solvents, yet the origin and mechanism of gelation and the properties of the resulting gel state are unknown. This research effort was primarily focused on investigating the physical gel state of PHBHx. Five goals were laid out and completed: determining the origin of gelation, the mechanism of gelation, the structure of the gel state, the properties of the gel state, and the effects of gelation on electrospun fibers of PHBHx. These goals were achieved through material characterization of the gel state utilizing infrared spectroscopy/two-dimensional correlation spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and many other analysis methods. Crystallization of the polymer in solution was found to cause gelation in PHBHx solutions, where the polymer crystals act as tie points forming

  7. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite

    PubMed Central

    Sorieul, Mathias; Dickson, Alan; Hill, Stefan J.; Pearson, Hamish

    2016-01-01

    Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta. Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood. PMID:28773739

  8. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite.

    PubMed

    Sorieul, Mathias; Dickson, Alan; Hill, Stefan J; Pearson, Hamish

    2016-07-26

    Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta . Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood.

  9. Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity.

    PubMed

    Nielsen, Jens; Archer, John; Essack, Magbubah; Bajic, Vladimir B; Gojobori, Takashi; Mijakovic, Ivan

    2017-06-01

    The incentive for developing microbial cell factories for production of fuels and chemicals comes from the ability of microbes to deliver these valuable compounds at a reduced cost and with a smaller environmental impact compared to the analogous chemical synthesis. Another crucial advantage of microbes is their great biological diversity, which offers a much larger "catalog" of molecules than the one obtainable by chemical synthesis. Adaptation to different environments is one of the important drives behind microbial diversity. We argue that the Red Sea, which is a rather unique marine niche, represents a remarkable source of biodiversity that can be geared towards economical and sustainable bioproduction processes in the local area and can be competitive in the international bio-based economy. Recent bioprospecting studies, conducted by the King Abdullah University of Science and Technology, have established important leads on the Red Sea biological potential, with newly isolated strains of Bacilli and Cyanobacteria. We argue that these two groups of local organisms are currently most promising in terms of developing cell factories, due to their ability to operate in saline conditions, thus reducing the cost of desalination and sterilization. The ability of Cyanobacteria to perform photosynthesis can be fully exploited in this particular environment with one of the highest levels of irradiation on the planet. We highlight the importance of new experimental and in silico methodologies needed to overcome the hurdles of developing efficient cell factories from the Red Sea isolates.

  10. 7 CFR 2902.32 - Dust suppressants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in... suppressant must be determined before dilution. (c) Preference compliance date. No later than May 14, 2009... use of biobased dust suppressants. [73 FR 27973, May 14, 2008] ...

  11. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    NASA Astrophysics Data System (ADS)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  12. Metabolic engineering of microorganisms for the production of L-arginine and its derivatives.

    PubMed

    Shin, Jae Ho; Lee, Sang Yup

    2014-12-03

    L-arginine (ARG) is an important amino acid for both medicinal and industrial applications. For almost six decades, the research has been going on for its improved industrial level production using different microorganisms. While the initial approaches involved random mutagenesis for increased tolerance to ARG and consequently higher ARG titer, it is laborious and often leads to unwanted phenotypes, such as retarded growth. Discovery of L-glutamate (GLU) overproducing strains and using them as base strains for ARG production led to improved ARG production titer. Continued effort to unveil molecular mechanisms led to the accumulation of detailed knowledge on amino acid metabolism, which has contributed to better understanding of ARG biosynthesis and its regulation. Moreover, systems metabolic engineering now enables scientists and engineers to efficiently construct genetically defined microorganisms for ARG overproduction in a more rational and system-wide manner. Despite such effort, ARG biosynthesis is still not fully understood and many of the genes in the pathway are mislabeled. Here, we review the major metabolic pathways and its regulation involved in ARG biosynthesis in different prokaryotes including recent discoveries. Also, various strategies for metabolic engineering of bacteria for the overproduction of ARG are described. Furthermore, metabolic engineering approaches for producing ARG derivatives such as L-ornithine (ORN), putrescine and cyanophycin are described. ORN is used in medical applications, while putrescine can be used as a bio-based precursor for the synthesis of nylon-4,6 and nylon-4,10. Cyanophycin is also an important compound for the production of polyaspartate, another important bio-based polymer. Strategies outlined here will serve as a general guideline for rationally designing of cell-factories for overproduction of ARG and related compounds that are industrially valuable.

  13. 7 CFR 3201.22 - Fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... fertilizers, which are likely to consist mostly of biobased components, may include both biobased and chemical... 7 Agriculture 15 2012-01-01 2012-01-01 false Fertilizers. 3201.22 Section 3201.22 Agriculture... Items § 3201.22 Fertilizers. (a) Definition. Products formulated or processed to provide nutrients for...

  14. 7 CFR 3201.22 - Fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fertilizers, which are likely to consist mostly of biobased components, may include both biobased and chemical... 7 Agriculture 15 2013-01-01 2013-01-01 false Fertilizers. 3201.22 Section 3201.22 Agriculture... Items § 3201.22 Fertilizers. (a) Definition. Products formulated or processed to provide nutrients for...

  15. 7 CFR 3201.22 - Fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fertilizers, which are likely to consist mostly of biobased components, may include both biobased and chemical... 7 Agriculture 15 2014-01-01 2014-01-01 false Fertilizers. 3201.22 Section 3201.22 Agriculture... Items § 3201.22 Fertilizers. (a) Definition. Products formulated or processed to provide nutrients for...

  16. 7 CFR 3201.100 - Aircraft and boat cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... products designed to remove built-on grease, oil, dirt, pollution, insect reside, or impact soils on both..., dirt, pollution, insect reside, or impact soils on both interior and exterior of aircraft. (ii) Boat... impact soils on both interior and exterior of boats. (b) Minimum biobased content. The minimum biobased...

  17. Acute Dermal Irritation Study of Ten Jet Fuels in New Zealand White Rabbits: Comparison of Synthetic and Bio-Based Jet Fuels with Petroleum JP-8

    DTIC Science & Technology

    2014-02-18

    paraffinic kerosene (IPK), Sasol gas to liquid (GTL)-1 and GTL-2, Shell GTL and Syntroleum S-8 (synthetic JP-8). Four fuels were renewable bio-based fuels...5976) and GTL-2 (POSF 5977);  Shell GTL (POSF 5172, Shell Global, The Hague, The Netherlands); and  Syntroleum S-8 (synthetic JP-8, POSF 4734...from natural gas. The remaining two SPK fuels, Shell GTL (POSF 5172, Shell Global, The Hague, The Netherlands) and Syntroleum S-8 (synthetic JP-8

  18. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Dedicated herbaceous biomass feedstock genetics and development

    USDA-ARS?s Scientific Manuscript database

    Biofuels and bio-based products can be produced from a wide variety of plant feedstocks. To supply enough biomass to meet the proposed need for a bio-based economy a suite of dedicated biomass species must be developed to accommodate a range of growing environments throughout the United States. Re...

  20. Structure Property Relationships of Biobased Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  1. Quality and utilization of food co-products and residues

    NASA Astrophysics Data System (ADS)

    Cooke, P.; Bao, G.; Broderick, C.; Fishman, M.; Liu, L.; Onwulata, C.

    2010-06-01

    Some agricultural industries generate large amounts of low value co-products/residues, including citrus peel, sugar beet pulp and whey protein from the production of orange juice, sugar and cheese commodities, respectively. National Program #306 of the USDA Agricultural Research Service aims to characterize and enhance quality and develop new processes and uses for value-added foods and bio-based products. In parallel projects, we applied scanning microscopies to examine the molecular organization of citrus pectin gels, covalent crosslinking to reduce debonding in sugar beet pulp-PLA composites and functional modification of whey protein through extrusion in order to evaluate new methods of processing and formulating new products. Also, qualitative attributes of fresh produce that could potentially guide germ line development and crop management were explored through fluorescence imaging: synthesis and accumulation of oleoresin in habanero peppers suggest a complicated mechanism of secretion that differs from the classical scheme. Integrated imaging appears to offer significant structural insights to help understand practical properties and features of important food co-products/residues.

  2. Introduction to Session 5

    NASA Astrophysics Data System (ADS)

    Zullo, Luca; Snyder, Seth W.

    Production of bio-based products that are cost competitive in the market place requires well-developed operations that include innovative processes and separation solutions. Separations costs can make the difference between an interesting laboratory project and a successful commercial process. Bioprocessing and separations research and development addresses some of the most significant cost barriers in production of bioffuels and bio-based chemicals. Models of integrated biorefineries indicate that success will require production of higher volume fuels in conjunction with high margin chemical products. Addressing the bioprocessing and separations cost barriers will be critical to the overall success of the integrated biorefinery.

  3. Evaluation of a bio-based hydrophobic cellulose laurate film as biomaterial--study on biodegradation and cytocompatibility.

    PubMed

    Crépy, Lucie; Monchau, Francine; Chai, Feng; Raoul, Gwénaël; Hivart, Philippe; Hildebrand, Hartmut F; Martin, Patrick; Joly, Nicolas

    2012-05-01

    The study aims to validate an original bio-based material, obtained by grafting fatty chains, and more especially lauric chains (C12) onto cellulose, for medical applications. The mechanical properties of the synthesized cellulose laurate (C12) are close to those of petrochemical ones such as low density polyethylene. This cellulose-based polymer is transparent, flexible, and hydrophobic. To evaluate the stability of the cellulosic films in biological fluids the samples are soaked in simulated body fluid or blood plasma for a few hours to 6 months, and then submitted to mechanical and chemical analyses. The simultaneously performed cytocompatibility tests were the colony-forming viability, the vitality and cell proliferation tests using NIH 3T3 fibroblasts and MC 3T3 osteoblast-like cells. The results show the stability, the biocompatibility, and the noncytotoxicity of the synthesized cellulose laurate films. This biomaterial may so be considered for surgical applications. Copyright © 2012 Wiley Periodicals, Inc.

  4. Bio-based thermosetting copolymers of eugenol and tung oil

    NASA Astrophysics Data System (ADS)

    Handoko, Harris

    There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.

  5. Participatory Development and Analysis of a Fuzzy Cognitive Map of the Establishment of a Bio-Based Economy in the Humber Region

    PubMed Central

    Penn, Alexandra S.; Knight, Christopher J. K.; Lloyd, David J. B.; Avitabile, Daniele; Kok, Kasper; Schiller, Frank; Woodward, Amy; Druckman, Angela; Basson, Lauren

    2013-01-01

    Fuzzy Cognitive Mapping (FCM) is a widely used participatory modelling methodology in which stakeholders collaboratively develop a ‘cognitive map’ (a weighted, directed graph), representing the perceived causal structure of their system. This can be directly transformed by a workshop facilitator into simple mathematical models to be interrogated by participants by the end of the session. Such simple models provide thinking tools which can be used for discussion and exploration of complex issues, as well as sense checking the implications of suggested causal links. They increase stakeholder motivation and understanding of whole systems approaches, but cannot be separated from an intersubjective participatory context. Standard FCM methodologies make simplifying assumptions, which may strongly influence results, presenting particular challenges and opportunities. We report on a participatory process, involving local companies and organisations, focussing on the development of a bio-based economy in the Humber region. The initial cognitive map generated consisted of factors considered key for the development of the regional bio-based economy and their directional, weighted, causal interconnections. A verification and scenario generation procedure, to check the structure of the map and suggest modifications, was carried out with a second session. Participants agreed on updates to the original map and described two alternate potential causal structures. In a novel analysis all map structures were tested using two standard methodologies usually used independently: linear and sigmoidal FCMs, demonstrating some significantly different results alongside some broad similarities. We suggest a development of FCM methodology involving a sensitivity analysis with different mappings and discuss the use of this technique in the context of our case study. Using the results and analysis of our process, we discuss the limitations and benefits of the FCM methodology in this case

  6. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    PubMed

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  7. Carob pod water extracts as feedstock for succinic acid production by Actinobacillus succinogenes 130Z.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2014-10-01

    Carob pods are a by-product of locust bean gum industry containing more than 50% (w/w) sucrose, glucose and fructose. In this work, carob pod water extracts were used, for the first time, for succinic acid production by Actinobacillus succinogenes 130Z. Kinetic studies of glucose, fructose and sucrose consumption as individual carbon sources till 30g/L showed no inhibition on cell growth, sugar consumption and SA production rates. Sugar extraction from carob pods was optimized varying solid/liquid ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Batch fermentations containing 10-15g/L total sugars resulted in a maximum specific SA production rate of 0.61Cmol/Cmol X.h, with a yield of 0.55Cmol SA/Cmol sugar and a volumetric productivity of 1.61g SA/L.h. Results demonstrate that carob pods can be a promising low cost feedstock for bio-based SA production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds.

    PubMed

    Toraman, Hilal E; Vanholme, Ruben; Borén, Eleonora; Vanwonterghem, Yumi; Djokic, Marko R; Yildiz, Guray; Ronsse, Frederik; Prins, Wolter; Boerjan, Wout; Van Geem, Kevin M; Marin, Guy B

    2016-05-01

    Wild-type and two genetically engineered hybrid poplar lines were pyrolyzed in a micro-pyrolysis (Py-GC/MS) and a bench scale setup for fast and intermediate pyrolysis studies. Principal component analysis showed that the pyrolysis vapors obtained by micro-pyrolysis from wood of caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT) down-regulated poplar trees differed significantly from the pyrolysis vapors obtained from non-transgenic control trees. Both fast micro-pyrolysis and intermediate pyrolysis of transgenic hybrid poplars showed that down-regulation of COMT can enhance the relative yield of guaiacyl lignin-derived products, while the relative yield of syringyl lignin-derived products was up to a factor 3 lower. This study indicates that lignin engineering via genetic modifications of genes involved in the phenylpropanoid and monolignol biosynthetic pathways can help to steer the pyrolytic production of guaiacyl and syringyl lignin-derived phenolic compounds such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, syringol, 4-vinylsyringol, and syringaldehyde present in the bio-oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. World market and biotechnological production of itaconic acid.

    PubMed

    Cunha da Cruz, Juliana; Machado de Castro, Aline; Camporese Sérvulo, Eliana Flávia

    2018-03-01

    The itaconic acid (IA) world market is expected to exceed 216 million of dollars by 2020 as a result of an increasing demand for bio-based chemicals. The potential of this organic acid produced by fermentation mainly with filamentous fungi relies on the vast industrial applications of polymers derived from it. The applications may be as a superabsorbent polymer for personal care or agriculture, unsaturated polyester resin for the transportation industry, poly(methyl methacrylate) for electronic devices, among many others. However, the existence of other substitutes and the high production cost limit the current IA market. IA manufacturing is done mainly in China and other Asia-Pacific countries. Higher economic feasibility and production worldwide may be achieved with the use of low-cost feedstock of local origin and with the development of applications targeted to specific local markets. Moreover, research on the biological pathway for IA synthesis and the effect of medium composition are important for amplifying the knowledge about the production of that biochemical with great market potential.

  10. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    NASA Astrophysics Data System (ADS)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  11. Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop.

    PubMed

    Somleva, Maria N; Snell, Kristi D; Beaulieu, Julie J; Peoples, Oliver P; Garrison, Bradley R; Patterson, Nii A

    2008-09-01

    Polyhydroxyalkanoate bio-based plastics made from renewable resources can reduce petroleum consumption and decrease plastic waste disposal issues as they are inherently biodegradable in soil, compost and marine environments. In this paper, the successful engineering of the biomass crop switchgrass (Panicum virgatum L.) for the synthesis of polyhydroxybutyrate (PHB) is reported. Polymer production was monitored in more than 400 primary transformants grown under in vitro and glasshouse conditions. Plants containing up to 3.72% dry weight of PHB in leaf tissues and 1.23% dry weight of PHB in whole tillers were obtained. Results from the analysis of the polymer distribution at the cellular and whole plant levels are presented, and target areas for the improvement of PHB production are highlighted. Polymer accumulation was also analysed in the T(1) generation obtained from controlled crosses of transgenic plants. This study presents the first successful expression of a functional multigene pathway in switchgrass, and demonstrates that this high-yielding biomass crop is amenable to the complex metabolic engineering strategies necessary to produce high-value biomaterials with lignocellulose-derived biofuels.

  12. Cryogel-supported titanate nanotubes for waste treatment: Impact on methane production and bio-fertilizer quality.

    PubMed

    Önnby, Linda; Harald, Kirsebom; Nges, Ivo Achu

    2015-08-10

    By reducing the cadmium (Cd(2+)) content in biomass used for bio-based products such as biogas, a less toxic bio-based fertilizer can be obtained. In this work, we demonstrate how a macroporous polymer can support titanate nanotubes, and we take advantage of its known selective adsorption behavior towards Cd(2+) in an adsorption process from real nutrient-rich process water from hydrolysis of seaweed, a pollutant-rich biomass. We show that pretreatment steps involving alteration in area-to-volume ratio performed in aerated and acidic conditions release the most Cd(2+) from the solid material. By integrating an adsorption step between hydrolysis and the biomethane, we show that it was possible to obtain high Cd(2+) removal (ca. 94%) despite molar excess (between 100 and 500) of co-present ions (e.g., Mg(2+), Ca(2+), Na(+), K(+)) and with maintained total phosphorous content. The bio-methane potential did not significantly decrease as compared to a process without cadmium removal and the yielded bio-fertilizer followed Swedish guideline values. This study provides a sound and promising alternative for a novel remediation step, enabling higher use of otherwise tricky and to some extent overlooked biomass sources. Copyright © 2015. Published by Elsevier B.V.

  13. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60.

    PubMed

    Yuan, Haibo; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Shi, Zhongping; Liu, Long

    2018-01-01

    2,5-Furandicarboxylic acid (FDCA) is a promising bio-based building block and can be produced by biotransformation of 5-hydroxymethylfurfural (HMF). To improve the FDCA production, two genes-one encoding HMF oxidase (HMFO; from Methylovorus sp. strain MP688) and another encoding for HMF/Furfural oxidoreductase (HmfH; from Cupriavidus basilensis HMF14)-were introduced into Raoultella ornithinolytica BF60. The FDCA production in the engineered whole-cell biocatalyst increased from 51.0 to 93.6mM, and the molar conversion ratio of HMF to FDCA increased from 51.0 to 93.6%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    PubMed

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  15. Perspective on opportunities in industrial biotechnology in renewable chemicals.

    PubMed

    Erickson, Brent; Nelson; Winters, Paul

    2012-02-01

    From biomass to renewable chemicals: while industrial biotechnology offers a clear value proposition, a number of hurdles need to be addressed to fully realize the commercial potential of bio-based products and chemicals over the coming decade. A review of an early roadmap for biological production of chemicals from renewable sugars reveals a focus on those that would provide co-products for integrated biorefineries producing biofuels and bioenergy. A growing number of companies are now focusing on specialty chemicals as an entry point to build the bio-based economy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thinking big: Towards ideal strains and processes for large-scale aerobic biofuels production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, James D.; Beckham, Gregg T.

    In this study, global concerns about anthropogenic climate change, energy security and independence, and environmental consequences of continued fossil fuel exploitation are driving significant public and private sector interest and financing to hasten development and deployment of processes to produce renewable fuels, as well as bio-based chemicals and materials, towards scales commensurate with current fossil fuel-based production. Over the past two decades, anaerobic microbial production of ethanol from first-generation hexose sugars derived primarily from sugarcane and starch has reached significant market share worldwide, with fermentation bioreactor sizes often exceeding the million litre scale. More recently, industrial-scale lignocellulosic ethanol plants aremore » emerging that produce ethanol from pentose and hexose sugars using genetically engineered microbes and bioreactor scales similar to first-generation biorefineries.« less

  17. Thinking big: Towards ideal strains and processes for large-scale aerobic biofuels production

    DOE PAGES

    McMillan, James D.; Beckham, Gregg T.

    2016-12-22

    In this study, global concerns about anthropogenic climate change, energy security and independence, and environmental consequences of continued fossil fuel exploitation are driving significant public and private sector interest and financing to hasten development and deployment of processes to produce renewable fuels, as well as bio-based chemicals and materials, towards scales commensurate with current fossil fuel-based production. Over the past two decades, anaerobic microbial production of ethanol from first-generation hexose sugars derived primarily from sugarcane and starch has reached significant market share worldwide, with fermentation bioreactor sizes often exceeding the million litre scale. More recently, industrial-scale lignocellulosic ethanol plants aremore » emerging that produce ethanol from pentose and hexose sugars using genetically engineered microbes and bioreactor scales similar to first-generation biorefineries.« less

  18. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Qiang; O'Brien, Marykate; Nelson, Robert

    Industrial biotechnology that is able to provide environmentally friendly bio-based products has attracted more attention in replacing petroleum-based industries. Currently, most of the carbon sources used for fermentation-based bioprocesses are obtained from agricultural commodities that are used as foodstuff for human beings. Lignocellulose-derived sugars as the non-food, green, and sustainable alternative carbon sources have great potential to avoid this dilemma for producing the renewable, bio-based hydrocarbon fuel precursors, such as microbial lipid. Efficient bioconversion of lignocellulose-based sugars into lipids is one of the critical parameters for industrial application. Therefore, the fed-batch cultivation, which is a common method used in industrialmore » applications, was investigated to achieve a high cell density culture along with high lipid yield and productivity. In this study, several fed-batch strategies were explored to improve lipid production using lignocellulosic hydrolysates derived from corn stover. Compared to the batch culture giving a lipid yield of 0.19 g/g, the dissolved-oxygen-stat feeding mode increased the lipid yield to 0.23 g/g and the lipid productivity to 0.33 g/L/h. The pulse feeding mode further improved lipid productivity to 0.35 g/L/h and the yield to 0.24 g/g. However, the highest lipid yield (0.29 g/g) and productivity (0.4 g/L/h) were achieved using an automated online sugar control feeding mode, which gave a dry cell weight of 54 g/L and lipid content of 59 % (w/w). The major fatty acids of the lipid derived from lignocellulosic hydrolysates were predominately palmitic acid and oleic acid, which are similar to those of conventional oilseed plants. Our results suggest that the fed-batch feeding strategy can strongly influence the lipid production. Lastly, the online sugar control feeding mode was the most appealing strategy for high cell density, lipid yield, and lipid productivity using lignocellulosic hydrolysates

  19. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source

    DOE PAGES

    Fei, Qiang; O'Brien, Marykate; Nelson, Robert; ...

    2016-06-23

    Industrial biotechnology that is able to provide environmentally friendly bio-based products has attracted more attention in replacing petroleum-based industries. Currently, most of the carbon sources used for fermentation-based bioprocesses are obtained from agricultural commodities that are used as foodstuff for human beings. Lignocellulose-derived sugars as the non-food, green, and sustainable alternative carbon sources have great potential to avoid this dilemma for producing the renewable, bio-based hydrocarbon fuel precursors, such as microbial lipid. Efficient bioconversion of lignocellulose-based sugars into lipids is one of the critical parameters for industrial application. Therefore, the fed-batch cultivation, which is a common method used in industrialmore » applications, was investigated to achieve a high cell density culture along with high lipid yield and productivity. In this study, several fed-batch strategies were explored to improve lipid production using lignocellulosic hydrolysates derived from corn stover. Compared to the batch culture giving a lipid yield of 0.19 g/g, the dissolved-oxygen-stat feeding mode increased the lipid yield to 0.23 g/g and the lipid productivity to 0.33 g/L/h. The pulse feeding mode further improved lipid productivity to 0.35 g/L/h and the yield to 0.24 g/g. However, the highest lipid yield (0.29 g/g) and productivity (0.4 g/L/h) were achieved using an automated online sugar control feeding mode, which gave a dry cell weight of 54 g/L and lipid content of 59 % (w/w). The major fatty acids of the lipid derived from lignocellulosic hydrolysates were predominately palmitic acid and oleic acid, which are similar to those of conventional oilseed plants. Our results suggest that the fed-batch feeding strategy can strongly influence the lipid production. Lastly, the online sugar control feeding mode was the most appealing strategy for high cell density, lipid yield, and lipid productivity using lignocellulosic hydrolysates

  20. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    PubMed

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.

  1. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, thismore » project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.« less

  2. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haushalter, Robert W.; Phelan, Ryan M.; Hoh, Kristina M.

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotinmore » and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.« less

  3. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    PubMed

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy.

    PubMed

    Valli, Marilia; Russo, Helena M; Bolzani, Vanderlan S

    2018-01-01

    The development of our society has been based on the use of biodiversity, especially for medicines and nutrition. Brazil is the nation with the largest biodiversity in the world accounting for more than 15% of all living species. The devastation of biodiversity in Brazil is critical and may not only cause the loss of species and genes that encode enzymes involved in the complex metabolism of organisms, but also the loss of a rich chemical diversity, which is a potential source for bioeconomy based on natural products and new synthetic derivatives. Bioeconomy focus on the use of bio-based products, instead of fossil-based ones and could address some of the important challenges faced by society. Considering the chemical and biological diversity of Brazil, this review highlights the Brazilian natural products that were successfully used to develop new products and the value of secondary metabolites from Brazilian biodiversity with potential application for new products and technologies. Additionally, we would like to address the importance of new technologies and scientific programs to support preservation policies, bioeconomy and strategies for the sustainable use of biodiversity.

  6. 7 CFR 3201.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the total organic carbon in the material or product. Biobased product. A product determined by USDA to... useful products while conserving soil and improving air and water quality, wildlife, fish habitat, and...

  7. 7 CFR 3201.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the total organic carbon in the material or product. Biobased product. A product determined by USDA to... useful products while conserving soil and improving air and water quality, wildlife, fish habitat, and...

  8. 7 CFR 3201.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the total organic carbon in the material or product. Biobased product. A product determined by USDA to... useful products while conserving soil and improving air and water quality, wildlife, fish habitat, and...

  9. A pH-Sensitive, Biobased Calcium Carbonate Aragonite Nanocrystal as a Novel Anticancer Delivery System

    PubMed Central

    Ismail, Maznah; Tengku Ibrahim, Tengku Azmi; Zakaria, Zuki Abu Bakar

    2013-01-01

    The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO3/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO3/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO3/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO3 nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy. PMID:24324966

  10. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    NASA Astrophysics Data System (ADS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  11. Bio-based topical system for enhanced salicylic acid delivery: preparation and performance of gels.

    PubMed

    Langasco, Rita; Spada, Gianpiera; Tanriverdi, Sakine Tuncay; Rassu, Giovanna; Giunchedi, Paolo; Özer, Özgen; Gavini, Elisabetta

    2016-08-01

    New salicylic acid (SA)-loaded gels were developed using excipients made from renewable materials, and our goal was to improve drug permeation in the topical treatment of acne vulgaris. We studied the preparation parameters to obtain suitable gel formulations. Only naturally occurring polymers were used as gelling agents. Two hydrogels and three lipogels were selected and characterized in terms of drug loading, pH, viability cells, rheology, mechanical properties and in vitro permeation; these hydrogels and lipogels were compared with the traditional ointment. We also evaluated skin parameters before and after gel application. The formulations that we studied are non-Newtonian fluids; they have high drug loading and suitable mechanical properties. Lipogels exhibit a slower and more linear in vitro permeation profile compared with hydrogels. The different vehicles that we used affected drug permeation and improve patient compliance. Cytotoxicity studies suggest that all of the formulations are non-toxic. Lipogels demonstrate appropriate technological features and improved performance compared with the traditional ointment with regard to their composition. Lipogels may represent a new bio-based topical system for SA delivery. The use of 'green' excipients leads to 'skin-friendly' formulations that are able to satisfy environmental safety. © 2016 Royal Pharmaceutical Society.

  12. 48 CFR 23.404 - Agency affirmative procurement programs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES... biobased product, except that the products need not meet the requirement that renewable agricultural...

  13. 48 CFR 23.403 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... products containing recovered materials and biobased products considers cost, availability of competition...

  14. 7 CFR 3201.21 - Disposable containers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... manufacturer offers a product under this item for Federal purchase under the BioPreferred Program, the... BioPreferred Web site of qualifying biobased products about the intended uses of the product...

  15. 7 CFR 3201.21 - Disposable containers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... manufacturer offers a product under this item for Federal purchase under the BioPreferred Program, the... BioPreferred Web site of qualifying biobased products about the intended uses of the product...

  16. 7 CFR 3201.21 - Disposable containers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... manufacturer offers a product under this item for Federal purchase under the BioPreferred Program, the... BioPreferred Web site of qualifying biobased products about the intended uses of the product...

  17. 7 CFR 2902.21 - Disposable containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... manufacturer offers a product under this item for Federal purchase under the BioPreferred Program, the... BioPreferred Web site of qualifying biobased products about the intended uses of the product...

  18. Systems biology solutions for biochemical production challenges.

    PubMed

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-06-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. 48 CFR 23.703 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... product descriptions authorizing material substitutions, extensions of shelf-life, and process improvements. (7) Promote the use of biobased products. (8) Purchase only plastic ring carriers that are...

  20. Nonwoven production from agricultural okra wastes and investigation of their thermal conductivities

    NASA Astrophysics Data System (ADS)

    Duman, M. N.; Kocak, E. D.; Merdan, N.; Mistik, I.

    2017-10-01

    Nowadays bio-based composite materials have been used in rising amounts and demanded widely in industrial uses, as they provide cost reduction and weight loss in the end use products. Agricultural cellulose based wastes can be a good alternative to synthetic fibers and can be used in natural fiber reinforced composite production, as there is a huge (more than 40 million tons) potential for natural cellulose production from agricultural wastes. Okra is one of the most grown vegetables around the world with stems left on the fields after harvest. When the similarity of mechanical properties of okra fibers with traditional bast fibers (flax, kenaf, hemp) are considered, from an economical and an environmental point of view this research emphasizes the potential of agricultural biomass for natural fiber production. In this study, okra stem wastes used for natural cellulosic fiber production and treated with 10% NaOH at 60°C for 10, 20, 30 and 40 minutes. By alkali treatment, decrease in fiber diameter and weight, and increase in tensile strength and elongation % have been observed. Nonwoven production has been done from both the fibers with and without surface treatments. Thermal conductivity properties of both nonwovens have been investigated.

  1. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  2. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  3. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and the environmental sustainability of, agricultural production in the United States through biobased energy and product technologies; (c) Promote economic diversification in rural areas of the United States...

  4. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and the environmental sustainability of, agricultural production in the United States through biobased energy and product technologies; (c) Promote economic diversification in rural areas of the United States...

  5. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and the environmental sustainability of, agricultural production in the United States through biobased energy and product technologies; (c) Promote economic diversification in rural areas of the United States...

  6. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and the environmental sustainability of, agricultural production in the United States through biobased energy and product technologies; (c) Promote economic diversification in rural areas of the United States...

  7. Cellulosic ethanol production from green solvent-pretreated rice straw

    USDA-ARS?s Scientific Manuscript database

    Natural deep eutectic solvents (NADES) are recently developed “green solvents” consisted of bio-based ionic liquids and deep eutectic solvents mainly from plant based metabolites. NADES are biodegradable, non-toxic and environment-friendly. Conventional chemically synthesized ionic liquids have be...

  8. Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.

    PubMed

    Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke

    2016-06-25

    Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. ESTIMATING WATER FOOTPRINT AND MANAGING BIOREFINERY WASTEWATER IN THE PRODUCTION OF BIO-BASED RENEWABLE DIESEL BLENDSTOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, May M.; Sawyer, Bernard M

    This analysis covers the entire biorefinery operation. The study focuses on net water consumed for the production of a unit of biofuel: blue, green, and grey water footprint. Blue water is defined as the water consumed in the biorefinery that is withdrawn from surface and ground water. Blue water footprint includes enzyme cultivation, pretreatment, hydrolysis, bioreactor, cooling system, boiler, fuel upgrading, combustor track, and on-site WWT. Grey water is defined as wastewater generated from the biorefinery and was evaluated based on the wastewater treatment plant design. Green water, defined as rainwater consumed for the production, is not required in themore » RDB process. Approximately 7–15 gal of water are required to produce a gallon of RDB when corn stover or non-irrigated perennial grasses, switchgrass and Miscanthus x giganteus (Miscanthus), serve as the feedstock in the contiguous United States. Bioelectricity generation from the biorefinery resulted in a net water credit, which reduced the water footprint. The life cycle grey water footprint for nitrogen is primarily from nitrogen in the feedstock production stage because no wastewater is discharged into the environment in the RDB process. Perennial grasses-based RDB production shows a promising grey water footprint, while corn stover-based RDB production has a relatively low green water footprint. Results from the study can help improve our understanding of the water sustainability of advanced biofuel technology under development. Make-up water for cooling and boiling remains a major demand in the biorefinery. The work revealed a key issue or trade-off between achieving zero liquid discharge to maximize water resource use and potentially increasing cost of fuel production. Solid waste disposal was identified as a management issue, and its inverse relationship with wastewater management could affect economic sustainability.« less

  10. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process.

  11. 7 CFR 3202.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... material or product. For BioPreferred Products (products that have been identified for Federal preferred... any mature market products. BioPreferred Product. A biobased product that meets or exceeds minimum... preference by Federal agencies under the BioPreferred Program. These BioPreferred Products have been...

  12. 7 CFR 3202.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... material or product. For BioPreferred Products (products that have been identified for Federal preferred... any mature market products. BioPreferred Product. A biobased product that meets or exceeds minimum... preference by Federal agencies under the BioPreferred Program. These BioPreferred Products have been...

  13. 7 CFR 3202.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... material or product. For BioPreferred Products (products that have been identified for Federal preferred... any mature market products. BioPreferred Product. A biobased product that meets or exceeds minimum... preference by Federal agencies under the BioPreferred Program. These BioPreferred Products have been...

  14. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products.

    PubMed

    De Bhowmick, Goldy; Sarmah, Ajit K; Sen, Ramkrishna

    2018-01-01

    A constant shift of society's dependence from petroleum-based energy resources towards renewable biomass-based has been the key to tackle the greenhouse gas emissions. Effective use of biomass feedstock, particularly lignocellulosic, has gained worldwide attention lately. Lignocellulosic biomass as a potent bioresource, however, cannot be a sustainable alternative if the production cost is too high and/ or the availability is limited. Recycling the lignocellulosic biomass from various sources into value added products such as bio-oil, biochar or other biobased chemicals in a bio-refinery model is a sensible idea. Combination of integrated conversion techniques along with process integration is suggested as a sustainable approach. Introducing 'series concept' accompanying intermittent dark/photo fermentation with co-cultivation of microalgae is conceptualised. While the cost of downstream processing for a single type of feedstock would be high, combining different feedstocks and integrating them in a bio-refinery model would lessen the production cost and reduce CO 2 emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Processing and characterization of novel biobased and biodegradable materials

    NASA Astrophysics Data System (ADS)

    Pilla, Srikanth

    Human society has benefited tremendously from the use of petroleum-based plastics. However, there are growing concerns with their adverse environmental impacts and volatile costs attributed to the skyrocketing oil prices. Additionally most of the petroleum-based polymers are non-biodegradable causing problems about their disposal. Thus, during the last couple of decades, scientists ail over the world have been focusing on developing new polymeric materials that are biobased and biodegradable, also termed as green plastics . This study aims to develop green materials based on polylactide (PLA) biopolymer that can be made from plants. Although PLA can provide important advantages in terms of sustainability and biodegradability, it has its own challenges such as high cost, brittleness, and narrow processing window. These challenges are addressed in this study by investigating both new material formulations and processes. To improve the material properties and control the material costs, PLA was blended with various fillers and modifiers. The types of fillers investigated include carbon nanotube (CNT) nanoparticles and various natural fibers such as pine-wood four, recycled-wood fibers and flax fiber. Using natural fibers as fillers for PLA can result in fully biodegradable and eco-friendly biocomposites. Also due to PLA's sensitivity to moisture and temperature, molecular degradation can occur during processing leading to inferior material properties. To address this issue, one of the approaches adopted by this study was to incorporate a multifunctional chain-extender into PLA, which increased the molecular weight of PLA thereby improving the material properties. To improve the processability and reduce the material cost, both microcellular injection molding and extrusion processes have been studied. The microcellular technology allows the materials to be processed at a lower temperature, which is attractive for thermo- and moisture-sensitive materials like PLA. They

  16. Current progress and future prospect of microalgal biomass harvest using various flocculation technologies.

    PubMed

    Wan, Chun; Alam, Md Asraful; Zhao, Xin-Qing; Zhang, Xiao-Yue; Guo, Suo-Lian; Ho, Shih-Hsin; Chang, Jo-Shu; Bai, Feng-Wu

    2015-05-01

    Microalgae have been extensively studied for the production of various valuable products. Application of microalgae for the production of renewable energy has also received increasing attention in recent years. However, high cost of microalgal biomass harvesting is one of the bottlenecks for commercialization of microalgae-based industrial processes. Considering harvesting efficiency, operation economics and technological feasibility, flocculation is a superior method to harvest microalgae from mass culture. In this article, the latest progress of various microalgal cell harvesting methods via flocculation is reviewed with the emphasis on the current progress and prospect in environmentally friendly bio-based flocculation. Harvesting microalgae through bio-based flocculation is a promising component of the low-cost microalgal biomass production technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Design of biobased and biodegradable - compostable engineered plastics based on poly(lactide)

    NASA Astrophysics Data System (ADS)

    Schneider, Jeffrey Samuelson

    Poly(lactide) (PLA) is a biobased and biodegradable - compostable plastic that is derived from renewable resources such as corn and sugar cane. It possesses excellent strength and stiffness properties and is recognized as safe for biomedical and food packaging applications. Commercially, it costs $1/lb and is now competitive with petroleum based polymers that have dominated the industry for decades. However, the material has some inherently weak properties that prevent it from certain applications - most notably, its rheological properties, brittleness, and poor high temperature performance. Cost effective modifications of the polymer to enhance these deficiencies could allow for increased applications and further its commercial growth. Multiple synthetic strategies have been developed to address PLA's performance property deficiencies. PLA typically exhibits poor melt strength and does not have the ability to strain harden, partially a result of its highly linear nature. Strain hardening and high melt strength are crucial elements of a material when producing blown films, a large untapped market for PLA. By increasing molecular weight and introducing long-chain branching into the material, these properties can be improved. Epoxy-functionalized PLA (EF-PLA) was synthesized by reacting PLA with a multifunctional epoxy polymer (MEP) using reactive extrusion processing (REX). These modified PLA polymers can function as a rheology modifier for PLA and a compatibilizer for blends with other biopolyesters. The modified PLA showed an increased melt strength and exhibited significant strain hardening, thus making it more suited for blown film applications. Blown films comprised of PLA and poly(butylene adipate-co-terephthalate) (PBAT) were produced using EF-PLA as a reactive modifier for rheological enhancement and compatibilization. This resulted in films with better processability (as seen by increased bubble stability) and improved mechanical properties, compared to a

  18. Effect of organoclay on morphology and properties of linear low density polyethylene and Vietnamese cassava starch biobased blend.

    PubMed

    Nguyen, D M; Vu, T T; Grillet, Anne-Cécile; Ha Thuc, H; Ha Thuc, C N

    2016-01-20

    Linear low density polyethylene (LLDPE)/thermal plastic starch (TPS) blend was studied to prepare the biobased nanocomposite material using organoclay nanofil15 (N15) modified by alkilammonium as the reinforced phase. The LLDPE/TPS blend and its nanocomposites were elaborated by melt mixing method at 160 °C for 7 min. And the compounded sample was filmed by blowing method at three different zones of temperature profile which are 160-170-165 °C. The good dispersion of clay in the polymer blend matrix is showed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM), and a semi-exfoliated structure was obtained. The thermal and mechanical properties of materials are enhanced when N15 is added to the mixture. The effect of N15 on morphology and particles size of TPS phase is also investigated. The biodegradation test shows that more than 60% in weight of LLDPE/TPS film is degraded into CO2, H2O, methane and biomass after 5 months in compost soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  20. 7 CFR 3202.6 - Appeal processes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... certified biobased product and USDA will reinstate the product's information to the USDA BioPreferred... the USDA BioPreferred Program Web site. (c) If the Program Manager sustains a manufacturer's or vendor...

  1. 7 CFR 3202.6 - Appeal processes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... certified biobased product and USDA will reinstate the product's information to the USDA BioPreferred... the USDA BioPreferred Program Web site. (c) If the Program Manager sustains a manufacturer's or vendor...

  2. 7 CFR 3202.6 - Appeal processes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... certified biobased product and USDA will reinstate the product's information to the USDA BioPreferred... the USDA BioPreferred Program Web site. (c) If the Program Manager sustains a manufacturer's or vendor...

  3. Biosynthesis and derivatization of microbial glycolipids and their potential application in tribology

    USDA-ARS?s Scientific Manuscript database

    Microbial-produced glycolipids are biobased products with immense potential for commercial applications. Advances in the production process have led to the lowering of production cost and the appearance of commercial products in niche markets. The ability to manipulate the molecular structure by f...

  4. Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites.

    PubMed

    Gabriel, Laís P; Santos, Maria Elizabeth M Dos; Jardini, André L; Bastos, Gilmara N T; Dias, Carmen G B T; Webster, Thomas J; Maciel Filho, Rubens

    2017-01-01

    In this work, thermoset polyurethane composites were prepared by the addition of hydroxyapatite nanoparticles using the reactants polyol polyether and an aliphatic diisocyanate. The polyol employed in this study was extracted from the Euterpe oleracea Mart. seeds from the Amazon Region of Brazil. The influence of hydroxyapatite nanoparticles on the structure and morphology of the composites was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), thermal properties were analyzed by thermogravimetry analysis (TGA), and biological properties were studied by in vitro and in vivo studies. It was found that the addition of HA nanoparticles promoted fibroblast adhesion while in vivo investigations with histology confirmed that the composites promoted connective tissue adherence and did not induce inflammation. In this manner, this study supports the further investigation of bio-based, polyurethane/hydroxyapatite composites as biocompatible scaffolds for numerous tissue engineering applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. 7 CFR 3201.49 - Industrial cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... adhesives, inks, paint, dirt, soil, and grease, from parts, products, tools, machinery, equipment, vessels... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in...

  6. 7 CFR 2902.49 - Industrial cleaners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... adhesives, inks, paint, dirt, soil, and grease, from parts, products, tools, machinery, equipment, vessels... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in...

  7. 7 CFR 2902.49 - Industrial cleaners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... adhesives, inks, paint, dirt, soil, and grease, from parts, products, tools, machinery, equipment, vessels... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in...

  8. 7 CFR 3201.49 - Industrial cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... adhesives, inks, paint, dirt, soil, and grease, from parts, products, tools, machinery, equipment, vessels... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in...

  9. 7 CFR 3201.49 - Industrial cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... adhesives, inks, paint, dirt, soil, and grease, from parts, products, tools, machinery, equipment, vessels... qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in...

  10. Effect of oxygen mass transfer rate on the production of 2,3-butanediol from glucose and agro-industrial byproducts by Bacillus licheniformis ATCC9789.

    PubMed

    Rebecchi, Stefano; Pinelli, Davide; Zanaroli, Giulio; Fava, Fabio; Frascari, Dario

    2018-01-01

    2,3-Butanediol (BD) is a largely used fossil-based platform chemical. The yield and productivity of bio-based BD fermentative production must be increased and cheaper substrates need to be identified, to make bio-based BD production more competitive. As BD bioproduction occurs under microaerobic conditions, a fine tuning and control of the oxygen transfer rate (OTR) is crucial to maximize BD yield and productivity. Very few studies on BD bioproduction focused on the use of non-pathogenic microorganisms and of byproducts as substrate. The goal of this work was to optimize BD bioproduction by the non-pathogenic strain Bacillus licheniformis ATCC9789 by (i) identifying the ranges of volumetric and biomass-specific OTR that maximize BD yield and productivity using standard sugar and protein sources, and (ii) performing a preliminary evaluation of the variation in process performances and cost resulting from the replacement of glucose with molasses, and beef extract/peptone with chicken meat and bone meal, a byproduct of the meat production industry. OTR optimization with an expensive, standard medium containing glucose, beef extract and peptone revealed that OTRs in the 7-15 mmol/L/h range lead to an optimal BD yield (0.43 ± 0.03 g/g) and productivity (0.91 ± 0.05 g/L/h). The corresponding optimal range of biomass-specific OTR was equal to 1.4-7.9 [Formula: see text], whereas the respiratory quotient ranged from 1.8 to 2.5. The switch to an agro-industrial byproduct-based medium containing chicken meat and bone meal and molasses led to a 50% decrease in both BD yield and productivity. A preliminary economic analysis indicated that the use of the byproduct-based medium can reduce by about 45% the BD production cost. A procedure for OTR optimization was developed and implemented, leading to the identification of a range of biomass-specific OTR and respiratory quotient to be used for the scale-up and control of BD bioproduction by Bacillus licheniformis

  11. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  12. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE PAGES

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    2016-05-02

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  13. The development of mixer machine for organic animal feed production: Proposed study

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Wahab, R. Abdul; Zakaria, Supaat; Feriyanto, Dafit; Nor, M. I. F. Che Mohd; Muzarpar, Syafiq

    2017-09-01

    Mixer machine plays a major role in producing homogenous composition of animal feed. Long time production, inhomogeneous and minor agglomeration has been observed by existing mixer. Therefore, this paper proposed continuous mixer to enhance mixing efficiency with shorter time of mixing process in order to abbreviate the whole process in animal feed production. Through calculation of torque, torsion, bending, power and energy consumption will perform in mixer machine process. Proposed mixer machine is designed by two layer buckets with purpose for continuity of mixing process. Mixing process was performed by 4 blades which consists of various arm length such as 50, 100,150 and 225 mm in 60 rpm velocity clockwise rotation. Therefore by using this machine will produce the homogenous composition of animal feed through nutrition analysis and short operation time of mixing process approximately of 5 minutes. Therefore, the production of animal feed will suitable for various animals including poultry and aquatic fish. This mixer will available for various organic material in animal feed production. Therefore, this paper will highlights some areas such as continues animal feed supply chain and bio-based animal feed.

  14. Electrobiorefineries: Unlocking the Synergy of Electrochemical and Microbial Conversions.

    PubMed

    Harnisch, Falk; Urban, Carolin

    2017-12-13

    An integrated biobased economy urges an alliance of the two realms of "chemical production" and "electric power". The concept of electrobiorefineries provides a blueprint for such an alliance. Joining the forces of microbial and electrochemical conversions in electrobiorefineries allows interfacing the production, storage, and exploitation of electricity as well as biobased chemicals. Electrobiorefineries are a technological evolution of biorefineries by the addition of (bio)electrochemical transformations. This interfacing of microbial and electrochemical conversions will result in synergies affecting the entire process line, like enlarging the product portfolio, increasing the productivity, or exploiting new feedstock. A special emphasis is given to the utilization of oxidative and reductive electroorganic reactions of microbially produced intermediates that may serve as privileged building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Down on the farm

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. Department of Energy (DOE) on August 17 put money down on one of these energy sector innovations, with $8 million in funding over the next 3 years for a dozen projects to encourage the U.S. bio-based products industry. The agency will fund 6 graduate-level university programs to support training in bio-based products.In addition, 6 research and development projects use biomass—crops, trees, and agricultural residues—for the manufacture of plastics, paints, and adhesives. One project is a joint program of Pittsburg State University in Kansas and B. F. Goodrich to convert vegetable oils into functionalized oils for high-performance plastics.

  16. Biorefineries - New Green Strategy For Development Of Smart And Innovative Industry

    NASA Astrophysics Data System (ADS)

    Płaza, Grażyna A.; Wandzich, Dorota

    2016-09-01

    Ecological engineering or ecotechnology is defined as the design of sustainable production that integrate human society with the natural environment for the benefit of both. In order to reach the goal of sustainability therefore important that bioproduct production systems are converted from to natural cycle oriented. In natural cycles there are not waste, but products are generated at different stages of the cycle. The ecotechnology creates a sustainable bioeconomy using biomass in a smart and efficient way. The biorefining sector, which uses smart, innovative and efficient technologies to convert biomass feedstocks into a range of bio-based products including fuels, chemicals, power, food, and renewable oils, currently presents the innovative and efficient bio-based production can revitalize existing industries. The paper presents the concept of biorefinery as the ecotechnological approach for creating a sustainable bioeconomy using biomass in a smart and efficient way.

  17. 7 CFR 2902.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... biobased carbon in the material or product as a percent of weight (mass) of the total organic carbon in the... useful products while conserving soil and improving air and water quality, wildlife, fish habitat, and...

  18. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.

    PubMed

    Kildegaard, Kanchana R; Jensen, Niels B; Schneider, Konstantin; Czarnotta, Eik; Özdemir, Emre; Klein, Tobias; Maury, Jérôme; Ebert, Birgitta E; Christensen, Hanne B; Chen, Yun; Kim, Il-Kwon; Herrgård, Markus J; Blank, Lars M; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2016-03-15

    In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents

  19. 7 CFR 4288.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 months of data supported by engineering and design calculations, and site plans, prepared by the construction engineering firm. Biobased products. Products determined by the Secretary to be commercial or... biological products, including renewable domestic agricultural materials and forestry materials; or (2...

  20. 7 CFR 4288.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 months of data supported by engineering and design calculations, and site plans, prepared by the construction engineering firm. Biobased products. Products determined by the Secretary to be commercial or... biological products, including renewable domestic agricultural materials and forestry materials; or (2...

  1. 7 CFR 4288.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 months of data supported by engineering and design calculations, and site plans, prepared by the construction engineering firm. Biobased products. Products determined by the Secretary to be commercial or... biological products, including renewable domestic agricultural materials and forestry materials; or (2...

  2. 76 FR 37774 - Announcement of Value-Added Producer Grant Application Deadlines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ...-Based Business Ventures develop strategies to create marketing opportunities and to help develop Business Plans for viable marketing opportunities regarding production of bio-based products from... Capital Grants directly related to the processing and/or marketing of value-added products. In order to...

  3. 7 CFR 3201.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Informational Web site. An informational USDA Web site implementing section 9002 can be found at: http://www.biopreferred.gov. USDA will maintain a voluntary Web-based information site for manufacturers and vendors of... Web site will provide information as to the availability, relative price, biobased content...

  4. 7 CFR 3201.6 - Providing product information to Federal agencies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Informational Web site. An informational USDA Web site implementing section 9002 can be found at: http://www.biopreferred.gov. USDA will maintain a voluntary Web-based information site for manufacturers and vendors of... Web site will provide information as to the availability, relative price, biobased content...

  5. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose.

    PubMed

    Yamada, Ryosuke; Yoshie, Toshihide; Wakai, Satoshi; Asai-Nakashima, Nanami; Okazaki, Fumiyoshi; Ogino, Chiaki; Hisada, Hiromoto; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-05-18

    Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals.

  6. The contribution of microbial biotechnology to economic growth and employment creation.

    PubMed

    Timmis, Kenneth; de Lorenzo, Victor; Verstraete, Willy; Ramos, Juan Luis; Danchin, Antoine; Brüssow, Harald; Singh, Brajesh K; Timmis, James Kenneth

    2017-09-01

    Our communication discusses the profound impact of bio-based economies - in particular microbial biotechnologies - on SDG 8: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all. A bio-based economy provides significant potential for improving labour supply, education and investment, and thereby for substantially increasing the demographic dividend. This, in turn, improves the sustainable development of economies. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor.

    PubMed

    Carvalho, Margarida; Matos, Mariana; Roca, Christophe; Reis, Maria A M

    2014-01-25

    Glycerol, a highly abundant byproduct of the biodiesel industry, constitutes today a cheap feedstock for biobased succinic acid (SA) production. Actinobacillus succinogenes is one of the best SA producers. However, glycerol consumption by this biocatalyst is limited because of a redox imbalance during cell growth. The use of an external electron acceptor may improve the metabolism of SA synthesis by A. succinogenes in glycerol. In this study, the effect of dimethylsulfoxide (DMSO), an electron acceptor, on glycerol consumption and SA production by A. succinogenes under controlled fermentation conditions was investigated. Concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by A. succinogenes. During fed-batch cultivation, SA concentration reached 49.62 g/L, with a product yield of 0.87 gSA/gGLR and a maximum production rate of 2.31 gSA/Lh, the highest values so far reported in the literature for A. succinogenes using glycerol as carbon source. These results show that using DMSO as external electron acceptor significantly promotes glycerol consumption and succinic acid production by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    PubMed Central

    Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2015-01-01

    The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent. PMID:25884332

  9. A COMPREHENSIVE LIFE CYCLE ASSESSMENT OF THE BIOPOLYMER POLYLACTIC ACID

    EPA Science Inventory

    Research into the environmental implications of biobased production has focused primarily on global warming and fossil fuel use, while neglecting other environmental impacts. There are a multitude of contemporary environmental problems associated with the production of agricultu...

  10. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.

    PubMed

    Nikodinovic-Runic, Jasmina; Guzik, Maciej; Kenny, Shane T; Babu, Ramesh; Werker, Alan; O Connor, Kevin E

    2013-01-01

    Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show

  11. Biocatalytic synthesis and polymerization via ROMP of new biobased phenolic monomers: a greener process towards sustainable antioxidant polymers

    NASA Astrophysics Data System (ADS)

    Diot-Néant, Florian; Migeot, Loïs; Hollande, Louis; Reano, Felix A.; Domenek, Sandra; Allais, Florent

    2017-12-01

    Antioxidant norbornene-based monomers bearing biobased sterically hindered phenols (SHP) - NDF (norbornene dihydroferulate) and NDS (norbornene dihydrosinapate) - have been successfully prepared through biocatalysis from naturally occurring ferulic and sinapic acids, respectively, in presence of Candida antarctica Lipase B (Cal-B). The ring opening metathesis polymerization (ROMP) of these monomers was investigated according to ruthenium catalyst type (GI) vs. (HGII) and monomer to catalyst molar ratio ([M]/[C]). The co-polymerization of antioxidant functionalized monomer (NDF or NDS) and non-active norbornene (N) has also been performed in order to adjust the number of SHP groups present per weight unit and tune the antioxidant activity of the copolymers. The polydispersity of the resulting copolymers was readily improved by a simple acetone wash to provide antioxidant polymers with well-defined structures. After hydrogenation with p-toluenesulfonylhydrazine (p-TSH), the radical scavenging ability of the resulting saturated polymers was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH) analysis. Results demonstrated that polymers bearing sinapic acid SHP exhibited higher antiradical activity than the polymer bearing ferulic acid SHP. In addition it was also shown that only a small SHP content was needed in the copolymers to exhibit a potent antioxidant activity.

  12. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties

    PubMed Central

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C

    2014-01-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and 1H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was −47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress–strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4–9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. PMID:24812276

  13. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    PubMed

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2014-09-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.

    PubMed

    Borreani, Giorgio; Tabacco, Ernesto

    2015-01-01

    The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli.

    PubMed

    Liang, Keming; Shen, Claire R

    2017-12-01

    Enzymatic reduction of acetoin into 2,3-butanediol (2,3-BD) typically requires the reduced nicotinamide adenine dinucleotide (NADH) or its phosphate form (NADPH) as electron donor. Efficiency of 2,3-BD biosynthesis, therefore, is heavily influenced by the enzyme specificity and the cofactor availability which varies dynamically. This work describes the engineering of cofactor flexibility for 2,3-BD production by simultaneous overexpression of an NADH-dependent 2,3-BD dehydrogenase from Klebsiella pneumoniae (KpBudC) and an NADPH-specific 2,3-BD dehydrogenase from Clostridium beijerinckii (CbAdh). Co-expression of KpBudC and CbAdh not only enabled condition versatility for 2,3-BD synthesis via flexible utilization of cofactors, but also improved production stereo-specificity of 2,3-BD without accumulation of acetoin. With optimization of medium and fermentation condition, the co-expression strain produced 92 g/L of 2,3-BD in 56 h with 90% stereo-purity for (R,R)-isoform and 85% of maximum theoretical yield. Incorporating cofactor flexibility into the design principle should benefit production of bio-based chemical involving redox reactions.

  16. Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Manoj

    2010-06-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitutionmore » of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.« less

  17. 48 CFR 23.406 - Solicitation provisions and contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.406...

  18. 48 CFR 23.406 - Solicitation provisions and contract clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REGULATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.406...

  19. Recent progress in cellulose nanocrystals: sources and production.

    PubMed

    Trache, Djalal; Hussin, M Hazwan; Haafiz, M K Mohamad; Thakur, Vijay Kumar

    2017-02-02

    Cellulose nanocrystals, a class of fascinating bio-based nanoscale materials, have received a tremendous amount of interest both in industry and academia owing to its unique structural features and impressive physicochemical properties such as biocompatibility, biodegradability, renewability, low density, adaptable surface chemistry, optical transparency, and improved mechanical properties. This nanomaterial is a promising candidate for applications in fields such as biomedical, pharmaceuticals, electronics, barrier films, nanocomposites, membranes, supercapacitors, etc. New resources, new extraction procedures, and new treatments are currently under development to satisfy the increasing demand of manufacturing new types of cellulose nanocrystals-based materials on an industrial scale. Therefore, this review addresses the recent progress in the production methodologies of cellulose nanocrystals, covering principal cellulose resources and the main processes used for its isolation. A critical and analytical examination of the shortcomings of various approaches employed so far is made. Additionally, structural organization of cellulose and nomenclature of cellulose nanomaterials have also been discussed for beginners in this field.

  20. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.

    PubMed

    Cheng, Chi; Zhou, Yipin; Lin, Meng; Wei, Peilian; Yang, Shang-Tian

    2017-01-01

    Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Chemistry Based on Renewable Raw Materials: Perspectives for a Sugar Cane-Based Biorefinery

    PubMed Central

    Villela Filho, Murillo; Araujo, Carlos; Bonfá, Alfredo; Porto, Weber

    2011-01-01

    Carbohydrates are nowadays a very competitive feedstock for the chemical industry because their availability is compatible with world-scale chemical production and their price, based on the carbon content, is comparable to that of petrochemicals. At the same time, demand is rising for biobased products. Brazilian sugar cane is a competitive feedstock source that is opening the door to a wide range of bio-based products. This essay begins with the importance of the feedstock for the chemical industry and discusses developments in sugar cane processing that lead to low cost feedstocks. Thus, sugar cane enables a new chemical industry, as it delivers a competitive raw material and a source of energy. As a result, sugar mills are being transformed into sustainable biorefineries that fully exploit the potential of sugar cane. PMID:21637329

  2. Chemistry based on renewable raw materials: perspectives for a sugar cane-based biorefinery.

    PubMed

    Villela Filho, Murillo; Araujo, Carlos; Bonfá, Alfredo; Porto, Weber

    2011-01-01

    Carbohydrates are nowadays a very competitive feedstock for the chemical industry because their availability is compatible with world-scale chemical production and their price, based on the carbon content, is comparable to that of petrochemicals. At the same time, demand is rising for biobased products. Brazilian sugar cane is a competitive feedstock source that is opening the door to a wide range of bio-based products. This essay begins with the importance of the feedstock for the chemical industry and discusses developments in sugar cane processing that lead to low cost feedstocks. Thus, sugar cane enables a new chemical industry, as it delivers a competitive raw material and a source of energy. As a result, sugar mills are being transformed into sustainable biorefineries that fully exploit the potential of sugar cane.

  3. 48 CFR 23.404 - Agency affirmative procurement programs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.404 Agency...

  4. 48 CFR 23.404 - Agency affirmative procurement programs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REGULATION SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.404 Agency...

  5. Prediction of carboxylic and polyphenolic chemical feedstock quantities in sweet sorghum

    USDA-ARS?s Scientific Manuscript database

    Quantitative chemical phenotyping is on increasing demand to develop sweet sorghum genotypes targeted to accumulate carboxylate and polyphenolic secondary products as the plant-derived feedstocks for renewable biobased products including plastics. Of 24 sweet sorghum genotypes investigated, No.5 Ga...

  6. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization.

    PubMed

    Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora

    2016-08-01

    The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Isoprene Production on Enzymatic Hydrolysate of Peanut Hull Using Different Pretreatment Methods.

    PubMed

    Wang, Sumeng; Li, Ruichao; Yi, Xiaohua; Fang, Tigao; Yang, Jianming; Bae, Hyeun-Jong

    2016-01-01

    The present study is about the use of peanut hull for isoprene production. In this study, two pretreatment methods, hydrogen peroxide-acetic acid (HPAC) and popping, were employed prior to enzymatic hydrolysis, which could destroy the lignocellulosic structure and accordingly improve the efficiency of enzymatic hydrolysis. It is proven that the isoprene production on enzymatic hydrolysate with HPAC pretreatment is about 1.9-fold higher than that of popping pretreatment. Moreover, through High Performance Liquid Chromatography (HPLC) analysis, the amount and category of inhibitors such as formic acid, acetic acid, and HMF were assayed and were varied in different enzymatic hydrolysates, which may be the reason leading to a decrease in isoprene production during fermentation. To further increase the isoprene yield, the enzymatic hydrolysate of HPAC was detoxified by activated carbon. As a result, using the detoxified enzymatic hydrolysate as the carbon source, the engineered strain YJM21 could accumulate 297.5 mg/L isoprene, which accounted for about 90% of isoprene production by YJM21 fermented on pure glucose (338.6 mg/L). This work is thought to be the first attempt on isoprene production by E. coli using peanut hull as the feedstock. More importantly, it also shows the prospect of peanut hull to be considered as an alternative feedstock for bio-based chemicals or biofuels production due to its easy access and high polysaccharide content.

  8. Thermal Annealing to Modulate the Shape Memory Behavior of a Biobased and Biocompatible Triblock Copolymer Scaffold in the Human Body Temperature Range.

    PubMed

    Merlettini, Andrea; Gigli, Matteo; Ramella, Martina; Gualandi, Chiara; Soccio, Michelina; Boccafoschi, Francesca; Munari, Andrea; Lotti, Nadia; Focarete, Maria Letizia

    2017-08-14

    A biodegradable and biocompatible electrospun scaffold with shape memory behavior in the physiological temperature range is here presented. It was obtained starting from a specifically designed, biobased PLLA-based triblock copolymer, where the central block is poly(propylene azelate-co-propylene sebacate) (P(PAz60PSeb40)) random copolymer. Shape memory properties are determined by the contemporary presence of the low melting crystals of the P(PAz60PSeb40) block, acting as switching segment, and of the high melting crystal phase of PLLA blocks, acting as physical network. It is demonstrated that a straightforward annealing process applied to the crystal phase of the switching element gives the possibility to tune the shape recovery temperature from about 25 to 50 °C, without the need of varying the copolymer's chemical structure. The thermal annealing approach here presented can be thus considered a powerful strategy for "ad hoc" programming the same material for applications requiring different recovery temperatures. Fibroblast culture experiments demonstrated scaffold biocompatibility.

  9. Strategies for enhancing fermentative production of acetoin: a review.

    PubMed

    Xiao, Zijun; Lu, Jian R

    2014-01-01

    Acetoin is a volatile compound widely used in foods, cigarettes, cosmetics, detergents, chemical synthesis, plant growth promoters and biological pest controls. It works largely as flavour and fragrance. Since some bacteria were found to be capable of vigorous acetoin biosynthesis from versatile renewable biomass, acetoin, like its reduced form 2,3-butanediol, was also classified as a promising bio-based platform chemical. In spite of several reviews on the biological production of 2,3-butanediol, little has concentrated on acetoin. The two analogous compounds are present in the same acetoin (or 2,3-butanediol) pathway, but their production processes including optimal strains, substrates, derivatives, process controls and product recovery methods are quite different. In this review, the usages of acetoin are reviewed firstly to demonstrate its importance. The biosynthesis pathway and molecular regulation mechanisms are then outlined to depict the principal network of functioning in typical species. A phylogenetic tree is constructed and the relationship between taxonomy and acetoin producing ability is revealed for the first time, which will serve as a useful guide for the screening of competitive acetoin producers. Genetic engineering, medium optimization, and process control are effective strategies to improve productivity as well. Currently, downstream processing is one of the main barriers in efficient and economical industrial acetoin fermentation. The future prospects of microbial acetoin production are discussed in light of the current progress, challenges, and trends in this field. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. 77 FR 20281 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Security and Rural Investment Act of 2002, as amended by the Food, Conservation, and Energy Act of 2008.... Information regarding the Federal biobased preferred procurement program (one part of the BioPreferred Program... of 2002 (FSRIA), as amended by the Food, Conservation, and Energy Act of 2008 (FCEA), 7 U.S.C. 8102...

  11. Biobased lubricants and functional products from Cuphea oil

    USDA-ARS?s Scientific Manuscript database

    Cuphea (Lythraceae) is an annual plant that produces a small seed rich in saturated medium-chain triacylglycerols (TAGs). With the need for higher seed yields, oil content, and less seed shattering, Oregon State University began developing promising cuphea crosses. Cuphea PSR23 is a hybrid between C...

  12. 48 CFR 23.401 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.401 Definitions. As used in...

  13. 48 CFR 23.401 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.401 Definitions. As used in...

  14. Presidential Green Chemistry Challenge: 2007 Designing Greener Chemicals Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2007 award winner, Cargill, developed biobased polyols for polyurethane applications, including flexible foams. Cargill makes BiOH polyols from vegetable oils, not petroleum products.

  15. 7 CFR 3201.81 - Floor coverings (non-carpet).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., that are designed for use as the top layer on a floor. Examples are bamboo, hardwood, and cork tiles...—floor tiles. USDA is requesting that manufacturers of these qualifying biobased products provide... floor tile products and which product should be afforded the preference in purchasing. Note to paragraph...

  16. 7 CFR 3201.81 - Floor coverings (non-carpet).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., that are designed for use as the top layer on a floor. Examples are bamboo, hardwood, and cork tiles...—floor tiles. USDA is requesting that manufacturers of these qualifying biobased products provide... floor tile products and which product should be afforded the preference in purchasing. Note to paragraph...

  17. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  18. Green polymer chemistry: biocatalysis and biomaterials

    USDA-ARS?s Scientific Manuscript database

    This overview briefly surveys the practice of green chemistry in polymer science. Eight related themes can be discerned from the current research activities: 1) biocatalysis, 2) bio-based building blocks and agricultural products, 3) degradable polymers, 4) recycling of polymer products and catalys...

  19. Preface

    USDA-ARS?s Scientific Manuscript database

    Agricultural products influence most aspects of life, including food and feed, feedstocks for bio-based products and everyday materials, such as fuels, textiles, and furniture. Advances in technology are necessary to address the future global needs from agriculture. Nanotechnology is a promising fie...

  20. 7 CFR 3201.83 - Furniture cleaners and protectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.83 Furniture cleaners and protectors. (a) Definition. Products designed to clean and provide protection to the surfaces of household furniture other than the upholstery. (b...

  1. 7 CFR 3201.83 - Furniture cleaners and protectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.83 Furniture cleaners and protectors. (a) Definition. Products designed to clean and provide protection to the surfaces of household furniture other than the upholstery. (b...

  2. 7 CFR 3201.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... cases, overlap with the EPA-designated recovered content product: Re-refined lubricating oils. USDA is... in determining whether or not a qualifying biobased product overlaps with EPA-designated re-refined... U.S. Environmental Protection Agency designated re-refined lubricating oils containing recovered...

  3. 7 CFR 3201.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... cases, overlap with the EPA-designated recovered content product: Re-refined lubricating oils. USDA is... in determining whether or not a qualifying biobased product overlaps with EPA-designated re-refined... U.S. Environmental Protection Agency designated re-refined lubricating oils containing recovered...

  4. 7 CFR 3201.28 - Stationary equipment hydraulic fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... cases, overlap with the EPA-designated recovered content product: Re-refined lubricating oils. USDA is... in determining whether or not a qualifying biobased product overlaps with EPA-designated re-refined... U.S. Environmental Protection Agency designated re-refined lubricating oils containing recovered...

  5. 48 CFR 23.400 - Scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.400 Scope of subpart. (a) The...

  6. 48 CFR 23.400 - Scope of subpart.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.400 Scope of subpart. (a) The...

  7. 7 CFR 3201.68 - Erosion control materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT... manufactured for use on construction, demolition, or other sites to prevent wind or water erosion of loose...

  8. 7 CFR 3201.68 - Erosion control materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT... manufactured for use on construction, demolition, or other sites to prevent wind or water erosion of loose...

  9. 7 CFR 3201.68 - Erosion control materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT... manufactured for use on construction, demolition, or other sites to prevent wind or water erosion of loose...

  10. Comparative shelf life study of blackberry fruit in bio-based and petroleum-based containers under retail storage conditions.

    PubMed

    Joo, MinJung; Lewandowski, Nathan; Auras, Rafael; Harte, Janice; Almenar, Eva

    2011-06-15

    The shelf life of blackberries is relatively short, 2-3days at 0°C. Different marketing strategies like packaging can be used to retain blackberry quality during postharvest. This study compares the blackberry retail shelf life performance of different packaging materials, bio-based versus petroleum-based using the same packaging design. 'Cancaska' and 'Chester' blackberries were packaged in snap-fit closed packages made from oriented poly(lactic acid), OPLA, and oriented poly(styrene), OPS, and stored at 3°C and 85% RH for three weeks. Both cultivars exhibited an increase in pH, weight loss, SSC to TA ratio, and fungal count, and a reduction in firmness, anthocyanin content, TA, and SSC during storage. The changes in TA, SSC, SSC to TA ratio, and weight loss significantly depended on the packaging material while no such effect was observed on firmness, anthocyanin content, pH and fungal growth. Both cultivars demonstrated better quality in the OPS container with less weight loss, and decrease in SSC and TA. Blackberries in both OPS and OPLA containers met the "US standard No 1" grade for commercialisation for more than 12days at 3°C. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. 7 CFR 3202.8 - Violations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... certification of a biobased product constitutes a violation of this part. (4) USDA BioPreferred Program Web site... remove the product information from the USDA BioPreferred Program Web site and actively communicate the..., resume use of the certification mark. USDA will also restore the product information to the USDA Bio...

  12. 7 CFR 3202.8 - Violations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... certification of a biobased product constitutes a violation of this part. (4) USDA BioPreferred Program Web site... remove the product information from the USDA BioPreferred Program Web site and actively communicate the..., resume use of the certification mark. USDA will also restore the product information to the USDA Bio...

  13. 7 CFR 3202.8 - Violations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... certification of a biobased product constitutes a violation of this part. (4) USDA BioPreferred Program Web site... remove the product information from the USDA BioPreferred Program Web site and actively communicate the..., resume use of the certification mark. USDA will also restore the product information to the USDA Bio...

  14. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... group of woven cloth products used as coverings on a bed. Bedding includes products such as blankets, bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3) Towels are woven cloth products used primarily for drying and wiping. (b) Minimum biobased content. The...

  15. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... group of woven cloth products used as coverings on a bed. Bedding includes products such as blankets, bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3) Towels are woven cloth products used primarily for drying and wiping. (b) Minimum biobased content. The...

  16. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... group of woven cloth products used as coverings on a bed. Bedding includes products such as blankets, bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3) Towels are woven cloth products used primarily for drying and wiping. (b) Minimum biobased content. The...

  17. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... group of woven cloth products used as coverings on a bed. Bedding includes products such as blankets, bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3) Towels are woven cloth products used primarily for drying and wiping. (b) Minimum biobased content. The...

  18. O-Succinyl-L-homoserine-based C4-chemical production: succinic acid, homoserine lactone, γ-butyrolactone, γ-butyrolactone derivatives, and 1,4-butanediol.

    PubMed

    Hong, Kuk-Ki; Kim, Jeong Hyun; Yoon, Jong Hyun; Park, Hye-Min; Choi, Su Jin; Song, Gyu Hyeon; Lee, Jea Chun; Yang, Young-Lyeol; Shin, Hyun Kwan; Kim, Ju Nam; Cho, Kyung Ho; Lee, Jung Ho

    2014-10-01

    There has been a significant global interest to produce bulk chemicals from renewable resources using engineered microorganisms. Large research programs have been launched by academia and industry towards this goal. Particularly, C4 chemicals such as succinic acid (SA) and 1,4-butanediol have been leading the path towards the commercialization of biobased technology with the effort of replacing chemical production. Here we present O-Succinyl-L-homoserine (SH) as a new, potentially important platform biochemical and demonstrate its central role as an intermediate in the production of SA, homoserine lactone (HSL), γ-butyrolactone (GBL) and its derivatives, and 1,4-butanediol (BDO). This technology encompasses (1) the genetic manipulation of Escherichia coli to produce SH with high productivity, (2) hydrolysis into SA and homoserine (HS) or homoserine lactone hydrochloride, and (3) chemical conversion of either HS or homoserine lactone HCL (HSL·HCl) into drop-in chemicals in polymer industry. This production strategy with environmental benefits is discussed in the perspective of targeting of fermented product and a process direction compared to petroleum-based chemical conversion, which may reduce the overall manufacturing cost.

  19. 7 CFR 2902.50 - Multipurpose cleaners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 2902.50 Multipurpose cleaners. (a) Definition. Products used to clean dirt, grease, and grime from a variety of items in both industrial and domestic settings. This designated item does not include...

  20. 7 CFR 2902.17 - Plastic insulating foam for residential and commercial construction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING... weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No... manufacturers of these qualifying biobased products provide information on the BioPreferred Web site of...

  1. 7 CFR 2902.57 - Multipurpose lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES... percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference... that manufacturers of these qualifying biobased products provide information on the BioPreferred Web...

  2. 7 CFR 2902.17 - Plastic insulating foam for residential and commercial construction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Plastic insulating foam for residential and... BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 2902.17 Plastic insulating foam for residential and commercial construction. (a) Definition. Spray-in-place plastic foam products designed to...

  3. 7 CFR 3201.17 - Plastic insulating foam for residential and commercial construction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Plastic insulating foam for residential and... DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.17 Plastic insulating foam for residential and commercial construction. (a) Definition. Spray-in-place plastic foam products designed to...

  4. 7 CFR 3201.17 - Plastic insulating foam for residential and commercial construction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Plastic insulating foam for residential and... DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.17 Plastic insulating foam for residential and commercial construction. (a) Definition. Spray-in-place plastic foam products designed to...

  5. 7 CFR 3201.17 - Plastic insulating foam for residential and commercial construction.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Plastic insulating foam for residential and... DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.17 Plastic insulating foam for residential and commercial construction. (a) Definition. Spray-in-place plastic foam products designed to...

  6. An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Jonathan N.; Stokes, Bryce; Dunn, Jennifer

    This study is the summation of several analyses to assess the size and benefits of a Billion Ton Bioeconomy, a vision to enable a sustainable market for producing and converting a billion tons of US biomass to bio-based energy, fuels, and products by 2030. Two alternative biomass availability scenarios in 2030, defined as the (i) Business-as-usual (598 million dry tons) and (ii) Billion Ton (1042 million dry tons), establish a range of possible outcomes for the future bioeconomy. The biomass utilized in the current (2014) (365 million dry tons) economy is estimated to displace approximately 2.4% of fossil energy consumptionmore » and avoid 116 million tons of CO 2-equivalent (CO 2e) emissions, whereas the Billion Ton bioeconomy of 2030 could displace 9.5% of fossil energy consumption and avoid as much as 446 million tons of CO 2 equivalent emissions annually. Developing the integrated systems, supply chains, and infrastructure to efficiently grow, harvest, transport, and convert large quantities of biomass in a sustainable way could support the transition to a low-carbon economy. Bio-based activities in the current (2014) economy are estimated to have directly generated more than 48 billion in revenue and 285 000 jobs. Our estimates show that developing biomass resources and addressing current limitations to achieve a Billion Ton bioeconomy could expand direct bioeconomy revenue by a factor of 5 to contribute nearly 259 billion and 1.1 million jobs to the US economy by 2030.« less

  7. An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy

    DOE PAGES

    Rogers, Jonathan N.; Stokes, Bryce; Dunn, Jennifer; ...

    2016-11-21

    This study is the summation of several analyses to assess the size and benefits of a Billion Ton Bioeconomy, a vision to enable a sustainable market for producing and converting a billion tons of US biomass to bio-based energy, fuels, and products by 2030. Two alternative biomass availability scenarios in 2030, defined as the (i) Business-as-usual (598 million dry tons) and (ii) Billion Ton (1042 million dry tons), establish a range of possible outcomes for the future bioeconomy. The biomass utilized in the current (2014) (365 million dry tons) economy is estimated to displace approximately 2.4% of fossil energy consumptionmore » and avoid 116 million tons of CO 2-equivalent (CO 2e) emissions, whereas the Billion Ton bioeconomy of 2030 could displace 9.5% of fossil energy consumption and avoid as much as 446 million tons of CO 2 equivalent emissions annually. Developing the integrated systems, supply chains, and infrastructure to efficiently grow, harvest, transport, and convert large quantities of biomass in a sustainable way could support the transition to a low-carbon economy. Bio-based activities in the current (2014) economy are estimated to have directly generated more than 48 billion in revenue and 285 000 jobs. Our estimates show that developing biomass resources and addressing current limitations to achieve a Billion Ton bioeconomy could expand direct bioeconomy revenue by a factor of 5 to contribute nearly 259 billion and 1.1 million jobs to the US economy by 2030.« less

  8. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  9. Production of C2-C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies.

    PubMed

    Zhang, Ye; Liu, Dehua; Chen, Zhen

    2017-01-01

    C2-C4 diols classically derived from fossil resource are very important bulk chemicals which have been used in a wide range of areas, including solvents, fuels, polymers, cosmetics, and pharmaceuticals. Production of C2-C4 diols from renewable resources has received significant interest in consideration of the reducing fossil resource and the increasing environmental issues. While bioproduction of certain diols like 1,3-propanediol has been commercialized in recent years, biosynthesis of many other important C2-C4 diol isomers is highly challenging due to the lack of natural synthesis pathways. Recent advances in synthetic biology have enabled the de novo design of completely new pathways to non-natural molecules from renewable feedstocks. In this study, we review recent advances in bioproduction of C2-C4 diols, focusing on new metabolic pathways and metabolic engineering strategies being developed. We also discuss the challenges and future trends toward the development of economically competitive processes for bio-based diol production.

  10. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics.

    PubMed

    Wei, Peilian; Cheng, Chi; Lin, Meng; Zhou, Yipin; Yang, Shang-Tian

    2017-01-01

    Poly(β-l-malic acid) (PMA) is a biodegradable polymer with many potential biomedical applications. PMA can be readily hydrolyzed to malic acid (MA), which is widely used as an acidulant in foods and pharmaceuticals. PMA production from sucrose and sugarcane juice by Aureobasidium pullulans ZX-10 was studied in shake-flasks and bioreactors, confirming that sugarcane juice can be used as an economical substrate without any pretreatment or nutrients supplementation. A high PMA titer of 116.3g/L and yield of 0.41g/g were achieved in fed-batch fermentation. A high productivity of 0.66g/L·h was achieved in repeated-batch fermentation with cell recycle. These results compared favorably with those obtained from glucose and other biomass feedstocks. A process economic analysis showed that PMA could be produced from sugarcane juice at a cost of $1.33/kg, offering a cost-competitive bio-based PMA for industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate.

    PubMed

    Su, Buli; Zhang, Zhe; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-05-26

    High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) genes into the chromosome, where their expression was controlled by the constitutive promoter P43. In addition, to minimize the flux from L-arabinose to arabitol, two strategies including low XR total activity and high selectivity of XR has been adopted. Arabitol was significantly decreased using plasmid-free strain which had lower XR total activity and an eight point-mutations of XR with a 27-fold lower enzyme activity toward L-arabinose was achieved. The plasmid-free strain in conjunction with this mutant XR can completely eliminate arabitol formation in xylitol production. In fed-batch fermentation, this plasmid-free strain produced 143.8 g L(-1) xylitol at 1.84 g L(-1) h(-1) from corncob hemicellulosic hydrolysate. From these results, we conclude that this route by plasmid-free E. coli has potential to become a commercially viable process for xylitol production.

  12. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate

    PubMed Central

    Su, Buli; Zhang, Zhe; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-01-01

    High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) genes into the chromosome, where their expression was controlled by the constitutive promoter P43. In addition, to minimize the flux from L-arabinose to arabitol, two strategies including low XR total activity and high selectivity of XR has been adopted. Arabitol was significantly decreased using plasmid-free strain which had lower XR total activity and an eight point-mutations of XR with a 27-fold lower enzyme activity toward L-arabinose was achieved. The plasmid-free strain in conjunction with this mutant XR can completely eliminate arabitol formation in xylitol production. In fed-batch fermentation, this plasmid-free strain produced 143.8 g L−1 xylitol at 1.84 g L−1 h−1 from corncob hemicellulosic hydrolysate. From these results, we conclude that this route by plasmid-free E. coli has potential to become a commercially viable process for xylitol production. PMID:27225023

  13. 7 CFR 2902.45 - Food cleaners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Food cleaners. 2902.45 Section 2902.45 Agriculture... Food cleaners. (a) Definition. Anti-microbial products designed to clean the outer layer of various food products, such as fruit, vegetables, and meats. (b) Minimum biobased content. The preferred...

  14. 7 CFR 2902.45 - Food cleaners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Food cleaners. 2902.45 Section 2902.45 Agriculture... Food cleaners. (a) Definition. Anti-microbial products designed to clean the outer layer of various food products, such as fruit, vegetables, and meats. (b) Minimum biobased content. The preferred...

  15. 7 CFR 3201.92 - Fuel conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Fuel conditioners. 3201.92 Section 3201.92... Designated Items § 3201.92 Fuel conditioners. (a) Definition. Products formulated to improve the performance... fuel system. (b) Minimum biobased content. The Federal preferred procurement product must have a...

  16. 7 CFR 3201.92 - Fuel conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Fuel conditioners. 3201.92 Section 3201.92... Designated Items § 3201.92 Fuel conditioners. (a) Definition. Products formulated to improve the performance... fuel system. (b) Minimum biobased content. The Federal preferred procurement product must have a...

  17. 7 CFR 2902.44 - Corrosion preventatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Corrosion preventatives. 2902.44 Section 2902.44... Items § 2902.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a minimum...

  18. 7 CFR 2902.44 - Corrosion preventatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Corrosion preventatives. 2902.44 Section 2902.44... Items § 2902.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a minimum...

  19. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...

  20. 7 CFR 3201.44 - Corrosion preventatives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Corrosion preventatives. 3201.44 Section 3201.44... Designated Items § 3201.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...