Science.gov

Sample records for biobased products

  1. Development of biobased products.

    PubMed

    Montgomery, Rex

    2004-01-01

    Research conducted over the past seven years by the biotechnology byproducts consortium (BBC) addresses its mission to investigate the opportunities to add value to agricultural products, byproducts and coproducts and to manage the wastewater arising from agribusinesses in an environmentally favorable way. Since a wide variety of research approaches have been taken, the results are collected in five topic groups: (1) bioremediation that includes anaerobic fermentations of wastes to produce methane and hydrogen, the genetics of methanogenesis and in situ remediation of contaminated aquifer systems, landfill leachates and industrial effluents; (2) land application of fermentation byproducts and their use in animal feeds; (3) biocatalytic studies of transformations of components of corn and soybean oils, peroxidases present in plant products, such as soybean hulls; (4) biochemical reactions for the production of de-icers from industrial water streams, biodiesel production from fats and greases, biodegradable plastics from polymerizable sugar derivatives, single cell foods derived from fungal growth on waste streams, and bacterial polysaccharides from Erwinia species; (5) separation and recovery of components by membrane technologies.

  2. Biobased lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  3. 76 FR 3789 - Voluntary Labeling Program for Biobased Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... procurement preference for biobased products within each product category, and other information (e.g... Program. The final rule also applies to other entities (e.g., trade associations) that wish to use the..., Reporters Building, 300 7th Street, SW., Washington, DC 20024; e-mail: biopreferred@usda.gov ; phone...

  4. 48 CFR 52.223-1 - Biobased Product Certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Agriculture in 7 CFR part 2902, subpart B) to be used or delivered in the performance of the contract, other than biobased products that are not purchased by the offeror as a direct result of this contract, will... (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses...

  5. Bio-based products from solar energy and carbon dioxide.

    PubMed

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation.

  6. Biobased industrial products. Priorities for research and commercialization

    SciTech Connect

    2000-01-01

    Biological sciences are likely to make the same impact on the formation of new industries in the next century as the physical and chemical sciences have had on industrial development throughout the century now coming to a close. The biological sciences, when combined with recent and future advances in process engineering, can become the foundation for producing a wide variety of industrial products from renewable plant resources. These "biobased industrial products" will include liquid fuels, chemicals, lubricants, plastics, and building materials. For example, genetically engineered crops currently under development include rapeseed that produces industrial oils, corn that produces specialty chemicals, and transgenic plants that produce polyesters. Except perhaps for large-scale production of bioenergy crops, the land and other agricultural resources of the United States are sufficient to satisfy current domestic and export demands for food, feed, and fiber and still produce the raw materials for most biobased industrial products.

  7. Fostering the Bioeconomic Revolution in Biobased Products and Bioenergy: An Environmental Approach

    SciTech Connect

    none,

    2001-01-01

    This document is a product of the Biomass Research and Development Board and presents a high-level summary of the emerging national strategy for biobased products and bioenergy. It provides the first integrated approach to policies and procedures that will promote R&D and demonstration leading to accelerated production of biobased products and bioenergy.

  8. Editorial: from plant biotechnology to bio-based products.

    PubMed

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology.

  9. 77 FR 10939 - Driving Innovation and Creating Jobs in Rural America Through Biobased and Sustainable Product...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... memorandum in the Federal Register. (Presidential Sig.) THE WHITE HOUSE, Washington, February 21, 2012 [FR... Creating Jobs in Rural America Through Biobased and Sustainable Product Procurement Memorandum for the... procurement of biobased products to promote rural economic development, create new jobs, and provide...

  10. 48 CFR 52.223-2 - Affirmative Procurement of Biobased Products Under Service and Construction Contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Affirmative Procurement of... CONTRACT CLAUSES Text of Provisions and Clauses 52.223-2 Affirmative Procurement of Biobased Products Under... Procurement of Biobased Products Under Service and Construction Contracts (DEC 2007) (a) In the performance...

  11. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  12. A Circular Bioeconomy with Biobased Products from CO2 Sequestration.

    PubMed

    Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G

    2016-06-01

    The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. PMID:27048926

  13. Types, production and assessment of biobased food packaging materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food packaging performs an essential function, but packaging materials can have a negative impact on the environment. This book describes the latest advances in bio-based food packaging materials. Book provides a comprehensive review on bio-based, biodegradable and recycled materials and discusses t...

  14. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    PubMed

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-07-28

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.

  15. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    PubMed

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  16. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    PubMed Central

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  17. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. PMID:23199277

  18. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers.

  19. 14C determination in different bio-based products

    NASA Astrophysics Data System (ADS)

    Santos Arévalo, Francisco-Javier; Gómez Martínez, Isabel; Agulló García, Lidia; Reina Maldonado, María-Teresa; García León, Manuel

    2015-10-01

    Radiocarbon determination can be used as a tool to investigate the presence of biological elements in different bio-based products, such as biodiesel blends. These products may also be produced from fossil materials obtaining the same final molecules, so that composition is chemically indistinguishable. The amount of radiocarbon in these products can reveal how much of these biological elements have been used, usually mixed with petrol derived components, free of 14C. Some of these products are liquid and thus the handling at the laboratory is not as straightforward as with solid samples. At Centro Nacional de Aceleradores (CNA) we have tested the viability of these samples using a graphitization system coupled to an elemental analyzer used for combustion of the samples, thus avoiding any vacuum process. Samples do not follow any chemical pre-treatment procedure and are directly graphitized. Specific equipment for liquid samples related to the elemental analyzer was tested. Measurement of samples was performed by low-energy AMS at the 1 MV HVEE facility at CNA, paying special attention to background limits and reproducibility during sample preparation.

  20. Determining the modern carbon content of biobased products using radiocarbon analysis.

    PubMed

    Norton, Glenn A; Devlin, Steven L

    2006-11-01

    In support of the USDA Federal Biobased Products Preferred Procurement Program (FB4P), Iowa State University is coordinating testing to determine the "biobased content" of manufactured products. These tests are part of a process to "designate" items that qualify for preferential procurement status with federal agencies. Biobased content determinations are being performed using three radiocarbon dating procedures specified in ASTM D 6866-05. Test results obtained thus far indicate that the AMS and benzene synthesis methods provide comparable results. Data from the CO(2) cocktail method did not agree as well with the data from the other two methods, but were still in reasonably good agreement with those data. Radiocarbon analysis is shown to be a reliable and valuable tool for verifying the biobased content of a wide variety of biobased products. Based on inter- and intra-laboratory comparisons, a reasonable uncertainty to associate with the analyses would be +/-3% (absolute) for the AMS and benzene synthesis methods. Because of limited data availability, additional work is needed to establish the uncertainty of the CO(2) cocktail method for analyzing biobased products.

  1. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  2. Assessing the Economic Viability of Bio-based Products for Missouri Value-added Crop Production

    SciTech Connect

    Nicholas Kalaitzandonakes

    2005-11-30

    While research and development on biobased products has continued strong over the years, parallel attention on the economics and management of such product innovation has been lacking. With the financial support of the Department of Energy, the Economics and Management of Agrobiotechnology Center at the University of Missouri-Columbia has launched a pilot graduate education program that seeks to fill the gap. Within this context, a multi-disciplinary research and teaching program has been structured with an emphasis on new product and innovation economics and management. More specifically, this pilot graduate education program has the following major objectives: (1) To provide students with a strong background in innovation economics, management, and strategy. (2) To diversify the students academic background with coursework in science and technology. (3) To familiarize the student with biobased policy initiatives through interaction with state and national level organizations and policymakers. (4) To facilitate active collaboration with industry involved in the development and production of biobased products. The pilot education program seeks to develop human capital and research output. Although the research is, initially, focused on issues related to the State of Missouri, the results are expected to have national implications for the economy, producers, consumers and environment.

  3. Production of bio-based materials using photobioreactors with binary cultures

    DOEpatents

    Beliaev, Alex S; Pinchuk, Grigoriy E; Hill, Eric A; Fredrickson, Jim K

    2013-08-27

    A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors or CO.sub.2 and/or bicarbonate. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. The present invention provides a method of cultivation that does not need sparging of a closed bioreactor to remove or add a gaseous byproduct or nutrient from a liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.

  4. The dilemma of promoting green products: what we know and don't know about biobased metalworking fluids.

    PubMed

    Massawe, Ephraim; Geiser, Kenneth

    2012-04-01

    Advocates of "green products" argue that promoting these products can protect the environment, workers, and public health. Biobased metalworking fluids (MWFs) are among the products promoted as "green products." The main question is, what constitutes a green product? To answer this question, the authors compared and contrasted the health and safety aspects of biobased and petroleum-based MWFs in terms of their additives. These two product categories of MWFs derived from various feedstocks were investigated through interviews and literature review. Three classes of biobased MWFs and four classes of petroleum-based MWFs were identified and compared. The little information available on the individual constituents for biobased MWFs indicates that they had biocides and preservatives, corrosion inhibitors, extreme pressure, and antiwear components, which are also common additives in petroleum-based MWFs. Precautionary approaches should be taken when promoting biobased MWFs as "green products" until individual components are evaluated for their health and safety impacts. PMID:22533119

  5. Establishment of a Graduate Certificate Program in Biobased Industrial Products – Final Technical Report

    SciTech Connect

    John R. Schlup

    2005-11-04

    A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU

  6. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect

    John R. Dorgan

    2005-09-30

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. The original project objectives had to be modified as a result of DOE funding cuts, the Biomass Program did not receive adequate funding to fully fund its selected projects. Nonetheless, effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. PI Dorgan taught one of the newly developed classes will in the Fall 2006, after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revisions. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the

  7. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the

  8. BIOBASED MATERIALS

    EPA Science Inventory

    Biobased materials refer to products that mainly consist of a substance (or substances) derived from living matter (biomass) and either occur naturally or are synthesized, or it may refer to products made by processes that use biomass. Following a strict definition, many common m...

  9. DO BIO-BASED PRODUCTS MOVE US TOWARD SUSTAINABILITY? A LOOK AT THREE CASE STUDIES

    EPA Science Inventory

    The movement to buy "environmentally-friendly" products was recently reinvigorated by the signing of the 2002 Farm Act that requires all federal agencies to give preference to products that are made (in whole or significant part) from bio-based material. This paper add...

  10. Health, safety, and ecological implications of using biobased floor-stripping products.

    PubMed

    Massawe, Ephraim; Geiser, Kenneth; Ellenbecker, Michael; Marshall, Jason

    2007-05-01

    The main objective of the study reported here was to investigate the ecological, health, and safety (EHS) implications of using biobased floor strippers as alternatives to solvent-based products such as Johnson Wax Professional (Pro Strip). The authors applied a quick EHS-scoring technique developed by the Surface Solution Laboratory (SSL) of the Toxics Use Reduction Institute (TURI) to some alternative, biobased products that had previously performed as well as or close to as well as the currently used product. The quick technique is considered an important step in EHS assessment, particularly for toxics use reduction planners and advocates who may not have the resources to subject many alternative products or processes at once to detailed EHS analysis. Taking this step narrows available options to a manageable number. (Technical-performance experiments were also conducted, but the results are not discussed or reported in this paper). The cost of switching to biobased floor strippers was assessed and compared with the cost of using the traditional product, both at full strength and at the dilution ratios recommended by the respective manufacturers. The EHS analysis was based on a framework consisting of five parameters: volatile organic compounds (VOCs); pH; global-warming potential (GWP); ozone depletion potential (ODP); and safety scores in areas such as flammability, stability, and special hazards, based on ratings from the Hazardous Material Classification System (HMIS) and the National Fire Protection Association (NFPA). Total EHS scores were calculated with data derived from the material safety data sheets. For most cleaning products previously investigated by the TURI SSL, the investigators have demonstrated that the five key parameters used in the study reported here can successfully be used for quick screening of the EHS impacts of cleaning alternatives. All eight biobased, or green, products evaluated in the study had better EHS-screening scores than did

  11. Health, safety, and ecological implications of using biobased floor-stripping products.

    PubMed

    Massawe, Ephraim; Geiser, Kenneth; Ellenbecker, Michael; Marshall, Jason

    2007-05-01

    The main objective of the study reported here was to investigate the ecological, health, and safety (EHS) implications of using biobased floor strippers as alternatives to solvent-based products such as Johnson Wax Professional (Pro Strip). The authors applied a quick EHS-scoring technique developed by the Surface Solution Laboratory (SSL) of the Toxics Use Reduction Institute (TURI) to some alternative, biobased products that had previously performed as well as or close to as well as the currently used product. The quick technique is considered an important step in EHS assessment, particularly for toxics use reduction planners and advocates who may not have the resources to subject many alternative products or processes at once to detailed EHS analysis. Taking this step narrows available options to a manageable number. (Technical-performance experiments were also conducted, but the results are not discussed or reported in this paper). The cost of switching to biobased floor strippers was assessed and compared with the cost of using the traditional product, both at full strength and at the dilution ratios recommended by the respective manufacturers. The EHS analysis was based on a framework consisting of five parameters: volatile organic compounds (VOCs); pH; global-warming potential (GWP); ozone depletion potential (ODP); and safety scores in areas such as flammability, stability, and special hazards, based on ratings from the Hazardous Material Classification System (HMIS) and the National Fire Protection Association (NFPA). Total EHS scores were calculated with data derived from the material safety data sheets. For most cleaning products previously investigated by the TURI SSL, the investigators have demonstrated that the five key parameters used in the study reported here can successfully be used for quick screening of the EHS impacts of cleaning alternatives. All eight biobased, or green, products evaluated in the study had better EHS-screening scores than did

  12. DO BIO-BASED PRODUCTS MOVE US TOWARD SUSTAINABILITY? A LOOK AT THREE USEPA CASE STUDIES

    EPA Science Inventory


    Do Bio-Based Products Move Us Toward Sustainability? A Look at Three Case Studies within the US EPA
    Mary Am Curran
    US Environmental Protection Agency, Office of Research & Development, Cincinnati, OH 45268; curran.maryann@epagov
    Abstract The movement to buy "...

  13. 77 FR 25632 - Guidelines for Designating Biobased Products for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... implementing this preferred procurement program on December 19, 2003 (68 FR 70730-70746). The Guidelines were promulgated on January 11, 2005 (70 FR 1792), and are contained in 7 CFR part 3201, ``Guidelines for... amount of biobased carbon in the product or material as percent of the weight (mass) of the total...

  14. Biobased products research at the National Center for Agricultural Utilization Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research by our group at the NCAUR has concerned the research and development of biobased products, most of which are derived from the residues produced during agricultural processing. These include: novel sophorolipids from yeast as natural emulsifiers and surfactants for certified organic...

  15. Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli.

    PubMed

    Claypool, Joshua T; Raman, D Raj; Jarboe, Laura R; Nielsen, David R

    2014-08-01

    Styrene is an important commodity chemical used in polymers and resins, and is typically produced from the petrochemical feedstocks benzene and ethylene. Styrene has recently been produced biosynthetically for the first time using engineered Escherichia coli, and this bio-based route may represent a lower energy and renewable alternative to petroleum-derived styrene. However, the economics of such an approach has not yet been investigated. Using an early-stage technoeconomic evaluation tool, a preliminary economic analysis of bio-based styrene from C(6)-sugar feedstock has been conducted. Owing to styrene's limited water solubility, it was assumed that the resulting fermentation broth would spontaneously form two immiscible liquid phases that could subsequently be decanted. Assuming current C(6) sugar prices and industrially achievable biokinetic parameter values (e.g., product yield, specific growth rate), commercial-scale bio-based styrene has a minimum estimated selling price (MESP) of 1.90 USD kg(-1) which is in the range of current styrene prices. A Monte Carlo analysis revealed a potentially large (0.45 USD kg(-1)) standard deviation in the MESP, while a sensitivity analysis showed feedstock price and overall yield as primary drivers of MESP. PMID:24939174

  16. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. PMID:26360870

  17. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation.

  18. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids.

    PubMed

    Beller, Harry R; Lee, Taek Soon; Katz, Leonard

    2015-09-23

    Although natural products are best known for their use in medicine and agriculture, a number of fatty acid-derived and isoprenoid natural products are being developed for use as renewable biofuels and bio-based chemicals. This review summarizes recent work on fatty acid-derived compounds (fatty acid alkyl esters, fatty alcohols, medium- and short-chain methyl ketones, alkanes, α-olefins, and long-chain internal alkenes) and isoprenoids, including hemiterpenes (e.g., isoprene and isopentanol), monoterpenes (e.g., limonene), and sesquiterpenes (e.g., farnesene and bisabolene).

  19. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes.

  20. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. PMID:25904087

  1. Bio-based production of C2-C6 platform chemicals.

    PubMed

    Jang, Yu-Sin; Kim, Byoungjin; Shin, Jae Ho; Choi, Yong Jun; Choi, Sol; Song, Chan Woo; Lee, Joungmin; Park, Hye Gwon; Lee, Sang Yup

    2012-10-01

    Platform chemicals composed of 2-6 carbons derived from fossil resources are used as important precursors for making a variety of chemicals and materials, including solvents, fuels, polymers, pharmaceuticals, perfumes, and foods. Due to concerns regarding our environment and the limited nature of fossil resources, however, increasing interest has focused on the development of sustainable technologies for producing these platform chemicals from renewable resources. The techniques and strategies for developing microbial strains for chemicals production have advanced rapidly, and it is becoming feasible to develop microbes for producing additional types of chemicals, including non-natural molecules. In this study, we review the current status of the bio-based production of major C2-C6 platform chemicals, focusing on the microbial production of platform chemicals that have been used for the production of chemical intermediates, building block compounds, and polymers.

  2. Development Of Sustainable Biobased Products And Bioenergy In Cooperation With The Midwest Consortium For Sustainable Biobased Products And Energy

    SciTech Connect

    Michael Ladisch; Randy Woodson

    2009-03-18

    Collaborative efforts of Midwest Consortium have been put forth to add value to distiller's grains by further processing them into fermentable sugars, ethanol, and a protein rich co-product consistent with a pathway to a biorenewables industry (Schell et al, 2008). These studies were recently published in the enclosed special edition (Volume 99, Issue 12) of Bioresource Technology journal. Part of them have demonstrated the utilization of distillers grains as additional feedstock for increased ethanol production in the current dry grind process (Kim et al., 2008a, b; Dien et al.,2008, Ladisch et al., 2008a, b). Results showed that both liquid hot water (LHW) pretreatment and ammonia fiber expansion (AFEX) were effective for enhancing digestibility of distiller's grains. Enzymatic digestion of distiller's grains resulted in more than 90% glucose yield under standard assay conditions, although the yield tends to drop as the concentration of dry solids increases. Simulated process mass balances estimated that hydrolysis and fermentation of distillers grains can increase the ethanol yield by 14% in the current dry milling process (Kim et al., 2008c). Resulting co-products from the modified process are richer in protein and oil contents than conventional distiller's grains, as determined both experimentally and computationally. Other research topics in the special edition include water solubilization of DDGS by transesterification reaction with phosphite esters (Oshel el al., 2008) to improve reactivity of the DDGS to enzymes, hydrolysis of soluble oligomers derived from DDGS using functionalized mesoporous solid catalysts (Bootsma et al., 2008), and ABE (acetone, butanol, ethanol) production from DDGS by solventogenic Clostridia (Ezeji and Blaschek, 2008). Economic analysis of a modified dry milling process, where the fiber and residual starch is extracted and fermented to produce more ethanol from the distillers grains while producing highly concentrated protein co-product

  3. Bio-based production of monomers and polymers by metabolically engineered microorganisms.

    PubMed

    Chung, Hannah; Yang, Jung Eun; Ha, Ji Yeon; Chae, Tong Un; Shin, Jae Ho; Gustavsson, Martin; Lee, Sang Yup

    2015-12-01

    Recent metabolic engineering strategies for bio-based production of monomers and polymers are reviewed. In the case of monomers, we describe strategies for producing polyamide precursors, namely diamines (putrescine, cadaverine, 1,6-diaminohexane), dicarboxylic acids (succinic, glutaric, adipic, and sebacic acids), and ω-amino acids (γ-aminobutyric, 5-aminovaleric, and 6-aminocaproic acids). Also, strategies for producing diols (monoethylene glycol, 1,3-propanediol, and 1,4-butanediol) and hydroxy acids (3-hydroxypropionic and 4-hydroxybutyric acids) used for polyesters are reviewed. Furthermore, we review strategies for producing aromatic monomers, including styrene, p-hydroxystyrene, p-hydroxybenzoic acid, and phenol, and propose pathways to aromatic polyurethane precursors. Finally, in vivo production of polyhydroxyalkanoates and recombinant structural proteins having interesting applications are showcased. PMID:26318077

  4. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    PubMed

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable. PMID:24364352

  5. Biobased plastics in a bioeconomy.

    PubMed

    Philp, J C; Ritchie, R J; Guy, K

    2013-02-01

    Bioeconomy plans include a biobased industries sector in which some oil-derived plastics and chemicals are replaced by new or equivalent products derived, at least partially, from biomass. Some of these biobased products are here today, but to fulfil their societal potential, greater attention is required to promote awareness, and to improve their market share while making valuable contributions to climate change mitigation.

  6. Bio-based and biodegradable plastics for use in crop production.

    PubMed

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production. PMID:21114467

  7. Pretreatment of spent sulphite liquor via ultrafiltration and nanofiltration for bio-based succinic acid production.

    PubMed

    Pateraki, Chrysanthi; Ladakis, Dimitrios; Stragier, Lutgart; Verstraete, Willy; Kookos, Ioannis; Papanikolaou, Seraphim; Koutinas, Apostolis

    2016-09-10

    Ultrafiltration and nanofiltration of spent sulphite liquor (SSL) has been employed to evaluate the simultaneous production of lignosulphonates and bio-based succinic acid using the bacterial strains Actinobacillus succinogenes and Basfia succiniciproducens. Ultrafiltration with membranes of 10, 5 and 3kDa molecular weight cut-off results in significant losses of lignosulphonates (26-50%) in the permeate stream, while nanofiltration using membrane with 500Da molecular weight cut-off results in high retention yields of lignosulphonates (95.6%) in the retentate stream. Fed-batch bioreactor cultures using permeates from ultrafiltrated SSL resulted in similar succinic acid concentration (27.5g/L) and productivity (0.4g/L/h) by both strains. When permeates from nanofiltrated SSL were used, the strain B. succiniciproducens showed the highest succinic acid concentration (33.8g/L), yield (0.58g per g of consumed sugars) and productivity (0.48g/L/h). The nanofiltration of 1t of thick spent sulphite liquor could lead to the production of 306.3kg of lignosulphonates and 52.7kg of succinic acid, whereas the ultrafiltration of 1t of thick spent sulphite liquor using a 3kDa membrane could result in the production of 237kg of lignosulphonates and 71.8kg of succinic acid when B. succiniproducens is used in both cases. PMID:27374402

  8. Bio-based and biodegradable plastics for use in crop production.

    PubMed

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  9. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    PubMed

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry. PMID:23394962

  10. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    PubMed

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry.

  11. Production and applications of biobased packaging materials for the food industry.

    PubMed

    Weber, C J; Haugaard, V; Festersen, R; Bertelsen, G

    2002-01-01

    Materials based on renewable resources are being developed at an increasing rate. Today, the only biobased food-packaging materials used commercially on a major scale are based on cellulose. However, materials based on proteins, starch, polylactate and other renewable resources may be the food-packaging materials of tomorrow. The paper presents some of the different biobased materials and their potential as food-packaging materials. PMID:11962705

  12. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    PubMed

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.

  13. 7 CFR 2902.7 - Determining biobased content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... biobased content must be based on third party ASTM/ISO compliant test facility testing using the ASTM... determines biobased content based on the amount of biobased carbon in the material or product as percent of... 7 Agriculture 15 2011-01-01 2011-01-01 false Determining biobased content. 2902.7 Section...

  14. Life cycle risks for human health: a comparison of petroleum versus bio-based production of five bulk organic chemicals.

    PubMed

    Roes, Alexander L; Patel, Martin K

    2007-10-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses bio-based feedstocks instead of the fossil raw materials used in the petrochemical sector. The purpose of this study was to investigate whether the production of chemicals by means of white biotechnology has lower conventional risks than their production by petrochemical processes. Conventional risks are the risks of well-established processes, and not those related to genetically modified microorganisms and plants. Our approach combines classical risk assessment methods (largely based on toxicology), as developed by the life cycle assessment (LCA) community, with statistics on technological disasters, accidents, and work-related illnesses. Moreover, it covers the total process chain for both petrochemical and bio-based products from cradle to grave. The approach was applied to five products: the plastics polytrimethylene terephthalate (PTT), polyhydroxyalkanoates (PHA), polyethylene terephthalate (PET), polyethylene (PE), and ethanol. Our results show that the conventional risks related to the white biotechnology products studied are lower than those of the petrochemical products. However, considering the uncertainties with respect to the ranges of input data, the (incomplete) coverage of emissions by the environmental priority strategies (EPS) 2000 method, and the uncertainties of the assumptions made in this study (i.e., large to very large), the differences in results between bio-based and petrochemical products fall into the uncertainty range. Because of this, future research is necessary to decrease the uncertainties before we can conclude that the conventional risks of biotechnologically produced chemicals are lower than those of fossil-fuel-derived chemicals.

  15. 7 CFR 3201.7 - Determining biobased content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... determines biobased content based on the amount of biobased carbon in the material or product as percent of the weight (mass) of the total organic carbon in the material or product. (d) Products with the...

  16. 7 CFR 3201.7 - Determining biobased content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... determines biobased content based on the amount of biobased carbon in the material or product as percent of the weight (mass) of the total organic carbon in the material or product. (d) Products with the...

  17. 7 CFR 3201.7 - Determining biobased content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... determines biobased content based on the amount of biobased carbon in the material or product as percent of the weight (mass) of the total organic carbon in the material or product. (d) Products with the...

  18. Sustainable Systems Analysis of Production and Transportation Scenarios for Conventional and Bio-based Energy Commodities

    NASA Astrophysics Data System (ADS)

    Doran, E. M.; Golden, J. S.; Nowacek, D. P.

    2013-12-01

    International commerce places unique pressures on the sustainability of water resources and marine environments. System impacts include noise, emissions, and chemical and biological pollutants like introduction of invasive species into key ecosystems. At the same time, maritime trade also enables the sustainability ambition of intragenerational equity in the economy through the global circulation of commodities and manufactured goods, including agricultural, energy and mining resources (UN Trade and Development Board 2013). This paper presents a framework to guide the analysis of the multiple dimensions of the sustainable commerce-ocean nexus. As a demonstration case, we explore the social, economic and environmental aspects of the nexus framework using scenarios for the production and transportation of conventional and bio-based energy commodities. Using coupled LCA and GIS methodologies, we are able to orient the findings spatially for additional insight. Previous work on the sustainable use of marine resources has focused on distinct aspects of the maritime environment. The framework presented here, integrates the anthropogenic use, governance and impacts on the marine and coastal environments with the natural components of the system. A similar framework has been highly effective in progressing the study of land-change science (Turner et al 2007), however modification is required for the unique context of the marine environment. This framework will enable better research integration and planning for sustainability objectives including mitigation and adaptation to climate change, sea level rise, reduced dependence on fossil fuels, protection of critical marine habitat and species, and better management of the ocean as an emerging resource base for the production and transport of commodities and energy across the globe. The framework can also be adapted for vulnerability analysis, resilience studies and to evaluate the trends in production, consumption and

  19. Catalytic modification of fats and oils to value-added biobased products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased materials derived from fats and oils can be relatively benign to the environment because they tend to have good biodegradability. Oils are used in a myriad of applications, including foods, cosmetics, paints, biodegradable lubricants and polymers, biodiesel, and more. For many of these ap...

  20. 3 CFR - Driving Innovation and Creating Jobs in Rural America Through Biobased and Sustainable Product...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... education and outreach to program, technical, and contracting personnel, and to purchase card holders on Bio... biobased acquisition as part of the sustainable acquisition goals and milestones in the Strategic Sustainability Performance Plan required by section 8 of Executive Order 13514. (b) As required by section...

  1. Biobased plastics in a bioeconomy.

    PubMed

    Philp, J C; Ritchie, R J; Guy, K

    2013-02-01

    Bioeconomy plans include a biobased industries sector in which some oil-derived plastics and chemicals are replaced by new or equivalent products derived, at least partially, from biomass. Some of these biobased products are here today, but to fulfil their societal potential, greater attention is required to promote awareness, and to improve their market share while making valuable contributions to climate change mitigation. PMID:23333433

  2. Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families.

    PubMed

    Posen, I Daniel; Jaramillo, Paulina; Griffin, W Michael

    2016-03-15

    Interest in biobased products has been motivated, in part, by the claim that these products have lower life cycle greenhouse gas (GHG) emissions than their fossil counterparts. This study investigates GHG emissions from U.S. production of three important biobased polymer families: polylactic acid (PLA), polyhydroxybutyrate (PHB) and bioethylene-based plastics. The model incorporates uncertainty into the life cycle emission estimates using Monte Carlo simulation. Results present a range of scenarios for feedstock choice (corn or switchgrass), treatment of coproducts, data sources, end of life assumptions, and displaced fossil polymer. Switchgrass pathways generally have lower emissions than corn pathways, and can even generate negative cradle-to-gate emissions if unfermented residues are used to coproduce energy. PHB (from either feedstock) is unlikely to have lower emissions than fossil polymers once end of life emissions are included. PLA generally has the lowest emissions when compared to high emission fossil polymers, such as polystyrene (mean GHG savings up to 1.4 kg CO2e/kg corn PLA and 2.9 kg CO2e/kg switchgrass PLA). In contrast, bioethylene is likely to achieve the greater emission reduction for ethylene intensive polymers, like polyethylene (mean GHG savings up to 0.60 kg CO2e/kg corn polyethylene and 3.4 kg CO2e/kg switchgrass polyethylene).

  3. Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential.

    PubMed

    Takara, Devin; Khanal, Samir Kumar

    2015-01-01

    Napier grass, Pennisetum purpureum, is a high yielding, perennial feedstock that can be harvested year-round in (sub)tropical geographies of the world. Because of its high moisture content (∼ 80%w/w), Napier grass presents a unique opportunity for fractionation into solid and liquid streams, where the extruded cellulosic fibers can serve as a substrate for biofuel production, and the nutrient-rich juice can serve as a substrate for co-product generation. The aim of this study evaluated the effects of biomass age on constituents relevant to biofuel and biobased product generation. Although obvious morphological changes can be observed in the field due to natural senescence, the results obtained in this work suggested that the cellulose content does not change significantly with respect to age. Data surrounding the hemicellulose and lignin contents, however, were inconclusive as their degree of significance varied with the statistics applied to analyze the raw data.

  4. Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential.

    PubMed

    Takara, Devin; Khanal, Samir Kumar

    2015-01-01

    Napier grass, Pennisetum purpureum, is a high yielding, perennial feedstock that can be harvested year-round in (sub)tropical geographies of the world. Because of its high moisture content (∼ 80%w/w), Napier grass presents a unique opportunity for fractionation into solid and liquid streams, where the extruded cellulosic fibers can serve as a substrate for biofuel production, and the nutrient-rich juice can serve as a substrate for co-product generation. The aim of this study evaluated the effects of biomass age on constituents relevant to biofuel and biobased product generation. Although obvious morphological changes can be observed in the field due to natural senescence, the results obtained in this work suggested that the cellulose content does not change significantly with respect to age. Data surrounding the hemicellulose and lignin contents, however, were inconclusive as their degree of significance varied with the statistics applied to analyze the raw data. PMID:25727997

  5. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of biofuels and bio-based chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An exponential increase in our understanding of genomes, proteomes, and metabolomes provides greater impetus to address critical biotechnological issues such as sustainable production of biofuels and bio-based chemicals and, in particular, the development of improved microbial biocatalysts for use i...

  6. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    PubMed

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). PMID:24361277

  7. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    PubMed

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on).

  8. Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds.

    PubMed

    Billès, Elise; Onwukamike, Kelechukwu N; Coma, Véronique; Grelier, Stéphane; Peruch, Frédéric

    2016-12-10

    Cellulose oligomers are water-soluble, on the contrary to cellulose, which greatly increase their application range. In this study, cellulose oligomers were obtained from the acidic hydrolysis of cellulose with phosphoric acid. The global yield in water-soluble oligomers was around 23% with polymerization degree (DP) ranging from 1 to 12. The cellulose oligomers DP distribution was successfully reduced by differential solubilisation in methanol as one of the goals of this work was to avoid the use of a time-consuming full chromatographic separation. The methanol-soluble oligomers were mainly low DP (≤3). The oligomers of higher molar mass, composed of 42% of cellotetraose and 36% of cellopentaose, were then functionalized and coupled with stearic acid through azide-alkyne click chemistry to obtain amphiphilic compounds. The self-assembly of these new bio-based compounds was finally investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) and their critical micellar concentration (CMC) was found to be in the same range as alkylmaltosides and alkylglucosides. PMID:27577903

  9. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production. PMID:24831706

  10. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production.

  11. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  12. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  13. Biocatalysts and methods for conversion of hemicellulose hydrolysates to biobased products

    SciTech Connect

    Preston, James F

    2015-03-31

    The invention relates to processes and biocatalysts for producing ethanol and other useful products from biomass and/or other materials. Initial processing of lignocellulosic biomass frequently yields methylglucuronoxylose (MeGAX) and related products which are resistant to further processing by common biocatalysts. Strains of Enterobacter asburiae are shown to be useful in bioprocessing of MeGAX and other materials into useful bioproducts such as ethanol, acetate, lactate, and many others. Genetic engineering may be used to enhance production of desired bioproducts.

  14. A synthetic biochemistry module for production of bio-based chemicals from glucose.

    PubMed

    Opgenorth, Paul H; Korman, Tyler P; Bowie, James U

    2016-06-01

    Synthetic biochemistry, the cell-free production of biologically based chemicals, is a potentially high-yield, flexible alternative to in vivo metabolic engineering. To limit costs, cell-free systems must be designed to operate continuously with minimal addition of feedstock chemicals. We describe a robust, efficient synthetic glucose breakdown pathway and implement it for the production of bioplastic. The system's performance suggests that synthetic biochemistry has the potential to become a viable industrial alternative.

  15. A synthetic biochemistry module for production of bio-based chemicals from glucose.

    PubMed

    Opgenorth, Paul H; Korman, Tyler P; Bowie, James U

    2016-06-01

    Synthetic biochemistry, the cell-free production of biologically based chemicals, is a potentially high-yield, flexible alternative to in vivo metabolic engineering. To limit costs, cell-free systems must be designed to operate continuously with minimal addition of feedstock chemicals. We describe a robust, efficient synthetic glucose breakdown pathway and implement it for the production of bioplastic. The system's performance suggests that synthetic biochemistry has the potential to become a viable industrial alternative. PMID:27065234

  16. Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2012-08-01

    Since their discovery almost 60 years ago, Corynebacterium glutamicum and related subspecies are writing a remarkable success story in industrial biotechnology. Today, these gram-positive soil bacteria, traditionally well-known as excellent producers of L-amino acids are becoming flexible, efficient production platforms for various chemicals, materials and fuels. This development is intensively driven by systems metabolic engineering concepts integrating systems biology and synthetic biology into strain engineering.

  17. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals.

    PubMed

    Mehtiö, Tuomas; Toivari, Mervi; Wiebe, Marilyn G; Harlin, Ali; Penttilä, Merja; Koivula, Anu

    2016-10-01

    This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries.

  18. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  19. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Zhang, Xuesong; Liu, Yupeng; Yadavalli, Gayatri; Tang, Juming

    2014-06-01

    The aim of this study is to explore catalytic microwave pyrolysis of lignin for renewable phenols and fuels using activated carbon (AC) as a catalyst. A central composite experimental design (CCD) was used to optimize the reaction condition. The effects of reaction temperature and weight hourly space velocity (WHSV, h(-1)) on product yields were investigated. GC/MS analysis showed that the main chemical compounds of bio-oils were phenols, guaiacols, hydrocarbons and esters, most of which were ranged from 71% to 87% of the bio-oils depending on different reaction conditions. Bio-oils with high concentrations of phenol (45% in the bio-oil) were obtained. The calorific value analysis revealed that the high heating values (HHV) of the lignin-derived biochars were from 20.4 to 24.5 MJ/kg in comparison with raw lignin (19 MJ/kg). The reaction mechanism of this process was analyzed. PMID:24747393

  20. 7 CFR 2902.7 - Determining biobased content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Determining biobased content. 2902.7 Section 2902.7 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT General §...

  1. 75 FR 6795 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... Procurement; Proposed Rule #0;#0;Federal Register / Vol. 75, No. 27 / Wednesday, February 10, 2010 / Proposed...-AA34 Designation of Biobased Items for Federal Procurement AGENCY: Departmental Management, USDA... amend the Guidelines for Designating Biobased Products for Federal Procurement (Guidelines) to add...

  2. Biobased products from soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With recent rises in petroleum crude oil prices to over $50 per barrel and anticipated future price increases as petroleum resources become less available, many applications that depend on petroleum are searching for alternatives. Along with this, more stringent environmental standards, ability to ...

  3. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    NASA Astrophysics Data System (ADS)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  4. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    PubMed Central

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-ichi

    2015-01-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon. PMID:25648201

  5. Assessment of biobased materials

    SciTech Connect

    Chum, H.L.

    1989-12-01

    Biobased materials are polymers derived from renewable resources by chemical or combined chemical and mechanical methods, or produced directly in biological processes. Combinations of renewable and conventional fossil-fuel-derived plastics are also biobased materials. This assessment reviews materials from renewable resources and their properties including major biopolymers produced by plants and selected animal sources. Examples discussed are wood, its polymeric components such as cellulose and lignin, related polymers such as chitin, other carbohydrate polymers such as starch, which when combined with plastics can impart environmental degradability to the resulting material. The conventional role of inexpensive wood flour as a filler is reviewed as well as the future research necessary to bring these materials into a higher value use as a reinforcing material for composites. Automotive, building, and packaging materials applications are considered. Bioproduction of materials is reviewed for selected polymers such as cellulose, other plant cell wall polymers, and proteins, with emphasis on silk and wool. These materials can be produced with specific properties such as biodegradability (e.g., polyhydroxybutyrate and valerate copolymers, polylactide polymers) or specific mechanical properties.

  6. Environmentally friendly and biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased and environmentally friendly lubricants are finding applications in many areas ranging from hydraulic fluids to grease. They offer excellent biodegradability and very low ecotoxicity; high viscosity index; improved tribological properties; lower volatility and flash points relative to petro...

  7. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization.

    PubMed

    Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora

    2016-08-01

    The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization. PMID:27237574

  8. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization.

    PubMed

    Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora

    2016-08-01

    The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization.

  9. Biobased and biodegradable polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  10. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production.

    PubMed

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2016-04-01

    The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production. PMID:26851899

  11. Preparation of biobased sponges from un-tanned hides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of our research endeavors to address ongoing challenges faced by the U.S. hide and leather industries is to develop innovative uses and novel biobased products from hides to improve prospective markets and to secure a viable future for hides and leather industries. We had previously investigate...

  12. 75 FR 63695 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Procurement and Property Management, Room 361, Reporters Building, 300 7th St., SW., Washington, DC 20024; e... preferred procurement of biobased products by Federal agencies (referred to hereafter in this FR notice as the ``preferred procurement program''). This proposed rule can be found at 75 FR 6795. This...

  13. 129Xe NMR studies of biochar made from biobased materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is created by pyrolysis of biobased materials under controlled oxidative environments. The product is charcoal-like and can be used as filtration medium, sequestrant for metallic ions, soil conditioner, and other applications. In our work we have found 129Xe NMR to be an excellent technique...

  14. Development of Biobased Composites of Structural Quality

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher Alan

    Highly biobased composites with properties and costs rivaling those consisting of synthetic constituents are a goal of much current research. The obvious material choices, vegetable oil based resins and natural fibers, present the challenges of poor resin properties and weak fiber/matrix bonding, respectively. Conventional methods of overcoming poor resin quality involve the incorporation of additives, which dilutes the resulting composite's bio-content and increases cost. To overcome these limitations while maintaining high bio-content and low cost, epoxidized sucrose soyate is combined with surface-treated flax fiber to produce biocomposites. These composites are fabricated using methods emphasizing scalability and efficiency, for cost effectiveness of the final product. This approach resulted in the successful production of biocomposites having properties that meet or exceed those of conventional pultruded members. These properties, such as tensile and flexural strengths of 223 and 253 MPa, respectively, were achieved by composites having around 85% bio-content.

  15. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents.

    PubMed

    Lammens, Tijs M; Potting, José; Sanders, Johan P M; De Boer, Imke J M

    2011-10-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well. PMID:21870885

  16. Biobased industrial lubricants and biopreferred program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global chemical industry growth is projected at 3 to 6 percent per year through 2025, while the biobased chemicals market share is expected to grow from 2 to 22 percent and biobased polymers are expected to increase from 0.1 to 10-20 percent market share. Finding a renewable replacement for petrole...

  17. Towards a carbon-negative sustainable bio-based economy

    PubMed Central

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Breusegem, Frank Van; Mey, Marjan De; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy. PMID:23761802

  18. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.

  19. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants. PMID:26906006

  20. Synthesis of biobased succinonitrile from glutamic acid and glutamine.

    PubMed

    Lammens, Tijs M; Le Nôtre, Jérôme; Franssen, Maurice C R; Scott, Elinor L; Sanders, Johan P M

    2011-06-20

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the intermediate 3-cyanopropanoic amide was achieved from glutamic acid 5-methyl ester in an 86 mol% yield and from glutamine in a 56 mol % yield. 3-Cyanopropanoic acid can be converted into succinonitrile, with a selectivity close to 100% and a 62% conversion, by making use of a palladium(II)-catalyzed equilibrium reaction with acetonitrile. Thus, a new route to produce biobased 1,4-diaminobutane has been discovered. PMID:21557494

  1. Bio-based polyurethane foams from renewable resources

    NASA Astrophysics Data System (ADS)

    Stanzione, M.; Russo, V.; Sorrentino, A.; Tesser, R.; Lavorgna, M.; Oliviero, M.; Di Serio, M.; Iannace, S.; Verdolotti, L.

    2016-05-01

    In the last decades, bio-derived natural materials, such as vegetable oils, polysaccharides and biomass represent a rich source of hydroxyl precursors for the synthesis of polyols which can be potentially used to synthesize "greener" polyurethane foams. Herein a bio-based precursor (obtained from succinic acid) was used as a partial replacement of conventional polyol to synthesize PU foams. A mixture of conventional and bio-based polyol in presence of catalysts, silicone surfactant and diphenylmethane di-isocyanate (MDI) was expanded in a mold and cured for two hours at room temperature. Experimental results highlighted the suitability of this bio-precursor to be used in the production of flexible PU foams. Furthermore the chemo-physical characterization of the resulting foams show an interesting improvement in thermal stability and elastic modulus with respect to the PU foams produced with conventional polyol.

  2. Biocatalysis for Biobased Chemicals

    PubMed Central

    de Regil, Rubén; Sandoval, Georgina

    2013-01-01

    The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme’s own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis. PMID:24970192

  3. Biocatalysis for biobased chemicals.

    PubMed

    de Regil, Rubén; Sandoval, Georgina

    2013-01-01

    The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme's own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis. PMID:24970192

  4. Biocatalysis for biobased chemicals.

    PubMed

    de Regil, Rubén; Sandoval, Georgina

    2013-10-17

    The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme's own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis.

  5. Bio-based backsheet

    NASA Astrophysics Data System (ADS)

    Levy, Stanley B.

    2008-08-01

    A primary goal of Photovoltaics is to generate electricity while reducing reliance on the world's petroleum supply. However, PV backsheets are produced from petro-based chemicals, which, to a certain extent, defeat the purpose of using solar energy. Materials from three sustainable resources were targeted for PV backsheet development: PLA made from corn, a cellulosic made from cotton, and a type of nylon made from castor beans. Some of these films were coated with various materials to lower the WVTR. Modules produced using these backsheets were subjected to rigorous testing, including the damp heat test and the wet Hypot test as outlined in UL 1703. As cast PLA film tends to be very brittle. This problem is solved with additives or biaxial orientation. PLA film is UV stable and highly transparent which would merit it for consideration as a front glazing as well as for a backsheet. However, its moisture resistance is not robust. A cellulosic film made from cotton was considered which has a continuous duty temperature rating of 105°C. This product had to be modified significantly to convert it from a hydrophilic film to a hydrophobic one. Additionally, this material has an RTI value of 90°C. Nylon 11, produced from castor beans, is very interesting because it is bio-sustainable, but not biodegradable. It has improved moisture properties over the more common nylons, and has an RTI value of 105°C.

  6. [Progress in biotransformation of bio-based lactic acid ].

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2013-10-01

    Fermentative production of lactic acid, an important bio-based chemicals, has made considerable progress. In addition to the food industry and production of polylactic acid, lactic acid also can be used as an important platform chemical for the production of acrylic acid, pyruvic acid, 1,2-propanediol, and lactic acid esters. This article summarizes the recent progress in biocatalytic production of lactic acid derivatives by dehydration, dehydrogenation, reduction, and esterification. Trends in the biotransformation of lactic acid are also discussed. PMID:24432656

  7. Pioneering a Biobased UAS

    NASA Technical Reports Server (NTRS)

    Block, Eli; Byemerwa, Jovita; Dispenza, Ross; Doughty, Benjamin; Gillyard, KaNesha; Godbole, Poorwa; Gonzalez-Wright, Jeanette; Hull, Ian; Kannappan, Jotthe; Levine, Alexander; Nelakanti, Raman; Ruffner, Lydia; Shumate, Alaina; Sorayya, Aryo; Ugwu, Kyla; Rothschild, Lynn J.

    2015-01-01

    With the exponential growth of interest in unmanned aerial vehicles (UAVs) and their vast array of applications in both space exploration and terrestrial uses such as the delivery of medicine and monitoring the environment, the 2014 Stanford-Brown-Spelman iGEM team is pioneering the development of a fully biological UAV for scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities - for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight - these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material's systemic biodegradation. In addition, we aim to use an "amberless" system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment. So far, we have: successfully transformed Gluconacetobacter hansenii, a cellulose-producing bacterium, with a series of promoters to test transformation efficiency before adding the acetylation genes; isolated protein bands present in the wasp nest material; transformed the cellulose-degrading genes into Escherichia coli; and we have confirmed that the amberless construct prevents protein expression in wild-type cells. In addition, as part of our

  8. Structure-triboproperty in biobased amphiphiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils and their derivatives are amphiphilic and display a number of properties critical to their application in tribological processes. Among such properties are: viscosity, viscosity index, oxidation stability, cold flow, boundary friction, etc. The properties of these biobased amphiphiles...

  9. Synergy between bio-based industry and the feed industry through biorefinery.

    PubMed

    Teekens, Amanda M; Bruins, Marieke E; van Kasteren, Johannes Mn; Hendriks, Wouter H; Sanders, Johan Pm

    2016-06-01

    Processing biomass into multi-functional components can contribute to the increasing demand for raw materials for feed and bio-based non-food products. This contribution aims to demonstrate synergy between the bio-based industry and the feed industry through biorefinery of currently used feed ingredients. Illustrating the biorefinery concept, rapeseed was selected as a low priced feed ingredient based on market prices versus crude protein, crude fat and apparent ileal digestible lysine content. In addition it is already used as an alternative protein source in diets and can be cultivated in European climate zones. Furthermore, inclusion level of rapeseed meal in pig diet is limited because of its nutritionally active factors. A conceptual process was developed to improve rapeseeds nutritional value and producing other bio-based building blocks simultaneously. Based on the correlation between market prices of feed ingredients and its protein and fat content, the value of refined products was estimated. Finally, a sensitivity analysis, under two profit scenario, shows that the process is economically feasible. This study demonstrates that using biorefinery processes on feed ingredients can improve feed quality. In conjunction, it produces building blocks for a bio-based industry and creates synergy between bio-based and feed industry for more efficient use of biomass. © 2015 Society of Chemical Industry.

  10. Boron brings big benefits to bio-based blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solution to the problems with bio-based lubrication can be approached by a combination of blending and additive strategies. However, many additives do not show efficacy when used in bio-based lubricants. Additive addition also lowers the bio-based content of the blend, which in turn limits the a...

  11. Development of expert system for biobased polymer material selection: food packaging application.

    PubMed

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.

  12. 7 CFR 3201.70 - Hair care products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased contents for the Federal...

  13. 7 CFR 3201.70 - Hair care products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased contents for the Federal...

  14. 7 CFR 3201.70 - Hair care products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased contents for the Federal...

  15. Biobased polyurethanes prepared from different vegetable oils.

    PubMed

    Zhang, Chaoqun; Madbouly, Samy A; Kessler, Michael R

    2015-01-21

    In this study, a series of biobased polyols were prepared from olive, canola, grape seed, linseed, and castor oil using a novel, solvent/catalyst-free synthetic method. The biobased triglyceride oils were first oxidized into epoxidized vegetable oils with formic acid and hydrogen peroxide, followed by ring-opening reaction with castor oil fatty acid. The molecular structures of the polyols and the resulting polyurethane were characterized. The effects of cross-linking density and the structures of polyols on the thermal, mechanical, and shape memory properties of the polyurethanes were also investigated.

  16. Biobased polyurethanes prepared from different vegetable oils.

    PubMed

    Zhang, Chaoqun; Madbouly, Samy A; Kessler, Michael R

    2015-01-21

    In this study, a series of biobased polyols were prepared from olive, canola, grape seed, linseed, and castor oil using a novel, solvent/catalyst-free synthetic method. The biobased triglyceride oils were first oxidized into epoxidized vegetable oils with formic acid and hydrogen peroxide, followed by ring-opening reaction with castor oil fatty acid. The molecular structures of the polyols and the resulting polyurethane were characterized. The effects of cross-linking density and the structures of polyols on the thermal, mechanical, and shape memory properties of the polyurethanes were also investigated. PMID:25541678

  17. Composites and blends from biobased materials

    SciTech Connect

    Kelley, S.S.

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  18. Encapsulation of a model compound in pectin delays its release from a biobased polymeric material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model compound was encapsulated in pectin and then extruded with thermoplastic starch to form a composite. The intended product was a food-contact tray made of biobased polymers infused with an anti-microbial agent; however, caffeine was used as the model compound in the preliminary work. The mode...

  19. The physical properties, morphology and viscoelasticity of biobased sponges prepared from un-tanned hides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of our research endeavors to address ongoing challenges faced by the U.S. hide and leather industries is to develop innovative uses and novel biobased products from hides to improve prospective markets and to secure a viable future for hides and leather industries. We had previously investigate...

  20. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.

    PubMed

    Iwata, Tadahisa

    2015-03-01

    Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems.

  1. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of packaging materials from renewable resources has for a long time been desirable for sustainability reasons, but with the recent explosion in prices of petroleum products, this now becomes also more economically viable. This paper shows how fundamental chemistry underlying three forms ...

  2. Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate).

    PubMed

    Wang, Caixia; Ming, Wei; Yan, Daojiang; Zhang, Congcong; Yang, Maohua; Liu, Yilan; Zhang, Yu; Guo, Baohua; Wan, Yinhua; Xing, Jianmin

    2014-03-01

    Succinic acid was produced in a novel membrane-based fermentation and separation integrated system. With this integrated system, product inhibition was alleviated by removing acids and replenishing fresh broth. High cell density maintain for a longer time from 75 to 130h and succinic acid concentration increased from 53 to 73g/L. In the developed separation process, succinic acid was crystallized at a recovery of 85-90%. The purity of the obtained succinic acid crystals reached 99.4% as found by HPLC and (1)H NMR analysis. A crystallization experiment indicated that among by-products glucose had a negative effect on succinic acid crystallization. Poly (butylene succinate) (PBS) was synthesized using the purified succinic acid and (1)H NMR analysis confirmed that the composition of the synthesized PBS is in agreement with that from petro-based succinic acid.

  3. Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate).

    PubMed

    Wang, Caixia; Ming, Wei; Yan, Daojiang; Zhang, Congcong; Yang, Maohua; Liu, Yilan; Zhang, Yu; Guo, Baohua; Wan, Yinhua; Xing, Jianmin

    2014-03-01

    Succinic acid was produced in a novel membrane-based fermentation and separation integrated system. With this integrated system, product inhibition was alleviated by removing acids and replenishing fresh broth. High cell density maintain for a longer time from 75 to 130h and succinic acid concentration increased from 53 to 73g/L. In the developed separation process, succinic acid was crystallized at a recovery of 85-90%. The purity of the obtained succinic acid crystals reached 99.4% as found by HPLC and (1)H NMR analysis. A crystallization experiment indicated that among by-products glucose had a negative effect on succinic acid crystallization. Poly (butylene succinate) (PBS) was synthesized using the purified succinic acid and (1)H NMR analysis confirmed that the composition of the synthesized PBS is in agreement with that from petro-based succinic acid. PMID:24472699

  4. Mixed film lubrication with biobased oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most tribological processes (e.g. metalworking), occur in the mixed film regime where the boundary and hydrodynamic properties of the oils play critical roles. In the work described here, the boundary and hydrodynamic properties of various biobased oils were evaluated. The oils were then investiga...

  5. Biobased thioethers as metal-absorbing ligands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils have been reacted with thiols (mercaptans) to form biobased thioether-functionalized vegetable oils (TFVO). TFVO were efficient in the extraction of a model heavy-metal ion (Ag+) from an aqueous solution. TFVO, prepared from corn oil, was capable of reducing Ag+ concentration from 600...

  6. Latent heat characteristics of biobased oleochemical carbonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleochemical carbonates represent biobased materials that can be readily prepared through a carbonate interchange reaction between renewably available C10-C18 fatty alcohols. Although these carbonates have commercial use in cosmetics and lubricant applications, they have not been examined as phase ...

  7. Biobased polymers for corrosion protection of metals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  8. Early-stage comparative sustainability assessment of new bio-based processes.

    PubMed

    Patel, Akshay D; Meesters, Koen; den Uil, Herman; de Jong, Ed; Worrell, Ernst; Patel, Martin K

    2013-09-01

    Our increasing demand for materials and energy has put critical roadblocks on our path towards a sustainable society. To remove these roadblocks, it is important to engage in smart research and development (R&D). We present an early-stage sustainability assessment framework that is used to analyze eight new bio-based process alternatives developed within the CatchBio research consortium in the Netherlands. This assessment relies on a multi-criteria approach, integrating the performance of chemical conversions based on five indicators into an index value. These indicators encompass economics, environmental impact, hazards and risks thereby incorporating elements of green chemistry principles, and techno-economic and life cycle assessments. The analyzed bio-based options target the production of fuels and chemicals through chemical catalysis. For each bio-based process, two R&D stages (current laboratory and expected future) are assessed against a comparable conventional process. The multi-criteria assessment in combination with the uncertainty and scenario analysis shows that the chemical production processes using biomass as feedstock can provide potential sustainability benefits over conventional alternatives. However, further development is necessary to realize the potential benefits from biomass gasification and pyrolysis processes for fuel production. This early stage assessment is intended as an input for R&D decision making to support optimal allocation and utilization of resources to further develop promising bio-based processes. PMID:24078179

  9. Center for BioBased Binders and Pollution Reduction Technology

    SciTech Connect

    Thiel, Jerry

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  10. Scenario projections for future market potentials of biobased bulk chemicals.

    PubMed

    Dornburg, Veronika; Hermann, Barbara G; Patel, Martin K

    2008-04-01

    Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. These scenarios assume benign, moderate, and disadvantageous conditions for biobased chemicals. The scenario analysis yields a broad range of values for the possible market development of white biotechnology chemicals, that is, resulting in a share of white biotechnology chemicals relative to all organic chemicals of about 7 (or 5 million tonnes), 17.5 (or 26 million tonnes), or 38% (or 113 million tonnes) in 2050. We conclude that under favorable conditions, white biotechnology enables substantial savings of nonrenewable energy use (NREU) and greenhouse gas (GHG) emissions compared to the energy use of the future production of all organic chemicals from fossil resources. Savings of NREU reach up to 17% for starch crops and up to 31% for lignocellulosic feedstock by 2050, and saving percentages for GHG emissions are in a similar range. Parallel to these environmental benefits, economic advantages of up to 75 billion Euro production cost savings arise. PMID:18504951

  11. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa

    2016-03-01

    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  12. Investigation of tribological properties of biobased polymers and polymeric composites

    NASA Astrophysics Data System (ADS)

    Bhuyan, Satyam Kumar

    Worldwide potential demands for replacing petroleum derived raw materials with renewable plant-based ones in the production of valuable polymeric materials and composites are quite significant from the social and environmental standpoints. Therefore, using low-cost renewable resources has deeply drawn the attention of many researchers. Among them, natural oils are expected to be ideal alternative feedstock since oils, derived from plant and animal sources, are found in profusion in the world. The important feature of these types of materials is that they can be designed and tailored to meet different requirements. The real challenge lies in finding applications which would use sufficiently large quantities of these materials allowing biodegradable polymers to compete economically in the market. Lack of material and tribological characterizations have created an awareness to fulfill this essential objective. In order to understand the viability of biobased polymers in structural applications, this thesis work elucidates the study of friction and wear characteristics of polymers and polymeric composites made out of natural oil available profusely in plants and animals. The natural oils used in this study were soybean and tung oil. Various monomeric components like styrene, divinely benzene etc. were used in the synthesis of biobased polymers through Rh-catalyzed isomerization techniques. For the different polymeric composites, spent germ, a byproduct of ethanol production, is used as the filler and an organoclay called montmorillonite is used as the reinforcing agent in the polymer matrix. The effect of crosslinker concentration, filler composition and reinforcement agent concentration was studied under dry sliding. A ball-on-flat tribometer with a probe made out of steel, silicon nitride or diamond was used for most of the experimental work to measure friction and generate wear. The wear tracks were quantified with an atomic force microscope and a contact

  13. Biobased greases: soap structure and composition effects on tribological properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review containing 58 references on bio-based grease. Bio-based grease use is limited but a successful part of the lubricant market and will likely grow considerably due to economic, environmental and legislative factors. There is not one formulation of grease or grease thickener that will be suc...

  14. Bio-based Polymer Foam from Soyoil

    NASA Astrophysics Data System (ADS)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  15. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.

    PubMed

    Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia

    2016-04-01

    The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications.

  16. Synthesis of bio-based aldehyde from seaweed polysaccharide and its interaction with bovine serum albumin.

    PubMed

    Kholiya, Faisal; Chaudhary, Jai Prakash; Vadodariya, Nilesh; Meena, Ramavatar

    2016-10-01

    Here, we demonstrate a successful synthesis of bio-based aldehyde namely dialdehyde-carboxymethylagarose (DCMA) using carboxymethyagarose (CMA). Further reaction parameters (i.e. reaction temperature, pH and periodate concentration) were optimized to achieve maximum aldehyde content and product yield. The synthesis of DCMA was confirmed by employing FTIR, (1)H NMR, XRD, SEM, AFM, TGA, DSC, EA and GPC techniques. To investigate the aldehyde functionality, DCMA was allowed to interact with BSA and obtained results were found to be comparable with that of synthetic aldehyde (Formaldehyde). Further interaction of DCMA with BSA was confirmed by using UV-vis, FTIR, fluorescent spectroscopy, CD and DLS analysis. Results of this study revealed that bio-based aldehyde behaves like formaldehyde. This study adds value to abundant marine biopolymers and opens the new research area for polymer researchers. PMID:27312639

  17. From petrochemistry to biotech: a European perspective on the bio-based economy

    PubMed Central

    Landeweerd, Laurens; Surette, Monique; van Driel, Corry

    2011-01-01

    This paper gives an account of the issues at play in Europe with regard to the transition to a bio-based economy. Agricultural crops have always been used for the production of food, feed, fibre and fuel. The Model T Ford—the first mass produced car—originally ran on bioethanol, and wood has been in use as a source for energy ever since the discovery of fire. What is new is that the balance between agricultural uses is changing under the pressure of an increasing need for food and feed, as well as the new need for biofuels and biomaterials. At the basis of this change lie several serious issues related to the current use of bio-based feedstock to secure energy supply, the future depletion of natural resources and global climate change. Innovations in industrial biotechnology are expected to play a crucial role in dealing with these issues in biomass use.

  18. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.

    PubMed

    Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia

    2016-04-01

    The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. PMID:26806112

  19. [Research progress in salting-out extraction of bio-based chemicals].

    PubMed

    Dai, Jianying; Liu, Chunjiao; Sun, Yaqin; Xiu, Zhilong

    2013-10-01

    Bio-refinery using cheap biomass focuses mainly on strain improvement and fermentation strategies whereas less effort is made on down-stream processing. Using cheap biomass more impurities are introduced into the fermentation broths than mono-sugar substrate, thus down-stream processing for bio-based chemicals becomes the key problem in industrial production. The technique called salting-out extraction (SOE) was introduced in this review, which is used to separate target products from fermentation broth on the basis of partition difference of chemicals in two phases formed by mixing salts and organic solvents (or amphipathic chemicals) with broth at suitable ratios. The effect of solvents and salts on the formation of two aqueous phases, especially short chain alcohols and inorganic salts, and the application of SOE in recovery of bio-based chemicals, such as lactic acid, 1,3-propanediol, 2,3-butanediol and acetoin were summarized. The bio-chemicals were efficiently recovered from fermentation broth, and most of the impurities (cells and proteins) were removed in the same step. This technique is promising in the separation of bio-based chemicals, especially the recovery of hydrophilic molecules with low molecular weights.

  20. [Research progress in salting-out extraction of bio-based chemicals].

    PubMed

    Dai, Jianying; Liu, Chunjiao; Sun, Yaqin; Xiu, Zhilong

    2013-10-01

    Bio-refinery using cheap biomass focuses mainly on strain improvement and fermentation strategies whereas less effort is made on down-stream processing. Using cheap biomass more impurities are introduced into the fermentation broths than mono-sugar substrate, thus down-stream processing for bio-based chemicals becomes the key problem in industrial production. The technique called salting-out extraction (SOE) was introduced in this review, which is used to separate target products from fermentation broth on the basis of partition difference of chemicals in two phases formed by mixing salts and organic solvents (or amphipathic chemicals) with broth at suitable ratios. The effect of solvents and salts on the formation of two aqueous phases, especially short chain alcohols and inorganic salts, and the application of SOE in recovery of bio-based chemicals, such as lactic acid, 1,3-propanediol, 2,3-butanediol and acetoin were summarized. The bio-chemicals were efficiently recovered from fermentation broth, and most of the impurities (cells and proteins) were removed in the same step. This technique is promising in the separation of bio-based chemicals, especially the recovery of hydrophilic molecules with low molecular weights. PMID:24432659

  1. Life-cycle analysis of bio-based aviation fuels.

    PubMed

    Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q

    2013-12-01

    Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results.

  2. Development of novel multifunctional biobased polymer composites with tailored conductive network of micro-and-nano-fillers

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Ghaffari, Shahriar; Naguib, Hani E.

    2013-04-01

    Biobased/green polymers and nanotechnology warrant a multidisciplinary approach to promote the development of the next generation of materials, products, and processes that are environmentally sustainable. The scientific challenge is to find the suitable applications, and thereby to create the demand for large scale production of biobased/green polymers that would foster sustainable development of these eco-friendly materials in contrast to their petroleum/fossil fuel derived counterparts. In this context, this research aims to investigate the synergistic effect of green materials and nanotechnology to develop a new family of multifunctional biobased polymer composites with promoted thermal conductivity. For instance, such composite can be used as a heat management material in the electronics industry. A series of parametric studies were conducted to elucidate the science behind materials behavior and their structure-toproperty relationships. Using biobased polymers (e.g., polylactic acid (PLA)) as the matrix, heat transfer networks were developed and structured by embedding hexagonal boron nitride (hBN) and graphene nanoplatelets (GNP) in the PLA matrix. The use of hybrid filler system, with optimized material formulation, was found to promote the composite's effective thermal conductivity by 10-folded over neat PLA. This was achieved by promoting the development of an interconnected thermally conductive network through structuring hybrid fillers. The thermally conductive composite is expected to afford unique opportunities to injection mold three-dimensional, net-shape, lightweight, and eco-friendly microelectronic enclosures with superior heat dissipation performance.

  3. [Research and industrialization of biobased materials in China].

    PubMed

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews the research and commercialization progresses of biobased polymeric materials including polyhydroxyalkanoates (PHA), polylactides (PLA), poly (butylene succinate) (PBS) and its monomer succinate, and CO2 copolymer poly (propylene carbonate), especially these efforts made in China. PMID:26672370

  4. Bio-based polycarbonate as synthetic toolbox.

    PubMed

    Hauenstein, O; Agarwal, S; Greiner, A

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  5. Bio-based polycarbonate as synthetic toolbox

    NASA Astrophysics Data System (ADS)

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-06-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity.

  6. Bio-based polycarbonate as synthetic toolbox.

    PubMed

    Hauenstein, O; Agarwal, S; Greiner, A

    2016-06-15

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity.

  7. Bio-based polycarbonate as synthetic toolbox

    PubMed Central

    Hauenstein, O.; Agarwal, S.; Greiner, A.

    2016-01-01

    Completely bio-based poly(limonene carbonate) is a thermoplastic polymer, which can be synthesized by copolymerization of limonene oxide (derived from limonene, which is found in orange peel) and CO2. Poly(limonene carbonate) has one double bond per repeating unit that can be exploited for further chemical modifications. These chemical modifications allow the tuning of the properties of the aliphatic polycarbonate in nearly any direction. Here we show synthetic routes to demonstrate that poly(limonene carbonate) is the perfect green platform polymer, from which many functional materials can be derived. The relevant examples presented in this study are the transformation from an engineering thermoplastic into a rubber, addition of permanent antibacterial activity, hydrophilization and even pH-dependent water solubility of the polycarbonate. Finally, we show a synthetic route to yield the completely saturated counterpart that exhibits improved heat processability due to lower reactivity. PMID:27302694

  8. To be, or not to be biodegradable… that is the question for the bio-based plastics.

    PubMed

    Prieto, Auxiliadora

    2016-09-01

    Global warming, market and production capacity are being the key drivers for selecting the main players for the next decades in the market of bio-based plastics. The drop-in bio-based polymers such as the bio-based polyethylene terephtalate (PET) or polyethylene (PE), chemically identical to their petrochemical counterparts but having a component of biological origin, are in the top of the list. They are followed by new polymers such as PHA and PLA with a significant market growth rate since 2014 with projections to 2020. Research will provide improved strains designed through synthetic and systems biology approaches; furthermore, the use of low-cost substrates will contribute to the widespread application of these bio- based polymers. The durability of plastics is not considered anymore as a virtue, and interesting bioprospecting strategies to isolate microorganisms for assimilating the recalcitrant plastics will pave the way for in vivo strategies for plastic mineralization. In this context, waste management of bio-based plastic will be one of the most important issues in the near future in terms of the circular economy. There is a clear need for standardized labelling and sorting instructions, which should be regulated in a coordinated way by policymakers and material producers. PMID:27477765

  9. To be, or not to be biodegradable… that is the question for the bio-based plastics.

    PubMed

    Prieto, Auxiliadora

    2016-09-01

    Global warming, market and production capacity are being the key drivers for selecting the main players for the next decades in the market of bio-based plastics. The drop-in bio-based polymers such as the bio-based polyethylene terephtalate (PET) or polyethylene (PE), chemically identical to their petrochemical counterparts but having a component of biological origin, are in the top of the list. They are followed by new polymers such as PHA and PLA with a significant market growth rate since 2014 with projections to 2020. Research will provide improved strains designed through synthetic and systems biology approaches; furthermore, the use of low-cost substrates will contribute to the widespread application of these bio- based polymers. The durability of plastics is not considered anymore as a virtue, and interesting bioprospecting strategies to isolate microorganisms for assimilating the recalcitrant plastics will pave the way for in vivo strategies for plastic mineralization. In this context, waste management of bio-based plastic will be one of the most important issues in the near future in terms of the circular economy. There is a clear need for standardized labelling and sorting instructions, which should be regulated in a coordinated way by policymakers and material producers.

  10. Novel bio-based and biodegradable polymer blends

    NASA Astrophysics Data System (ADS)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  11. A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals.

    PubMed

    Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai

    2015-12-01

    In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry.

  12. A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals.

    PubMed

    Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai

    2015-12-01

    In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. PMID:26614653

  13. Development of a cleaner, durable and ash-less biobased firelogs from grass clippings and other agricultural derived residues with plant wax as a binder and starter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invention describes the development of a firelong, mini-firelog, stove pellet and fire-starter comprised of all-natural renewable resources. Besides being totally biobased, developed logs have several distinct advantages. The developed product utilizes renewable biomass as a raw material, prod...

  14. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased l-Phenylalanine to High-Value Chiral Chemicals.

    PubMed

    Zhou, Yi; Wu, Shuke; Li, Zhi

    2016-09-12

    Sustainable synthesis of useful and valuable chiral fine chemicals from renewable feedstocks is highly desirable but remains challenging. Reported herein is a designed and engineered set of unique non-natural biocatalytic cascades to achieve the asymmetric synthesis of chiral epoxide, diols, hydroxy acid, and amino acid in high yield and with excellent ee values from the easily available biobased l-phenylalanine. Each of the cascades was efficiently performed in one pot by using the cells of a single recombinant strain over-expressing 4-10 different enzymes. The cascade biocatalysis approach is promising for upgrading biobased bulk chemicals to high-value chiral chemicals. In addition, combining the non-natural enzyme cascades with the natural metabolic pathway of the host strain enabled the fermentative production of the chiral fine chemicals from glucose. PMID:27512928

  15. 76 FR 6366 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... the event we receive significant adverse comment and withdraw the direct final rule. DATES: USDA will... procurement program on December 19, 2003 (68 FR 70730-70746). The Guidelines were promulgated on January 11, 2005 (70 FR 1792), and are contained in 7 CFR part 2902, ``Guidelines for Designating Biobased...

  16. Hydrogenated cottonseed oil as raw material for biobased materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a lot of recent interest in using vegetable oils as biodegradable and renewable raw materials for the syntheses of various biobased materials. Although most of the attention has been paid to soybean oil thus far, cottonseed oil is a viable alternative. An advantage of cottonseed oil...

  17. Development of biobased sandwich structures for mass transit application

    NASA Astrophysics Data System (ADS)

    Munusamy, Sethu Raaj

    Efforts to increase the biobased content in sandwich composites are being investigated to reduce the dependence on synthetically produced or mined, energy-intensive materials for numerous composite applications. Vegetable oil-based polyurethane foams are gaining recognition as good substitutes for synthetic counter parts while utilizing bast fiber to replace fiberglass is also gaining credence. In this study, soy oil-based polyurethane foam was evaluated as a core in a sandwich construction with facesheets of hybridized kenaf and E-glass fibers in a vinyl ester resin matrix to replace traditionally used plywood sheeting on steel frame for mass transit bus flooring systems. As a first step towards implementation, the static performance of the biobased foam was compared to 100% synthetic foam. Secondly, biobased sandwich structures were processed and their static performance was compared to plywood. The biobased sandwich composites designed and processed were shown to hold promise towards replacing plywood for bus flooring applications by displaying an increase of 130% for flexural strength and 135% for flexural modulus plus better indentation values.

  18. Biobased oil structure on amphiphilic and tribological properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased oils are those derived from farm-based renewable raw materials. Most are vegetable oils (such as soybean, canola, corn, etc.) or chemical modifications of vegetable oils. They have a number of interesting structural features that impact their amphiphilic and lubrication properties. The basi...

  19. 76 FR 41179 - Federal Acquisition Regulation; Biobased Procurements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... 52 RIN 9000-AM03 Federal Acquisition Regulation; Biobased Procurements AGENCY: Department of Defense... following methods: Regulations.gov : http://www.regulations.gov . Submit comments via the Federal e... INFORMATION CONTACT: Mr. William Clark, Procurement Analyst, at (202) 219-1813 for clarification of...

  20. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods.

    PubMed

    Cutter, Catherine Nettles

    2006-09-01

    It has been well documented that vacuum or modified atmosphere packaging materials, made from polyethylene- or other plastic-based materials, have been found to improve the stability and safety of raw or further processed muscle foods. However, recent research developments have demonstrated the feasibility, utilization, and commercial application of a variety of bio-based polymers or bio-polymers made from a variety of materials, including renewable/sustainable agricultural commodities, and applied to muscle foods. A variety of these bio-based materials have been shown to prevent moisture loss, drip, reduce lipid oxidation and improve flavor attributes, as well as enhancing the handling properties, color retention, and microbial stability of foods. With consumers demanding more environmentally friendly packaging and a desire for more natural products, bio-based films or bio-polymers will continue to play an important role in the food industry by improving the quality of many products, including fresh or further processed muscle foods. PMID:22062722

  1. Structure Property Relationships of Biobased Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  2. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    PubMed

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  3. Synthesis, properties and applications of bio-based materials

    NASA Astrophysics Data System (ADS)

    Srinivasan, Madhusudhan

    Bio-based feedstock have become very significant as they offer a value proposition in terms of carbon balance and also in terms of endowing biodegradability where needed. Thus a lot of attention is being given to the modification such feedstock for different applications. Soybean oil is one such feedstock. The oil is a triglyceride ester composed of different fatty acids, which are common to other plant oils. Thus soybean oil serves as a platform for plant oils, as modifications of this oil, can in theory be extended to cover other plant oils. Methyl oleate was used as a model fatty acid ester, to synthesize hydroxyesters with ethylene glycol via a two stage oxidative cleavage of the double bonds. Ozone was chosen as the oxidant due to its many advantages. The first stage involved oxidation of the double bond to aldehydes, ozonides and acetals, which were subsequently converted to hydroxyesters (hydroxy values of 220 - 270) in near quantitative yield by treatment with Oxone. This method could be extended to soybean oil to make "polyols" which could find applications in resin syntheses. Silylation was employed as another platform to functionalize soybean oil and fatty acid methyl esters with a reactive silane (vinyltrimethoxy silane). This simple modification produced materials that are cured by atmospheric moisture and are useful as coatings. The silylation was controlled by varying the grafting time, cure temperature and the concentration of the silane. Products with gel content as high as 90% could be achieved. The coating exhibited good adhesion to metal, glass, concrete and paper. Steel panels coated with these coatings exhibited good stability against corrosion in high humidity conditions and moderate stability against a salt spray. The silylation was also successfully utilized to improve the tensile strength of the blend of biodegradable polyester, poly (butylene adipate-co-terephthalate) with talc. A reactive extrusion process was employed to graft vinyl

  4. Processing and characterization of bio-based composites

    NASA Astrophysics Data System (ADS)

    Lu, Hong

    Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.

  5. Pilot-scale production of washed cottonseed meal and co-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced utilization of defatted cottonseed meal (CSM)-based products as industrial and biobased raw materials would increase the profitability of cotton growers and processors. Especially, water washed cottonseed meal has been shown the potential as a biobased wood adhesive. In this work, we propos...

  6. 78 FR 46794 - Federal Acquisition Regulation; Update to Biobased Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE... biobased report to a new Governmentwide Web site instead of the agency environmental point of contact. DATE... instructions for the annual biobased report; the reports will be submitted to a new Web site rather than to...

  7. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  8. 7 CFR 3201.62 - Bath products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No later than...

  9. 7 CFR 3201.62 - Bath products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No later than...

  10. 7 CFR 3201.67 - Dishwashing products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No...

  11. 7 CFR 3201.62 - Bath products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No later than...

  12. 7 CFR 3201.67 - Dishwashing products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No...

  13. 7 CFR 3201.95 - Shaving products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance...

  14. 7 CFR 3201.95 - Shaving products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance...

  15. 7 CFR 3201.67 - Dishwashing products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. (c) Preference compliance date. No...

  16. Biobased lubricant additives derived from limonene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limonene is a natural product widely found in many plants as a constituent of “essential oils.” It is commercially produced as a byproduct of the citrus industry from processing of fruits such as oranges, lemons, lime, tangerines, mandarins, and grapefruits. Limonene is a C10 hydrocarbon with a com...

  17. Biobased flocculants derived from animal processing protein by-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic polymeric flocculants are class of substances that are widely used to facilitate the removal of particles or colloidal material from a liquid. Sustainable alternatives for these substances are needed. Past attempts to use biological polymers as flocculants have shown limited success. This ...

  18. An attempt towards simultaneous biobased solvent based extraction of proteins and enzymatic saccharification of cellulosic materials from distiller's grains and solubles.

    SciTech Connect

    Datta, S.; Bals, B. D.; Lin, Y. J.; Negri, M. C.; Datta, R.; Pasieta, L.; Ahmad, S. F.; Moradia, A. A.; Dale, B. E.; Snyder, S. W.; Energy Systems; Michigan State Univ.; Vertec BioSolvents Inc.; Illinois Mathematics and Science Academy

    2010-07-01

    Distiller's grains and solubles (DGS) is the major co-product of corn dry mill ethanol production, and is composed of 30% protein and 30-40% polysaccharides. We report a strategy for simultaneous extraction of protein with food-grade biobased solvents (ethyl lactate, d-limonene, and distilled methyl esters) and enzymatic saccharification of glucan in DGS. This approach would produce a high-value animal feed while simultaneously producing additional sugars for ethanol production. Preliminary experiments on protein extraction resulted in recovery of 15-45% of the protein, with hydrophobic biobased solvents obtaining the best results. The integrated hydrolysis and extraction experiments showed that biobased solvent addition did not inhibit hydrolysis of the cellulose. However, only 25-33% of the total protein was extracted from DGS, and the extracted protein largely resided in the aqueous phase, not the solvent phase. We hypothesize that the hydrophobic solvent could not access the proteins surrounded by the aqueous phase inside the fibrous structure of DGS due to poor mass transfer. Further process improvements are needed to overcome this obstacle.

  19. Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis

    PubMed Central

    Block, David E.; Shoemaker, Sharon P.; Mills, David A.

    2010-01-01

    Commercialization of lignocellulosic biomass as a feedstock for bio-based chemical production is problematic due to the high processing costs of pretreatment and saccharifying enzymes combined with low product yields. Such low product yield can be attributed, in large part, to the incomplete utilization of the various carbohydrate sugars found in the lignocellulosic biomass. In this study, we demonstrate that Lactobacillus brevis is able to simultaneously metabolize all fermentable carbohydrates in acid pre-processed rice straw hydrolysate, thereby allowing complete utilization of all released sugars. Inhibitors present in rice straw hydrolysate did not affect lactic acid production. Moreover, the activity of exogenously added cellulases was not reduced in the presence of growing cultures of L. brevis. These factors enabled the use of L. brevis in a process termed simultaneous saccharification and mixed sugar fermentation (SSMSF). In SSMSF with L. brevis, sugars present in rice straw hydrolysate were completely utilized while the cellulase maintained its maximum activity due to the lack of feedback inhibition from glucose and/or cellobiose. By comparison to a sequential hydrolysis and fermentation process, SSMSF reduced operation time and the amount of cellulase enzyme necessary to produce the same amount of lactic acid. PMID:20084509

  20. Design, characterization and modeling of biobased acoustic foams

    NASA Astrophysics Data System (ADS)

    Ghaffari Mosanenzadeh, Shahrzad

    Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube

  1. How people feel their engagement can have efficacy for a bio-based society.

    PubMed

    Sleenhoff, Susanne; Osseweijer, Patricia

    2016-08-01

    Up till now, the transition to a bio-based economy mainly involves expert stakeholders. However, the actions required are of a collective scale necessitating public engagement for support and action. Such engagement is only successful if members of the public believe their participation holds efficacy. This belief is closely linked to their personal representation of the issue. We report findings from our Q methodology workshop that explored public's efficacy beliefs on their perceived ways for engagement with a bio-based economy. Participants were provided with stakeholders' visual representations depicting a concourse of the transition to a bio-based economy for Q sorting. We found five efficacy beliefs that differ in scale on which participants consider themselves capable for action. These results indicate that members of the public foresee distinct and shared ways and levels in how they can engage with the transition to a bio-based society that do not always concur with stakeholders' views.

  2. Bio-Based Solvents for Green Extraction of Lipids from Oleaginous Yeast Biomass for Sustainable Aviation Biofuel.

    PubMed

    Breil, Cassandra; Meullemiestre, Alice; Vian, Maryline; Chemat, Farid

    2016-01-01

    Lipid-based oleaginous microorganisms are potential candidates and resources for the sustainable production of biofuels. This study was designed to evaluate the performance of several alternative bio-based solvents for extracting lipids from yeasts. We used experimental design and simulation with Hansen solubility simulations and the conductor-like screening model for realistic solvation (COSMO-RS) to simulate the solubilization of lipids in each of these solvents. Lipid extracts were analyzed by high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes and gas chromatography coupled with a flame ionization detector (GC/FID) to obtain fatty acid profiles. Our aim was to correlate simulation with experimentation for extraction and solvation of lipids with bio-based solvents in order to make a preliminary evaluation for the replacement of hexane to extract lipids from microorganisms. Differences between theory and practice were noted for several solvents, such as CPME, MeTHF and ethyl acetate, which appeared to be good candidates to replace hexane. PMID:26861274

  3. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    SciTech Connect

    Gustafson, Richard

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process control Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  4. Mango and acerola pulps as antioxidant additives in cassava starch bio-based film.

    PubMed

    Souza, Carolina O; Silva, Luciana T; Silva, Jaff R; López, Jorge A; Veiga-Santos, Pricila; Druzian, Janice I

    2011-03-23

    The objective of this study was to investigate the feasibility of incorporating mango and acerola pulps into a biodegradable matrix as a source of polyphenols, carotenoids, and other antioxidant compounds. We also sought to evaluate the efficacy of mango and acerola pulps as antioxidants in film-forming dispersions using a response surface methodology design experiment. The bio-based films were used to pack palm oil (maintained for 45 days of storage) under accelerated oxidation conditions (63% relative humidity and 30 °C) to simulate a storage experiment. The total carotenoid, total polyphenol, and vitamin C contents of films were evaluated, while the total carotenoid, peroxide index, conjugated diene, and hexanal content of the packaged product (palm oil) were also monitored. The same analysis also evaluated palm oil packed in films without antioxidant additives (C1), palm oil packed in low-density polyethylene films (C2), and palm oil with no package (C3) as a control. Although the film-forming procedure affected the antioxidant compounds, the results indicated that antioxidants were effective additives for protecting the packaged product. A lower peroxide index (36.12%), which was significantly different from that of the control (p<0.05), was detected in products packed in film formulations containing high concentration of additives. However, it was found that the high content of vitamin C in acerola pulp acted as a prooxidant agent, which suggests that the use of rich vitamin C pulps should be avoided as additives for films. PMID:21361289

  5. Mango and acerola pulps as antioxidant additives in cassava starch bio-based film.

    PubMed

    Souza, Carolina O; Silva, Luciana T; Silva, Jaff R; López, Jorge A; Veiga-Santos, Pricila; Druzian, Janice I

    2011-03-23

    The objective of this study was to investigate the feasibility of incorporating mango and acerola pulps into a biodegradable matrix as a source of polyphenols, carotenoids, and other antioxidant compounds. We also sought to evaluate the efficacy of mango and acerola pulps as antioxidants in film-forming dispersions using a response surface methodology design experiment. The bio-based films were used to pack palm oil (maintained for 45 days of storage) under accelerated oxidation conditions (63% relative humidity and 30 °C) to simulate a storage experiment. The total carotenoid, total polyphenol, and vitamin C contents of films were evaluated, while the total carotenoid, peroxide index, conjugated diene, and hexanal content of the packaged product (palm oil) were also monitored. The same analysis also evaluated palm oil packed in films without antioxidant additives (C1), palm oil packed in low-density polyethylene films (C2), and palm oil with no package (C3) as a control. Although the film-forming procedure affected the antioxidant compounds, the results indicated that antioxidants were effective additives for protecting the packaged product. A lower peroxide index (36.12%), which was significantly different from that of the control (p<0.05), was detected in products packed in film formulations containing high concentration of additives. However, it was found that the high content of vitamin C in acerola pulp acted as a prooxidant agent, which suggests that the use of rich vitamin C pulps should be avoided as additives for films.

  6. Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry.

    PubMed

    Gu, Yanlong; Jérôme, François

    2013-12-21

    Biomass and waste exhibit great potential for replacing fossil resources in the production of chemicals. The search for alternative reaction media to replace petroleum-based solvents commonly used in chemical processes is an important objective of significant environmental consequence. Recently, bio-based derivatives have been either used entirely as green solvents or utilized as pivotal ingredients for the production of innovative solvents potentially less toxic and more bio-compatible. This review presents the background and classification of these new media and highlights recent advances in their use in various areas including organic synthesis, catalysis, biotransformation and separation. The greenness, advantages and limitations of these solvents are also discussed. PMID:24056753

  7. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed.

  8. Potential biological applications of bio-based anacardic acids and their derivatives.

    PubMed

    Hamad, Fatma B; Mubofu, Egid B

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  9. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. PMID:26794953

  10. Potential biological applications of bio-based anacardic acids and their derivatives.

    PubMed

    Hamad, Fatma B; Mubofu, Egid B

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported.

  11. Osteoblasts growth behaviour on bio-based calcium carbonate aragonite nanocrystal.

    PubMed

    Shafiu Kamba, Abdullahi; Zakaria, Zuki Abu Bakar

    2014-01-01

    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process. PMID:24734228

  12. Potential Biological Applications of Bio-Based Anacardic Acids and Their Derivatives

    PubMed Central

    Hamad, Fatma B.; Mubofu, Egid B.

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30–35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  13. Biobased Polyamides: Recent Advances in Basic and Applied Research.

    PubMed

    Winnacker, Malte; Rieger, Bernhard

    2016-09-01

    Polyamides represent a very important class of polymers for a wide range of applications. After establishing in the 1930s with Nylon and Perlon, their impact on many branches has been continuously growing. In the context of developing sustainable polymers from renewable resources, many polyamides have meanwhile been described, which are based on natural building blocks. In addition to their sustainability, these biobased starting materials can provide special structural features to the resulting polymers and their properties, e.g., side groups, functionalities, or stereoinformation. While some biopolyamides are known for decades and well established (e.g., PA-11, Rilsan), many other promising candidates have been described in fundamental research studies, which have high potential but whose capability-especially for large scale and/or high-performance materials-will have to be proved in the future. Other candidates are very interesting from a scientific point of view, but with less potential for a market establishment due to price and/or feasibility reasons. This article aims at collating the recent developments in the field of biopolyamides and elucidating their properties and potential for different applications. PMID:27457825

  14. Biobased grease with improved oxidation performance for industrial application.

    PubMed

    Sharma, Brajendra K; Adhvaryu, Atanu; Perez, Joseph M; Erhan, Sevim Z

    2006-10-01

    Vegetable oils have significant potential as a base fluid and a substitute for mineral oil for grease formulation. This paper describes the preparation of biobased grease with high oxidative stability and a composition useful for industrial, agriculture/farming equipment, and forestry applications. The process utilizes more oxidatively stable epoxy vegetable oils as the base fluid, metal-soap thickener, and several specialty chemicals identified to address specific applications. Performance characteristics of greases used for industrial and automotive applications are largely dependent on the hardness and the oxidative stability of grease. Grease hardness was determined using standard test methods, and their oxidative stabilities were determined using pressurized differential scanning calorimetry and rotary bomb oxidation tests. Wear data were generated using standard test methods in a four-ball test geometry. Results indicate that grease developed with this method can deliver at par or better performance properties (effective lubrication, wear protection, corrosion resistance, friction reduction, heat removal, etc.) than existing mineral oil-based greases currently used in similar trades. Therefore, developed greases can be a good substitute for mineral oil-based greases in industrial, agriculture, forestry, and marine applications. PMID:17002427

  15. Biobased grease with improved oxidation performance for industrial application.

    PubMed

    Sharma, Brajendra K; Adhvaryu, Atanu; Perez, Joseph M; Erhan, Sevim Z

    2006-10-01

    Vegetable oils have significant potential as a base fluid and a substitute for mineral oil for grease formulation. This paper describes the preparation of biobased grease with high oxidative stability and a composition useful for industrial, agriculture/farming equipment, and forestry applications. The process utilizes more oxidatively stable epoxy vegetable oils as the base fluid, metal-soap thickener, and several specialty chemicals identified to address specific applications. Performance characteristics of greases used for industrial and automotive applications are largely dependent on the hardness and the oxidative stability of grease. Grease hardness was determined using standard test methods, and their oxidative stabilities were determined using pressurized differential scanning calorimetry and rotary bomb oxidation tests. Wear data were generated using standard test methods in a four-ball test geometry. Results indicate that grease developed with this method can deliver at par or better performance properties (effective lubrication, wear protection, corrosion resistance, friction reduction, heat removal, etc.) than existing mineral oil-based greases currently used in similar trades. Therefore, developed greases can be a good substitute for mineral oil-based greases in industrial, agriculture, forestry, and marine applications.

  16. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  17. Unravelling emotional viewpoints on a bio-based economy using Q methodology.

    PubMed

    Sleenhoff, Susanne; Cuppen, Eefje; Osseweijer, Patricia

    2015-10-01

    A transition to a bio-based economy will affect society and requires collective action from a broad range of stakeholders. This includes the public, who are largely unaware of this transition. For meaningful public engagement people's emotional viewpoints play an important role. However, what the public's emotions about the transition are and how they can be taken into account is underexposed in public engagement literature and practice. This article aims to unravel the public's emotional views of the bio-based economy as a starting point for public engagement. Using Q methodology with visual representations of a bio-based economy we found four emotional viewpoints: (1) compassionate environmentalist, (2) principled optimist, (3) hopeful motorist and (4) cynical environmentalist. These provide insight into the distinct and shared ways through which members of the public connect with the transition. Implications for public engagement are discussed.

  18. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    PubMed Central

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  19. Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires.

    PubMed

    Shahzadi, Kiran; Wu, Lin; Ge, Xuesong; Zhao, Fuhua; Li, Hui; Pang, Shuping; Jiang, Yijun; Guan, Jing; Mu, Xindong

    2016-02-10

    A bio-based hybrid film containing chitosan (CS) and silver nanowires (AgNWs) has been prepared by a simple casting technique. X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible spectroscopy were employed to characterize the structure of bio-based film. The bio-based hybrid film showed unique performance compared with bare chitosan film. The incorporated nano-silver could improve the strength properly. The results revealed that AgNWs in CS film, improved its tensile strength more than 62% and Young modulus 55% compared with pure chitosan film. On the other hand tensile strength was increased 36.7% with AgNPs. Importantly, the film also exhibited conductivity and antibacterial properties, which may expand its future application.

  20. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants.

    PubMed

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-06

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m(-1) at a low dosage as 0.100 g L(-1) of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  1. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase.

    PubMed

    Wu, Kejing; Wu, Yulong; Chen, Yu; Chen, Hao; Wang, Jianlong; Yang, Mingde

    2016-06-22

    Different biobased chemicals are produced during the conversion of biomass into fuels through various feasible technologies (e.g., hydrolysis, hydrothermal liquefaction, and pyrolysis). The challenge of transforming these biobased chemicals with high hydrophilicity is ascribed to the high water content of the feedstock and the inevitable formation of water. Therefore, aqueous-phase processing is an interesting technology for the heterogeneous catalytic conversion of biobased chemicals. Different reactions, such as dehydration, isomerization, aldol condensation, ketonization, and hydrogenation, are applied for the conversion of sugars, furfural/hydroxymethylfurfural, acids, phenolics, and so on over heterogeneous catalysts. The activity, stability, and reusability of the heterogeneous catalysts in water are summarized, and deactivation processes and several strategies are introduced to improve the stability of heterogeneous catalysts in the aqueous phase. PMID:27158985

  2. Unravelling emotional viewpoints on a bio-based economy using Q methodology.

    PubMed

    Sleenhoff, Susanne; Cuppen, Eefje; Osseweijer, Patricia

    2015-10-01

    A transition to a bio-based economy will affect society and requires collective action from a broad range of stakeholders. This includes the public, who are largely unaware of this transition. For meaningful public engagement people's emotional viewpoints play an important role. However, what the public's emotions about the transition are and how they can be taken into account is underexposed in public engagement literature and practice. This article aims to unravel the public's emotional views of the bio-based economy as a starting point for public engagement. Using Q methodology with visual representations of a bio-based economy we found four emotional viewpoints: (1) compassionate environmentalist, (2) principled optimist, (3) hopeful motorist and (4) cynical environmentalist. These provide insight into the distinct and shared ways through which members of the public connect with the transition. Implications for public engagement are discussed. PMID:24928568

  3. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  4. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications. PMID:24621374

  5. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  6. Bio-based thermosetting copolymers of eugenol and tung oil

    NASA Astrophysics Data System (ADS)

    Handoko, Harris

    There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.

  7. Design of hard water stable emulsifier systems for petroleum- and bio-based semi-synthetic metalworking fluids.

    PubMed

    Zimmerman, Julie B; Clarens, Andres F; Hayes, Kim F; Skerlos, Steven J

    2003-12-01

    Metalworking fluids (MWFs) increase productivity and the quality of manufacturing operations by cooling and lubricating during metal forming and cutting processes. Despite their widespread use, they pose significant health and environmental hazards throughout their life cycle. An obvious environmental improvement to MWF technology would be to improve the lifetime of the fluid while utilizing more environmentally friendly and less energy-consuming materials without compromising existing performance levels. This investigation focuses on the design of mixed anionionc:nonionic emulsifier systems for petroleum and bio-based MWFs that improve fluid lifetime by providing emulsion stability under hard water conditions, a common cause of emulsion destabilization leading to MWF disposal. Experimental conditions were designed to evaluate the impact of emulsifier structural characteristics (straight chain, branched tail, branched head) and the molar ratios of anionic to nonionic surfactant and oil to total surfactant. Results from the 2500 formulations generated indicate that the use of a twin-headed anionic surfactant can provide improved hard water stability for both mineral oil- and vegetable oil-based formulations, even in the absence of a chelating agent and a coupler. Results also suggest that an oil:total surfactant molar ratio of 0.5 or less is necessary for particle size stability in hard water conditions for these systems. The newly developed petroleum and bio-based formulations with improved hard water stability are competitive with commercially available MWFs in performance evaluations for tramp oil rejection, contact angle, and tapping torque efficiency. These results can be used to design MWF formulations with fewer components and extended lifetime under hard water conditions, both of which would lead to a reduction in the life cycle environmental impact of MWFs.

  8. The potential of the aquatic water fern Azolla within a biobased economy

    NASA Astrophysics Data System (ADS)

    Nierop, Klaas G. J.; Jongerius, Anna L.; Bijl, Peter K.; Bruijnincx, Pieter C. A.; Klein Gebbink, Robertus J. M.; Reichart, Gert-Jan

    2014-05-01

    Azolla is a free-floating freshwater fern capable of fixing atmospheric carbon dioxide and nitrogen, the latter of which through its symbiosis with the cyanobacteria Anabaena azollae. It is currently ranked among the fastest growing plants on Earth and occurs in both tropical and temperate freshwater ecosystems. Therefore, it is non-directly competitive with food crops. In addition, Azolla does not require inorganic fertilizers, which makes it a potential and unique source of biomass for the sustainable production of fuels and chemicals that are currently derived from fossil (fuel) sources. The biochemical composition of Azolla allows the production of biofuel or biobased chemicals that are of interest to the chemical industry. Of Azolla, two extractable groups of compounds are of particular interest, i.e. the polyphenols (condensed tannins and ester-bound caffeic acid) and the lipids. The antioxidant property of polyphenols and their application to the treatment of cancer, diabetes and cardiovascular diseases has further contributed to the growth of the polyphenol market. In addition, they can be chemically transformed into aromatic platform and specialty chemicals. The composition of the lipid fraction of Azolla is characterized by highly specific compounds consisting of C26-C36 carbon chains all bearing a ω20-hydroxy group. Such compounds produce an oil fraction upon hydrous pyrolysis, or, alternatively, are well suited to be converted to e.g. various specialty chemicals that are hardly available from both natural sources. Indeed, upon chemical conversion these lipids may yield components for fuels, plastics, cosmetics, and lubricants. Another group of interesting compounds within the lipid group are the polyunsaturated fatty acids (PUFAs). The demand for PUFAs has witnessed a significant increase over the last three years, particularly due to their benefits as cholesterol lowering agents. Here we will present some of the thermal and chemical conversions of the

  9. Use of NMR Imaging to Determine the Diffusion Coefficient of Water in Bio-based Hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diffusion of liquid in a hydrogel material is a fundamental property which must be controlled in order to create effective delivery systems for the agricultural and pharmaceutical industries. NMR spectroscopy has been used to determine the diffusion of water and deuterium oxide in a bio-based h...

  10. Diffusion coefficients of water in biobased hydrogel polymer matrices by nuclear magnetic resonance imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...

  11. Polysulfide and bio-based EP additive performance in vegetable vs. paraffinic base oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twist compression test (TCT) and 4-ball extreme pressure (EP) methods were used to investigate commercial polysulfide (PS) and bio-based polyester (PE) EP additives in paraffinic (150N) and refined soybean (SOY) base oils of similar viscosity. Binary blends of EP additive and base oil were investiga...

  12. Processing and characterization of novel biobased and biodegradable materials

    NASA Astrophysics Data System (ADS)

    Pilla, Srikanth

    Human society has benefited tremendously from the use of petroleum-based plastics. However, there are growing concerns with their adverse environmental impacts and volatile costs attributed to the skyrocketing oil prices. Additionally most of the petroleum-based polymers are non-biodegradable causing problems about their disposal. Thus, during the last couple of decades, scientists ail over the world have been focusing on developing new polymeric materials that are biobased and biodegradable, also termed as green plastics . This study aims to develop green materials based on polylactide (PLA) biopolymer that can be made from plants. Although PLA can provide important advantages in terms of sustainability and biodegradability, it has its own challenges such as high cost, brittleness, and narrow processing window. These challenges are addressed in this study by investigating both new material formulations and processes. To improve the material properties and control the material costs, PLA was blended with various fillers and modifiers. The types of fillers investigated include carbon nanotube (CNT) nanoparticles and various natural fibers such as pine-wood four, recycled-wood fibers and flax fiber. Using natural fibers as fillers for PLA can result in fully biodegradable and eco-friendly biocomposites. Also due to PLA's sensitivity to moisture and temperature, molecular degradation can occur during processing leading to inferior material properties. To address this issue, one of the approaches adopted by this study was to incorporate a multifunctional chain-extender into PLA, which increased the molecular weight of PLA thereby improving the material properties. To improve the processability and reduce the material cost, both microcellular injection molding and extrusion processes have been studied. The microcellular technology allows the materials to be processed at a lower temperature, which is attractive for thermo- and moisture-sensitive materials like PLA. They

  13. Production of novel microbial biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms are well known to produce a wide variety of biobased polymers. These biopolymers have found a wide range of commercial uses, including food, feed, and consumer and industrial products. The production and possible uses of several novel biopolymers from both bacteria and fungi will be d...

  14. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals.

    PubMed

    Schwartz, Thomas J; Shanks, Brent H; Dumesic, James A

    2016-04-01

    Advances in metabolic engineering have allowed for the development of new biological catalysts capable of selectively de-functionalizing biomass to yield platform molecules that can be upgraded to biobased chemicals using high efficiency continuous processing allowed by heterogeneous chemical catalysis. Coupling these disciplines overcomes the difficulties of selectively activating COH bonds by heterogeneous chemical catalysis and producing petroleum analogues by biological catalysis. We show that carboxylic acids, pyrones, and alcohols are highly flexible platforms that can be used to produce biobased chemicals by this approach. More generally, we suggest that molecules with three distinct functionalities may represent a practical upper limit on the extent of functionality present in the platform molecules that serve as the bridge between biological and chemical catalysis.

  15. Clay-filled bio-based blends of poly(lactic acid) and polyamide 11

    NASA Astrophysics Data System (ADS)

    Nuzzo, Anna; Acierno, Domenico; Filippone, Giovanni

    2012-07-01

    We investigate the effect of small amounts of organoclay on the crystallinity and dynamic-mechanical properties of bio-based blends of poly(lactic acid) (PLA) and polyamide 11 (PA11). Virgin and filled blends were prepared by melt-compounding the constituents using a twin-screw extruder. Wettability considerations suggest that the filler unevenly distribute inside the material. This affect both the crystallinity of each phase and the blend microstructure. Controlling such phenomena can lead to highly "engineerized" materials with tailored properties. In particular, the typically poor mechanical performances of bio-based polymers can be overcame owing to the synergism among reinforcing action of the filler, its possible compatibilizing action and its impact on the crystallinity of the hosting phase.

  16. Hybrid hierarchical bio-based materials: Development and characterization through experimentation and computational simulations

    NASA Astrophysics Data System (ADS)

    Haq, Mahmoodul

    Environmentally friendly bio-based composites with improved properties can be obtained by harnessing the synergy offered by hybrid constituents such as multiscale (nano- and micro-scale) reinforcement in bio-based resins composed of blends of synthetic and natural resins. Bio-based composites have recently gained much attention due to their low cost, environmental appeal and their potential to compete with synthetic composites. The advantage of multiscale reinforcement is that it offers synergy at various length scales, and when combined with bio-based resins provide stiffness-toughness balance, improved thermal and barrier properties, and increased environmental appeal to the resulting composites. Moreover, these hybrid materials are tailorable in performance and in environmental impact. While the use of different concepts of multiscale reinforcement has been studied for synthetic composites, the study of mukiphase/multiscale reinforcements for developing new types of sustainable materials is limited. The research summarized in this dissertation focused on development of multiscale reinforced bio-based composites and the effort to understand and exploit the synergy of its constituents through experimental characterization and computational simulations. Bio-based composites consisting of petroleum-based resin (unsaturated polyester), natural or bio-resin (epoxidized soybean and linseed oils), natural fibers (industrial hemp), and nanosilicate (nanoclay) inclusions were developed. The work followed the "materials by Mahmoodul Haq design" philosophy by incorporating an integrated experimental and computational approach to strategically explore the design possibilities and limits. Experiments demonstrated that the drawbacks of bio-resin addition, which lowers stiffness, strength and increases permeability, can be counter-balanced through nanoclay reinforcement. Bio-resin addition yields benefits in impact strength and ductility. Conversely, nanoclay enhances stiffness

  17. Isosorbide as the structural component of bio-based unsaturated polyesters for use as thermosetting resins.

    PubMed

    Sadler, Joshua M; Toulan, Faye R; Nguyen, Anh-Phuong T; Kayea, Ronald V; Ziaee, Saeed; Palmese, Giuseppe R; La Scala, John J

    2014-01-16

    In recent years, the development of renewable bio-based resins has gained interest as potential replacements for petroleum based resins. Modified carbohydrate-based derivatives have favorable structural features such as fused bicyclic rings that offer promising candidates for the development of novel renewable polymers with improved thermomechanical properties when compared to early bio-based resins. Isosorbide is one such compound and has been utilized as the stiffness component for the synthesis of novel unsaturated polyesters (UPE) resins. Resin blends of BioUPE systems with styrene were shown to possess viscosities (120-2200 cP) amenable to a variety of liquid molding techniques, and after cure had Tgs (53-107 °C) and storage moduli (430-1650 MPa) that are in the desired range for composite materials. These investigations show that BioUPEs containing isosorbide can be tailored during synthesis of the prepolymer to meet the needs of different property profiles. PMID:24188843

  18. Biobased building blocks for the rational design of renewable block polymers.

    PubMed

    Holmberg, Angela L; Reno, Kaleigh H; Wool, Richard P; Epps, Thomas H

    2014-10-14

    Block polymers (BPs) derived from biomass (biobased) are necessary components of a sustainable future that relies minimally on petroleum-based plastics for applications ranging from thermoplastic elastomers and pressure-sensitive adhesives to blend compatibilizers. To facilitate their adoption, renewable BPs must be affordable, durable, processable, versatile, and reasonably benign. Their desirability further depends on the relative sustainability of the renewable resources and the methods employed in the monomer and polymer syntheses. Various strategies allow these BPs' characteristics to be tuned and enhanced for commercial applications, and many of these techniques also can be applied to manipulate the wide-ranging mechanical and thermal properties of biobased and self-assembling block polymers. From feedstock to application, this review article highlights promising renewable BPs, plus their material and assembly properties, in support of de novo design strategies that could revolutionize material sustainability.

  19. Poly(carbonate–amide)s Derived from Bio-Based Resources: Poly(ferulic acid-co-tyrosine)

    PubMed Central

    2015-01-01

    Ferulic acid (FA), a bio-based resource found in fruits and vegetables, was coupled with a hydroxyl-amino acid to generate a new class of monomers to afford poly(carbonate–amide)s with potential to degrade into natural products. l-Serine was first selected as the hydroxyl-amino partner for FA, from which the activated p-nitrophenyl carbonate monomer was synthesized. Unfortunately, polymerizations were unsuccessful, and the elimination product was systematically obtained. To avoid elimination, we revised our strategy and used l-tyrosine ethyl ester, which lacks an acidic proton on the α position of the ethyl ester. Four new monomers were synthesized and converted into the corresponding poly(carbonate–amide)s with specific regioselectivities. The polymers were fully characterized through thermal and spectroscopic analyses. Preliminary fluorescent studies revealed interesting photophysical properties for the monomers and their corresponding poly(carbonate–amide)s, beyond the fluorescence characteristics of l-tyrosine and FA, making these materials potentially viable for sensing and/or imaging applications, in addition to their attractiveness as engineering materials derived from renewable resources. PMID:24839309

  20. 3D printing of new biobased unsaturated polyesters by microstereo-thermallithography.

    PubMed

    Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Farinha, Dina; Faneca, Henrique; Simões, Pedro N; Serra, Arménio C; Bártolo, Paulo J; Coelho, Jorge F J

    2014-09-01

    New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area. PMID:25190707

  1. Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals.

    PubMed

    Ning, Nanying; Wang, Zhifei; Yao, Yang; Zhang, Liqun; Tian, Ming

    2015-10-01

    To meet the growing demand of environmental protection and resource saving, it is imperative to explore bio-based elastomers as next-generation dielectric elastomers (DEs). In this study, we used a bio-based gelatin/glycerin (GG) elastomer as the DE matrix because GG exhibits high dielectric constant (ɛr). Cellulose nanocrystals (CNCs), extracted from natural cellulose fibers, were used to improve the mechanical strength of GG elastomer. The results showed that CNCs with a large number of hydroxyl groups disrupted the hydrogen bonds between gelatin molecules and formed new stronger hydrogen bonds with gelatin molecules. A good interfacial adhesion between CNCs and GG was formed, and thus a good dispersion of CNCs in GG matrix was obtained, leading to the improved mechanical strength of GG. More interestingly, the ɛr of GG elastomer was obviously increased by adding 5 wt% of CNCs, ascribed to the increase in the polarizability of gelatin chains caused by the disruption of hydrogen bonds of gelatin. As a result, a 230% increase in the actuated strain at low electric field of GG was obtained by adding 5 wt% of CNCs. Since CNCs, gelatin and glycerol are all bio-based, this study offers a new method to prepare high performance DE for its application in biological and medical fields.

  2. 3D printing of new biobased unsaturated polyesters by microstereo-thermallithography.

    PubMed

    Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Farinha, Dina; Faneca, Henrique; Simões, Pedro N; Serra, Arménio C; Bártolo, Paulo J; Coelho, Jorge F J

    2014-09-01

    New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area.

  3. 75 FR 71491 - Designation of Biobased Items for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... procurement preference: Animal repellents; bath products; bioremediation materials; compost activators and... first six items designated for preferred procurement (71 FR 13686, March 16, 2006), USDA stated that it... procurement: Animal repellents; bath products; bioremediation materials; compost activators and...

  4. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants.

    PubMed

    Das, Beauty; Mandal, Manabendra; Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Karak, Niranjan

    2013-06-01

    The fabrication of a smart magnetically controllable bio-based polymeric nanocomposite (NC) has immense potential in the biomedical domain. In this context, magneto-thermoresponsive sunflower oil modified hyperbranched polyurethane (HBPU)/Fe3O4 NCs with different wt.% of magnetic nanoparticles (Fe3O4) were prepared by an in situ polymerization technique. Fourier-transform infrared, x-ray diffraction, vibrating sample magnetometer, scanning electron microscope, transmission electron microscope, thermal analysis and differential scanning calorimetric were used to analyze various physico-chemical structural attributes of the prepared NC. The results showed good interfacial interactions between HBPU and well-dispersed superparamagnetic Fe3O4, with an average diameter of 7.65 nm. The incorporation of Fe3O4 in HBPU significantly improved the thermo-mechanical properties along with the shape-memory behavior, antibacterial activity, biocompatibility as well as biodegradability in comparison to the pristine system. The cytocompatibility of the degraded products of the NC was also verified by in vitro hemolytic activity and MTT assay. In addition, the in vivo biocompatibility and non-immunological behavior, as tested in Wistar rats after subcutaneous implantation, show promising signs for the NC to be used as antibacterial biomaterial for biomedical device and implant applications. PMID:23532037

  5. 7 CFR 2902.26 - Lip care products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Lip care products. 2902.26 Section 2902.26... Items § 2902.26 Lip care products. (a) Definition. Personal care products formulated to replenish the... accordance with this part, will give a procurement preference for qualifying biobased lip care products....

  6. 7 CFR 3201.82 - Foot care products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Foot care products. 3201.82 Section 3201.82... Designated Items § 3201.82 Foot care products. (a) Definition. Products formulated to be used in the soothing or cleaning of feet. (b) Minimum biobased content. The Federal preferred procurement product...

  7. 7 CFR 3201.82 - Foot care products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Foot care products. 3201.82 Section 3201.82... Designated Items § 3201.82 Foot care products. (a) Definition. Products formulated to be used in the soothing or cleaning of feet. (b) Minimum biobased content. The Federal preferred procurement product...

  8. Bio-based amphiphilic materials development and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farm-based raw materials are increasingly used in the development of amphiphilic materials that have potential applications in the production of a variety of consumer and industrial products, including lubricants. Raw materials of interest include: starches, proteins, fats, oils, and sugars. These ...

  9. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. PMID:25045161

  10. Opportunities and challenges for seaweed in the biobased economy.

    PubMed

    van Hal, Jaap W; Huijgen, W J J; López-Contreras, A M

    2014-05-01

    The unique chemical composition of seaweeds and their fast growth rates offer many opportunities for biorefining. In this article we argue that cascading biorefinery valorization concepts are viable alternatives to only using seaweeds as carbohydrate sources for the fermentative production of biofuels. However, many challenges remain with respect to use of seaweeds for chemical production, such as the large seasonal variation in the chemical composition of seaweeds.

  11. 7 CFR 3201.89 - Animal cleaning products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Animal cleaning products. 3201.89 Section 3201.89... Designated Items § 3201.89 Animal cleaning products. (a) Definition. Products designed to clean, condition, or remove substances from animal hair or other parts of an animal. (b) Minimum biobased content....

  12. 7 CFR 3201.89 - Animal cleaning products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Animal cleaning products. 3201.89 Section 3201.89... Designated Items § 3201.89 Animal cleaning products. (a) Definition. Products designed to clean, condition, or remove substances from animal hair or other parts of an animal. (b) Minimum biobased content....

  13. Design of biobased and biodegradable - compostable engineered plastics based on poly(lactide)

    NASA Astrophysics Data System (ADS)

    Schneider, Jeffrey Samuelson

    Poly(lactide) (PLA) is a biobased and biodegradable - compostable plastic that is derived from renewable resources such as corn and sugar cane. It possesses excellent strength and stiffness properties and is recognized as safe for biomedical and food packaging applications. Commercially, it costs $1/lb and is now competitive with petroleum based polymers that have dominated the industry for decades. However, the material has some inherently weak properties that prevent it from certain applications - most notably, its rheological properties, brittleness, and poor high temperature performance. Cost effective modifications of the polymer to enhance these deficiencies could allow for increased applications and further its commercial growth. Multiple synthetic strategies have been developed to address PLA's performance property deficiencies. PLA typically exhibits poor melt strength and does not have the ability to strain harden, partially a result of its highly linear nature. Strain hardening and high melt strength are crucial elements of a material when producing blown films, a large untapped market for PLA. By increasing molecular weight and introducing long-chain branching into the material, these properties can be improved. Epoxy-functionalized PLA (EF-PLA) was synthesized by reacting PLA with a multifunctional epoxy polymer (MEP) using reactive extrusion processing (REX). These modified PLA polymers can function as a rheology modifier for PLA and a compatibilizer for blends with other biopolyesters. The modified PLA showed an increased melt strength and exhibited significant strain hardening, thus making it more suited for blown film applications. Blown films comprised of PLA and poly(butylene adipate-co-terephthalate) (PBAT) were produced using EF-PLA as a reactive modifier for rheological enhancement and compatibilization. This resulted in films with better processability (as seen by increased bubble stability) and improved mechanical properties, compared to a

  14. Metabolic engineering with plants for a sustainable biobased economy.

    PubMed

    Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V

    2013-01-01

    Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants. PMID:23540288

  15. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  16. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  17. Molecular basis of processing wheat gluten toward biobased materials.

    PubMed

    Lagrain, Bert; Goderis, Bart; Brijs, Kristof; Delcour, Jan A

    2010-03-01

    The unique properties of the wheat grain reside primarily in the gluten-forming storage proteins of its endosperm. Wheat gluten's structural and functional properties have led to an expanding diversity of applications in food products. However, its viscoelastic properties and low water solubility also are very interesting features for nonfood applications. Moreover, gluten is annually renewable and perfectly biodegradable. In the processing and setting of gluten containing products, temperature plays a very important role. In this review, the structure and reactivity of gluten are discussed and the importance of sulfhydryl (SH) and disulfide (SS) groups is demonstrated. Wheat gluten aggregation upon thermosetting proceeds through direct covalent cross-linking in and between its protein groups, glutenin and gliadin. Predominant reactions include SH oxidation and SH/SS interchange reactions leading to the formation of SS cross-links. Additionally, thermal treatment of gluten can result in the formation of other than SS covalent bonds. We here review two main technological approaches to make gluten-based materials: wet processes resulting in thin films and dry processes, such as extrusion or compression molding, exploiting the thermoplastic properties of proteins under low moisture conditions and potentially resulting in very useful materials. Gluten bioplastics can also be reinforced with natural fibers, resulting in biocomposites. Although a lot of progress has been made the past decade, the current gluten materials are still outperformed by their synthetic polymer counterparts. PMID:20141101

  18. Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals.

    PubMed

    Kong, Xiaohua; Zhao, Liyan; Curtis, Jonathan M

    2016-11-01

    High solids content polyurethane (PU) nanocomposites with enhanced thermal and mechanical properties were produced by incorporating of low fractions of cellulose nanocrystals (CNC) in a solvent-free process. This involved the use of a simple procedure to produce well dispersed and stable suspensions of CNC in biobased polyols, which were then used to produce PU-CNC nanocomposites. Transmission electron microscopy revealed that individual CNC particles were dispersed homogenously within the PU matrix. FTIR results suggested that CNC particles are covalently bonded to the PU molecular chains during polymerization. The thermal mechanical properties of the nanocomposites are significantly improved over pure PU as indicated by differential scanning calorimetry and dynamic mechanical analysis. Compared to pure PU, the PU nanocomposites made with the addition of only 0.5% of CNC had glass transition temperatures that were 6°C higher, their Young's moduli were about 10% higher and their abrasion resistance was higher by about 25%. The optimal composition contains only 0.5% CNC (w/w) which indicates that there is good potential for utilization of low levels of CNC for reinforcement of PU composites made using biobased polyols. PMID:27516296

  19. Bio-Based Nano Composites from Plant Oil and Nano Clay

    NASA Astrophysics Data System (ADS)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  20. Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties.

    PubMed

    Maiorana, Anthony; Spinella, Stephen; Gross, Richard A

    2015-03-01

    A series of biobased epoxy monomers were prepared from diphenolic acid (DPA) by transforming the free acid into n-alkyl esters and the phenolic hydroxyl groups into diglycidyl ethers. NMR experiments confirmed that the diglycidyl ethers of diphenolates (DGEDP) with methyl and ethyl esters have 6 and 3 mol % of glycidyl ester. Increasing the chain length of DGEDP n-alkyl esters from methyl to n-pentyl resulted in large decreases in epoxy resin viscosity (700-to-11 Pa·s). Storage modulus of DPA epoxy resins, cured with isophorone diamine, also varied with n-alkyl ester chain length (e.g., 3300 and 2100 MPa for the methyl and n-pentyl esters). The alpha transition temperature of the cured materials showed a linear decrease from 158 to 86 °C as the ester length increases. The Young's modulus and tensile strengths were about 1150 and 40 MPa, respectively, for all the cured resins tested (including DGEBA) and varied little as a function of ester length. Degree of cure for the different epoxy resins, determined by FTIR and DSC, closely approached the theoretical maximum. The result of this work demonstrates that diglycidyl ethers of n-alkyl diphenolates represent a new family of biobased liquid epoxy resins that, when cured, have similar properties to those from DGEBA. PMID:25633466

  1. Novel biobased photo-crosslinked polymer networks prepared from vegetable oil and 2,5-furan diacrylate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel biobased crosslinked polymer networks were prepared from vegetable oil with 2,5-furan diacrylate as a difunctional stiffener through UV photopolymerization, and the mechanical properties of the resulting films were evaluated. The vegetable oil raw materials used were acrylated epoxidized soybe...

  2. Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols.

    PubMed

    Yang, Yixin; Lu, Wenhua; Zhang, Xiaoyan; Xie, Wenchun; Cai, Minmin; Gross, Richard A

    2010-01-11

    Biobased omega-carboxy fatty acid monomers 1,18-cis-9-octadecenedioic, 1,22-cis-9-docosenedioic, and 1,18-cis-9,10-epoxy-octadecanedioic acids were synthesized in high conversion yields from oleic, erucic and epoxy stearic acids by whole-cell biotransformations catalyzed by C. tropicalis ATCC20962. Maximum volumetric yields in shake-flasks were 17.3, 14.2, and 19.1 g/L after 48 h conversion for oleic acid and 72 h conversions for erucic and epoxy stearic acids, respectively. Studies in fermentor with better control of pH and glucose feeding revealed that conversion of oleic acid to 1,18-cis-9-octadecenedioic acid by C. tropicalis ATCC20962 occurred with productivities up to 0.5 g/L/h. The conversion of omega-carboxy fatty acid monomers to polyesters was then studied using immobilized Candida antarctica Lipase B (N435) as catalyst. Polycondensations with diols were performed in bulk as well as in diphenyl ether. The retension of functionality from fatty acid, to omega-carboxy fatty acid monomer and to corresponding polyesters resulted in polymers with with unsaturated and epoxidized repeat units and M(w) values ranging from 25000 to 57000 g/mol. These functional groups along chains disrupted crystallization giving materials that are low melting (23-40 degrees C). In contrast, saturated polyesters prepared from 1,18-octadecanedioic acid and 1,8-octanediol have correspondingly higher melting transitions (88 degrees C). TGA results indicated that all synthesized polyesters showed high thermal stabilities. Thus, the preparation of functional monomers from C. tropicalis omega-oxidation of fatty acids provides a wide range of new monomer building blocks to construct functional polymers. PMID:20000460

  3. Environmentally degradable bio-based polymeric blends and composites.

    PubMed

    Chiellini, Emo; Cinelli, Patrizia; Chiellini, Federica; Imam, Syed H

    2004-03-15

    Blends and composites based on environmentally degradable-ecocompatible synthetic and natural polymeric materials and fillers of natural origin have been prepared and processed under different conditions. Poly(vinyl alcohol) (PVA) was used as the synthetic polymer of choice by virtue of its capability to be processed from water solution or suspension as well as from the melt by blow extrusion and injection molding. Starch and gelatin were taken as the polymeric materials from renewable resources. The fillers were all of natural origin, as waste from food and agro-industry consisted of sugar cane bagasse (SCB), wheat flour (WF), orange peels (OR), apple peels (AP), corn fibres (CF), saw dust (SD) and wheat straw (WS). All the natural or hybrid formulations were intended to be utilized for the production of: a) Environmentally degradable mulching films (hydro-biomulching) displaying, in some cases, self-fertilizing characteristics by in situ spraying of water solutions or suspensions; b) Laminates and containers to be used in agriculture and food packaging by compression and injection molding followed by baking. Some typical prototype items have been prepared and characterized in relation to their morphological and mechanical properties and tested with different methodology for their propensity to environmental degradation and biodegradation as ultimate stage of their service life. A relationship between chemical composition and mechanical properties and propensity to biodegradation has been discussed in a few representative cases.

  4. Theoretical and Experimental Thermal Performance Analysis of Complex Thermal Storage Membrane Containing Bio-Based Phase Change Material (PCM)

    SciTech Connect

    Kosny, Jan; Stovall, Therese K; Shrestha, Som S; Yarbrough, David W

    2010-01-01

    Since 2000, an ORNL research team has been testing different configurations of PCM-enhanced building envelop components to be used in residential and commercial buildings. During 2009, a novel type of thermal storage membrane was evaluated for building envelope applications. Bio-based PCM was encapsulated between two layers of heavy-duty plastic film forming a complex array of small PCM cells. Today, a large group of PCM products are packaged in such complex PCM containers or foils containing arrays of PCM pouches of different shapes and sizes. The transient characteristics of PCM-enhanced building envelope materials depend on the quality and amount of PCM, which is very often difficult to estimate because of the complex geometry of many PCM heat sinks. The only widely used small-scale analysis method used to evaluate the dynamic characteristics of PCM-enhanced building products is the differential scanning calorimeter (DSC). Unfortunately, this method requires relatively uniform, and very small, specimens of the material. However, in numerous building thermal storage applications, PCM products are not uniformly distributed across the surface area, making the results of traditional DSC measurements unrealistic for these products. In addition, most of the PCM-enhanced building products contain blends of PCM with fire retardants and chemical stabilizers. This combination of non-uniform distribution and non-homogenous composition make it nearly impossible to select a representative small specimen suitable for DSC tests. Recognizing these DSC limitations, ORNL developed a new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. An experimental analytical protocol to analyze the dynamic characteristics of PCM thermal storage makes use of larger specimens in a conventional heat-flow meter apparatus, and combines these experimental measurements with three-dimensional (3-D) finite-difference modeling and whole building energy

  5. Theoretical and Experimental Thermal Performance Analysis of Complex Thermal Storage Membrane Containing Bio-Based Phase Change Material (PCM)

    SciTech Connect

    Kosny, Jan; Stovall, Therese K; Shrestha, Som S; Yarbrough, David W

    2010-12-01

    Since 2000, an ORNL research team has been testing different configurations of PCM-enhanced building envelop components to be used in residential and commercial buildings. During 2009, a novel type of thermal storage membrane was evaluated for building envelope applications. Bio-based PCM was encapsulated between two layers of heavy-duty plastic film forming a complex array of small PCM cells. Today, a large group of PCM products are packaged in such complex PCM containers or foils containing arrays of PCM pouches of different shapes and sizes. The transient characteristics of PCM-enhanced building envelope materials depend on the quality and amount of PCM, which is very often difficult to estimate because of the complex geometry of many PCM heat sinks. The only widely used small-scale analysis method used to evaluate the dynamic characteristics of PCM-enhanced building products is the differential scanning calorimeter (DSC). Unfortunately, this method requires relatively uniform, and very small, specimens of the material. However, in numerous building thermal storage applications, PCM products are not uniformly distributed across the surface area, making the results of traditional DSC measurements unrealistic for these products. In addition, most of the PCM-enhanced building products contain blends of PCM with fire retardants and chemical stabilizers. This combination of non-uniform distribution and non-homogenous composition make it nearly impossible to select a representative small specimen suitable for DSC tests. Recognizing these DSC limitations, ORNL developed a new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. An experimental analytical protocol to analyze the dynamic characteristics of PCM thermal storage makes use of larger specimens in a conventional heat-flow meter apparatus, and combines these experimental measurements with three-dimensional (3-D) finite-difference modeling and whole building energy

  6. 77 FR 69381 - Designation of Product Categories for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... preferred procurement of biobased products by Federal agencies (referred to hereafter in this FR notice as the ``preferred procurement program''). This proposed rule can be found at 77 FR 33270. This... preferred procurement under each designated product category. For information pertinent to E-Government...

  7. Synthesis and structure design of new bio-based elastomers via Thiol-ene-Click Reactions.

    PubMed

    Khan, Shafiullah; Wang, Zhao; Wang, Runguo; Zhang, Liqun

    2016-10-01

    The additions of 2-mercaptoethanol to (S)-(-)-limonene via click reaction is described as an adaptable and efficient way to obtain alcohol functionalized renewable monomer for the synthesis of new cross-linkable bio-based elastomers. Thiol first reacted with the limonene endocyclic double bond and then reacted with the exocyclics double bond to form the difunctional monomer. The structure of the monomer was determined by using FTIR, (1)H NMR and mass spectrometry. Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetrys (DSC) characterization exposed that this monomer could be used to synthesize elastomers with excellent and adaptable thermal properties. The molecular weight of the synthesized elastomer could reach 186kDaa via melting polycondensation route and the structure-properties relationship was deliberated. Finally, these elastomers were mixed with dicumyl peroxide (DCP) to form cross-linked elastomers with certain mechanical property, and the gel contents of the elastomers were confirmed by using Soxhlet extraction method. PMID:27287154

  8. Bio-based ionic liquid crystalline quaternary ammonium salts: properties and applications.

    PubMed

    Sasi, Renjith; Rao, Talasila P; Devaki, Sudha J

    2014-03-26

    In the present work, we describe the preparation, properties, and applications of novel ionic liquid crystalline quaternary ammonium salts (QSs) of 3-pentadecylphenol, a bio-based low-cost material derived from cashew nut shell liquid. Amphotropic liquid crystalline phase formation in QSs was characterized using a combination of techniques, such as DSC, PLM, XRD, SEM, and rheology, which revealed the formation of one, two, and three dimensionally ordered mesophases in different length scales. On the basis of these results, a plausible mechanism for the formation of specific modes of packing in various mesophases was proposed. Observation of anisotropic ionic conductivity and electrochemical stability suggests their application as a solid electrolyte. PMID:24571658

  9. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    NASA Astrophysics Data System (ADS)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  10. Bio-based nitriles from the heterogeneously catalyzed oxidative decarboxylation of amino acids.

    PubMed

    Claes, Laurens; Matthessen, Roman; Rombouts, Ine; Stassen, Ivo; De Baerdemaeker, Trees; Depla, Diederik; Delcour, Jan A; Lagrain, Bert; De Vos, Dirk E

    2015-01-01

    The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals.

  11. Utilization of biobased polymers in food packaging: Assessment of materials, production and commercialization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food packaging contains and protects food, keeps it safe and secure, retains food quality and freshness, and increases shelf-life of food. Packaging should be affordable and biodegradable. Packaging is the core of the businesses of fast-foods, ready meals, on-the-go beverages, snacks and manufacture...

  12. Bio-based products via microwave-assisted maleation of tung oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. The mechanism of this microwave-assisted maleation was investigated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). T...

  13. 48 CFR 970.2304 - Use of recovered materials and biobased products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place...

  14. 76 FR 53113 - Guidelines for Designating Biobased Products for Federal Procurement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... of Procurement and Property Management, USDA. ACTION: Notice of request for extension of a currently.... Chapter 35), this notice announces that the Department of Agriculture, Office of Procurement and Property... comments to: Ron Buckhalt, USDA, Office of Procurement and Property Management, Room 361,...

  15. 48 CFR 52.223-2 - Affirmative Procurement of Biobased Products Under Service and Construction Contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... application covered by a USDA categorical exemption (see 7 CFR 2902.10 et seq.). For example, some USDA... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Affirmative Procurement of... Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS...

  16. Aspergillus flavus Genomic Data Mining Provides Clues for Its Use in Producing Biobased Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is notorious for its ability to produce aflatoxins. It is also an opportunistic pathogen that infects plants, animals and human beings. The ability to survive in the natural environment, living on plant tissues (leaves or stalks), live or dead insects make A. flavus a ubiquitous...

  17. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    SciTech Connect

    Jackson, Sam; Harper, David; Womac, Al

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: • Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. • Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomass and Biomass Deconstruction and Evaluation. • Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. • Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: • A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing • A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. • Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.

  18. 7 CFR 2902.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Expanded polystyrene (EPS) foam recycling products... FEDERAL PROCUREMENT Designated Items § 2902.53 Expanded polystyrene (EPS) foam recycling products. (a..., will give a procurement preference for qualifying biobased EPS foam recycling products. By that...

  19. Use of mid- and near-infrared spectroscopy to track degradation of bio-based eating utensils during composting.

    PubMed

    Mulbry, Walter; Reeves, James B; Millner, Patricia

    2012-04-01

    Near-infrared spectroscopy (NIRS) and mid-infrared spectroscopy (MIRS) have been used for quantitative and/or qualitative analysis of a wide range of materials. The objective of this study was to investigate the potential of MIRS and NIRS for following the degradation of bio-based food utensils during composting. Polylactide (PLA)-based forks lost 34% of their initial mass and were reduced to small friable fragments after 7 weeks of composting. NIRS and MIRS spectra of forks that were incubated for 7 weeks were nearly identical to spectra of untreated forks. NIRS and MIRS were more useful in following the degradation of a starch/polypropylene (PP) polymer. Spectral results demonstrated that the starch component degraded during composting and that the PP component was recalcitrant. These results confirm that MIRS and NIRS are useful in determining the composition of biobased materials. However, the spectra did not provide useful information about the extent of PLA polymer degradation.

  20. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization.

    PubMed

    Liu, Guang-Chen; He, Yi-Song; Zeng, Jian-Bing; Li, Qiu-Tong; Wang, Yu-Zhong

    2014-11-10

    A fully biobased and supertough thermoplastic vulcanizate (TPV) consisting of polylactide (PLA) and a biobased vulcanized unsaturated aliphatic polyester elastomer (UPE) was fabricated via peroxide-induced dynamic vulcanization. Interfacial compatibilization between PLA and UPE took place during dynamic vulcanization, which was confirmed by gel measurement and NMR analysis. After vulcanization, the TPV exhibited a quasi cocontinuous morphology with vulcanized UPE compactly dispersed in PLA matrix, which was different from the pristine PLA/UPE blend, exhibiting typically phase-separated morphology with unvulcanized UPE droplets discretely dispersed in matrix. The TPV showed significantly improved tensile and impact toughness with values up to about 99.3 MJ/m(3) and 586.6 J/m, respectively, compared to those of 3.2 MJ/m(3) and 16.8 J/m for neat PLA, respectively. The toughening mechanisms under tensile and impact tests were investigated and deduced as massive shear yielding of the PLA matrix triggered by internal cavitation of VUPE. The fully biobased supertough PLA vulcanizate could serve as a promising alternative to traditional commodity plastics. PMID:25287757

  1. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization.

    PubMed

    Liu, Guang-Chen; He, Yi-Song; Zeng, Jian-Bing; Li, Qiu-Tong; Wang, Yu-Zhong

    2014-11-10

    A fully biobased and supertough thermoplastic vulcanizate (TPV) consisting of polylactide (PLA) and a biobased vulcanized unsaturated aliphatic polyester elastomer (UPE) was fabricated via peroxide-induced dynamic vulcanization. Interfacial compatibilization between PLA and UPE took place during dynamic vulcanization, which was confirmed by gel measurement and NMR analysis. After vulcanization, the TPV exhibited a quasi cocontinuous morphology with vulcanized UPE compactly dispersed in PLA matrix, which was different from the pristine PLA/UPE blend, exhibiting typically phase-separated morphology with unvulcanized UPE droplets discretely dispersed in matrix. The TPV showed significantly improved tensile and impact toughness with values up to about 99.3 MJ/m(3) and 586.6 J/m, respectively, compared to those of 3.2 MJ/m(3) and 16.8 J/m for neat PLA, respectively. The toughening mechanisms under tensile and impact tests were investigated and deduced as massive shear yielding of the PLA matrix triggered by internal cavitation of VUPE. The fully biobased supertough PLA vulcanizate could serve as a promising alternative to traditional commodity plastics.

  2. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increasing demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has made great gains in production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as Conservation ...

  3. 7 CFR 3201.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Expanded polystyrene (EPS) foam recycling products... FOR FEDERAL PROCUREMENT Designated Items § 3201.53 Expanded polystyrene (EPS) foam recycling products... with this part, will give a procurement preference for qualifying biobased EPS foam recycling...

  4. 7 CFR 3201.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Expanded polystyrene (EPS) foam recycling products... FOR FEDERAL PROCUREMENT Designated Items § 3201.53 Expanded polystyrene (EPS) foam recycling products... with this part, will give a procurement preference for qualifying biobased EPS foam recycling...

  5. 7 CFR 3201.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Expanded polystyrene (EPS) foam recycling products... FOR FEDERAL PROCUREMENT Designated Items § 3201.53 Expanded polystyrene (EPS) foam recycling products... with this part, will give a procurement preference for qualifying biobased EPS foam recycling...

  6. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  7. Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.

    PubMed

    Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao

    2016-07-20

    A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP. PMID:27352017

  8. Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.

    PubMed

    Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao

    2016-07-20

    A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP.

  9. High T(g) bio-based aliphatic polyesters from bicyclic D-mannitol.

    PubMed

    Lavilla, Cristina; Alla, Abdelilah; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián

    2013-03-11

    The carbohydrate-based diol 2,4:3,5-di-O-methylene-d-mannitol (Manx) has been used to obtain aliphatic polyesters. Manx is a symmetric bicyclic compound consisting of two fused 1,3-dioxane rings and bearing two primary hydroxyl groups. In terms of stiffness, it is comparable to the widely known isosorbide, but it affords the additional advantages of being much more reactive in polycondensation and capable of producing stereoregular polymers with fairly high molecular weights. A fully bio-based homopolyester (PManxS) has been synthesized by polycondensation in the melt from dimethyl succinate and Manx. The high thermal stability of PManxS, its relatively high glass transition temperature (Tg = 68 °C) and elastic modulus, and its enhanced sensitivity to the action of lipases point to PManxS as a polyester of exceptional interest for those applications where biodegradability and molecular stiffness are priority requirements. In addition, random copolyesters (PBxManxyS) covering a broad range of compositions have been obtained using mixtures of Manx and 1,4-butanediol in the reaction with dimethyl succinate. All PBxManxyS were semicrystalline and displayed Tg values from -29 to +51 °C steadily increasing with the content in Manx units. The stress-strain behavior of these copolyesters largely depended on their content in Manx and they were enzymatically degraded faster than PBS. PMID:23363397

  10. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    SciTech Connect

    Petrik, Michael; Ruhl, Robert

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  11. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes.

    PubMed

    Zhang, Chaoqun; Ding, Rui; Kessler, Michael R

    2014-06-01

    A novel method, epoxidation/reduction of vegetable oils, is developed to prepare bio-based polyols for the manufacture of polyurethanes (PUs). These polyols are synthesized from castor oil (CO), epoxidized soybean oil, and epoxidized linseed oil and their molecular structures are characterized. They are used to prepare a variety of PUs, and their thermomechanical properties are compared to those of PU made with petroleum-based polyol (P-450). It is shown that PUs made with polyols from soybean and linseed oil exhibit higher glass transition temperatures, tensile strength, and Young's modulus and PU made with polyol from CO exhibits higher elongation at break and toughness than PU made with P-450. However, PU made with P-450 displays better thermal resistance because of tri-ester structure and terminal functional groups. The method provides a versatile way to prepare bio-polyols from vegetable oils, and it is expected to partially or completely replace petroleum-based polyols in PUs manufacture.

  12. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    PubMed

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling).

  13. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    PubMed

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration.

  14. Polymerization and Structure of Bio-Based Plastics: A Computer Simulation

    NASA Astrophysics Data System (ADS)

    Khot, Shrikant N.; Wool, Richard P.

    2001-03-01

    We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation

  15. A pH-sensitive, biobased calcium carbonate aragonite nanocrystal as a novel anticancer delivery system.

    PubMed

    Shafiu Kamba, Abdullahi; Ismail, Maznah; Tengku Ibrahim, Tengku Azmi; Zakaria, Zuki Abu Bakar

    2013-01-01

    The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO₃/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO₃/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO₃/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO₃ nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy.

  16. Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens.

    PubMed

    Sugumar, Saranya; Nirmala, Joyce; Ghosh, Vijayalakshmi; Anjali, Haridasan; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2013-08-01

    The current study deals with the formulation and characterization of bio-based oil in water nanoemulsion and its potential antibacterial activity. A typical v/v% of eucalyptus oil (16.66%), Tween 80 (16.66%), and water (68.68%) was prepared by ultrasonication method. The mean droplet size was 17.1 nm as confirmed by dynamic light scattering. Different concentrations of the formulation ranging from undiluted to 10-, 100-, and 1000-fold dilutions were used to check the antibacterial activity in three different microorganisms, namely, Bacillus cereus, Staphylococcus aureus (Gram-positive), and Escherichia coli (Gram-negative). All three species showed a 100% bactericidal at the 10-fold dilution of the nanoemulsion formulation in the following order: B. cereus at 0th min, S. aureus at 15 min and E. coli at 1 h, respectively. A 10-fold dilution of the nanoemulsion showed that, the cytoplasmic content leakage from the bacterial species was high for S. aureus when compared to B. cereus and E. coli as determined by UV-Vis spectroscopic method. Fluorescence microscopic technique further confirmed this study.

  17. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis

  18. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    PubMed

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration. PMID:26492854

  19. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.

    PubMed

    Borreani, Giorgio; Tabacco, Ernesto

    2015-01-01

    The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible.

  20. Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.

    PubMed

    Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke

    2016-06-25

    Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus.

  1. Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.

    PubMed

    Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke

    2016-06-25

    Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. PMID:27083797

  2. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.

    PubMed

    Borreani, Giorgio; Tabacco, Ernesto

    2015-01-01

    The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible. PMID:25468689

  3. Catalytic Products from a Bench-Scale, Simulated Fluidized-Bed Pyrolyzer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass (e.g. lignocellulosics and lipids) were catalytically converted under thermochemical conditions to bio-based, fungible industrial chemicals and products. The focus was on high temperature catalytic conversions of feedstocks in a bench-scale reactor designed to replicate a packed- or fluidiz...

  4. Smart, Sustainable, and Ecofriendly Chemical Design of Fully Bio-Based Thermally Stable Thermosets Based on Benzoxazine Chemistry.

    PubMed

    Froimowicz, Pablo; R Arza, Carlos; Han, Lu; Ishida, Hatsuo

    2016-08-01

    A smart synthetic chemical design incorporating furfurylamine, a natural renewable amine, into a partially bio-based coumarin-containing benzoxazine is presented. The versatility of the synthetic approach is shown to be flexible and robust enough to be successful under more ecofriendly reaction conditions by replacing toluene with ethanol as the reaction solvent and even under solventless conditions. The chemical structure of this coumarin-furfurylamine-containing benzoxazine is characterized by FTIR, (1) H NMR spectroscopy and two-dimensional (1) H-(1) H nuclear Overhauser effect spectroscopy (2D (1) H-(1) H NOESY). The thermal properties of the resin toward polymerization are characterized by differential scanning calorimetry (DSC) and the thermal stability of the resulting polymers by thermogravimetric analysis (TGA). The results reveal that the furanic moiety induces a co-operative activating effect, thus lowering the polymerization temperature and also contributes to a better thermal stability of the resulting polymers. These results, in addition to those of natural renewable benzoxazine resins reviewed herein, highlight the positive and beneficial implication of designing novel bio-based polybenzoxazine and possibly other thermosets with desirable and competitive properties.

  5. Smart, Sustainable, and Ecofriendly Chemical Design of Fully Bio-Based Thermally Stable Thermosets Based on Benzoxazine Chemistry.

    PubMed

    Froimowicz, Pablo; R Arza, Carlos; Han, Lu; Ishida, Hatsuo

    2016-08-01

    A smart synthetic chemical design incorporating furfurylamine, a natural renewable amine, into a partially bio-based coumarin-containing benzoxazine is presented. The versatility of the synthetic approach is shown to be flexible and robust enough to be successful under more ecofriendly reaction conditions by replacing toluene with ethanol as the reaction solvent and even under solventless conditions. The chemical structure of this coumarin-furfurylamine-containing benzoxazine is characterized by FTIR, (1) H NMR spectroscopy and two-dimensional (1) H-(1) H nuclear Overhauser effect spectroscopy (2D (1) H-(1) H NOESY). The thermal properties of the resin toward polymerization are characterized by differential scanning calorimetry (DSC) and the thermal stability of the resulting polymers by thermogravimetric analysis (TGA). The results reveal that the furanic moiety induces a co-operative activating effect, thus lowering the polymerization temperature and also contributes to a better thermal stability of the resulting polymers. These results, in addition to those of natural renewable benzoxazine resins reviewed herein, highlight the positive and beneficial implication of designing novel bio-based polybenzoxazine and possibly other thermosets with desirable and competitive properties. PMID:27480785

  6. Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity.

    PubMed

    Ma, Songqi; Liu, Xiaoqing; Fan, Libo; Jiang, Yanhua; Cao, Lijun; Tang, Zhaobin; Zhu, Jin

    2014-02-01

    A bio-based epoxy resin (denoted TEIA) with high epoxy value (1.16) and low viscosity (0.92 Pa s, 258C) was synthesized from itaconic acid and its chemical structure was confirmed by 1H NMR and 13C NMR spectroscopy. Its curing reaction with poly(propylene glycol) bis(2-aminopropyl ether) (D230) and methyl hexahydrophthalic anhydride (MHHPA) was investigated. For comparison, the commonly used diglycidyl ether of bisphenol A (DGEBA) was also cured with the same curing agents. The results demonstrated that TEIA showed higher curing reactivity towards D230/MHHPA and lower viscosity compared with DGEBA, resulting in the better processability. Owing to its high epoxy value and unique structure, comparable or better glass transition temperature as well as mechanical properties could be obtained for the TEIA-based network relative to the DGEBA-based network. The results indicated that itaconic acid is a promising renewable feedstock for the synthesis of bio-based epoxy resin with high performance. PMID:24136894

  7. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  8. Human 2-D PAGE databases for proteome analysis in health and disease: http://biobase.dk/cgi-bin/celis.

    PubMed

    Celis, J E; Gromov, P; Ostergaard, M; Madsen, P; Honoré, B; Dejgaard, K; Olsen, E; Vorum, H; Kristensen, D B; Gromova, I; Haunsø, A; Van Damme, J; Puype, M; Vandekerckhove, J; Rasmussen, H H

    1996-12-01

    Human 2-D PAGE Databases established at the Danish Centre for Human Genome Research are now available on the World Wide Web (http://biobase.dk/cgi-bin/celis). The databanks, which offer a comprehensive approach to the analysis of the human proteome both in health and disease, contain data on known and unknown proteins recorded in various IEF and NEPHGE 2-D PAGE reference maps (non-cultured keratinocytes, non-cultured transitional cell carcinomas, MRC-5 fibroblasts and urine). One can display names and information on specific protein spots by clicking on the image of the gel representing the 2-D gel map in which one is interested. In addition, the database can be searched by protein name, keywords or organelle or cellular component. The entry files contain links to other databases such as Medline, Swiss-Prot, PIR, PDB, CySPID, OMIM, Methabolic pathways, etc. The on-line information is updated regularly. PMID:8977092

  9. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks

    NASA Astrophysics Data System (ADS)

    Altuna, F. I.; Antonacci, J.; Arenas, G. F.; Pettarin, V.; Hoppe, C. E.; Williams, R. J. J.

    2016-04-01

    Green laser irradiation successfully activated self-healing processes in epoxy-acid networks modified with low amounts of gold nanoparticles (NPs). A bio-based polymer matrix, obtained by crosslinking epoxidized soybean oil (ESO) with an aqueous citric acid (CA) solution, was self-healed through molecular rearrangements produced by transesterification reactions of β-hydroxyester groups generated in the polymerization reaction. The temperature increase required for the triggering of these thermally activated reactions was attained by green light irradiation of the damaged area. Compression force needed to assure a good contact between crack faces was achieved by volume dilatation generated by the same temperature rise. Gold NPs dispersed in the polymer efficiently generated heat in the presence of electromagnetic radiation under plasmon resonance, acting as nanometric heating sources and allowing remote activation of the self-healing in the crosslinked polymer.

  10. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion.

  11. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion. PMID:26448524

  12. Animal-derived natural products review: focus on novel modifications and applications.

    PubMed

    Fan, Qianqian; Ma, Jianzhong; Xu, Qunna; Zhang, Jing; Simion, Demetra; Carmen, Gaidău; Guo, Congsheng

    2015-04-01

    Bio-based natural products have attracted exploding interests, while the environmental pollutions caused by the synthetic polymers are deteriorating dramatically. In this review, we provide a comprehensive overview of the modification of animal-derived natural products with an emphasis on casein, chitosan and collagen. Furthermore, their novel applications in controlled drug delivery system, leather finishing, and pollutant adsorption are also demonstrated. Accordingly, some perspectives in the future development of animal-derived natural products are further proposed.

  13. Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives.

    PubMed

    Pan, Haifeng; Wang, Wei; Pan, Ying; Song, Lei; Hu, Yuan; Liew, Kim Meow

    2015-01-22

    The self-extinguishing coating, consisting of biobased chitin derivatives, phosphorylated chitin and deacetylated chitin (chitosan), was deposited on cotton fabrics via the Layer-by-Layer (LbL) assembled method. The content of phosphorylated chitin prepared on cotton fabrics surface is dependent on the bilayers' number and concentration of phosphorylated chitin. In the vertical flame test, the cotton fabric with 20 bilayers prepared at the high phosphorylated chitin concentration (2 wt%) could extinguish the flame. Microcombustion calorimetry result showed that all coated cotton fabrics showed lower peak heat-release rate and total heat-release values compared with that of the pure one. Thermogravimetric analysis result indicated that thermal and thermal oxidation stability of all coated cotton fabrics were enhanced in the high temperature range (400-700°C). This work provided the flame retardant multilayer films based on fully biobased chitin derivatives on cotton fabrics to enhance its flame retardancy.

  14. Copolymerization as a Strategy to Combine Epoxidized Linseed Oil and Furfuryl Alcohol: The Design of a Fully Bio-Based Thermoset.

    PubMed

    Pin, Jean-Mathieu; Guigo, Nathanaël; Vincent, Luc; Sbirrazzuoli, Nicolas; Mija, Alice

    2015-12-21

    Epoxidized linseed oil and furfuryl alcohol are bio-sourced monomers known for their high-potential applications in materials science. In this work, we propose the association of these monomers through copolymerization reactions with the target to design fully bio-based thermosets. Herein, investigations on cationic polymerization reactivity have been explored using differential scanning calorimetry. The obtained structures have been confirmed by IR spectroscopy and 2 D NMR spectroscopy, which revealed the principal chain connections. In spite of the multiple capabilities of chemical connections, which include copolymerization and cross-linking, the obtained networks are homogeneous as confirmed by dynamic mechanical analysis and SEM. Furthermore, the copolymer demonstrates a semiductile behavior if subjected to tensile measurements (tensile strain at break ≈40 %), which is a significant advance in terms of its applications as a furanic bio-based thermoset material. PMID:26663869

  15. Improved solubility of DNA in recyclable and reusable bio-based deep eutectic solvents with long-term structural and chemical stability.

    PubMed

    Mondal, Dibyendu; Sharma, Mukesh; Mukesh, Chandrakant; Gupta, Vishal; Prasad, Kamalesh

    2013-10-25

    The solubility of DNA in bio-based deep eutectic solvents (DESs) consisting of mixtures of choline chloride with levulinic acid, glycerol, ethylene glycol, sorbitol and resorcinol was investigated. The macromolecule was found to be soluble and chemically and structurally stable in DESs consisting of mixtures containing glycerol and ethylene glycol. Furthermore recyclability of the DESs was demonstrated over three consecutive reuses in DNA dissolution.

  16. Unexpected stimulation of soil methane uptake by bio-based residue application: An emerging property of agricultural soils offsetting greenhouse gas balance.

    NASA Astrophysics Data System (ADS)

    Ho, Adrian; Reim, Andreas; Ruijs, Rienke; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; Putten, Wim H. vd.; Bodelier, Paul L. E.

    2016-04-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over two months. Unexpectedly, after amendments with specific residues we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotrophic population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus spp. may facilitate methane oxidation in the agricultural soils. Studies are under way to identify the active methane-oxidizers at near atmospheric methane concentrations using PLFA-Stable isotope probing (SIP). While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that the methane oxidation rate can be stimulated, leading to higher soil methane uptake. Moreover, the addition of

  17. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    NASA Astrophysics Data System (ADS)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  18. Tailoring lignin biosynthesis for efficient and sustainable biofuel production.

    PubMed

    Liu, Chang-Jun; Cai, Yuanheng; Zhang, Xuebin; Gou, Mingyue; Yang, Huijun

    2014-12-01

    Increased global interest in a bio-based economy has reinvigorated the research on the cell wall structure and composition in plants. In particular, the study of plant lignification has become a central focus, with respect to its intractability and negative impact on the utilization of the cell wall biomass for producing biofuels and bio-based chemicals. Striking progress has been achieved in the last few years both on our fundamental understanding of lignin biosynthesis, deposition and assembly, and on the interplay of lignin synthesis with the plant growth and development. With the knowledge gleaned from basic studies, researchers are now able to invent and develop elegant biotechnological strategies to sophisticatedly manipulate the quantity and structure of lignin and thus to create economically viable bioenergy feedstocks. These concerted efforts open an avenue for the commercial production of cost-competitive biofuel to meet our energy needs.

  19. Development and validation of a technoeconomic analysis tool for early-stage evaluation of bio-based chemical production processes.

    PubMed

    Claypool, Joshua T; Raman, D Raj

    2013-12-01

    By using cost correlations and standard scale-factors, a spreadsheet-based early-stage cost estimation tool was developed. Named BioPET (Biorenewables Process Evaluation Tool), this tool allows users to specify up to seven primary unit operations--fermentation, separation, three catalytic stages, and purification--along with key parameters for each. BioPET then computes an estimated minimum selling price for the pathway. Model validation was conducted by selecting three molecules (ethanol, succinic acid, and adipic acid), and comparing BioPET's results to literature values and to results from a commercial process design tool. BioPET produced virtually identical prices to the process design tool, although the costs were not identically distributed amongst the categories. BioPET produced estimates that were within 40% of other literature values at low feedstock costs, and within 5% at high feedstock costs.

  20. Development and validation of a technoeconomic analysis tool for early-stage evaluation of bio-based chemical production processes.

    PubMed

    Claypool, Joshua T; Raman, D Raj

    2013-12-01

    By using cost correlations and standard scale-factors, a spreadsheet-based early-stage cost estimation tool was developed. Named BioPET (Biorenewables Process Evaluation Tool), this tool allows users to specify up to seven primary unit operations--fermentation, separation, three catalytic stages, and purification--along with key parameters for each. BioPET then computes an estimated minimum selling price for the pathway. Model validation was conducted by selecting three molecules (ethanol, succinic acid, and adipic acid), and comparing BioPET's results to literature values and to results from a commercial process design tool. BioPET produced virtually identical prices to the process design tool, although the costs were not identically distributed amongst the categories. BioPET produced estimates that were within 40% of other literature values at low feedstock costs, and within 5% at high feedstock costs. PMID:24041977

  1. Biorefineries for the production of top building block chemicals and their derivatives.

    PubMed

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho; Lee, Sang Yup

    2015-03-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples.

  2. Biorefineries for the production of top building block chemicals and their derivatives.

    PubMed

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho; Lee, Sang Yup

    2015-03-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples. PMID:25576747

  3. Effect of organoclay on morphology and properties of linear low density polyethylene and Vietnamese cassava starch biobased blend.

    PubMed

    Nguyen, D M; Vu, T T; Grillet, Anne-Cécile; Ha Thuc, H; Ha Thuc, C N

    2016-01-20

    Linear low density polyethylene (LLDPE)/thermal plastic starch (TPS) blend was studied to prepare the biobased nanocomposite material using organoclay nanofil15 (N15) modified by alkilammonium as the reinforced phase. The LLDPE/TPS blend and its nanocomposites were elaborated by melt mixing method at 160 °C for 7 min. And the compounded sample was filmed by blowing method at three different zones of temperature profile which are 160-170-165 °C. The good dispersion of clay in the polymer blend matrix is showed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM), and a semi-exfoliated structure was obtained. The thermal and mechanical properties of materials are enhanced when N15 is added to the mixture. The effect of N15 on morphology and particles size of TPS phase is also investigated. The biodegradation test shows that more than 60% in weight of LLDPE/TPS film is degraded into CO2, H2O, methane and biomass after 5 months in compost soil. PMID:26572342

  4. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties

    PubMed Central

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C

    2014-01-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and 1H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was −47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress–strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4–9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. PMID:24812276

  5. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    PubMed

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2014-09-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. PMID:24812276

  6. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    PubMed

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2014-09-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration.

  7. Effect of organoclay on morphology and properties of linear low density polyethylene and Vietnamese cassava starch biobased blend.

    PubMed

    Nguyen, D M; Vu, T T; Grillet, Anne-Cécile; Ha Thuc, H; Ha Thuc, C N

    2016-01-20

    Linear low density polyethylene (LLDPE)/thermal plastic starch (TPS) blend was studied to prepare the biobased nanocomposite material using organoclay nanofil15 (N15) modified by alkilammonium as the reinforced phase. The LLDPE/TPS blend and its nanocomposites were elaborated by melt mixing method at 160 °C for 7 min. And the compounded sample was filmed by blowing method at three different zones of temperature profile which are 160-170-165 °C. The good dispersion of clay in the polymer blend matrix is showed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM), and a semi-exfoliated structure was obtained. The thermal and mechanical properties of materials are enhanced when N15 is added to the mixture. The effect of N15 on morphology and particles size of TPS phase is also investigated. The biodegradation test shows that more than 60% in weight of LLDPE/TPS film is degraded into CO2, H2O, methane and biomass after 5 months in compost soil.

  8. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    NASA Astrophysics Data System (ADS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  9. Biobased films prepared from collagen solutions derived from un-tanned hides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. hide and leather industries are facing challenges of meeting environmental imperatives; quantifying, maintaining, and improving current hides and leather product quality; developing new processes and products; and improving utilization of waste. One of our efforts to address these new chal...

  10. Biobased films prepared from collagen solutions derived from un-tanned hides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. hide and leather industries are facing challenges of meeting environmental imperatives; quantifying, maintaining, and improving current hides and leather product quality; developing new processes and products; and improving utilization of waste. One of our contributions to address these on...

  11. Bio-based adhesives from residues of consolidated bioprocessing of cellulosic substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic bacteria (Clostridium thermocellum or Ruminococcus species) that ferment cellulosic materials to ethanol or other low molecular weight products have been proposed to serve as a basis for single-reactor bioconversions of cellulosics in a scheme termed consolidated bioprocessing (CBP). Thes...

  12. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  13. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  14. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    PubMed Central

    2012-01-01

    Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than

  15. Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development.

    PubMed

    Chen, Rachel; Dou, Jennifer

    2016-02-01

    Interest in developing a sustainable technology for fuels and chemicals has unleashed tremendous creativity in metabolic engineering for strain development over the last few years. This is driven by the exceptionally recalcitrant substrate, lignocellulose, and the necessity to keep the costs down for commodity products. Traditional methods of gene expression and evolutionary engineering are more effectively used with the help of synthetic biology and -omics techniques. Compared to the last biomass research peak during the 1980s oil crisis, a more diverse range of microorganisms are being engineered for a greater variety of products, reflecting the broad applicability and effectiveness of today's gene technology. We review here several prominent and successful metabolic engineering strategies with emphasis on the following four areas: xylose catabolism, inhibitor tolerance, synthetic microbial consortium, and cellulosic oligomer assimilation. PMID:26466596

  16. From plant biomass to bio-based chemicals: latest developments in xylan research.

    PubMed

    Deutschmann, Rudolf; Dekker, Robert F H

    2012-01-01

    For a hundred years or more, oil and natural gas has supplied fuel and other raw chemicals to support economic growth. In the last decades their shrinking reservoirs and the increasing cost of production has become obvious, leading researchers to look for alternative substitutes of all the chemical materials presently derived from oil and gas. This review is focused on xylan, the second most abundant plant polysaccharide on our planet. Some xylan-derived products have already found commercial applications (ethanol, xylitol, xylo-oligosaccharides) while others could have a great future in a wide range of industries. The chemical and structural variations of xylans produced by different plants, and the concentration of xylan in various plant resources are summarized. This review discusses the latest research developments in extraction and purification methodologies, and chemical modification, as well as the analytical methods necessary for xylan related research. PMID:22776161

  17. Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions

    SciTech Connect

    Freeman, Charles J.; Jones, Susanne B.; Padmaperuma, Asanga B.; Santosa, Daniel M.; Valkenburg, Corinne; Shinn, John

    2013-04-01

    In order to meet U.S. biofuel objectives over the coming decade the conversion of a broad range of biomass feedstocks, using diverse processing options, will be required. Further, the production of both gasoline and diesel biofuels will employ biomass conversion methods that produce wide boiling range intermediate oils requiring treatment similar to conventional refining processes (i.e. fluid catalytic cracking, hydrocracking, and hydrotreating). As such, it is widely recognized that leveraging existing U.S. petroleum refining infrastructure is key to reducing overall capital demands. This study examines how existing U.S. refining location, capacities and conversion capabilities match in geography and processing capabilities with the needs projected from anticipated biofuels production.

  18. Biosensors and bio-based methods for the separation and detection of foodborne pathogens.

    PubMed

    Bhunia, Arun K

    2008-01-01

    The safety of our food supply is always a major concern to consumers, food producers, and regulatory agencies. A safer food supply improves consumer confidence and brings economic stability. The safety of foods from farm-to-fork through the supply chain continuum must be established to protect consumers from debilitating, sometimes fatal episodes of pathogen outbreaks. The implementation of preventive strategies like hazard analysis critical control points (HACCP) assures safety but its full utility will not be realized unless supportive tools are fully developed. Rapid, sensitive, and accurate detection methods are such essential tools that, when integrated with HACCP, will improve safety of products. Traditional microbiological methods are powerful, error-proof, and dependable but these lengthy, cumbersome methods are often ineffective because they are not compatible with the speed at which the products are manufactured and the short shelf life of products. Automation in detection methods is highly desirable, but is not achievable with traditional methods. Therefore, biosensor-based tools offer the most promising solutions and address some of the modern-day needs for fast and sensitive detection of pathogens in real time or near real time. The application of several biosensor tools belonging to the categories of optical, electrochemical, and mass-based tools for detection of foodborne pathogens is reviewed in this chapter. Ironically, geometric growth in biosensor technology is fueled by the imminent threat of bioterrorism through food, water, and air and by the funding through various governmental agencies. PMID:18291303

  19. Biosensors and bio-based methods for the separation and detection of foodborne pathogens.

    PubMed

    Bhunia, Arun K

    2008-01-01

    The safety of our food supply is always a major concern to consumers, food producers, and regulatory agencies. A safer food supply improves consumer confidence and brings economic stability. The safety of foods from farm-to-fork through the supply chain continuum must be established to protect consumers from debilitating, sometimes fatal episodes of pathogen outbreaks. The implementation of preventive strategies like hazard analysis critical control points (HACCP) assures safety but its full utility will not be realized unless supportive tools are fully developed. Rapid, sensitive, and accurate detection methods are such essential tools that, when integrated with HACCP, will improve safety of products. Traditional microbiological methods are powerful, error-proof, and dependable but these lengthy, cumbersome methods are often ineffective because they are not compatible with the speed at which the products are manufactured and the short shelf life of products. Automation in detection methods is highly desirable, but is not achievable with traditional methods. Therefore, biosensor-based tools offer the most promising solutions and address some of the modern-day needs for fast and sensitive detection of pathogens in real time or near real time. The application of several biosensor tools belonging to the categories of optical, electrochemical, and mass-based tools for detection of foodborne pathogens is reviewed in this chapter. Ironically, geometric growth in biosensor technology is fueled by the imminent threat of bioterrorism through food, water, and air and by the funding through various governmental agencies.

  20. Single step purification of concanavalin A (Con A) and bio-sugar production from jack bean using glucosylated magnetic nano matrix.

    PubMed

    Kim, Ho Myeong; Cho, Eun Jin; Bae, Hyeun-Jong

    2016-08-01

    Jack bean (JB, Canavalia ensiformis) is the source of bio-based products, such as proteins and bio-sugars that contribute to modern molecular biology and biomedical research. In this study, the use of jack bean was evaluated as a source for concanavalin A (Con A) and bio-sugar production. A novel method for purifying Con A from JBs was successfully developed using a glucosylated magnetic nano matrix (GMNM) as a physical support, which facilitated easy separation and purification of Con A. In addition, the enzymatic conversion rate of 2% (w/v) Con A extracted residue to bio-sugar was 98.4%. Therefore, this new approach for the production of Con A and bio-sugar is potentially useful for obtaining bio-based products from jack bean.

  1. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate.

  2. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change.

    PubMed

    Hermann, B G; Blok, K; Patel, M K

    2007-11-15

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry. PMID:18075108

  3. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate. PMID:26235971

  4. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change.

    PubMed

    Hermann, B G; Blok, K; Patel, M K

    2007-11-15

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry.

  5. Combining Metabolic Engineering and Electrocatalysis. Application to the Production of Polyamides from Sugar

    DOE PAGES

    Suastegui, Miguel; Matthiesen, John E.; Carraher, Jack M.; Hernandez, Nacu; Rodriguez Quiroz, Natalia; Okerlund, Adam; Cochran, Eric W.; Shao, Zengyi; Tessonnier, Jean-Philippe

    2016-01-14

    Biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L-1 in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94 % yieldmore » despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine.« less

  6. Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar.

    PubMed

    Suastegui, Miguel; Matthiesen, John E; Carraher, Jack M; Hernandez, Nacu; Rodriguez Quiroz, Natalia; Okerlund, Adam; Cochran, Eric W; Shao, Zengyi; Tessonnier, Jean-Philippe

    2016-02-12

    Biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L(-1) in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94 % yield despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine.

  7. Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar.

    PubMed

    Suastegui, Miguel; Matthiesen, John E; Carraher, Jack M; Hernandez, Nacu; Rodriguez Quiroz, Natalia; Okerlund, Adam; Cochran, Eric W; Shao, Zengyi; Tessonnier, Jean-Philippe

    2016-02-12

    Biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L(-1) in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94 % yield despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine. PMID:26840213

  8. Biobased Fat Mimicking Molecular Structuring Agents for Medium-Chain Triglycerides (MCTs) and Other Edible Oils.

    PubMed

    Silverman, Julian R; John, George

    2015-12-01

    To develop sustainable value-added materials from biomass, novel small-molecule sugar ester gelators were synthesized using biocatalysis. The facile one-step regiospecific coupling of the pro-antioxidant raspberry ketone glucoside and unsaturated or saturated long- and medium-chain fatty acids provides a simple approach to tailor the structure and self-assembly of the amphiphilic product. These low molecular weight molecules demonstrated the ability to self-assemble in a variety of solvents and exhibited supergelation, with a minimum gelation concentration of 0.25 wt %, in numerous organic solvents, as well as in a range of natural edible oils, specifically a relatively unstudied group of liquids: natural medium-chain triglyceride oils, notably coconut oil. Spectroscopic analysis details the gelator structure as well as the intermolecular noncovalent interactions, which allow for gelation. X-ray diffraction studies indicate fatty acid chain packing of gelators is similar to that of natural fats, signifying the crystalline nature may lead to desirable textural properties and mouthfeel.

  9. Biobased Fat Mimicking Molecular Structuring Agents for Medium-Chain Triglycerides (MCTs) and Other Edible Oils.

    PubMed

    Silverman, Julian R; John, George

    2015-12-01

    To develop sustainable value-added materials from biomass, novel small-molecule sugar ester gelators were synthesized using biocatalysis. The facile one-step regiospecific coupling of the pro-antioxidant raspberry ketone glucoside and unsaturated or saturated long- and medium-chain fatty acids provides a simple approach to tailor the structure and self-assembly of the amphiphilic product. These low molecular weight molecules demonstrated the ability to self-assemble in a variety of solvents and exhibited supergelation, with a minimum gelation concentration of 0.25 wt %, in numerous organic solvents, as well as in a range of natural edible oils, specifically a relatively unstudied group of liquids: natural medium-chain triglyceride oils, notably coconut oil. Spectroscopic analysis details the gelator structure as well as the intermolecular noncovalent interactions, which allow for gelation. X-ray diffraction studies indicate fatty acid chain packing of gelators is similar to that of natural fats, signifying the crystalline nature may lead to desirable textural properties and mouthfeel. PMID:26624525

  10. Novel bio-based thermoset resins based on epoxidized vegetable oils for structural adhesives

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Shivshankar

    Conventional engineered wood composites are bonded for the most part through formaldehyde-based structural adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), phenol formaldehyde (PF) and resorcinol formaldehyde (RF). Formaldehyde is a known human carcinogen; the occupational exposure and emission after manufacturing of these binders is raising more and more concern. With increasing emphasis on environmental issues, there is clear incentive to replace these hazardous conventional formaldehyde-based binders with cco-friendly resins having similar properties but derived from renewable sources, bearing in mind the economics of the structural wood composite industry. In this thesis, the curing reaction of bio-derived epoxy thermosets with inexpensive, low-toxicity precursors, including polyimines and amino acids was investigated. Epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO) were successfully crosslinked with both branched polyethyleneimine (PEI) and triethylenetetramine (fETA). Epoxidized castor oil (ECO) was crosslinked with polyethyleneimine (PEI), having different molecular weights. Curing conditions were optimized through solvent uptake and soluble fraction analysis. Finally, the mechanical properties of the optimized compositions of rigid bioepoxies were evaluated using dynamic mechanical rheological testing (DMRT). While not as stiff as conventional materials, optimized materials have sufficient room temperature moduli to show promise for coatings and as binders in engineered wood products.

  11. Hydrophobically modified chitosan: a bio-based material for antimicrobial active film.

    PubMed

    Inta, Orathai; Yoksan, Rangrong; Limtrakul, Jumras

    2014-09-01

    The objective of the present research was to improve the hydrophobicity of chitosan, while retaining its antibacterial activity, through the grafting of dodecenyl succinyl chains onto phthaloyl chitosan, mainly at the C-6 position. Dodecenyl succinylated phthaloyl chitosan (DS-g-PHCTS) was synthesized via phthaloylation-dodecenyl succinylation-hydrazinolysis. The obtained derivatives were characterized by FTIR, (1)H NMR and XRD. Hydrazinolysis time was found to be a key factor in controlling the substitution of dodecenyl succinyl chains and phthalimido groups of the final product. DS-g-PHCTS - with a grafting degree of dodecenyl succinyl chains and a substitution degree of phthalimido groups of 0.73 and 0.39, respectively - exhibited an anhydrous crystal structure and the same solubility behavior as native chitosan. The introduction of hydrophobic alkyl chains provided DS-g-PHCTS with enhanced antibacterial activity against Gram-positive bacteria. In addition, DS-g-PHCTS film showed more effective bacterial growth inhibition and better water vapor barrier property under neutral pH condition than chitosan film. The results suggested that DS-g-PHCTS film could be potentially used as antibacterial active film.

  12. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  13. Advantages and limitations of exergy indicators to assess sustainability of bioenergy and biobased materials

    SciTech Connect

    Maes, Dries Van Passel, Steven

    2014-02-15

    Innovative bioenergy projects show a growing diversity in biomass pathways, transformation technologies and end-products, leading to complex new processes. Existing energy-based indicators are not designed to include multiple impacts and are too constrained to assess the sustainability of these processes. Alternatively, indicators based on exergy, a measure of “qualitative energy”, could allow a more holistic view. Exergy is increasingly applied in analyses of both technical and biological processes. But sustainability assessments including exergy calculations, are not very common and are not generally applicable to all types of impact. Hence it is important to frame the use of exergy for inclusion in a sustainability assessment. This paper reviews the potentials and the limitations of exergy calculations, and presents solutions for coherent aggregation with other metrics. The resulting approach is illustrated in a case study. Within the context of sustainability assessment of bioenergy, exergy is a suitable metric for the impacts that require an ecocentric interpretation, and it allows aggregation on a physical basis. The use of exergy is limited to a measurement of material and energy exchanges with the sun, biosphere and lithosphere. Exchanges involving services or human choices are to be measured in different metrics. This combination provides a more inclusive and objective sustainability assessment, especially compared to standard energy- or carbon-based indicators. Future applications of this approach in different situations are required to clarify the potential of exergy-based indicators in a sustainability context. -- Highlights: • Innovative bioenergy projects require more advanced sustainability assessments to incorporate all environmental impacts. • Exergy-based indicators provide solutions for objective and robust measurements. • The use of exergy in a sustainability assessment is limited to material exchanges, excluding exchanges with society

  14. Evaluating PHA Productivity of Bioengineered Rhodosprillum rubrum

    PubMed Central

    Jin, Huanan; Nikolau, Basil J.

    2014-01-01

    This study explored the potential of using Rhodosprillum rubrum as the biological vehicle to convert chemically simple carbon precursors to a value-added bio-based product, the biopolymer PHA. R. rubrum strains were bioengineered to overexpress individually or in various combinations, six PHA biosynthetic genes (phaC1, phaA, phaB, phaC2, phaC3, and phaJ), and the resulting nine over-expressing strains were evaluated to assess the effect on PHA content, and the effect on growth. These experiments were designed to genetically evaluate: 1) the role of each apparently redundant PHA polymerase in determining PHA productivity; 2) identify the key gene(s) within the pha biosynthetic operon that determines PHA productivity; and 3) the role of phaJ to support PHA productivity. The result of overexpressing each PHA polymerase-encoding gene indicates that phaC1 and phaC2 are significant contributors to PHA productivity, whereas phaC3 has little effect. Similarly, over-expressing individually or in combination the three PHA biosynthesis genes located in the pha operon indicates that phaB is the key determinant of PHA productivity. Finally, analogous experiments indicate that phaJ does not contribute significantly to PHA productivity. These bioengineering strains achieved PHA productivity of up to 30% of dry biomass, which is approximately 2.5-fold higher than the non-engineered control strain, indicating the feasibility of using this approach to produce value added bio-based products. PMID:24840941

  15. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2015-03-01

    Corynebacterium glutamicum, Escherichia coli, and Saccharomyces cerevisiae in particular, have become established as important industrial workhorses in biotechnology. Recent years have seen tremendous progress in their advance into tailor-made producers, driven by the upcoming demand for sustainable processes and renewable raw materials. Here, the diversity and complexity of nature is simultaneously a challenge and a benefit. Harnessing biodiversity in the right manner through synergistic progress in systems metabolic engineering and chemical synthesis promises a future innovative bio-economy.

  16. Alternative bio-based solvents for extraction of fat and oils: solubility prediction, global yield, extraction kinetics, chemical composition and cost of manufacturing.

    PubMed

    Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2015-04-15

    The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop's byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent.

  17. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    PubMed Central

    Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2015-01-01

    The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent. PMID:25884332

  18. Participatory Development and Analysis of a Fuzzy Cognitive Map of the Establishment of a Bio-Based Economy in the Humber Region

    PubMed Central

    Penn, Alexandra S.; Knight, Christopher J. K.; Lloyd, David J. B.; Avitabile, Daniele; Kok, Kasper; Schiller, Frank; Woodward, Amy; Druckman, Angela; Basson, Lauren

    2013-01-01

    Fuzzy Cognitive Mapping (FCM) is a widely used participatory modelling methodology in which stakeholders collaboratively develop a ‘cognitive map’ (a weighted, directed graph), representing the perceived causal structure of their system. This can be directly transformed by a workshop facilitator into simple mathematical models to be interrogated by participants by the end of the session. Such simple models provide thinking tools which can be used for discussion and exploration of complex issues, as well as sense checking the implications of suggested causal links. They increase stakeholder motivation and understanding of whole systems approaches, but cannot be separated from an intersubjective participatory context. Standard FCM methodologies make simplifying assumptions, which may strongly influence results, presenting particular challenges and opportunities. We report on a participatory process, involving local companies and organisations, focussing on the development of a bio-based economy in the Humber region. The initial cognitive map generated consisted of factors considered key for the development of the regional bio-based economy and their directional, weighted, causal interconnections. A verification and scenario generation procedure, to check the structure of the map and suggest modifications, was carried out with a second session. Participants agreed on updates to the original map and described two alternate potential causal structures. In a novel analysis all map structures were tested using two standard methodologies usually used independently: linear and sigmoidal FCMs, demonstrating some significantly different results alongside some broad similarities. We suggest a development of FCM methodology involving a sensitivity analysis with different mappings and discuss the use of this technique in the context of our case study. Using the results and analysis of our process, we discuss the limitations and benefits of the FCM methodology in this case

  19. Estolides: biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estolides were originally developed as a cost effective derivative from vegetable oil sources to overcome the problems associated with standard vegetable oils as lubricants. Classic estolides are formed by the formation of a carbocation at the site of unsaturation that can undergo nucleophilic addi...

  20. Compatibilized blends and value added products from leather industry waste

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Di Landro, Luca

    2014-05-01

    Blends based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed proteins (IP), derived from waste products of the leather industry, have been obtained by reactive blending and their chemical physical properties as well as mechanical and rheological behavior were evaluated. The effect of vinyl acetate content and of transesterification agent addition to increase interaction between polymer and bio-based components were considered. These blends represent a new type of biodegradable material and resulted promising for industrial application in several fields such as packaging and agriculture as transplanting or mulching films with additional fertilizing action of IP.

  1. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes

    PubMed Central

    Cao, Yujin; Zhang, Rubing; Sun, Chao; Cheng, Tao; Liu, Yuhua; Xian, Mo

    2013-01-01

    Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed. PMID:24396827

  2. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid.

  3. Supertoughened Biobased Poly(lactic acid)-Epoxidized Natural Rubber Thermoplastic Vulcanizates: Fabrication, Co-continuous Phase Structure, Interfacial in Situ Compatibilization, and Toughening Mechanism.

    PubMed

    Wang, Youhong; Chen, Kunling; Xu, Chuanhui; Chen, Yukun

    2015-09-10

    In the presence of dicumyl peroxide (DCP), biobased thermoplastic vulcanizates (TPVs) composed of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) were prepared through dynamic vulcanization. Interfacial in situ compatibilization between PLA and ENR phases was confirmed by Fourier transform infrared spectroscopy (FT-IR). A novel "sea-sea" co-continuous phase in the PLA/ENR TPVs was observed through scanning electron microscopy (SEM) and differed from the typical "sea-island" morphology that cross-linked rubber particles dispersed in plastic matrix. A sharp, brittle-ductile transition occurred with 40 wt % of ENR, showing a significantly improved impact strength of 47 kJ/m(2), nearly 15 times that of the neat PLA and 2.6 times that of the simple blend with the same PLA/ENR ratio. Gel permeation chromatography (GPC) and dynamic mechanical analysis (DMA) results suggested that a certain amount of DCP was consumed in the PLA phase, causing a slight cross-linking or branching of PLA molecules. the effects of various DCP contents on the impact property were investigated. The toughening mechanism under impact testing was researched, and the influence factors for toughening were discussed. PMID:26301924

  4. Supertoughened Biobased Poly(lactic acid)-Epoxidized Natural Rubber Thermoplastic Vulcanizates: Fabrication, Co-continuous Phase Structure, Interfacial in Situ Compatibilization, and Toughening Mechanism.

    PubMed

    Wang, Youhong; Chen, Kunling; Xu, Chuanhui; Chen, Yukun

    2015-09-10

    In the presence of dicumyl peroxide (DCP), biobased thermoplastic vulcanizates (TPVs) composed of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) were prepared through dynamic vulcanization. Interfacial in situ compatibilization between PLA and ENR phases was confirmed by Fourier transform infrared spectroscopy (FT-IR). A novel "sea-sea" co-continuous phase in the PLA/ENR TPVs was observed through scanning electron microscopy (SEM) and differed from the typical "sea-island" morphology that cross-linked rubber particles dispersed in plastic matrix. A sharp, brittle-ductile transition occurred with 40 wt % of ENR, showing a significantly improved impact strength of 47 kJ/m(2), nearly 15 times that of the neat PLA and 2.6 times that of the simple blend with the same PLA/ENR ratio. Gel permeation chromatography (GPC) and dynamic mechanical analysis (DMA) results suggested that a certain amount of DCP was consumed in the PLA phase, causing a slight cross-linking or branching of PLA molecules. the effects of various DCP contents on the impact property were investigated. The toughening mechanism under impact testing was researched, and the influence factors for toughening were discussed.

  5. Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers.

    PubMed

    Yang, Yuechao; Tong, Zhaohui; Geng, Yuqing; Li, Yuncong; Zhang, Min

    2013-08-28

    In this paper, we synthesized a biobased polyurethane using liquefied corn stover, isocyanate, and diethylenetriamine. The synthesized polyurethane was used as a coating material to control nitrogen (N) release from polymer-coated urea. A novel superabsorbent composite was also formulated from chicken feather protein (CFP), acrylic acid, and N,N'-methylenebisacrylamide and used as an outer coating material for water retention. We studied the N release characteristics and water-retention capability of the double-layer polymer-coated urea (DPCU) applied in both water and soils. The ear yields, dry matter accumulation, total N use efficiency and N leaching from a sweet corn soil-plant system under two different irrigation regimes were also investigated. Comparison of DPCU treatments with conventional urea fertilizer revealed that DPCU treatments reduced the N release rate and improved water retention capability. Evaluation of soil and plant characteristics within the soil-plant system revealed that DPCU application effectively reduced N leaching loss, improved total N use efficiency, and increased soil water retention capability. PMID:23923819

  6. Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers.

    PubMed

    Yang, Yuechao; Tong, Zhaohui; Geng, Yuqing; Li, Yuncong; Zhang, Min

    2013-08-28

    In this paper, we synthesized a biobased polyurethane using liquefied corn stover, isocyanate, and diethylenetriamine. The synthesized polyurethane was used as a coating material to control nitrogen (N) release from polymer-coated urea. A novel superabsorbent composite was also formulated from chicken feather protein (CFP), acrylic acid, and N,N'-methylenebisacrylamide and used as an outer coating material for water retention. We studied the N release characteristics and water-retention capability of the double-layer polymer-coated urea (DPCU) applied in both water and soils. The ear yields, dry matter accumulation, total N use efficiency and N leaching from a sweet corn soil-plant system under two different irrigation regimes were also investigated. Comparison of DPCU treatments with conventional urea fertilizer revealed that DPCU treatments reduced the N release rate and improved water retention capability. Evaluation of soil and plant characteristics within the soil-plant system revealed that DPCU application effectively reduced N leaching loss, improved total N use efficiency, and increased soil water retention capability.

  7. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production.

  8. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production. PMID:27394995

  9. Toward biotechnological production of adipic acid and precursors from biorenewables.

    PubMed

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid. PMID:22824738

  10. Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1) in Escherichia coli results in itaconate production

    PubMed Central

    Vuoristo, Kiira S.; Mars, Astrid E.; van Loon, Stijn; Orsi, Enrico; Eggink, Gerrit; Sanders, Johan P. M.; Weusthuis, Ruud A.

    2015-01-01

    Itaconic acid, a C5-dicarboxylic acid, is a potential biobased building block for the polymer industry. It is obtained from the citric acid cycle by decarboxylation of cis-aconitic acid. This reaction is catalyzed by CadA in the native itaconic acid producer Aspergillus terreus. Recently, another enzyme encoded by the mammalian immunoresponsive gene 1 (irg1), was found to decarboxylate cis-aconitate to itaconate in vitro. We show that heterologous expression of irg1 enabled itaconate production in Escherichia coli with production titres up to 560 mg/L. PMID:26347730

  11. Confluence of structural and chemical biology: plant polyketide synthases as biocatalysts for a bio-based future.

    PubMed

    Stewart, Charles; Vickery, Christopher R; Burkart, Michael D; Noel, Joseph P

    2013-06-01

    Type III plant polyketide synthases (PKSs) biosynthesize a dazzling array of polyphenolic products that serve important roles in both plant and human health. Recent advances in structural characterization of these enzymes and new tools from the field of chemical biology have facilitated exquisite probing of plant PKS iterative catalysis. These tools have also been used to exploit type III PKSs as biocatalysts to generate new chemicals. Going forward, chemical, structural and biochemical analyses will provide an atomic resolution understanding of plant PKSs and will serve as a springboard for bioengineering and scalable production of valuable molecules in vitro, by fermentation and in planta.

  12. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.

    PubMed

    Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik

    2015-02-01

    A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g. PMID:25227587

  13. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.

    PubMed

    Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik

    2015-02-01

    A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g.

  14. Urea Inclusion Compound-Based Fractionation for the Eco-Friendly Purification of Ethyl Ferulate in a Bio-Based Sunscreen Product Stream

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urea inclusion compound (UIC)-based fractionation of free fatty acids (FFA) has been employed for over 50 years on both analytical and preparative scales. This approach, which fractionates lipids, mainly based on their degree of saturation, has potential value as a large-scale and continuous-mode p...

  15. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials.

    PubMed

    Li, Yonghua; Beisson, Fred

    2009-06-01

    Oxygenated fatty acids such as ricinoleic acid and vernolic acid can serve in the industry as synthons for the synthesis of a wide range of chemicals and polymers traditionally produced by chemical conversion of petroleum derivatives. Oxygenated fatty acids can also be useful to synthesize specialty chemicals such as cosmetics and aromas. There is thus a strong interest in producing these fatty acids in seed oils (triacylglycerols) of crop species. In the last 15 years or so, much effort has been devoted to isolate key genes encoding proteins involved in the synthesis of oxygenated fatty acids and to express them in the seeds of the model plant Arabidopsis thaliana or crop species. An often overlooked but rich source of enzymes catalyzing the synthesis of oxygenated fatty acids and their esterification to glycerol is the biosynthetic pathways of the plant lipid polyesters cutin and suberin. These protective polymers found in specific tissues of all higher plants are composed of a wide variety of oxygenated fatty acids, many of which have not been reported in seed oils (e.g. saturated omega-hydroxy fatty acids and alpha,omega-diacids). The purpose of this mini-review is to give an overview of the recent advances in the biosynthesis of cutin and suberin and discuss their potential utility in producing specific oxygenated fatty acids for specialty chemicals. Special emphasis is given to the role played by specific acyltransferases and P450 fatty acid oxidases. The use of plant surfaces as possible sinks for the accumulation of high value-added lipids is also highlighted.

  16. Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives.

    PubMed

    Liu, Long; Zhu, Yunfeng; Li, Jianghua; Wang, Miao; Lee, Pengsoon; Du, Guocheng; Chen, Jian

    2012-12-01

    Propionic acid (PA) is an important building block chemical and finds a variety of applications in organic synthesis, food, feeding stuffs, perfume, paint and pharmaceutical industries. Presently, PA is mainly produced by petrochemical route. With the continuous increase in oil prices, public concern about environmental pollution, and the consumers' desire for bio-based natural and green ingredients in foods and pharmaceuticals, PA production from propionibacteria has attracted considerable attention, and substantial progresses have been made on microbial PA production. However, production of PA by propionibacteria is facing challenges such as severe inhibition of end-products during cell growth and the formation of by-products (acetic acid and succinic acid). The integration of reverse metabolic engineering and systematic metabolic engineering provides an opportunity to significantly improve the acid tolerance of propionibacteria and reduce the formation of by-products, and makes it feasible to strengthen the commercial competition of biotechnological PA production from propionibacteria to be comparable to the petrochemical route.

  17. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-06-01

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (108). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices.The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system

  18. Isolation and characterization of a hydrocarbonoclastic bacterial enrichment from total petroleum hydrocarbon contaminated sediments: potential candidates for bioaugmentation in bio-based processes.

    PubMed

    Di Gregorio, Simona; Siracusa, Giovanna; Becarelli, Simone; Mariotti, Lorenzo; Gentini, Alessandro; Lorenzi, Roberto

    2016-06-01

    Seven hydrocarbonoclastic new bacterial isolates were isolated from dredged sediments of a river estuary in Italy. The sediments were contaminated by shipyard activities since decades, mainly ascribable to the exploitation of diesel oil as the fuel for recreational and commercial navigation of watercrafts. The bacterial isolates were able to utilize diesel oil as sole carbon source. Their metabolic capacities were evaluated by GC-MS analysis, with reference to the depletion of both the normal and branched alkanes, the nC18 fatty acid methyl ester and the unresolved complex mixture of organic compounds. They were taxonomically identified as different species of Stenotrophomonas and Pseudomonas spp. by the combination of amplified ribosomal DNA restriction analysis (ARDRA) and repetitive sequence-based PCR (REP-PCR) analysis. The metabolic activities of interest were analyzed both in relation to the single bacterial strains and to the combination of the latter as a multibacterial species system. After 6 days of incubation in mineral medium with diesel oil as sole carbon source, the Stenotrophomonas sp. M1 strain depleted 43-46 % of Cn-alkane from C28 up to C30, 70 % of the nC18 fatty acid methyl ester and the 46 % of the unresolved complex mixture of organic compounds. On the other hand, the Pseudomonas sp. NM1 strain depleted the 76 % of the nC18 fatty acid methyl ester, the 50 % of the unresolved complex mixture of organic compounds. The bacterial multispecies system was able to completely deplete Cn-alkane from C28 up to C30 and to deplete the 95 % of the unresolved complex mixture of organic compounds. The isolates, either as single strains and as a bacterial multispecies system, were proposed as candidates for bioaugmentation in bio-based processes for the decontamination of dredged sediments. PMID:26755178

  19. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    PubMed

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery.

  20. Biological materials: Part A. tuning LCST of raft copolymers and gold/copolymer hybrid nanoparticles and Part B. Biobased nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Ning

    The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery "wastes": lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization (≤ 5-10 μm), but it was concluded that cellulose was not a suitable binder. Cellulose lignin fibers before carbonization showed up to 90% decrease in moisture uptake compared to pure cellulose. Peptidoglycan (a bacterial cell wall

  1. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    SciTech Connect

    Biswas, Kaushik; Abhari, Mr. Ramin; Shukla, Dr. Nitin; Kosny, Dr. Jan

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  2. Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification.

    PubMed

    Choi, Sol; Song, Hyohak; Lim, Sung Won; Kim, Tae Yong; Ahn, Jung Ho; Lee, Jeong Wook; Lee, Moon-Hee; Lee, Sang Yup

    2016-10-01

    Succinic acid (SA) is one of the fermentative products of anaerobic metabolism, and an important industrial chemical that has been much studied for its bio-based production. The key to the economically viable bio-based SA production is to develop an SA producer capable of producing SA with high yield and productivity without byproducts. Mannheimia succiniciproducens is a capnophilic rumen bacterium capable of efficiently producing SA. In this study, in silico genome-scale metabolic simulations were performed to identify gene targets to be engineered, and the PALK strain (ΔldhA and Δpta-ackA) was constructed. Fed-batch culture of PALK on glucose and glycerol as carbon sources resulted in the production of 66.14 g/L of SA with the yield and overall productivity of 1.34 mol/mol glucose equivalent and 3.39 g/L/h, respectively. SA production could be further increased to 90.68 g/L with the yield and overall productivity of 1.15 mol/mol glucose equivalent and 3.49 g/L/h, respectively, by utilizing a mixture of magnesium hydroxide and ammonia solution as a pH controlling solution. Furthermore, formation of byproducts was drastically reduced, resulting in almost homo-fermentative SA production. This allowed the recovery and purification of SA to a high purity (99.997%) with a high recovery yield (74.65%) through simple downstream processes composed of decolorization, vacuum distillation, and crystallization. The SA producer and processes developed in this study will allow economical production of SA in an industrial-scale. Biotechnol. Bioeng. 2016;113: 2168-2177. © 2016 Wiley Periodicals, Inc.

  3. Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification.

    PubMed

    Choi, Sol; Song, Hyohak; Lim, Sung Won; Kim, Tae Yong; Ahn, Jung Ho; Lee, Jeong Wook; Lee, Moon-Hee; Lee, Sang Yup

    2016-10-01

    Succinic acid (SA) is one of the fermentative products of anaerobic metabolism, and an important industrial chemical that has been much studied for its bio-based production. The key to the economically viable bio-based SA production is to develop an SA producer capable of producing SA with high yield and productivity without byproducts. Mannheimia succiniciproducens is a capnophilic rumen bacterium capable of efficiently producing SA. In this study, in silico genome-scale metabolic simulations were performed to identify gene targets to be engineered, and the PALK strain (ΔldhA and Δpta-ackA) was constructed. Fed-batch culture of PALK on glucose and glycerol as carbon sources resulted in the production of 66.14 g/L of SA with the yield and overall productivity of 1.34 mol/mol glucose equivalent and 3.39 g/L/h, respectively. SA production could be further increased to 90.68 g/L with the yield and overall productivity of 1.15 mol/mol glucose equivalent and 3.49 g/L/h, respectively, by utilizing a mixture of magnesium hydroxide and ammonia solution as a pH controlling solution. Furthermore, formation of byproducts was drastically reduced, resulting in almost homo-fermentative SA production. This allowed the recovery and purification of SA to a high purity (99.997%) with a high recovery yield (74.65%) through simple downstream processes composed of decolorization, vacuum distillation, and crystallization. The SA producer and processes developed in this study will allow economical production of SA in an industrial-scale. Biotechnol. Bioeng. 2016;113: 2168-2177. © 2016 Wiley Periodicals, Inc. PMID:27070659

  4. Microbial production of lactate-containing polyesters

    PubMed Central

    Yang, Jung Eun; Choi, So Young; Shin, Jae Ho; Park, Si Jae; Lee, Sang Yup

    2013-01-01

    Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed. PMID:23718266

  5. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    PubMed

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  6. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation.

  7. New advances in the integrated management of food processing by-products in Europe: sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU).

    PubMed

    Fava, Fabio; Zanaroli, Giulio; Vannini, Lucia; Guerzoni, Elisabetta; Bordoni, Alessandra; Viaggi, Davide; Robertson, Jim; Waldron, Keith; Bald, Carlos; Esturo, Aintzane; Talens, Clara; Tueros, Itziar; Cebrián, Marta; Sebők, András; Kuti, Tunde; Broeze, Jan; Macias, Marta; Brendle, Hans-Georg

    2013-09-25

    By-products generated every year by the European fruit and cereal processing industry currently exceed several million tons. They are disposed of mainly through landfills and thus are largely unexploited sources of several valuable biobased compounds potentially profitable in the formulation of novel food products. The opportunity to design novel strategies to turn them into added value products and food ingredients via novel and sustainable processes is the main target of recently EC-funded FP7 project NAMASTE-EU. NAMASTE-EU aims at developing new laboratory-scale protocols and processes for the exploitation of citrus processing by-products and wheat bran surpluses via the production of ingredients useful for the formulation of new beverage and food products. Among the main results achieved in the first two years of the project, there are the development and assessment of procedures for the selection, stabilization and the physical/biological treatment of citrus and wheat processing by-products, the obtainment and recovery of some bioactive molecules and ingredients and the development of procedures for assessing the quality of the obtained ingredients and for their exploitation in the preparation of new food products. PMID:23689042

  8. New advances in the integrated management of food processing by-products in Europe: sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU).

    PubMed

    Fava, Fabio; Zanaroli, Giulio; Vannini, Lucia; Guerzoni, Elisabetta; Bordoni, Alessandra; Viaggi, Davide; Robertson, Jim; Waldron, Keith; Bald, Carlos; Esturo, Aintzane; Talens, Clara; Tueros, Itziar; Cebrián, Marta; Sebők, András; Kuti, Tunde; Broeze, Jan; Macias, Marta; Brendle, Hans-Georg

    2013-09-25

    By-products generated every year by the European fruit and cereal processing industry currently exceed several million tons. They are disposed of mainly through landfills and thus are largely unexploited sources of several valuable biobased compounds potentially profitable in the formulation of novel food products. The opportunity to design novel strategies to turn them into added value products and food ingredients via novel and sustainable processes is the main target of recently EC-funded FP7 project NAMASTE-EU. NAMASTE-EU aims at developing new laboratory-scale protocols and processes for the exploitation of citrus processing by-products and wheat bran surpluses via the production of ingredients useful for the formulation of new beverage and food products. Among the main results achieved in the first two years of the project, there are the development and assessment of procedures for the selection, stabilization and the physical/biological treatment of citrus and wheat processing by-products, the obtainment and recovery of some bioactive molecules and ingredients and the development of procedures for assessing the quality of the obtained ingredients and for their exploitation in the preparation of new food products.

  9. Bio-refinery system of DME or CH4 production from black liquor gasification in pulp mills.

    PubMed

    Naqvi, M; Yan, J; Fröling, M

    2010-02-01

    There is great interest in developing black liquor gasification technology over recent years for efficient recovery of bio-based residues in chemical pulp mills. Two potential technologies of producing dimethyl ether (DME) and methane (CH(4)) as alternative fuels from black liquor gasification integrated with the pulp mill have been studied and compared in this paper. System performance is evaluated based on: (i) comparison with the reference pulp mill, (ii) fuel to product efficiency (FTPE) and (iii) biofuel production potential (BPP). The comparison with the reference mill shows that black liquor to biofuel route will add a highly significant new revenue stream to the pulp industry. The results indicate a large potential of DME and CH(4) production globally in terms of black liquor availability. BPP and FTPE of CH(4) production is higher than DME due to more optimized integration with the pulping process and elimination of evaporation unit in the pulp mill.

  10. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.

    PubMed

    Tsuge, Yota; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    Recent increasing attention to environmental issues and the shortage of oil resources have spurred political and industrial interest in the development of environmental friendly and cost-effective processes for the production of bio-based chemicals from renewable resources. Thus, microbial production of commercially important chemicals is viewed as a desirable way to replace current petrochemical production. Corynebacterium glutamicum, a Gram-positive soil bacterium, is one of the most important industrial microorganisms as a platform for the production of various amino acids. Recent research has explored the use of C. glutamicum as a potential cell factory for producing organic acids such as lactate and succinate, both of which are commercially important bulk chemicals. Here, we summarize current understanding in this field and recent metabolic engineering efforts to develop C. glutamicum strains that efficiently produce L- and D-lactate, and succinate from renewable resources.

  11. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process. PMID:18942836

  12. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process.

  13. Cryogel-supported titanate nanotubes for waste treatment: Impact on methane production and bio-fertilizer quality.

    PubMed

    Önnby, Linda; Harald, Kirsebom; Nges, Ivo Achu

    2015-08-10

    By reducing the cadmium (Cd(2+)) content in biomass used for bio-based products such as biogas, a less toxic bio-based fertilizer can be obtained. In this work, we demonstrate how a macroporous polymer can support titanate nanotubes, and we take advantage of its known selective adsorption behavior towards Cd(2+) in an adsorption process from real nutrient-rich process water from hydrolysis of seaweed, a pollutant-rich biomass. We show that pretreatment steps involving alteration in area-to-volume ratio performed in aerated and acidic conditions release the most Cd(2+) from the solid material. By integrating an adsorption step between hydrolysis and the biomethane, we show that it was possible to obtain high Cd(2+) removal (ca. 94%) despite molar excess (between 100 and 500) of co-present ions (e.g., Mg(2+), Ca(2+), Na(+), K(+)) and with maintained total phosphorous content. The bio-methane potential did not significantly decrease as compared to a process without cadmium removal and the yielded bio-fertilizer followed Swedish guideline values. This study provides a sound and promising alternative for a novel remediation step, enabling higher use of otherwise tricky and to some extent overlooked biomass sources.

  14. Cryogel-supported titanate nanotubes for waste treatment: Impact on methane production and bio-fertilizer quality.

    PubMed

    Önnby, Linda; Harald, Kirsebom; Nges, Ivo Achu

    2015-08-10

    By reducing the cadmium (Cd(2+)) content in biomass used for bio-based products such as biogas, a less toxic bio-based fertilizer can be obtained. In this work, we demonstrate how a macroporous polymer can support titanate nanotubes, and we take advantage of its known selective adsorption behavior towards Cd(2+) in an adsorption process from real nutrient-rich process water from hydrolysis of seaweed, a pollutant-rich biomass. We show that pretreatment steps involving alteration in area-to-volume ratio performed in aerated and acidic conditions release the most Cd(2+) from the solid material. By integrating an adsorption step between hydrolysis and the biomethane, we show that it was possible to obtain high Cd(2+) removal (ca. 94%) despite molar excess (between 100 and 500) of co-present ions (e.g., Mg(2+), Ca(2+), Na(+), K(+)) and with maintained total phosphorous content. The bio-methane potential did not significantly decrease as compared to a process without cadmium removal and the yielded bio-fertilizer followed Swedish guideline values. This study provides a sound and promising alternative for a novel remediation step, enabling higher use of otherwise tricky and to some extent overlooked biomass sources. PMID:26015262

  15. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources.

  16. Quality and utilization of food co-products and residues

    NASA Astrophysics Data System (ADS)

    Cooke, P.; Bao, G.; Broderick, C.; Fishman, M.; Liu, L.; Onwulata, C.

    2010-06-01

    Some agricultural industries generate large amounts of low value co-products/residues, including citrus peel, sugar beet pulp and whey protein from the production of orange juice, sugar and cheese commodities, respectively. National Program #306 of the USDA Agricultural Research Service aims to characterize and enhance quality and develop new processes and uses for value-added foods and bio-based products. In parallel projects, we applied scanning microscopies to examine the molecular organization of citrus pectin gels, covalent crosslinking to reduce debonding in sugar beet pulp-PLA composites and functional modification of whey protein through extrusion in order to evaluate new methods of processing and formulating new products. Also, qualitative attributes of fresh produce that could potentially guide germ line development and crop management were explored through fluorescence imaging: synthesis and accumulation of oleoresin in habanero peppers suggest a complicated mechanism of secretion that differs from the classical scheme. Integrated imaging appears to offer significant structural insights to help understand practical properties and features of important food co-products/residues.

  17. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    PubMed

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  18. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    PubMed

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications. PMID:24424298

  19. Evaluation of an integrated biorefinery based on fractionation of spent sulphite liquor for the production of an antioxidant-rich extract, lignosulphonates and succinic acid.

    PubMed

    Alexandri, Maria; Papapostolou, Harris; Komaitis, Michael; Stragier, Lutgart; Verstraete, Willy; Danezis, Georgios P; Georgiou, Constantinos A; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2016-08-01

    Spent sulphite liquor (SSL) has been used for the production of lignosulphonates (LS), antioxidants and bio-based succinic acid. Solvent extraction of SSL with isopropanol led to the separation of approximately 80% of the total LS content, whereas the fermentations carried out using the pretreated SSL with isopropanol led to the production of around 19g/L of succinic acid by both Actinobacillus succinogenes and Basfia succiniciproducens. Fractionation of SSL via nanofiltration to separate the LS and solvent extraction using ethyl acetate to separate the phenolic compounds produced a detoxified sugar-rich stream that led to the production of 39g/L of succinic acid by B. succiniciproducens. This fractionation scheme resulted also in the production of 32.4g LS and 1.15g phenolic-rich extract per 100g of SSL. Both pretreatment schemes removed significant quantities of metals and heavy metals. This novel biorefinery concept could be integrated in acidic sulphite pulping mills.

  20. 7 CFR 3201.74 - Thermal shipping containers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased contents for the Federal...

  1. 7 CFR 3201.74 - Thermal shipping containers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased contents for the Federal...

  2. 7 CFR 2902.31 - Greases.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased contents are:...

  3. 7 CFR 3201.74 - Thermal shipping containers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product. The applicable minimum biobased contents for the Federal...

  4. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    PubMed

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties.

  5. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.

    PubMed

    Nikodinovic-Runic, Jasmina; Guzik, Maciej; Kenny, Shane T; Babu, Ramesh; Werker, Alan; O Connor, Kevin E

    2013-01-01

    Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show

  6. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production.

    PubMed

    Li, Ting; Fan, Jun; Chen, Wensen; Shu, Jiayan; Qian, Xueren; Wei, Haifeng; Wang, Qingwen; Shen, Jing

    2016-09-20

    The sustainable, efficient use of renewable bio-based additives in the production of various materials fits well into the concept of sustainability. Here, the concept of coaggregation of mineral filler particles and starch granules for improving filler-fiber interaction in paper-based cellulosic networks is presented. Coaggregation of precipitated calcium carbonate filler particles and uncooked, unmodified corn starch granules by cationic polyacrylamide (a cationic high molecular weight polymer flocculant) in combination with bentonite (an anionic microparticle) prior to addition to cellulosic fiber slurry delivered enhanced filler bondability with cellulosic fibers. For instance, under the conditions studied, preaggregation resulted in an increase in filler bondability factor from 9.24 to 15.21 at starch dosage of 1% (on the basis of the dry weight of papermaking stock). The swelling and gelatinization of the starch granules in starch-filler preaggregates or hybrids enabled the "bridging" of the gaps in cellulosic networks, leading to structural consolidation and strength enhancement.

  7. A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications.

    PubMed

    Pachuau, Lalduh Sanga

    2015-01-01

    Nanocellulose is an emerging sustainable biomaterial with exceptional physicochemical properties. It can be isolated from inexpensive renewable cellulosic biomass and a number of natural plant fibers have been extensively investigated as a source for such isolation. The geometrical dimensions of the prepared cellulose nanocrystals (CNCs) are however, found to vary widely, depending on the source of the cellulosic material and hydrolysis conditions. CNCs are biocompatible and biodegradable which exhibit very low cytotoxicity thus, offering a wide range of opportunities for biomedical applications. By surface modification of nanocellulose, various functional materials with tunable properties can also be developed. Over the past two decades, CNCs have garnered a significant interest as biobased reinforcing nanofiller material. This mini review will provide an overview into the production methods, sources of cellulosic fibers, surface modification strategies and drug delivery applications of the chemically or mechanically isolated nanocellulose.

  8. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.

    PubMed

    van der Pol, Edwin; Bakker, Rob; van Zeeland, Alniek; Sanchez Garcia, David; Punt, Arjen; Eggink, Gerrit

    2015-04-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretreatment included acetic, glycolic and coumaric acid in concentrations up to 40, 21 and 2.5 g/kg dry weight bagasse respectively. Alkaline pretreated material contained up to 45 g/kg bagasse DW of sodium. Acid and autohydrolysis pretreatment results in a furan formation of 14 g/kg and 25 g/kg DW bagasse respectively. Enzyme monomerization efficiencies of pretreated solid material after 72 h were 81% for acid pretreatment, 77% for autohydrolysis and 57% for alkaline pretreatment. Solid material was washed with superheated water to decrease the amount of by-products. Washing decreased organic acid, phenol and furan concentrations in solid material by at least 60%, without a major sugar loss.

  9. 7 CFR 3201.9 - Funding for testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... General § 3201.9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products...

  10. 7 CFR 3201.9 - Funding for testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... General § 3201.9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products...

  11. 7 CFR 3201.9 - Funding for testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... General § 3201.9 Funding for testing. (a) USDA use of funds for biobased content and BEES testing. USDA will use funds to support testing for biobased content and conduct of BEES testing for products...

  12. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... through biobased energy and product technologies; and (d) Enhance the efficiency of bioenergy and biomass... FCEA) to fund subgrants and activities that: (a) Enhance national energy security through the development, distribution, and implementation of biobased energy technologies; (b) Promote diversification...

  13. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... through biobased energy and product technologies; and (d) Enhance the efficiency of bioenergy and biomass... FCEA) to fund subgrants and activities that: (a) Enhance national energy security through the development, distribution, and implementation of biobased energy technologies; (b) Promote diversification...

  14. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... through biobased energy and product technologies; and (d) Enhance the efficiency of bioenergy and biomass... FCEA) to fund subgrants and activities that: (a) Enhance national energy security through the development, distribution, and implementation of biobased energy technologies; (b) Promote diversification...

  15. 7 CFR 3430.1001 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... through biobased energy and product technologies; and (d) Enhance the efficiency of bioenergy and biomass... FCEA) to fund subgrants and activities that: (a) Enhance national energy security through the development, distribution, and implementation of biobased energy technologies; (b) Promote diversification...

  16. 7 CFR 3201.73 - Slide way lubricants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... biobased content of at least 74 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  17. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... minimum biobased content is 12 percent and shall be based on the amount of qualifying biobased carbon in the finished product as a percent of the weight (mass) of the total organic carbon in the...

  18. 7 CFR 2902.39 - Floor strippers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... biobased content of at least 78 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  19. 7 CFR 3201.69 - Floor cleaners and protectors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... biobased content of at least 77 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  20. 7 CFR 2902.29 - Disposable cutlery.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased content of at least 48 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  1. 7 CFR 3201.69 - Floor cleaners and protectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... biobased content of at least 77 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  2. 7 CFR 3201.73 - Slide way lubricants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biobased content of at least 74 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  3. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... minimum biobased content is 12 percent and shall be based on the amount of qualifying biobased carbon in the finished product as a percent of the weight (mass) of the total organic carbon in the...

  4. 7 CFR 2902.29 - Disposable cutlery.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... biobased content of at least 48 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  5. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... minimum biobased content is 12 percent and shall be based on the amount of qualifying biobased carbon in the finished product as a percent of the weight (mass) of the total organic carbon in the...

  6. 7 CFR 3201.75 - Air fresheners and deodorizers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biobased content of at least 97 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  7. 7 CFR 3201.73 - Slide way lubricants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... biobased content of at least 74 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  8. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... minimum biobased content is 12 percent and shall be based on the amount of qualifying biobased carbon in the finished product as a percent of the weight (mass) of the total organic carbon in the...

  9. 7 CFR 3201.75 - Air fresheners and deodorizers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... biobased content of at least 97 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  10. 7 CFR 3201.69 - Floor cleaners and protectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biobased content of at least 77 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished...

  11. 7 CFR 3201.19 - Composite panels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... purchasing programs. The designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.12... qualifying biobased products provide information on the BioPreferred Web site of qualifying biobased...

  12. 7 CFR 3201.19 - Composite panels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... purchasing programs. The designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.12... qualifying biobased products provide information on the BioPreferred Web site of qualifying biobased...

  13. Study of mechanical and morphological properties of bio-based polyethylene (HDPE) and sponge-gourds (Luffa-cylindrica) agroresidue composites

    NASA Astrophysics Data System (ADS)

    Escocio, Viviane A.; Visconte, Leila L. Y.; Cavalcante, Andre de P.; Furtado, Ana Maria S.; Pacheco, Elen B. A. V.

    2015-05-01

    Brazil has a remarkable position in the use of renewable energy. The potential of natural resources in Brazil has motivated the use of these renewable resources to make technologies more sustainable. From the large variety of commercially available High Density Polyethylene (HDPE) from different sources, two were chosen for investigation: one produced from sugarcane ethanol, and the other one, a conventional polyethylene, produced from fossil resources. In the preparation of the composites, sponge-gourds also called Luffa cylindrica were selectec. The main application of this product is as bath sponge, whose production generates scraps that are generally burnt. In this work, the composites were prepared by blending the sponge scrap at different proportions (10, 20, 30 and 40% wt/wt) with high density polyethylene (HDPE) from renewable source by extrusion. The melt flow index analysis of the composites was determined and specimens were obtained by injection molding for the assessment of mechanical properties such as tensile (elasticity modulus), flexural and Izod impact strengths. The microstructure of the impact fractured surface of the specimen also was determined. The results showed that the addition of sponge scrap affects positively all the properties studied as compared to HDPE. The results of tensile strength, elasticity modulus and flexural strength were similar to those observed in the literature for composites of HDPE from fossil source. The microstructure corroborates the results of mechanical properties. It was shown that the sponge scrap has potential to be applied as cellulosic filler for renewable polyethylene, providing a totally renewable material with good mechanical properties.

  14. Carob pod water extracts as feedstock for succinic acid production by Actinobacillus succinogenes 130Z.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2014-10-01

    Carob pods are a by-product of locust bean gum industry containing more than 50% (w/w) sucrose, glucose and fructose. In this work, carob pod water extracts were used, for the first time, for succinic acid production by Actinobacillus succinogenes 130Z. Kinetic studies of glucose, fructose and sucrose consumption as individual carbon sources till 30g/L showed no inhibition on cell growth, sugar consumption and SA production rates. Sugar extraction from carob pods was optimized varying solid/liquid ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Batch fermentations containing 10-15g/L total sugars resulted in a maximum specific SA production rate of 0.61Cmol/Cmol X.h, with a yield of 0.55Cmol SA/Cmol sugar and a volumetric productivity of 1.61g SA/L.h. Results demonstrate that carob pods can be a promising low cost feedstock for bio-based SA production.

  15. Carob pod water extracts as feedstock for succinic acid production by Actinobacillus succinogenes 130Z.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2014-10-01

    Carob pods are a by-product of locust bean gum industry containing more than 50% (w/w) sucrose, glucose and fructose. In this work, carob pod water extracts were used, for the first time, for succinic acid production by Actinobacillus succinogenes 130Z. Kinetic studies of glucose, fructose and sucrose consumption as individual carbon sources till 30g/L showed no inhibition on cell growth, sugar consumption and SA production rates. Sugar extraction from carob pods was optimized varying solid/liquid ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Batch fermentations containing 10-15g/L total sugars resulted in a maximum specific SA production rate of 0.61Cmol/Cmol X.h, with a yield of 0.55Cmol SA/Cmol sugar and a volumetric productivity of 1.61g SA/L.h. Results demonstrate that carob pods can be a promising low cost feedstock for bio-based SA production. PMID:25164341

  16. 7 CFR 3201.19 - Composite panels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... food preparation areas, bathrooms or lavatories, and workrooms. (b) Minimum biobased content. The... qualifying biobased products provide information on the BioPreferred Web site of qualifying biobased products... purchasing programs. The designation can be found in the Comprehensive Procurement Guideline, 40 CFR...

  17. 7 CFR 2902.23 - Sorbents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... applications, shop floors, and fuel storage areas. (b) Minimum biobased content. The preferred procurement... information on the BioPreferred Web site of qualifying biobased products about the intended uses of the... biobased ingredients, and performance standards against which the product has been tested. This...

  18. 7 CFR 2902.23 - Sorbents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... applications, shop floors, and fuel storage areas. (b) Minimum biobased content. The preferred procurement... information on the BioPreferred Web site of qualifying biobased products about the intended uses of the... biobased ingredients, and performance standards against which the product has been tested. This...

  19. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. PMID:24616376

  20. Cytoxicity, dynamic and thermal properties of bio-based rosin-epoxy resin/ castor oil polyurethane/ carbon nanotubes bio-nanocomposites.

    PubMed

    Huo, Li; Wang, Dan; Liu, Hongmei; Jia, Pan; Gao, Jungang

    2016-08-01

    In order to prepare bio-nanocomposites with no-cytotoxicity, the rosin-based epoxy resin (MPAER) and castor oil-based polyurethane (COPU) were synthesized and carbon nanotubes (CNTs) was used to enhance the properties of curing MPAER/COPU materials. The curing reaction, dynamic mechanical and thermal properties of this system were characterized by FTIR, NMR, DMA, TG et al. The cytotoxicity of materials is evaluated for HeLa cells using a MTT cell-viability assay. The results showed that COPU can cure MPAER and CNTs can increase effectively the properties of MPAER/COPU nanocomposites. The Tg of MPAER/COPU/CNTs has the highest value when CNTs content is 0.4 wt%, which is 52.4 °C higher than the pure MPAER/COPU. Thermal stability of the nanocomposites is enhanced by the addition of CNTs, the initial decomposition temperature Td5 of the sample No. 0.4 has increased from 284.5 to 305.2 °C, which is 20.7 °C higher than No. 0. The impact strength of the No. 0.4 film is 15 kg cm higher than the pure resin system. The survival rate of HeLa cells to the products is greater than 90% within 48 and 72 h, which demonstrate that this material has excellent biocompatibility and no obvious cytotoxicity for HeLa cells, which may be used in the medical treatment.

  1. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu.

  2. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    PubMed

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels.

  3. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  4. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    PubMed

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. PMID:27559924

  5. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    PubMed

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable.

  6. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  7. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae

    PubMed Central

    Shi, Shuobo; Si, Tong; Liu, Zihe; Zhang, Hongfang; Ang, Ee Lui; Zhao, Huimin

    2016-01-01

    n-Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n-butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n-butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n-butanol through a synergistic pathway: the endogenous threonine pathway and the introduced citramalate pathway. Firstly, we characterized and optimized the endogenous threonine pathway; then, a citramalate synthase (CimA) mediated pathway was introduced to construct the synergistic pathway; next, the synergistic pathway was optimized by additional overexpression of relevant genes identified previously; meanwhile, the n-butanol production was also improved by overexpression of keto-acid decarboxylases (KDC) and alcohol dehydrogenase (ADH). After combining these strategies with co-expression of LEU1 (two copies), LEU4, LEU2 (two copies), LEU5, CimA, NFS1, ADH7 and ARO10*, we achieved an n-butanol production of 835 mg/L in the final engineered strain, which is almost 7-fold increase compared to the initial strain. Furthermore, the production showed a 3-fold of the highest titer ever reported in yeast. Therefore, the engineered yeast strain represents a promising alternative platform for n-butanol production. PMID:27161023

  8. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  9. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae.

    PubMed

    Shi, Shuobo; Si, Tong; Liu, Zihe; Zhang, Hongfang; Ang, Ee Lui; Zhao, Huimin

    2016-01-01

    n-Butanol has several favourable properties as an advanced fuel or a platform chemical. Bio-based production of n-butanol is becoming increasingly important for sustainable chemical industry. Synthesis of n-butanol can be achieved via more than one metabolic pathway. Here we report the metabolic engineering of Saccharomyces cerevisiae to produce n-butanol through a synergistic pathway: the endogenous threonine pathway and the introduced citramalate pathway. Firstly, we characterized and optimized the endogenous threonine pathway; then, a citramalate synthase (CimA) mediated pathway was introduced to construct the synergistic pathway; next, the synergistic pathway was optimized by additional overexpression of relevant genes identified previously; meanwhile, the n-butanol production was also improved by overexpression of keto-acid decarboxylases (KDC) and alcohol dehydrogenase (ADH). After combining these strategies with co-expression of LEU1 (two copies), LEU4, LEU2 (two copies), LEU5, CimA, NFS1, ADH7 and ARO10(*), we achieved an n-butanol production of 835 mg/L in the final engineered strain, which is almost 7-fold increase compared to the initial strain. Furthermore, the production showed a 3-fold of the highest titer ever reported in yeast. Therefore, the engineered yeast strain represents a promising alternative platform for n-butanol production. PMID:27161023

  10. Fumaric Acid Production in Saccharomyces cerevisiae by In Silico Aided Metabolic Engineering

    PubMed Central

    Xu, Guoqiang; Zou, Wei; Chen, Xiulai; Xu, Nan; Liu, Liming; Chen, Jian

    2012-01-01

    Fumaric acid (FA) is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA) revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L–1 without any apparent change in growth in fed-batch culture. FT-IR and 1H and 13C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L–1 FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L–1 FA in batch culture when the SFC1 gene encoding a succinate–fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering. PMID:23300594

  11. Production Strategies and Applications of Microbial Single Cell Oils

    PubMed Central

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty

  12. Research in biomass production and utilization: Systems simulation and analysis

    NASA Astrophysics Data System (ADS)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  13. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.

    PubMed

    Bansal, Sunil; Durrett, Timothy P

    2016-01-01

    Triacylglycerols (TAG) containing modified fatty acids with functionality beyond those found in commercially grown oil seed crops can be used as feedstocks for biofuels and bio-based materials. Over the years, advances have been made in transgenically engineering the production of various modified fatty acids in the model plant Arabidopsis thaliana. However, the inability to produce large quantities of transgenic seed has limited the functional testing of the modified oil. In contrast, the emerging oil seed crop Camelina sativa possesses important agronomic traits that recommend it as an ideal production platform for biofuels and industrial feedstocks. Camelina possesses low water and fertilizer requirements and is capable of yields comparable to other oil seed crops, particularly under stress conditions. Importantly, its relatively short growing season enables it to be grown as part of a double cropping system. In addition to these valuable agronomic features, Camelina is amenable to rapid metabolic engineering. The development of a simple and effective transformation method, combined with the availability of abundant transcriptomic and genomic data, has allowed the generation of transgenic Camelina lines capable of synthesizing high levels of unusual lipids. In some cases these levels have surpassed what was achieved in Arabidopsis. Further, the ability to use Camelina as a crop production system has allowed for the large scale growth of transgenic oil seed crops, enabling subsequent physical property testing. The application of new techniques such as genome editing will further increase the suitability of Camelina as an ideal platform for the production of biofuels and bio-materials.

  14. 3-Amino-4-hydroxybenzoic acid production from sweet sorghum juice by recombinant Corynebacterium glutamicum.

    PubMed

    Kawaguchi, Hideo; Sasaki, Kengo; Uematsu, Kouji; Tsuge, Yota; Teramura, Hiroshi; Okai, Naoko; Nakamura-Tsuruta, Sachiko; Katsuyama, Yohei; Sugai, Yoshinori; Ohnishi, Yasuo; Hirano, Ko; Sazuka, Takashi; Ogino, Chiaki; Kondo, Akihiko

    2015-12-01

    The production of the bioplastic precursor 3-amino-4-hydroxybenzoic acid (3,4-AHBA) from sweet sorghum juice, which contains amino acids and the fermentable sugars sucrose, glucose and fructose, was assessed to address the limitations of producing bio-based chemicals from renewable feedstocks. Recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI derived from Streptomyces griseus produced 3,4-AHBA from the sweet sorghum juice of cultivar SIL-05 at a final concentration (1.0 g l(-1)) that was 5-fold higher than that from pure sucrose. Fractionation of sweet sorghum juice by nanofiltration (NF) membrane separation (molecular weight cut-off 150) revealed that the NF-concentrated fraction, which contained the highest concentrations of amino acids, increased 3,4-AHBA production, whereas the NF-filtrated fraction inhibited 3,4-AHBA biosynthesis. Amino acid supplementation experiments revealed that leucine specifically enhanced 3,4-AHBA production by strain KT01. Taken together, these results suggest that sweet sorghum juice is a potentially suitable feedstock for 3,4-AHBA production by recombinant C. glutamicum. PMID:26409852

  15. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE PAGES

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    2016-05-02

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  16. Syntheses of novel protein products (milkglyde, saliglyde, and soyglyde) from vegetable epoxy oils and gliadin.

    PubMed

    Harry-O'kuru, Rogers E; Mohamed, Abdellatif; Gordon, Sherald H; Xu, James

    2012-02-22

    The aqueous alcohol-soluble fraction of wheat gluten is gliadin. This component has been implicated as the causative principle in celiac disease, which is a physiological condition experienced by some infants and adults. The outcome of the ingestion of whole wheat products by susceptible individuals is malabsorption of nutrients resulting from loss of intestinal vili, the nutrient absorption regions of the digestive system. This leads to incessant diarrhea and weight loss in these individuals. Only recently has this health condition been properly recognized and accurately diagnosed in this country. The culprit gliadin is characterized by preponderant glutamine side-chain residues on the protein surface. Gliadin is commercially available as a wheat gluten extract, and in our search for new biobased and environmentally friendly products from renewable agricultural substrates, we have exploited the availability of the glutamine residues of gliadin as synthons to produce novel elastomeric nonfood products dubbed "milkglyde", "saliglyde", and soyglyde from milkweed, salicornia and soybean oils. The reaction is an amidolysis of the oxirane groups of derivatized milkweed, salicornia, and soybean oils under neat reaction conditions with the primary amide functionalties of glutamine to give the corresponding amidohyroxy gliadinyl triglycerides, respectively. The differential scanning calorimetry, thermogravimetric analyses, and rheological data from a study of these products indicate properties similar to those of synthetic rubber. PMID:22250811

  17. Arundo donax L.: a non-food crop for bioenergy and bio-compound production.

    PubMed

    Corno, Luca; Pilu, Roberto; Adani, Fabrizio

    2014-12-01

    Arundo donax L., common name giant cane or giant reed, is a plant that grows spontaneously in different kinds of environments and that it is widespread in temperate and hot areas all over the world. Plant adaptability to different kinds of environment, soils and growing conditions, in combination with the high biomass production and the low input required for its cultivation, give to A. donax many advantages when compared to other energy crops. A. donax can be used in the production of biofuels/bioenergy not only by biological fermentation, i.e. biogas and bio-ethanol, but also, by direct biomass combustion. Both its industrial uses and the extraction of chemical compounds are largely proved, so that A. donax can be proposed as the feedstock to develop a bio-refinery. Nowadays, the use of this non-food plant in both biofuel/bioenergy and bio-based compound production is just beginning, with great possibilities for expanding its cultivation in the future. To this end, this review highlights the potential of using A. donax for energy and bio-compound production, by collecting and critically discussing the data available on these first applications for the crop.

  18. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate

    PubMed Central

    Su, Buli; Zhang, Zhe; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-01-01

    High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) genes into the chromosome, where their expression was controlled by the constitutive promoter P43. In addition, to minimize the flux from L-arabinose to arabitol, two strategies including low XR total activity and high selectivity of XR has been adopted. Arabitol was significantly decreased using plasmid-free strain which had lower XR total activity and an eight point-mutations of XR with a 27-fold lower enzyme activity toward L-arabinose was achieved. The plasmid-free strain in conjunction with this mutant XR can completely eliminate arabitol formation in xylitol production. In fed-batch fermentation, this plasmid-free strain produced 143.8 g L−1 xylitol at 1.84 g L−1 h−1 from corncob hemicellulosic hydrolysate. From these results, we conclude that this route by plasmid-free E. coli has potential to become a commercially viable process for xylitol production. PMID:27225023

  19. Guest editorial, special issue on biobased adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is a preface for a special issue that showcases significant developments on adhesives made with biorenewable materials, such as agricultural crops (soybean, corn), plant extractives (bark, tannins), and marine sources (mussels). This collection of pioneering studies and reviews on bioba...

  20. Pressure-viscosity coefficient of biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  1. Biobased lactams as novel arthropod repellents.

    PubMed

    Chauhan, Kamlesh R; Khanna, Hemant; Bathini, Nagendra Babu; Le, Thanh C; Grieco, John

    2014-12-01

    Enanatiomerically pure 4aS,7S,7aR and 4aS,7S,7aS-nepetalactams and their analogs have been prepared in just two steps from 4aS,7S,7aR and 4aS,7S,7aS-nepetalactones, major components of catnip oil. Lactams or cyclic amides from iridoid monoterpenes are generated and being evaluated as a new class of compounds as arthropod deterrents against disease vectors. PMID:25632454

  2. Peptide Binding for Bio-Based Nanomaterials.

    PubMed

    Bedford, N M; Munro, C J; Knecht, M R

    2016-01-01

    Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships. PMID:27586350

  3. Bioremediation for Fueling the Biobased Economy.

    PubMed

    Tripathi, Vishal; Edrisi, Sheikh A; O'Donovan, Anthonia; Gupta, Vijai K; Abhilash, P C

    2016-10-01

    Increasing CO2 emission, land degradation, and pollution are major environmental challenges that need urgent global attention. Remediation strategies are essential for tackling these issues concurrently. Here we propose integrating bioremediation with CO2 sequestration for revitalizing polluted land while deriving bioproducts from renewable and waste biomass for fueling a sustainable bioeconomy.

  4. Biosolvents for Coatings, Resins and Biobased Materials

    SciTech Connect

    Datta, Rathin

    2009-08-31

    With close collaboration with several industrial coatings manufacturers several solvent blends were developed tested and optimized. These were then piloted in the commercial company’s reactors and systems. Three were successfully tested in commercial applications and two of these - Methotate replacement and a specialty ketone replacement were sold in commercial quantities in 2009. Further sales are anticipated in 2010 and the following years.

  5. Tribological properties of biobased ester phosphonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three phosphonate derivatives of methyl oleate (MeOl) were chemically synthesized in a radical chain reaction and their physical and tribological properties investigated. The three phosphonates differed from each other in the structure of the alkoxy groups attached to the phosphorous, which were as ...

  6. Biobased, environmentally friendly lubricants for processing plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil based lubricants have excellent lubricity, biodegradability, good viscosity temperature characteristics and low evaporation loss, but poor thermos-oxidative stability and cold flow properties. This paper presents a systematic approach to improve the oxidative and cold flow behavior of...

  7. Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast

    SciTech Connect

    Manoj Kumar, PhD

    2010-06-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  8. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  9. l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste.

    PubMed

    Bernardo, Marcela Piassi; Coelho, Luciana Fontes; Sass, Daiane Cristina; Contiero, Jonas

    2016-01-01

    Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively. PMID:27266630

  10. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.

    PubMed

    Saha, Basudeb; Abu-Omar, Mahdi M

    2015-04-13

    Since the U.S. Department of Energy (DOE) published a perspective article that described the potential of the top ten biomass-derived platform chemicals as petroleum replacements for high-value commodity and specialty chemicals, researchers around the world have been motivated to develop technologies for the conversion of biomass and biomass-derived intermediates into chemicals and fuels. Among several biorefinery processes, the conversion of biomass carbohydrates into 2,5-dimethylfuran (DMF) has received significant attention because of its low oxygen content, high energy content, and high octane value. DMF can further serve as a petroleum-replacement, biorenewable feedstock for the production of p-xylene (pX). In this review, we aim specifically to present a concise and up-to-date analysis of DMF production technologies with a critical discussion on catalytic systems, mechanistic insight, and process economics, which includes sensitivity analysis, so that more effective catalysts can be designed. Special emphasis has been given to bifunctional catalysts that improve DMF yields and selectivity and the synergistic effect of the bifunctional sites. Process economics for the current processes and the scope for further improvement are discussed. It is anticipated that the chemistry detailed in this review will guide researchers to develop more practical catalytic processes to enable the economic production of bio-based DMF. Processes for the upgrade of DMF to pX are also described.

  11. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    PubMed

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now. PMID:24432652

  12. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.

    PubMed

    Saha, Basudeb; Abu-Omar, Mahdi M

    2015-04-13

    Since the U.S. Department of Energy (DOE) published a perspective article that described the potential of the top ten biomass-derived platform chemicals as petroleum replacements for high-value commodity and specialty chemicals, researchers around the world have been motivated to develop technologies for the conversion of biomass and biomass-derived intermediates into chemicals and fuels. Among several biorefinery processes, the conversion of biomass carbohydrates into 2,5-dimethylfuran (DMF) has received significant attention because of its low oxygen content, high energy content, and high octane value. DMF can further serve as a petroleum-replacement, biorenewable feedstock for the production of p-xylene (pX). In this review, we aim specifically to present a concise and up-to-date analysis of DMF production technologies with a critical discussion on catalytic systems, mechanistic insight, and process economics, which includes sensitivity analysis, so that more effective catalysts can be designed. Special emphasis has been given to bifunctional catalysts that improve DMF yields and selectivity and the synergistic effect of the bifunctional sites. Process economics for the current processes and the scope for further improvement are discussed. It is anticipated that the chemistry detailed in this review will guide researchers to develop more practical catalytic processes to enable the economic production of bio-based DMF. Processes for the upgrade of DMF to pX are also described. PMID:25703838

  13. n-butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production.

    PubMed

    Branduardi, Paola; Porro, Danilo

    2016-04-01

    The economic upturn of the past 200 years would not have been conceivable without fossil resources such as coal and oil. However, the fossil-based economy increasingly reaches its limits and displays contradictions. Bioeconomy, strategically combining economy and ecology willing to make biobased and sustainable growth possible, is promising to make a significant contribution towards solving these issues. In this context, microbial bioconversions are promising to support partially the increasing need for materials and fuels starting from fresh, preferably waste, biomass. Butanol is a very attractive molecule finding applications both as a chemical platform and as a fuel. Today it principally derives from petroleum, but it also represents the final product of microbial catabolic pathways. Because of the need to maximize yield, titer and productivity to make the production competitive and viable, the challenge is to transform a robustly regulated metabolic network into the principal cellular activity. However, this goal can only be accomplished by a profound understanding of the cellular physiology, survival strategy and sensing/signalling cascades. Here, we shortly review on the natural cellular pathways and circumstances that lead to n-butanol accumulation, its physiological consequences that might not match industrial needs and on possible solutions for circumventing these natural constraints. PMID:27020412

  14. Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties

    PubMed Central

    Akhtar, M. Kalim; Dandapani, Hariharan; Thiel, Kati; Jones, Patrik R.

    2014-01-01

    The development of sustainable, bio-based technologies to convert solar energy and carbon dioxide into fuels is a grand challenge. A core part of this challenge is to produce a fuel that is compatible with the existing transportation infrastructure. This task is further compounded by the commercial desire to separate the fuel from the biotechnological host. Based on its fuel characteristics, 1-octanol was identified as an attractive metabolic target with diesel-like properties. We therefore engineered a synthetic pathway specifically for the biosynthesis of 1-octanol in Escherichia coli BL21(DE3) by over-expression of three enzymes (thioesterase, carboxylic acid reductase and aldehyde reductase) and one maturation factor (phosphopantetheinyl transferase). Induction of this pathway in a shake flask resulted in 4.4 mg 1-octanol L−1 h−1 which exceeded the productivity of previously engineered strains. Furthermore, the majority (73%) of the fatty alcohol was localised within the media without the addition of detergent or solvent overlay. The deletion of acrA reduced the production and excretion of 1-octanol by 3-fold relative to the wild-type, suggesting that the AcrAB–TolC complex may be responsible for the majority of product efflux. This study presents 1-octanol as a potential fuel target that can be synthesised and naturally accumulated within the media using engineered microbes. PMID:27066394

  15. l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste.

    PubMed

    Bernardo, Marcela Piassi; Coelho, Luciana Fontes; Sass, Daiane Cristina; Contiero, Jonas

    2016-01-01

    Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively.

  16. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    SciTech Connect

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  17. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.

    PubMed

    de Oliveira, Rafael R; Nicholson, Wayne L

    2016-01-01

    To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals. PMID:26454865

  18. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.

    PubMed

    de Oliveira, Rafael R; Nicholson, Wayne L

    2016-01-01

    To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals.

  19. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine

    PubMed Central

    Chae, Tong Un; Kim, Won Jun; Choi, Sol; Park, Si Jae; Lee, Sang Yup

    2015-01-01

    Bio-based production of chemicals from renewable resources is becoming increasingly important for sustainable chemical industry. In this study, Escherichia coli was metabolically engineered to produce 1,3-diaminopropane (1,3-DAP), a monomer for engineering plastics. Comparing heterologous C4 and C5 pathways for 1,3-DAP production by genome-scale in silico flux analysis revealed that the C4 pathway employing Acinetobacter baumannii dat and ddc genes, encoding 2-ketoglutarate 4-aminotransferase and L-2,4-diaminobutanoate decarboxylase, respectively, was the more efficient pathway. In a strain that has feedback resistant aspartokinases, the ppc and aspC genes were overexpressed to increase flux towards 1,3-DAP synthesis. Also, studies on 128 synthetic small RNAs applied in gene knock-down revealed that knocking out pfkA increases 1,3-DAP production. Overexpression of ppc and aspC genes in the pfkA deleted strain resulted in production titers of 1.39 and 1.35 g l−1 of 1,3-DAP, respectively. Fed-batch fermentation of the final engineered E. coli strain allowed production of 13 g l−1 of 1,3-DAP in a glucose minimal medium. PMID:26260768

  20. Irrigation with Treated Urban Wastewater for Bioenergy Crop Production in the Far West Texas

    NASA Astrophysics Data System (ADS)

    Ganjegunte, G. K.; Clark, J. A.; Wu, Y.

    2011-12-01

    In the recent years, interest in biobased fuels is increasing and the congressionally mandated goal is to use at least 36 billion gallons of bio-based transportation fuels by 2022. However, in 2009 the U.S. produced about 10.75 billion gallons of ethanol, primarily as corn starch ethanol and 550 million gallons of biodiesel. Thus, there is a huge gap between the current capacity and the mandated goal. USDA estimates that about 27 million acres of land has to be brought under bioenergy crops to produce 36 billion gallons of bio-based fuels. Meeting the challenge of bridging this huge gap requires a comprehensive regional strategy that includes bringing addition area from different regions within the country under bioenergy crops. In the southwest U.S. region such as west Texas or southern New Mexico, bringing vast abandoned crop lands and areas having permeable soils under bioenergy crops can be a part of such a regional strategy. While the region has adequate supply of land, finding reliable source of water to produce bioenergy crops is the main challenge. This challenge can be met by developing marginal quality water sources for bioenergy crops production. Use of marginal quality waters such as treated urban wastewater/saline groundwater to irrigate bioenergy crops may prove beneficial, if the bioenergy crops can grow under elevated salinity and the effects on soil and shallow groundwater can be minimized by appropriate management. The region has enormous potential for marginal quality water irrigation to produce bioenergy crops for a greater farm return. For example, at present, in El Paso alone, the total volume of treated municipal and industrial wastewater is about 65,000 acre-feet/year, of which only 13% is being reused for industrial processes and irrigating urban landscapes. The major concern associated with treated wastewater irrigation is its salinity (electrical conductivity or EC which measures salinity ranges from 1.8 to 2.1 dS m-1) and sodicity

  1. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source

    DOE PAGES

    Fei, Qiang; O'Brien, Marykate; Nelson, Robert; Chen, Xiaowen; Lowell, Andrew; Dowe, Nancy

    2016-06-23

    Industrial biotechnology that is able to provide environmentally friendly bio-based products has attracted more attention in replacing petroleum-based industries. Currently, most of the carbon sources used for fermentation-based bioprocesses are obtained from agricultural commodities that are used as foodstuff for human beings. Lignocellulose-derived sugars as the non-food, green, and sustainable alternative carbon sources have great potential to avoid this dilemma for producing the renewable, bio-based hydrocarbon fuel precursors, such as microbial lipid. Efficient bioconversion of lignocellulose-based sugars into lipids is one of the critical parameters for industrial application. Therefore, the fed-batch cultivation, which is a common method used in industrialmore » applications, was investigated to achieve a high cell density culture along with high lipid yield and productivity. In this study, several fed-batch strategies were explored to improve lipid production using lignocellulosic hydrolysates derived from corn stover. Compared to the batch culture giving a lipid yield of 0.19 g/g, the dissolved-oxygen-stat feeding mode increased the lipid yield to 0.23 g/g and the lipid productivity to 0.33 g/L/h. The pulse feeding mode further improved lipid productivity to 0.35 g/L/h and the yield to 0.24 g/g. However, the highest lipid yield (0.29 g/g) and productivity (0.4 g/L/h) were achieved using an automated online sugar control feeding mode, which gave a dry cell weight of 54 g/L and lipid content of 59 % (w/w). The major fatty acids of the lipid derived from lignocellulosic hydrolysates were predominately palmitic acid and oleic acid, which are similar to those of conventional oilseed plants. Our results suggest that the fed-batch feeding strategy can strongly influence the lipid production. Lastly, the online sugar control feeding mode was the most appealing strategy for high cell density, lipid yield, and lipid productivity using lignocellulosic hydrolysates

  2. Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes

    NASA Astrophysics Data System (ADS)

    Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.

    2016-06-01

    Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.

  3. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed.

  4. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu

    2012-07-01

    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  5. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed. PMID:25163531

  6. Biotechnology for Chemical Production: Challenges and Opportunities.

    PubMed

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper.

  7. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    PubMed

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.

  8. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.

    PubMed

    Devappa, Rakshit K; Rakshit, Sudip K; Dekker, Robert F H

    2015-11-01

    The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species.

  9. Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes.

    PubMed

    Sabet-Azad, Ramin; Sardari, Roya R R; Linares-Pastén, Javier A; Hatti-Kaul, Rajni

    2015-03-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical for the biobased chemical industry. Lactobacillus reuteri produces 3-HP from glycerol via 3-hydroxypropionaldehyde (3-HPA) through a CoA-dependent propanediol utilization (Pdu) pathway. This study was performed to verify and evaluate the pathway comprising propionaldehyde dehydrogenase (PduP), phosphotransacylase (PduL), and propionate kinase (PduW) for formation of 3-HP from 3-HPA. The pathway was confirmed using recombinant Escherichia coli co-expressing PduP, PduL and PduW of L. reuteri DSM 20016 and mutants lacking expression of either enzyme. Growing and resting cells of the recombinant strain produced 3-HP with a yield of 0.3mol/mol and 1mol/mol, respectively, from 3-HPA. 3-HP was the sole product with resting cells, while growing cells produced 1,3-propanediol as co-product. 3-HP production from glycerol was achieved with a yield of 0.68mol/mol by feeding recombinant E. coli with 3-HPA produced by L. reuteri and recovered using bisulfite-functionalized resin. PMID:25614245

  10. Cellulosic ethanol production from green solvent-pretreated rice straw

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural deep eutectic solvents (NADES) are recently developed “green solvents” consisted of bio-based ionic liquids and deep eutectic solvents mainly from plant based metabolites. NADES are biodegradable, non-toxic and environment-friendly. Conventional chemically synthesized ionic liquids have be...

  11. Evaluation of the environmental performance of alternatives for polystyrene production in Brazil.

    PubMed

    Hansen, Adriana Petrella; da Silva, Gil Anderi; Kulay, Luiz

    2015-11-01

    The global demand for polystyrene is supposed to reach an overall baseline of 23.5 million tons by 2020. The market has experienced the effects of such growth, especially regarding the environmental performance of the production processes. In Brazil, renewable assets have been used to overcome the adverse consequences of this expansion. This study evaluates this issue for the production of Brazilian polystyrene resins, general-purpose polystyrene (GPPS) and high-impact polystyrene (HIPS). The effects of replacing fossil ethylene with a biobased alternative are also investigated. Life Cycle Assessment is applied for ten scenarios, with different technological approaches for renewable ethylene production and an alternative for obtaining bioethanol, which considers the export of electricity. The fossil GPPS and HIPS show a better performance than the partially renewable sources in terms of Climate Change (CC), Terrestrial Acidification (TA), Photochemical Oxidant Formation (POF), and Water Depletion (WD). The exception is Fossil Depletion (FD), a somewhat predictable result. The main environmental loads associated with the renewable options are related to the sugarcane production. Polybutadiene fails to provide greater additional impact to HIPS when compared to GPPS. With regard to obtaining ethylene from ethanol, Adiabatic Dehydration (AD) technology consumes less sugarcane than Adiabatic Dehydration at High Pressure (ADHP), which leads to gains in TA and POF. In contrast, ADHP was more eco-friendly for WD because of its lower water losses and in terms of CC because of the advantageous balance of fossil CO2(eq) at the agricultural stage and the lower consumption of natural gas in ethylene production. The electricity export is an auspicious environmental opportunity because it can counterbalance some of the negative impacts associated with the renewable route. According to a "cradle-to-grave" perspective, the partially renewable resins show a more favorable balance of

  12. Evaluation of the environmental performance of alternatives for polystyrene production in Brazil.

    PubMed

    Hansen, Adriana Petrella; da Silva, Gil Anderi; Kulay, Luiz

    2015-11-01

    The global demand for polystyrene is supposed to reach an overall baseline of 23.5 million tons by 2020. The market has experienced the effects of such growth, especially regarding the environmental performance of the production processes. In Brazil, renewable assets have been used to overcome the adverse consequences of this expansion. This study evaluates this issue for the production of Brazilian polystyrene resins, general-purpose polystyrene (GPPS) and high-impact polystyrene (HIPS). The effects of replacing fossil ethylene with a biobased alternative are also investigated. Life Cycle Assessment is applied for ten scenarios, with different technological approaches for renewable ethylene production and an alternative for obtaining bioethanol, which considers the export of electricity. The fossil GPPS and HIPS show a better performance than the partially renewable sources in terms of Climate Change (CC), Terrestrial Acidification (TA), Photochemical Oxidant Formation (POF), and Water Depletion (WD). The exception is Fossil Depletion (FD), a somewhat predictable result. The main environmental loads associated with the renewable options are related to the sugarcane production. Polybutadiene fails to provide greater additional impact to HIPS when compared to GPPS. With regard to obtaining ethylene from ethanol, Adiabatic Dehydration (AD) technology consumes less sugarcane than Adiabatic Dehydration at High Pressure (ADHP), which leads to gains in TA and POF. In contrast, ADHP was more eco-friendly for WD because of its lower water losses and in terms of CC because of the advantageous balance of fossil CO2(eq) at the agricultural stage and the lower consumption of natural gas in ethylene production. The electricity export is an auspicious environmental opportunity because it can counterbalance some of the negative impacts associated with the renewable route. According to a "cradle-to-grave" perspective, the partially renewable resins show a more favorable balance of

  13. Life cycle assessment of potential biojet fuel production in the United States.

    PubMed

    Agusdinata, Datu B; Zhao, Fu; Ileleji, Klein; DeLaurentis, Dan

    2011-11-01

    The objective of this paper is to reveal to what degree biobased jet fuels (biojet) can reduce greenhouse gas (GHG) emissions from the U.S. aviation sector. A model of the supply and demand chain of biojet involving farmers, biorefineries, airlines, and policymakers is developed by considering factors that drive the decisions of actors (i.e., decision-makers and stakeholders) in the life cycle stages. Two kinds of feedstock are considered: oil-producing feedstock (i.e., camelina and algae) and lignocellulosic biomass (i.e., corn stover, switchgrass, and short rotation woody crops). By factoring in farmer/feedstock producer and biorefinery profitability requirements and risk attitudes, land availability and suitability, as well as a time delay and technological learning factor, a more realistic estimate of the level of biojet supply and emissions reduction can be developed under different oil price assumptions. Factors that drive biojet GHG emissions and unit production costs from each feedstock are identified and quantified. Overall, this study finds that at likely adoption rates biojet alone would not be sufficient to achieve the aviation emissions reduction target. In 2050, under high oil price scenario assumption, GHG emissions can be reduced to a level ranging from 55 to 92%, with a median value of 74%, compared to the 2005 baseline level. PMID:21958200

  14. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    PubMed

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  15. Antihydrogen production

    SciTech Connect

    Rizzini, Evandro Lodi; Venturelli, Luca; Zurlo, Nicola

    2008-08-08

    Antihydrogen production in ATHENA is analyzed more carefully. The most important peculiarities of the different experimental situations are discussed. The protonium production via the first matter-antimatter chemical reaction is commented too.

  16. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis.

    PubMed

    Zhang, Hongsen; Liu, Gang; Zhang, Jian; Bao, Jie

    2016-11-01

    High titer gluconic acid and xylonic acid were simultaneously fermented by Gluconobacter oxydans DSM 2003 using corn stover feedstock after dry dilute sulfuric acid pretreatment, biodetoxification and high solids content hydrolysis. Maximum sodium gluconate and xylonate were produced at the titer of 132.46g/L and 38.86g/L with the overall yield of 97.12% from glucose and 90.02% from xylose, respectively. The drawbacks of filamentous fungus Aspergillus niger including weak inhibitor tolerance, large pellet formation and no xylose utilization were solved by using the bacterium strain G. oxydans. The obtained sodium gluconate/xylonate product was highly competitive as cement retarder additive to the commercial product from corn feedstock. The techno-economic analysis (TEA) based on the Aspen Plus modeling was performed and the minimum sodium gluconate/xylonate product selling price (MGSP) was calculated as $0.404/kg. This study provided a practical and economic competitive process of lignocellulose utilization for production of value-added biobased chemicals.

  17. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis.

    PubMed

    Zhang, Hongsen; Liu, Gang; Zhang, Jian; Bao, Jie

    2016-11-01

    High titer gluconic acid and xylonic acid were simultaneously fermented by Gluconobacter oxydans DSM 2003 using corn stover feedstock after dry dilute sulfuric acid pretreatment, biodetoxification and high solids content hydrolysis. Maximum sodium gluconate and xylonate were produced at the titer of 132.46g/L and 38.86g/L with the overall yield of 97.12% from glucose and 90.02% from xylose, respectively. The drawbacks of filamentous fungus Aspergillus niger including weak inhibitor tolerance, large pellet formation and no xylose utilization were solved by using the bacterium strain G. oxydans. The obtained sodium gluconate/xylonate product was highly competitive as cement retarder additive to the commercial product from corn feedstock. The techno-economic analysis (TEA) based on the Aspen Plus modeling was performed and the minimum sodium gluconate/xylonate product selling price (MGSP) was calculated as $0.404/kg. This study provided a practical and economic competitive process of lignocellulose utilization for production of value-added biobased chemicals. PMID:27484668

  18. Modeling potential freshwater ecotoxicity impacts due to pesticide use in biofuel feedstock production: the cases of maize, rapeseed, salix, soybean, sugar cane, and wheat.

    PubMed

    Nordborg, Maria; Cederberg, Christel; Berndes, Göran

    2014-10-01

    The inclusion of ecotoxicity impacts of pesticides in environmental assessments of biobased products has long been hampered by methodological challenges. We expanded the pesticide database and the regional coverage of the pesticide emission model PestLCI v.2.0, combined it with the impact assessment model USEtox, and assessed potential freshwater ecotoxicity impacts (PFEIs) of pesticide use in selected biofuel feedstock production cases, namely: maize (Iowa, US, two cases), rapeseed (Schleswig-Holstein, Germany), Salix (South Central Sweden), soybean (Mato Grosso, Brazil, two cases), sugar cane (São Paulo, Brazil), and wheat (Schleswig-Holstein, Germany). We found that PFEIs caused by pesticide use in feedstock production varied greatly, up to 3 orders of magnitude. Salix has the lowest PFEI per unit of energy output and per unit of cultivated area. Impacts per biofuel unit were 30, 750, and 1000 times greater, respectively, for the sugar cane, wheat and rapeseed cases than for Salix. For maize genetically engineered (GE) to resist glyphosate herbicides and to produce its own insecticidal toxin, maize GE to resist glyphosate, soybeans GE to resist glyphosate and conventional soybeans, the impacts were 110, 270, 305, and 310 times greater than for Salix, respectively. The significance of field and site-specific conditions are discussed, as well as options for reducing negative impacts in biofuel feedstock production.

  19. Evaluation of an integrated biorefinery based on fractionation of spent sulphite liquor for the production of an antioxidant-rich extract, lignosulphonates and succinic acid.

    PubMed

    Alexandri, Maria; Papapostolou, Harris; Komaitis, Michael; Stragier, Lutgart; Verstraete, Willy; Danezis, Georgios P; Georgiou, Constantinos A; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2016-08-01

    Spent sulphite liquor (SSL) has been used for the production of lignosulphonates (LS), antioxidants and bio-based succinic acid. Solvent extraction of SSL with isopropanol led to the separation of approximately 80% of the total LS content, whereas the fermentations carried out using the pretreated SSL with isopropanol led to the production of around 19g/L of succinic acid by both Actinobacillus succinogenes and Basfia succiniciproducens. Fractionation of SSL via nanofiltration to separate the LS and solvent extraction using ethyl acetate to separate the phenolic compounds produced a detoxified sugar-rich stream that led to the production of 39g/L of succinic acid by B. succiniciproducens. This fractionation scheme resulted also in the production of 32.4g LS and 1.15g phenolic-rich extract per 100g of SSL. Both pretreatment schemes removed significant quantities of metals and heavy metals. This novel biorefinery concept could be integrated in acidic sulphite pulping mills. PMID:27176670

  20. 7 CFR 4288.20 - Submittal of applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system design or operation; or environmental impacts. (8) Biofuel and biobased product production. Information on biofuel and biobased product production, including quantity and units of production. (9... information requested above relating to electric use data, fuel use data, thermal loads and biofuel...

  1. 7 CFR 4288.20 - Submittal of applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system design or operation; or environmental impacts. (8) Biofuel and biobased product production. Information on biofuel and biobased product production, including quantity and units of production. (9... information requested above relating to electric use data, fuel use data, thermal loads and biofuel...

  2. 7 CFR 4288.20 - Submittal of applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system design or operation; or environmental impacts. (8) Biofuel and biobased product production. Information on biofuel and biobased product production, including quantity and units of production. (9... information requested above relating to electric use data, fuel use data, thermal loads and biofuel...

  3. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Kumar, Amit; Hardwidge, Philip R; Tanaka, Tsutomu; Kondo, Akihiko; Vadlani, Praveen V

    2016-03-01

    d-lactic acid is of great interest because of increasing demand for biobased poly-lactic acid (PLA). Blending poly-l-lactic acid with poly-d-lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d-lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l-lactate-deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1-pCU-PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d-lactic acid yield and productivity. d-lactic acid (27.3 g L(-1) ) and productivity (0.75 g L(-1) h(-1) ) was obtained from corn stover and d-lactic acid (22.0 g L(-1) ) and productivity (0.65 g L(-1) h(-1) ) was obtained from sorghum stalks using ΔldhL1-pCU-PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d-lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d-lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271-278, 2016. PMID:26700935

  4. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    PubMed

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the

  5. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    PubMed

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the

  6. Production facilities

    SciTech Connect

    Not Available

    1989-01-01

    This book presents a cross section of different solutions to the many unique production problems operators face. Sections address benefit vs. cost options for production facility designs, oil and gas separation processes and equipment, oil treating and desalting systems, and water treating methods and equipment. Papers were selected to give an overall view of factors involved in optimizing the design of cost-effective production facilities.

  7. Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews the current process technologies for fuel ethanol production. In the US, almost all commercial fuel ethanol is produced from corn whereas cane sugar is used almost exclusively in Brazil. In Europe, two major types of feedstock considered for fuel ethanol production are be...

  8. Agricultural Production.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  9. Hydrogen Production

    SciTech Connect

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  10. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    PubMed

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  11. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    PubMed

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  12. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems

    PubMed Central

    Williams, Alwyn; Kane, Daniel A.; Ewing, Patrick M.; Atwood, Lesley W.; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S.; Grandy, A. Stuart; Huerd, Sheri C.; Hunter, Mitchell C.; Koide, Roger T.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde S.; Spokas, Kurt A.; Yannarell, Anthony C.; Jordan, Nicholas R.

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services); and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services

  13. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.

    PubMed

    Ou, Mark S; Ingram, Lonnie O; Shanmugam, K T

    2011-05-01

    Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150-180 g l(-1)) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l(-1) and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to L: (+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations. PMID:20694852

  14. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates.

    PubMed

    Fukui, Toshiaki; Mukoyama, Masaharu; Orita, Izumi; Nakamura, Satoshi

    2014-09-01

    Ralstonia eutropha H16 is a well-studied bacterium with respect to biosynthesis of polyhydroxyalkanoates (PHAs), which has attracted attentions as biodegradable bio-based plastics. However, this strain shows quite poor growth on glycerol of which bulk supply has been increasing as a major by-product of biodiesel industries. This study examined enhancement of glycerol assimilation ability of R. eutropha H16 by introduction of the genes of aquaglyceroporin (glpF) and glycerol kinase (glpK) from Escherichia coli. Although introduction of glpFK Ec into the strain H16 using a multi-copy vector was not successful, a recombinant strain possessing glpFK Ec within the chromosome showed much faster growth on glycerol than H16. Further analyses clarified that weak expression of glpK Ec alone allowed to establish efficient glycerol assimilation pathway, indicating that the poor growth of H16 on glycerol was caused by insufficient kination activity to glycerol, as well as this strain had a potential ability for uptake of extracellular glycerol. The engineered strains expressing glpFK Ec or glpK Ec produced large amounts of poly[(R)-3-hydroxybutyrate] [P(3HB)] from glycerol with much higher productivity than H16. Unlike other glycerol-utilizable wild strains of R. eutropha, the H16-derived engineered strains accumulated P(3HB) with no significant decrease in molecular weights on glycerol, and the polydispersity index of the glycerol-based P(3HB) synthesized by the strains expressing glpFK Ec was lower than those by the parent strains. The present study demonstrated possibility of R. eutropha H16-based platform for production of useful compounds from inexpensive glycerol.

  15. Household Products

    MedlinePlus

    ... Paint thinners, strippers and removers Pesticides Grease and rust removers Motor oil and fuel additives Arts and craft supplies Toxic substances in these products can cause harm if inhaled, swallowed, or absorbed through the ...

  16. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    PubMed

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  17. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production.

    PubMed

    Li, Ting; Fan, Jun; Chen, Wensen; Shu, Jiayan; Qian, Xueren; Wei, Haifeng; Wang, Qingwen; Shen, Jing

    2016-09-20

    The sustainable, efficient use of renewable bio-based additives in the production of various materials fits well into the concept of sustainability. Here, the concept of coaggregation of mineral filler particles and starch granules for improving filler-fiber interaction in paper-based cellulosic networks is presented. Coaggregation of precipitated calcium carbonate filler particles and uncooked, unmodified corn starch granules by cationic polyacrylamide (a cationic high molecular weight polymer flocculant) in combination with bentonite (an anionic microparticle) prior to addition to cellulosic fiber slurry delivered enhanced filler bondability with cellulosic fibers. For instance, under the conditions studied, preaggregation resulted in an increase in filler bondability factor from 9.24 to 15.21 at starch dosage of 1% (on the basis of the dry weight of papermaking stock). The swelling and gelatinization of the starch granules in starch-filler preaggregates or hybrids enabled the "bridging" of the gaps in cellulosic networks, leading to structural consolidation and strength enhancement. PMID:27261726

  18. 7 CFR 2902.14 - Penetrating lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and corrosion resistance in close tolerant internal and external applications including frozen nuts... biobased products provide information for the BioPreferred Web site of qualifying biobased products about... performance standards against which the product has been tested. This information will assist Federal...

  19. 7 CFR 2902.14 - Penetrating lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and corrosion resistance in close tolerant internal and external applications including frozen nuts... biobased products provide information for the BioPreferred Web site of qualifying biobased products about... performance standards against which the product has been tested. This information will assist Federal...

  20. Cordless Products

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Apollo-era technology spurred the development of cordless products that we take for granted everyday. In the 1960s, NASA asked Black Decker to develop a special drill that would be powerful enough to cut through hard layers of the lunar surface and be lightweight, compact, and operate under its own power source, allowing Apollo astronauts to collect lunar samples further away from the Lunar Experiment Module. In response, Black Decker developed a computer program that analyzed and optimized drill motor operations. From their analysis, engineers were able to design a motor that was powerful yet required minimal battery power to operate. Since those first days of cordless products, Black Decker has continued to refine this technology and they now sell their rechargeable products worldwide (i.e. the Dustbuster, cordless tools for home and industrial use, and medical tools.)