Science.gov

Sample records for biocatalytic alkene oxidation

  1. Techno-economic analysis of biocatalytic processes for production of alkene epoxides.

    PubMed

    Borole, Abhijeet P; Davison, Brian H

    2007-04-01

    A techno-economic analysis of two different bioprocesses was conducted, one for the conversion of propylene to propylene oxide (PO) and other for conversion of styrene to styrene epoxide (SO). The first process was a lipase-mediated chemo-enzymatic reaction, whereas the second one was a one-step enzymatic process using chloroperoxidase. The PO produced through the chemo-enzymatic process is a racemic product, whereas the latter process (based on chloroperoxidase) produces an enantio-pure product. The former process thus falls under the category of high-volume commodity chemical (PO); whereas the latter is a low-volume, high-value product (SO).A simulation of the process was conducted using the bioprocess engineering software SuperPro Designer v6.0 (Intelligen, Inc., Scotch Plains, NJ) to determine the economic feasibility of the process. The purpose of the exercise was to compare biocatalytic processes with existing chemical processes for production of alkene expoxides. The results show that further improvements are needed in improving biocatalyst stability to make these bioprocesses competitive with chemical processes.

  2. Alkene Cleavage Catalysed by Heme and Nonheme Enzymes: Reaction Mechanisms and Biocatalytic Applications

    PubMed Central

    Mutti, Francesco G.

    2012-01-01

    The oxidative cleavage of alkenes is classically performed by chemical methods, although they display several drawbacks. Ozonolysis requires harsh conditions (−78°C, for a safe process) and reducing reagents in a molar amount, whereas the use of poisonous heavy metals such as Cr, Os, or Ru as catalysts is additionally plagued by low yield and selectivity. Conversely, heme and nonheme enzymes can catalyse the oxidative alkene cleavage at ambient temperature and atmospheric pressure in an aqueous buffer, showing excellent chemo- and regioselectivities in certain cases. This paper focuses on the alkene cleavage catalysed by iron cofactor-dependent enzymes encompassing the reaction mechanisms (in case where it is known) and the application of these enzymes in biocatalysis. PMID:22811656

  3. Biocatalytic Asymmetric Alkene Reduction: Crystal Structure and Characterization of a Double Bond Reductase from Nicotiana tabacum

    PubMed Central

    2013-01-01

    The application of biocatalysis for the asymmetric reduction of activated C=C is a powerful tool for the manufacture of high-value chemical commodities. The biocatalytic potential of “-ene” reductases from the Old Yellow Enzyme (OYE) family of oxidoreductases is well-known; however, the specificity of these enzymes toward mainly small molecule substrates has highlighted the need to discover “-ene” reductases from different enzymatic classes to broaden industrial applicability. Here, we describe the characterization of a flavin-free double bond reductase from Nicotiana tabacum (NtDBR), which belongs to the leukotriene B4 dehydrogenase (LTD) subfamily of the zinc-independent, medium chain dehydrogenase/reductase superfamily of enzymes. Using steady-state kinetics and biotransformation reactions, we have demonstrated the regio- and stereospecificity of NtDBR against a variety of α,β-unsaturated activated alkenes. In addition to catalyzing the reduction of typical LTD substrates and several classical OYE-like substrates, NtDBR also exhibited complementary activity by reducing non-OYE substrates (i.e., reducing the exocyclic C=C double bond of (R)-pulegone) and in some cases showing an opposite stereopreference in comparison with the OYE family member pentaerythritol tetranitrate (PETN) reductase. This serves to augment classical OYE “-ene” reductase activity and, coupled with its aerobic stability, emphasizes the potential industrial value of NtDBR. Furthermore, we also report the X-ray crystal structures of the holo-, binary NADP(H)-bound, and ternary [NADP+ and 4-hydroxy-3-methoxycinnamaldehyde (9a)-bound] NtDBR complexes. These will underpin structure-driven site-saturated mutagenesis studies aimed at enhancing the reactivity, stereochemistry, and specificity of this enzyme. PMID:27547488

  4. Oxidative Decarboxylation of Short-Chain Fatty Acids to 1-Alkenes.

    PubMed

    Dennig, Alexander; Kuhn, Miriam; Tassoti, Sebastian; Thiessenhusen, Anja; Gilch, Stefan; Bülter, Thomas; Haas, Thomas; Hall, Mélanie; Faber, Kurt

    2015-07-20

    The enzymatic oxidative decarboxylation of linear short-chain fatty acids (C4:0-C9:0) employing the P450 monooxygenase OleT, O2 as the oxidant, and NAD(P)H as the electron donor gave the corresponding terminal C3 to C8  alkenes with product titers of up to 0.93 g L(-1) and TTNs of >2000. Key to this process was the construction of an efficient electron-transfer chain employing putidaredoxin CamAB in combination with NAD(P)H recycling at the expense of glucose, formate, or phosphite. This system allows for the biocatalytic production of industrially important 1-alkenes, such as propene and 1-octene, from renewable resources for the first time.

  5. Engineering of TM1459 from Thermotoga maritima for Increased Oxidative Alkene Cleavage Activity

    PubMed Central

    Fink, Matthias; Trunk, Sarah; Hall, Mélanie; Schwab, Helmut; Steiner, Kerstin

    2016-01-01

    Oxidative cleavage of alkenes is a widely employed process allowing oxyfunctionalization to corresponding carbonyl compounds. Recently, a novel biocatalytic oxidative alkene cleavage activity on styrene derivatives was identified in TM1459 from Thermotoga maritima. In this work we engineered the enzyme by site-saturation mutagenesis of active site amino acids to increase its activity and to broaden its substrate scope. A high-throughput assay for the detection of the ketone products was successfully developed. Several variants with up to twofold improved conversion level of styrene derivatives were successfully identified. Especially, changes in or removal of the C-terminus of TM1459 increased the activity most significantly. These best variants also displayed a slightly enlarged substrate scope. PMID:27713741

  6. Metal-catalyzed oxidation of 2-alkenals generates genotoxic 4-oxo-2-alkenals during lipid peroxidation.

    PubMed

    Nuka, Erika; Tomono, Susumu; Ishisaka, Akari; Kato, Yoji; Miyoshi, Noriyuki; Kawai, Yoshichika

    2016-10-01

    Lipid peroxidation products react with cellular molecules, such as DNA bases, to form covalent adducts, which are associated with aging and disease processes. Since lipid peroxidation is a complex process and occurs in multiple stages, there might be yet unknown reaction pathways. Here, we analyzed comprehensively 2'-deoxyguanosine (dG) adducts with oxidized arachidonic acid using liquid chromatography-tandem mass spectrometry and found the formation of 7-(2-oxo-hexyl)-etheno-dG as one of the major unidentified adducts. The formation of this adduct was reproduced in the reaction of dG with 2-octenal and predominantly with 4-oxo-2-octenal (OOE). We also found that other 2-alkenals (with five or more carbons) generate corresponding 4-oxo-2-alkenal-type adducts. Importantly, it was found that transition metals enhanced the oxidation of C4-position of 2-octenal, leading to the formation of OOE-dG adduct. These findings demonstrated a new pathway for the formation of 4-oxo-2-alkenals during lipid peroxidation and might provide a mechanism for metal-catalyzed genotoxicity.

  7. Oxidations of alkenes and lignin model compounds in aqueous dispersions

    SciTech Connect

    Zhu, Weiming.

    1991-01-01

    The objective was to develop methods to oxidize water-immiscible alkenes and lignin model compounds with polymer colloid supported transition metal catalysts. The oxidations of organic compounds were carried out in aqueous phase with several water-soluble oxidants and dioxygen. Cationic polymer latexes were prepared by the emulsion copolymerization of vinylbenzyl chloride, divinylbenzene, and vinyl octadecyl ether, or styrene, or n-decyl methacrylate, and the subsequent quaternization of copolymers with trimethylamine. The latex particles were 44 nm to 71 nm in diameter. The latex bound Mn porphyrin catalysts were formed with MnTSPP [TSPP = meso-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrin], which catalyzed the oxidation of cyclohexene, cycloocetene, allylbenzene, and 1-octene by sodium hypochlorite (NaOCl) and potassium peroxymonosulfate (KHSO[sub 5]). The latex bound porphyrin catalysts showed higher activity than MnTSPP in solution. Oxidations of 3,4-dimethoxybenzyl alcohol (DMBA), 4-hydroxy-3-methoxytoluene (HMT), and 3,4-dimethoxytoluene (DMT) were performed with either dioxygen or hydrogen peroxide and CoPcTS (PcTS = tetrasulfonatophthalocyanine), FePcTS, CuPcTS, NiPcTS, FeTCPP [TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin], and MnTSPP. CoPcTS catalyzed the autoxidation of DMBA and HMT at 70-85[degrees]C and pH [ge] 8. All catalysts were active for the oxidation of DMBA, HMT, and DMT with H[sub 2]O[sub 2]. Aqueous solutions of KHSO[sub 5] oxidized water-immiscible alkenes at room temperature in the absence of organic solvent. The acidic pH [le] 1.7 solutions of commercial 2KHSO[sub 5][center dot]K[sub 2]SO[sub 4] in water produced diols from all reactive alkenes except cyclooctene. Adjustment of initial pH to [ge]6.7 with NaHCO[sub 3] enabled selective epoxidations.

  8. Cl atom initiated oxidation of 1-alkenes under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Walavalkar, M.; Sharma, A.; Alwe, H. D.; Pushpa, K. K.; Dhanya, S.; Naik, P. D.; Bajaj, P. N.

    2013-03-01

    In view of the importance of the oxidation pathways of alkenes in the troposphere, and the significance of Cl atom as an oxidant in marine boundary layer (MBL) and polluted industrial atmosphere, the reactions of four 1-alkenes (C6-C9) with Cl atoms are investigated. The rate coefficients at 298 K are measured to be (4.0 ± 0.5), (4.4 ± 0.7), (5.5 ± 0.9) and (5.9 ± 1.7) × 10-10 cm3 molecule-1 s-1 for 1-hexene, 1-heptene, 1-octene and 1-nonene, respectively. The quoted errors include the experimental 2σ, along with the error in the reference rate coefficients. From the systematic increase in the rate coefficients with the number of carbon atoms, an approximate value for the average rate coefficient for hydrogen abstraction per CH2 group in alkenes is estimated to be (4.9 ± 0.3) × 10-11 cm3 molecule-1 s-1. Based on these rate coefficients, the contribution of Cl atom reactions towards the degradation of these molecules is found to be comparable to that of OH radical reactions, under MBL conditions. The products identified in gas phase indicate that Cl atom addition occurs mainly at the terminal carbon, leading to the formation of 1-chloro-2-ketones and 1-chloro-2-ols. The major gas phase products from the alkenyl radicals (formed by H atom abstraction) are different positional isomers of long chain enols and enones. A preference for dissociation leading to an allyl radical, resulting in aldehydes, lower by three carbon atoms, is indicated. The observed relative yields suggest that in general, the increased contribution of the reactions of Cl atoms towards degradation of 1-alkenes in NOx free air does not result in an increase in the generation of small aldehydes (carbon number < 4), including chloroethanal, as compared to that in the reaction of 1-butene.

  9. AN EFFICIENT AND ECOFRIENDLY OXIDATION OF ALKENES USING IRON NITRATE AND MOLECULAR OXYGEN

    EPA Science Inventory

    An environmentally friendly solventless oxidation of alkenes is accomplished efficiently using relatively benign iron nitrate as catalyst in the pressence of molecular oxygen under pressurized conditions.

  10. Photocatalytic oxidation of alkenes and alcohols in water by a manganese(v) nitrido complex.

    PubMed

    Chen, Gui; Chen, Lingjing; Ma, Li; Kwong, Hoi-Ki; Lau, Tai-Chu

    2016-07-28

    Mn(v) nitrido complex [Mn(N)(CN)4](2-) is an efficient catalyst for visible-light induced oxidation of alkenes and alcohols in water using [Ru(bpy)3](2+) as a photosensitizer and [Co(NH3)5Cl](2+) as a sacrificial oxidant. Alkenes are oxidized to epoxides and alcohols to carbonyl compounds.

  11. Gold-catalyzed three-component coupling: oxidative oxyarylation of alkenes.

    PubMed

    Melhado, Asa D; Brenzovich, William E; Lackner, Aaron D; Toste, F Dean

    2010-07-07

    The three-component coupling of terminal alkenes with arylboronic acids and oxygen nucleophiles is described. The reaction employs a binuclear gold(I) bromide as a catalyst and Selectfluor reagent as the stoichiometric oxidant. Alcohols, carboxylic acids, and water can be employed as oxygen nucleophiles, thus providing an efficient entry into beta-aryl ethers, esters, and alcohols from alkenes.

  12. A mild oxidative aryl radical addition into alkenes by aerobic oxidation of arylhydrazines.

    PubMed

    Taniguchi, Tsuyoshi; Zaimoku, Hisaaki; Ishibashi, Hiroyuki

    2011-04-04

    A mild and practical oxyarylation of alkenes by oxidative radical addition has been developed by using aerobic oxidation of hydrazine compounds. The use of a catalytic amount of potassium ferrocyanide trihydrate (K(4)[Fe(CN)(6)]⋅3H(2)O) and water accelerated this radical reaction to give peroxides or alcohols from simple alkenes in good yields. The environmentally friendly and economical radical reactions were achieved at room temperature in the presence of iron catalyst, oxygen gas, and water. A method involving aniline as a radical precursor is also described.

  13. Photocatalytic Dehydrogenative Cross-Coupling of Alkenes with Alcohols or Azoles without External Oxidant.

    PubMed

    Yi, Hong; Niu, Linbin; Song, Chunlan; Li, Yiying; Dou, Bowen; Singh, Atul K; Lei, Aiwen

    2017-01-19

    Direct cross-coupling between alkenes/R-H or alkenes/RXH is a dream reaction, especially without external oxidants. Inputting energy by photocatalysis and employing a cobalt catalyst as a two-electron acceptor, a direct C-H/X-H cross-coupling with H2 evolution has been achieved for C-O and C-N bond formation. A new radical alkenylation using alkene as the redox compound is presented. A wide range of aliphatic alcohols-even long chain alcohols-are tolerated well in this system, providing a new route to multi-substituted enol ether derivatives using simple alkenes. Additionally, this protocol can also be used for N-vinylazole synthesis. Mechanistic insights reveal that the cobalt catalyst oxidizes the photocatalyst to revive the photocatalytic cycle.

  14. Copper-mediated stereospecific C-H oxidative sulfenylation of terminal alkenes with disulfides.

    PubMed

    Tu, Hai-Yong; Hu, Bo-Lun; Deng, Chen-Liang; Zhang, Xing-Guo

    2015-11-04

    A copper and iodine-mediated C-H oxidative sulfenylation of olefins with diaryl disulfides has been developed for the stereospecific synthesis of vinyl thioether. With the combination of Cu(OTf)2 and I2, a variety of terminal alkenes underwent oxidative coupling reaction with various diaryl disulfides successfully to afford the corresponding E-vinyl sulfides in moderate to good yields.

  15. Amidoselenation and Amidotelluration of Alkenes using Oxygen as Terminal Oxidant.

    PubMed

    Sun, Kai; Wang, Xin; Zhang, Chong; Zhang, Saifei; Chen, Yao; Jiao, Hezhen; Du, Weimin

    2017-03-16

    A protocol has been established for oxygen-mediated amidoselenation and amidotelluration of alkenes under mild conditions. This method provides a simple route to a series of structurally diverse β-amido selenides and β-amido tellurides in moderate to high yields. The wide substrate scope, good functional group tolerance, ease of large-scale preparation and potential for product derivatization make this reaction attractive for the synthesis of nitrogen-, selenium- and tellurium-containing molecules.

  16. Pd(Quinox)-Catalyzed Allylic Relay Suzuki Reactions of Secondary Homostyrenyl Tosylates via Alkene-Assisted Oxidative Addition.

    PubMed

    Stokes, Benjamin J; Bischoff, Amanda J; Sigman, Matthew S

    2014-06-01

    Pd-catalyzed allylic relay Suzuki cross-coupling reactions of secondary alkyl tosylates, featuring a sterically-hindered oxidative addition and precise control of β-hydride elimination, are reported. The identification of a linear free energy relationship between the relative rates of substrate consumption and the electronic nature of the substrate alkene suggests that the oxidative addition requires direct alkene involvement. A study of the effect of chain length on the reaction outcome supports a chelation-controlled oxidative addition.

  17. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    PubMed Central

    Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.

    2016-01-01

    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal. PMID:27687877

  18. Epoxidation of alkenes and oxidation of alcohols with hydrogen peroxide catalyzed by a manganese(V) nitrido complex.

    PubMed

    Kwong, Hoi-Ki; Lo, Po-Kam; Lau, Kai-Chung; Lau, Tai-Chu

    2011-04-14

    The manganese(V) nitrido complex (PPh(4))(2)[Mn(N)(CN)(4)] is an active catalyst for alkene epoxidation and alcohol oxidation using H(2)O(2) as an oxidant. The catalytic oxidation is greatly enhanced by the addition of just one equivalent of acetic acid. The oxidation of ethene by this system has been studied computationally by the DFT method.

  19. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  20. Palladium/Copper-Cocatalyzed Oxidative Amidobrominations of Alkenes.

    PubMed

    Chen, Xiao Yun; Bohmann, Rebekka Anna; Wang, Long; Dong, Shunxi; Räuber, Christoph; Bolm, Carsten

    2015-07-13

    In the presence of LiBr, a palladium/copper combination catalyzes dehydrogenative amidobrominations of acrylates with NH-sulfoximines, leading to N-vinylated products by dual NH/CH coupling, followed by oxidative enamide bromination. Mechanistically, the domino process is proposed to involve palladium(II) species as key intermediates. First synthetic applications of the products have been demonstrated.

  1. Peroxidase-active cell free extract from onion solid wastes: biocatalytic properties and putative pathway of ferulic acid oxidation.

    PubMed

    El Agha, Ayman; Makris, Dimitris P; Kefalas, Panagiotis

    2008-09-01

    The exploitation of food residuals can be a major contribution in reducing the polluting load of food industry waste and in developing novel added-value products. Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bioorganic molecules, and thus they may have potential uses in several biocatalytic processes, including green organic synthesis, modification of food physicochemical properties, bioremediation, etc. Although the use of bacterial and fungal enzymes has gained attention in studies pertaining to biocatalytic applications, plant enzymes have been given less consideration or even disregarded. Therefore, we investigated the use of a crude peroxidase preparation from solid onion by-products for oxidizing ferulic acid, a widespread phenolic acid, various derivatives of which may occur in food wastes. The highest enzyme activity was observed at a pH value of 4, but considerable activity was retained up to a pH value of 6. Favorable temperatures for increased activity varied between 20-40 degrees C, 30 degrees C being the optimal. Liquid chromatography-mass spectrometry analysis of a homogenate/H(2)O(2)-treated ferulic acid solution showed the formation of a dimer as a major oxidation product.

  2. Enantioselective Oxidation of Alkenes with Potassium Permanganate Catalyzed by Chiral Dicationic Bisguanidinium.

    PubMed

    Wang, Chao; Zong, Lili; Tan, Choon-Hong

    2015-08-26

    Chiral anion-controlled ion-pairing catalysis was demonstrated to be a wide-ranging strategy that can utilize a variety of cationic metal species. In a similar manner, we envision a complementary strategy using chiral cation in partnership with inorganic anionic metal salts. Herein, we report a chiral dicationic bisguanidinium-catalyzed asymmetric oxidation reaction of alkenes with potassium permanganate. Chiral induction is attributed to ion-pairing interaction between chiral cation and enolate anion. The success of the current permanganate oxidation reaction together with mechanistic insights should provide inspiration for expansion to other anionic metal salts and would open up new paradigms for asymmetric transition metal catalysis, phase-transfer catalysis, and ion-pairing catalysis.

  3. Conversion of 1-alkenes into 1,4-diols through an auxiliary-mediated formal homoallylic C-H oxidation.

    PubMed

    Ghavtadze, Nugzar; Melkonyan, Ferdinand S; Gulevich, Anton V; Huang, Chunhui; Gevorgyan, Vladimir

    2014-02-01

    The ubiquitous nature of C-H bonds in organic molecules makes them attractive as a target for rapid complexity generation, but brings with it the problem of achieving selective reactions. In developing new methodologies for C-H functionalization, alkenes are an attractive starting material because of their abundance and low cost. Here we describe the conversion of 1-alkenes into 1,4-diols. The method involves the installation of a new Si,N-type chelating auxiliary group on the alkene followed by iridium-catalysed C-H silylation of an unactivated δ-C(sp(3))-H bond to produce a silolane intermediate. Oxidation of the C-Si bonds affords a 1,4-diol. The method is demonstrated to have broad scope and good functional group compatibility by application to the selective 1,4-oxygenation of several natural products and derivatives.

  4. Water independent SO2 oxidation by Stabilised Criegee Intermediates from Biogenic Alkenes

    NASA Astrophysics Data System (ADS)

    Newland, Mike; Rickard, Andrew; Vereecken, Luc; Evans, Mat; Muñoz, Amalia; Ródenas, Milagros; Bloss, William

    2015-04-01

    Biogenic VOCs account for about 90% of global VOC emissions and these are dominated by the unsaturated hydrocarbons: isoprene (600 Tg yr-1) and monoterpenes (100 Tg yr-1). Stabilized Criegee Intermediates (SCI) are thought to be formed in the atmosphere mainly from reactions of unsaturated hydrocarbons with ozone. SCI have been shown in laboratory experiments to rapidly oxidise SO2 (k > 2x10-11 cm3 s-1) and NO2 (k = 7x10-12 cm3 s-1), providing a potentially important gas phase oxidation route for these species in the atmosphere. The importance of the SCI reaction with traces gases has been shown in modelling work to be critically dependent on the ratio of the rate constants for the reaction of the SCI with these trace gases and with H2O. Such modelling work has suggested that the SCI + SO2 reaction is only likely to be important in regions with high alkene emissions, e.g. forests, and that elsewhere SCI are likely to be almost entirely quenched by reaction with water, thus negating their importance as trace gas oxidants. However, it has been shown in laboratory experiments with small SCI that the reaction rate of SCI with water is structure dependent, with anti-CH3CHOO reacting fast with H2O (k > 1x10-14 cm3 s-1), and syn-CH3CHOO reacting orders of magnitude slower (k < 2x10-16 cm3 s-1). Here we present results from a series of ozonolysis experiments performed at the EUPHORE atmospheric simulation chamber in Valencia. These experiments measure the loss of SO2, in the presence of various biogenic alkenes (isoprene and three monoterpenes: α-pinene, β-pinene and limonene), as a function of water vapour. The SO2 loss shows a dependence on relative humidity for all systems studied, decreasing with increasing relative humidity. However, for all species, there also appears to be a fraction of the SO2 loss that shows a much lower sensitivity to relative humidity. We quantify the relative rates of reaction of the SCI produced in the ozonolysis of these biogenics with

  5. Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites.

    PubMed

    Grossi, Vincent; Cravo-Laureau, Cristiana; Rontani, Jean-François; Cros, Magali; Hirschler-Réa, Agnès

    2011-11-01

    Two alkene-degrading sulphate-reducing bacteria from the genus Desulfatiferula (Desulfatiferula olefinivorans strain LM2801(T) and Desulfatiferula sp. strain BE2801) were investigated for their 1-alkene metabolism. Their total cellular fatty acids were predominantly C-even when they were grown on C-even 1-alkene (1-hexadecene), whereas a mixture of fatty acids with C-odd or C-even carbon chains predominated when cells were grown on C-odd 1-alkene (1-pentadecene). This is consistent with the fatty acid composition of other sulphate-reducing strains previously reported to grow on n-alkenes. Linear and 3-OH-fatty acids appear to be the main fatty acids produced by the two Desulfatiferula strains. The analysis of their neutral lipids led to identifying several n-alkanols and n-ketones with the same number of carbon atoms as the alkene growth substrate and with functionality located between C-1 and C-5. Growth of strains LM2801(T) and BE2801 on (per) deuterated 1-alkenes provided direct evidence of their anaerobic transformation to corresponding 1-alkanols, n-ketones and linear (3-OH-) fatty acids. These results demonstrate that Desulfatiferula strains oxidize a 1-alkene by oxidation of the double bond at C-1, but also at C-2 to C-5 (after eventual isomerization of the double bond) yielding the corresponding C-2 to C-5 n-ketones (via the corresponding n-alkanols). The formation of specific 3-OH-fatty acids by elongation of shorter chain fatty acids was also demonstrated. Based on our observations, pathways for anaerobic 1-alkene metabolism in sulphate-reducing bacteria from the genus Desulfatiferula are proposed. They indicate that n-ketones can constitute new metabolites of the biodegradation of n-alkenes in anaerobic environments.

  6. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase

    SciTech Connect

    Carlin, DA; Bertolani, SJ; Siegel, JB

    2015-01-01

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  7. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    PubMed

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  8. Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl N-Oxide Lewis Base Catalysts.

    PubMed

    Staniland, Samantha; Adams, Ralph W; McDouall, Joseph J W; Maffucci, Irene; Contini, Alessandro; Grainger, Damian M; Turner, Nicholas J; Clayden, Jonathan

    2016-08-26

    Atropisomeric biaryl pyridine and isoquinoline N-oxides were synthesized enantioselectively by dynamic kinetic resolution (DKR) of rapidly racemizing precursors exhibiting free bond rotation. The DKR was achieved by ketoreductase (KRED) catalyzed reduction of an aldehyde to form a configurationally stable atropisomeric alcohol, with the substantial increase in rotational barrier arising from the loss of a bonding interaction between the N-oxide and the aldehyde. Use of different KREDs allowed either the M or P enantiomer to be synthesized in excellent enantiopurity. The enantioenriched biaryl N-oxide compounds catalyze the asymmetric allylation of benzaldehyde derivatives with allyltrichlorosilane.

  9. Enhanced Biocatalytic Esterification with Lipase-Immobilized Chitosan/Graphene Oxide Beads

    PubMed Central

    Lau, Siaw Cheng; Lim, Hong Ngee; Basri, Mahiran; Fard Masoumi, Hamid Reza; Ahmad Tajudin, Asilah; Huang, Nay Ming; Pandikumar, Alagarsamy; Chia, Chi Hua; Andou, Yoshito

    2014-01-01

    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the “insoluble” enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60°C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions. PMID:25127038

  10. The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics.

    PubMed

    Doig, Steven D; Pickering, Samuel C R; Lye, Gary J; Woodley, John M

    2002-10-05

    Microscale processing techniques would be a useful tool for the rapid and efficient collection of biotransformation kinetic data as a basis for bioprocess design. Automated liquid handling systems can reduce labor intensity while the small scale reduces the demand for scarce materials such as substrate, product, and biocatalyst. Here we illustrate this concept by establishing the use of several microwell formats (96-round, 96-deep square and 24-round well microtiter plates) for quantification of the kinetics of the E. coli TOP10 [pQR239] resting cell catalyzed Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2en-6-one using glycerol as a source of reducing power. By increasing the biocatalyst concentration until the biotransformation rate was oxygen mass-transfer limited we can ensure that kinetic data collected are in the region away from oxygen limitation. Using a 96-round well plate the effect of substrate (bicyclo[3.2.0]hept-2en-6-one) concentration on the volumetric CHMO activity was examined and compared to data collected from 1.5-L stirred-tank experiments. The phenomenon and magnitude of substrate inhibition, observed at the larger scale, was accurately reproduced in the microwell format. We have used this as an illustrative example to demonstrate that under adequately defined conditions, automated microscale processing technologies can be used for the collection of quantitative kinetic data. Additionally, by using the experimentally determined stoichiometry for product formation and glycerol oxidation, we have estimated the maximum oxygen transfer rates as a function of well geometry and agitation rate. Oxygen-transfer rates with an upper limit of between 33 mmol. L(-1). h(-1) (based solely on product formation) and 390 mmol. L(-1). h(-1) (based on product formation and glycerol oxidation) were achieved using a 96-square well format plate shaken at 1300 rpm operated with a static surface area to volume ratio of 320 m(2). m(-3).

  11. Distinct rat hepatic microsomal epoxide hydrolases catalyze the hydration of cholesterol 5,6 alpha-oxide and certain xenobiotic alkene and arene oxides.

    PubMed

    Levin, W; Michaud, D P; Thomas, P E; Jerina, D M

    1983-02-01

    Metabolism of cholesterol 5,6 alpha-oxide to the 5,6-glycol is catalyzed by a rat liver microsomal epoxide hydrolase that is distinct from the microsomal epoxide hydrolase that metabolizes a wide range of xenobiotic alkene and arene oxides. The two enzymes are antigenically distinct, and the purified microsomal epoxide hydrolase that metabolizes xenobiotic oxides does not catalyze the hydration of cholesterol 5,6 alpha-oxide. In vivo treatment of rats with inducers of microsomal epoxide hydrolase does not enhance the activity of cholesterol 5,6 alpha-oxide hydrolase and, in some cases, actually depresses enzyme activity in the resultant microsomal preparations. Octene 1,2-oxide and benz[a]anthracene 5,6-oxide, both good substrates for xenobiotic epoxide hydrolase, are not competitive inhibitors of cholesterol oxide hydration by rat liver microsomes. The above results establish the existence of a liver microsomal epoxide hydrolase that is under different regulatory control and that appears to have a different substrate specificity than the well-characterized microsomal epoxide hydrolase involved in the metabolism of a widely diverse group of alkene and arene oxides.

  12. Cobalt salophen complex supported on imidazole functionalized magnetic nanoparticles as a recoverable catalyst for oxidation of alkenes

    NASA Astrophysics Data System (ADS)

    Afshari, Mozhgan; Gorjizadeh, Maryam; Nazari, Simin; Naseh, Mohammad

    2014-08-01

    A new magnetically separable catalyst consisting of Co(II) salophen complex covalently supported on imidazole functionalized silica coated cobalt ferrite was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an efficient heterogeneous catalyst for the oxidation of some alkenes using hydrogen peroxide (H2O2) as oxidant. The catalyst could be easily and efficiently isolated from the final product solution by magnetic decantation and be reused for 5 consecutive reactions without showing any significant activity degradation.

  13. Total synthesis of gracilioether F. Development and application of Lewis acid promoted ketene–alkene [2+2] cycloadditions and late-stage C—H oxidation

    SciTech Connect

    Rasik, Christopher M.; Brown, M. Kevin

    2014-12-22

    The first synthesis of gracilioether F, a polyketide natural product with an unusual tricyclic core and five contiguous stereocenters, is described. Key steps of the synthesis include a Lewis acid promoted ketene–alkene [2+2] cycloaddition and a late-stage carboxylic acid directed C(sp³)—H oxidation. The synthesis requires only eight steps from norbornadiene.

  14. Ozonolysis of surface adsorbed methoxyphenols: kinetics of aromatic ring cleavage vs. alkene side-chain oxidation

    NASA Astrophysics Data System (ADS)

    O'Neill, E. M.; Kawam, A. Z.; Van Ry, D. A.; Hinrichs, R. Z.

    2013-07-01

    Lignin pyrolysis products, which include a variety of substituted methoxyphenols, constitute a major component of organics released by biomass combustion and may play a central role in the formation of atmospheric brown carbon. Understanding the atmospheric fate of these compounds upon exposure to trace gases is therefore critical to predicting the chemical and physical properties of biomass burning aerosol. We used diffuse reflectance infrared spectroscopy to monitor the heterogeneous ozonolysis of 4-propylguaiacol, eugenol, and isoeugenol adsorbed on NaCl and α-Al2O3 substrates. Adsorption of gaseous methoxyphenols onto these substrates produced near monolayer surface concentrations of 3 × 1018 molecules m-2. The subsequent dark heterogeneous ozonolysis of adsorbed 4-propylguaiacol cleaved the aromatic ring between the methoxy and phenol groups with the product conclusively identified by GC-MS and 1H-NMR. Kinetic analysis of eugenol and isoeugenol dark ozonolysis also suggested the formation of ring-cleaved products, although ozonolysis of the unsaturated substituent groups forming carboxylic acids and aldehydes was an order of magnitude faster. Average uptake coefficients for NaCl-adsorbed methoxyphenols were γ = 2.3 (±0.8) × 10-7 and 2 (±1) × 10-6 for ozonolysis of the aromatic ring and the unsaturated side chain, respectively, and reactions on α-Al2O3 were approximately two times slower. UV-visible radiation (λ>300 nm) enhanced eugenol ozonolysis of the aromatic ring by a factor of 4(±1) but had no effect on ozonolysis of the alkene side-chain.

  15. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    NASA Astrophysics Data System (ADS)

    Alonso, Jose Maria; Bielen, Abraham A. M.; Olthuis, Wouter; Kengen, Servé W. M.; Zuilhof, Han; Franssen, Maurice C. R.

    2016-10-01

    Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  16. Hydration of arene and alkene oxides by epoxide hydrase in human liver microsomes.

    PubMed

    Kapitulnik, J; Levin, W; Morecki, R; Dansette, P M; Jerina, D M; Conney, A H

    1977-02-01

    The comparative hydration of styrene 7,8-oxide, octene 1,2-oxide, naphthalene 1,2-oxide, phenanthrene 9,10-oxide, benzo[a]anthracene 5,6-oxide, 3-methylcholanthrene 11,12-oxide, dibenzo[a,h]anthracene 5,6-oxide, and benzo[a, 7,8-, 9,10-, and 11,12-oxides to their respective dihydrodiols was investigated in microsomes from nine human autopsy livers. The substrate specificity of the epoxide hydrase in human liver microsomes was very similar to that of the epoxide hydrase in rat liver microsomes. Phenanthrene 9,10-oxide was the best substrate for the human and rat epoxide hydrases and dibenzo[a,h]anthracene 5,6-oxide and benzo[a-a)pyrene 11, 12-oxide were the poorest substrates. Plotting epoxide hydrase activity obtained with one substrate against epoxide hydrase activity for another substrate for each of the nine human livers revealed excellent correlations for all combinations of the 11 substrates studied (r = 0.87 to 0.99). The data suggest the presence in human liver of a single epoxide hydrase with broad substrate specificity. However, the results do not exclude the possible presence in human liver of several epoxide hydrases that are under similar regulatory control. These results suggest the need for further investigation to determine whether there is a safe epoxide of a drug whose in vivo metabolism is predictive of the capacity of different individuals to metabolize a wide variety of epoxides of drugs and environmental chemicals.

  17. Investigating the oxidation of alkenes by non-heme iron enzyme mimics.

    PubMed

    Barry, Sarah M; Mueller-Bunz, Helge; Rutledge, Peter J

    2012-09-28

    Iron is emerging as a key player in the search for efficient and environmentally benign methods for the functionalisation of C-H bonds. Non-heme iron enzymes catalyse a diverse array of oxidative chemistry in nature, and small-molecule complexes designed to mimic the non-heme iron active site have great potential as C-H activation catalysts. Herein we report the synthesis of a series of organic ligands that incorporate key features of the non-heme iron active site. Iron(II) complexes of these ligands have been generated in situ and their ability to promote hydrocarbon oxidation has been investigated. Several of these systems promote the biomimetic dihydroxylation of cyclohexene at low levels, when hydrogen peroxide is used as the oxidant; allylic oxidation products are also observed. An investigation of ligand stability reveals formation of several breakdown products under the conditions of the oxidative turnover reactions. These products arise via oxidative decarboxylation, dehydration and deamination reactions. Taken together these results indicate that competing mechanisms are at play with these systems: biomimetic hydroxylation involving high-valent iron species, and allylic oxidation via Fenton chemistry and Haber-Weiss radical pathways.

  18. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  19. Enantioselective Pd(II)-catalyzed aerobic oxidative amidation of alkenes and insights into the role of electronic asymmetry in pyridine-oxazoline ligands.

    PubMed

    McDonald, Richard I; White, Paul B; Weinstein, Adam B; Tam, Chun Pong; Stahl, Shannon S

    2011-06-03

    Enantioselective intramolecular oxidative amidation of alkenes has been achieved using a (pyrox)Pd(II)(TFA)(2) catalyst (pyrox = pyridine-oxazoline, TFA = trifluoroacetate) and O(2) as the sole stoichiometric oxidant. The reactions proceed at room temperature in good-to-excellent yields (58-98%) and with high enantioselectivity (ee = 92-98%). Catalyst-controlled stereoselective cyclization reactions are demonstrated for a number of chiral substrates. DFT calculations suggest that the electronic asymmetry of the pyrox ligand synergizes with steric asymmetry to control the stereochemical outcome of the key amidopalladation step.

  20. Palladium-Catalyzed Oxidative Arylhalogenation of Alkenes: Synthetic Scope and Mechanistic Insights

    PubMed Central

    Kalyani, Dipannita; Satterfield, Andrew D.

    2010-01-01

    This article describes the development of a Pd-catalyzed reaction for the arylhalogenation (halogen = Cl or Br) of diverse α-olefins by oxidatively intercepting Mizoroki-Heck intermediates. These transformations afford synthetically useful 1,2- and 1,1-arylhalogenated products in good yields with good to excellent selectivities that can be modulated by changing the nature of the halogenating reagent and/or the reaction conditions. The selectivity of these reactions can be rationally tuned by: (i) controlling the relative rates of oxidative functionalization versus β-hydride elimination from equilibrating PdII-alkyl species and (ii) stabilization of organometallic PdII intermediates through the formation of π-benzyl adducts. These arylhalogenations exhibit modest to excellent levels of stereospecificity, and the key carbon-halogen bond-forming step proceeds with predominant retention of stereochemistry at carbon. PMID:20515033

  1. Selective oxidation of alkanes and/or alkenes to valuable oxygenates

    DOEpatents

    Lin, Manhua; Pillai, Krishnan S.

    2011-02-15

    A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid. The catalyst comprises a compound having the formula A.sub.aB.sub.bX.sub.xY.sub.yZ.sub.zO.sub.o wherein A is one or more elements selected from the group of Mo, W and Zr, B is one or more elements selected from the group of Bi, Sb, Se, and Te, X is one or more elements selected from the group of Al, Bi, Ca, Ce, Co, Fe, Ga, Mg, Ni, Nb, Sn, W and Zn, Y is one or more elements selected from the group of Ag, Au, B, Cr, Cs, Cu, K, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Re, Ru, Sn, Te, Ti, V and Zr, and Z is one or more element from the X or Y groups or from the following: As, Ba, Pd, Pt, Sr, or mixtures thereof, and wherein a=1, 0.05oxidation state of the other elements.

  2. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  3. Metal-free oxidative hydroxyalkylarylation of activated alkenes by direct sp3 C-H functionalization of alcohols.

    PubMed

    Meng, Yuan; Guo, Li-Na; Wang, Hua; Duan, Xin-Hua

    2013-09-04

    A metal-free tandem radical addition/cyclization reaction of activated alkenes and alcohols has been developed. The process provides an efficient and atom economical access to various valuable hydroxyl-containing oxindoles through the direct sp(3) C-H functionalization of alcohols.

  4. Polar Addition to C=C Group: Why Is Anti-Markovnikov Hydroboration-Oxidation of Alkenes Not "Anti-"?

    ERIC Educational Resources Information Center

    Ilich, Predrag-Peter; Rickertsen, Lucas S.; Becker, Erienne

    2006-01-01

    For 137 years Markovnikov's rule has been extensively used in organic chemical education and research to describe the regioselectivity in electrophilic addition reactions to alkenes and alkynes. When the structures of the final reaction products are used as reference, the rule requests that certain polar addition reactions be termed…

  5. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals.

    PubMed

    McMahon, Michael; Lamont, Douglas J; Beattie, Kenneth A; Hayes, John D

    2010-11-02

    Recognition and repair of cellular damage is crucial if organisms are to survive harmful environmental conditions. In mammals, the Keap1 protein orchestrates this response, but how it perceives adverse circumstances is not fully understood. Herein, we implicate NO, Zn(2+), and alkenals, endogenously occurring chemicals whose concentrations increase during stress, in this process. By combining molecular modeling with phylogenetic, chemical, and functional analyses, we show that Keap1 directly recognizes NO, Zn(2+), and alkenals through three distinct sensors. The C288 alkenal sensor is of ancient origin, having evolved in a common ancestor of bilaterans. The Zn(2+) sensor minimally comprises H225, C226, and C613. The most recent sensor, the NO sensor, emerged coincident with an expansion of the NOS gene family in vertebrates. It comprises a cluster of basic amino acids (H129, K131, R135, K150, and H154) that facilitate S-nitrosation of C151. Taken together, our data suggest that Keap1 is a specialized sensor that quantifies stress by monitoring the intracellular concentrations of NO, Zn(2+), and alkenals, which collectively serve as second messengers that may signify danger and/or damage.

  6. Biocatalytic portfolio of Basidiomycota.

    PubMed

    Schmidt-Dannert, Claudia

    2016-04-01

    Basidiomycota fungi have received little attention for applications in biocatalysis and biotechnology and remain greatly understudied despite their importance for carbon recycling, ecosystem functioning and medicinal properties. The steady influx of genome data has facilitated detailed studies aimed at understanding the evolution and function of fungal lignocellulose degradation. These studies and recent explorations into the secondary metabolomes have uncovered large portfolios of enzymes useful for biocatalysis and biosynthesis. This review will provide an overview of the biocatalytic repertoires of Basidiomycota characterized to date with the hope of motivation more research into the chemical toolkits of this diverse group of fungi.

  7. Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone

    ERIC Educational Resources Information Center

    Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter

    2011-01-01

    Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal…

  8. Electrochemical intramolecular aminooxygenation of unactivated alkenes.

    PubMed

    Xu, Fan; Zhu, Lin; Zhu, Shaobin; Yan, Xiaomei; Xu, Hai-Chao

    2014-09-26

    An electrochemical approach to the intramolecular aminooxygenation of unactivated alkenes has been developed. This process is based on the addition of nitrogen-centered radicals, generated through electrochemical oxidation, to alkenes followed by trapping of the cyclized radical intermediate with 2,2,6,6-tetramethylpiperidine-N-oxyl radical (TEMPO). Difunctionalization of a variety of alkenes with easily available carbamates/amides and TEMPO affords aminooxygenation products in high yields and with excellent trans selectivity for cyclic systems (d.r. up to>20:1). The approach provides a much-needed complementary route to existing cis-selective methods.

  9. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2015-09-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool which explicitly represents SOA formation and gas/wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas/wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up to 0.35 yield unit due to the loss of organic vapors to chamber walls.

  10. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas-wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas-wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  11. Biocatalytic material comprising multilayer enzyme coated fiber

    DOEpatents

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  12. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    SciTech Connect

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  13. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    DOE PAGES

    La, Y. S.; Camredon, M.; Ziemann, P. J.; ...

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chambermore » experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.« less

  14. cis-1,2-Aminohydroxylation of Alkenes Involving a Catalytic Cycle of Osmium(III) and Osmium(V) Centers: Os(V)(O)(NHTs) Active Oxidant with a Macrocyclic Tetradentate Ligand.

    PubMed

    Sugimoto, Hideki; Mikami, Akine; Kai, Kenichiro; Sajith, P K; Shiota, Yoshihito; Yoshizawa, Kazunari; Asano, Kaori; Suzuki, Takeyuki; Itoh, Shinobu

    2015-07-20

    Catalytic activity of [Os(III)(OH)(H2O)(L-N4Me2)](PF6)2 (1: L-N4Me2 = N,N'-dimethyl-2,11-diaza-[3,3](2,6)pyridinophane) in 1,2-cis-aminohydroxylation of alkenes with sodium N-chloro-4-methylbenzenesulfonamide (chloramine-T) is explored. Simple alkenes as well as those containing several types of substituents are converted to the corresponding 1,2-aminoalcohols in modest to high yields. The aminoalcohol products have exclusively cis conformation with respect to the introduced -OH and -NHTs groups. The spectroscopic measurements including cold mass spectroscopic study of the reaction product of complex 1 and chloromine-T as well as density functional theory (DFT) calculations indicate that an oxido-aminato-osmium(V) species [Os(V)(O)(NHTs)(L-N4Me2)](PF6)2 (2) is an active oxidant for the aminohydroxylation. The DFT calculations further indicate that the reaction involves a [3 + 2] cycloaddition between 2 and alkene, and the regioselectivity in the aminohydroxylation of unsymmetrical alkenes is determined by the orientation that bears less steric hindrance from the tosylamino group, which leads to the energetically more preferred product isomer.

  15. Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic nad+/nadh co-factors and [cp*rh(bpy)h]+ for selective organic synthesis

    SciTech Connect

    Lutz, Jochen; Hollman, Frank; Ho, The Vinh; Schnyder, Adrian; Fish, Richard H.; Schmid, Andreas

    2004-03-09

    The biocatalytic, regioselective hydroxylation of 2-hydroxybiphenyl to the corresponding catechol was accomplished utilizing the monooxygenase 2-hydroxybiphenyl 3-monooxygenase (HbpA). The necessary natural nicotinamide adenine dinucleotide (NAD{sup +}) co-factor for this biocatalytic process was replaced by a biomimetic co-factor, N-benzylnicotinamide bromide, 1a. The interaction between the flavin (FAD) containing HbpA enzyme and the corresponding biomimetic NADH compound, N-benzyl-1,4-dihdronicotinamide, 1b, for hydride transfers, was shown to readily occur. The in situ recycling of the reduced NADH biomimic 1b from 1a was accomplished with [Cp*Rh(bpy)H](Cl); however, productive coupling of this regeneration reaction to the enzymatic hydroxylation reaction was not totally successful, due to a deactivation process concerning the HbpA enzyme peripheral groups; i.e., -SH or -NH{sub 2} possibly reacting with the precatalyst, [Cp*Rh(bpy)(H{sub 2}O)](Cl){sub 2}, and thus inhibiting the co-factor regeneration process. The deactivation mechanism was studied, and a promising strategy of derivatizing these peripheral -SH or -NH{sub 2} groups with a polymer containing epoxide was successful in circumventing the undesired interaction between HbpA and the precatalyst. This latter strategy allowed tandem co-factor regeneration using 1a or 2a, [Cp*Rh(bpy)(H2O)](Cl){sub 2}, and formate ion, in conjunction with the polymer bound, FAD containing HbpA enzyme to provide the catechol product.

  16. Ozonolysis of surface-adsorbed methoxyphenols: kinetics of aromatic ring cleavage vs. alkene side-chain oxidation

    NASA Astrophysics Data System (ADS)

    O'Neill, E. M.; Kawam, A. Z.; Van Ry, D. A.; Hinrichs, R. Z.

    2014-01-01

    Lignin pyrolysis products, which include a variety of substituted methoxyphenols, constitute a major component of organics released by biomass combustion, and may play a central role in the formation of atmospheric brown carbon. Understanding the atmospheric fate of these compounds upon exposure to trace gases is therefore critical to predicting the chemical and physical properties of biomass burning aerosol. We used diffuse reflectance infrared spectroscopy to monitor the heterogeneous ozonolysis of 4-propylguaiacol, eugenol, and isoeugenol adsorbed on NaCl and α-Al2O3 substrates. Adsorption of gaseous methoxyphenols onto these substrates produced near-monolayer surface concentrations of 3 × 1018 molecules m-2. The subsequent dark heterogeneous ozonolysis of adsorbed 4-propylguaiacol cleaved the aromatic ring between the methoxy and phenol groups with the product conclusively identified by GC-MS and 1H-NMR. Kinetic analysis of eugenol and isoeugenol dark ozonolysis also suggested the formation of ring-cleaved products, although ozonolysis of the unsaturated substituent groups forming carboxylic acids and aldehydes was an order of magnitude faster. Average uptake coefficients for NaCl-adsorbed methoxyphenols were γ = 2.3 (± 0.8) × 10-7 and 2 (± 1) × 10-6 for ozonolysis of the aromatic ring and the unsaturated side chain, respectively, and reactions on α-Al2O3 were approximately two times slower. UV-visible radiation (λ > 300 nm) enhanced eugenol ozonolysis of the aromatic ring by a factor of 4(± 1) but had no effect on ozonolysis of the alkene side chain.

  17. Hydroxyl-directed stereoselective diboration of alkenes.

    PubMed

    Blaisdell, Thomas P; Caya, Thomas C; Zhang, Liang; Sanz-Marco, Amparo; Morken, James P

    2014-07-02

    An alkoxide-catalyzed directed diboration of alkenyl alcohols is described. This reaction occurs in a stereoselective fashion and is demonstrated with cyclic and acyclic homoallylic and bishomoallylic alcohol substrates. After oxidation, the reaction generates 1,2-diols such that the process represents a method for the stereoselective directed dihydroxylation of alkenes.

  18. Unusual aggregates from the oxidation of alkene self-assembled monolayers: a previously unrecognized mechanism for SAM ozonolysis?

    SciTech Connect

    Mcintire, Theresa M.; Lea, Alan S.; Gaspar, Dan J.; Jaitly, Navdeep; Dubowski, Y.; Li, Qiquang; Finlayson-Pitts, Barbara J.

    2005-09-30

    Airborne particles are important in climate, visibility, human health and atmospheric reactions. Organics associated with airborne particles are thought to be oxidized to polar, hygroscopic species with enhanced cloud-nucleating properties. We show that ozone oxidation of unsaturated organics on silica as a proxy for airborne dust leads to the formation of hydrophobic polymer balls which do not increase the uptake of water as previously assumed. We propose that atmospheric formation of hydrophobic polymers is generally controlled by the availability of water rather than acid, and hence is much more common in the lower atmosphere than previously recognized.

  19. Synthesis and Application of Chiral Spiro Cp Ligands in Rhodium-Catalyzed Asymmetric Oxidative Coupling of Biaryl Compounds with Alkenes.

    PubMed

    Zheng, Jun; Cui, Wen-Jun; Zheng, Chao; You, Shu-Li

    2016-04-27

    The vastly increasing application of chiral Cp ligands in asymmetric catalysis results in growing demand for novel chiral Cp ligands. Herein, we report a new class of chiral Cp ligands based on 1,1'-spirobiindane, a privileged scaffold for chiral ligands and catalysts. The corresponding Rh complexes are shown to be excellent catalysts in asymmetric oxidative coupling reactions, providing axially chiral biaryls in 19-97% yields with up to 98:2 er.

  20. The Biocatalytic Desulfurization Project

    SciTech Connect

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  1. THE BIOCATALYTIC DESULFURIZATION PROJECT

    SciTech Connect

    Steven E. Bonde; David Nunn

    2003-01-01

    During the first quarter of the Biological Desulfurization project several activities were pursued. A project kickoff meeting was held at the Diversa facility in San Diego, CA. Activities that were in process before the meeting and begun afterwards by Diversa Corporation and Petro Star Inc. include: Technology transfer in the form of information generated by Enchira to Diversa, the purchase and installation of equipment by Diversa, development of synthetic methods and preparation of organo-sulfur substrates for use in determining enzyme activities, production of extract via Petro Star's CED process, detailed analysis of Petro Star Inc. diesel and CED extract, and several activities in molecular biology. Diversa Corporation, in the area of molecular biology, engaged in several activities in support of the task list of the contract. These included: construction of a genomic library; development and utilization of a sequence-based gene discovery effort; a parallel discovery approach based on functional expression of enzymes with the ability to oxidize organosulfur compounds. Biodesulfurization genes have already been identified and are being sequenced and subcloned for expression in heterologous biological hosts. Diversa has evaluated and adapted assays developed by Enchira used to assess the activities of DBT and DBTO{sub 2} monooxygenases. Finally, Diversa personnel have developed two novel selection/screen strategies for the improvement of biocatalyst strains by directed evolution.

  2. THE BIOCATALYTIC DESULFURIZATION PROJECT

    SciTech Connect

    Steven E. Bonde; David Nunn

    2003-04-01

    Research activities in the second quarter have largely been a continuation of efforts previously described in the first quarterly report as well as a degree of redirection of effort as a result of discussions during the first quarterly meeting held in San Diego. Chemical synthesis efforts have been refined and are currently being used to support generation of substrates for evaluation and evolution of enzymes for their oxidation. Analysis of the sulfur species in Petro Star diesel, CED extract and refinement of the speciation data is nearly complete. Molecular biology efforts continue with the cloning, expression and characterization of the DszA and DszC proteins as well as the flavin reductases to support regeneration of the essential FMN cofactors. In addition, we have initiated an evolution effort for the extension and improvement of DszA enzyme activity using Diversa's Gene Site Saturation Mutagenesis (GSSM{trademark}) technology. To support the evolution effort as well as of characterization of enzyme activities on a variety of substrates, a high-throughput mass spectroscopy-based assay has been developed. Two selection/screen strategies for the discovery and evolution of biocatalyst enzyme have been developed and are being evaluated for performance using gene libraries constructed from known biodesulfurization strains and environmental libraries.

  3. Biocatalytic conversion of lignocellulose to platform chemicals.

    PubMed

    Jäger, Gernot; Büchs, Jochen

    2012-09-01

    Naturally occurring lignocellulose can be used as a renewable resource for the sustainable production of platform chemicals that can in turn be converted to valuable fine chemicals, polymers, and fuels. The biocatalytic conversion of lignocellulose is a very promising approach due to its high selectivity, mild conditions, and low exergy loss. However, such biocatalytic processes are still seldom applied at the industrial scale since the single conversion steps (pretreatment, hydrolysis, and fermentation) may exhibit low conversion rates, low efficiencies, or high costs. The biocatalytic conversion of lignocellulose to platform chemicals is reviewed in this work. Structures and production rates of lignocellulose are described, and platform chemicals that may be produced from lignocellulose are summarized. Biocatalytic conversion of lignocellulose is distinguished from conventional non-selective approaches. All essential conversion steps used in biocatalytic approaches (pretreatment, hydrolysis, and fermentation) are reviewed in detail. Finally, potential interactions between these conversion steps are highlighted and the advantages as well as disadvantages of integrated process configurations are elucidated. In conclusion, a comprehensive understanding of the biocatalytic conversion of lignocellulose is provided in this review.

  4. Microanalysis of Alkenes by Ozonolysis

    ERIC Educational Resources Information Center

    Luibrand, R. T.; Vollmer, J. J.

    1975-01-01

    Describes an undergraduate laboratory experiment in which the position of the double bond in an alkene is determined by identifying its ozonolysis products. This experiment can also be used to introduce the technique of gas chromatography. (MLH)

  5. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    PubMed Central

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  6. Biocatalytic Processing Polymers in Supercritical Fluids

    DTIC Science & Technology

    1994-01-01

    Russell, A.J and Beckman, E.J. (1991) Appl. Bioch . Biotech., 31, 197-211. Enzyme activity in supercritical fluids. 22. *Russell, A.J and Beckman, E.J...S., Jacob , J., Beckman, E.J. and Russell, A.J. (1991) Enz. Microb. Technol., 13, 519. Biocatalytic synthesis of acrylates in supercritical fluids. 24

  7. Pyridine is an organocatalyst for the reductive ozonolysis of alkenes

    PubMed Central

    Willand-Charnley, Rachel; Fisher, Thomas J.; Johnson, Bradley M.; Dussault, Patrick H.

    2012-01-01

    Whereas the cleavage of alkenes by ozone typically generates peroxide intermediates that must be decomposed in an accompanying step, ozonolysis in the presence of pyridine directly generates ketones or aldehydes through a process that neither consumes pyridine nor generates any detectable peroxides. The reaction is hypothesized to involve nucleophile-promoted fragmentation of carbonyl oxides via formation of zwitterionic peroxyacetals. PMID:22512349

  8. The Industrial Age of Biocatalytic Transamination

    PubMed Central

    Fuchs, Michael; Farnberger, Judith E; Kroutil, Wolfgang

    2015-01-01

    During the last decade the use of ω-transaminases has been identified as a very powerful method for the preparation of optically pure amines from the corresponding ketones. Their immense potential for the preparation of chiral amines, together with their ease of use in combination with existing biocatalytic methods, have made these biocatalysts a competitor to any chemical methodology for (asymmetric) amination. An increasing number of examples, especially from industry, shows that this biocatalytic technology outmaneuvers existing chemical processes by its simple and flexible nature. In the last few years numerous publications and patents on synthetic routes, mainly to pharmaceuticals, involving ω-transaminases have been published. The review gives an overview of the application of ω-transaminases in organic synthesis with a focus on active pharmaceutical ingredients (APIs) and the developments during the last few years. PMID:26726292

  9. Biogenic Emissions of Light Alkenes from a Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Turnipseed, A. A.; Martinez, L.; Shen, S.; De Gouw, J. A.; Warneke, C.; Koss, A.; Lerner, B. M.; Miller, B. R.; Smith, J. N.; Guenther, A. B.

    2014-12-01

    Alkenes are reactive hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The light alkenes (C2-C4) originate from both biogenic and anthropogenic sources and include C2H4 (ethene), C3H6 (propene) and C4H8 (1-butene, 2-butene, 2-methylpropene). Light alkenes are used widely as chemical feedstocks because their double bond makes them versatile for industrial reactions. Their biogenic sources are poorly characterized, with most global emissions estimates relying on laboratory-based studies; net ecosystem emissions have been measured at only one site thus far. Here we report net ecosystem fluxes of light alkenes and isoprene from a semi-arid ponderosa pine forest in the Rocky Mountains of Colorado, USA. Canopy scale fluxes were measured using relaxed eddy accumulation (REA) techniques on the 28-meter NCAR tower in the Manitou Experimental Forest Observatory. Updrafts and downdrafts were determined by sonic anemometry and segregated into 'up' and 'down' reservoirs over the course of an hour. Samples were then measured on two separate automated gas chromatographs (GCs). The first GC measured light hydrocarbons (C2-C6 alkanes and C2-C5 alkenes) by flame ionization detection (FID). The second GC measured halocarbons (methyl chloride, CFC-12, and HCFC-22) by electron capture detection (ECD). Additional air measurements from the top of the tower included hydrocarbons and their oxidation products by Proton Transfer Reaction Mass Spectrometry (PTR-MS). Three field intensives were conducted during the summer of 2014. The REA flux measurements showed that ethene, propene and the butene emissions have significant diurnal cycles, with maximum emissions at midday. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons and have a temporal variability that may be associated with physical and biological parameters. These ecosystem scale measurements

  10. The arene–alkene photocycloaddition

    PubMed Central

    Streit, Ursula

    2011-01-01

    Summary In the presence of an alkene, three different modes of photocycloaddition with benzene derivatives can occur; the [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para photocycloaddition. This short review aims to demonstrate the synthetic power of these photocycloadditions. PMID:21647263

  11. An ene reductase from Clavispora lusitaniae for asymmetric reduction of activated alkenes.

    PubMed

    Ni, Yan; Yu, Hui-Lei; Lin, Guo-Qiang; Xu, Jian-He

    2014-03-05

    A putative ene reductase gene from Clavispora lusitaniae was heterologously overexpressed in Escherichia coli, and the encoded protein (ClER) was purified and characterized for its biocatalytic properties. This NADPH-dependent flavoprotein was identified with reduction activities toward a diverse range of activated alkenes including conjugated enones, enals, maleimide derivative and α,β-unsaturated carboxylic esters. The purified ClER exhibited a relatively high activity of 7.3 U mg(prot)⁻¹ for ketoisophorone while a remarkable catalytic efficiency (k(cat)/K(m)=810 s⁻¹ mM⁻¹) was obtained for 2-methyl-cinnamaldehyde due to the high affinity. A series of prochiral activated alkenes were stereoselectively reduced by ClER furnishing the corresponding saturated products in up to 99% ee. The practical applicability of ClER was further evaluated for the production of (R)-levodione, a valuable chiral compound, from ketoisophorone. Using the crude enzyme of ClER and glucose dehydrogenase (GDH), 500 mM of ketoisophorone was efficiently converted to (R)-levodione with excellent stereoselectivity (98% ee) within 1h. All these positive features demonstrate a high synthetic potential of ClER in the asymmetric reduction of activated alkenes.

  12. Efficient Biocatalytic Synthesis of Chiral Chemicals.

    PubMed

    Zhang, Zhi-Jun; Pan, Jiang; Ma, Bao-Di; Xu, Jian-He

    2016-01-01

    Chiral chemicals are a group of important chiral synthons for the synthesis of a series of pharmaceuticals, agrochemicals, and fine chemicals. In past decades, a number of biocatalytic approaches have been developed for the green and effective synthesis of various chiral chemicals. However, the practical application of these biocatalytic processes is still hindered by the lack of highly efficient and robust biocatalysts, which usually results in the low volumetric productivity and high cost of the bioprocesses. Further step forward of biocatalysis in industrial application strongly requires the development of versatile and highly efficient biocatalysts, aiming to increase the process efficiency and facilitate the downstream processing. Recently, the fast growth of genome sequences in the database in post-genomic era offers great opportunities for accessing numerous biocatalysts with practical application potential, and the so-called genome mining approach provides time-effective and highly specific strategy for the fast identification of target enzymes with desired properties and outperforms the traditional screening of soil samples for microbial enzyme producers of interest. A number of biocatalytic processes with industrial application potential were developed thereafter. Further development of protein engineering strategies, process optimization, and cooperative work between biologists, organic chemists, and engineers is expected to make biocatalysis technology the first choice approach for the eco-friendly, highly efficient, and cost-effective synthesis of chiral chemicals in the near future.

  13. Observation of a ferric hydroperoxide complex during the non-heme iron catalysed oxidation of alkenes and alkanes by O2.

    PubMed

    He, Yu; Goldsmith, Christian R

    2012-11-04

    A non-heme iron complex catalyses the oxidation of allylic, benzylic, and aliphatic C-H bonds by O(2). During this reactivity, a ferric hydroperoxide species is observed. The kinetic analysis of this complex's formation may suggest a ferric superoxo species as the initial metal-based oxidant.

  14. Alkene Metalates as Hydrogenation Catalysts.

    PubMed

    Büschelberger, Philipp; Gärtner, Dominik; Reyes-Rodriguez, Efrain; Kreyenschmidt, Friedrich; Koszinowski, Konrad; Jacobi von Wangelin, Axel; Wolf, Robert

    2017-03-02

    First-row transition-metal complexes hold great potential as catalysts for hydrogenations and related reductive reactions. Homo- and heteroleptic arene/alkene metalates(1-) (M=Co, Fe) are a structurally distinct catalyst class with good activities in hydrogenations of alkenes and alkynes. The first syntheses of the heteroleptic cobaltates [K([18]crown-6)][Co(η(4) -cod)(η(2) -styrene)2 ] (5) and [K([18]crown-6)][Co(η(4) -dct)(η(4) -cod)] (6), and the homoleptic complex [K(thf)2 ][Co(η(4) -dct)2 ] (7; dct=dibenzo[a,e]cyclooctatetraene, cod=1,5-cyclooctadiene), are reported. For comparison, two cyclopentadienylferrates(1-) were synthesized according to literature procedures. The isolated and fully characterized monoanionic complexes were competent precatalysts in alkene hydrogenations under mild conditions (2 bar H2 , r.t., THF). Mechanistic studies by NMR spectroscopy, ESI mass spectrometry, and poisoning experiments documented the operation of a homogeneous mechanism, which was initiated by facile redox-neutral π-ligand exchange with the substrates followed by H2 activation. The substrate scope of the investigated precatalysts was also extended to polar substrates (ketones and imines).

  15. Rh-Catalyzed Intermolecular Syn-Carboamination of Alkenes via a Transient Directing Group

    PubMed Central

    Piou, Tiffany; Rovis, Tomislav

    2015-01-01

    Alkenes are the most ubiquitous pro-chiral functional groups accessible to synthetic chemists. For this reason, difunctionalization reactions of alkenes are particularly important, as they can be used to access highly complex molecular architectures.1,2 Stereoselective oxidation reactions, including dihydroxylation, aminohydroxylation and halogenation reactions,3,4,5,6 are well-established methods for functionalizing alkenes. However, the intermolecular incorporation of both carbon- and nitrogen-based functionalities stereoselectively across an alkene has not been reported. In this manuscript, we describe the Rh(III)-catalyzed syn carboamination of alkenes initiated by a C–H activation event that uses enoxyphthalimides as the source of the carbon and the nitrogen functionalities. The reaction methodology allows for the stereospecific formation of one C–C and one C–N bond across an alkene in a fully intermolecular sense, which is unprecedented. The reaction design involves the in situ generation of a bidentate directing group and the use of a novel cyclopentadienyl ligand to control the reactivity of Rh(III). The results provide a new route to functionalized alkenes and are expected to lead to the more convergent and stereoselective assembly of amine-containing acyclic molecules. PMID:26503048

  16. Palladium-catalyzed stereoselective intramolecular oxidative amidation of alkenes in the synthesis of 1,3- and 1,4-amino alcohols and 1,3-diamines.

    PubMed

    Malkov, Andrei V; Lee, Darren S; Barłóg, Maciej; Elsegood, Mark R J; Kočovský, Pavel

    2014-04-22

    An efficient and practical Pd-catalyzed intramolecular oxidative allylic amidation provides facile access to derivatives of 1,3- and 1,4-amino alcohols and 1,3-diamines. The method operates under mild reaction conditions (RT) with molecular oxygen (1 atm) as the sole reoxidant of Pd. Excellent diastereoselectivities were attained with substrates bearing a secondary stereogenic center.

  17. General catalyst control of the monoisomerization of 1-alkenes to trans-2-alkenes.

    PubMed

    Larsen, Casey R; Erdogan, Gulin; Grotjahn, Douglas B

    2014-01-29

    After searching for the proper catalyst, the dual challenges of controlling the position of the double bond, and cis/trans-selectivity in isomerization of terminal alkenes to their 2-isomers are finally met in a general sense by mixtures of (C5Me5)Ru complexes 1 and 3 featuring a bifunctional phosphine. Typically, catalyst loadings of 1 mol % of 1 and 3 can be employed for the production of (E)-2-alkenes at 40-70 °C. Catalyst comprising 1 and 3 avoids more than any other known example the thermodynamic equilibration of alkene isomers, as the trans-2-alkenes of both nonfunctionalized and functionalized alkenes are generated.

  18. A simple and effective catalytic system for epoxidation of aliphatic terminal alkenes with manganese(II) as the catalyst.

    PubMed

    Ho, Kam-Piu; Wong, Wing-Leung; Lam, Kin-Ming; Lai, Cheuk-Piu; Chan, Tak Hang; Wong, Kwok-Yin

    2008-01-01

    A simple catalytic system that uses commercially available manganese(II) perchlorate as the catalyst and peracetic acid as the oxidant is found to be very effective in the epoxidation of aliphatic terminal alkenes with high product selectivity at ambient temperature. Many terminal alkenes are epoxidised efficiently on a gram scale in less than an hour to give excellent yields of isolated product (>90 %) of epoxides in high purity. Kinetic studies with some C9-alkenes show that the catalytic system is more efficient in epoxidising terminal alkenes than internal alkenes, which is contrary to most commonly known epoxidation systems. The reaction rate for epoxidation decreases in the order: 1-nonene>cis-3-nonene>trans-3-nonene. ESI-MS and EPR spectroscopic studies suggest that the active form of the catalyst is a high-valent oligonuclear manganese species, which probably functions as the oxygen atom-transfer agent in the epoxidation reaction.

  19. Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes - deduced from structure-product relationships

    NASA Astrophysics Data System (ADS)

    Mentel, T. F.; Springer, M.; Ehn, M.; Kleist, E.; Pullinen, I.; Kurtén, T.; Rissanen, M.; Wahner, A.; Wildt, J.

    2015-06-01

    It has been postulated that secondary organic particulate matter plays a pivotal role in the early growth of newly formed particles in forest areas. The recently detected class of extremely low volatile organic compounds (ELVOC) provides the missing organic vapors and possibly contributes a significant fraction to atmospheric SOA (secondary organic aerosol). The sequential rearrangement of peroxy radicals and subsequent O2 addition results in ELVOC which are highly oxidized multifunctional molecules (HOM). Key for efficiency of such HOM in early particle growth is that their formation is induced by one attack of the oxidant (here O3), followed by an autoxidation process involving molecular oxygen. Similar mechanisms were recently observed and predicted by quantum mechanical calculations e.g., for isoprene. To assess the atmospheric importance and therewith the potential generality, it is crucial to understand the formation pathway of HOM. To elucidate the formation path of HOM as well as necessary and sufficient structural prerequisites of their formation we studied homologous series of cycloalkenes in comparison to two monoterpenes. We were able to directly observe highly oxidized multifunctional peroxy radicals with 8 or 10 O atoms by an Atmospheric Pressure interface High Resolution Time of Flight Mass Spectrometer (APi-TOF-MS) equipped with a NO3--chemical ionization (CI) source. In the case of O3 acting as an oxidant, the starting peroxy radical is formed on the so-called vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other peroxy radicals, including dimerization, allowed for analyzing the observed mass spectra and narrowing down the likely formation path. As consequence, we propose that HOM are multifunctional percarboxylic acids, with carbonyl, hydroperoxy, or hydroxy groups arising from the termination steps. We figured that aldehyde groups facilitate the initial rearrangement steps. In simple molecules like cycloalkenes

  20. Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes - deduced from structure-product relationships

    NASA Astrophysics Data System (ADS)

    Mentel, T. F.; Springer, M.; Ehn, M.; Kleist, E.; Pullinen, I.; Kurtén, T.; Rissanen, M.; Wahner, A.; Wildt, J.

    2015-01-01

    It has been postulated that secondary organic particulate matter plays a pivotal role in the early growth of newly formed particles in forest areas. The recently detected class of extremely low volatile organic compounds (ELVOC) provides the missing organic vapours and possibly contributes a~significant fraction to atmospheric SOA. ELVOC are highly oxidized multifunctional molecules (HOM), formed by sequential rearrangement of peroxy radicals and subsequent O2 addition. Key for efficiency in early particle growth is that formation of HOM is induced by one attack of the oxidant (here O3) and followed by an autoxidation process involving molecular oxygen. Similar mechanisms were recently observed and predicted by quantum mechanical calculations e.g. for isoprene. To assess the atmospheric importance and therewith the potential generality, it is crucial to understand the formation pathway of HOM. To elucidate the formation path of HOM as well as necessary and sufficient structural prerequisites of their formation we studied homologues series of cycloalkenes in comparison to two monoterpenes. We were able to directly observe highly oxidized multifunctional peroxy radicals with 8 or 10 O-atoms by an Atmospheric Pressure interface High Resolution Time of Flight Mass Spectrometer equipped with a NO3--Chemical Ionization (CI) source. In case of O3 acting as oxidant the starting peroxy radical is formed on the so called vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other peroxy radicals, including dimerization, allowed for analysing the observed mass spectra and narrow down the likely formation path. As consequence we propose that HOM are multifunctional percarboxylic acids; with carbonyl-, hydroperoxy-, or hydroxy-groups arising from the termination steps. We figured that aldehyde groups facilitate the initial rearrangement steps. In simple molecules like cyloalkenes autoxidation was limited to both terminal C-atoms and two further C

  1. Group 11 Metal Compounds with Tripodal Bis(imidazole) Thioether Ligands. Applications as Catalysts in the Oxidation of Alkenes and as Antimicrobial Agents

    PubMed Central

    Liu, Fangwei; Anis, Reema; Hwang, Eunmi; Ovalle, Rafael; Varela-Ramírez, Armando; Aguilera, Renato J.; Contel, María

    2011-01-01

    New group 11 metal complexes have been prepared using the previously described tripodal bis(imidazole) thioether ligand (N-methyl-4,5-diphenyl-2-imidazolyl)2C(OMe)C(CH3)2S(tert-Bu) ({BITOMe,StBu}, 2). The pincer ligand offers a N2S donor atom set that can be used to coordinate the group 11 metals in different oxidation states [AuI, AuIII, AgI, CuI and CuII]. Thus the new compounds [Au{BITOMe,StBu}Cl][AuCl4]2 (3), [Au{BITOMe,StBu}Cl] (4), [Ag{BITOMe,StBu}X] (X = OSO2CF3 − 5, PF6 − 6) and [Cu{BITOMe,StBu}Cl2] (7) have been synthesized from reaction of 2 with the appropriate metal precursors, and characterized in solution. While attempting characterization in the solid state of 3, single crystals of the neutral dinuclear mixed AuIII-AuI species [Au2{BITOMe,S}Cl3] (8) were obtained and its crystal structure was determined by X-ray diffraction studies. The structure shows a AuIII center coordinated to the pincer ligand through one N and the S atom. The soft AuI center coordinates to the ligand through the same S atom that has lost the tert-butyl group, thus becoming a thiolate ligand. The short distance between the AuI–AuIII atoms (3.383 Å) may indicate a weak metal-metal interaction. Complexes 2–7 and the previously described CuI compound [Cu{BITOMe,StBu}]PF6 (9) have been evaluated in the oxidation of biphenyl ethylene with tert-butyl hydrogen peroxide (TBHP) as the oxidant. Results have shown that the AuI and AgI complexes 4 and 6 (at 10 mol % loading) are the more active catalysts in this oxidative cleavage. The antimicrobial activity of compounds 2–5, 7 and 9 against Gram-positive and Gram-negative bacteria and yeast has also been evaluated. The new gold and silver compounds display moderate to high antibacterial activity, while the copper derivatives are mostly inactive. The gold and silver complexes were also potent against fungi. Their cytotoxic properties have been analyzed in vitro utilizing HeLa human cervical carcinoma cells. The compounds

  2. Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α,β-unsaturated aldehydes.

    PubMed

    Knaus, Tanja; Mutti, Francesco G; Humphreys, Luke D; Turner, Nicholas J; Scrutton, Nigel S

    2015-01-07

    Ene-reductases (ERs) are flavin dependent enzymes that catalyze the asymmetric reduction of activated carbon-carbon double bonds. In particular, α,β-unsaturated carbonyl compounds (e.g. enals and enones) as well as nitroalkenes are rapidly reduced. Conversely, α,β-unsaturated esters are poorly accepted substrates whereas free carboxylic acids are not converted at all. The only exceptions are α,β-unsaturated diacids, diesters as well as esters bearing an electron-withdrawing group in α- or β-position. Here, we present an alternative approach that has a general applicability for directly obtaining diverse chiral α-substituted carboxylic acids. This approach combines two enzyme classes, namely ERs and aldehyde dehydrogenases (Ald-DHs), in a concurrent reductive-oxidative biocatalytic cascade. This strategy has several advantages as the starting material is an α-substituted α,β-unsaturated aldehyde, a class of compounds extremely reactive for the reduction of the alkene moiety. Furthermore no external hydride source from a sacrificial substrate (e.g. glucose, formate) is required since the hydride for the first reductive step is liberated in the second oxidative step. Such a process is defined as a hydrogen-borrowing cascade. This methodology has wide applicability as it was successfully applied to the synthesis of chiral substituted hydrocinnamic acids, aliphatic acids, heterocycles and even acetylated amino acids with elevated yield, chemo- and stereo-selectivity. A systematic methodology for optimizing the hydrogen-borrowing two-enzyme synthesis of α-chiral substituted carboxylic acids was developed. This systematic methodology has general applicability for the development of diverse hydrogen-borrowing processes that possess the highest atom efficiency and the lowest environmental impact.

  3. Remote functionalization through alkene isomerization

    NASA Astrophysics Data System (ADS)

    Vasseur, Alexandre; Bruffaerts, Jeffrey; Marek, Ilan

    2016-03-01

    Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy.

  4. Remote functionalization through alkene isomerization.

    PubMed

    Vasseur, Alexandre; Bruffaerts, Jeffrey; Marek, Ilan

    2016-03-01

    Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy.

  5. Carbonylations of alkenes with CO surrogates.

    PubMed

    Wu, Lipeng; Liu, Qiang; Jackstell, Ralf; Beller, Matthias

    2014-06-16

    Alkene carbonylation reactions are important for the production of value-added bulk and fine chemicals. Nowadays, all industrial carbonylation processes make use of highly toxic and flammable carbon monoxide. In fact, these properties impede the wider use of carbonylation reactions in industry and academia. Hence, performing carbonylations without the use of CO is highly desired and will contribute to the further advancement of sustainable chemistry. Although the use of carbon monoxide surrogates in alkene carbonylation reactions has been reported intermittently in the last 30 years, only recently has this area attracted significant interest. This Minireview summarizes carbonylation reactions of alkenes using different carbon monoxide surrogates.

  6. Alkene anti-Dihydroxylation with Malonoyl Peroxides.

    PubMed

    Alamillo-Ferrer, Carla; Davidson, Stuart C; Rawling, Michael J; Theodoulou, Natalie H; Campbell, Matthew; Humphreys, Philip G; Kennedy, Alan R; Tomkinson, Nicholas C O

    2015-10-16

    Malonoyl peroxide 1, prepared in a single step from the commercially available diacid, is an effective reagent for the anti-dihydroxylation of alkenes. Reaction of 1 with an alkene in the presence of acetic acid at 40 °C followed by alkaline hydrolysis leads to the corresponding diol (35-92%) with up to 13:1 anti-selectivity. A mechanism consistent with experimental findings is proposed that accounts for the selectivity observed.

  7. Biocatalytic desulfurization (BDS) of petrodiesel fuels.

    PubMed

    Mohebali, Ghasemali; Ball, Andrew S

    2008-08-01

    Oil refineries are facing many challenges, including heavier crude oils, increased fuel quality standards, and a need to reduce air pollution emissions. Global society is stepping on the road to zero-sulfur fuel, with only differences in the starting point of sulfur level and rate reduction of sulfur content between different countries. Hydrodesulfurization (HDS) is the most common technology used by refineries to remove sulfur from intermediate streams. However, HDS has several disadvantages, in that it is energy intensive, costly to install and to operate, and does not work well on refractory organosulfur compounds. Recent research has therefore focused on improving HDS catalysts and processes and also on the development of alternative technologies. Among the new technologies one possible approach is biocatalytic desulfurization (BDS). The advantage of BDS is that it can be operated in conditions that require less energy and hydrogen. BDS operates at ambient temperature and pressure with high selectivity, resulting in decreased energy costs, low emission, and no generation of undesirable side products. Over the last two decades several research groups have attempted to isolate bacteria capable of efficient desulfurization of oil fractions. This review examines the developments in our knowledge of the application of bacteria in BDS processes, assesses the technical viability of this technology and examines its future challenges.

  8. Nanopropulsion by biocatalytic self-assembly.

    PubMed

    Leckie, Joy; Hope, Alexander; Hughes, Meghan; Debnath, Sisir; Fleming, Scott; Wark, Alastair W; Ulijn, Rein V; Haw, Mark D

    2014-09-23

    A number of organisms and organelles are capable of self-propulsion at the micro- and nanoscales. Production of simple man-made mimics of biological transportation systems may prove relevant to achieving movement in artificial cells and nano/micronscale robotics that may be of biological and nanotechnological importance. We demonstrate the propulsion of particles based on catalytically controlled molecular self-assembly and fiber formation at the particle surface. Specifically, phosphatase enzymes (acting as the engine) are conjugated to a quantum dot (the vehicle), and are subsequently exposed to micellar aggregates (fuel) that upon biocatalytic dephosphorylation undergo fibrillar self-assembly, which in turn causes propulsion. The motion of individual enzyme/quantum dot conjugates is followed directly using fluorescence microscopy. While overall movement remains random, the enzyme-conjugates exhibit significantly faster transport in the presence of the fiber forming system, compared to controls without fuel, a non-self-assembling substrate, or a substrate which assembles into spherical, rather than fibrous structures upon enzymatic dephosphorylation. When increasing the concentration of the fiber-forming fuel, the speed of the conjugates increases compared to non-self-assembling substrate, although directionality remains random.

  9. Biocatalytic removal of organic sulfur from coal

    SciTech Connect

    Webster, D.A.; Kilbane, J.J. II

    1994-09-09

    The objective is to characterize more completely the biochemical ability of the bacterium, Rhodococcus rhodochrous IGTS8, to cleave carbon-sulfur bonds with emphasis on data that will allow the development of a practical coal biodesulfurization process. Another approach for increasing the desulfurization activity of the IGTS8 cultures is to produce strains genetically that have higher activity. The goal of this part of research is to achieve strain improvement by introducing a stronger promoter using genetic engineering techniques. The promoter regulates the transcription of the genes for the desulfurization enzymes, and a stronger promoter, would up-regulate the expression of these genes, resulting in cells with higher desulfurization activity. Promoter probe vectors are used to identify and isolate promoters from a DNA library of the experimental organism. The major accomplishments have been to obtain high biodesulfurization activity in nonaqueous, media, especially using freeze-dried cells, and to have isolated strong promoters from R. rhodochrous IGTS8 which will be used to engineer the organism to produce strains with higher biocatalytic activity.

  10. Vinylation of Unprotected Phenols Using a Biocatalytic System.

    PubMed

    Busto, Eduardo; Simon, Robert C; Kroutil, Wolfgang

    2015-09-07

    Readily available substituted phenols were coupled with pyruvate in buffer solution under atmospheric conditions to afford the corresponding para-vinylphenol derivatives while releasing only one molecule of CO2 and water as the by-products. This transformation was achieved by designing a biocatalytic system that combines three biocatalytic steps, namely the C-C coupling of phenol and pyruvate in the presence of ammonia, which leads to the corresponding tyrosine derivative, followed by deamination and decarboxylation. The biocatalytic transformation proceeded with high regioselectivity and afforded exclusively the desired para products. This method thus represents an environmentally friendly approach for the direct vinylation of readily available 2-, 3-, or 2,3-disubstituted phenols on preparative scale (0.5 mmol) that provides vinylphenols in high yields (65-83 %).

  11. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.

    PubMed

    Margrey, Kaila A; Nicewicz, David A

    2016-09-20

    The development of methods for anti-Markovnikov alkene hydrofunctionalization has been a focal point of catalysis research for several decades. The vast majority of work on the control of regioselectivity for this reaction class has hinged on transition metal catalyst activation of olefin substrates. While progress has been realized, there are significant limitations to this approach, and a general solution for catalysis of anti-Markovnikov hydrofunctionalization reactions of olefins does not presently exist. In the past several years, this research lab has focused on alkene activation by single electron oxidation using organic photoredox catalysts to facilitate anti-Markovnikov hydrofunctionalization. By accessing reactive cation radical intermediates, we have realized a truly general approach to anti-Markovnikov olefin hydrofunctionalization reactions. We have identified a dual organic catalyst system consisting of an acridinium photooxidant, first reported by Fukuzumi, and a redox-active hydrogen atom donor that accomplishes a wide range of hydrofunctionalization reactions with complete anti-Markovnikov regiocontrol. This method relies on single electron oxidation of the alkene to reverse its polarity and results in the opposite regioselectivity for hydrofunctionalization. In 2012, we disclosed the anti-Markovnikov hydroetherification of alkenols employing an acridinium photocatalyst and a hydrogen atom donor that proceeds via interwoven polar and radical steps. This general catalyst system has enabled several important reactions in this area, including anti-Markovnikov alkene hydroacetoxylation, hydrolactonization, hydroamination, and hydrotrifluoromethylation reactions. More recently, we have also delineated conditions for intermolecular anti-Markovnikov hydroamination reactions of alkenes using either triflamide or nitrogen-containing heteroaromatic compounds such as pyrazole, indazole, imidazole, and 1,2,3-triazole. Further development led to a method for

  12. Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps.

    PubMed

    Gasser, Christoph A; Čvančarová, Monika; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X

    2017-03-01

    Lignin, a complex three-dimensional amorphous polymer, is considered to be a potential natural renewable resource for the production of low-molecular-weight aromatic compounds. In the present study, a novel sequential lignin treatment method consisting of a biocatalytic oxidation step followed by a formic acid-induced lignin depolymerization step was developed and optimized using response surface methodology. The biocatalytic step employed a laccase mediator system using the redox mediator 1-hydroxybenzotriazole. Laccases were immobilized on superparamagnetic nanoparticles using a sorption-assisted surface conjugation method allowing easy separation and reuse of the biocatalysts after treatment. Under optimized conditions, as much as 45 wt% of lignin could be solubilized either in aqueous solution after the first treatment or in ethyl acetate after the second (chemical) treatment. The solubilized products were found to be mainly low-molecular-weight aromatic monomers and oligomers. The process might be used for the production of low-molecular-weight soluble aromatic products that can be purified and/or upgraded applying further downstream processes.

  13. Biocatalytic Characterization of Human FMO5: Unearthing Baeyer-Villiger Reactions in Humans.

    PubMed

    Fiorentini, Filippo; Geier, Martina; Binda, Claudia; Winkler, Margit; Faber, Kurt; Hall, Mélanie; Mattevi, Andrea

    2016-04-15

    Flavin-containing mono-oxygenases are known as potent drug-metabolizing enzymes, providing complementary functions to the well-investigated cytochrome P450 mono-oxygenases. While human FMO isoforms are typically involved in the oxidation of soft nucleophiles, the biocatalytic activity of human FMO5 (along its physiological role) has long remained unexplored. In this study, we demonstrate the atypical in vitro activity of human FMO5 as a Baeyer-Villiger mono-oxygenase on a broad range of substrates, revealing the first example to date of a human protein catalyzing such reactions. The isolated and purified protein was active on diverse carbonyl compounds, whereas soft nucleophiles were mostly non- or poorly reactive. The absence of the typical characteristic sequence motifs sets human FMO5 apart from all characterized Baeyer-Villiger mono-oxygenases so far. These findings open new perspectives in human oxidative metabolism.

  14. Heterogeneous Catalysis: The Horiuti-Polanyi Mechanism and Alkene Hydrogenation

    ERIC Educational Resources Information Center

    Mattson, Bruce; Foster, Wendy; Greimann, Jaclyn; Hoette, Trisha; Le, Nhu; Mirich, Anne; Wankum, Shanna; Cabri, Ann; Reichenbacher, Claire; Schwanke, Erika

    2013-01-01

    The hydrogenation of alkenes by heterogeneous catalysts has been studied for 80 years. The foundational mechanism was proposed by Horiuti and Polanyi in 1934 and consists of three steps: (i) alkene adsorption on the surface of the hydrogenated metal catalyst, (ii) hydrogen migration to the beta-carbon of the alkene with formation of a delta-bond…

  15. Alkene epoxidation employing metal nitro complexes

    DOEpatents

    Andrews, M.A.; Cheng, C.W.; Kelley, K.P.

    1982-07-15

    Process for converting alkenes to form epoxides utilizes transition metal nitro complexes of the formula: M(RCN)/sub 2/XNO/sub 2/ wherein M is palladium or platinum, R is an alkyl or aryl group containing up to 12 carbon atoms, and X is a monoanionic, monodentate ligand such as chlorine, optionally in the presence of molecular oxygen.

  16. Catalytic intermolecular alkene oxyamination with nitrenes.

    PubMed

    Dequirez, Geoffroy; Ciesielski, Jennifer; Retailleau, Pascal; Dauban, Philippe

    2014-07-14

    The Rh(II)-catalyzed intermolecular addition of nitrenes to aromatic and aliphatic alkenes provides vicinal amino alcohols with yields of up to 95 % and complete regioselectivity. This 1,2-oxyamination reaction involves the formation of an aziridine intermediate that undergoes in situ ring opening. The latter is induced by the Rh-bound nitrene that behaves as a Lewis acid.

  17. A new approach to the deposition of nanostructured biocatalytic films

    NASA Astrophysics Data System (ADS)

    Troitsky, V. I.; Berzina, T. S.; Pastorino, L.; Bernasconi, E.; Nicolini, C.

    2003-06-01

    In the present work, monolayer engineering was used to fabricate biocatalytic nanostructured thin films based on the enzyme penicillin G acylase. The biocatalytic films with enhanced characteristics were produced by the deposition of alternate-layer assemblies with a predetermined structure using a combination of Langmuir-Blodgett and adsorption techniques. The value of enzyme activity and the level of protein detachment were measured in dependence on the variation of film composition and on the sequence of layer alternation. As a result, highly active and stable structures were found, which could be promising candidates for practical applications. The method of modification of the deposition method to provide continuous film formation on large-area supports is discussed.

  18. Methods for direct alkene diamination, new & old

    PubMed Central

    de Jong, Sam; Nosal, Daniel G.; Wardrop, Duncan J.

    2012-01-01

    The 1,2-diamine moiety is a ubiquitous structural motif present in a wealth of natural products, including non-proteinogenic amino acids and numerous alkaloids, as well as in pharmaceutical agents, chiral ligands and organic reagents. The biological activity associated with many of these systems and their chemical utility in general has ensured that the development of methods for their preparation is of critical importance. While a wide range of strategies for the preparation of 1,2-diamines have been established, the diamination of alkenes offers a particularly direct and efficient means of accessing these systems. The purpose of this review is to provide an overview of all methods of direct alkene diamination, metal-mediated or otherwise. PMID:22888177

  19. Alkene metathesis: the search for better catalysts.

    PubMed

    Deshmukh, Prashant H; Blechert, Siegfried

    2007-06-28

    Alkene metathesis catalyst development has made significant progress over recent years. Research in metathesis catalyst design has endeavoured to tackle three key issues: those of (i) catalyst efficiency and activity, (ii) substrate scope and selectivity--particularly stereoselective metathesis reactions--and (iii) the minimization of metal impurities and catalyst recycling. This article describes a brief history of metathesis catalyst development, followed by a survey of more recent research, with a particular emphasis on ruthenium catalysts.

  20. Palladium-catalyzed vinylation of aminals with simple alkenes: a new strategy to construct allylamines.

    PubMed

    Xie, Yinjun; Hu, Jianhua; Wang, Yanyu; Xia, Chungu; Huang, Hanmin

    2012-12-26

    A novel, highly selective palladium-catalyzed vinylation reaction for the direct synthesis of allylic amines from styrenes and aminals has been established. The utility of this method was also demonstrated by the rapid synthesis of cinnarizine from aldehydes, amines, and simple alkenes in one-pot manner. Mechanistic studies suggested that the reaction proceeds through a valuable cyclometalated Pd(II) complex generated by the oxidative addition of aminal to a Pd(0) species.

  1. One-Pot Strategy for Thiazoline Synthesis from Alkenes and Thioamides.

    PubMed

    Alom, Nur-E; Wu, Fan; Li, Wei

    2017-02-17

    A convenient synthesis of a privileged pharmaceutical motif, thiazoline is accomplished. This reaction utilizes simple and readily available alkene and thioamide substrates in an intermolecular fashion via a simple one-pot procedure. A wide range of functional groups is tolerated, and the thiazoline product has been further utilized for the synthesis of the corresponding β-aminothiol and thiazole from routine hydrolysis and oxidation protocols.

  2. Nucleophile-Assisted Alkene Activation: Olefins Alone Are Often Incompetent.

    PubMed

    Ashtekar, Kumar Dilip; Vetticatt, Mathew; Yousefi, Roozbeh; Jackson, James E; Borhan, Babak

    2016-07-06

    Emerging work on organocatalytic enantioselective halocyclizations naturally draws on conditions where both new bonds must be formed under delicate control, the reaction regime where the concerted nature of the AdE3 mechanism is of greatest importance. Without assistance, many simple alkene substrates react slowly or not at all with conventional halenium donors under synthetically relevant reaction conditions. As demonstrated earlier by Shilov, Cambie, Williams, Fahey, and others, alkenes can undergo a concerted AdE3-type reaction via nucleophile participation, which sets the configuration of the newly created stereocenters at both ends in one step. Herein, we explore the modulation of alkene reactivity and halocyclization rates by nucleophile proximity and basicity, through detailed analyses of starting material spectroscopy, addition stereopreferences, isotope effects, and nucleophile-alkene interactions, all obtained in a context directly relevant to synthesis reaction conditions. The findings build on the prior work by highlighting the reactivity spectrum of halocyclizations from stepwise to concerted, and suggest strategies for design of new reactions. Alkene reactivity is seen to span the range from the often overgeneralized "sophomore textbook" image of stepwise electrophilic attack on the alkene and subsequent nucleophilic bond formation, to the nucleophile-assisted alkene activation (NAAA) cases where electron donation from the nucleophilic addition partner activates the alkene for electrophilic attack. By highlighting the factors that control reactivity across this range, this study suggests opportunities to explain and control stereo-, regio-, and organocatalytic chemistry in this important class of alkene additions.

  3. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs.

    PubMed

    Iglesias, Luis E; Lewkowicz, Elizabeth S; Medici, Rosario; Bianchi, Paola; Iribarren, Adolfo M

    2015-01-01

    Nucleosides are valuable bioactive molecules, which display antiviral and antitumour activities. Diverse types of prodrugs are designed to enhance their therapeutic efficacy, however this strategy faces the troublesome selectivity issues of nucleoside chemistry. In this context, the aim of this review is to give an overview of the opportunities provided by biocatalytic procedures in the preparation of nucleoside prodrugs. The potential of biocatalysis in this research area will be presented through examples covering the different types of nucleoside prodrugs: nucleoside analogues as prodrugs, nucleoside lipophilic prodrugs and nucleoside hydrophilic prodrugs.

  4. Biocatalytic routes to chiral amines and amino acids.

    PubMed

    Gotor-Fernández, Vicente; Gotor, Vicente

    2009-11-01

    Biocatalysis is a well-known and well-established technology that allows clean and straightforward stereoselective transformations to be conducted under mild reaction conditions. Traditionally, hydrolases, oxidoreductases and lyases have been used for these transformations to give the final products in excellent yields and with a high level of enantiopurity. Particular attention has been focused on biocatalytic routes because of the increasing demand for economic and environmentally friendly processes for the manufacture of single enantiomer drugs and high added-value compounds by the industrial sector. Recent advances in the field of biotransformations applied to the production of chiral amines and amino acids are reviewed.

  5. Reversible Interconversion between Alkanes, Alkenes, Alcohols and Ketones under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Shipp, J.; Hartnett, H. E.; Gould, I. R.; Shock, E.; Williams, L. B.

    2011-12-01

    Many transformation reactions involving hydrocarbons that occur in deep sedimentary systems and determine petroleum compositions occur in the presence of H2O. Hydrothermal transformations of organic material are thought to provide carbon sources for microbes in deep ocean sediments. Hydrothermal conditions may also mimic the conditions where life developed on an early Earth. Nevertheless, much remains to be learned about the mechanisms of hydrothermal organic reactions, including ways in which various reactions are interrelated and how reactions compete with each other. It can be argued that metastable equilibrium states develop over geological timescales and at geochemically relevant temperatures, suggesting that reactions occur under thermodynamic rather than kinetic control. The extent to which reactions are reversible, and how product distributions are determined, are primary tests of the metastable equilibrium model. Seewald (2001, GCA 65, 1641-1664) showed that under hydrothermal conditions and in the presence of a redox buffer, simple alkanes and alkenes undergo oxidation, reduction, and hydration reactions. He proposed a reaction scheme where alkanes interconvert with alkenes, followed by stepwise hydration of alkenes to alcohols, oxidation to ketones, and finally conversion to carboxylic acids, which can undergo decarboxylation. Here we describe experiments that further develop the scope of these functional group interconversions, determine relative reaction kinetics, and provide insight into competing reactions. Hydrothermal experiments were performed at 300°C and 100 MPa in gold capsules for 12 to 144 hours. The reactant structures were based on cyclohexane with one and two methyl groups that served as regio- and stereochemical markers for the reactions. Starting with the alkanes, the observed products include the corresponding alkenes, alcohols, ketones and enones, in support of the Seewald reaction scheme. Our experiments add a branch to this scheme

  6. Hydroxy functionalization of non-activated C-H and C=C bonds: new perspectives for the synthesis of alcohols through biocatalytic processes.

    PubMed

    Gröger, Harald

    2014-03-17

    New perspectives through enzymes: Recent breakthroughs have been achieved in the selective hydroxy functionalization of non-activated C-H and C=C bonds. Enzymes turned out to be suitable catalysts for the ω-hydroxylation of (substituted) alkanes and regioselective hydroxylation of aromatic hydrocarbons with atmospheric oxygen as the oxidant, and the asymmetric addition of water to non-activated alkenes.

  7. The Pressure Dependency of Stabilized Criegee Intermediate Yields of Selected Ozone-Alkene Reactions

    NASA Astrophysics Data System (ADS)

    Hakala, J. P.; Donahue, N. M.

    2014-12-01

    Stabilized Criegee Intermediates (SCI) play an important role as an oxidizing species in atmospheric reactions. The ozonolysis of alkenes in the atmosphere, i.e. the mechanism by which the SCIs are produced, is a major pathway to the formation of Secondary Organic Aerosols (SOA) in the atmosphere. Just how much SCIs contribute to the SOA formation is not well known and fundamental research in the kinetics of SCI formation need to be performed to shed light on this mystery. The alkene ozonolysis is highly exothermic reaction, so a third body is needed for stabilizing the SCI, thus making the SCI yield pressure dependent. We studied the production of SCIs at different pressures by studying their ability to oxidize sulfur dioxide in a pressure controlled flow reactor. We used a mixture of ultra-high purity nitrogen, oxygen, and a selective scavenger for hydroxyl radical (OH) as a carrier gas, and injected a mixture of nitrogen, sulfur dioxide and selected alkene to the center of the flow for ozonolysis to take place. With the OH radical scavenged, the SCI yield of the reaction was measured by measuring the amount of sulfuric acid formed in the reaction between SCI and sulfur dioxide with a Chemical Ionization Mass Spectrometer (CIMS). This work was supported by NASA/ROSES grant NNX12AE54G to CMU and Academy of Finland Center of Excellence project 1118615.

  8. Catalytic Determinants of Alkene Production by the Cytochrome P450 Peroxygenase OleTJE*

    PubMed Central

    Matthews, Sarah; Belcher, James D.; Tee, Kang Lan; Girvan, Hazel M.; McLean, Kirsty J.; Rigby, Stephen E. J.; Levy, Colin W.; Leys, David; Parker, David A.; Blankley, Richard T.; Munro, Andrew W.

    2017-01-01

    The Jeotgalicoccus sp. peroxygenase cytochrome P450 OleTJE (CYP152L1) is a hydrogen peroxide-driven oxidase that catalyzes oxidative decarboxylation of fatty acids, producing terminal alkenes with applications as fine chemicals and biofuels. Understanding mechanisms that favor decarboxylation over fatty acid hydroxylation in OleTJE could enable protein engineering to improve catalysis or to introduce decarboxylation activity into P450s with different substrate preferences. In this manuscript, we have focused on OleTJE active site residues Phe79, His85, and Arg245 to interrogate their roles in substrate binding and catalytic activity. His85 is a potential proton donor to reactive iron-oxo species during substrate decarboxylation. The H85Q mutant substitutes a glutamine found in several peroxygenases that favor fatty acid hydroxylation. H85Q OleTJE still favors alkene production, suggesting alternative protonation mechanisms. However, the mutant undergoes only minor substrate binding-induced heme iron spin state shift toward high spin by comparison with WT OleTJE, indicating the key role of His85 in this process. Phe79 interacts with His85, and Phe79 mutants showed diminished affinity for shorter chain (C10–C16) fatty acids and weak substrate-induced high spin conversion. F79A OleTJE is least affected in substrate oxidation, whereas the F79W/Y mutants exhibit lower stability and cysteine thiolate protonation on reduction. Finally, Arg245 is crucial for binding the substrate carboxylate, and R245E/L mutations severely compromise activity and heme content, although alkene products are formed from some substrates, including stearic acid (C18:0). The results identify crucial roles for the active site amino acid trio in determining OleTJE catalytic efficiency in alkene production and in regulating protein stability, heme iron coordination, and spin state. PMID:28053093

  9. Catalytic Determinants of Alkene Production by the Cytochrome P450 Peroxygenase OleTJE.

    PubMed

    Matthews, Sarah; Belcher, James D; Tee, Kang Lan; Girvan, Hazel M; McLean, Kirsty J; Rigby, Stephen E J; Levy, Colin W; Leys, David; Parker, David A; Blankley, Richard T; Munro, Andrew W

    2017-03-24

    The Jeotgalicoccus sp. peroxygenase cytochrome P450 OleTJE (CYP152L1) is a hydrogen peroxide-driven oxidase that catalyzes oxidative decarboxylation of fatty acids, producing terminal alkenes with applications as fine chemicals and biofuels. Understanding mechanisms that favor decarboxylation over fatty acid hydroxylation in OleTJE could enable protein engineering to improve catalysis or to introduce decarboxylation activity into P450s with different substrate preferences. In this manuscript, we have focused on OleTJE active site residues Phe(79), His(85), and Arg(245) to interrogate their roles in substrate binding and catalytic activity. His(85) is a potential proton donor to reactive iron-oxo species during substrate decarboxylation. The H85Q mutant substitutes a glutamine found in several peroxygenases that favor fatty acid hydroxylation. H85Q OleTJE still favors alkene production, suggesting alternative protonation mechanisms. However, the mutant undergoes only minor substrate binding-induced heme iron spin state shift toward high spin by comparison with WT OleTJE, indicating the key role of His(85) in this process. Phe(79) interacts with His(85), and Phe(79) mutants showed diminished affinity for shorter chain (C10-C16) fatty acids and weak substrate-induced high spin conversion. F79A OleTJE is least affected in substrate oxidation, whereas the F79W/Y mutants exhibit lower stability and cysteine thiolate protonation on reduction. Finally, Arg(245) is crucial for binding the substrate carboxylate, and R245E/L mutations severely compromise activity and heme content, although alkene products are formed from some substrates, including stearic acid (C18:0). The results identify crucial roles for the active site amino acid trio in determining OleTJE catalytic efficiency in alkene production and in regulating protein stability, heme iron coordination, and spin state.

  10. Electrophilic Addition to Alkenes: The Relation between Reactivity and Enthalpy of Hydrogenation: Regioselectivity is Determined by the Stability of the Two Conceivable Products.

    PubMed

    Schnatter, Wayne F K; Rogers, Donald W; Zavitsas, Andreas A

    2015-07-13

    Although electrophilic addition to alkenes has been well studied, some secrets still remain. Halogenations, hydrohalogenations, halohydrin formations, hydrations, epoxidations, other oxidations, carbene additions, and ozonolyses are investigated to elucidate the relation of alkene reactivities with their enthalpies of hydrogenation (ΔHhyd ). For addition of electrophiles to unconjugated hydrocarbon alkenes, ln(k) is a linear function of ΔHhyd , where k is the rate constant. Linear correlation coefficients are about 0.98 or greater. None of the many previously proposed correlations of ln(k) with the properties of alkenes or with linear free-energy relationships match the generality and accuracy of the simple linear relationship found herein. A notable exception is acid-catalyzed hydration in water or in solvents stabilizing relatively stable carbocation intermediates (e.g., tertiary, benzylic, or allylic). (13) C NMR chemical shifts of the two alkene carbons also predict regioselectivity. These effects have not been noted previously and are operative in general, including addition to heteroatom-substituted alkenes.

  11. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2016-02-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  12. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  13. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  14. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann [Agoura Hills, CA

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  15. Kinetics and mechanism of the oxidation of alkenes and silanes by hydrogen peroxide catalyzed by methylrhenium trioxide (MTO) and a novel application of electrospray mass spectrometry to study the hydrolysis of MTO

    SciTech Connect

    Tan, Haisong

    1999-11-08

    Conjugated dienes were oxidized by hydrogen peroxide with methylrhenium trioxide (MTO) as catalyst. Methylrhenium bis-peroxide was the major reactive catalyst present. Hydroxyalkenes and trisubstituted silane were also tested. Mechanisms for each of these reactions are presented.

  16. Evidence for Alkene cis-Aminocupration, an Aminooxygenation Case Study: Kinetics, EPR Spectroscopy, and DFT Calculations

    PubMed Central

    Paderes, Monissa C.; Belding, Lee; Fanovic, Branden; Dudding, Travis; Keister, Jerome B.

    2012-01-01

    Alkene difunctionalization reactions are important in organic synthesis. We have recently shown that copper(II) complexes can promote and catalyze intramolecular alkene aminooxygenation, carboamination, and diamination reactions. In this contribution, we report a combined experimental and theoretical examination of the mechanism of the copper(II)-promoted olefin aminooxygenation reaction. Kinetics experiments revealed a mechanistic pathway involving an equilibrium reaction between a copper(II) carboxylate complex and the γ-alkenyl sulfonamide substrate and a rate-limiting intramolecular cis-addition of N–Cu across the olefin. Kinetic isotope effect studies support that the cis-aminocupration is the rate-determining step. UV/Vis spectra support a role for the base in the break-up of copper(II) carboxylate dimer to monomeric species. Electron paramagnetic resonance (EPR) spectra provide evidence for a kinetically competent N–Cu intermediate with a CuII oxidation state. Due to the highly similar stereochemical and reactivity trends among the CuII-promoted and catalyzed alkene difunctionalization reactions we have developed, the cis-aminocupration mechanism can reasonably be generalized across the reaction class. The methods and findings disclosed in this report should also prove valuable to the mechanism analysis and optimization of other copper(-II) carboxylate promoted reactions, especially those that take place in aprotic organic solvents. PMID:22237868

  17. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    PubMed

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step.

  18. Nickel-Catalyzed Allylic Substitution of Simple Alkenes

    PubMed Central

    Matsubara, Ryosuke; Jamison, Timothy F.

    2011-01-01

    This report describes a nickel-catalyzed allylic substitution process of simple alkenes whereby an important structural motif, a 1,4-diene, was prepared. A key for this success is the use of an appropriate Ni-phosphine complex and a stoichiometric amount of silyl triflate. Reactions of 1-alkyl-substituted alkenes consistently provided 1,1-disubstituted alkenes with high selectivity. Insight into the reaction mechanism as well as miscellaneous application of the developed catalytic process is also documented. PMID:21387565

  19. Rh(III)-Catalyzed Carbocyclization of 3-(Indolin-1-yl)-3-oxopropanenitriles with Alkynes and Alkenes through C-H Activation.

    PubMed

    Zhou, Tao; Wang, Yanwei; Li, Bin; Wang, Baiquan

    2016-10-07

    Rh(III)-catalyzed carbocyclization reactions of 3-(indolin-1-yl)-3-oxopropanenitriles with alkynes and alkenes have been developed to form 1,7-fused indolines through C-H activation. These reactions have a broad range of substrates and high yields. Unsymmetrical aryl-alkyl substituted alkynes proceeded smoothly with high regioselectivity. Electron-rich alkynes could undergo further oxidative coupling reaction to form polycyclic compounds. For alkenes, 1,2-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-4-ones were formed via C(sp(2))-H bond alkenylation and C(sp(2))-H, C(sp(3))-H oxidative coupling reactions.

  20. Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling.

    PubMed

    Mlynarski, Scott N; Schuster, Christopher H; Morken, James P

    2014-01-16

    Terminal, monosubstituted alkenes are ideal prospective starting materials for organic synthesis because they are manufactured on very large scales and can be functionalized via a broad range of chemical transformations. Alkenes also have the attractive feature of being stable in the presence of many acids, bases, oxidants and reductants. In spite of these attributes, relatively few catalytic enantioselective transformations have been developed that transform aliphatic α-olefins into chiral products with an enantiomeric excess greater then 90 per cent. With the exception of site-controlled isotactic polymerization of α-olefins, none of these catalytic enantioselective processes results in chain-extending carbon-carbon bond formation to the terminal carbon. Here we describe a strategy that directly addresses this gap in synthetic methodology, and present a single-flask, catalytic enantioselective conversion of terminal alkenes into a number of chiral products. These reactions are facilitated by a neighbouring functional group that accelerates palladium-catalysed cross-coupling of 1,2-bis(boronates) relative to non-functionalized alkyl boronate analogues. In tandem with enantioselective diboration, this reactivity feature transforms alkene starting materials into a diverse array of chiral products. We note that the tandem diboration/cross-coupling reaction generally provides products in high yield and high selectivity (>95:5 enantiomer ratio), uses low loadings (1-2 mol per cent) of commercially available catalysts and reagents, offers an expansive substrate scope, and can address a broad range of alcohol and amine synthesis targets, many of which cannot be easily addressed with current technology.

  1. Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling

    NASA Astrophysics Data System (ADS)

    Mlynarski, Scott N.; Schuster, Christopher H.; Morken, James P.

    2014-01-01

    Terminal, monosubstituted alkenes are ideal prospective starting materials for organic synthesis because they are manufactured on very large scales and can be functionalized via a broad range of chemical transformations. Alkenes also have the attractive feature of being stable in the presence of many acids, bases, oxidants and reductants. In spite of these attributes, relatively few catalytic enantioselective transformations have been developed that transform aliphatic α-olefins into chiral products with an enantiomeric excess greater then 90 per cent. With the exception of site-controlled isotactic polymerization of α-olefins, none of these catalytic enantioselective processes results in chain-extending carbon-carbon bond formation to the terminal carbon. Here we describe a strategy that directly addresses this gap in synthetic methodology, and present a single-flask, catalytic enantioselective conversion of terminal alkenes into a number of chiral products. These reactions are facilitated by a neighbouring functional group that accelerates palladium-catalysed cross-coupling of 1,2-bis(boronates) relative to non-functionalized alkyl boronate analogues. In tandem with enantioselective diboration, this reactivity feature transforms alkene starting materials into a diverse array of chiral products. We note that the tandem diboration/cross-coupling reaction generally provides products in high yield and high selectivity (>95:5 enantiomer ratio), uses low loadings (1-2 mol per cent) of commercially available catalysts and reagents, offers an expansive substrate scope, and can address a broad range of alcohol and amine synthesis targets, many of which cannot be easily addressed with current technology.

  2. Radical product yields from the ozonolysis of short chain alkenes under atmospheric boundary layer conditions.

    PubMed

    Alam, Mohammed S; Rickard, Andrew R; Camredon, Marie; Wyche, Kevin P; Carr, Timo; Hornsby, Karen E; Monks, Paul S; Bloss, William J

    2013-11-27

    The gas-phase reaction of ozone with unsaturated volatile organic compounds (VOCs), alkenes, is an important source of the critical atmospheric oxidant OH, especially at night when other photolytic radical initiation routes cannot occur. Alkene ozonolysis is also known to directly form HO2 radicals, which may be readily converted to OH through reaction with NO, but whose formation is poorly understood. We report a study of the radical (OH, HO2, and RO2) production from a series of small alkenes (propene, 1-butene, cis-2-butene, trans-2-butene, 2-methylpropene, 2,3-dimethyl-2-butene (tetramethyl ethene, TME), and isoprene). Experiments were performed in the European Photoreactor (EUPHORE) atmospheric simulation chamber, with OH and HO2 levels directly measured by laser-induced fluorescence (LIF) and HO2 + ΣRO2 levels measured by peroxy-radical chemical amplification (PERCA). OH yields were found to be in good agreement with the majority of previous studies performed under comparable conditions (atmospheric pressure, long time scales) using tracer and scavenger approaches. HO2 yields ranged from 4% (trans-2-butene) to 34% (2-methylpropene), lower than previous experimental determinations. Increasing humidity further reduced the HO2 yields obtained, by typically 50% for an RH increase from 0.5 to 30%, suggesting that HOx production from alkene ozonolysis may be lower than current models suggest under (humid) ambient atmospheric boundary layer conditions. The mechanistic origin of the OH and HO2 production observed is discussed in the context of previous experimental and theoretical studies.

  3. Biocompatible enzymatic roller pens for direct writing of biocatalytic materials: "do-it-yourself" electrochemical biosensors.

    PubMed

    Bandodkar, Amay J; Jia, Wenzhao; Ramírez, Julian; Wang, Joseph

    2015-06-03

    The development of enzymatic-ink-based roller pens for direct drawing of biocatalytic sensors, in general, and for realizing renewable glucose sensor strips, in particular, is described. The resulting enzymatic-ink pen allows facile fabrication of high-quality inexpensive electrochemical biosensors of any design by the user on a wide variety of surfaces having complex textures with minimal user training. Unlike prefabricated sensors, this approach empowers the end user with the ability of "on-demand" and "on-site" designing and fabricating of biocatalytic sensors to suit their specific requirement. The resulting devices are thus referred to as "do-it-yourself" sensors. The bio-active pens produce highly reproducible biocatalytic traces with minimal edge roughness. The composition of the new enzymatic inks has been optimized for ensuring good biocatalytic activity, electrical conductivity, biocompati-bility, reproducible writing, and surface adherence. The resulting inks are characterized using spectroscopic, viscometric, electrochemical, thermal and microscopic techniques. Applicability to renewable blood glucose testing, epidermal glucose monitoring, and on-leaf phenol detection are demonstrated in connection to glucose oxidase and tyrosinase-based carbon inks. The "do-it-yourself" renewable glucose sensor strips offer a "fresh," reproducible, low-cost biocatalytic sensor surface for each blood test. The ability to directly draw biocatalytic conducting traces even on unconventional surfaces opens up new avenues in various sensing applications in low-resource settings and holds great promise for diverse healthcare, environmental, and defense domains.

  4. Experimental determination of thermodynamic equilibrium in biocatalytic transamination.

    PubMed

    Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M

    2012-08-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics.

  5. Microfluidic multi-input reactor for biocatalytic synthesis using transketolase.

    PubMed

    Lawrence, James; O'Sullivan, Brian; Lye, Gary J; Wohlgemuth, Roland; Szita, Nicolas

    2013-11-01

    Biocatalytic synthesis in continuous-flow microreactors is of increasing interest for the production of specialty chemicals. However, the yield of production achievable in these reactors can be limited by the adverse effects of high substrate concentration on the biocatalyst, including inhibition and denaturation. Fed-batch reactors have been developed in order to overcome this problem, but no continuous-flow solution exists. We present the design of a novel multi-input microfluidic reactor, capable of substrate feeding at multiple points, as a first step towards overcoming these problems in a continuous-flow setting. Using the transketolase-(TK) catalysed reaction of lithium hydroxypyruvate (HPA) and glycolaldehyde (GA) to l-erythrulose (ERY), we demonstrate the transposition of a fed-batch substrate feeding strategy to our microfluidic reactor. We obtained a 4.5-fold increase in output concentration and a 5-fold increase in throughput compared with a single input reactor.

  6. Microfluidic multi-input reactor for biocatalytic synthesis using transketolase☆

    PubMed Central

    Lawrence, James; O'Sullivan, Brian; Lye, Gary J.; Wohlgemuth, Roland; Szita, Nicolas

    2013-01-01

    Biocatalytic synthesis in continuous-flow microreactors is of increasing interest for the production of specialty chemicals. However, the yield of production achievable in these reactors can be limited by the adverse effects of high substrate concentration on the biocatalyst, including inhibition and denaturation. Fed-batch reactors have been developed in order to overcome this problem, but no continuous-flow solution exists. We present the design of a novel multi-input microfluidic reactor, capable of substrate feeding at multiple points, as a first step towards overcoming these problems in a continuous-flow setting. Using the transketolase-(TK) catalysed reaction of lithium hydroxypyruvate (HPA) and glycolaldehyde (GA) to l-erythrulose (ERY), we demonstrate the transposition of a fed-batch substrate feeding strategy to our microfluidic reactor. We obtained a 4.5-fold increase in output concentration and a 5-fold increase in throughput compared with a single input reactor. PMID:24187515

  7. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    PubMed Central

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  8. Enantio- and Regioselective CuH-Catalyzed Hydroamination of Alkenes

    PubMed Central

    Zhu, Shaolin; Niljianskul, Nootaree; Buchwald, Stephen L.

    2013-01-01

    A highly enantio- and regioselective copper-catalyzed hydroamination reaction of alkenes has been developed using diethoxy(methyl)silane (DEMS) and esters of hydroxylamines. The process tolerates a wide variety of substituted styrenes, including trans-, cis-, and β,β-disubstituted styrenes to yield α–branched amines. In addition, aliphatic alkenes coupled to generate exclusively the anti-Markovnikov hydroamination products. PMID:24106781

  9. Alkene dihydroxylation with malonoyl peroxides: catalysis using fluorinated alcohols.

    PubMed

    Picon, Sylvain; Rawling, Michael; Campbell, Matthew; Tomkinson, Nicholas C O

    2012-12-21

    The effect of fluorinated alcohols on the dihydroxylation of alkenes using cyclopropyl malonoyl peroxide is described. Addition of perfluoro-tert-butyl alcohol to a toluene solution of alkene and peroxide increases the rate of product formation and the stereoselectivity observed, providing a simple and effective method for acceleration of this important class of reaction. Basic hydrolysis of the crude reaction mixture provides access to syn-diols in high yield and stereoselectivity.

  10. Two-Input Enzymatic Logic Gates Made Sigmoid by Modifications of the Biocatalytic Reaction Cascades

    SciTech Connect

    Zavalov, Oleksandr; Bocharova, Vera; Halamek, Jan; Halamkova, Lenka; Korkmaz, Sevim; Arugula, Mary; Chinnapareddy, Soujanya; Katz, Evgeny; Privman, Vladimir

    2012-01-01

    Computing based on biochemical processes is a newest rapidly developing field of unconventional information and signal processing. In this paper we present results of our research in the field of biochemical computing and summarize the obtained numerical and experimental data for implementations of the standard two-input OR and AND gates with double-sigmoid shape of the output signal. This form of response was obtained as a function of the two inputs in each of the realized biochemical systems. The enzymatic gate processes in the first system were activated with two chemical inputs and resulted in optically detected chromogen oxidation, which happens when either one or both of the inputs are present. In this case, the biochemical system is functioning as the OR gate. We demonstrate that the addition of a filtering biocatalytic process leads to a considerable reduction of the noise transmission factor and the resulting gate response has sigmoid shape in both inputs. The second system was developed for functioning as an AND gate, where the output signal was activated only by a simultaneous action of two enzymatic biomarkers. This response can be used as an indicator of liver damage, but only if both of these of the inputs are present at their elevated, pathophysiological values of concentrations. A kinetic numerical model was developed and used to estimate the range of parameters for which the experimentally realized logic gate is close to optimal. We also analyzed the system to evaluate its noise-handling properties.

  11. Enzyme-Modified Particles for Selective Biocatalytic Hydrogenation by Hydrogen-Driven NADH Recycling

    PubMed Central

    Reeve, Holly A; Lauterbach, Lars; Lenz, Oliver; Vincent, Kylie A

    2015-01-01

    We describe a new approach to selective H2-driven hydrogenation that exploits a sequence of enzymes immobilised on carbon particles. We used a catalyst system that comprised alcohol dehydrogenase, hydrogenase and an NAD+ reductase on carbon black to demonstrate a greater than 98 % conversion of acetophenone to phenylethanol. Oxidation of H2 by the hydrogenase provides electrons through the carbon for NAD+ reduction to recycle the NADH cofactor required by the alcohol dehydrogenase. This biocatalytic system operates over the pH range 6–8 or in un-buffered water, and can function at low concentrations of the cofactor (10 μm NAD+) and at H2 partial pressures below 1 bar. Total turnover numbers >130 000 during acetophenone reduction indicate high enzyme stability, and the immobilised enzymes can be recovered by a simple centrifugation step and re-used several times. This offers a route to convenient, atom-efficient operation of NADH-dependent oxidoreductases for selective hydrogenation catalysis. PMID:26613009

  12. Regio- and stereoselective synthesis of pregnane-fused isoxazolines by nitril-oxide/alkene 1,3-dipolar cycloaddition and an evaluation of their cell-growth inhibitory effect in vitro

    NASA Astrophysics Data System (ADS)

    Mótyán, Gergő; Baji, Ádám; Zupkó, István; Frank, Éva

    2016-04-01

    Efficient syntheses of some pregnane-fused isoxazolines from 16-dehydropregnenolone acetate with different arylnitrile oxides were carried out by 1,3-dipolar cycloadditions. The intermolecular ring-closures occurred in a highly regio- and stereoselective manner permitting the formation of a single 16α,17α-condensed diastereomer in which the O terminus of the nitrile oxide dipole is attached to C-17 of the sterane core. The conversions were found to be affected significantly by the electronic character of the substituents on the aromatic moiety of the 1,3-dipoles. Deacetylation of the primary products resulted in the corresponding 3β-OH analogs. All of the synthesized compounds were subjected to in vitro pharmacological studies for the determination of their antiproliferative effects on four breast cancer cell lines (MCF7, T47D, MDA-MB-231 and MDA-MB-361).

  13. Osmium(III) and osmium(V) complexes bearing a macrocyclic ligand: a simple and efficient catalytic system for cis-dihydroxylation of alkenes with hydrogen peroxide.

    PubMed

    Sugimoto, Hideki; Ashikari, Kenji; Itoh, Shinobu

    2013-09-01

    A simple protocol that uses [Os(III)(OH)(H2O)(L-N4Me2)](PF6)2 (1; L-N4Me2 = N,N'-dimethyl-2,11-diaza[3.3](2,6)pyridinophane) as a catalyst and H2O2 as a terminal oxidant for efficient cis-1,2-dihydroxylation of alkenes is presented. Unfunctionalized (or aliphatic) alkenes and alkenes/styrenes containing electron-withdrawing groups are selectively oxidized to the corresponding vicinal diols in good to excellent yields (46-99 %). In the catalytic reactions, the stoichiometry of alkene:H2O2 is 1:1, and thus the oxidant efficiency is very high. For the dihydroxylation of cyclohexene, the catalytic amount of 1 can be reduced to 0.01 mol % to achieve a very high turnover number of 5500. The active oxidant is identified as the Os(V)(O)(OH) species (2), which is formed via the hydroperoxide adduct, an Os(III)(OOH) species. The active oxidant 2 is successfully isolated and crystallographically characterized.

  14. Manganese(IV)-mediated hydroperoxyarylation of alkenes with aryl hydrazines and dioxygen from air.

    PubMed

    Kindt, Stephanie; Jasch, Hannelore; Heinrich, Markus R

    2014-05-19

    We report a new carbooxygenation-type version of the Meerwein arylation in which the introduction of oxygen is achieved by using dioxygen from the air. In this way, hydroperoxides were obtained from activated as well as non-activated alkenes by oxidizing aryl hydrazines with manganese dioxide. The best results were obtained with α-substituted acrylates. Importantly, the aryl hydrazine has to be added slowly to the reaction mixture to allow sufficient uptake of dioxygen from the air. Competition and labeling experiments revealed hydroperoxyl radicals as novel oxygen-centered radical scavengers.

  15. Stability of prostacyclin analogues: an unusual lack of reactivity in acid-catalyzed alkene hydration.

    PubMed

    Magill, A; O'Yang, C; Powell, M F

    1988-04-01

    Prostacyclin analogue 5 undergoes specific acid-catalyzed hydration (kH+ = 1.9 x 10(-7)M-1 sec-1 at 25 degrees C) and a pH-independent oxidation reaction (k0 = 1.2 x 10(-10) sec-1 at 25 degrees C) above pH approximately 5. The hydration reaction for 5 is much slower than for other structurally similar exocyclic alkenes, even though the rate-determining step is proton transfer. This slowness of reaction and an analysis of the pH-rate profile show that 5 does not exhibit significant intramolecular general acid catalysis, as does prostacyclin.

  16. Heterocycle synthesis by copper facilitated addition of heteroatoms to alkenes, alkynes and arenes.

    PubMed

    Chemler, Sherry R; Fuller, Peter H

    2007-07-01

    The de novo synthesis of small organic heterocyclic molecules has benefited from recent protocols for copper-facilitated additions of heteroatoms to alkenes, alkynes and arenes. This tutorial review summarizes a number of these recent contributions. Copper salts can facilitate bond formations due to their ability to serve as Lewis acids, oxidizing agents and transition metal catalysts. The current understanding of the mechanisms of these reactions is presented. This review should be of interest to chemists involved in the synthesis of heterocycles and those investigating transition metal facilitated reactions.

  17. Transition-metal-free Chemoselective Oxidative C-C Coupling of the sp(3) C-H Bond of Oxindoles with Arenes and Addition to Alkene: Synthesis of 3-Aryl Oxindoles, and Benzofuro- and Indoloindoles.

    PubMed

    Sattar, Moh; Rathore, Vandana; Prasad, Ch Durga; Kumar, Sangit

    2017-04-04

    A transition-metal (TM)-free and halogen-free NaOtBu-mediated oxidative cross-coupling between the sp(3) C-H bond of oxindoles and sp(2) C-H bond of nitroarenes has been developed to access 3-aryl substituted and 3,3-aryldisubstituted oxindoles in DMSO at room temperature in a short time. Interestingly, the sp(3) C-H bond of oxindoles could also react with styrene under TM-free conditions for the practical synthesis of quaternary 3,3-disubstituted oxindoles. The synthesized 3-oxindoles have also been further transformed into advanced heterocycles, that is, benzofuroindoles, indoloindoles, and substituted indoles. Mechanistic experiments of the reaction suggests the formation of an anion intermediate from the sp(3) C-H bond of oxindole by tert-butoxide base in DMSO. The addition of nitrobenzene to the in-situ generated carbanion leads to the 3-(nitrophenyl)oxindolyl carbanion in DMSO which is subsequently oxidized to 3-(nitro-aryl) oxindole by DMSO.

  18. NMP and O2 as Radical Initiator: Trifluoromethylation of Alkenes to Tertiary β-Trifluoromethyl Alcohols at Room Temperature.

    PubMed

    Liu, Chao; Lu, Qingquan; Huang, Zhiyuan; Zhang, Jian; Liao, Fan; Peng, Pan; Lei, Aiwen

    2015-12-18

    A novel strategy was developed to trigger ·CF3 by using in situ generated peroxide in NMP under O2 or air as the radical initiator. Radical trifluoromethylation of alkenes was achieved toward tertiary β-trifluoromethyl alcohols. Various tertiary β-trifluoromethyl alcohols can be synthesized in good yields without extra oxidants or transition metal catalysts. Preliminary mechanistic investigation revealed that O2 diffusion can influence the reaction rate.

  19. Copper Nitrate Mediated Regioselective [2+2+1] Cyclization of Alkynes with Alkenes: A Cascade Approach to Δ(2)-Isoxazolines.

    PubMed

    Gao, Mingchun; Li, Yingying; Gan, Yuansheng; Xu, Bin

    2015-07-20

    An efficient method for the regioselective synthesis of pharmacologically relevant polysubstituted Δ(2)-isoxazolines is based on the copper-mediated direct transformation of simple terminal alkynes and alkenes. The overall process involves the formation of four chemical bonds with inexpensive and readily available copper nitrate trihydrate as a novel precursor of nitrile oxides. The reaction can be easily handled and proceeds under mild conditions.

  20. Epoxidation of Short-Chain Alkenes by Resting-Cell Suspensions of Propane-Grown Bacteria

    PubMed Central

    Hou, Ching T.; Patel, Ramesh; Laskin, Allen I.; Barnabe, Nancy; Barist, Irene

    1983-01-01

    Sixteen new cultures of propane-utilizing bacteria were isolated from lake water from Warinanco Park, Linden, N.J. and from lake and soil samples from Bayway Refinery, Linden, N.J. In addition, 19 known cultures obtained from culture collections were also found to be able to grow on propane as the sole carbon and energy source. In addition to their ability to oxidize n-alkanes, resting-cell suspensions of both new cultures and known cultures grown on propane oxidize short-chain alkenes to their corresponding 1,2-epoxides. Among the substrate alkenes, propylene was oxidized at the highest rate. In contrast to the case with methylotrophic bacteria, the product epoxides are further metabolized. Propane and other gaseous n-alkanes inhibit the epoxidation of propylene. The optimum conditions for in vivo epoxidation are described. Results from inhibition studies indicate that a propane monooxygenase system catalyzes both the epoxidation and hydroxylation reactions. Experiments with cell-free extracts show that both hydroxylation and epoxidation activities are located in the soluble fraction obtained after 80,000 × g centrifugation. PMID:16346338

  1. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.

    PubMed

    Chirik, Paul J

    2015-06-16

    The hydrogenation of alkenes is one of the most impactful reactions catalyzed by homogeneous transition metal complexes finding application in the pharmaceutical, agrochemical, and commodity chemical industries. For decades, catalyst technology has relied on precious metal catalysts supported by strong field ligands to enable highly predictable two-electron redox chemistry that constitutes key bond breaking and forming steps during turnover. Alternative catalysts based on earth abundant transition metals such as iron and cobalt not only offer potential environmental and economic advantages but also provide an opportunity to explore catalysis in a new chemical space. The kinetically and thermodynamically accessible oxidation and spin states may enable new mechanistic pathways, unique substrate scope, or altogether new reactivity. This Account describes my group's efforts over the past decade to develop iron and cobalt catalysts for alkene hydrogenation. Particular emphasis is devoted to the interplay of the electronic structure of the base metal compounds and their catalytic performance. First generation, aryl-substituted pyridine(diimine) iron dinitrogen catalysts exhibited high turnover frequencies at low catalyst loadings and hydrogen pressures for the hydrogenation of unactivated terminal and disubstituted alkenes. Exploration of structure-reactivity relationships established smaller aryl substituents and more electron donating ligands resulted in improved performance. Second generation iron and cobalt catalysts where the imine donors were replaced by N-heterocyclic carbenes resulted in dramatically improved activity and enabled hydrogenation of more challenging unactivated, tri- and tetrasubstituted alkenes. Optimized cobalt catalysts have been discovered that are among the most active homogeneous hydrogenation catalysts known. Synthesis of enantiopure, C1 symmetric pyridine(diimine) cobalt complexes have enabled rare examples of highly enantioselective

  2. An Umpolung Approach to Alkene Carboamination: Palladium Catalyzed 1,2-Amino-Acylation, -Carboxylation, -Arylation, -Vinylation, and -Alkynylation.

    PubMed

    Faulkner, Adele; Scott, James S; Bower, John F

    2015-06-10

    Conventional approaches to Pd-catalyzed alkene 1,2-carboamination rely upon the combination of a nucleophilic nitrogen-based component and an internal C-based or external oxidant. In this study, we outline an umpolung approach, which is triggered by oxidative initiation at an electrophilic N-based component and employs "standard" organometallic nucleophiles to introduce the new carbon-based fragment. Specifically, oxidative addition of a Pd(0)-catalyst into the N-O bond of O-pentafluorobenzoyl oxime esters generates imino-Pd(II) intermediates, which undergo 5-exo cyclization with sterically diverse alkenes. The resultant alkyl-Pd(II) intermediates are intercepted by organometallic nucleophiles or alcohols, under carbonylative or noncarbonylative conditions, to provide 1,2-carboamination products. This approach provides, for the first time, a unified strategy for achieving alkene 1,2-amino-acylation, -carboxylation, -arylation, -vinylation, and -alkynylation. For carbonylative processes, orchestrated protodecarboxylation of the pentafluorobenzoate leaving group underpins reaction efficiency. This process is likely a key feature in related Narasaka-Heck cyclizations and accounts for the efficacy of O-pentafluorobenzoyl oxime esters in aza-Heck reactions of this type.

  3. Oxidative Reactions with Nonaqueous Enzymes

    SciTech Connect

    Jonathan S. Dordick; Douglas Clark; Brian H Davison; Alexander Klibanov

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with less waste.

  4. Intramolecular Alkene Aminocarbonylation Using Concerted Cycloadditions of Amino-Isocyanates.

    PubMed

    Ivanovich, Ryan A; Clavette, Christian; Vincent-Rocan, Jean-François; Roveda, Jean-Grégoire; Gorelsky, Serge I; Beauchemin, André M

    2016-06-01

    The ubiquity of nitrogen heterocycles in biologically active molecules challenges synthetic chemists to develop a variety of tools for their construction. While developing metal-free hydroamination reactions of hydrazine derivatives, it was discovered that carbazates and semicarbazides can also lead to alkene aminocarbonylation products if nitrogen-substituted isocyanates (N-isocyanates) are formed in situ as reactive intermediates. At first this reaction required high temperatures (150-200 °C), and issues included competing hydroamination and N-isocyanate dimerization pathways. Herein, improved conditions for concerted intramolecular alkene aminocarbonylation with N-isocyanates are reported. The use of βN-benzyl carbazate precursors allows the effective minimization of N-isocyanate dimerization. Diminished dimerization leads to higher yields of alkene aminocarbonylation products, to reactivity at lower temperatures, and to an improved scope for a reaction sequence involving alkene aminocarbonylation followed by 1,2-migration of the benzyl group. Furthermore, fine-tuning of the blocking (masking) group on the N-isocyanate precursor, and reaction conditions relying on base catalysis for N-isocyanate formation from simpler precursors resulted in room temperature reactivity, consequently minimizing the competing hydroamination pathway. Collectively, this work highlights that controlled reactivity of aminoisocyanates is possible, and provides a broadly applicable alkene aminocarbonylation approach to heterocycles possessing the β-aminocarbonyl motif.

  5. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production.

    PubMed

    Chen, Binbin; Lee, Dong-Yup; Chang, Matthew Wook

    2015-09-01

    Biological production of terminal alkenes has garnered a significant interest due to their industrial applications such as lubricants, detergents and fuels. Here, we engineered the yeast Saccharomyces cerevisiae to produce terminal alkenes via a one-step fatty acid decarboxylation pathway and improved the alkene production using combinatorial engineering strategies. In brief, we first characterized eight fatty acid decarboxylases to enable and enhance alkene production. We then increased the production titer 7-fold by improving the availability of the precursor fatty acids. We additionally increased the titer about 5-fold through genetic cofactor engineering and gene expression tuning in rich medium. Lastly, we further improved the titer 1.8-fold to 3.7 mg/L by optimizing the culturing conditions in bioreactors. This study represents the first report of terminal alkene biosynthesis in S. cerevisiae, and the abovementioned combinatorial engineering approaches collectively increased the titer 67.4-fold. We envision that these approaches could provide insights into devising engineering strategies to improve the production of fatty acid-derived biochemicals in S. cerevisiae.

  6. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense

    PubMed Central

    2014-01-01

    Background The conversion of vanillin to vanillylamine is a key step in the biosynthetic route towards capsaicinoids in pungent cultivars of Capsicum sp. The reaction has previously been annotated to be catalysed by PAMT (putative aminotransferase; [GenBank: AAC78480.1, Swiss-Prot: O82521]), however, the enzyme has previously not been biochemically characterised in vitro. Results The biochemical activity of the transaminase was confirmed by direct measurement of the reaction with purified recombinant enzyme. The enzyme accepted pyruvate, and oxaloacetate but not 2-oxoglutarate as co-substrate, which is in accordance with other characterised transaminases from the plant kingdom. The enzyme was also able to convert (S)-1-phenylethylamine into acetophenone with high stereo-selectivity. Additionally, it was shown to be active at a broad pH range. Conclusions We suggest PAMT to be renamed to VAMT (vanillin aminotransferase, abbreviation used in this study) as formation of vanillin from vanillylamine could be demonstrated. Furthermore, due to high stereoselectivity and activity at physiological pH, VAMT is a suitable candidate for biocatalytic transamination in a recombinant whole-cell system. PMID:24712445

  7. Effectiveness Factors and Conversion in a Biocatalytic Membrane Reactor.

    PubMed

    Godongwana, Buntu

    2016-01-01

    Analytical expressions of the effectiveness factor of a biocatalytic membrane reactor, and its asymptote as the Thiele modulus becomes large, are presented. The evaluation of the effectiveness factor is based on the solution of the governing equations for solute transport in the two regions of the reactor, i.e. the lumen and the matrix (with the biofilm immobilized in the matrix). The lumen solution accounts for both axial diffusion and radial convective flow, while the matrix solution is based on Robin-type boundary conditions. The effectiveness factor is shown to be a function of the Thiele modulus, the partition coefficient, the Sherwood number, the Peclet number, and membrane thickness. Three regions of Thiele moduli are defined in the effectiveness factor graphs. These correspond with reaction rate limited, internal-diffusion limited, and external mass transfer limited solute transport. Radial convective flows were shown to only improve the effectiveness factor in the region of internal diffusion limitation. The assumption of first order kinetics is shown to be applicable only in the Thiele modulus regions of internal and external mass transfer limitation. An iteration scheme is also presented for estimating the effectiveness factor when the solute fractional conversion is known. The model is validated with experimental data from a membrane gradostat reactor immobilised with Phanerochaete chrysosporium for the production of lignin and manganese peroxidases. The developed model and experimental data allow for the determination of the Thiele modulus at which the effectiveness factor and fractional conversion are optimal.

  8. Effectiveness Factors and Conversion in a Biocatalytic Membrane Reactor

    PubMed Central

    Godongwana, Buntu

    2016-01-01

    Analytical expressions of the effectiveness factor of a biocatalytic membrane reactor, and its asymptote as the Thiele modulus becomes large, are presented. The evaluation of the effectiveness factor is based on the solution of the governing equations for solute transport in the two regions of the reactor, i.e. the lumen and the matrix (with the biofilm immobilized in the matrix). The lumen solution accounts for both axial diffusion and radial convective flow, while the matrix solution is based on Robin-type boundary conditions. The effectiveness factor is shown to be a function of the Thiele modulus, the partition coefficient, the Sherwood number, the Peclet number, and membrane thickness. Three regions of Thiele moduli are defined in the effectiveness factor graphs. These correspond with reaction rate limited, internal-diffusion limited, and external mass transfer limited solute transport. Radial convective flows were shown to only improve the effectiveness factor in the region of internal diffusion limitation. The assumption of first order kinetics is shown to be applicable only in the Thiele modulus regions of internal and external mass transfer limitation. An iteration scheme is also presented for estimating the effectiveness factor when the solute fractional conversion is known. The model is validated with experimental data from a membrane gradostat reactor immobilised with Phanerochaete chrysosporium for the production of lignin and manganese peroxidases. The developed model and experimental data allow for the determination of the Thiele modulus at which the effectiveness factor and fractional conversion are optimal. PMID:27104954

  9. Biocatalytic nerve agent detoxification in fire fighting foams.

    PubMed

    LeJeune, K E; Russell, A J

    1999-03-20

    Current events across the globe necessitate rapid technological advances to combat the epidemic of nerve agent chemical weapons. Biocatalysis has emerged as a viable tool in the detoxification of organophosphorus neurotoxins, such as the chemical weapons VX and sarin. Efficient detoxification of contaminated equipment, machinery, and soils are of principal concern. This study describes the incorporation of a biocatalyst (organophosphorus hydrolase, E.C. 3.1.8.1) into conventional formulations of fire fighting foam. The capacity of fire fighting foams to decrease volatilization of contained contaminants, increase surface wettability, and control the rate of enzyme delivery to large areas makes them useful vehicles for enzyme application at surfaces. The performance of enzyme containing foams has been shown to be not only reproducible but also predictable. An empirical model provides reasonable estimations for the amounts of achievable surface decontamination as a function of the important parameters of the system. Theoretical modeling illustrates that the enzyme-containing foam is capable of extracting agent from the surface and is catalytically active at the foam-surface interface and throughout the foam itself. Biocatalytic foam has proven to be an effective, "environmentally friendly" means of surface and soil decontamination.

  10. Chitosan-based biocatalytic nanoparticles for pollutant removal from wastewater.

    PubMed

    Alarcón-Payán, Dulce A; Koyani, Rina D; Vazquez-Duhalt, Rafael

    2017-05-01

    Chitosan, a renewable biopolymer has the prospective applications in different fields due to its gelation capacity. Nanoconfiguration of chitosan through ionotropic gelation to encapsulate enzymatic activity offers numerous potential applications. In the present study, the preparation and characterization of chitosan nanoparticles loaded with versatile peroxidase are reported. Their performance in bioremediation process and the resistance enhancement against natural microbial biodegradation were studied. The average diameter of enzymatic nanoparticles was 120nm and showed a high enzyme loading capacity. The kinetic parameters of nanoparticles exhibited a slightly lower catalytic activity (kcat), similar affinity constant (Km) for hydrogen peroxide and higher Km value for the phenolic compound when compared with the free enzyme. The enzymatic nanoparticles showed higher thermostability and the same pH activity profile than those from free enzyme. Ten phenolic compounds, including pesticides, halogenated compounds, endocrine disruptors and antibacterials were transformed by the enzymatic nanoparticles. The transformation rate was lower than those obtained with free enzyme suggesting mass transfer limitations. But very importantly, the enzymatic nanoparticles showed a significant increase of the operational stability in real conditions of wastewater treatment process. Moreover, chemical modification of nanoparticles with different aldehydes still enhanced the operational stability of nanoparticulated enzymes. This enhancement of stability in real conditions and the potential use of biocatalytic nanoparticles in bioremediation processes are discussed.

  11. Conversion of allylic alcohols to stereodefined trisubstituted alkenes: a complementary process to the Claisen rearrangement.

    PubMed

    Belardi, Justin K; Micalizio, Glenn C

    2008-12-17

    A stereoselective method for the conversion of allylic alcohols to (Z)-trisubstituted alkenes is presented. Overall, the reaction sequence described is stereochemically complementary to related Claisen rearrangement reactions--processes that typically deliver the stereoisomeric trisubstituted alkene containing products.

  12. The mechanism for iron-catalyzed alkene isomerization in solution

    SciTech Connect

    Sawyer, Karma R.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Harris, Charles B.

    2008-05-27

    Here we report nano- through microsecond time-resolved IR experiments of iron-catalyzed alkene isomerization in room-temperature solution. We have monitored the photochemistry of a model system, Fe(CO){sub 4}({eta}{sup 2}-1-hexene), in neat 1-hexene solution. UV-photolysis of the starting material leads to the dissociation of a single CO to form Fe(CO){sub 3}({eta}{sup 2}-1-hexene), in a singlet spin state. This CO loss complex shows a dramatic selectivity to form an allyl hydride, HFe(CO){sub 3}({eta}{sup 3}-C{sub 6}H{sub 11}), via an internal C-H bond-cleavage reaction in 5-25 ns. We find no evidence for the coordination of an alkene molecule from the bath to the CO loss complex, but do observe coordination to the allyl hydride, indicating that it is the key intermediate in the isomerization mechanism. Coordination of the alkene ligand to the allyl hydride leads to the formation of the bis-alkene isomers, Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) and Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2}. Because of the thermodynamic stability of Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) over Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2} (ca. 12 kcal/mol), nearly 100% of the alkene population will be 2-alkene. The results presented herein provide the first direct evidence for this mechanism in solution and suggest modifications to the currently accepted mechanism.

  13. New osmium-based reagent for the dihydroxylation of alkenes.

    PubMed

    Donohoe, Timothy J; Harris, Robert M; Butterworth, Sam; Burrows, Jeremy N; Cowley, Andrew; Parker, Jeremy S

    2006-06-09

    The cis dihydroxylation of alkenes is most efficiently accomplished by reaction with osmium tetroxide. Recently, the expense and toxicity of osmium tetroxide have led to a number of attempts to harness alternative osmium-based reagents, including microencapsulation and solid support techniques. We describe here the development of a new nonvolatile, stable, and recoverable osmium-based reagent devised for the stoichiometric cis dihydroxylation of alkenes. Although attempts to make this new dihydroxylation work with catalytic amounts of this reagent were unsuccessful, we did develop a sensitive test for free osmium tetroxide leached from the reagent in situ: this test may well have uses in probing future applications of derivatized osmium reagents.

  14. Unidirectional light-driven molecular motors based on overcrowded alkenes.

    PubMed

    Cnossen, Arjen; Browne, Wesley R; Feringa, Ben L

    2014-01-01

    Over the last two decades, interest in nanotechnology has led to the design and synthesis of a toolbox of nanoscale versions of macroscopic devices and components. In molecular nanotechnology, linear motors based on rotaxanes and rotary motors based on overcrowded alkenes are particularly promising for performing work at the nanoscale. In this chapter, progress on light-driven molecular motors based on overcrowded alkenes is reviewed. Both the so-called first and second generation molecular motors are discussed, as well as their potential applications.

  15. Difluorocarbene Addition to Alkenes and Alkynes in Continuous Flow.

    PubMed

    Rullière, Pauline; Cyr, Patrick; Charette, André B

    2016-05-06

    The first in-flow difluorocarbene generation and addition to alkenes and alkynes is reported. The application of continuous flow technology allowed for the controlled generation of difluorocarbene from TMSCF3 and a catalytic quantity of NaI. The in situ generated electrophilic carbene reacts smoothly with a broad range of alkenes and alkynes, allowing the synthesis of the corresponding difluorocyclopropanes and difluorocyclopropenes. The reaction is complete within a 10 min residence time at high reaction concentrations. With a production flow rate of 1 mmol/min, continuous flow chemistry enables scale up of this process in a green, atom-economic, and safe manner.

  16. Zirconium-Catalyzed Asymmetric Carboalumination of Unactivated Terminal Alkenes.

    PubMed

    Xu, Shiqing; Negishi, Ei-Ichi

    2016-10-18

    Carbometalation of alkenes with stereocontrol offers an important opportunity for asymmetric C-C bond formation. However, the scope of catalytic stereoselective carbometalation of alkenes had until recently been limited to electronically biased alkenes or those with the presence of directing groups or other auxiliary functionalities to overcome the challenge associated with regio- and stereoselectivity. Catalytic asymmetric carbometalation of unactivated alkenes on the other hand remained as a formidable challenge. To address this long-standing problem, we sought to develop Zr-catalyzed asymmetric carboalumination of alkenes (namely, ZACA reaction) encouraged by our discovery of Zr-catalyzed alkyne carboalumination in 1978. Zr-catalyzed methylalumination of alkynes (ZMA) shows high regioselectivity and nearly perfect stereoselectivity. Its mechanistic studies have revealed that the ZMA reaction involves acyclic carbometalation with "superacidic" bimetallic reagents generated by interaction between two Lewis acids, i.e., alkylalanes and 16-electron zirconocene derivatives through dynamic polarization and ate complexation, affectionately termed as the "two-is-better-than-one" principle. With the encouraging results of Zr-catalyzed carboalumination of alkynes in hand, we sought to develop its alkene version for discovering a catalytic asymmetric C-C bond-forming reaction by using alkylalanes and suitable chiral zirconocene derivatives, which would generate "superacidic" bimetallic species to promote the desired carbometalation of alkenes. However, this proved to be quite challenging. Three major competing side reactions occur, i.e., (i) β-H transfer hydrometalation, (ii) bimetallic cyclic carbometalation, and (iii) Ziegler-Natta polymerization. The ZACA reaction was finally discovered by employing Erker's (-)-(NMI)2ZrCl2 as the catalyst and chlorinated hydrocarbon as solvent to suppress the undesired side reactions mentioned above. The ZACA reaction has evolved as a

  17. Cloning, Expression, Characterization, and Biocatalytic Investigation of the 4-Hydroxyacetophenone Monooxygenase from Pseudomonas putida JD1▿ †

    PubMed Central

    Rehdorf, Jessica; Zimmer, Christian L.; Bornscheuer, Uwe T.

    2009-01-01

    While the number of available recombinant Baeyer-Villiger monooxygenases (BVMOs) has grown significantly over the last few years, there is still the demand for other BVMOs to expand the biocatalytic diversity. Most BVMOs that have been described are dedicated to convert efficiently cyclohexanone and related cyclic aliphatic ketones. To cover a broader range of substrate types and enantio- and/or regioselectivities, new BVMOs have to be discovered. The gene encoding a BVMO identified in Pseudomonas putida JD1 converting aromatic ketones (HAPMO; 4-hydroxyacetophenone monooxygenase) was amplified from genomic DNA using SiteFinding-PCR, cloned, and functionally expressed in Escherichia coli. Furthermore, four other open reading frames could be identified clustered around this HAPMO. It has been suggested that these proteins, including the HAPMO, might be involved in the degradation of 4-hydroxyacetophenone. Substrate specificity studies revealed that a large variety of other arylaliphatic ketones are also converted via Baeyer-Villiger oxidation into the corresponding esters, with preferences for para-substitutions at the aromatic ring. In addition, oxidation of aldehydes and some heteroaromatic compounds was observed. Cycloketones and open-chain ketones were not or poorly accepted, respectively. It was also found that this enzyme oxidizes aromatic ketones such as 3-phenyl-2-butanone with excellent enantioselectivity (E ≫100). PMID:19251889

  18. The syn/anti-Dichotomy in the Palladium-Catalyzed Addition of Nucleophiles to Alkenes

    PubMed Central

    Kočovský, Pavel; Bäckvall, Jan-E

    2015-01-01

    In this review the stereochemistry of palladium-catalyzed addition of nucleophiles to alkenes is discussed, and examples of these reactions in organic synthesis are given. Most of the reactions discussed involve oxygen and nitrogen nucleophiles; the Wacker oxidation of ethylene has been reviewed in detail. An anti-hydroxypalladation in the Wacker oxidation has strong support from both experimental and computational studies. From the reviewed material it is clear that anti-addition of oxygen and nitrogen nucleophiles is strongly favored in intermolecular addition to olefin–palladium complexes even if the nucleophile is coordinated to the metal. On the other hand, syn-addition is common in the case of intramolecular oxy- and amidopalladation as a result of the initial coordination of the internal nucleophile to the metal. PMID:25378278

  19. Increased functionality of methyl oleate using alkene metathesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of alkene cross metathesis reactions were performed using a homogeneous ruthenium based catalyst. Using this technology, a variety of functional groups can be incorporated into the biobased starting material, methyl oleate. Trans-stilbene, styrene, methyl cinnamate and hexen-3-ol were all s...

  20. Heuristical Strategies on the Study Theme "The Unsaturated Hydrocarbons -- Alkenes"

    ERIC Educational Resources Information Center

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2011-01-01

    The influence of heuristical strategies upon the level of two experimental classes is studied in this paper. The didactic experiment took place at secondary school in Cluj-Napoca, in 2008-2009 school year. The study theme "The Unsaturated Hydrocarbons--Alkenes" has been efficiently learned by using the most active methods: laboratory…

  1. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2012-03-01

    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  2. Electron transfer reactions in the alkene mono-oxygenase complex from Nocardia corallina B-276.

    PubMed Central

    Gallagher, S C; Cammack, R; Dalton, H

    1999-01-01

    Nocardia corallina B-276 possesses a multi-component enzyme, alkene mono-oxygenase (AMO), that catalyses the stereoselective epoxygenation of alkenes. The reductase component of this system has been shown by EPR and fluorescence spectroscopy to contain two prosthetic groups, an FAD centre and a [2Fe-2S] cluster. The role of these centres in the epoxygenation reaction was determined by midpoint potential measurements and electron transfer kinetics. The order of potentials of the prosthetic groups of the reductase were FAD/FAD.=-216 mV, [2Fe-2S]/[2Fe-2S].=-160 mV and FAD./FAD.=-134 mV. Combined, these data implied that the reductase component supplied the energy required for the epoxygenation reaction and allowed a prediction of the mechanism of electron transfer within the AMO complex. The FAD moiety was reduced by bound NADH in a two-electron reaction. The electrons were then transported to the [2Fe-2S] centre one at a time, which in turn reduced the di-iron centre of the epoxygenase. Reduction of the di-iron centre is required for oxygen binding and substrate oxidation. PMID:10085230

  3. Mechanistic insight into the photoredox catalysis of anti-Markovnikov alkene hydrofunctionalization reactions

    DOE PAGES

    Romero, Nathan A.; Nicewicz, David A.

    2014-11-12

    Here, we describe our efforts to understand the key mechanistic aspects of the previously reported alkene hydrofunctionalization reactions using 9-mesityl-10-methylacridinium (Mes-Acr+) as a photoredox catalyst. Importantly, we are able to detect alkene cation radical intermediates, and confirm that phenylthiyl radical is capable of oxidizing the persistent acridinyl radical in a fast process that unites the catalytic activity of the photoredox and hydrogen atom transfer (HAT) manifolds. Additionally, we present evidence that diphenyl disulfide ((PhS)2) operates on a common catalytic cycle with thiophenol (PhSH) by way of photolytic cleaveage of the disulfide bond. Transition structure analysis of the HAT step usingmore » DFT reveals that the activation barrier for H atom donation from PhSH is significantly lower than 2-phenylmalononitrile (PMN) due to structural reorganization. In the early stages of the reaction, Mes-Acr+ is observed to engage in off-cycle adduct formation, presumably as buildup of PhS– becomes significant. The kinetic differences between PhSH and (PhS)2 as HAT catalysts indicate that the proton transfer step may have significant rate limiting influence.« less

  4. Mechanistic insight into the photoredox catalysis of anti-Markovnikov alkene hydrofunctionalization reactions

    SciTech Connect

    Romero, Nathan A.; Nicewicz, David A.

    2014-11-12

    Here, we describe our efforts to understand the key mechanistic aspects of the previously reported alkene hydrofunctionalization reactions using 9-mesityl-10-methylacridinium (Mes-Acr+) as a photoredox catalyst. Importantly, we are able to detect alkene cation radical intermediates, and confirm that phenylthiyl radical is capable of oxidizing the persistent acridinyl radical in a fast process that unites the catalytic activity of the photoredox and hydrogen atom transfer (HAT) manifolds. Additionally, we present evidence that diphenyl disulfide ((PhS)2) operates on a common catalytic cycle with thiophenol (PhSH) by way of photolytic cleaveage of the disulfide bond. Transition structure analysis of the HAT step using DFT reveals that the activation barrier for H atom donation from PhSH is significantly lower than 2-phenylmalononitrile (PMN) due to structural reorganization. In the early stages of the reaction, Mes-Acr+ is observed to engage in off-cycle adduct formation, presumably as buildup of PhS becomes significant. The kinetic differences between PhSH and (PhS)2 as HAT catalysts indicate that the proton transfer step may have significant rate limiting influence.

  5. Cobalt-Catalyzed [2π + 2π] Cycloadditions of Alkenes: Scope, Mechanism, and Elucidation of Electronic Structure of Catalytic Intermediates.

    PubMed

    Schmidt, Valerie A; Hoyt, Jordan M; Margulieux, Grant W; Chirik, Paul J

    2015-06-24

    Aryl-substituted bis(imino)pyridine cobalt dinitrogen compounds, ((R)PDI)CoN2, are effective precatalysts for the intramolecular [2π + 2π] cycloaddition of α,ω-dienes to yield the corresponding bicyclo[3.2.0]heptane derivatives. The reactions proceed under mild thermal conditions with unactivated alkenes, tolerating both amine and ether functional groups. The overall second order rate law for the reaction, first order with respect to both the cobalt precatalyst and the substrate, in combination with electron paramagnetic resonance (EPR) spectroscopic studies established the catalyst resting state as dependent on the identity of the precatalyst and diene substrate. Planar S = ½ κ(3)-bis(imino)pyridine cobalt alkene and tetrahedral κ(2)-bis(imino)pyridine cobalt diene complexes were observed by EPR spectroscopy and in the latter case structurally characterized. The hemilabile chelate facilitates conversion of a principally ligand-based singly occupied molecular orbital (SOMO) in the cobalt dinitrogen and alkene compounds to a metal-based SOMO in the diene intermediates, promoting C-C bond-forming oxidative cyclization. Structure-activity relationships on bis(imino)pyridine substitution were also established with 2,4,6-tricyclopentyl-substituted aryl groups, resulting in optimized catalytic [2π + 2π] cycloaddition. The cyclopentyl groups provide a sufficiently open metal coordination sphere that encourages substrate coordination while remaining large enough to promote a challenging, turnover-limiting C(sp(3))-C(sp(3)) reductive elimination.

  6. Theoretical determination of molecular structure and conformation. 18. On the formation of epoxides during the ozonolysis of alkenes

    SciTech Connect

    Cremer, D.; Bock, C.W.

    1986-06-11

    The reaction of carbonyl oxide (CH/sub 2/OO) and ethylene has been investigated by ab initio techniques. According to theoretical results, carbonyl oxide can act as an oxygen-transfer agent, thus leading to epoxide and aldehyde: C/sub 2/H/sub 4/ + CH/sub 2/OO ..-->.. CH/sub 2/OCH/sub 2/ + CH/sub 2/O. The calculated transition-state energies of the various epoxidation modes are 4-8 kcal/mol, which are comparable to activation energies of cycloaddition (cycloreversion) reactions encountered in the ozonolysis of alkenes. Epoxidation of alkene by carbonyl oxide is best described as a S/sub N/2 reaction on the terminal oxygen atom of carbonyl oxide. The preferred collision mode of the O-transfer reaction can be rationalized on the basis of frontier orbital interactions. Apart from epoxidation, carbonyl oxide can add to ethylene, yielding 1,2-dioxolane. The energy requirements of the cycloaddition are equivalent to those of the epoxidation. However, 1,2-dioxolanes will only be observed under normal ozonolysis conditions if the excess energy generated in the cycloaddition reaction is readily dissipated. Otherwise, 1,2-dioxolanes will immediately decompose, again yielding, among other products, epoxides.

  7. Ligand development in the Ni-catalyzed hydrocyanation of alkenes.

    PubMed

    Bini, Laura; Müller, Christian; Vogt, Dieter

    2010-11-28

    The addition of HCN to alkenes is a very useful reaction for the synthesis of functional organic substrates. Industrially the nickel-catalyzed hydrocyanation has gained considerable importance mainly because of the production of adiponitrile in the DuPont process. In this process the hydrocyanation of butadiene is carried out using aryl phosphite-modified nickel catalyst. Since the performance of organo-transition metal complexes is largely determined by the ligand environment of the metal, fundamental understanding and ligand development is of pivotal importance for any progress. This feature article gives an account of the development and application of different mono- and bidentate phosphorus-based ligands in the Ni-catalyzed hydrocyanation reaction of alkenes. Special attention will be paid to the development of insight and understanding of the ligand structural and electronic properties towards the improvement of the catalyst performance in terms of stability, activity, and selectivity.

  8. Metal-free syn-dioxygenation of alkenes.

    PubMed

    Rawling, Michael J; Tomkinson, Nicholas C O

    2013-03-07

    Reactions employing inexpensive reagents from sustainable sources and with low toxicity are becoming increasingly desirable from an academic and industrial perspective. A fascinating example of a synthetic transformation that requires development of alternative procedures is the osmium catalysed dihydroxylation. Recently there has been considerable interest in achieving this reaction through metal-free procedures. This review describes the methods available for metal-free syn-dioxygenation of alkenes.

  9. Alkene Metathesis and Renewable Materials: Selective Transformations of Plant Oils

    NASA Astrophysics Data System (ADS)

    Malacea, Raluca; Dixneuf, Pierre H.

    The olefin metathesis of natural oils and fats and their derivatives is the basis of clean catalytic reactions relevant to green chemistry processes and the production of generate useful chemicals from renewable raw materials. Three variants of alkene metathesis: self-metathesis, ethenolysis and cross-metathesis applied to plant oil derivatives will show new routes to fine chemicals, bifunctional products, polymer precursours and industry intermediates.

  10. Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates

    PubMed Central

    Ng, Sze-sze; Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis are discussed. PMID:16939275

  11. Biological conversion of gaseous alkenes to liquid chemicals.

    PubMed

    Desai, Shuchi H; Koryakina, Irina; Case, Anna E; Toney, Michael D; Atsumi, Shota

    2016-11-01

    Industrial gas-to-liquid (GTL) technologies are well developed. They generally employ syngas, require complex infrastructure, and need high capital investment to be economically viable. Alternatively, biological conversion has the potential to be more efficient, and easily deployed to remote areas on relatively small scales for the utilization of otherwise stranded resources. The present study demonstrates a novel biological GTL process in which engineered Escherichia coli converts C2-C4 gaseous alkenes into liquid diols. Diols are versatile industrially important chemicals, used routinely as antifreeze agents, polymer precursors amongst many other applications. Heterologous co-expression of a monooxygenase and an epoxide hydrolase in E. coli allows whole cell conversion of C2-C4 alkenes for the formation of ethylene glycol, 1,2-propanediol, 1,2-butanediol, and 2,3-butanediol at ambient temperature and pressure in one pot. Increasing intracellular NADH supply via addition of formate and a formate dehydrogenase increases ethylene glycol production titers, resulting in an improved productivity of 9mg/L/h and a final titer of 250mg/L. This represents a novel biological method for GTL conversion of alkenes to industrially valuable diols.

  12. Highly active and efficient catalysts for alkoxycarbonylation of alkenes

    NASA Astrophysics Data System (ADS)

    Dong, Kaiwu; Fang, Xianjie; Gülak, Samet; Franke, Robert; Spannenberg, Anke; Neumann, Helfried; Jackstell, Ralf; Beller, Matthias

    2017-01-01

    Carbonylation reactions of alkenes constitute the most important industrial processes in homogeneous catalysis. Despite the tremendous progress in this transformation, the development of advanced catalyst systems to improve their activity and widen the range of feedstocks continues to be essential for new practical applications. Herein a palladium catalyst based on 1,2-bis((tert-butyl(pyridin-2-yl)phosphanyl)methyl)benzene L3 (pytbpx) is rationally designed and synthesized. Application of this system allows a general alkoxycarbonylation of sterically hindered and demanding olefins including all kinds of tetra-, tri- and 1,1-disubstituted alkenes as well as natural products and pharmaceuticals to the desired esters in excellent yield. Industrially relevant bulk ethylene is functionalized with high activity (TON: >1,425,000 TOF: 44,000 h-1 for initial 18 h) and selectivity (>99%). Given its generality and efficiency, we expect this catalytic system to immediately impact both the chemical industry and research laboratories by providing a practical synthetic tool for the transformation of nearly any alkene into a versatile ester product.

  13. Highly active and efficient catalysts for alkoxycarbonylation of alkenes

    PubMed Central

    Dong, Kaiwu; Fang, Xianjie; Gülak, Samet; Franke, Robert; Spannenberg, Anke; Neumann, Helfried; Jackstell, Ralf; Beller, Matthias

    2017-01-01

    Carbonylation reactions of alkenes constitute the most important industrial processes in homogeneous catalysis. Despite the tremendous progress in this transformation, the development of advanced catalyst systems to improve their activity and widen the range of feedstocks continues to be essential for new practical applications. Herein a palladium catalyst based on 1,2-bis((tert-butyl(pyridin-2-yl)phosphanyl)methyl)benzene L3 (pytbpx) is rationally designed and synthesized. Application of this system allows a general alkoxycarbonylation of sterically hindered and demanding olefins including all kinds of tetra-, tri- and 1,1-disubstituted alkenes as well as natural products and pharmaceuticals to the desired esters in excellent yield. Industrially relevant bulk ethylene is functionalized with high activity (TON: >1,425,000; TOF: 44,000 h−1 for initial 18 h) and selectivity (>99%). Given its generality and efficiency, we expect this catalytic system to immediately impact both the chemical industry and research laboratories by providing a practical synthetic tool for the transformation of nearly any alkene into a versatile ester product. PMID:28120947

  14. Catalytic hydration of terminal alkenes to primary alcohols.

    PubMed

    Jensen, C M; Trogler, W C

    1986-09-05

    Direct catalytic hydration of terminal alkenes to primary alcohols would be an inexpensive route to industrially useful alcohols and a convenient synthetic route for the synthesis of terminal alcohols in general. The reaction between trans- PtHCl(PMe(3))(2) (where Me = CH(3)) and sodium hydroxide in a one-to-one mixture of water and 1-hexene yields a species that, at 60 degrees C and in the presence of the phasetransfer catalyst benzyltriethylammonium chloride, catalyzes selective hydration of 1-hexene to n-hexanol at a rate of 6.9 +/- 0.2 turnovers per hour. Hydration of 1-dodecene to n-dodecanol occurs at a rate of 8.3 +/- 0.4 turnovers per hour at 100 degrees C. Deuterium labeling experiments with trans-PtDCl(PMe(3))(2) show that hydration involves reductive elimination of a C-H bond. At low hydroxide concentrations (<8 equivalents), hydration of the water-soluble olefin 3-butene-1-ol to 1,4-butanediol exhibited a first-order dependence on hydroxide concentration for loss of catalytic activity. This suggests that hydroxide attacks the coordinated alkene slowly. At high hydroxide concentrations, the rate of catalysis was hydroxide-independent and first order in alkene. Substitution of coordinated water (k(1) = 9.3 +/- 0.5 x 10(-3) liters per mol per second) appears to be limitng under these conditions.

  15. Amine attack on coordinated alkenes: an interconversion from anti-Markovnikoff to Markovnikoff products.

    PubMed

    Pryadun, Ruslan; Sukumaran, Dinesh; Bogadi, Robert; Atwood, Jim D

    2004-10-06

    A sequence of alkene complexes of platinum, PtCl(2)(PPh(3))(alkene) (alkene = ethylene, propene, 1-butene, cis-2-butene, 1-hexene, 1-octene, and 1-decene), has been prepared. These complexes are characterized by NMR spectroscopy, including assignment of each proton, and X-ray crystal structures of the 1-propene and 1-hexene complexes. Each complex was reacted with diethylamine. For the 1-hexene, 1-octene, and 1-decene complexes, the amine displaces the alkene. For the smaller alkenes, the diethylamine nucleophilically attacks the coordinated alkene. For propene and 1-butene, the low-temperature addition leads to the anti-Markovnikoff nucleophilic attack, which slowly converts at room temperature to the Markovnikoff product. The transformation from anti-Markovnikoff to Markovnikoff addition occurs without diethylamine dissociation.

  16. Production of alkenes and novel secondary products by P450 OleTJE using novel H2 O2 -generating fusion protein systems.

    PubMed

    Matthews, Sarah; Tee, Kang Lan; Rattray, Nicholas J; McLean, Kirsty J; Leys, David; Parker, David A; Blankley, Richard T; Munro, Andrew W

    2017-03-01

    Jeotgalicoccus sp. 8456 OleTJE (CYP152L1) is a fatty acid decarboxylase cytochrome P450 that uses hydrogen peroxide (H2 O2 ) to catalyse production of terminal alkenes, which are industrially important chemicals with biofuel applications. We report enzyme fusion systems in which Streptomyces coelicolor alditol oxidase (AldO) is linked to OleTJE . AldO oxidizes polyols (including glycerol), generating H2 O2 as a coproduct and facilitating its use for efficient OleTJE -dependent fatty acid decarboxylation. AldO activity is regulatable by polyol substrate titration, enabling control over H2 O2 supply to minimize oxidative inactivation of OleTJE and prolong activity for increased alkene production. We also use these fusion systems to generate novel products from secondary turnover of 2-OH and 3-OH myristic acid primary products, expanding the catalytic repertoire of OleTJE .

  17. Efficient alkene hydrogenation over a magnetically recoverable and recyclable Fe3O4@GO nanocatalyst using hydrazine hydrate as the hydrogen source.

    PubMed

    Mondal, John; Nguyen, Kim Truc; Jana, Avijit; Kurniawan, Karina; Borah, Parijat; Zhao, Yanli; Bhaumik, Asim

    2014-10-18

    Magnetic Fe3O4 nanoparticles embedded in graphene oxide (Fe3O4@GO) behave as a highly efficient and reusable heterogeneous nanocatalyst for alkene hydrogenation in EtOH at 80 °C temperature using hydrazine hydrate as the hydrogen source to deliver the corresponding alkanes in good to excellent yields together with high TOF (>4500 h(-1)) within a 4-20 h reaction time.

  18. Spectroscopic and biocatalytic properties of a chlorophyll-containing extract in silica gel

    NASA Astrophysics Data System (ADS)

    Lipke, Agnieszka; Trytek, Mariusz; Fiedurek, Jan; Majdan, Marek; Janik, Ewa

    2013-11-01

    UV-Vis absorption and fluorescence spectra of chlorophyll a (in the form of spinach extract) in acetone solution and in silica gel showed a predominance of pigment dimers in its overall concentration and an evident transformation of chlorophyll a to pheophytin with time. The dimerization constant of chlorophyll a in acetone was log Kdim = 2.14, whereas the constants for chlorophyll a and pheophytin a in alcogel were log Kdim = 4.70 and log Kdim = 5.22, respectively. Biocatalytic experiments indicated the possibility of using the pigment embedded in silica gel, i.e. mainly its dimeric form, for biotransformation of α-pinene to pinocarveyl hydroperoxide, trans-pinocarveol, pinocarvone and myrtenal. The advantage of a heterogeneous biocatalytic system (composed of a solvent and silica gel) over a homogeneous system (single phase of chloroform) is the possibility of reusing the biocatalyst with about 10% preservation of its activity.

  19. Biocatalytic Synthesis of Chiral Alcohols and Amino Acids for Development of Pharmaceuticals

    PubMed Central

    Patel, Ramesh N.

    2013-01-01

    Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates and drugs has become increasingly important in the pharmaceutical industry. There has been an increasing awareness of the enormous potential of microorganisms and enzymes derived there from for the transformation of synthetic chemicals with high chemo-, regio- and enatioselectivities. In this article, biocatalytic processes are described for the synthesis of chiral alcohols and unntural aminoacids for pharmaceuticals. PMID:24970190

  20. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.

    PubMed

    Kohls, Hannes; Steffen-Munsberg, Fabian; Höhne, Matthias

    2014-04-01

    Novel enzyme activities and chemoenzymatic reaction concepts have considerably expanded the biocatalytic toolbox for chiral amine synthesis. Creating new activities or extending the scope of existing enzymes by protein engineering is a common trend in biocatalysis and in chiral amine synthesis specifically. For instance, an amine dehydrogenase that allows for the direct asymmetric amination of ketones with ammonia was created by mutagenesis of an l-amino acid dehydrogenase. Another trend in chiral amine chemistry is the development of strategies allowing for the synthesis of secondary amines. For example the smart choice of substrates for amine transaminases provided access to secondary amines by chemoenzymatic reactions. Furthermore novel biocatalysts for the synthesis of secondary amines such as imine reductases and Pictet-Spenglerases have been identified and applied. Recent examples showed that the biocatalytic amine synthesis is emerging from simple model reactions towards industrial scale preparation of pharmaceutical relevant substances, for instance, as shown in the synthesis of a Janus kinase 2 inhibitor using an amine transaminase. A comparison of important process parameters such as turnover number and space-time yield demonstrates that biocatalytic strategies for asymmetric reductive amination are maturing and can already compete with established chemical methods.

  1. Copper-catalyzed oxidative carbon-heteroatom bond formation: a recent update.

    PubMed

    Zhu, Xu; Chiba, Shunsuke

    2016-08-08

    This review updates recent advances in Cu-catalyzed (anaerobic) oxidative carbon-heteroatom bond formation on sp(3)- and sp(2)-C-H bonds as well as alkenes, classified according to the types of stoichiometric oxidants.

  2. Rhodium-catalyzed enantioselective cyclopropanation of electron deficient alkenes

    PubMed Central

    Wang, Hengbin; Guptill, David M.; Alvarez, Adrian Varela

    2013-01-01

    The rhodium-catalyzed reaction of electron-deficient alkenes with substituted aryldiazoacetates and vinyldiazoacetates results in highly stereoselective cyclopropanations. With adamantylglycine derived catalyst Rh2(S-TCPTAD)4, high asymmetric induction (up to 98% ee) can be obtained with a range of substrates. Computational studies suggest that the reaction is facilitated by weak interaction between the carbenoid and the substrate carbonyl but subsequently proceeds via different pathways depending on the nature of the carbonyl.. Acrylates and acrylamides result in the formation of cyclopropanation products while the use of unsaturated aldehydes and ketones results in the formation of epoxides. PMID:24049630

  3. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.

    PubMed

    Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P

    2014-07-21

    Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small-molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported herein is a method for alkene hydrogenation which utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe, and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering.

  4. Regioselective photocycloaddition of pyridine derivatives to electron-rich alkenes.

    PubMed

    Sakamoto, Masami; Sano, Takeru; Fujita, Shohei; Ando, Masaru; Yamaguchi, Kentaro; Mino, Takashi; Fujita, Tsutomu

    2003-02-21

    Irradiation of a benzene solution of 3-cyano-2,6-dimethoxypyridine in the presence of ethyl vinyl ether (EVE) gave 1:1 photoadducts, 3-cyano-5-ethoxy-2,8-dimethoxy-4,5-dihydroazocine, in good yields, whose structure was established by X-ray single-crystal analysis. The photoadduct was produced via cycloaddition between the C3-C4 position of the pyridine derivatives and an alkene chromophore. On the other hand, 3-cyano-2,6-dimethoxy-4-methylpyridine cycloadds to EVE at the C2-C3 position of the pyridine ring upon irradiation. The difference is explained on the basis of the steric effect.

  5. Osmium-catalyzed vicinal oxyamination of alkenes by N-(4-toluenesulfonyloxy)carbamates.

    PubMed

    Masruri; Willis, Anthony C; McLeod, Malcolm D

    2012-10-05

    N-(4-toluenesulfonyloxy)carbamates based on a range of common amine protecting groups serve as preformed nitrogen sources in the intermolecular osmium-catalyzed oxyamination reaction of a variety of mono-, di-, and trisubstituted alkenes. The reactions occur with low catalyst loadings and good yields and afford high regioselectivity for unsymmetrically substituted alkenes.

  6. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  7. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  8. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  9. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  10. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  11. One-pot o-nitrobenzenesulfonylhydrazide (NBSH) formation-diimide alkene reduction protocol.

    PubMed

    Marsh, Barrie J; Carbery, David R

    2009-04-17

    A one-pot protocol for the formation of 2-nitrobenzenesulfonylhydrazide (NBSH) from commercial reagents and subsequent alkene reduction is presented. The transformation is operationally simple and generally efficient for effecting diimide alkene reductions. A range of 16 substrates have been reduced, highlighting the unique chemoselectivity of diimide as a reduction system.

  12. Intermolecular Addition of Glycosyl Halides to Alkenes Mediated by Visible Light

    DTIC Science & Technology

    2010-08-25

    Visible light, an amine reductant, and a Ru(bpy)32+ photocatalyst can be used to mediate the addition of glycosyl halides into alkenes to synthesize...and a Ru(bpy)32+ photocatalyst can be used to mediate the addition of glycosyl halides into alkenes to synthesize important C-glycosides. This method

  13. Regioselective hydrothiolation of alkenes bearing heteroatoms with thiols catalyzed by palladium diacetate.

    PubMed

    Tamai, Taichi; Ogawa, Akiya

    2014-06-06

    In sharp contrast to many examples of transition-metal-catalyzed hydrothiolation of alkynes, the corresponding catalytic addition of thiols to alkenes has remained undeveloped. However, a novel Pd-catalyzed addition of thiols to alkenes bearing a heteroatom, such as oxygen and nitrogen, is found to proceed under mild conditions to give the corresponding Markovnikov adducts, regioselectively, in good yields.

  14. Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C-H Bond Activation

    SciTech Connect

    Harada, Hitoshi; Thalji, Reema; Bergman, Robert; Ellman, Jonathan

    2008-05-22

    Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe){sub 2}]{sub 2} and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities >90% ee for each substrate class. Cyclization of substrates with Z-alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer.

  15. Thermal electron attachment to chlorinated alkenes in the gas phase

    NASA Astrophysics Data System (ADS)

    Wnorowski, K.; Wnorowska, J.; Michalczuk, B.; Jówko, A.; Barszczewska, W.

    2017-01-01

    This paper reports the measurements of the rate coefficients and the activation energies of the electron capture processes with various chlorinated alkenes. The electron attachment processes in the mixtures of chlorinated alkenes with carbon dioxide have been investigated using a Pulsed Townsend technique. This study has been performed in the temperature range (298-378) K. The obtained rate coefficients more or less depended on temperature in accordance to Arrhenius equation. The activation energies (Ea's) were determined from the fit to the experimental data points with function ln(k) = ln(A) - Ea/kBT. The rate coefficients at 298 K were equal to 1.0 × 10-10 cm3 s-1, 2.2 × 10-11 cm3 s-1, 1.6 × 10-9 cm3 s-1, 4.4 × 10-8 cm3 s-1, 2.9 × 10-12 cm3 s-1 and 7.3 × 10-12 cm3 s-1 and activation energies were: 0.27 eV, 0.26 eV, 0.25 eV, 0.21 eV, 0.55 eV and 0.42 eV, for trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 2-chloropropene, 3-chloropropene respectively.

  16. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    SciTech Connect

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  17. Reactions of volatile organic compounds in the atmosphere: Ozone-alkene reactions

    NASA Astrophysics Data System (ADS)

    Fenske, Jill Denise

    2000-08-01

    Photochemical smog cannot form without sunlight, nitrogen oxides, and volatile organic compounds (VOC). This dissertation addresses several different aspects of VOC chemistry in the atmosphere. Aside from ambient levels of VOC outdoors, VOC are also present at moderate concentrations indoors. Many studies have measured indoor air concentrations of VOC, but only one considered the effects of human breath. The major VOC in the breath of healthy individuals are isoprene (12-580 ppb), acetone (1.2-1800 ppb), ethanol (13-1000 ppb), methanol (160-2000 ppb), and other alcohols. Human emissions of VOC are negligible on a regional (less than 4%) and global scale (less than 0.3%). However, in indoor air, under fairly crowded situations, human emissions of VOC may dominate other sources of VOC. An important class of VOC in the atmosphere is alkenes, due to their high reactivity. The ozone reaction with alkenes forms OH radicals, a powerful oxidizing agent in the troposphere. OH radical formation yields from the ozonolysis of several cycloalkenes were measured using small amounts of fast-reacting aromatics and aliphatic ethers to trace OH formation. The values are 0.62 +/- 0.15, 0.54 +/- 0.13, 0.36 +/- 0.08, and 0.91 +/- 0.20 for cyclopentene, cyclohexene, cycloheptene and 1-methylcyclohexene, respectively. Density functional theory calculations at the B3LYP/6-31 G(d,p) level are presented to aid in understanding the trends observed. The pressure dependence of OH radical yields may lend insight into the formation mechanism. We have made the first study of the pressure dependence of the OH radical yield for ethene, propene, 1-butene, trans-2-butene, and 2,3-dimethyl-2- butene over the range 20-760 Torr, and trans -3-hexene, and cyclopentene over the range 200-760 Torr. The OH yields from ozonolysis of ethene and propene were pressure dependent, while the other compounds had OH yields that were independent of pressure. Ozone-alkene reactions form vibrationally excited carbonyl

  18. THERMAL REACTIONS OF OXYGEN ATOMS WITH ALKENES AT LOW TEMPERATURES ON INTERSTELLAR DUST

    SciTech Connect

    Ward, Michael D.; Price, Stephen D. E-mail: s.d.price@ucl.ac.uk

    2011-11-10

    Laboratory experiments show that the thermal heterogeneous reactions of oxygen atoms may contribute to the synthesis of epoxides in interstellar clouds. The data set also indicates that the contribution of these pathways to epoxide formation, in comparison to non-thermal routes, is likely to be strongly temperature dependent. Our results indicate that an increased abundance of epoxides, relative to the corresponding aldehydes, could be an observational signature of a significant contribution to molecular oxidation via thermal O atom reactions with alkenes. Specifically surface science experiments show that both C{sub 2}H{sub 4}O and C{sub 3}H{sub 6}O are readily formed from reactions of ethene and propene molecules with thermalized oxygen atoms at temperatures in the range of 12-90 K. It is clear from our experiments that these reactions, on a graphite surface, proceed with significantly reduced reaction barriers compared with those operating in the gas phase. For both the C{sub 2}H{sub 4} + O and the C{sub 3}H{sub 6} + O reactions, the surface reaction barriers we determine are reduced by approximately an order of magnitude compared with the barriers in the gas phase. The modeling of our experimental results, which determines these reaction barriers, also extracts desorption energies and rate coefficients for the title reactions. Our results clearly show that the major product from the O + C{sub 2}H{sub 4} reaction is ethylene oxide, an epoxide.

  19. An osmium(III)/osmium(V) redox couple generating Os(V)(O)(OH) center for cis-1,2-dihydroxylation of alkenes with H2O2: Os complex with a nitrogen-based tetradentate ligand.

    PubMed

    Sugimoto, Hideki; Kitayama, Kazuhiro; Mori, Seiji; Itoh, Shinobu

    2012-11-21

    For the synthesis of the 1,2-diols, cis-1,2-dihydroxylation of alkenes catalyzed by osmium(VIII) tetroxide (OsO(4)) is a powerful method. However, OsO(4) is quite toxic due to its highly volatile and sublimable nature. Thus, the development of alternative catalysts for cis-1,2-dihydroxylation of alkenes is highly challenging. Our approach involves the use of a nitrogen-based tetradentate ligand, tris(2-pyridylmethyl)amine (tpa), for an osmium center to develop a new osmium catalyst and hydrogen peroxide (H(2)O(2)) as a cheap and environmentally benign oxidant. The new Os-tpa complex acts as a very efficient turnover catalyst for syn-selective dihydroxylation of various alkenes (turnover number ∼1000) in aqueous media, and H(2)O(2) oxidant is formally incorporated into the products quantitatively (100% atom efficiency). The reaction intermediates involved in the catalytic cycle have been isolated and characterized crystallographically as [Os(III)(OH)(H(2)O)(tpa)](2+) and [Os(V)(O)(OH)(tpa)](2+) complexes. The observed syn-selectivity, structural characteristics of the intermediates, and kinetic studies have suggested a concerted [3 + 2]-cycloaddition mechanism between [Os(V)(O)(OH)(tpa)](2+) and alkenes, which is strongly supported by DFT calculations.

  20. Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications.

    PubMed

    Steffen-Munsberg, Fabian; Vickers, Clare; Kohls, Hannes; Land, Henrik; Mallin, Hendrik; Nobili, Alberto; Skalden, Lilly; van den Bergh, Tom; Joosten, Henk-Jan; Berglund, Per; Höhne, Matthias; Bornscheuer, Uwe T

    2015-01-01

    In this review we analyse structure/sequence-function relationships for the superfamily of PLP-dependent enzymes with special emphasis on class III transaminases. Amine transaminases are highly important for applications in biocatalysis in the synthesis of chiral amines. In addition, other enzyme activities such as racemases or decarboxylases are also discussed. The substrate scope and the ability to accept chemically different types of substrates are shown to be reflected in conserved patterns of amino acids around the active site. These findings are condensed in a sequence-function matrix, which facilitates annotation and identification of biocatalytically relevant enzymes and protein engineering thereof.

  1. Chemotherapy pro-drug activation by biocatalytic virus-like nanoparticles containing cytochrome P450.

    PubMed

    Sánchez-Sánchez, Lorena; Cadena-Nava, Rubén D; Palomares, Laura A; Ruiz-Garcia, Jaime; Koay, Melissa S T; Cornelissen, Jeroen J M T; Vazquez-Duhalt, Rafael

    2014-06-10

    This work shows, for the first time, the encapsulation of a highly relevant protein in the biomedical field into virus-like particles (VLPs). A bacterial CYP variant was effectively encapsulated in VLPs constituted of coat protein from cowpea chlorotic mottle virus (CCMV). The catalytic VLPs are able to transform the chemotherapeutic pro-drug, tamoxifen, and the emerging pro-drug resveratrol. The chemical nature of the products was identified, confirming similar active products than those obtained with human CYP. The enzymatic VLPs remain stable after the catalytic reaction. The potential use of these biocatalytic nanoparticles as targeted CYP carriers for the activation of chemotherapy drugs is discussed.

  2. Tyramine-based enzymatic conjugate repeats for ultrasensitive immunoassay accompanying tyramine signal amplification with enzymatic biocatalytic precipitation.

    PubMed

    Hou, Li; Tang, Yun; Xu, Mingdi; Gao, Zhuangqiang; Tang, Dianping

    2014-08-19

    A new impedimetric immunoassay protocol based on enzyme-triggered formation of tyramine-enzyme repeats on gold nanoparticle (AuNP) was designed for highly sensitive detection of carcinoembryonic antigen (CEA, as a model) by virtue of utilizing enzymatic biocatalytic precipitation toward 4-chloro-1-naphthol (4-CN) on anti-CEA antibody (Ab1)-modified immunosensor. Initially, AuNP was functionalized with horseradish peroxidase and detection antibody (HRP-AuNP-Ab2), and then HRP-tyramine conjugate was utilized for the formation of tyramine-HRP repeats through the triggering of the immobilized HRP on the AuNP with the aid of H2O2. In the presence of target CEA, the carried HRP-tyramine repeats accompanying the sandwiched immunocomplex catalyzed the 4-CN oxidation to produce an insoluble precipitation on the immunosensor, thus causing a local alteration of the conductivity. Three signal-transduction tags including HRP-Ab2, HRP-AuNP-Ab2, and HRP-AuNP-Ab2 with HRP-tyramine repeats were employed for target CEA evaluation, and improved analytical properties were achieved by HRP-AuNP-Ab2 with HRP-tyramine repeats. Using the unique signal-transduction tag, the analytical performance of the impedimetric immunoassay was studied in detail. Under the optimal conditions, the impedimetric immunosensor displayed a wide dynamic working range of between 0.5 pg mL(-1) and 40 ng mL(-1) with a detection limit (LOD) of 0.38 pg mL(-1) relative to target CEA. The coefficients of variation (CVs) were ≤9.3% and 13.3% for the intra-assay and interassay, respectively. The levels of CEA in eight clinical serum specimens were measured by using the developed impedimetric immunosensor. The obtained results correlated well with those from the electrochemiluminescent (ECL)-based immunoassay with a correlation coefficient of 0.998.

  3. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones.

    PubMed

    Hoyos, Pilar; Sinisterra, Josep-Vicent; Molinari, Francesco; Alcántara, Andrés R; Domínguez de María, Pablo

    2010-02-16

    The development of efficient syntheses for enantiomerically enriched alpha-hydroxy ketones is an important research focus in the pharmaceutical industry. For example, alpha-hydroxy ketones are found in antidepressants, in selective inhibitors of amyloid-beta protein production (used in the treatment of Alzheimer's), in farnesyl transferase inhibitors (Kurasoin A and B), and in antitumor antibiotics (Olivomycin A and Chromomycin A3). Moreover, alpha-hydroxy ketones are of particular value as fine chemicals because of their utility as building blocks for the production of larger molecules. They can also be used in preparing many other important structures, such as amino alcohols, diols, and so forth. Several purely chemical synthetic approaches have been proposed to afford these compounds, together with some organocatalytic strategies (thiazolium-based carboligations, proline alpha-hydroxylations, and so forth). However, many of these chemical approaches are not straightforward, lack selectivity, or are economically unattractive because of the large number of chemical steps required (usually combined with low enantioselectivities). In this Account, we describe three different biocatalytic approaches that have been developed to efficiently produce alpha-hydroxy ketones: (i) The use of thiamine diphosphate-dependent lyases (ThDP-lyases) to catalyze the umpolung carboligation of aldehydes. Enantiopure alpha-hydroxy ketones are formed from inexpensive aldehydes with this method. Some lyases with a broad substrate spectrum have been successfully characterized. Furthermore, the use of biphasic media with recombinant whole cells overexpressing lyases leads to productivities of approximately 80-100 g/L with high enantiomeric excesses (up to >99%). (ii) The use of hydrolases to produce alpha-hydroxy ketones by means of (in situ) dynamic kinetic resolutions (DKRs). Lipases are able to successfully resolve racemates, and many outstanding examples have been reported. However

  4. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2002-01-01

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.w)in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  5. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2004-02-17

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.W) in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  6. Catalytic, Enantioselective Sulfenofunctionalisation of Alkenes: Mechanistic, Crystallographic, and Computational Studies

    PubMed Central

    Denmark, Scott E.; Hartmann, Eduard; Kornfilt, David J. P.; Wang, Hao

    2015-01-01

    The stereocontrolled introduction of vicinal heteroatomic substituents into organic molecules is one of the most powerful ways of adding value and function. Whereas many methods exist for the introduction of oxygen- and nitrogen-containing substituents, the number stereocontrolled methods for the introduction of sulfur-containing substituents pales by comparison. Previous reports from these laboratories have described the sulfenofunctionalization of alkenes that construct vicinal carbon-sulfur and carbon-oxygen, carbon-nitrogen as well as carbon-carbon bonds with high levels of diastereospecificity and enantioselectivity. This process is enabled by the concept of Lewis base activation of Lewis acids that provides activation of Group 16 electrophiles. To provide a foundation for expansion of substrate scope and improved selectivities, we have undertaken a comprehensive study of the catalytically active species. Insights gleaned from kinetic, crystallographic and computational methods have led to the introduction of a new family of sulfenylating agents that provide significantly enhanced selectivities. PMID:25411883

  7. New developments in gold-catalyzed manipulation of inactivated alkenes

    PubMed Central

    Chiarucci, Michel

    2013-01-01

    Summary Over the recent years, the nucleophilic manipulation of inactivated carbon–carbon double bonds has gained remarkable credit in the chemical community. As a matter of fact, despite lower reactivity with respect to alkynyl and allenyl counterparts, chemical functionalization of isolated alkenes, via carbon- as well as hetero atom-based nucleophiles, would provide direct access to theoretically unlimited added value of molecular motifs. In this context, homogenous [Au(I)] and [Au(III)] catalysis continues to inspire developments within organic synthesis, providing reliable responses to this interrogative, by combining crucial aspects such as chemical selectivity/efficiency with mild reaction parameters. This review intends to summarize the recent progresses in the field, with particular emphasis on mechanistic details. PMID:24367423

  8. New developments in gold-catalyzed manipulation of inactivated alkenes.

    PubMed

    Chiarucci, Michel; Bandini, Marco

    2013-11-21

    Over the recent years, the nucleophilic manipulation of inactivated carbon-carbon double bonds has gained remarkable credit in the chemical community. As a matter of fact, despite lower reactivity with respect to alkynyl and allenyl counterparts, chemical functionalization of isolated alkenes, via carbon- as well as hetero atom-based nucleophiles, would provide direct access to theoretically unlimited added value of molecular motifs. In this context, homogenous [Au(I)] and [Au(III)] catalysis continues to inspire developments within organic synthesis, providing reliable responses to this interrogative, by combining crucial aspects such as chemical selectivity/efficiency with mild reaction parameters. This review intends to summarize the recent progresses in the field, with particular emphasis on mechanistic details.

  9. Selenide-Catalyzed Stereoselective Construction of Tetrasubstituted Trifluoromethylthiolated Alkenes with Alkynes.

    PubMed

    Wu, Jin-Ji; Xu, Jia; Zhao, Xiaodan

    2016-10-17

    The efficient regio- and stereoselective construction of tetrasubstituted alkenes is challenging and very important. For this purpose, we have developed an efficient approach to synthesize tetrasubstituted trifluoromethylthiolated alkenes from simple alkynes in excellent regio- and stereoselectivities by selenide-catalyzed multicomponent coupling. Using this method, trifluoromethylthiolated alkenyl triflates and arenes were achieved. In particular, the triflates could be further converted into carbofunctionalized alkenes by palladium-catalyzed cross-coupling reactions. Our method provides a new pathway for the construction of trifluoromethylthiolated tricarboalkenes. This work presents the first example of selenide-catalyzed trifluoromethylthiolation of alkynes and enables the challenging functionalizations of alkynes.

  10. ORGANIC CHEMISTRY. Iron-catalyzed intermolecular [2+2] cycloadditions of unactivated alkenes.

    PubMed

    Hoyt, Jordan M; Schmidt, Valerie A; Tondreau, Aaron M; Chirik, Paul J

    2015-08-28

    Cycloadditions, such as the [4+2] Diels-Alder reaction to form six-membered rings, are among the most powerful and widely used methods in synthetic chemistry. The analogous [2+2] alkene cycloaddition to synthesize cyclobutanes is kinetically accessible by photochemical methods, but the substrate scope and functional group tolerance are limited. Here, we report iron-catalyzed intermolecular [2+2] cycloaddition of unactivated alkenes and cross cycloaddition of alkenes and dienes as regio- and stereoselective routes to cyclobutanes. Through rational ligand design, development of this base metal-catalyzed method expands the chemical space accessible from abundant hydrocarbon feedstocks.

  11. Catalytic Selenium-Promoted Intermolecular Friedel-Crafts Alkylation with Simple Alkenes.

    PubMed

    Tang, E; Zhao, Yinjiao; Li, Wen; Wang, Weilin; Zhang, Meng; Dai, Xin

    2016-03-04

    A method for conducting selenium-promoted intermolecular Friedel-Crafts (F-C) alkylation reactions has been developed with simple alkenes using trimethylsilyl trifluoromethanesulfonate as a catalyst and N-phenylselenophthalimide as an efficient selenium source. Electron-rich arenes smoothly underwent F-C alkylation with a variety of alkenes to afford alkylated products in good yield and with high regioselectivity and diastereoselectivity. The regioselectivity and stereoselectivity of arenes and alkenes as well as a preliminary mechanism of the F-C alkylation reaction are discussed.

  12. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    EPA Science Inventory

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  13. Biocatalytic carbon capture via reversible reaction cycle catalyzed by isocitrate dehydrogenase.

    PubMed

    Xia, Shunxiang; Frigo-Vaz, Benjamin; Zhao, Xueyan; Kim, Jungbae; Wang, Ping

    2014-09-12

    The practice of carbon capture and storage (CCS) requires efficient capture and separation of carbon dioxide from its gaseous mixtures such as flue gas, followed by releasing it as a pure gas which can be subsequently compressed and injected into underground storage sites. This has been mostly achieved via reversible thermochemical reactions which are generally energy-intensive. The current work examines a biocatalytic approach for carbon capture using an NADP(H)-dependent isocitrate dehydrogenase (ICDH) which catalyzes reversibly carboxylation and decarboxylation reactions. Different from chemical carbon capture processes that rely on thermal energy to realize purification of carbon dioxide, the biocatalytic strategy utilizes pH to leverage the reaction equilibrium, thereby realizing energy-efficient carbon capture under ambient conditions. Results showed that over 25 mol of carbon dioxide could be captured and purified from its gas mixture for each gram of ICDH applied for each carboxylation/decarboxylation reaction cycle by varying pH between 6 and 9. This work demonstrates the promising potentials of pH-sensitive biocatalysis as a green-chemistry route for carbon capture.

  14. Biocatalytic virus capsid as nanovehicle for enzymatic activation of Tamoxifen in tumor cells.

    PubMed

    Tapia-Moreno, Alejandro; Juarez-Moreno, Karla; Gonzalez-Davis, Oscar; Cadena-Nava, Ruben D; Vazquez-Duhalt, Rafael

    2017-04-03

    Most of the drugs used in chemotherapy should be activated by a transformation catalyzed by cytochrome P450 (CYP) enzymes. In this work, bacteriophage P22 virus-like particles (VLPs) containing CYP activity, immunologically inert and functionalized in order to be recognized by human cervix carcinoma cells and human breast adenocarcinoma cells were designed. The CYP was encapsulated inside the virus capsid obtained from the bacteriophage P22. CYP and coat protein were both heterologously expressed in E. coli. The VLPs with enzymatic activity were covered with polyethylene glycol that was functionalized in its distal end with folic acid in order to be recognized by folate receptors exhibited on tumor cells. The capacity of biocatalytic VLPs to be recognized and internalized into tumor cells is demonstrated. The VLP-treated cells showed enhanced capacity for the transformation of the pro-drug tamoxifen, which resulted in an increase of the cell sensitivity to this oncological drug. In this work, the potential use of biocatalytic VLPs vehicles as a delivery system of medical relevant enzymes is clearly demonstrated. In addition to cancer treatment, this technology also offers an interesting platform as nano-bioreactors for intracellular delivery of enzymatic activity for other diseases originated by the lack of enzymatic activity.

  15. A robust methodology for kinetic model parameter estimation for biocatalytic reactions.

    PubMed

    Al-Haque, Naweed; Santacoloma, Paloma A; Neto, Watson; Tufvesson, Pär; Gani, Rafiqul; Woodley, John M

    2012-01-01

    Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme-catalyzed reactions generally include several parameters, which are strongly correlated with each other. State-of-the-art methodologies such as nonlinear regression (using progress curves) or graphical analysis (using initial rate data, for example, the Lineweaver-Burke plot, Hanes plot or Dixon plot) often incorporate errors in the estimates and rarely lead to globally optimized parameter values. In this article, a robust methodology to estimate parameters for biocatalytic reaction kinetic expressions is proposed. The methodology determines the parameters in a systematic manner by exploiting the best features of several of the current approaches. The parameter estimation problem is decomposed into five hierarchical steps, where the solution of each of the steps becomes the input for the subsequent step to achieve the final model with the corresponding regressed parameters. The model is further used for validating its performance and determining the correlation of the parameters. The final model with the fitted parameters is able to describe both initial rate and dynamic experiments. Application of the methodology is illustrated with a case study using the ω-transaminase catalyzed synthesis of 1-phenylethylamine from acetophenone and 2-propylamine.

  16. Biocatalytic Synthesis of Allylic and Allenyl Sulfides through a Myoglobin-Catalyzed Doyle-Kirmse Reaction.

    PubMed

    Tyagi, Vikas; Sreenilayam, Gopeekrishnan; Bajaj, Priyanka; Tinoco, Antonio; Fasan, Rudi

    2016-10-17

    The first example of a biocatalytic [2,3]-sigmatropic rearrangement reaction involving allylic sulfides and diazo reagents (Doyle-Kirmse reaction) is reported. Engineered variants of sperm whale myoglobin catalyze this synthetically valuable C-C bond-forming transformation with high efficiency and product conversions across a variety of sulfide substrates (e.g., aryl-, benzyl-, and alkyl-substituted allylic sulfides) and α-diazo esters. Moreover, the scope of this myoglobin-mediated transformation could be extended to the conversion of propargylic sulfides to give substituted allenes. Active-site mutations proved effective in enhancing the catalytic efficiency of the hemoprotein in these reactions as well as modulating the enantioselectivity, resulting in the identification of the myoglobin variant Mb(L29S,H64V,V68F), which is capable of mediating asymmetric Doyle-Kirmse reactions with an enantiomeric excess up to 71 %. This work extends the toolbox of currently available biocatalytic strategies for the asymmetric formation of carbon-carbon bonds.

  17. Recent advances on halohydrin dehalogenases-from enzyme identification to novel biocatalytic applications.

    PubMed

    Schallmey, Anett; Schallmey, Marcus

    2016-09-01

    Halohydrin dehalogenases are industrially relevant enzymes that catalyze the reversible dehalogenation of vicinal haloalcohols with formation of the corresponding epoxides. In the reverse reaction, also other negatively charged nucleophiles such as azide, cyanide, or nitrite are accepted besides halides to open the epoxide ring. Thus, novel C-N, C-C, or C-O bonds can be formed by halohydrin dehalogenases, which makes them attractive biocatalysts for the production of various β-substituted alcohols. Despite the fact that only five individual halohydrin dehalogenase enzyme sequences have been known until recently enabling their heterologous production, a large number of different biocatalytic applications have been reported using these enzymes. The recent characterization of specific sequence motifs has facilitated the identification of novel halohydrin dehalogenase sequences available in public databases and has largely increased the number of recombinantly available enzymes. These will help to extend the biocatalytic repertoire of this enzyme family and to foster novel biotechnological applications and developments in the future. This review gives a general overview on the halohydrin dehalogenase enzyme family and their biochemical properties and further focuses on recent developments in halohydrin dehalogenase biocatalysis and protein engineering.

  18. Environmental significance of biocatalytic conversion of low grade oils

    SciTech Connect

    Lin, M.S.; Premuzic, E.T.; Lian, H.; Zhou, W.M.; Yablon, J.

    1996-09-01

    Studies dealing with the interactions between extremophilic microorganisms and crude oils have led to the identification of biocatalysts which through multiple biochemical reactions catalyze desulfurization, denitrogenation, and demetalation reactions in oils. Concurrently, the oils are also converted to lighter oils. These complex biochemical reactions have served as models in the development of the crude oil bioconversion technology to be applied prior to the treatment of oils by conventional chemical processes. In practical terms, this means that the efficiency of the existing technology is being enhanced. For example, the recently introduced additional regulation for the emission of nitrogen oxides in some states restricts further the kinds of oils that may be used in burners. The biocatalysts being developed in this laboratory selectively interact with nitrogen compounds, i.e. basic and neutral types present in the oil and, hence, affect the fuel NOx production. This, in turn, has a cost-efficient influence on the processed oils and their consumption. In this paper, these cost-efficient and beneficial effects will be discussed in terms of produced oils, the lowering of sulfur and nitrogen contents, and the effect on products, as well as the longevity of catalysts due to the removal of heteroatoms and metal containing compounds found in crudes.

  19. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of CF2H-Containing Alcohols.

    PubMed

    Arai, Yusuke; Tomita, Ren; Ando, Gaku; Koike, Takashi; Akita, Munetaka

    2016-01-22

    We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2 H) group into alkenes by visible-light-driven photoredox catalysis. The use of fac-[Ir(ppy)3] (ppy=2-pyridylphenyl) photocatalyst and shelf-stable Hu's reagent, N-tosyl-S-difluoromethyl-S-phenylsulfoximine, as a CF2 H source is the key to success. The well-designed photoredox system achieves synthesis of not only β-CF2 H-substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single-step and regioselective formation of C(sp(3))-CF2 H and C(sp(3))-O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups.

  20. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms.

    PubMed

    Kang, Min-Kyoung; Nielsen, Jens

    2016-08-26

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as 'drop-in' biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks and possible solutions to accomplish industrial level production of these chemicals by microbial fermentation.

  1. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of CF2H‐Containing Alcohols

    PubMed Central

    Arai, Yusuke; Tomita, Ren; Ando, Gaku

    2015-01-01

    Abstract We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2H) group into alkenes by visible‐light‐driven photoredox catalysis. The use of fac‐[Ir(ppy)3] (ppy=2‐pyridylphenyl) photocatalyst and shelf‐stable Hu's reagent, N‐tosyl‐S‐difluoromethyl‐S‐phenylsulfoximine, as a CF2H source is the key to success. The well‐designed photoredox system achieves synthesis of not only β‐CF2H‐substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single‐step and regioselective formation of C(sp3)–CF2H and C(sp3)−O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups. PMID:26639021

  2. Synthesis of sulfonated oxindoles by potassium iodide catalyzed arylsulfonylation of activated alkenes with sulfonylhydrazides in water.

    PubMed

    Li, Xiaoqing; Xu, Xiangsheng; Hu, Peizhu; Xiao, Xuqiong; Zhou, Can

    2013-07-19

    A catalytic system consisting of KI, 18-crown-6, and TBHP for arylsulfonylation of activated alkenes with sulfonylhydrazides as sulfonyl precursor is described. This protocol provides a practical and environmentally benign method for the construction of sulfonated oxindoles in water.

  3. Is H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?

    PubMed

    Walavalkar, M P; Vijayakumar, S; Sharma, A; Rajakumar, B; Dhanya, S

    2016-06-23

    The relative yields of products of the reaction of Cl atoms with 1-alkenes (C4-C9) were determined to see whether H atom abstraction is an important channel and if it is to identify the preferred position of abstraction. The presence of all the possible positional isomers of long chain alkenones and alkenols among the products, along with chloroketones and chloroalcohols, confirms the occurrence of H atom abstraction. A consistent pattern of distribution of abstraction products is observed with oxidation at C4 (next to allyl) being the lowest and that at CH2 groups away from the double bond being the highest. This contradicts with the higher stability of allyl (C3) radical. For a better understanding of the relative reactivity, ab initio calculations at MP2/6-311+G (d,p) level of theory are carried out in the case of 1-heptene. The total rate coefficient, calculated using conventional transition state theory, was found to be in good agreement with the experimental value at room temperature. The preferred position of Cl atom addition is predicted to be the terminal carbon atom, which matches with the experimental observation, whereas the rate coefficients calculated for individual channels of H atom abstraction do not explain the observed pattern of products. The distribution of abstraction products except at C4 is found to be better explained by reported structure activity relationship, developed from experimental rate coefficient data. This implies the reactions to be kinetically dictated and emphasizes the importance of secondary reactions.

  4. Biocatalytic CO2 sequestration based on shell regeneration

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2012-04-01

    Carbon dioxide, CO2, is one of the green gases, being uniformly distributed over the earth's surface. Recently, a variety of methods exists or has been proposed for pre- or post-emission capture and sequestration of CO2. However, CCS (carbon capture & storage) do not quarntee permanent treatment of CO2 and could ingenerate environment risks. Some organisms convert CO2 into exoskeleton (e.g., mollusks) or energy sources (e.g., plants) during metabolism under atmospheric conditions. One of representative biomaterials in ocean is bivalve shell to be composed of CaCO3. Calcium carbonate is not only abundant material in the world but also thermodynamically stable mineral in the capture of CO2. Bivalve has produced CaCO3 under seawater condition, in other word, near atmospheric conditions (1 atm. and around 20-25 oC). At the inorganic point, the synthesis of CaCO3 is as followed. Ca2+ + CO32- -> CaCO3 The bivalve shell plays an important role to protect bivalve's internal organs from prodetor. What will be happened if the shell is damaged and a hole is made? Bivalve must cover the hole to prevent the oxidation of internal organs as fast as possible. From in vitro crystallization test of a notched shell, rapid CaCO3 production was identified at the damaged area. The biocatalyst related to shell regeneration was purified and named as SPSR (Soluble Protein related to Shell Regeneration) that is obtained from the oyster, Crassostrea gigas. And in vitro CaCO3 crystallization test was used to calculate the crystal growth rate of SPSR on CaCO3 crystallization. The characteristics of SPRR are discussed at the point of CO2 hydration and rapid CaCO3 synthesis. To develop the bioinspired process based on shell regeneration concept, the analysis of protein structure has been studied and the immobilization has been carried out for easy recovery of SPSR.

  5. Ruthenium-catalyzed hydroformylation/reduction of olefins to alcohols: extending the scope to internal alkenes.

    PubMed

    Wu, Lipeng; Fleischer, Ivana; Jackstell, Ralf; Profir, Irina; Franke, Robert; Beller, Matthias

    2013-09-25

    In the presence of 2-phosphino-substituted imidazole ligands and Ru3(CO)12 or Ru(methylallyl)2(COD) direct hydroformylation and hydrogenation of alkenes to alcohols takes place. In addition to terminal alkenes, also more challenging internal olefins are converted preferentially to industrially important linear alcohols in high yield (up to 88%) and regioselectivity (n:iso up to 99:1).

  6. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    NASA Technical Reports Server (NTRS)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  7. Stereochemically Defined Various Multisubstituted Alkenes Bearing a Tetrafluoroethylene (-CF2CF2-) Fragment.

    PubMed

    Sakaguchi, Yukiho; Yamada, Shigeyuki; Konno, Tsutomu; Agou, Tomohiro; Kubota, Toshio

    2017-02-03

    Highly regio- and stereoselective transformation of commercially available 4-bromo-3,3,4,4-tetrafluoro-1-butene into multisubstituted alkenes having a tetrafluoroethylene fragment through Heck reactions and/or Suzuki-Miyaura cross-coupling reactions was established. Thus, the obtained alkenes underwent a smooth reductive coupling reaction with aldehydes under the influence of MeLi/LiBr-free, affording structurally unprecedented fluorinated materials.

  8. Iminoxyl radical-promoted dichotomous cyclizations: efficient oxyoximation and aminooximation of alkenes.

    PubMed

    Peng, Xie-Xue; Deng, Yun-Jing; Yang, Xiu-Long; Zhang, Lin; Yu, Wei; Han, Bing

    2014-09-05

    A novel iminoxyl radical-involved metal-free approach to vicinal oxyoximation and aminooximation of unactivated alkenes is developed. This method utilizes the dichotomous reactivity of the iminoxyl radical to furnish a general difunctionalization on alkenes using simple tert-butyl nitrite (TBN) as the iminoxyl radical initiator as well the carbon radical trap. By using this protocol, oxime featured 4,5-dihydroisoxazoles and cyclic nitrones were facilely prepared from β,γ- and γ,δ-unsaturated ketoximes, respectively.

  9. Heterogeneous allylsilylation of aromatic and aliphatic alkenes catalyzed by proton-exchanged montmorillonite.

    PubMed

    Motokura, Ken; Matsunaga, Shigekazu; Miyaji, Akimitsu; Sakamoto, Yasuharu; Baba, Toshihide

    2010-04-02

    Allylsilylation of an alkene is the only known procedure to install both silyl and allyl groups onto a carbon-carbon double bond directly. Proton-exchanged montmorillonite showed excellent catalytic performances for the allylsilylation of alkenes. For example, the reaction of p-chlorostyrene with allyltrimethylsilane proceeded smoothly to afford the corresponding allylsilylated product in 95% yield. We also attempted to isolate the reaction intermediate on the montmorillonite surface to investigate the reaction mechanism.

  10. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes.

    PubMed

    Buras, Zachary J; Elsamra, Rehab M I; Jalan, Amrit; Middaugh, Joshua E; Green, William H

    2014-03-20

    The simplest Criegee Intermediate (CH2OO), a well-known biradical formed in alkene ozonolysis, is known to add across double bonds. Here we report direct experimental rate measurements of the simplest Criegee Intermediate reacting with C2–C4 alkenes obtained using the laser flash photolysis technique probing the recently measured B(1)A′ ← X(1)A′ transition in CH2OO. The measured activation energy (298–494 K) for CH2OO + alkenes is Ea ≈ 3500 ± 1000 J mol(–1) for all alkyl substituted alkenes and Ea = 7000 ± 900 J mol(–1) for ethene. The measured Arrhenius pre-exponential factors (A) vary between (2 ± 1) × 10(–15) and (11 ± 3) × 10(–15) cm(3) molecule(–1) s(–1). Quantum chemical calculations of the corresponding rate coefficients reproduce qualitative reactivity trends but overestimate the absolute rate coefficients. Despite the small Ea's, the CH2OO + alkene rate coefficients are almost 2 orders of magnitude smaller than those of similar reactions between CH2OO and carbonyl compounds. Using the rate constants measured here, we estimate that, under typical atmospheric conditions, reaction with alkenes does not represent a significant sink of CH2OO. In environments rich in C═C double bonds, however, such as ozone-exposed rubber or emission plumes, these reactions can play a significant role.

  11. Well-Defined Polymers Bearing Pendent Alkene Functionalities via Selective RAFT Polymerization

    PubMed Central

    Ma, Jun; Cheng, Chong; Sun, Guorong; Wooley, Karen L.

    2009-01-01

    A facile synthetic approach for the preparation of well-defined (co)polymers bearing pendent alkene functionalities was established by selective reversible addition-fragmentation chain transfer (RAFT) (co)polymerization. A divinyl monomer 4-(3′-buten-1′-oxy)-2,3,5,6-tetrafluorostyrene (1) with a styrenyl group and a pendent alkene group was synthesized. Due to a very high reactivity of the styrenyl group relative to the alkene group in 1, functional fluoro(co)polymers with both well-defined structures and pendent alkene groups were prepared by RAFT polymerizations of 1 and copolymerization of 1 with pentafluorostyrene (PFS). Alkene-functionalized diblock copolymers were also prepared by RAFT copolymerization of 1 with PFS or styrene, extending from a poly(styrene-alt-maleic anhydride) macro-chain transfer agent. Hydrolysis and ammonolysis of these copolymers resulted in amphiphilic diblock fluorocopolymers with alkene-functionalized hydrophobic segments, which were shown to form internally-functionalized micelles in THF-water. PMID:20640195

  12. Epoxidation of alkenes catalyzed by phenyl group-modified, periodic mesoporous organosilica-entrapped, dimeric manganese-salen complexes.

    PubMed

    Hu, Jianglei; Wu, Qingyin; Li, Wei; Ma, Ling; Su, Fang; Guo, Yihang; Qiu, Yongqing

    2011-12-16

    A series of reusable, recoverable, diamine-bridged dimeric manganese-salen complexes were prepared by the encapsulation of homogeneous dimeric Mn(salen) complexes into nanocages of a 3D periodic mesoporous organosilica (PMO) support followed by silylation of the support with organosilane. The composition, structure, morphology, and textural properties of the prepared PMO-entrapped dimeric Mn(salen) complexes were characterized, and their catalytic performances were tested in the epoxidation of alkenes (styrene, cyclohexene, and 1-phenylcyclohexene), with NaClO as an oxygen source and 4-phenylpyridine-N-oxide as an axial ligand. Furthermore, the influences of the textural and morphological properties of the entrapped dimeric Mn(salen) complexes and the key reaction parameters on the catalytic activity and selectivity are discussed. Finally, the reusability of the supported dimeric Mn(salen) complexes was evaluated over three catalytic runs.

  13. Regioselective Oxo-Amination of Alkenes and Enol Ethers with N-Bromosuccinimide-Dimethyl Sulfoxide Combination: A Facile Synthesis of α-Amino-Ketones and Esters.

    PubMed

    Prasad, Pragati K; Reddi, Rambabu N; Sudalai, Arumugam

    2016-02-05

    An unprecedented conversion of alkenes and enol ethers to the corresponding α-imido carbonyl compounds with excellent regioselectivity and yields has been developed. This oxo-amination process employs readily available N-bromosuccinimide (NBS) and secondary amines as N-sources and dimethyl sulfoxide (DMSO) as the oxidant and also leads to the production of amino alcohols in a single step on reduction, thus broadening the scope of this operationally simple reaction. For the first time, the formation of reactive Me2S(+)-O-Br species generated by the interaction of NBS with DMSO has been proven.

  14. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.

    PubMed

    Beller, Harry R; Goh, Ee-Been; Keasling, Jay D

    2010-02-01

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which

  15. Kinetics of the polymerization of alkenes on zeolites

    NASA Astrophysics Data System (ADS)

    Alberty, Robert A.

    1987-09-01

    The polymerization of alkenes at temperatures in the neighborhood of 600 K on a zeolite catalyst can be described in terms of a mechanism with bimolecular polymerization reactions and cracking reactions of isomer groups. The rate equations for the formation of isomer groups up to C13H26 have been integrated using the fourth-order Runge-Kutta method for polymerizations at constant temperature and pressure. In the absence of data on rate constants, calculations have been made on the basis of the assumption that all the bimolecular rate constants are equal or all the cracking constants are equal. In each case the rate constants for the reverse reactions have been calculated using the equilibrium constants for the steps in the mechanism. Under some circumstances the plots of weight fractions of isomer groups vs time have nearly the same shape for the two assumptions. However, it is possible to distinguish between the two assumptions by using experiments at sufficiently high pressures. The calculations show that it is of interest to examine the compositions arising from different starting materials, even though the equilibrium composition depends only upon temperature and pressure.

  16. Imaging the dynamics of chlorine atom reactions with alkenes

    NASA Astrophysics Data System (ADS)

    Estillore, Armando D.; Visger, Laura M.; Suits, Arthur G.

    2010-08-01

    We report a study of chlorine atom reactions with a series of target monounsaturated alkene molecules: 1-pentene, 1-hexene, 2-hexene, and cyclohexene. These reactions were studied using crossed-beam dc slice ion imaging at collision energies of 4 and 7 kcal/mol. Images of the reactively scattered alkenyl radical products were obtained via single photon ionization at 157 nm. The angular distributions at low collision energy are largely isotropic, suggesting the formation of a complex that has a lifetime comparable to or longer than its rotational period, followed by HCl elimination. At high collision energy, the distributions show a sharp forward peak superimposed on the isotropic component accounting for ˜13% of the product flux. The translational energy distributions peak near zero for the backscattered product, in sharp contrast to the results for alkanes. In the forward direction, the translational energy distributions change dramatically with collision energy. At the high collision energy, a sharp forward peak at ˜80% of the collision energy appears, quite reminiscent of results of our recent study of Cl+pentane reactions. The scattering distributions for all target molecules are similar, suggesting similarity of the reaction dynamics among these molecules. Ab initio calculations of the energetics and ionization energies for the various product channels were performed at the CBS-QB3 level to aid in interpreting the results.

  17. Biocatalytic self-assembly of nanostructured peptide microparticles using droplet microfluidics.

    PubMed

    Bai, Shuo; Debnath, Sisir; Gibson, Kirsty; Schlicht, Barbara; Bayne, Lauren; Zagnoni, Michele; Ulijn, Rein V

    2014-01-29

    Uniformly-sized, nanostructured peptide microparticles are generated by exploiting the ability of enzymes to serve (i) as catalysts, to control self-assembly within monodisperse, surfactant-stabilized water-in-oil microdroplets, and (ii) as destabilizers of emulsion interfaces, to enable facile transfer of the produced microparticles to water. This approach combines the advantages of biocatalytic self-assembly with the compartmentalization properties enabled by droplet microfluidics. Firstly, using microfluidic techniques, precursors of self-assembling peptide derivatives and enzymes are mixed in the microdroplets which upon catalytic conversion undergo molecular self-assembly into peptide particles, depending on the chemical nature of the precursors. Due to their amphiphilic nature, enzymes adsorb at the water-surfactant-oil interface of the droplets, inducing the transfer of peptide microparticles from the oil to the aqueous phase. Ultimately, through washing steps, enzymes can be removed from the microparticles which results in uniformely-sized particles composed of nanostructured aromatic peptide amphiphiles.

  18. Bubble-Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions

    PubMed Central

    2016-01-01

    The motion of self-propelled tubular micro- and nanojets has so far been achieved by bubble propulsion, e.g., O2 bubbles formed by catalytic decomposition of H2O2, which renders future biomedical applications inviable. An alternative self-propulsion mechanism for tubular engines on the nanometer scale is still missing. Here, we report the fabrication and characterization of bubble-free propelled tubular nanojets (as small as 220 nm diameter), powered by an enzyme-triggered biocatalytic reaction using urea as fuel. We studied the translational and rotational dynamics of the nanojets as functions of the length and location of the enzymes. Introducing tracer nanoparticles into the system, we demonstrated the presence of an internal flow that extends into the external fluid via the cavity opening, leading to the self-propulsion. One-dimensional nanosize, longitudinal self-propulsion, and biocompatibility make the tubular nanojets promising for future biomedical applications. PMID:27718566

  19. Bubble-Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions.

    PubMed

    Ma, Xing; Hortelao, Ana C; Miguel-López, Albert; Sánchez, Samuel

    2016-10-26

    The motion of self-propelled tubular micro- and nanojets has so far been achieved by bubble propulsion, e.g., O2 bubbles formed by catalytic decomposition of H2O2, which renders future biomedical applications inviable. An alternative self-propulsion mechanism for tubular engines on the nanometer scale is still missing. Here, we report the fabrication and characterization of bubble-free propelled tubular nanojets (as small as 220 nm diameter), powered by an enzyme-triggered biocatalytic reaction using urea as fuel. We studied the translational and rotational dynamics of the nanojets as functions of the length and location of the enzymes. Introducing tracer nanoparticles into the system, we demonstrated the presence of an internal flow that extends into the external fluid via the cavity opening, leading to the self-propulsion. One-dimensional nanosize, longitudinal self-propulsion, and biocompatibility make the tubular nanojets promising for future biomedical applications.

  20. Biocatalytic synthesis of acrylates in supercritical fluids: tuning enzyme activity by changing pressure.

    PubMed Central

    Kamat, S V; Iwaskewycz, B; Beckman, E J; Russell, A J

    1993-01-01

    Supercritical fluids are a unique class of nonaqueous media in which biocatalytic reactions can occur. The physical properties of supercritical fluids, which include gas-like diffusivities and liquid-like densities, can be predictably controlled with changing pressure. This paper describes how adjustment of pressure, with the subsequent predictable changes of the dielectric constant and Hildebrand solubility parameter for fluoroform, ethane, sulfur hexafluoride, and propane, can be used to manipulate the activity of lipase in the transesterification of methylmethacrylate with 2-ethyl-1-hexanol. Of particular interest is that the dielectric constant of supercritical fluoroform can be tuned from approximately 1 to 8, merely by increasing pressure from 850 to 4000 psi (from 5.9 to 28 MPa). The possibility now exists to predictably alter both the selectivity and the activity of a biocatalyst merely by changing pressure. Images Fig. 6 PMID:8464910

  1. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture.

    PubMed

    Savile, Christopher K; Janey, Jacob M; Mundorff, Emily C; Moore, Jeffrey C; Tam, Sarena; Jarvis, William R; Colbeck, Jeffrey C; Krebber, Anke; Fleitz, Fred J; Brands, Jos; Devine, Paul N; Huisman, Gjalt W; Hughes, Gregory J

    2010-07-16

    Pharmaceutical synthesis can benefit greatly from the selectivity gains associated with enzymatic catalysis. Here, we report an efficient biocatalytic process to replace a recently implemented rhodium-catalyzed asymmetric enamine hydrogenation for the large-scale manufacture of the antidiabetic compound sitagliptin. Starting from an enzyme that had the catalytic machinery to perform the desired chemistry but lacked any activity toward the prositagliptin ketone, we applied a substrate walking, modeling, and mutation approach to create a transaminase with marginal activity for the synthesis of the chiral amine; this variant was then further engineered via directed evolution for practical application in a manufacturing setting. The resultant biocatalysts showed broad applicability toward the synthesis of chiral amines that previously were accessible only via resolution. This work underscores the maturation of biocatalysis to enable efficient, economical, and environmentally benign processes for the manufacture of pharmaceuticals.

  2. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.

    PubMed

    Drozd, Greg T; Donahue, Neil M

    2011-05-05

    Ozonolysis is a key reaction in atmospheric chemistry, although important details of the behavior of the ozonolysis intermediates are not known. The key intermediate in ozonolysis, the Criegee intermeiate (CI), is known to quickly isomerize, with the favored unimolecular pathway depending on the relative barriers to isomerization. Stabilized Criegee intermediates (SCI), those with energy below any barriers to isomerization, may result from initial formation with low energy or collisional stabilization of high energy CI. Bimolecular reactions of SCI have been proposed to play a role in OH formation and nucleation of new particles, but unimolecular reactions of SCI may well be too fast for these to be significant. We present measurements of the pressure dependence of SCI formation for a set of alkenes utilizing a hexafluoroacetone scavenger. We studied four alkenes (2,3-dimethyl-2-butene (TME), trans-5-decene, cyclohexene, α-pinene) to characterize how size and cyclization (endo vs exo) affect the stability of Criegee intermediates formed in ozonolysis. SCI yields in ozonolysis were measured in a high pressure flow reactor within a range of 30-750 Torr. The linear alkenes show considerable stabilization with trans-5-decene showing 100% stabilization at ∼400 Torr and TME having 65% stabilization at 710 Torr. Extrapolation of the yields for linear alkenes to 0 Torr shows yields significantly above zero, indicating that a fraction of their CI are formed below the barrier to isomerization. CI from endocyclic alkenes show little to no stabilization and appear to have neglible stabilization at 0 Torr. Cyclohexene derived CI showed no stabilization even at 650 Torr, while α-pinene CI had ∼15% stabilization at 740 Torr. Our results show a strong dependence of SCI formation on carbon number; adding just 2 to 3 CI carbons in linear alkenes increases stabilization by a factor of 10. Stabilization for endocyclic alkenes, at atmospheric pressure, begins to occur at a carbon

  3. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  4. Adsorption of alkenes on acidic zeolites. Theoretical study based on the electron charge density.

    PubMed

    Zalazar, M Fernanda; Duarte, Darío J R; Peruchena, Nélida M

    2009-12-10

    In the present work, experiments on electron density changes in the adsorption process of alkenes on acidic zeolites, in the framework of atoms in molecules theory (AIM), were carried out. Electron densities were obtained at MP2 and B3LYP levels using a 6-31++G(d,p) basis set. This study explores the energetic and the electron density redistributions associated with O-H...pi interactions. The main purpose of this work is to provide an answer to the following questions: (a) Which and how large are the changes induced on the molecular electron distribution by the formation of adsorbed alkenes? (b) Can a reasonable estimate of the adsorption energy of alkenes on the active site of zeolite be solely calculated from an analysis of the electron densities? We have used topological parameters to determine the strength and nature of the interactions in the active site of the zeolite. All the results derived from the electron density analysis show that the stabilization of the adsorbed alkenes follows the order isobutene > trans-2-butene congruent with 1-butene congruent with propene > ethene, reflecting the order of basicity of C=C bonds, i.e., (C(ter)=C(prim)) > (C(sec)=C(sec)) congruent with (C(prim)=C(sec)) > (C(prim)=C(prim)). In addition, we have found a useful set of topological parameters that are good for estimating the adsorption energy in adsorbed alkenes.

  5. Rational Improvement of Simvastatin Synthase Solubility in Escherichia coli Leads to Higher Whole-cell Biocatalytic Activity

    PubMed Central

    Xie, Xinkai; Pashkov, Inna; Gao, Xue; Guerrero, Jennifer L.; Yeates, Todd O.; Tang, Yi

    2014-01-01

    Simvastatin is the active pharmaceutical ingredient of the blockbuster cholesterol lowering drug Zocor. We have previously developed an Escherichia coli based whole-cell biocatalytic platform towards the synthesis of simvastatin sodium salt (SS) starting from the precursor monacolin J sodium salt (MJSS). The centerpiece of the biocatalytic approach is the simvastatin synthase LovD, which is highly prone to misfolding and aggregation when overexpressed from E. coli. Increasing the solubility of LovD without decreasing its catalytic activity can therefore elevate the performance of the whole-cell biocatalyst. Using a combination of homology structural prediction and site-directed mutagenesis, we identified two cysteine residues in LovD that are responsible for nonspecific intermolecular crosslinking, which leads to oligomer formation and protein aggregation. Replacement of Cys40 and Cys60 with alanine residues resulted in marked gain in both protein solubility and whole-cell biocatalytic activities. Further mutagenesis experiments converting these two residues to small or polar natural amino acids showed that C40A and C60N are the most beneficial, affording 27% and 26% increase in whole cell activities, respectively. The double mutant C40A/C60N combines the individual improvements and displayed ~50% increase in protein solubility and whole-cell activity. Optimized fed-batch high-cell-density fermentation of the double mutant in an E. coli strain engineered for simvastatin production quantitatively (>99%) converted 45 mM MJSS to SS within 18 hours, which represents a significant improvement over the performance of wild type LovD under identical conditions. The high efficiency of the improved whole-cell platform renders the biocatalytic synthesis of SS an attractive substitute over the existing semisynthetic routes. PMID:18988191

  6. Evaluation of performance and stability of biocatalytic redox films constructed with different copper oxygenases and osmium-based redox polymers.

    PubMed

    Jenkins, Peter A; Boland, Susan; Kavanagh, Paul; Leech, Dónal

    2009-09-01

    We are interested in investigating the applications of biocatalytic mediated reduction of oxygen by oxygenases in films on electrode surfaces, as such reactions can form the basis for biosensors or biocatalytic fuel cell development. Here we present approaches aimed at improving the stability and signal output of such films. These include selection of oxygen reducing biocatalysts which are active under physiological conditions and development of redox mediators which offer the opportunity to tailor the mediator to each enzyme. It was found that for each enzyme Melanocarpus albomyces laccase (MaL), Trametes hirsutus laccase (ThL) or bilirubin oxidase (MvBOD) it was the biocatalytic films mediated by Os(2,2'-bipyridine)(2)Cl.PVI that not only generated the highest current densities compared to Os(4,4'-dimethyl-2,2'-bipyridine)(2)Cl.PVI and Os(4,4'-dichloro-2,2'-bipyridine)(2)Cl.PVI, but also proved to be the most stable over 48 h. Under physiological conditions electrodes constructed from MvBOD generated the highest initial current densities for each of the osmium redox polymers, however these films proved to be the least stable over 48 h. Stability could be improved using surface pre-treatment.

  7. Efficiency Analysis and Mechanism Insight of that Whole-Cell Biocatalytic Production of Melibiose from Raffinose with Saccharomyces cerevisiae.

    PubMed

    Zhou, Yingbiao; Zhu, Yueming; Dai, Longhai; Men, Yan; Wu, Jinhai; Zhang, Juankun; Sun, Yuanxia

    2017-01-01

    Melibiose is widely used as a functional carbohydrate. Whole-cell biocatalytic production of melibiose from raffinose could reduce its cost. However, characteristics of strains for whole-cell biocatalysis and mechanism of such process are unclear. We compared three different Saccharomyces cerevisiae strains (liquor, wine, and baker's yeasts) in terms of concentration variations of substrate (raffinose), target product (melibiose), and by-products (fructose and galactose) in whole-cell biocatalysis process. Distinct difference was observed in whole-cell catalytic efficiency among three strains. Furthermore, activities of key enzymes (invertase, α-galactosidase, and fructose transporter) involved in process and expression levels of their coding genes (suc2, mel1, and fsy1) were investigated. Conservation of key genes in S. cerevisiae strains was also evaluated. Results show that whole-cell catalytic efficiency of S. cerevisiae in the raffinose substrate was closely related to activity of key enzymes and expression of their coding genes. Finally, we summarized characteristics of producing strain that offered advantages, as well as contributions of key genes to excellent strains. Furthermore, we presented a dynamic mechanism model to achieve some mechanism insight for this whole-cell biocatalytic process. This pioneering study should contribute to improvement of whole-cell biocatalytic production of melibiose from raffinose.

  8. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    PubMed

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  9. Biocatalytic polymer coatings: on-demand drug synthesis and localized therapeutic effect under dynamic cell culture conditions.

    PubMed

    Fejerskov, Betina; Jensen, Najah B S; Teo, Boon M; Städler, Brigitte; Zelikin, Alexander N

    2014-04-09

    Biocatalytic surface coatings are prepared herein for localized synthesis of drugs and their on-demand, site-specific delivery to adhering cells. This novel approach is based on the incorporation of an enzyme into multilayered polymer coatings to accomplish enzyme-prodrug therapy (EPT). The build-up of enzyme-containing multilayered coatings is characterized and correlations are drawn between the multilayer film assembly conditions and the enzymatic activity of the resulting coatings. Therapeutic effect elicited by the substrate mediated EPT (SMEPT) strategy is investigated using a prodrug for an anticancer agent, SN-38. The performance of biocatalytic coatings under flow conditions is investigated and it is demonstrated that EPT allows synthesizing the drugs on-demand, at the time desired and in a controllable amount to suit particular applications. Finally, using cells cultured in sequentially connected flow chambers, it is demonstrated that SMEPT affords a site-specific drug delivery, that is, exerts a higher therapeutic effect in cells adhering directly to the biocatalytic coatings than in the cells cultured "downstream". Taken together, these data illustrate biomedical opportunities made possible by engineering tools of EPT into multilayered polymer coatings and present a novel, highly versatile tool for surface mediated drug delivery.

  10. Inhibitory potency of 4-carbon alkanes and alkenes toward CYP2E1 activity.

    PubMed

    Hartman, Jessica H; Miller, Grover P; Boysen, Gunnar

    2014-04-06

    CYP2E1 has been implicated in the bioactivation of many small molecules into reactive metabolites which form adducts with proteins and DNA, and thus a better understanding of the molecular determinants of its selectivity are critical for accurate toxicological predictions. In this study, we determined the potency of inhibition of human CYP2E1 for various 4-carbon alkanes, alkenes and alcohols. In addition, known CYP2E1 substrates and inhibitors including 4-methylpyrazole, aniline, and dimethylnitrosamine were included to determine their relative potencies. Of the 1,3-butadiene-derived metabolites studied, 3,4-epoxy-1-butene was the strongest inhibitor with an IC50 of 110 μM compared to 1700 μM and 6600 μM for 1,2-butenediol and 1,2:3,4-diepoxybutane, respectively. Compared to known inhibitors, inhibitory potency of 3,4-epoxy-1-butene is between 4-methylpyrazole (IC50 = 1.8 μM) and dimethylnitrosamine (IC50 = 230 μM). All three butadiene metabolites inhibit CYP2E1 activity through a simple competitive mechanism. Among the 4-carbon compounds studied, the presence and location of polar groups seems to influence inhibitory potency. To further examine this notion, the investigation was extended to include structurally and chemically similar analogues, including propylene oxide and various butane alcohols. Those results demonstrated preferential recognition of CYP2E1 toward the type and location of polar and hydrophobic structural elements. Taken together, CYP2E1 metabolism may be modified in vivo by exposure to 4-carbon compounds, such as drugs, and nutritional constituents, a finding that highlights the complexity of exposure to mixtures.

  11. BCl3-mediated ene reaction of sulfur dioxide and unfunctionalized alkenes.

    PubMed

    Marković, Dean; Volla, Chandra M R; Vogel, Pierre; Varela-Alvarez, Adrián; Sordo, José A

    2010-05-25

    The first ene reactions of SO(2) and unfunctionalized alkenes are reported. Calculations suggest that the endergonic ene reactions of SO(2) with alkenes can be used to generate beta,gamma-unsaturated sulfinyl and sulfonyl compounds. Indeed, in the presence of one equivalent of BCl(3), the unstable sulfinic acid form stable sulfinic acid.BCl(3) complexes that can be reacted in situ with NCS to generate corresponding sulfonyl chlorides, or with a base to generate corresponding sulfinates. The latter can be reacted with electrophiles to generate sulfones, or with silyl chloride to form beta,gamma-unsaturated silyl sulfinates. The sulfinic acid.BCl(3) complexes can be reacted with ethers that act as oxygen nucleophiles to produce corresponding sulfinic esters. Thus one-pot, three-component synthesis of beta,gamma-unsaturated sulfonamides, sulfinyl esters and sulfones have been developed starting from alkenes and sulfur dioxide (reagent and solvent).

  12. Metal-Free C–H Alkyliminylation and Acylation of Alkenes with Secondary Amides

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Qiang; Huang, Ying-Hong; Geng, Hui; Ye, Jian-Liang

    2016-06-01

    Carbon–carbon bond formation by metal-free cross-coupling of two reactants with low reactivity represents a challenge in organic synthesis. Secondary amides and alkenes are two classes of bench-stable compounds. The low electrophilicity of the former and low nucleophilicity of the latter make the direct coupling of these two partners challenging yet highly desirable. We report herein an unprecedented intermolecular reaction of secondary amides with alkenes to afford α,β-unsaturated ketimines or enones, which are versatile intermediates for organic synthesis and are prevalent in bioactive compounds and functional materials. Our strategy relies on the chemoselective activation of the secondary amide with trifluoromethanesulfonic anhydride (Tf2O)/2-fluoropyridine to generate a highly reactive nitrilium intermediate, which reacts efficiently with alkenes. This metal-free synthesis is characterized by its mild reaction conditions, excellent functional group tolerance and chemoselectivity, allowing the preparation of multi-functionalized compounds without using protecting groups.

  13. Metal-Free C–H Alkyliminylation and Acylation of Alkenes with Secondary Amides

    PubMed Central

    Huang, Pei-Qiang; Huang, Ying-Hong; Geng, Hui; Ye, Jian-Liang

    2016-01-01

    Carbon–carbon bond formation by metal-free cross-coupling of two reactants with low reactivity represents a challenge in organic synthesis. Secondary amides and alkenes are two classes of bench-stable compounds. The low electrophilicity of the former and low nucleophilicity of the latter make the direct coupling of these two partners challenging yet highly desirable. We report herein an unprecedented intermolecular reaction of secondary amides with alkenes to afford α,β-unsaturated ketimines or enones, which are versatile intermediates for organic synthesis and are prevalent in bioactive compounds and functional materials. Our strategy relies on the chemoselective activation of the secondary amide with trifluoromethanesulfonic anhydride (Tf2O)/2-fluoropyridine to generate a highly reactive nitrilium intermediate, which reacts efficiently with alkenes. This metal-free synthesis is characterized by its mild reaction conditions, excellent functional group tolerance and chemoselectivity, allowing the preparation of multi-functionalized compounds without using protecting groups. PMID:27356173

  14. Stereoselective synthesis of imidazolidin-2-ones via Pd-catalyzed alkene carboamination. Scope and limitations

    PubMed Central

    Fritz, Jonathan A.; Wolfe, John P.

    2008-01-01

    A method for the synthesis of imidazolidin-2-ones from N-allylureas and aryl or alkenyl bromides via Pd-catalyzed carboamination reactions is described. The N-allylurea precursors are prepared in one step from readily available allylic amines and isocyanates, and the Pd-catalyzed reactions effect the formation of a C–C bond, a C–N bond, and up to two stereocenters in a single step. Good diastereoselectivities are obtained for the conversion of substrates bearing allylic substituents to 4,5-disubstituted imidazolidin-2-ones, and excellent selectivity for the generation of products resulting from syn-addition across the alkene is observed when substrates derived from cyclic alkenes or E-1,2-disubstituted alkenes are employed. A brief discussion of reaction mechanism and product stereochemistry is presented. PMID:19122758

  15. Highly enantioselective and anti-diastereoselective catalytic intermolecular glyoxylate-ene reactions: effect of the geometrical isomers of alkenes.

    PubMed

    Zhang, Xiang; Wang, Min; Ding, Ran; Xu, Yun-He; Loh, Teck-Peng

    2015-06-05

    An efficient method for the synthesis of homoallylic alcohols with high enantioselectivities and anti-diastereoselectivities via an In(III)-catalyzed intermolecular glyoxylate-ene reaction has been developed. The geometrical isomers of alkenes were shown to have different reactivities. Only the isomers of the alkenes having a proton β-cis to the substituent reacted in this catalytic system.

  16. Photochemical Synthesis and Ligand Exchange Reactions of Ru(CO)[subscript 4] (Eta[superscript 2]-Alkene) Compounds

    ERIC Educational Resources Information Center

    Cooke, Jason; Berry, David E.; Fawkes, Kelli L.

    2007-01-01

    The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily…

  17. DualPhos: a versatile, chemoselective reagent for two-carbon aldehyde to latent (E)-alkenal homologation and application in the total synthesis of phomolide G

    PubMed Central

    McLeod, David

    2016-01-01

    Advances on the use of the 2-pinacolacetal-tripropylphosphonium salt DualPhos as a general reagent for the two-carbon aldehyde to alkenal homologation and a chemoselective iron (III) chloride mediated deprotection are described. The strategy allows isolation of the latent alkenal intermediates or direct hydrolysis to (E)-alkenals. The robust chemical stability of the latent alkenals is demonstrated in a total synthesis of the macrolactone phomolide G. PMID:28018615

  18. Homogeneous Pd-catalyzed transformation of terminal alkenes into primary allylic alcohols and derivatives.

    PubMed

    Tomita, Ren; Mantani, Kohei; Hamasaki, Akiyuki; Ishida, Tamao; Tokunaga, Makoto

    2014-08-04

    Synthesis of primary alcohols from terminal alkenes is an important process in both bulk and fine chemical syntheses. Herein, a homogeneous Pd-complex-catalyzed transformation of terminal alkenes into primary allylic alcohols, by using 5 mol % [Pd(PPh3)4] as a catalyst, and H2O, CO2, and quinone derivatives as reagents, is reported. When alcohols were used instead of H2O, allylic ethers were obtained. A proposed mechanism includes the addition of oxygen nucleophiles at the less-hindered terminal position of π-allyl Pd intermediates.

  19. Fe(III)/NaBH4-Mediated Free Radical Hydrofluorination of Unactivated Alkenes

    PubMed Central

    Barker, Timothy J.

    2012-01-01

    A powerful Fe(III)/NaBH4-mediated free radical hydrofluorination of unactivated alkenes is disclosed using Selectfluor as a source of fluorine and resulting in exclusive Markovnikov addition. In contrast to the traditional and unmanageable free radical hydrofluorination of alkenes, the Fe(III)/NaBH4-mediated reaction is conducted under exceptionally mild reaction conditions (0 °C, 5 min, CH3CN/H2O). The reaction can be conducted open to the air and with water as a cosolvent and demonstrates an outstanding substrate scope and functional group tolerance. PMID:22860624

  20. Perfluoroalkylation of Unactivated Alkenes with Acid Anhydrides as the Perfluoroalkyl Source.

    PubMed

    Kawamura, Shintaro; Sodeoka, Mikiko

    2016-07-18

    An efficient perfluoroalkylation of unactivated alkenes with perfluoro acid anhydrides was developed. Copper salts play a crucial role as a catalyst to achieve allylic perfluoroalkylation with the in situ generated bis(perfluoroacyl) peroxides. Furthermore, carboperfluoroalkylation of alkene bearing an aromatic ring at an appropriate position on the carbon side chain was found to proceed under metal-free conditions to afford carbocycles or heterocycles bearing a perfluoroalkyl group. This method, which makes use of readily available perfluoroalkyl sources, offers a convenient and powerful tool for introducing a perfluoroalkyl group onto an sp(3) carbon to construct synthetically useful skeletons.

  1. Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes.

    PubMed

    Matcha, Kiran; Antonchick, Andrey P

    2014-10-27

    The development of multicomponent reactions for indole synthesis is demanding and has hardly been explored. The present study describes the development of a novel multicomponent, cascade approach for indole synthesis. Various substituted indole derivatives were obtained from simple reagents, such as unfunctionalized alkenes, diazonium salts, and sodium triflinate, by using an established straightforward and regioselective method. The method is based on the radical trifluoromethylation of alkenes as an entry into Fischer indole synthesis. Besides indole synthesis, the application of the multicomponent cascade reaction to the synthesis of pyrazoles and pyridazinones is described.

  2. A new approach to ferrocene derived alkenes via copper-catalyzed olefination

    PubMed Central

    Muzalevskiy, Vasily M; Shastin, Aleksei V; Demidovich, Alexandra D; Shikhaliev, Namiq G; Magerramov, Abel M; Khrustalev, Victor N; Rakhimov, Rustem D; Vatsadze, Sergey Z

    2015-01-01

    Summary A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps. PMID:26664627

  3. Stereoselective Synthesis of Saturated Heterocycles via Pd-Catalyzed Alkene Carboetherification and Carboamination Reactions

    PubMed Central

    Wolfe, John P.

    2009-01-01

    The development of Pd-catalyzed carboetherification and carboamination reactions between aryl/alkenyl halides and alkenes bearing pendant heteroatoms is described. These transformations effect the stereoselective construction of useful heterocycles such as tetrahydrofurans, pyrrolidines, imidazolidin-2-ones, isoxazolidines, and piperazines. The scope, limitations, and applications of these reactions are presented, and current stereochemical models are described. The mechanism of product formation, which involves an unusual intramolecular syn-insertion of an alkene into a Pd-Heteroatom bond is also discussed in detail. PMID:19183704

  4. Aerobic, Palladium-Catalyzed Dioxygenation of Alkenes Enabled by Catalytic Nitrite**

    PubMed Central

    Wickens, Zachary K.; Guzmán, Pablo E.; Grubbs, Robert H.

    2014-01-01

    Catalytic nitrite was found to enable carbon-oxygen bond-forming reductive elimination from unstable alkyl palladium intermediates, providing dioxygenated products from alkenes. A variety of functional groups are tolerated and high yields (up to 94%) are observed with many substrates, including a multi-gram scale reaction. Nitrogen dioxide, which could form from nitrite under the reaction conditions, was shown to be kinetically competent in the dioxygenation of alkenes. Furthermore, the reductive elimination event was probed with 18 O-labeling experiments, which demonstrated that both oxygen atoms in the difunctionalized products are derived from one molecule of acetic acid. PMID:25376666

  5. Reaction of Chlorosulfonyl Isocyanate (CSI) with Fluorosubstituted Alkenes: Evidence of a Concerted Pathway for Reaction of CSI with Fluorosubstituted Alkenes (Preprint)

    DTIC Science & Technology

    2010-06-01

    ABSTRACT Concerted reactions are indicated for the electrophilic addition of chlorosulfonyl isocyanate with monofluoroalkenes. A vinyl fluorine atom on...SO2Cl R F O ‡ N SO2Cl F R O Abstract: Concerted reactions are indicated for the electrophilic addition of chlorosulfonyl isocyanate with...monofluoroalkenes. A vinyl fluorine atom on an alkene raises the energy of a step-wise transition state more than the energy of the competing concerted

  6. Modeling SOA formation from alkanes and alkenes in chamber experiments: effect of gas/wall partitioning of organic vapors.

    NASA Astrophysics Data System (ADS)

    Stéphanie La, Yuyi; Camredon, Marie; Ziemann, Paul; Ouzebidour, Farida; Valorso, Richard; Madronich, Sasha; Lee-Taylor, Julia; Hodzic, Alma; Aumont, Bernard

    2014-05-01

    Oxidation products of Intermediate Volatility Organic Compounds (IVOC) are expected to be the major precursors of secondary organic aerosols (SOA). Laboratory experiments were conducted this last decade in the Riverside APRC chamber to study IVOC oxidative mechanisms and SOA formation processes for a large set of linear, branched and cyclic aliphatic hydrocarbons (Ziemann, 2011). This dataset are used here to assess the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) (Aumont et al., 2005). The simulated SOA yields agree with the general trends observed in the chamber experiments. They are (i) increasing with the increasing carbon number; (ii) decreasing with increasing methyl branch number; and (iii) increasing for cyclic compounds compared to their corresponding linear analogues. However, simulated SOA yields are systematically overestimated regardless of the precursors, suggesting missing processes in the model. In this study, we assess whether gas-to-wall partitioning of organic vapors can explain these model/observation mismatches (Matsunaga and Ziemann, 2010). First results show that GECKO-A outputs better match the observations when wall uptake of organic vapors is taken into account. Effects of gas/wall partitioning on SOA yields and composition will be presented. Preliminary results suggest that wall uptake is a major process influencing SOA production in the Teflon chambers. References Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos.Chem.Phys., 5, 2497-2517 (2005). P. J. Ziemann: Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes, Int. Rev.Phys.Chem., 30:2, 161-195 (2011). Matsunaga, A., Ziemann, P. J.: Gas-wall partitioning of organic compounds in a Teflon film

  7. Discovery and molecular and biocatalytic properties of hydroxynitrile lyase from an invasive millipede, Chamberlinius hualienensis

    PubMed Central

    Dadashipour, Mohammad; Ishida, Yuko; Yamamoto, Kazunori; Asano, Yasuhisa

    2015-01-01

    Hydroxynitrile lyase (HNL) catalyzes the degradation of cyanohydrins and causes the release of hydrogen cyanide (cyanogenesis). HNL can enantioselectively produce cyanohydrins, which are valuable building blocks for the synthesis of fine chemicals and pharmaceuticals, and is used as an important biocatalyst in industrial biotechnology. Currently, HNLs are isolated from plants and bacteria. Because industrial biotechnology requires more efficient and stable enzymes for sustainable development, we must continuously explore other potential enzyme sources for the desired HNLs. Despite the abundance of cyanogenic millipedes in the world, there has been no precise study of the HNLs from these arthropods. Here we report the isolation of HNL from the cyanide-emitting invasive millipede Chamberlinius hualienensis, along with its molecular properties and application in biocatalysis. The purified enzyme displays a very high specific activity in the synthesis of mandelonitrile. It is a glycosylated homodimer protein and shows no apparent sequence identity or homology with proteins in the known databases. It shows biocatalytic activity for the condensation of various aromatic aldehydes with potassium cyanide to produce cyanohydrins and has high stability over a wide range of temperatures and pH values. It catalyzes the synthesis of (R)-mandelonitrile from benzaldehyde with a 99% enantiomeric excess, without using any organic solvents. Arthropod fauna comprise 80% of terrestrial animals. We propose that these animals can be valuable resources for exploring not only HNLs but also diverse, efficient, and stable biocatalysts in industrial biotechnology. PMID:26261304

  8. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    PubMed

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  9. Microbiome and Biocatalytic Bacteria in Monkey Cup (Nepenthes Pitcher) Digestive Fluid.

    PubMed

    Chan, Xin-Yue; Hong, Kar-Wai; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-28

    Tropical carnivorous plant, Nepenthes, locally known as "monkey cup", utilises its pitcher as a passive trap to capture insects. It then secretes enzymes into the pitcher fluid to digest the insects for nutrients acquisition. However, little is known about the microbiota and their activity in its pitcher fluid. Eighteen bacteria phyla were detected from the metagenome study in the Nepenthes pitcher fluid. Proteobacteria, Bacteroidetes and Actinobacteria are the dominant phyla in the Nepenthes pitcher fluid. We also performed culturomics approach by isolating 18 bacteria from the Nepenthes pitcher fluid. Most of the bacterial isolates possess chitinolytic, proteolytic, amylolytic, and cellulolytic and xylanolytic activities. Fifteen putative chitinase genes were identified from the whole genome analysis on the genomes of the 18 bacteria isolated from Nepenthes pitcher fluid and expressed for chitinase assay. Of these, six clones possessed chitinase activity. In conclusion, our metagenome result shows that the Nepenthes pitcher fluid contains vast bacterial diversity and the culturomic studies confirmed the presence of biocatalytic bacteria within the Nepenthes pitcher juice which may act in symbiosis for the turn over of insects trapped in the Nepenthes pitcher fluid.

  10. Microbiome and Biocatalytic Bacteria in Monkey Cup (Nepenthes Pitcher) Digestive Fluid

    PubMed Central

    Chan, Xin-Yue; Hong, Kar-Wai; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    Tropical carnivorous plant, Nepenthes, locally known as “monkey cup”, utilises its pitcher as a passive trap to capture insects. It then secretes enzymes into the pitcher fluid to digest the insects for nutrients acquisition. However, little is known about the microbiota and their activity in its pitcher fluid. Eighteen bacteria phyla were detected from the metagenome study in the Nepenthes pitcher fluid. Proteobacteria, Bacteroidetes and Actinobacteria are the dominant phyla in the Nepenthes pitcher fluid. We also performed culturomics approach by isolating 18 bacteria from the Nepenthes pitcher fluid. Most of the bacterial isolates possess chitinolytic, proteolytic, amylolytic, and cellulolytic and xylanolytic activities. Fifteen putative chitinase genes were identified from the whole genome analysis on the genomes of the 18 bacteria isolated from Nepenthes pitcher fluid and expressed for chitinase assay. Of these, six clones possessed chitinase activity. In conclusion, our metagenome result shows that the Nepenthes pitcher fluid contains vast bacterial diversity and the culturomic studies confirmed the presence of biocatalytic bacteria within the Nepenthes pitcher juice which may act in symbiosis for the turn over of insects trapped in the Nepenthes pitcher fluid. PMID:26817720

  11. Discovery and molecular and biocatalytic properties of hydroxynitrile lyase from an invasive millipede, Chamberlinius hualienensis.

    PubMed

    Dadashipour, Mohammad; Ishida, Yuko; Yamamoto, Kazunori; Asano, Yasuhisa

    2015-08-25

    Hydroxynitrile lyase (HNL) catalyzes the degradation of cyanohydrins and causes the release of hydrogen cyanide (cyanogenesis). HNL can enantioselectively produce cyanohydrins, which are valuable building blocks for the synthesis of fine chemicals and pharmaceuticals, and is used as an important biocatalyst in industrial biotechnology. Currently, HNLs are isolated from plants and bacteria. Because industrial biotechnology requires more efficient and stable enzymes for sustainable development, we must continuously explore other potential enzyme sources for the desired HNLs. Despite the abundance of cyanogenic millipedes in the world, there has been no precise study of the HNLs from these arthropods. Here we report the isolation of HNL from the cyanide-emitting invasive millipede Chamberlinius hualienensis, along with its molecular properties and application in biocatalysis. The purified enzyme displays a very high specific activity in the synthesis of mandelonitrile. It is a glycosylated homodimer protein and shows no apparent sequence identity or homology with proteins in the known databases. It shows biocatalytic activity for the condensation of various aromatic aldehydes with potassium cyanide to produce cyanohydrins and has high stability over a wide range of temperatures and pH values. It catalyzes the synthesis of (R)-mandelonitrile from benzaldehyde with a 99% enantiomeric excess, without using any organic solvents. Arthropod fauna comprise 80% of terrestrial animals. We propose that these animals can be valuable resources for exploring not only HNLs but also diverse, efficient, and stable biocatalysts in industrial biotechnology.

  12. Biocatalytic Production of Trehalose from Maltose by Using Whole Cells of Permeabilized Recombinant Escherichia coli

    PubMed Central

    Sun, Ye; Mei, Wending; Ouyang, Jia

    2015-01-01

    Trehalose is a non-reducing disaccharide, which can protect proteins, lipid membranes, and cells from desiccation, refrigeration, dehydration, and other harsh environments. Trehalose can be produced by different pathways and trehalose synthase pathway is a convenient, practical, and low-cost pathway for the industrial production of trehalose. In this study, 3 candidate treS genes were screened from genomic databases of Pseudomonas and expressed in Escherichia coli. One of them from P. stutzeri A1501 exhibited the best transformation ability from maltose into trehalose and the least byproduct. Thus, whole cells of this recombinant E. coli were used as biocatalyst for trehalose production. In order to improve the conversion rate of maltose to trehalose, optimization of the permeabilization and biotransformation were carried out. Under optimal conditions, 92.2 g/l trehalose was produced with a high productivity of 23.1 g/(l h). No increase of glucose was detected during the whole course. The biocatalytic process developed in this study might serve as a candidate for the large scale production of trehalose. PMID:26462117

  13. Characterisation of a Recombinant Patchoulol Synthase Variant for Biocatalytic Production of Terpenes.

    PubMed

    Frister, Thore; Hartwig, Steffen; Alemdar, Semra; Schnatz, Katharina; Thöns, Laura; Scheper, Thomas; Beutel, Sascha

    2015-08-01

    The patchoulol synthase (PTS) is a multi-product sesquiterpene synthases which is the central enzyme for biosynthesis of patchouli essential oil in the patchouli plant. Sesquiterpene synthases catalyse the formation of various complex carbon backbones difficult to approach by organic synthesis. Here, we report the characterisation of a recombinant patchoulol synthase complementary DNA (cDNA) variant (PTS var. 1), exhibiting significant amino acid exchanges compared to the native PTS. The product spectrum using the natural substrate E,E-farnesyl diphosphate (FDP) as well as terpenoid products resulting from conversions employing alternative substrates was analysed by GC-MS. In respect to a potential use as a biocatalyst, important enzymatic parameters such as the optimal reaction conditions, kinetic behaviour and the product selectivity were studied as well. Adjusting the reaction conditions, an increased patchoulol ratio in the recombinant essential oil was achieved. Nevertheless, the ratio remained lower than in plant-derived patchouli oil. As alternative substrates, several prenyl diposphates were accepted and converted in numerous compounds by the PTS var. 1, revealing its great biocatalytic potential.

  14. Cellulose digestion and metabolism induced biocatalytic transitions in anaerobic microbial ecosystems.

    PubMed

    Yamazawa, Akira; Iikura, Tomohiro; Morioka, Yusuke; Shino, Amiu; Ogata, Yoshiyuki; Date, Yasuhiro; Kikuchi, Jun

    2013-12-31

    Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. Therefore, the evaluation of the complicated microbial metabolomics presents a significant challenge. We here describe a comprehensive strategy for characterizing the degradation of highly crystallized bacterial cellulose (BC) that is accompanied by metabolite production for identifying the responsible biocatalysts, including microorganisms and their metabolic functions. To this end, we employed two-dimensional solid- and one-dimensional solution-state nuclear magnetic resonance (NMR) profiling combined with a metagenomic approach using stable isotope labeling. The key components of biocatalytic reactions determined using a metagenomic approach were correlated with cellulose degradation and metabolic products. The results indicate that BC degradation was mediated by cellulases that contain carbohydrate-binding modules and that belong to structural type A. The degradation reactions induced the metabolic dynamics of the microbial community and produced organic compounds, such as acetic acid and propionic acid, mainly metabolized by clostridial species. This combinatorial, functional and structural metagenomic approach is useful for the comprehensive characterization of biomass degradation, metabolic dynamics and their key components in diverse ecosystems.

  15. A continuous system for biocatalytic hydrogenation of CO2 to formate.

    PubMed

    Mourato, Cláudia; Martins, Mónica; da Silva, Sofia M; Pereira, Inês A C

    2017-03-20

    In this work a novel bioprocess for hydrogenation of CO2 to formate was developed, using whole cell catalysis by a sulfate-reducing bacterium. Three Desulfovibrio species were tested (D. vulgaris Hildenborough, D. alaskensis G20, and D. desulfuricans ATCC 27774), of which D. desulfuricans showed the highest activity, producing 12mM of formate in batch, with a production rate of 0.09mMh(-1). Gene expression analysis indicated that among the three formate dehydrogenases and five hydrogenases, the cytoplasmic FdhAB and the periplasmic [FeFe] HydAB are the main enzymes expressed in D. desulfuricans in these conditions. The new bioprocess for continuous formate production by D. desulfuricans had a maximum specific formate production rate of 14mMgdcw(-1)h(-1), and more than 45mM of formate were obtained with a production rate of 0.40mMh(-1). This is the first report of a continuous process for biocatalytic formate production.

  16. Building carbon–carbon bonds using a biocatalytic methanol condensation cycle

    PubMed Central

    Bogorad, Igor W.; Chen, Chang-Ting; Theisen, Matthew K.; Wu, Tung-Yun; Schlenz, Alicia R.; Lam, Albert T.; Liao, James C.

    2014-01-01

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C–C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through 13C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives. PMID:25355907

  17. Separation, Immobilization, and Biocatalytic Utilization of Proteins by a Supramolecular Membrane

    PubMed Central

    Krieg, Elisha; Albeck, Shira; Weissman, Haim; Shimoni, Eyal; Rybtchinski, Boris

    2013-01-01

    Membrane separation of biomolecules and their application in biocatalysis is becoming increasingly important for biotechnology, demanding the development of new biocompatible materials with novel properties. In the present study, an entirely noncovalent water-based material is used as a membrane for size-selective separation, immobilization, and biocatalytic utilization of proteins. The membrane shows stable performance under physiological conditions, allowing filtration of protein mixtures with a 150 kDa molecular weight cutoff (∼8 nm hydrodynamic diameter cutoff). Due to the biocompatibility of the membrane, filtered proteins stay functionally active and retained proteins can be partially recovered. Upon filtration, large enzymes become immobilized within the membrane. They exhibit stable activity when subjected to a constant flux of substrates for prolonged periods of time, which can be used to carry out heterogeneous biocatalysis. The noncovalent membrane material can be easily disassembled, purified, reassembled, and reused, showing reproducible performance after recycling. The robustness, recyclability, versatility, and biocompatibility of the supramolecular membrane may open new avenues for manipulating biological systems. PMID:23675461

  18. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    PubMed

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology.

  19. Building Bridges: Biocatalytic C–C-Bond Formation toward Multifunctional Products

    PubMed Central

    2016-01-01

    Carbon–carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C–C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C–C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C–C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand. PMID:27398261

  20. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes.

    PubMed

    Sadowska, K; Stolarczyk, K; Biernat, J F; Roberts, K P; Rogalski, J; Bilewicz, R

    2010-11-01

    Single-walled carbon nanotubes (SWCNTs) were covalently modified with a redox mediator derived from 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and implemented in the construction of electrodes for biocatalytic oxygen reduction. The procedure is based on: covalent bonding of mediator to nanotubes, placing the nanotubes directly on the carbon electrode surface and covering the nanostructured electrode with a Nafion film containing laccase as the biocatalyst. The modified electrode is stable and the problem of mediator (ABTS) leaking from the film is eliminated by binding it covalently to the nanotubes. Three different synthetic approaches were used to obtain ABTS-modified carbon nanotubes. Nanotubes were modified at ends/defect sites or on the nanotube sidewalls and characterized by Raman spectroscopy, TGA and electrochemistry. The accessibility of differently located ABTS units by the laccase active center and mediation of electron transfer were studied by cyclic voltammetry. The surface concentrations of ABTS groups electrically connected with the electrode were compared for each of the electrodes based on the charges of the voltammetric peaks recorded in the deaerated solution. The nanotube modification procedure giving the best parameters of the catalytic process was selected.

  1. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products.

    PubMed

    Schmidt, Nina G; Eger, Elisabeth; Kroutil, Wolfgang

    2016-07-01

    Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.

  2. Biocatalytic Production of Trehalose from Maltose by Using Whole Cells of Permeabilized Recombinant Escherichia coli.

    PubMed

    Zheng, Zhaojuan; Xu, Ying; Sun, Ye; Mei, Wending; Ouyang, Jia

    2015-01-01

    Trehalose is a non-reducing disaccharide, which can protect proteins, lipid membranes, and cells from desiccation, refrigeration, dehydration, and other harsh environments. Trehalose can be produced by different pathways and trehalose synthase pathway is a convenient, practical, and low-cost pathway for the industrial production of trehalose. In this study, 3 candidate treS genes were screened from genomic databases of Pseudomonas and expressed in Escherichia coli. One of them from P. stutzeri A1501 exhibited the best transformation ability from maltose into trehalose and the least byproduct. Thus, whole cells of this recombinant E. coli were used as biocatalyst for trehalose production. In order to improve the conversion rate of maltose to trehalose, optimization of the permeabilization and biotransformation were carried out. Under optimal conditions, 92.2 g/l trehalose was produced with a high productivity of 23.1 g/(l h). No increase of glucose was detected during the whole course. The biocatalytic process developed in this study might serve as a candidate for the large scale production of trehalose.

  3. Torsional Control of Stereoselectivities in Electrophilic Additions and Cycloadditions to Alkenes

    PubMed Central

    Wang, Hao; Houk, K. N.

    2013-01-01

    Torsional effects control the π-facial stereoselectivities of a variety of synthetically important organic reactions. This review surveys theoretical calculations that have led to the understanding of the influence of the torsional effects on several types of stereoselective organic reactions, especially electrophilic additions and cycloadditions to alkenes. PMID:24409340

  4. One-Pot Anti-Markovnikov Hydroamination of Unactivated Alkenes by Hydrozirconation and Amination

    PubMed Central

    Strom, Alexandra E.

    2013-01-01

    A one-pot hydroamination of alkenes is reported. The synthesis of primary and secondary amines from unactivated olefins was accomplished in the presence of a variety of functional groups. Hydrozirconation, followed by amination with nitrogen electrophiles, provides exclusive anti-Markovnikov selectivity, and most products are isolated in high yields without the use of column chromatography. PMID:23899320

  5. Polymer enzyme conjugates as chiral ligands for sharpless dihydroxylation of alkenes in organic solvents.

    PubMed

    Konieczny, Stefan; Leurs, Melanie; Tiller, Joerg C

    2015-01-02

    Conjugates of enzymes and poly(2-methyloxazoline) were used as organosoluble amphiphilic polymer nanocontainers for dissolving osmate, thereby converting the enzymes into organosoluble artificial metalloenzymes. These were shown to catalyze the dihydroxylation of different alkenes with high enantioselectivity. The highest selectivities, found for osmate complexed with laccase polymer-enzyme conjugates (PECs), even exceed those of classical Sharpless catalysts.

  6. Palladium-catalyzed highly regioselective hydroaminocarbonylation of aromatic alkenes to branched amides.

    PubMed

    Zhu, Jinping; Gao, Bao; Huang, Hanmin

    2017-03-22

    Pd(t-Bu3P)2 has been successfully identified as an efficient catalyst for the hydroaminocarbonylation of aromatic alkenes to branched amides under relatively mild reaction conditions. With hydroxylamine hydrochloride as an additive, both aliphatic and aromatic amines could be used as coupling partners for the present reaction, leading to production of branched amides in high yields with excellent regioselectivities.

  7. Highly regio- and enantioselective multiple oxy- and amino-functionalizations of alkenes by modular cascade biocatalysis

    PubMed Central

    Wu, Shuke; Zhou, Yi; Wang, Tianwen; Too, Heng-Phon; Wang, Daniel I. C.; Li, Zhi

    2016-01-01

    New types of asymmetric functionalizations of alkenes are highly desirable for chemical synthesis. Here, we develop three novel types of regio- and enantioselective multiple oxy- and amino-functionalizations of terminal alkenes via cascade biocatalysis to produce chiral α-hydroxy acids, 1,2-amino alcohols and α-amino acids, respectively. Basic enzyme modules 1–4 are developed to convert alkenes to (S)-1,2-diols, (S)-1,2-diols to (S)-α-hydroxyacids, (S)-1,2-diols to (S)-aminoalcohols and (S)-α-hydroxyacids to (S)-α-aminoacids, respectively. Engineering of enzyme modules 1 & 2, 1 & 3 and 1, 2 & 4 in Escherichia coli affords three biocatalysts over-expressing 4–8 enzymes for one-pot conversion of styrenes to the corresponding (S)-α-hydroxyacids, (S)-aminoalcohols and (S)-α-aminoacids in high e.e. and high yields, respectively. The new types of asymmetric alkene functionalizations provide green, safe and useful alternatives to the chemical syntheses of these compounds. The modular approach for engineering multi-step cascade biocatalysis is useful for developing other new types of one-pot biotransformations for chemical synthesis. PMID:27297777

  8. Highly selective bis(imino)pyridine iron-catalyzed alkene hydroboration.

    PubMed

    Obligacion, Jennifer V; Chirik, Paul J

    2013-06-07

    Bis(imino)pyridine iron dinitrogen complexes have been shown to promote the anti-Markovnikov catalytic hydroboration of terminal, internal, and geminal alkenes with high activity and selectivity. The isolated iron dinitrogen compounds offer distinct advantages in substrate scope and overall performance over known precious metal catalysts and previously reported in situ generated iron species.

  9. Evolution of copper(II) as a new alkene amination promoter and catalyst

    PubMed Central

    Chemler, Sherry R.

    2010-01-01

    Copper(II) carboxylates and chiral copper(II) triflate·bis(oxazoline) complexes promote and catalyze intramolecular alkene carboamination, diamination and aminooxygenation reactions, creating an array of nitrogen heterocycles. High diastereoselectivity and enantioselectivity can be achieved in these transformations. This account reviews the discovery and development of these useful and interesting reactions. PMID:21379363

  10. Tandem isomerization-decarboxylation for converting alkenoic fatty acids into alkenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report a facile Ru-catalyzed route to alkenes from alkenoic fatty acids via a readily accessible pre-catalyst [Ru(CO)2RCO2]n. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specif...

  11. OH yields in the gas-phase reactions of ozone with alkenes

    SciTech Connect

    Rickard, A.R.; Johnson, D.; McGill, C.D.; Marston, G.

    1999-09-23

    Hydroxyl radical yields are reported for the gas-phase ozonolyses of a range of alkenes. 1,3,5-Trimethylbenzene was employed as an OH tracer, and the diminution in its concentration was used to calculate OH yields by both a simple analytical kinetic expression and a numerically integrated model. The following OH yields were obtained, relative to alkene consumed: ethene (0.14), propene (0.32), 2-methylpropene (0.60), 2,3-dimethyl-2-butene (0.89), isoprene (0.44), {beta}-pinene (0.24), and {alpha}-pinene (0.83). A structure activity relationship (SAR) is presented for the estimation of OH yields based on structural moieties and reaction branching ratios. Reaction stoichiometries ({Delta}[alkene]/{Delta}[ozone]) are also reported, along with primary carbonyl yields measured in the presence and absence of excess SO{sub 2}, both under OH-free conditions. Reaction stoichiometries are shown to be correlated with alkene OH yields, and the mechanistic implications of this observation are discussed. The fractional increase in primary carbonyl yield in the presence of excess SO{sub 2} is shown to be inversely related to the OH yield and is interpreted as a measure of the fraction of the vibrationally excited Criegee intermediate that is stabilized in air at a pressure of 1 atm.

  12. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite-Pd nanocomposites

    EPA Science Inventory

    Maghemite-supported ultra-fine Pd (1-2 nm) nanoparticles, prepared by a simple co-precipitation method, find application in the catalytic continuous flow hydrogenation of nitroarenes, azides, and alkenes wherein they play an important role in reduction of various functional group...

  13. Highly enantioselective synthesis of γ-, δ-, and ε-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)-Cu- or Pd-catalyzed cross-coupling.

    PubMed

    Xu, Shiqing; Oda, Akimichi; Kamada, Hirofumi; Negishi, Ei-ichi

    2014-06-10

    Despite recent advances of asymmetric synthesis, the preparation of enantiomerically pure (≥99% ee) compounds remains a challenge in modern organic chemistry. We report here a strategy for a highly enantioselective (≥99% ee) and catalytic synthesis of various γ- and more-remotely chiral alcohols from terminal alkenes via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction)-Cu- or Pd-catalyzed cross-coupling. ZACA-in situ oxidation of tert-butyldimethylsilyl (TBS)-protected ω-alkene-1-ols produced both (R)- and (S)-α,ω-dioxyfunctional intermediates (3) in 80-88% ee, which were readily purified to the ≥99% ee level by lipase-catalyzed acetylation through exploitation of their high selectivity factors. These α,ω-dioxyfunctional intermediates serve as versatile synthons for the construction of various chiral compounds. Their subsequent Cu-catalyzed cross-coupling with various alkyl (primary, secondary, tertiary, cyclic) Grignard reagents and Pd-catalyzed cross-coupling with aryl and alkenyl halides proceeded smoothly with essentially complete retention of stereochemical configuration to produce a wide variety of γ-, δ-, and ε-chiral 1-alkanols of ≥99% ee. The MαNP ester analysis has been applied to the determination of the enantiomeric purities of δ- and ε-chiral primary alkanols, which sheds light on the relatively undeveloped area of determination of enantiomeric purity and/or absolute configuration of remotely chiral primary alcohols.

  14. Pd-N-heterocyclic carbene catalyzed synthesis of piperidine alkene-alkaloids and their anti-cancer evaluation.

    PubMed

    Kankala, Shravankumar; Kankala, Ranjith Kumar; Balaboina, Ramesh; Thirukovela, Narasimha Swamy; Vadde, Ravinder; Vasam, Chandra Sekhar

    2014-02-15

    A facile synthesis of piperidine alkene-alkaloids including natural (+)-Caulophyllumine B in high yields has been developed by Heck cross-coupling reaction catalyzed by simple in situ formed palladium-N-heterocyclic carbenes (Pd-NHCs). Formation of Pd(0) nanoparticles has been noticed during the reaction course. The synthesized piperidine alkene-alkaloids were evaluated for in vitro anti-cancer activity against a panel of human tumor cell lines of lung, breast and ovarian. Several of these piperidine alkene-alkaloids were found to possess highest growth inhibition activity than the standard drug cisplatin and support the concept to modulate drug receptor interaction.

  15. Biocatalytic Synthesis of Novel Partial Esters of a Bioactive Dihydroxy 4-Methylcoumarin by Rhizopus oryzae Lipase (ROL).

    PubMed

    Kumar, Vinod; Mathur, Divya; Srivastava, Smriti; Malhotra, Shashwat; Rana, Neha; Singh, Suraj K; Singh, Brajendra K; Prasad, Ashok K; Varma, Anjani J; Len, Christophe; Kuhad, Ramesh C; Saxena, Rajendra K; Parmar, Virinder S

    2016-11-09

    Highly regioselective acylation has been observed in 7,8-dihydroxy-4-methylcoumarin (DHMC) by the lipase from Rhizopus oryzae suspended in tetrahydrofuran (THF) at 45 °C using six different acid anhydrides as acylating agents. The acylation occurred regioselectively at one of the two hydroxy groups of the coumarin moiety resulting in the formation of 8-acyloxy-7-hydroxy-4-methylcoumarins, which are important bioactive molecules for studying biotansformations in animals, and are otherwise very difficult to obtain by only chemical steps. Six monoacylated, monohydroxy 4-methylcoumarins have been biocatalytically synthesised and identified on the basis of their spectral data and X-ray crystal analysis.

  16. Enzyme-functionalized polymer brush films on the inner wall of silicon-glass microreactors with tunable biocatalytic activity.

    PubMed

    Costantini, Francesca; Benetti, Edmondo M; Reinhoudt, David N; Huskens, Jurriaan; Vancso, G Julius; Verboom, Willem

    2010-12-21

    The lipase from Candida Rugosa was immobilized to a poly(methacrylic acid) polymer brush layer, grown on the inner wall of silicon-glass microreactors. The hydrolysis of 4-nitrophenyl acetate was used as a model reaction to study the activity of this biocatalytic system. The amount of bound lipase could be tuned by changing the polymerization time of the brush formation. The Michaelis-Menten constants and V(max) values, determined for immobilized and free lipase, are similar, demonstrating that the lipase's substrate affinity and its activity remain unchanged upon immobilization to the microchannel wall.

  17. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds.

    PubMed

    Colby, J; Stirling, D I; Dalton, H

    1977-08-01

    1. Methane mono-oxygenase of Methylococcus capsulatus (Bath) catalyses the oxidation of various substituted methane derivatives including methanol. 2. It is a very non-specific oxygenase and, in some of its catalytic properties, apparently resembles the analogous enzyme from Methylomonas methanica but differs from those found in Methylosinus trichosporium and Methylomonas albus. 3. CO is oxidized to CO2. 4. C1-C8 n-alkanes are hydroxylated, yielding mixtures of the corresponding 1- and 2-alcohols; no 3- or 4-alcohols are formed. 5. Terminal alkenes yield the corresponding 1,2-epoxides. cis- or trans-but-2-ene are each oxidized to a mixture of 2,3-epoxybutane and but-2-en-1-ol with retention of the cis or trans configuration in both products; 2-butanone is also formed from cis-but-2-ene only. 6. Dimethyl ether is oxidized. Diethyl ether undergoes sub-terminal oxidation, yielding ethanol and ethanal in equimolar amounts. 7. Methane mono-oxygenase also hydroxylates cyclic alkanes and aromatic compounds. However, styrene yields only styrene epoxide and pyridine yields only pyridine N-oxide. 8. Of those compounds tested, only NADPH can replace NADH as electron donor.

  18. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds.

    PubMed Central

    Colby, J; Stirling, D I; Dalton, H

    1977-01-01

    1. Methane mono-oxygenase of Methylococcus capsulatus (Bath) catalyses the oxidation of various substituted methane derivatives including methanol. 2. It is a very non-specific oxygenase and, in some of its catalytic properties, apparently resembles the analogous enzyme from Methylomonas methanica but differs from those found in Methylosinus trichosporium and Methylomonas albus. 3. CO is oxidized to CO2. 4. C1-C8 n-alkanes are hydroxylated, yielding mixtures of the corresponding 1- and 2-alcohols; no 3- or 4-alcohols are formed. 5. Terminal alkenes yield the corresponding 1,2-epoxides. cis- or trans-but-2-ene are each oxidized to a mixture of 2,3-epoxybutane and but-2-en-1-ol with retention of the cis or trans configuration in both products; 2-butanone is also formed from cis-but-2-ene only. 6. Dimethyl ether is oxidized. Diethyl ether undergoes sub-terminal oxidation, yielding ethanol and ethanal in equimolar amounts. 7. Methane mono-oxygenase also hydroxylates cyclic alkanes and aromatic compounds. However, styrene yields only styrene epoxide and pyridine yields only pyridine N-oxide. 8. Of those compounds tested, only NADPH can replace NADH as electron donor. PMID:411486

  19. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria.

    PubMed

    Mohamed, Magdy El-Said; Al-Yacoub, Zakariya H; Vedakumar, John V

    2015-01-01

    Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS) of thiophenic sulfur-containing compounds such as benzothiophene (BT) and dibenzothiophene (DBT) in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2) and accumulation of 2-hydroxybiphenyl (2-HBP). Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 μmol/g dry cell weight (DCW)/h and the maximum formation rate of 2-HBP formation was 4 μmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams.

  20. Pressure-Dependent Criegee Intermediate Stabilization from Alkene Ozonolysis.

    PubMed

    Hakala, Jani P; Donahue, Neil M

    2016-04-14

    We explored the pressure dependence of acetone oxide (stabilized Criegee Intermediate, sCI) formation from 2,3-dimethyl-2-butene ozonolysis between 50 and 900 Torr using a new, highly accurate technique. We exploited the ability of the sCI to oxidize SO2 to H2SO4, which we measured with a chemical ionization mass spectrometer. We produced the Criegee intermediates (CI) in a high-pressure flow reactor via ozonolysis of 2,3-dimethyl-2-butene (tetramethyl ethylene, TME) and measured the relative H2SO4 concentrations with and without an added OH scavenger. Because the TME reaction with ozone forms acetone oxide (a syn-CI) with unit efficiency, we directly calculated the sCI yields at different pressures from the precisely measured ratio of the uncalibrated H2SO4 signal with and without the scavenger. We observed a linear pressure dependence between 50 and 900 Torr with a minimum stabilization of 12.7 ± 0.6% at 50 Torr and a maximum stabilization of 42 ± 2% at 900 Torr. A linear fit to the measured data points shows a zero-pressure intercept of 15 ± 2%, constraining the fraction of CI formed below the barrier for acetone oxide isomerization.

  1. In situ generated bulky palladium hydride complexes as catalysts for the efficient isomerization of olefins. Selective transformation of terminal alkenes to 2-alkenes.

    PubMed

    Gauthier, Delphine; Lindhardt, Anders T; Olsen, Esben P K; Overgaard, Jacob; Skrydstrup, Troels

    2010-06-16

    Application of an in situ generated bulky palladium(II) hydride catalyst obtained from a 1:1:1 mixture of Pd(dba)(2), P(tBu)(3), and isobutyryl chloride provides an efficient protocol for the isomerization and migration of a variety of olefins. In addition to the isomerization of (Z)- to (E)-olefins, the conjugative migration of allylbenzenes, allyl ethers, and amines was effectively achieved in near-quantitative yields and with excellent functional group tolerance. Catalyst loadings in the range of 0.5-1.0 mol % were typically applied, but even loadings as low as 0.25 mol % could be achieved when the reactions were performed under neat conditions. More interestingly, the investigated catalyst proved to be selective for converting terminal alkenes to 2-alkenes. This one-carbon migration process for monosubstituted olefins provides an alternative catalyst, which bridges the gap between the allylation and propenylation/vinylation protocols. Several substrates, including homoallylic alcohols and amines, were selectively transformed into their corresponding 2-alkenes, and examples using enantiomerically enriched substrates provided products without epimerization at the allylic stereogenic carbon centers. Finally, some mechanistic investigations were undertaken to understand the nature of the active in situ generated Pd-H catalyst. These studies revealed that the catalytic system is highly dependent on the large steric demand of the P(tBu)(3) ligand. The use of an alternative ligand, cataCXium PinCy, also proved effective for generating an active catalyst, and it was demonstrated in some cases to display better selectivity for the one-carbon shifts of terminal olefins. A possible intermediate involved in the preparation of the active catalyst was characterized by its single-crystal X-ray structure, which revealed a monomeric tricoordinated palladium(II) acyl complex, bearing a chloride ligand.

  2. Arylation and vinylation of alkenes based on unusual sequential semipinacol rearrangement/Grob fragmentation of allylic alcohols.

    PubMed

    Yuan, Dao-Yi; Tu, Yong-Qiang; Fan, Chun-An

    2008-10-03

    Alkenes can be stereoselectively arylated and vinylated without transition-metal catalyst under mild conditions through an interesting NBS-promoted semipinacol rearrangement and a subsequent unusual NaOH-mediated Grob fragmentation.

  3. A simple and facile Heck-type arylation of alkenes with diaryliodonium salts using magnetically recoverable Pd-catalyst

    EPA Science Inventory

    The Heck-type arylation of alkenes was achieved in aqueous polyethylene glycol using a magnetically recoverable heterogenized palladium catalyst employing diaryliodonium salts under ambient conditions. The benign reaction medium and the stability of the catalyst are the salient f...

  4. N-Heterocyclic Carbene Complexes in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Jurčík, Václav; Cazin, Catherine S. J.

    This chapter describes applications of N-heterocyclic carbenes (NHCs) in oxidation chemistry. The strong σ-donation capabilities of the NHCs allow an efficient stabilisation of metal centres in high oxidation states, while high metal-NHC bond dissociation energies suppress their oxidative decomposition. These properties make NHCs ideal ligands for oxidation processes. The first part of this chapter is dedicated to the reactivity of NHC-metal complexes towards molecular oxygen whilst the second half highlights all oxidation reactions catalysed by such complexes. These include oxidation of alcohols and olefins, oxidative cyclisations, hydrations of alkynes and nitriles, oxidative cleavage of alkenes and the oxidation of methane.

  5. Copper-mediated cross-coupling-cyclization-oxidation: a one-pot reaction to construct polysubstituted pyrroles.

    PubMed

    Liu, Pei; Liu, Jin-ling; Wang, Heng-shan; Pan, Ying-ming; Liang, Hong; Chen, Zhen-Feng

    2014-05-14

    A novel and efficient procedure for the synthesis of polysubstituted pyrroles has been developed in this work. The polysubsituted pyrroles were synthesized directly from terminal alkenes, amines and β-keto esters through cross-coupling-cyclization-oxidation in the presence of a catalytic amount of cuprous chloride. This method provides a one-pot synthesis route from terminal alkenes to polysubstituted pyrroles for the first time and opens a new area in cuprous catalysis.

  6. Iron(III)/NaBH4-Mediated Additions to Unactivated Alkenes: Synthesis of Novel 20′-Vinblastine Analogues

    PubMed Central

    Leggans, Erick K.; Barker, Timothy J.; Duncan, Katharine K.; Boger, Dale L.

    2012-01-01

    An Fe(III)/NaBH4-mediated reaction for the functionalization of unactivated alkenes is described defining the alkene substrate scope, establishing the exclusive Markovnikov addition, exploring a range of free radical traps, examining the Fe(III) salt and initiating hydride source, introducing H2O-cosolvent mixtures, and exploring catalytic variants. Its use led to the preparation of a novel, potent and previously inaccessible C20′-vinblastine analogue. PMID:22369097

  7. Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhu, Jie S.; Shon, Young-Seok

    2015-10-01

    Unsupported thiolate-capped palladium nanoparticle catalysts are found to be highly substrate-selective for alkene hydrogenation and isomerization. Steric and poisoning effects from thiolate ligands on the nanoparticle surface control reactivity and selectivity by influencing alkene adsorption and directing either di-σ or mono-σ bond formation. The presence of overlapping p orbitals and α protons in alkenes greatly influences the catalytic properties of deactivated palladium nanoparticles leading to easily predictable hydrogenation or isomerization products.Unsupported thiolate-capped palladium nanoparticle catalysts are found to be highly substrate-selective for alkene hydrogenation and isomerization. Steric and poisoning effects from thiolate ligands on the nanoparticle surface control reactivity and selectivity by influencing alkene adsorption and directing either di-σ or mono-σ bond formation. The presence of overlapping p orbitals and α protons in alkenes greatly influences the catalytic properties of deactivated palladium nanoparticles leading to easily predictable hydrogenation or isomerization products. Electronic supplementary information (ESI) available: Supplementary figures, methods, materials, and characterization data. See DOI: 10.1039/c5nr05090a

  8. Hyperfine frequency shift and Zeeman relaxation in alkali-metal-vapor cells with antirelaxation alkene coating

    NASA Astrophysics Data System (ADS)

    Corsini, Eric P.; Karaulanov, Todor; Balabas, Mikhail; Budker, Dmitry

    2013-02-01

    An alkene-based antirelaxation coating for alkali-metal vapor cells exhibiting Zeeman relaxation times up to 77 s was recently identified by Balabas The long relaxation times, two orders of magnitude longer than in paraffin- (alkane-) coated cells, motivate revisiting the question of what the mechanism is underlying wall-collision-induced relaxation and renew interest in applications of alkali-metal vapor cells to secondary frequency standards. We measure the width and frequency shift of the ground-state hyperfine mF=0→mF'=0 transition (clock resonance) in vapor cells with 85Rb and 87Rb atoms, with an alkene antirelaxation coating. We find that the frequency shift is slightly larger than for paraffin-coated cells and that the Zeeman linewidth scales linearly with the hyperfine frequency shift.

  9. Development of Novel Alkene Oxindole Derivatives As Orally Efficacious AMP-Activated Protein Kinase Activators

    PubMed Central

    2013-01-01

    Adenosine 5′-monophosphate-activated protein kinase (AMPK) is emerging as a promising drug target for its regulatory function in both glucose and lipid metabolism. Compound PT1 (5) was originally identified from high throughput screening as a small molecule activator of AMPK through the antagonization of the autoinhibition in α subunits. In order to enhance its potency at AMPK and bioavailability, structure–activity relationship studies have been performed and resulted in a novel series of AMPK activators based on an alkene oxindole scaffold. Following their evaluation in pharmacological AMPK activation assays, lead compound 24 was identified to possess improved potency as well as favorable pharmacokinetic profile. In the diet-induced obesity (DIO) mouse model, compound 24 was found to improve glucose tolerance and alleviate insulin resistance. The in vitro and in vivo data for these alkene oxindoles warrant further studies for their potential therapeutic medications in metabolic associated diseases. PMID:24900695

  10. Unsymmetrical E-Alkenes from the Stereoselective Reductive Coupling of Two Aldehydes.

    PubMed

    Esfandiarfard, Keyhan; Mai, Juri; Ott, Sascha

    2017-03-01

    The unprecedented formation of unsymmetrical alkenes from the intermolecular reductive coupling of two different aldehydes is described. In contrast to the McMurry reaction which affords statistical product mixtures, selectivity in the reported procedure is achieved by a sequential ionic mechanism in which a first aldehyde is reacted with a phosphanylphosphonate to afford a phosphaalkene intermediate which, upon activation by hydroxide, reacts with a second aldehyde to the unsymmetrical E-alkenes. The described reaction is free of transition metals and proceeds under ambient temperature within minutes in good to excellent overall yields. It is a new methodology to use feedstock aldehydes for the direct production of C═C double bond-containing products and may impact how chemists think of multistep synthetic sequences in the future.

  11. Microwave-assisted formation of organic monolayers from 1-alkenes on silicon carbide.

    PubMed

    van den Berg, Sebastiaan A; Alonso, Jose Maria; Wadhwa, Kuldeep; Franssen, Maurice C R; Wennekes, Tom; Zuilhof, Han

    2014-09-09

    The rate of formation of covalently linked organic monolayers on HF-etched silicon carbide (SiC) is greatly increased by microwave irradiation. Upon microwave treatment for 60 min at 100 °C (60 W), 1-alkenes yield densely packed, covalently attached monolayers on flat SiC surfaces, a process that typically takes 16 h at 130 °C under thermal conditions. This approach was extended to SiC microparticles. The monolayers were characterized by X-ray photoelectron spectroscopy and static water contact angle measurements. The microwave-assisted reaction is compatible with terminal functionalities such as alkenes that enable subsequent versatile "click" chemistry reactions, further broadening the range and applicability of chemically modified SiC surfaces.

  12. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.

    PubMed

    Thomas, Anthony W; Dove, Andrew P

    2016-12-01

    Functional aliphatic polycarbonates have attracted significant attention as materials for use as biomedical polymers in recent years. The incorporation of pendent functionality offers a facile method of modifying materials postpolymerization, thus enabling functionalities not compatible with ring-opening polymerization (ROP) to be introduced into the polymer. In particular, polycarbonates bearing alkene-terminated functional groups have generated considerable interest as a result of their ease of synthesis, and the wide range of materials that can be obtained by performing simple postpolymerization modifications on this functionality, for example, through radical thiol-ene addition, Michael addition, and epoxidation reactions. This review presents an in-depth appraisal of the methods used to modify alkene-functional polycarbonates postpolymerization, and the diversity of practical applications for which these materials and their derivatives have been used.

  13. Copper-catalyzed intermolecular carboetherification of unactivated alkenes by alkyl nitriles and alcohols.

    PubMed

    Chatalova-Sazepin, Claire; Wang, Qian; Sammis, Glenn M; Zhu, Jieping

    2015-04-27

    A three-component carboetherification of unactivated alkenes has been developed allowing the rapid building of complexity from simple starting materials. A wide range of α-substituted styrenes underwent smooth reactions with unactivated alkyl nitriles and alcohols to afford γ-alkoxy alkyl nitriles with concomitant generation of a quaternary carbon center. A radical clock experiment provided clear-cut evidence that the reaction proceeds through a tertiary alkyl radical intermediate.

  14. Carbonyl products of the gas phase reaction of ozone with symmetrical alkenes

    SciTech Connect

    Grosjean, E.; Grosjean, D.

    1996-06-01

    In this study, carbonyl products have been identified and their yields measured in experiments involving the gas phase reaction of ozone with the eight symmetrical alkenes ethylene, cis-3-hexene, cis-4-octene, trans-4-octene, cis-5-decene, trans-5-decene, trans-2, 5-dimethyl-3-hexene, and (cis+trans)-3,4-dimethyl-3-hexene in purified air. Sufficient cyclohexane was added to scavenge the hydroxyl radical (OH) in order to minimize the reaction of OH with the alkenes and with their carbonyl products. Formation yields (carbonyl formed/ozone reacted) of primary carbonyls were close to the value of 1.0 that is consistent with simple reaction mechanism. Carbonyls other than the primary carbonyls R{sub 1}COR{sub 2} were identified as products. Their formation is discussed in terms of subsequent reactions of the R{sub 1}R{sub 2}COO biradicals CH{sub 3}CH{sub 2}CHOO, CH{sub 3}(CH{sub 2}){sub 2}CHOO, CH{sub 3}(CH{sub 2}){sub 3}CHOO, (CH{sub 3}){sub 2}CHCHOO, and C{sub 2}H{sub 5}C(CH{sub 3})OO. Similarities and differences are discussed for cis and trans isomers and for biradical reactions as a function of the nature and number of the substituents. The results are compared to those for the biradicals H{sub 2}COO, CH{sub 3}CHOO, and (CH{sub 3}){sub 2}COO from simpler symmetrical alkenes and contribute to a better understanding of the ozone-alkene reaction under atmospheric conditions. 51 refs., 1 fig., 3 tabs.

  15. Analysis of using binary cryogenic mixtures containing nitrogen and alkanes or alkenes in cryocoolers

    NASA Astrophysics Data System (ADS)

    Xu, M.; He, Y.; Chen, Z.

    This paper describes the working mechanism of binary cryogenic mixtures containing nitrogen and alkanes or alkenes. The Peng-Robinson equation of state is used to calculate the mixed free enthalpy of these mixtures and a method to calculate the mutual solubility is also suggested. Finally, the vapour-liquid, liquid-liquid and vapourliquid-liquid equilibria of these mixtures are analysed. Therefore, an effective method to predict the characteristics of new kinds of binary cryogenic substances is provided in this paper.

  16. The mechanism of alkene elimination from protonated toluenesulphonamides generated by electrospray ionisation.

    PubMed

    Saidykhan, Amie; Ebert, Jenessa; Martin, William H C; Gallagher, Richard T; Bowen, Richard D

    2016-01-01

    The positive ion electrospray mass spectra of a range of sulphonamides of general structure CH3C6H4SO2NHR1 [R1 = CnH2n(+1) (n = 1-7), CnH2n-1 (n = 3, 4), C6H5, C6H5CH2 and C6H5CH(CH3)] and CH3C6H4SO2NR1R(2) [R(1), R(2) = CnH2n+1 (n = 1-8)] are reported and discussed. The protonated sulphonamides derived from saturated primary and secondary aliphatic amines generally fragment to only a limited extent unless energised by collision. Two general fragmentations are observed: firstly, elimination of an alkene, CnH2n, obtained by hydrogen abstraction from one of the CnH2n+1 alkyl groups on nitrogen; secondly, cleavage to form CH3C6H4SO2+. The mechanism by which an alkene is lost has been probed by studying the variation of the intensity of the [M + H - CnH2n](+) signal with the structure of the alkyl substituent(s) on nitrogen and by monitoring the competition between the loss of different alkenes from protonated unsymmetrical sulphonamides in which two different alkyl groups are attached to nitrogen. This fragmentation is favoured by branching of the alkyl group at the carbon atom directly attached to nitrogen, thus suggesting that it involves a mechanism in which the stability of the cation obtained by stretching the bond connecting the nitrogen atom to the alkyl group is critical. This interpretation also explains the competition between alkene elimination and cleavage to form CH3C6H4SO2(+) (and, in some cases, cleavage to form C6H5CH2(+) or [C6H5CHCH3](+)).

  17. Iron-catalyzed 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes.

    PubMed

    Xu, Tao; Cheung, Chi Wai; Hu, Xile

    2014-05-05

    Iron catalysis has been developed for the intermolecular 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes. The catalysis has a wide substrate scope and high functional-group tolerance. A variety of perfluoroalkyl iodides including CF3 I can be employed. The resulting perfluoroalkylated alkyl and alkenyl iodides can be further functionalized by cross-coupling reactions. This methodology provides a straightforward and streamlined access to perfluoroalkylated organic molecules.

  18. Branch-Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium-Catalyzed ortho-Alkylation of Acetanilides

    PubMed Central

    Crisenza, Giacomo E M; Sokolova, Olga O; Bower, John F

    2015-01-01

    An iridium(I) catalyst system, modified with the wide-bite-angle and electron-deficient bisphosphine dFppb (1,4-bis(di(pentafluorophenyl)phosphino)butane) promotes highly branch-selective hydroarylation reactions between diverse acetanilides and aryl- or alkyl-substituted alkenes. This provides direct and ortho-selective access to synthetically challenging anilines, and addresses long-standing issues associated with related Friedel–Crafts alkylations. PMID:26490739

  19. Determination of the adsorption model of alkenes and alcohols on sulfonic copolymer by inverse gas chromatography.

    PubMed

    Słomkiewicz, P M

    2004-04-23

    The determination of a number of adsorption sites on sulfonated styrene-divinylbenzene copolymer for alkenes (propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, isobutene, 2-methyl-1-butene, 2-methyl-2-butene, 2-methyl-1-pentene, 2-methyl-2-pentene and 2-methyl-2-hexene) and alcohols (methanol, ethanol and n-propanol, n-butanol, 2-butanol and tert-butanol) was performed by the saturation copolymer with vapors of adsorbate, by removing the excess of adsorbate from copolymer by blowing the inert gas through copolymer bed and by the desorption of adsorbed alcohol in the programmed increase of temperature. The adsorption measurements were performed on sulfonated ion-exchange resin (Amberlyst 15) with different concentrations of the acid group, which means with a varying number of adsorption sites. The following adsorption models for alkenes were suggested: the first in which one molecule of alkene is adsorbed by two sulfonic groups, for linear alcohols, the second in which one sulfonic group can adsorb one molecule of alcohol and for non-linear alcohols the third where one molecule of alcohol is adsorbed by two or more sulfonic groups.

  20. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.

    PubMed

    Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin

    2014-12-08

    The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent.

  1. Ru Catalyzed Alkene-Alkyne Coupling. Total Synthesis of Amphidinolide P

    PubMed Central

    Trost, Barry M.; Papillon, Julien P. N.; Nussbaumer, Thomas

    2008-01-01

    A coordinatively unsaturated ruthenium complex catalyzed the formation of a carbon-carbon bond between two judiciously chosen alkene and alkyne partners in good yield, and in a chemo- and regioselective fashion, in spite of the significant degree of unsaturation of the substrates. The resulting 1,4-diene forms the backbone of the cytotoxic marine natural product amphidinolide P. The alkene partner was rapidly assembled from (R)-glycidyl tosylate, which served as a linchpin in a one-flask, sequential three-components coupling process using vinyllithium and a vinyl cyanocuprate. The synthesis of the alkyne partner made use of an unusual anti-selective addition under chelation control conditions of an allyltin reagent derived from tiglic acid. In addition, a remarkably E-selective E2 process using the azodicarboxylate-triphenylphosphine system is featured. Also featured is the first example of the use of a β-lactone as a thermodynamic spring to effect macrolactonization. The oxetanone ring was thus used as a productive protecting group that increased the overall efficiency of this total synthesis. This work was also an opportunity to further probe the scope of the ruthenium-catalyzed alkene-alkyne coupling, in particular using enynes, and studies using various functionalized substrates are described. PMID:16351124

  2. Engineering the microstructure and permeability of thin multilayer latex biocatalytic coatings containing E. coli.

    PubMed

    Lyngberg, O K; Ng, C P; Thiagarajan, V; Scriven, L E; Flickinger, M C

    2001-01-01

    The microstructure and permeability of rehydrated 20-100 microm thick partially coalesced (vinyl-actetate acrylic copolymer) SF091 latex coatings and a 118 microm thick model trilayer biocatalytic coating consisting of two sealant SF091 layers containing a middle layer of viable E. coli HB101 + latex were studied as delaminated films in a diffusion apparatus with KNO(3) as the diffussant. The permeability of the hydrated coatings is due to diffusive transport through the pore space between the partially coalesced SF091 latex particles. Coating microstructure was visualized by fast freeze cryogenic scanning electron microscopy (cryo-SEM). The effective diffusion coefficient of SF091 latex coatings (diffusive permeability/film thickness) was determined as the ratio of the effective diffusivity of KNO(3) to its diffusivity in water (D(eff)/D). Polymer particle coalescence was arrested by two methods to increase coating permeability. The first used glycerol with coating drying at 4 degrees C, near the glass transition temperature (T(g)). The second method used sucrose or trehalose as a filler to arrest coalescence; the filler was then dissolved away. D(eff)/D was measured as a function of film thickness; content of glycerol, sucrose, and trehalose; drying time; and rehydration time. D(eff)/D varied from 3 x 10(-4) for unmodified SF091 coatings to 6.8 x 10(-2) for coatings containing sucrose. D(eff)/D was reduced by the flattening of latex particles against the surface of the solid substrate, as well as by the presence of the colloid stabilizer hydroxyethylcellulose (HEC). When corrected for the flattened particle layer, D(eff)/D of HEC-free coatings was as high as 0.20, which agreed with the value predicted from analysis of cryo-SEM images of the coat surface. D(eff)/D decreased by one-half in approximately 5 days in rehydrated SF091 coatings, indicating that significant wet coalescence occurs after glycerol, sucrose, or trehalose are leached from the films. D

  3. Biocatalytic polymer thin films: optimization of the multilayered architecture towards in situ synthesis of anti-proliferative drugs

    NASA Astrophysics Data System (ADS)

    Andreasen, Sidsel Ø.; Fejerskov, Betina; Zelikin, Alexander N.

    2014-03-01

    We report on the assembly of multi-layered polyelectrolyte thin films containing an immobilized enzyme to perform conversion of externally administered prodrugs and achieve delivery of the resulting therapeutics to adhering cells. Towards this goal, multi-layered coatings were assembled using poly(sodium styrene sulfonate) and poly(allylamine hydrochloride). Activity of the incorporated enzyme was quantified as a function of the assembly conditions, position of the enzyme within the multi-layered architecture, concentration of the enzyme in the adsorption solution, and concentration of the administered prodrug. Biocatalytic coatings exhibited sustained levels of enzymatic activity over at least one week of incubation in physiological buffers without signs of loss of activity of the enzyme. Developed enzyme-containing polymer films afforded zero-order release of the in situ synthesized cargo with kinetics of synthesis (nM per hour) covering at least 3 orders of magnitude. Internalization of the synthesized product by adhering cells was visualized using a fluorogenic enzyme substrate. Therapeutic utility of biocatalytic coatings was demonstrated using a myoblast cell line and a prodrug for the anti-proliferative agent, 5-fluorouridine. Taken together, this work presents a novel approach to delivery of small molecule drugs using multi-layered polymer thin films with utility in surface-mediated drug delivery, assembly of therapeutic implantable devices, and tissue engineering.We report on the assembly of multi-layered polyelectrolyte thin films containing an immobilized enzyme to perform conversion of externally administered prodrugs and achieve delivery of the resulting therapeutics to adhering cells. Towards this goal, multi-layered coatings were assembled using poly(sodium styrene sulfonate) and poly(allylamine hydrochloride). Activity of the incorporated enzyme was quantified as a function of the assembly conditions, position of the enzyme within the multi

  4. A biocatalytic approach to capuramycin analogues by exploiting a substrate permissive N-transacylase CapW.

    PubMed

    Liu, Xiaodong; Jin, Yuanyuan; Cai, Wenlong; Green, Keith D; Goswami, Anwesha; Garneau-Tsodikova, Sylvie; Nonaka, Koichi; Baba, Satoshi; Funabashi, Masanori; Yang, Zhaoyong; Van Lanen, Steven G

    2016-04-28

    Using the ATP-independent transacylase CapW required for the biosynthesis of capuramycin-type antibiotics, we developed a biocatalytic approach for the synthesis of 43 analogues via a one-step aminolysis reaction from a methyl ester precursor as an acyl donor and various nonnative amines as acyl acceptors. Further examination of the donor substrate scope for CapW revealed that this enzyme can also catalyze a direct transamidation reaction using the major capuramycin congener as a semisynthetic precursor. Biological activity tests revealed that a few of the new capuramycin analogues have significantly improved antibiotic activity against Mycobacterium smegmatis MC2 155 and Mycobacterium tuberculosis H37Rv. Furthermore, most of the analogues are able to be covalently modified by the phosphotransferase CapP/Cpr17 involved in self resistance, providing critical insight for future studies regarding clinical development of the capuramycin antimycobacterial antibiotics.

  5. Quartz Crystal Microbalance Analysis of Diels-Alder Reactions of Alkene Gases to Functional Ionic Liquids on Chips.

    PubMed

    Hsu, Tzu-Hsuan; Chiang, Shu-Jen; Chu, Yen-Ho

    2016-11-15

    We demonstrated here a successful development of the use of functional ionic liquids FIL 1 and FIL 3 for chemoselective detection of alkene gases measured by quartz crystal microbalance. This detection of gaseous alkenes was achieved by the Diels-Alder [4 + 2] cycloadditions with FIL 1 and FIL 3 thin-coated on quartz chips. Our functional ionic liquids could be prepared by straightforward synthetic chemistry in short steps and are superior in alkene gas detection. The QCM platform developed in this work is chemoselective with fast gas diffusion into ionic liquids, readily applicable to low molecular weight alkene gases and insensitive to moisture. To the best of our knowledge, this is the first report based upon the Diels-Alder reactions demonstrating sensitive alkene gas detection in ionic liquids on a QCM. This work is a proof-of-concept inspection of the promising use of a QCM-based sensor method for reaction-directed detection of gas samples, which is part of an ongoing program aimed at studying diseases.

  6. Nickel and cobalt-catalyzed coupling of alkyl halides with alkenes via heck reactions and radical conjugate addition.

    PubMed

    Qian, Qun; Zang, Zhenhua; Chen, Yang; Tong, Weiqi; Gong, Hegui

    2013-05-01

    Cross-coupling of alkyl halides with alkenes leading to Heck-type and addition products is summarized. The development of Heck reaction with aliphatic halides although has made significant progress in the past decade and particularly recently, it was much less explored in comparison with the aryl halides. The use of Ni- and Co-catalyzed protocols allowed efficient Heck coupling of activated and unactivated alkenes with 1°, 2° and 3° alkyl halides. In addition, radical conjugate addition to activated alkenes has become a well-established method that has led to efficient construction of many natural products. The utilization of Ni- and Co-catalyzed strategies would avoid toxic tin reagents, and therefore worth exploring. The recent development of Ni- and Co-catalyzed addition of alkyl halides to alkenes displays much improved reactivity and functional group tolerance. In this mini-review, we also attempt to overview the mechanisms that are proposed in the reactions, aiming at providing insight into the nickel and cobalt-catalyzed coupling of alkyl halides with alkenes.

  7. Enhancing the biocatalytic manufacture of the key intermediate of atorvastatin by focused directed evolution of halohydrin dehalogenase

    PubMed Central

    Luo, Yu; Chen, Yangzi; Ma, Hongmin; Tian, ZhenHua; Zhang, Yeqi; Zhang, Jian

    2017-01-01

    Halohydrin dehalogenases (HHDHs) are biocatalytically interesting enzymes due to their ability to form C-C, C-N, C-O, and C-S bonds. One of most important application of HHDH was the protein engineering of HheC (halohydrin dehalogenase from Agrobacterium radiobacter AD1) for the industrial manufacturing of ethyl (R)-4-cyano-3-hydroxybutanoate (HN), a key chiral synthon of a cholesterol-lowering drug of atorvastatin. During our development of an alternative, more efficient and economic route for chemo-enzymatic preparation of the intermediate of atorvastatin, we found that the HheC2360 previously reported for HN manufacture, had insufficient activity for the cyanolysis production of tert-butyl (3 R,5 S)-6-cyano-3,5-dihydroxyhexanoate (A7). Herein, we present the focused directed evolution of HheC2360 with higher activity and enhanced biocatalytic performance using active site mutagenesis. Through docking of the product, A7, into the crystal structure of HheC2360, 6 residues was selected for combined active sites testing (CASTing). After library screening, the variant V84G/W86F was identified to have a 15- fold increase in activity. Time course analysis of the cyanolysis reaction catalyzed by this variant, showed 2- fold increase in space time productivity compared with HheC2360. These results demonstrate the applicability of the variant V84G/W86F as a biocatalyst for the efficient and practical production of atorvastatin intermediate. PMID:28165015

  8. Controlling enzymatic activity by immobilization on graphene oxide.

    PubMed

    Bolibok, Paulina; Wiśniewski, Marek; Roszek, Katarzyna; Terzyk, Artur P

    2017-04-01

    In this study, graphene oxide (GO) has been applied as a matrix for enzyme immobilization. The protein adsorption capacity of GO is much higher than of other large surface area carbonaceous materials. Its structure and physicochemical properties are reported beneficial also for enzymatic activity modifications. The experimental proof was done here that GO-based biocatalytic systems with immobilized catalase are modifiable in terms of catalyzed reaction kinetic constants. It was found that activity and stability of catalase, considered here as model enzyme, closely depend on enzyme/GO ratio. The changes in kinetic parameters can be related to secondary structure alterations. The correlation between enzyme/GO ratio and kinetic and structure parameters is reported for the first time and enables the conscious control of biocatalytic processes and their extended applications. The biological activity of obtained biocatalytic systems was confirmed in vitro by the use of functional test. The addition of immobilized catalase improved the cells' viability after they were exposed to hydrogen peroxide and tert-butyl-hydroperoxide used as source of reactive oxygen species.

  9. Polythioether Particles Armored with Modifiable Graphene Oxide Nanosheets.

    PubMed

    Rodier, Bradley J; Mosher, Eric P; Burton, Spencer T; Matthews, Rachael; Pentzer, Emily

    2016-06-01

    Facile and scalable fabrication methods are attractive to prepare materials for diverse applications. Herein, a method is presented to prepare cross-linked polymeric nanoparticles with graphene oxide (GO) nanosheets covalently attached to the surface. Alkene-modified GO serves as a surfactant in a miniemulsion polymerization, and the alkene functionalities of GO exposed to the oil-phase are incorporated into the polymer particle through thiol-ene reactions, leaving the unreacted alkene functional groups of the other face of GO available for further functionalization. The surface of GO-armored polymer particles is then modified with a small molecule fluorophore or carboxylic acid functional groups that bind to Fe2 O3 and TiO2 nanoparticles. This methodology provides a facile route to preparing complex hybrid composite materials.

  10. Alkene/diamond liquid/solid interface characterization using internal photoemission spectroscopy.

    PubMed

    Nebel, C E; Shin, D; Takeuchi, D; Yamamoto, T; Watanabe, H; Nakamura, T

    2006-06-20

    The photochemical attachment of 10-amino-dec-1-ene molecules protected with a trifluoroacetic acid group (TFAAD) on hydrogen-terminated single-crystalline chemical vapor deposited (CVD) diamond is characterized by total photoyield spectroscopy (TPYS), conductivity, Hall-effect, spectrally resolved photoconductivity (SPC), optical transmission experiments, and, for the first time, by in situ internal photoemission (IPE) spectroscopy applied in the spectral regime from 4 to 6 eV on the alkene/diamond (liquid/solid) heterostructures. These experiments are performed on undoped, (100) oriented, single-crystalline CVD diamond films, which contain no grain boundaries and have negligible bulk and surface defect densities. X-ray photoelectron spectroscopy (XPS) is used to investigate the chemical bonding of alkene molecules to diamond. The spectroscopic set of data shows that the photochemical reaction window of H-terminated diamond is shifted below the optical gap of diamond because of the negative electron affinity. In situ IPE experiments reveal electron emission between 4.5 and 5.2 eV. A model is introduced and discussed in which valence-band electrons are optically excited into empty hydrogen-induced surface states of diamond from where they tunnel into empty pi states of alkene molecules. We theoretically discuss the fastest attachment time to achieve a saturated TFAAD layer of about 2 x 10(14) cm(-)(2) on diamond, which is experimentally detected to be 7 h. In the case of direct optical electron excitations from diamond, the bonding efficiency will be one TFAAD molecule attachment arising from about 1600 emitted electrons.

  11. Formation of {beta}-hydroxycarbonyls from the OH radical-initiated reactions of selected alkenes

    SciTech Connect

    Aschmann, S.M.; Arey, J.; Atkinson, R.

    2000-05-01

    {beta}-Hydroxycarbonyls can be formed from the gas-phase reactions of alkenes with the OH radical, both in the presence and in the absence of NO. To date, because of analytical difficulties, few data have been reported for the formation of this class of compound from the reactions of the OH radical with alkenes. The authors have determined that {beta}-hydroxy-ketones can be readily analyzed by gas chromatography, and in this work they have shown that in 1 atm of air the {beta}-hydroxyalkoxy radicals formed in the reactions of the OH radical with trans-2-butene, trans-3-hexene, 1-butene, and {alpha}-pinene in the presence of NO primarily decompose rather than react with O{sub 2}. Rate constant ratios k{sub d}/k{sub 0{sub 2}} (or lower limits thereof), where k{sub d} and k{sub 0{sub 2}} are respectively the rate constants for the decomposition and the reaction with 0{sub 2} of the intermediate {beta}-hydroxyalkoxy radicals, have been obtained for the reactions of the CH{sub 3}CH(O)CH-(OH)CH{sub 3}, CH{sub 3}CH{sub 2}CH(O)CH{sub 2}OH, and CH{sub 3}CH{sub 2}CH(O)CH(OH)CH{sub 2}-CH{sub 3} radicals at 296 {+-} 2 K and atmospheric pressure. Using the O{sub 3} reactions with the alkenes to generate OH radicals, the reactions of the OH radical to generate OH radicals, the reactions of the OH radical with trans-2-butene, trans-3-hexene, and {alpha}-pinene in the absence of NO lead to the formation of the expected {beta}-hydroxycarbonyls and (at least for trans-2-butene) the {alpha},{beta}-diol.

  12. Suppression of Chloroplastic Alkenal/One Oxidoreductase Represses the Carbon Catabolic Pathway in Arabidopsis Leaves during Night1[OPEN

    PubMed Central

    Ifuku, Kentaro; Ikeda, Ken-ichi; Inoue, Kanako Ikeda; Park, Pyoyun; Tamoi, Masahiro; Inoue, Hironori; Sakamoto, Katsuhiko; Saito, Ryota

    2016-01-01

    Lipid-derived reactive carbonyl species (RCS) possess electrophilic moieties and cause oxidative stress by reacting with cellular components. Arabidopsis (Arabidopsis thaliana) has a chloroplast-localized alkenal/one oxidoreductase (AtAOR) for the detoxification of lipid-derived RCS, especially α,β-unsaturated carbonyls. In this study, we aimed to evaluate the physiological importance of AtAOR and analyzed AtAOR (aor) mutants, including a transfer DNA knockout, aor (T-DNA), and RNA interference knockdown, aor (RNAi), lines. We found that both aor mutants showed smaller plant sizes than wild-type plants when they were grown under day/night cycle conditions. To elucidate the cause of the aor mutant phenotype, we analyzed the photosynthetic rate and the respiration rate by gas-exchange analysis. Subsequently, we found that both wild-type and aor (RNAi) plants showed similar CO2 assimilation rates; however, the respiration rate was lower in aor (RNAi) than in wild-type plants. Furthermore, we revealed that phosphoenolpyruvate carboxylase activity decreased and starch degradation during the night was suppressed in aor (RNAi). In contrast, the phenotype of aor (RNAi) was rescued when aor (RNAi) plants were grown under constant light conditions. These results indicate that the smaller plant sizes observed in aor mutants grown under day/night cycle conditions were attributable to the decrease in carbon utilization during the night. Here, we propose that the detoxification of lipid-derived RCS by AtAOR in chloroplasts contributes to the protection of dark respiration and supports plant growth during the night. PMID:26884484

  13. Scope and mechanism of the Pt-catalyzed enantioselective diboration of monosubstituted alkenes.

    PubMed

    Coombs, John R; Haeffner, Fredrik; Kliman, Laura T; Morken, James P

    2013-07-31

    The Pt-catalyzed enantioselective diboration of terminal alkenes can be accomplished in an enantioselective fashion in the presence of chiral phosphonite ligands. Optimal procedures and the substrate scope of this transformation are fully investigated. Reaction progress kinetic analysis and kinetic isotope effects suggest that the stereodefining step in the catalytic cycle is olefin migratory insertion into a Pt-B bond. Density functional theory analysis, combined with other experimental data, suggests that the insertion reaction positions platinum at the internal carbon of the substrate. A stereochemical model for this reaction is advanced that is in line both with these features and with the crystal structure of a Pt-ligand complex.

  14. Recent Developments in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and Alkynes

    NASA Astrophysics Data System (ADS)

    Hintermann, Lukas

    Progress in the field of metal-catalyzed redox-neutral additions of oxygen nucleophiles (water, alcohols, carboxylic acids, and others) to alkenes, alkynes, and allenes between 2001 and 2009 is critically reviewed. Major advances in reaction chemistry include development of chiral Lewis acid catalyzed asymmetric oxa-Michael additions and Lewis-acid catalyzed hydro-alkoxylations of nonactivated olefins, as well as further development of Markovnikov-selective cationic gold complex-catalyzed additions of alcohols or water to alkynes and allenes.

  15. Scope and Mechanism of the Pt-Catalyzed Enantioselective Diboration of Monosubstituted Alkenes

    PubMed Central

    Coombs, John R.; Haeffner, Fredrik; Kliman, Laura T.; Morken, James P.

    2013-01-01

    The Pt-catalyzed enantioselective diboration of terminal alkenes can be accomplished in an enantioselective fashion in the presence of chiral phosphonite ligands. Optimal procedures and the substrate scope of this transformation are fully investigated. Reaction progress kinetic analysis and natural abundance isotope effects suggest that the stereodefining step in the catalytic cycle is olefin migratory insertion into a Pt-B bond. DFT analysis, combined with other experimental data, suggest that the insertion reaction positions platinum at the internal carbon of the substrate. A stereochemical model for this reaction is advanced that is in line both with these features and with the crystal structure of a Pt-ligand complex. PMID:23862690

  16. One-pot synthesis of 1-iodoalkynes and trisubstituted alkenes from benzylic and allylic bromides.

    PubMed

    Pelletier, Guillaume; Lie, Sharon; Mousseau, James J; Charette, André B

    2012-11-02

    1-Iodoalkynes are formed in moderate to high yields from readily accessible benzylic and allylic alkyl bromides by a one-pot homologation/double elimination procedure with iodoform (CHI(3)). The developed conditions include facile purification and avoid the use of an excess of triphenylphosphine (PPh(3)), as described in classical Corey-Fuchs iodoalkynylation conditions. Replacing CHI(3) with CHI(2)Cl allows the isolation of the corresponding gem-(Z)-chloro-(E)-iodoalkene in good yield and stereoselectivity. Moreover, the use of benzhydryl bromides as nucleophiles enables the synthesis of trisubstituted alkenes under similar reaction conditions.

  17. Aminomethylhydroxylation of alkenes: Exploitation in the synthesis of scaffolds for small molecule libraries.

    PubMed

    Colomer, Ignacio; Adeniji, Ololade; Burslem, George M; Craven, Philip; Rasmussen, Martin Ohsten; Willaume, Anthony; Kalliokoski, Tuomo; Foster, Richard; Marsden, Stephen P; Nelson, Adam

    2015-06-01

    The application of [4+2] cycloadditions between alkenes and an N-benzoyl iminium species, generated in situ under acidic conditions, is described in the synthesis of diverse molecular scaffolds. The key reaction led to the formation of cyclic imidates in good yield and with high regioselectivity. It was demonstrated that the cyclic imidates may be readily converted into 1,3-amino alcohols. Incorporation of orthogonally-reactive functionality, such as aryl and alkyl bromides, into the cycloaddition substrates enabled the synthesis of additional scaffolds. For one scaffold, the synthesis of exemplar screening compounds was undertaken to demonstrate potential value in small molecule library production.

  18. Enantioselective epoxidation of non-functionalized alkenes using carbohydrate based salen-Mn(III) complexes.

    PubMed

    Zhao, Shanshan; Zhao, Jiquan; Zhao, Dongmin

    2007-02-05

    Three new salen ligands with carbohydrate moieties were prepared from a salicylaldehyde derivative obtained by reaction of 1,2:5,6-di-O-isopropylidene-alpha-D-glucofuranose with 3-tert-butyl-5-(chloro-methyl)-2-hydroxybenzaldehyde. These ligands were coordinated with Mn(III) to give three chiral salen-Mn(III) complexes. The complexes were characterized and employed in the asymmetric epoxidation of unfunctionalized alkenes. Catalytic results showed that although there are no chiral groups on the diimine bridge, these complexes had some enantioselectivity, which indicates the carbohydrate moiety has an asymmetric inducing effect in the epoxidation reaction.

  19. In situ EPR studies of reaction pathways in Titania photocatalyst-promoted alkylation of alkenes.

    PubMed

    Rhydderch, Shona; Howe, Russell F

    2015-03-03

    In situ EPR spectroscopy at cryogenic temperatures has been used to observe and identify paramagnetic species produced when titania is irradiated in the presence of reactants used in the photocatalytic alkylation of maleimide with t-butyl carboxylic acid or phenoxyacetic acid. It is shown that maleimide acts as an acceptor of conduction band electrons. Valence band holes oxidise t-butyl carboxylic acid to the t-butyl radical and phenoxyacetic acid to the phenoxyacetic acid radical cation. In the presence of maleimide, the phenoxymethyl radical is formed from phenoxyacetic acid. The relevance of these observations to the mechanisms of titania photocatalyst-promoted alkylation of alkenes is discussed.

  20. Allylic Amines as Key Building Blocks in the Synthesis of (E)-Alkene Peptide Isosteres

    PubMed Central

    Skoda, Erin M.; Davis, Gary C.

    2012-01-01

    Nucleophilic imine additions with vinyl organometallics have developed into efficient, high yielding, and robust methodologies to generate structurally diverse allylic amines. We have used the hydrozirconation-transmetalation-imine addition protocol in the synthesis of allylic amine intermediates for peptide bond isosteres, phosphatase inhibitors, and mitochondria-targeted peptide mimetics. The gramicidin S-derived XJB-5-131 and JP4-039 and their analogs have been prepared on up to 160 g scale for preclinical studies. These (E)-alkene peptide isosteres adopt type II′ β-turn secondary structures and display impressive biological properties, including selective reactions with reactive oxygen species (ROS) and prevention of apoptosis. PMID:22323894

  1. The chemistry of simple alkene molecules on Si(100)c(4 × 2): The mechanism of cycloaddition and their selectivities

    NASA Astrophysics Data System (ADS)

    Akagi, Kazuto; Yoshinobu, Jun

    2016-10-01

    The chemistry of simple alkene molecules on the Si(100) surface is reviewed with the newly-produced visual presentation by theoretical calculations. The early pioneering studies by the Kyoto Group and Pittsburgh group reported the di-σ bond formation and the precursor-mediated chemisorption for acetylene and ethylene on Si(100), respectively. Thereafter, these studies have been stimulating various studies of organic molecules on Si surfaces. Our recent studies have observed the precursor states for alkene chemisorption and elucidated the microscopic mechanisms of the di-σ bond formation (cycloaddition) with the help of theoretical calculations; the site-, stereo- and regio-selective chemisorption of simple alkene molecules on Si(100)c(4 × 2) has been established.

  2. Neutral losses: a type of important variables in prediction of branching degree for acyclic alkenes from mass spectra.

    PubMed

    Zhang, Liangxiao; Fan, Wei; Cao, Dongsheng; Zeng, Maomao; Xiao, Hongbin; Liang, Yizeng

    2012-03-30

    Neutral losses are a type of important variables in mass spectral interpretation. Since it is hard to calculate or extract neutral losses from mass spectra, they are usually discarded. In this study, dissimilarity analysis was employed to extract mass spectral characteristics for predicting branching degree of acyclic alkenes. The relationships between branching degree and neutral loss were constructed under direction of experimental observation and mass spectral fragmentations. A branching degree predictor of acyclic alkenes was subsequently built based on the above relationships. After tested by the experimental data in previous studies, the predictor could correctly provide the branching degree from abundant ions of mass spectra. More importantly, this predictor was able to point out which acyclic alkenes could be predicted correctly or not.

  3. Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions

    PubMed Central

    Zheng, Changwu; Wang, Dian; Stahl, Shannon S.

    2012-01-01

    Pd-catalyzed aerobic oxidative coupling of vinylboronic acids and electronically unbiased alkyl olefins provides regioselective access to 1,3-disubstituted conjugated dienes. Catalyst-controlled regioselectivity is achieved by using 2,9-dimethylphenanthroline as a ligand. The observed regioselectivity is opposite to that observed from a traditional (non-oxidative) Heck reaction between a vinyl bromide and an alkene. DFT computational studies reveal that steric effects of the 2,9-dimethylphenanthroline ligand promote C–C bond-formation at the internal position of the alkene. PMID:22998540

  4. Sources of C₂-C₄ alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region.

    PubMed

    Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng

    2015-01-01

    Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control.

  5. A combination of directing groups and chiral anion phase-transfer catalysis for enantioselective fluorination of alkenes

    PubMed Central

    Wu, Jeffrey; Wang, Yi-Ming; Drljevic, Amela; Rauniyar, Vivek; Phipps, Robert J.; Toste, F. Dean

    2013-01-01

    We report a catalytic enantioselective electrophilic fluorination of alkenes to form tertiary and quaternary C(sp3)-F bonds and generate β-amino- and β-aryl-allylic fluorides. The reaction takes advantage of the ability of chiral phosphate anions to serve as solid–liquid phase transfer catalysts and hydrogen bond with directing groups on the substrate. A variety of heterocyclic, carbocyclic, and acyclic alkenes react with good to excellent yields and high enantioselectivities. Further, we demonstrate a one-pot, tandem dihalogenation–cyclization reaction, using the same catalytic system twice in series, with an analogous electrophilic brominating reagent in the second step. PMID:23922394

  6. PS-BEMP as a basic catalyst for the phospha-Michael addition to electron-poor alkenes.

    PubMed

    Strappaveccia, Giacomo; Bianchi, Luca; Ziarelli, Simone; Santoro, Stefano; Lanari, Daniela; Pizzo, Ferdinando; Vaccaro, Luigi

    2016-04-14

    PS-BEMP was used as a heterogeneous catalyst for the phospha-Michael addition of phosphorus nucleophiles to a variety of electron-poor alkenes. The addition reactions were generally performed with equimolar amounts of reagents under solvent free conditions. The protocol proved to be very efficient for the addition to aromatic, non-aromatic and cyclic ketones, giving good yields (78-85%) in all cases. The protocol was also extended with good results to α,β-unsaturated esters and nitriles. This demonstrates that PS-BEMP is a good catalyst for the phospha-Michael addition to electron-poor alkenes.

  7. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines.

    PubMed

    Zhang, Guoying; Gao, Bao; Huang, Hanmin

    2015-06-22

    A novel and efficient palladium-catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N-alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium-catalyzed hydroaminocarbonylation.

  8. UV light-mediated difunctionalization of alkenes through aroyl radical addition/1,4-/1,2-aryl shift cascade reactions.

    PubMed

    Zheng, Lewei; Huang, Hongli; Yang, Chao; Xia, Wujiong

    2015-02-20

    UV light-mediated difunctionalization of alkenes through an aroyl radical addition/1,4-/1,2-aryl shift has been described. The resulted aroyl radical from a photocleavage reaction added to acrylamide compounds followed by cyclization led to the formation of oxindoles, whereas the addition to cinnamic amides aroused a unique 1,4-aryl shift reaction. Furthermore, the difunctionalization of alkenes of prop-2-en-1-ols was also achieved through aroyl radical addition and a sequential 1,2-aryl shift cascade reaction.

  9. SmoXYB1C1Z of Mycobacterium sp. Strain NBB4: a Soluble Methane Monooxygenase (sMMO)-Like Enzyme, Active on C2 to C4 Alkanes and Alkenes

    PubMed Central

    Martin, Kiri E.; Ozsvar, Jazmin

    2014-01-01

    Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc2-155. Cells of mc2-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc2-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc2-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc2-155(pSmo) provides a new model for studying sMMO-like monooxygenases. PMID:25015887

  10. SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes.

    PubMed

    Martin, Kiri E; Ozsvar, Jazmin; Coleman, Nicholas V

    2014-09-01

    Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc(2)-155. Cells of mc(2)-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc(2)-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc(2)-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc(2)-155(pSmo) provides a new model for studying sMMO-like monooxygenases.

  11. Biocatalytic Conversion of Avermectin to 4″-Oxo-Avermectin: Improvement of Cytochrome P450 Monooxygenase Specificity by Directed Evolution▿ †

    PubMed Central

    Trefzer, Axel; Jungmann, Volker; Molnár, István; Botejue, Ajit; Buckel, Dagmar; Frey, Gerhard; Hill, D. Steven; Jörg, Mario; Ligon, James M.; Mason, Dylan; Moore, David; Pachlatko, J. Paul; Richardson, Toby H.; Spangenberg, Petra; Wall, Mark A.; Zirkle, Ross; Stege, Justin T.

    2007-01-01

    Discovery of the CYP107Z subfamily of cytochrome P450 oxidases (CYPs) led to an alternative biocatalytic synthesis of 4″-oxo-avermectin, a key intermediate for the commercial production of the semisynthetic insecticide emamectin. However, under industrial process conditions, these wild-type CYPs showed lower yields due to side product formation. Molecular evolution employing GeneReassembly was used to improve the regiospecificity of these enzymes by a combination of random mutagenesis, protein structure-guided site-directed mutagenesis, and recombination of multiple natural and synthetic CYP107Z gene fragments. To assess the specificity of CYP mutants, a miniaturized, whole-cell biocatalytic reaction system that allowed high-throughput screening of large numbers of variants was developed. In an iterative process consisting of four successive rounds of GeneReassembly evolution, enzyme variants with significantly improved specificity for the production of 4″-oxo-avermectin were identified; these variants could be employed for a more economical industrial biocatalytic process to manufacture emamectin. PMID:17483257

  12. The Role of Criegee Intermediates in Particle Formation and Growth during the Ozonolysis of Small Alkenes

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Wingen, L. M.; Perraud, V. M.; Finlayson-Pitts, B. J.

    2014-12-01

    Ozonolysis of alkenes is an important source of particulate matter (e.g., secondary organic aerosol) in the atmosphere. However, the mechanisms by which Criegee intermediates (CI) react to form the particles, particularly the oligomeric components, are currently not well understood. In this study, ozonolysis of trans-3-hexene was investigated with a focus on the formation mechanism of oligomers involving CI, as well as their contributions to particle formation and growth. Ozonolysis experiments were performed both in a static chamber and in a flow reactor in the absence and presence of an OH or stabilized CI (SCI) scavenger. The oligomeric and elemental composition of the total and size-selected particles was measured with different mass spectrometries, and the effects of adding OH and SCI scavengers were investigated. Size-selected measurements show that the relative abundance of higher ordered oligomers in the particles decreases with increasing particle size, indicating the preference of larger oligomers in the growth of smaller particles. Consistent with oligomeric composition, the O/C ratio of the particles decreases with particle size, suggesting more oxygenated organic material (e.g., primarily oligomeric peroxides) in smaller particles. The mechanism for particle formation suggested by these data is the initial reaction of RO2 radicals to the CI, followed by sequential addition of CI, in agreement with the earlier work of Sadezky et al. (2008). The relationship to the mechanism of particle formation from larger alkenes such as terpenes and the atmospheric implications will be explored.

  13. The "catalytic nitrosyl effect": NO bending boosting the efficiency of rhenium based alkene hydrogenations.

    PubMed

    Jiang, Yanfeng; Schirmer, Birgitta; Blacque, Olivier; Fox, Thomas; Grimme, Stefan; Berke, Heinz

    2013-03-13

    Diiodo Re(I) complexes [ReI2(NO)(PR3)2(L)] (3, L = H2O; 4 , L = H2; R = iPr a, Cy b) were prepared and found to exhibit in the presence of "hydrosilane/B(C6F5)3" co-catalytic systems excellent activities and longevities in the hydrogenation of terminal and internal alkenes. Comprehensive mechanistic studies showed an inverse kinetic isotope effect, fast H2/D2 scrambling and slow alkene isomerizations pointing to an Osborn type hydrogenation cycle with rate determining reductive elimination of the alkane. In the catalysts' activation stage phosphonium borates [R3PH][HB(C6F5)3] (6, R = iPr a, Cy b) are formed. VT (29)Si- and (15)N NMR experiments, and dispersion corrected DFT calculations verified the following facts: (1) Coordination of the silylium cation to the ONO atom facilitates nitrosyl bending; (2) The bent nitrosyl promotes the heterolytic cleavage of the H-H bond and protonation of a phosphine ligand; (3) H2 adds in a bifunctional manner across the Re-N bond. Nitrosyl bending and phosphine loss help to create two vacant sites, thus triggering the high hydrogenation activities of the formed "superelectrophilic" rhenium centers.

  14. Rhodium-catalyzed formation of stereocontrolled trisubstituted alkenes from Baylis-Hillman adducts.

    PubMed

    Gendrineau, Thomas; Demoulin, Nicolas; Navarre, Laure; Genet, Jean-Pierre; Darses, Sylvain

    2009-01-01

    Efficient and general conditions for the formation of stereodefined trisubstituted alkenes by using the rhodium-catalyzed reaction of unactivated Baylis-Hillman adducts with either organoboronic acids or potassium trifluoro(organo)borates are reported (see scheme).We report here efficient and general conditions for the formation of stereodefined trisubstituted alkenes using the rhodium-catalyzed reaction of unactivated Baylis-Hillman adducts with either organoboronic acids and potassium trifluoro(organo)borates. The use of the [{Rh(cod)OH}(2)] precursor gave very fast coupling reactions under low catalyst loading, very mild reaction conditions (from room temperature up to 50 degrees C) and without the need of additional phosphane ligands. Based on the new reaction conditions, the reaction, originally limited to Baylis-Hillman adducts derived from esters, could be extended to a large variety of Baylis-Hillman adducts, bearing either keto, cyano or amido functionalities. Moreover, the reaction of Baylis-Hillman adducts bearing esters functionality was improved and could be conducted at lower temperature using lower catalyst loading.

  15. Theoretical elucidation of the mechanism of the cycloaddition between nitrone ylides and electron-deficient alkenes.

    PubMed

    Merino, P; Tejero, T; Díez-Martínez, A

    2014-03-07

    A full theoretical study of the reaction between a novel type of ylide, i.e. nitrone ylides, and alkenes has been carried out. Both concerted and polar stepwise mechanisms have been considered. Only the zwitterionic mechanism predicts correctly the experimentally observed adducts. Depending on the level of theory, the mechanism moves from concerted to polar stepwise, as demonstrated by the corresponding IRC analyses. The regio- and stereoselectivity of the reaction is well explained for both mono- and disubstituted alkenes. In the case of methyl acrylate a pathway leading to the two diastereoisomers obtained experimentally is predicted. For methyl fumarate a stereospecific mechanism is predicted as a consequence of a C-H···O═C interaction present in a Li-tricoordinated transition structure. The stereospecificity in the reaction with methyl maleate comes from a less hindered coordination around the lithium atom. Calculations with B3LYP and M06-2X functionals indicate that only the latter provides energy values in good agreement with experimental findings.

  16. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158

    PubMed Central

    2014-01-01

    Background Enantiomerically pure alcohols are important building blocks for production of chiral pharmaceuticals, flavors, agrochemicals and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. At present, most of these biocatalysts follow Prelog’s rule, and thus the (S)-alcohols are usually obtained when the smaller substituent of the ketone has the lower CIP priority. Only a few anti-Prelog (R)-specific whole cell biocatalysts have been reported. In this paper, the biocatalytic anti-Prelog reduction of 2-octanone to (R)-2-octanol was successfully conducted with high enantioselectivity using whole cells of Acetobacter pasteurianus GIM1.158. Results Compared with other microorganisms investigated, Acetobacter pasteurianus GIM1.158 was shown to be more effective for the reduction reaction, affording much higher yield, product enantiomeric excess (e.e.) and initial reaction rate. The optimal temperature, buffer pH, co-substrate and its concentration, substrate concentration, cell concentration and shaking rate were 35°C, 5.0, 500 mmol/L isopropanol, 40 mmol/L, 25 mg/mL and 120 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 89.5% and >99.9%, respectively, in 70 minutes. Compared with the best available data in aqueous system (yield of 55%), the yield of (R)-2-octanol was greatly increased. Additionally, the efficient whole-cell biocatalytic process was feasible on a 200-mL preparative scale and the chemical yield increased to 95.0% with the product e.e. being >99.9%. Moreover, Acetobacter pasteurianus GIM1.158 cells were proved to be capable of catalyzing the anti-Prelog bioreduction of other prochiral carbonyl compounds with high efficiency. Conclusions Via an effective increase in the maximum yield and the product e.e. with Acetobacter pasteurianus GIM1.158 cells, these results open the way to use of whole cells of

  17. Evidence for a Morin Type Intramolecular Cyclization of an Alkene with a Phenylsulfenic Acid Group in Neutral Aqueous Solution

    PubMed Central

    Keerthi, Kripa; Sivaramakrishnan, Santhosh; Gates, Kent S.

    2009-01-01

    Sulfenic acids (RSOH) are among the most common sulfur-centered reactive intermediates generated in biological systems. Given the biological occurrence of sulfenic acids, it is important to explore the reactivity of these intermediates under physiological conditions. The Morin rearrangement is a synthetic process developed for the conversion of penicillin derivatives into cephalosporins that proceeds via nucleophilic attack of an alkene on a sulfenic acid intermediate. In its classic form, the Morin reaction involves initial elimination of a sulfenic acid from a cyclic sulfoxide, followed by intramolecular cyclization of the resulting alkene and sulfenic acid groups to generate an episulfonium ion intermediate that undergoes further reaction to yield ring-expanded products. On the basis of the existing literature, it is difficult to assess whether the reaction between an alkene and a sulfenic group can occur under mild conditions because the conditions required to generate the sulfenic acid from the sulfoxide precursor in the Morin reaction typically involve high temperatures and strong acid. In the work described here, β-sulfinylketone precursors were used to generate a “Morin type” sulfenic acid intermediate under mild conditions. This approach made it possible to demonstrate that the intramolecular cyclization of an alkene with a phenylsulfenic acid to generate an episulfonium ion intermediate can occur in neutral aqueous solution at room temperature. PMID:18500784

  18. Direct Catalytic Synthesis of Unprotected 2-Amino-1-Phenylethanols from Alkenes by Using Iron(II) Phthalocyanine.

    PubMed

    Legnani, Luca; Morandi, Bill

    2016-02-05

    Aryl-substituted amino alcohols are privileged scaffolds in medicinal chemistry and natural products. Herein, we report that an exceptionally simple and inexpensive Fe(II) complex efficiently catalyzes the direct transformation of simple alkenes into unprotected amino alcohols in good yield and perfect regioselectivity. This new catalytic method was applied in the expedient synthesis of bioactive molecules and could be extended to aminoetherification.

  19. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal−organic framework

    SciTech Connect

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2015-03-15

    Metal–organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH{sub 2} (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV–vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity. - Graphical abstract: Efficient alkene epoxidation with TBHP catalyzed by heterogeneous and reusable molybdenum base catalysts is reported. - Highlights: • UiO-66-NH{sub 2} was modified with salicylaldehyde and thiophene-2-carbaldehyde. • The Schiff base groups were used for immobilization of MoO{sub 2}(acac){sub 2}. • The heterogeneous catalysts were prepared. • The prepared catalysts were used for epoxidation of alkenes. • Compared to other catalyst, our catalysts were more efficient and forceful.

  20. Enantioselective C-H bond addition of pyridines to alkenes catalyzed by chiral half-sandwich rare-earth complexes.

    PubMed

    Song, Guoyong; O, Wylie W N; Hou, Zhaomin

    2014-09-03

    Cationic half-sandwich scandium alkyl complexes bearing monocyclopentadienyl ligands embedded in chiral binaphthyl backbones act as excellent catalysts for the enantioselective C-H bond addition of pyridines to various 1-alkenes, leading to formation of a variety of enantioenriched alkylated pyridine derivatives in high yields and excellent enantioselectivity (up to 98:2 er).

  1. Asymmetric cyclopropanation of alkenes catalyzed by a rhodium {open_quotes}chiral fortress{close_quotes} porphyrin

    SciTech Connect

    O`Malley, S.; Kodadek, T.

    1992-06-01

    The authors investigated the use of chiral rhodium porphyrin catalysts for the production of predominantly syn isomers in the cyclopropanation of alkenes. The reactions display good diastereoselectivity on some cases, but only modest enantioselectivities are observed. 15 refs., 3 figs., 1 tab.

  2. Epoxidation of alkenes through oxygen activation over a bifunctional CuO/Al2O3 catalyst.

    PubMed

    Scotti, Nicola; Ravasio, Nicoletta; Zaccheria, Federica; Psaro, Rinaldo; Evangelisti, Claudio

    2013-03-07

    The epoxidation of alkenes was carried out over a CuO/Al(2)O(3) catalyst using cumene as an oxygen carrier, through a one-pot reaction, giving high conversion and selectivity with different substrates. Trans-β-methylstyrene gave the corresponding epoxide in 95% yield after 3 h.

  3. Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions.

    PubMed

    Konnerth, Hannelore; Prechtl, Martin H G

    2016-07-12

    A selective hydrogenation method for forming (Z)-alkenes from alkynes has been developed using a catalyst system of cheap Ni-NPs in a nitrile functionalised imidazolium based ionic liquid (IL) operating under very mild reaction conditions of 30-50 °C and 1-4 bar H2 pressure.

  4. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    EPA Science Inventory

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation and the reaction can be accomplished using vi...

  5. Regioselective Hydration of an Alkene and Analysis of the Alcohol Product by Remote Access NMR: A Classroom Demonstration

    ERIC Educational Resources Information Center

    Smith, Maureen E.; Johnson, Sara L.; Masterson, Douglas S.

    2013-01-01

    A two-part demonstration was conducted in our first-semester organic chemistry course designed to introduce students to the formation of alcohols, regioselective reactions, and analysis of organic products by NMR analysis. This demonstration utilized the oxymercuration-demercuration sequence to prepare an alcohol from an alkene in a Markovnikov…

  6. FORMATION OF BETA-HYDROXYCARBONYLS FROM THE OH RADICAL-INITIATED REACTIONS OF SELECTED ALKENES (R825252)

    EPA Science Inventory

    -Hydroxycarbonyls can be formed from the gas-phase
    reactions of alkenes with the OH radical, both in the presence
    and in the absence of NO. To date, because of analytical
    difficulties, few data have been r...

  7. Reactions of hydroxyl radicals with alkenes in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Feltham, Emma J.; Almond, Matthew J.; Marston, George; Wiltshire, Karen S.; Goldberg, Nicola

    2000-11-01

    The reactions of hydroxyl radicals with a number of stable alkenes have been studied in low-temperature matrices. The reactions were initiated by broad band UV-visible irradiation of matrices containing H 2O 2 and the alkene under investigation. The hydroxyalkyl radical products were identified principally by comparison of their spectra with the spectra of corresponding stable alcohols. Accordingly, IR spectra were recorded for the following series of alcohols isolated in argon matrices — methanol, ethanol, ethanol- d6, propan-1-ol, propan-2-ol, butan-2-ol, 2-methylpropan-1-ol ( iso-butyl alcohol), 2-methylpropan-2-ol ( tert-butyl alcohol), 2-methylbutan-2-ol ( tert-amyl alcohol), 3-methylbutan-2-ol and 2,3-dimethylbutan-2-ol. The hydroxyalkyl radicals, which appear to be formed from the alkenes studied were as follows — from ethene, 2-hydroxyethyl radical; from cis- or trans-but-2-ene, 1-methyl-2-hydroxypropyl radical; from propene, 1-methyl-2-hydroxyethyl and 2-hydroxypropyl radicals; from but-1-ene, 1-hydroxymethylpropyl and 2-hydroxybutyl radicals; from 2-methylpropene ( iso-butene), 1,1-dimethyl-2-hydroxyethyl and 2-methyl-2-hydroxypropyl radicals; the radical products from buta-1,3-diene and isoprene could not be identified. In the cases, where two radical products were possible, i.e. when propene, but-1-ene or 2-methylpropene were the substrates, it was found that the concentration of the secondary or tertiary radical always exceeded that of the primary radical. However, the relative concentration of these radicals appears to be determined by subsequent photolysis to give carbonyl compounds. There seems, therefore, to be little preference for the secondary and tertiary radicals over the primary radicals in the primary addition process. Comments on the mechanism of the transformation from radical to carbonyl compound based upon identification of intermediates within the matrix and isotopic substitution experiments are made. The characterisation of the 2

  8. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase

    PubMed Central

    2014-01-01

    Background Cytochrome P450 OleTJE from Jeotgalicoccus sp. ATCC 8456, a new member of the CYP152 peroxygenase family, was recently found to catalyze the unusual decarboxylation of long-chain fatty acids to form α-alkenes using H2O2 as the sole electron and oxygen donor. Because aliphatic α-alkenes are important chemicals that can be used as biofuels to replace fossil fuels, or for making lubricants, polymers and detergents, studies on OleTJE fatty acid decarboxylase are significant and may lead to commercial production of biogenic α-alkenes in the future, which are renewable and more environmentally friendly than petroleum-derived equivalents. Results We report the H2O2-independent activity of OleTJE for the first time. In the presence of NADPH and O2, this P450 enzyme efficiently decarboxylates long-chain fatty acids (C12 to C20) in vitro when partnering with either the fused P450 reductase domain RhFRED from Rhodococcus sp. or the separate flavodoxin/flavodoxin reductase from Escherichia coli. In vivo, expression of OleTJE or OleTJE-RhFRED in different E. coli strains overproducing free fatty acids resulted in production of variant levels of multiple α-alkenes, with a highest total hydrocarbon titer of 97.6 mg·l-1. Conclusions The discovery of the H2O2-independent activity of OleTJE not only raises a number of fundamental questions on the monooxygenase-like mechanism of this peroxygenase, but also will direct the future metabolic engineering work toward improvement of O2/redox partner(s)/NADPH for overproduction of α-alkenes by OleTJE. PMID:24565055

  9. Integrated process design for biocatalytic synthesis by a Leloir Glycosyltransferase: UDP-glucose production with sucrose synthase.

    PubMed

    Schmölzer, Katharina; Lemmerer, Martin; Gutmann, Alexander; Nidetzky, Bernd

    2017-04-01

    Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/gcell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 gproduct /L, 86% yield (based on UDP), and a total turnover number of 103 gUDP-glc /gcell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc.

  10. Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae.

    PubMed

    Foo, Jee Loon; Susanto, Adelia Vicanatalita; Keasling, Jay D; Leong, Susanna Su Jan; Chang, Matthew Wook

    2017-01-01

    Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio-alkane has gained attention as an ideal drop-in fuel candidate. Production of alkanes in bacteria has been widely studied but studies on the utilization of the robust yeast host, Saccharomyces cerevisiae, for alkane biosynthesis have been lacking. In this proof-of-principle study, we present the unprecedented engineering of S. cerevisiae for conversion of free fatty acids to alkanes. A fatty acid α-dioxygenase from Oryza sativa (rice) was expressed in S. cerevisiae to transform C12-18 free fatty acids to C11-17 aldehydes. Co-expression of a cyanobacterial aldehyde deformylating oxygenase converted the aldehydes to the desired alkanes. We demonstrated the versatility of the pathway by performing whole-cell biocatalytic conversion of exogenous free fatty acid feedstocks into alkanes as well as introducing the pathway into a free fatty acid overproducer for de novo production of alkanes from simple sugar. The results from this work are anticipated to advance the development of yeast hosts for alkane production. Biotechnol. Bioeng. 2017;114: 232-237. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  11. Three-step biocatalytic reaction using whole cells for efficient production of tyramine from keratin acid hydrolysis wastewater.

    PubMed

    Zhang, Hongjuan; Wei, Yu; Lu, Yang; Wu, Siping; Liu, Qian; Liu, Junzhong; Jiao, Qingcai

    2016-02-01

    Tyramine has been paid more attention in recent years as a significant metabolite of tyrosine and catecholamine drug and an intermediate of medicinal material and some drugs. In this study, an effective, green, and three-step biocatalytic synthesis method for production of tyramine starting from serine in keratin acid hydrolysis wastewater was developed and investigated. Serine deaminase from Escherichia coli was first combined with tyrosine phenol-lyase from Citrobacter koseri, to convert L-serine to L-tyrosine. L-Tyrosine can then be decarboxylated to tyramine by tyrosinede carboxylase from Lactobacillus brevis. All these enzymes originated from recombinant whole cells. Serine deaminaseand tyrosine phenol-lyase could efficiently convert L-serine in wastewater to L-tyrosine at pH 8.0, 37 °C, and Triton X-100 of 0.04% when tyrosine phenol-lyase and its corresponding substrates were sequentially added. Tyrosine conversion rate reached 98 % by L-tyrosine decarboxylase. In scale-up study, the conversion yield of L-serine in wastewater to tyrosine was up to 89 %. L-Tyrosine was decarboxylated to tyramine with a high yield 94 %. Tyramine hydrochloride was obtained with a total yield 84 %. This study has provided an efficient way of recycling keratin acid hydrolysis wastewater to produce tyramine.

  12. Whole‐cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae

    PubMed Central

    Foo, Jee Loon; Susanto, Adelia Vicanatalita; Keasling, Jay D.; Leong, Susanna Su Jan

    2016-01-01

    ABSTRACT Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio‐alkane has gained attention as an ideal drop‐in fuel candidate. Production of alkanes in bacteria has been widely studied but studies on the utilization of the robust yeast host, Saccharomyces cerevisiae, for alkane biosynthesis have been lacking. In this proof‐of‐principle study, we present the unprecedented engineering of S. cerevisiae for conversion of free fatty acids to alkanes. A fatty acid α‐dioxygenase from Oryza sativa (rice) was expressed in S. cerevisiae to transform C12–18 free fatty acids to C11–17 aldehydes. Co‐expression of a cyanobacterial aldehyde deformylating oxygenase converted the aldehydes to the desired alkanes. We demonstrated the versatility of the pathway by performing whole‐cell biocatalytic conversion of exogenous free fatty acid feedstocks into alkanes as well as introducing the pathway into a free fatty acid overproducer for de novo production of alkanes from simple sugar. The results from this work are anticipated to advance the development of yeast hosts for alkane production. Biotechnol. Bioeng. 2017;114: 232–237. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26717118

  13. Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems.

    PubMed

    Petschacher, Barbara; Nidetzky, Bernd

    2016-10-10

    Human milk oligosaccharides (HMOs) constitute a class of complex carbohydrates unique to mother's milk and are strongly correlated to the health benefits of breastfeeding in infants. HMOs are important as functional ingredients of advanced infant formula and have attracted broad interest for use in health-related human nutrition. About 50% of the HMOs structures contain l-fucosyl residues, which are introduced into nascent oligosaccharides by enzymatic transfer from GDP-l-fucose. To overcome limitation in the current availability of fucosylated HMOs, biotechnological approaches for their production have been developed. Functional expression of the fucosyltransferase(s) and effective supply of GDP-l-fucose, respectively, are both bottlenecks of the biocatalytic routes of synthesis. Strategies of in vitro and in vivo production of fucosylated HMOs are reviewed here. Besides metabolic engineering for enhanced HMO production in whole cells, the focus is on the characteristics and the heterologous overexpression of prokaryotic α1,2- and α1,3/4-fucosyltransferases. Up to 20g/L of fucosylated HMOs were obtained in optimized production systems. Optimized expression enabled recovery of purified fucosyltransferases in a yield of up to 45mg/L culture for α1,2-fucosyltransferases and of up to 200mg protein/L culture for α1,3/4-fucosyltransferases.

  14. Construction of engineered Saccharomyces cerevisiae strain to improve that whole-cell biocatalytic production of melibiose from raffinose.

    PubMed

    Zhou, Yingbiao; Zhu, Yueming; Men, Yan; Dong, Caixia; Sun, Yuanxia; Zhang, Juankun

    2017-01-18

    There are excessive by-products in the biocatalysis process of this whole-cell biocatalytic production of melibiose from raffinose with current Saccharomyces cerevisiae strains. To solve this problem, we constructed engineered strains based on a liquor yeast (S. cerevisiae) via gene deletion (mel1 gene), heterologous integration (fsy1 or/and ffzi1 gene from Candida magnoliae), and gene overexpression (gcr1 gene). Functional verification showed that deletion of the mel1 gene led to elimination of the reactions catalyzed by α-galactosidase, as well as elimination of the degradation of melibiose and the formation of galactose by-product. Insertion of the fsy1 or/and ffzi1 gene and overexpression of the gcr1 gene could contribute to fructose transport for enhancing the biopurification rate of the fructose by-product. Compared with the wild-type strain, the optimal engineered strain of MP8 (Δmel1::fsy1 cm ::ffzi1 cm ::gcr1 sc ) had improved about 30% on yield, 31% on productivity, and 36% on purity of the melibiose product.

  15. Walphos versus Biferrocene-Based Walphos Analogues in the Asymmetric Hydrogenation of Alkenes and Ketones

    PubMed Central

    2014-01-01

    Two representative Walphos analogues with an achiral 2,2″-biferrocenediyl backbone were synthesized. These diphosphine ligands were tested in the rhodium-catalyzed asymmetric hydrogenation of several alkenes and in the ruthenium-catalyzed hydrogenation of two ketones. The results were compared with those previously obtained on using biferrocene ligands with a C2-symmetric 2,2″-biferrocenediyl backbone as well as with those obtained with Walphos ligands. The application of one newly synthesized ligand in the hydrogenation of 2-methylcinnamic acid gave (R)-2-methyl-3-phenylpropanoic acid with full conversion and with 92% ee. The same ligand was used to transform 2,4-pentanedione quantitatively and diastereoselectively into (S,S)-2,4-pentanediol with 98% ee. PMID:24795493

  16. Generation of the SCF3 Radical by Photoredox Catalysis: Intra- and Intermolecular Carbotrifluoromethylthiolation of Alkenes.

    PubMed

    Dagousset, Guillaume; Simon, Cédric; Anselmi, Elsa; Tuccio, Béatrice; Billard, Thierry; Magnier, Emmanuel

    2017-02-17

    We report herein the first use of N-trifluoromethylthiosaccharin as the source of SCF3 radical under photoredox catalysis. This allowed an efficient and general visible-light-mediated carbotrifluoromethylthiolation of alkenes. Under the optimized conditions using fac-Ir(ppy)3 as the photocatalyst, various N-aryl acrylamides as well as a wide range of substituted styrenes can readily be difunctionalized in an intra- or intermolecular fashion, affording the corresponding SCF3-containing products in good to excellent yield. Importantly, the formation of this SCF3 radical along with other key radical intermediates was unambiguously demonstrated thanks to spin trapping/electron paramagnetic resonance (ST/EPR) experiments, which enabled a clear understanding of the reaction mechanism.

  17. Engineering Rieske Non-Heme Iron Oxygenases for the Asymmetric Dihydroxylation of Alkenes.

    PubMed

    Gally, Christine; Nestl, Bettina M; Hauer, Bernhard

    2015-10-26

    The asymmetric dihydroxylation of olefins is of special interest due to the facile transformation of the chiral diol products into valuable derivatives. Rieske non-heme iron oxygenases (ROs) represent promising biocatalysts for this reaction as they can be engineered to efficiently catalyze the selective mono- and dihydroxylation of various olefins. The introduction of a single point mutation improved selectivities (≥95 %) and conversions (>99 %) towards selected alkenes. By modifying the size of one active site amino acid side chain, we were able to modulate the regio- and stereoselectivity of these enzymes. For distinct substrates, mutants displayed altered regioselectivities or even favored opposite enantiomers compared to the wild-type ROs, offering a sustainable approach for the oxyfunctionalization of a wide variety of structurally different olefins.

  18. Catalytic asymmetric radical aminoperfluoroalkylation and aminodifluoromethylation of alkenes to versatile enantioenriched-fluoroalkyl amines

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Shun; Wang, Fu-Li; Dong, Xiao-Yang; He, Wei-Wei; Yuan, Yue; Chen, Su; Liu, Xin-Yuan

    2017-03-01

    Although great success has been achieved in asymmetric fluoroalkylation reactions via nucleophilic or electrophilic processes, the development of asymmetric radical versions of this type of reactions remains a formidable challenge because of the involvement of highly reactive radical species. Here we report a catalytic asymmetric radical aminoperfluoroalkylation and aminodifluoromethylation of alkenes with commercially available fluoroalkylsulfonyl chlorides as the radical sources, providing a versatile platform to access four types of enantioenriched α-tertiary pyrrolidines bearing β-perfluorobutanyl, trifluoromethyl, difluoroacetyl and even difluoromethyl groups in excellent yields and with excellent enantioselectivity. The key to success is not only the introduction of the CuBr/chiral phosphoric acid dual-catalytic system but also the use of silver carbonate to suppress strong background and side hydroamination reactions caused by a stoichiometric amount of the in situ generated HCl. Broad substrate scope, excellent functional group tolerance and versatile functionalization of the products make this approach very practical and attractive.

  19. Gold(I)-Catalyzed Intramolecular Hydroamination of Unactivated Terminal and Internal Alkenes with 2-Pyridones.

    PubMed

    Timmerman, Jacob C; Laulhé, Sébastien; Widenhoefer, Ross A

    2017-03-17

    The cationic gold phosphine complex [(P1)Au(NCMe)](+)SbF6(-) [P1 = P(t-Bu)2o-biphenyl; 2] catalyzes the intramolecular hydroamination of 6-alkenyl-2-pyridones to form 1,6-carboannulated 2-pyridones in high yield. The hydroamination of 6-(γ-alkenyl)-2-pyridones was effective for monosubstituted and 1,1- and 1,2-disubstituted aliphatic alkenes, and the method was likewise effective for the hydroamination of 6-(δ-alkenyl)-2-pyridones. Spectroscopic analysis of mixtures of 6-(3-butenyl)-2-pyridone, (P1)AuCl, and AgSbF6 established the N-bound 2-hydroxypyridine complex [(P1)Au(NC6H3-2-OH-6-CH2CH2CH═CH2)](+) SbF6(-) as the catalyst resting state.

  20. Electron attachment to 14 halogenated alkenes and alkanes, 300-600 K.

    PubMed

    Shuman, Nicholas S; Friedman, Jeffrey F; Miller, Thomas M; Viggiano, A A

    2012-10-28

    Thermal electron attachment to 14 alkenes and alkanes with bromine, fluorine, and iodine substituents has been studied over the temperature range 300-600 K using a flowing-afterglow Langmuir-probe apparatus. Rate coefficients and anion products are reported, most for the first time. Among these were 3 isomers of C(3)F(5)Br and the 2 isomers of C(3)F(7)I. Four dibromide compounds were studied, all of which yield Br(2)(-) product in addition to Br(-) product. The results are analyzed using a statistical kinetic modeling approach, which is able to reproduce both attachment rate coefficients and product branching ratios within experimental uncertainty. The kinetic modeling indicates that factor of 2 differences in attachment rate coefficients to the isomeric species can be explained by subtle variations in the potential surfaces.

  1. Electron attachment to halogenated alkenes and alkanes, 300-600 K

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Friedman, Jeffrey F.; Shuman, Nicholas S.; Viggiano, Albert A.

    2012-10-01

    Rate coefficients (ka) and ion product distributions have been measured for 14 alkenes and alkanes with bromine, fluorine, and iodine substituents over the temperature range T = 300-600 K using a flowing-afterglow Langmuir-probe apparatus (FALP), most for the first time. Among these are 3 isomers of C3F5Br and 2 isomers of C3F7I. Four dibromide compounds yield Br2^- in addition to Br^-. The results follow the expected trends: ka values near the capture limit decrease slightly with T according to Vogt-Wannier theory, while ka increase with T for molecules which have small ka at 300 K. The results are analyzed using a statistical kinetic modeling approach, which is able to reproduce ka values and product branching within experimental uncertainty. The modeling indicates that factor of 2 differences in ka for the isomeric species can be explained by subtle variations in the potential surfaces.

  2. Electron attachment to 14 halogenated alkenes and alkanes, 300-600 K

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas S.; Friedman, Jeffrey F.; Miller, Thomas M.; Viggiano, A. A.

    2012-10-01

    Thermal electron attachment to 14 alkenes and alkanes with bromine, fluorine, and iodine substituents has been studied over the temperature range 300-600 K using a flowing-afterglow Langmuir-probe apparatus. Rate coefficients and anion products are reported, most for the first time. Among these were 3 isomers of C3F5Br and the 2 isomers of C3F7I. Four dibromide compounds were studied, all of which yield Br2- product in addition to Br- product. The results are analyzed using a statistical kinetic modeling approach, which is able to reproduce both attachment rate coefficients and product branching ratios within experimental uncertainty. The kinetic modeling indicates that factor of 2 differences in attachment rate coefficients to the isomeric species can be explained by subtle variations in the potential surfaces.

  3. Surfing π clouds for noncovalent interactions: arenes versus alkenes.

    PubMed

    Aliev, Abil E; Arendorf, Josephine R T; Pavlakos, Ilias; Moreno, Rafael B; Porter, Michael J; Rzepa, Henry S; Motherwell, William B

    2015-01-07

    A comparative study of molecular balances by NMR spectroscopy indicates that noncovalent functional-group interactions with an arene dominate over those with an alkene, and that a π-facial intramolecular hydrogen bond from a hydroxy group to an arene is favored by approximately 1.2 kJ mol(-1). The strongest interaction observed in this study was with the cyano group. Analysis of the series of groups CH2CH3, CH=CH2, C≡CH, and C≡N shows a correlation between conformational free-energy differences and the calculated charge on the C(α) atom of these substituents, which is indicative of the electrostatic nature of their π interactions. Changes in the free-energy differences of conformers show a linear dependence on the solvent hydrogen bond acceptor parameter β.

  4. Product Control in Alkene Trifluoromethylation: Hydrotrifluoromethylation, Vinylic Trifluoromethylation, and Iodotrifluoromethylation using Togni Reagent

    PubMed Central

    Egami, Hiromichi; Usui, Yoshihiko; Kawamura, Shintaro; Nagashima, Sayoko; Sodeoka, Mikiko

    2015-01-01

    Hydrotrifluoromethylation, vinylic trifluoromethylation, and iodotrifluoromethylation of simple alkenes have been achieved by using Togni reagent in the absence of any transition metal catalyst. These reactions were readily controllable by selection of appropriate salts and solvents. The addition of K2CO3 afforded the hydrotrifluoromethylation product, with DMF acting not only as a solvent, but also as the hydrogen source. In contrast, the use of tetra-n-butylammonium iodide (TBAI) in 1,4-dioxane resulted in vinylic trifluoromethylation, while the use of KI afforded the iodotrifluoromethylation product. The vinylic trifluoromethylation product was obtained by treatment of the iodotrifluoromethylation product with ammonium 2-iodobenzoate, indicating that it was formed through an elimination reaction of the in-situ-generated iodotrifluoromethylation product, and the solubility of the resulting 2-iodobenzoate salt plays a key role in the product switching. A radical-clock experiment showed that these reactions proceed via radical intermediates. PMID:25960034

  5. Rhodium-phosphoramidite catalyzed alkene hydroacylation: mechanism and octaketide natural product synthesis.

    PubMed

    von Delius, Max; Le, Christine M; Dong, Vy M

    2012-09-12

    We describe a method that allows salicylaldehyde derivatives to be coupled with a wide range of unactivated alkenes at catalyst loadings as low as 2 mol %. A chiral phosphoramidite ligand and the precise stoichiometry of heterogeneous base are key for high catalytic activity and linear regioselectivity. This protocol was applied in the atom- and step-economical synthesis of eight biologically active octaketide natural products, including anticancer drug candidate cytosporone B. Mechanistic studies provide insight on parameters affecting decarbonylation, a side reaction that limits the turnover number for catalytic hydroacylation. Deuterium labeling studies show that branched hydride insertion is fully reversible, whereas linear hydride insertion is largely irreversible and turnover-limiting. We propose that ligand (R(a),R,R)-SIPHOS-PE effectively suppresses decarbonylation, and helps favor a turnover-limiting insertion, by lowering the barrier for reductive elimination in the linear-selective pathway. Together, these factors enable high reactivity and regioselectivity.

  6. Ab Initio Study on the Mechanism of Tropospheric Reactions of the Nitrate Radical with Alkenes: Ethene.

    PubMed

    Pérez-Casany, M. Pilar; Nebot-Gil, Ignacio; Sánchez-Marín, José; Tomás-Vert, Francisco; Martínez-Ataz, Ernesto; Cabañas-Galán, Beatriz; Aranda-Rubio, Alfonso

    1998-10-02

    A mechanism for the reaction of the NO(3) radical with the simplest alkene, ethene, is proposed. The mechanism involves three paths leading to three main different products: oxirane, ethanal, and nitric acid. The three paths start from the same initial intermediate, an NO(3)-ethene adduct. The calculated energy barriers show that the oxirane is the product kinetically more favored. Initial analysis of the potential energy surface was made at AM1 level. Then, the geometries and characterization of the found stationary points on the surface were refined at ROHF level with a 6-31G basis set. Further refinement was carried out at CASSCF level with the same basis set, and an active space was built with five active electrons in six active orbitals.

  7. Percutaneous Nephrolithotomy with Amplatz and Alken Dilators: An Eight-Year Single Tertiary Care Centre Experience

    PubMed Central

    Bryniarski, Piotr; Stelmach, Paweł; Taborowski, Piotr; Rajwa, Paweł; Adamkiewicz, Mateusz; Życzkowski, Marcin; Paradysz, Andrzej

    2016-01-01

    Background Percutaneous nephrolithotomy (PNL) is the standard procedure for patients with renal stones over 2 cm in diameter. We analyzed complications after this procedure focusing on two different methods of tract dilation. Material/Methods Between August 2008 and April 2016 222 percutaneous nephrolithotomies were performed in a total of 208 patients. The Group I (n=123) comprised patients where Alken dilatators were used, while Group II (n=99) comprised patients where Amplatz dilators were used. Efficacy was examined based on ultrasound and x-ray examination one month after the procedure. Complications were recorded using Clavien Dindo classification. Results Efficacy was 85.3% and 86.8% in group I and II, respectively (p=0.77). Grade I complications were present in 14.6% and 3%, grade II were present in 9.7% and 8%, grade IIIa were present in 2.4% and 2%, grade IIIb were present in 1.6% and 2%, grade IVa were present in 1.6% and 7%, grade IVb were present in 3.2% and 1% in Group I and Group II, respectively. These differences were statistically significant (p=0.03). Conclusions Efficacy was comparable between Alken dilator and Amplatz dilator groups. In group I, there were more postoperative fevers >38.5 °C and a higher rate of urosepsis. On the other hand, in group II we observed more pleural injuries. All differences resulted from the type of access to the kidney (inter/infracostal), punctured calyx, and utilization (or not) of access sheath rather than type of dilators itself. PMID:27973459

  8. Biocatalytic route to chiral acyloins: P450-catalyzed regio- and enantioselective α-hydroxylation of ketones.

    PubMed

    Agudo, Rubén; Roiban, Gheorghe-Doru; Lonsdale, Richard; Ilie, Adriana; Reetz, Manfred T

    2015-01-16

    P450-BM3 and mutants of this monooxygenase generated by directed evolution are excellent catalysts for the oxidative α-hydroxylation of ketones with formation of chiral acyloins with high regioselectivity (up to 99%) and enantioselectivity (up to 99% ee). This constitutes a new route to a class of chiral compounds that are useful intermediates in the synthesis of many kinds of biologically active compounds.

  9. Unusual Aggregates from the Ozone Oxidation of Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    McIntire, T. M.; Lea, A.; Gaspar, D. J.; Jaitly, N.; Dubowski, Y.; Li, Q.; Finlayson-Pitts, B. J.

    2005-12-01

    Airborne particles are important in visibility, climate, human health and atmospheric reactions. Changes in the chemical and physical properties of organics associated with airborne dust particles, which are distributed globally, and which undergo oxidation to polar species during transport, are of considerable interest. In this work we report the first observation of large organic aggregates on surfaces generated by the ozone oxidation of terminal alkene self-assembled monolayers (SAMs) used as proxies for organics on airborne dust particles. SAMs with a terminal alkene group were generated on silicon substrates and reacted at room temperature with ~ 1 ppm gaseous ozone. A combination of experimental techniques including atomic force microscopy, scanning electron microscopy, Auger microprobe, time-of-flight secondary ion mass spectrometry, and transmission FTIR, were used to study the surface composition and morphology before and after oxidation. While the unreacted SAM was quite smooth, on the oxidized surface there were large (micron-size) organic aggregates and the surrounding substrate became depleted of carbon. This highly unusual result establishes that the mechanism of ozonolysis of alkene SAMs involves polymerization, likely induced by secondary reactions of the Criegee intermediate (CI). For that reason, formation of polymers under atmospheric conditions may be more common than previously recognized. The uptake of water was not increased upon oxidation of these films, in contrast to current expectations but consistent with the exposure of the substrate during reaction. The implications for SAM reactions and stability in air, ozonolysis of alkenes on surfaces, and for the oxidation of alkenes on airborne dust particles are discussed.

  10. Identification and quantification of alkene-based drilling fluids in crude oils by comprehensive two-dimensional gas chromatography with flame ionization detection.

    PubMed

    Reddy, Christopher M; Nelson, Robert K; Sylva, Sean P; Xu, Li; Peacock, Emily A; Raghuraman, Bhavani; Mullins, Oliver C

    2007-04-27

    Comprehensive two-dimensional gas chromatography with flame ionization detection (GC x GC-FID) was used to measure alkene-based drilling fluids in crude oils. Compared to one-dimensional gas chromatography, GC x GC-FID is more robust for detecting alkenes due to the increased resolution afforded by second dimension separations. Using GC x GC-FID to analyze four oil samples from one reservoir contaminated with the same drilling fluid, C(15), C(16), C(17), C(18) and C(20) alkenes were identified. The drilling fluid that contaminated these samples also differed from another commercially obtained fluid, which only contained C(16) and C(18) alkenes. These results should motivate the petroleum industry to consider GC x GC-FID for measuring drilling fluids.

  11. Copper-Catalyzed Three-Component Annulations of Alkenes, Nitrosoarenes, and N-Hydroxyallylamines To Form Fused Oxazinane/Isoxazolidine Heterocycles.

    PubMed

    Kawade, Rahul Kisan; Liu, Rai-Shung

    2017-02-13

    One-pot cascade annulations among nitrosoarenes, alkenes, and N-hydroxyallylamines have been achieved with CuCl/O2 catalysts, forming fused oxazinane/isoxazolidine heterocycles with excellent diastereoselectivity (d.r. >20:1). To enhance the synthetic utility, we developed a successive cleavage of the two N-O bonds of the resulting heterocycles. A mechanism involving dipolar [3+2] cycloadditions of nitrone intermediates with their tethered alkenes is postulated for formation of these heterocycles.

  12. Rh(III)-Catalyzed Cyclopropanation Initiated by C–H Activation: Ligand Development Enables a Diastereoselective [2 + 1] Annulation of N-Enoxyphthalimides and Alkenes

    PubMed Central

    2015-01-01

    N-Enoxyphthalimides undergo a Rh(III)-catalyzed C–H activation initiated cyclopropanation of electron deficient alkenes. The reaction is proposed to proceed via a directed activation of the olefinic C–H bond followed by two migratory insertions, first across the electron-deficient alkene and then by cyclization back onto the enol moiety. A newly designed isopropylcyclopentadienyl ligand drastically improves yield and diastereoselectivity. PMID:25093811

  13. Intermolecular hydroamination of ethylene and 1-alkenes with cyclic ureas catalyzed by achiral and chiral gold(I) complexes.

    PubMed

    Zhang, Zhibin; Lee, Seong Du; Widenhoefer, Ross A

    2009-04-22

    Reaction of 1-methyl-imidazolidin-2-one (1) with 1-octene (10 equiv) catalyzed by a 1:1 mixture of (2b)AuCl [2b = 2-di-tert-butylphosphino-1,1'-binaphthyl] and AgSbF(6) in dioxane at 100 degrees C for 24 h led to isolation of 1-methyl-3-(octan-2-yl)imidazolidin-2-one in 96% yield as a single regioisomer. A range of unactivated 1-alkenes and ethylene underwent gold(I)-catalyzed intermolecular hydroamination at or below 100 degrees C in excellent yield with high regioselectivity. Reaction of 1-alkenes with substituted imidazolidin-2-ones catalyzed by chiral bis(gold) phosphine complexes led to enantioselective intermolecular hydroamination with up to 78% ee.

  14. A mechanistic study into the epoxidation of carboxylic acid and alkene in a mono, di-acylglycerol lipase.

    PubMed

    Wang, Xuping; Tang, Qingyun; Popowicz, Grzegorz Maria; Yang, Bo; Wang, Yonghua

    2015-05-01

    More and more industrial chemistry reactions rely on green technologies. Enzymes are finding increasing use in diverse chemical processes. Epoxidized vegetable oils have recently found applications as plasticizers and additives for PVC production. We report here an unusual activity of the Malassezia globosa lipase (SMG1) that is able to catalyze epoxidation of alkenes. SMG1 catalyzes formation of peroxides from long chain carboxylic acids that subsequently react with double bonds of alkenes to produce epoxides. The SMG1 is selective towards carboxylic acids and active also as a mutant lacking hydrolase activity. Moreover we present previously unobserved mechanism of catalysis that does not rely on acyl-substrate complex nor tetrahedral intermediate. Since SMG1 lipase is activated by allosteric change upon binding to the lipophilic-hydrophilic phase interface we reason that it can be used to drive the epoxidation in the lipophilic phase exclusively.

  15. Glycosyl-Templated Chiral Helix Stapling of Ethynylpyridine Oligomers by Alkene Metathesis between Inter-Pitch Side Chains.

    PubMed

    Abe, Hajime; Kayamori, Fumihiro; Inouye, Masahiko

    2015-06-22

    Ethynylpyridine polymers and oligomers consisting of 4-substituted pyridine rings linked by acetylene bonds at the 2- and 6-positions have been investigated. Ethynylpyridine oligomers covalently linked with a glycosyl chiral template form chiral helical complexes by intramolecular hydrogen bonding, in which the chirality of the template is translated to the helix. With a view to fixation of the chiral architecture, D/L-galactosyl- and D/L-mannosyl-linked ethynylpyridine oligomers have been developed with 4-(3-butenyloxy)pyridine units having alkene side chains. The helical structures are successfully stapled by alkene metathesis of the side chains. Subsequent removal of the chiral templates by acidolysis produces template-free stapled oligomers. The chiral, template-free, stapled oligomers show chiral helicity, which is resistant to polar solvents and heating.

  16. Production of hydrogen peroxide and organic peroxides in the gas phase reactions of ozone with natural alkenes

    SciTech Connect

    Simonaitis, R.; Olszyna, K.J.; Meagher, J.F.

    1991-01-01

    The formation of H{sub 2}O{sub 2} and organic peroxides in the reaction of O{sub 3} with trans-2-butene and naturally occurring alkenes has been studied using a 31 m{sup 3} reaction chamber. H{sub 2}O{sub 2} and organic peroxides were found to be products of the O{sub 3} reaction with trans-2-butene, isoprene, {alpha} and {beta}-pinene, and limonene. Water is necessary for the formation of H{sub 2}O{sub 2} and most of the H{sub 2}O{sub 2} is formed via a route that does not involve HO{sub 2} radicals. These results indicate that the reaction of O{sub 3} with natural alkenes may be a significant source of atmospheric H{sub 2}O{sub 2}, particularly in forest and rural areas.

  17. Highly Tunable Selectivity for Syngas-Derived Alkenes over Zinc and Sodium-Modulated Fe5 C2 Catalyst.

    PubMed

    Zhai, Peng; Xu, Cong; Gao, Rui; Liu, Xi; Li, Mengzhu; Li, Weizhen; Fu, Xinpu; Jia, Chunjiang; Xie, Jinglin; Zhao, Ming; Wang, Xiaoping; Li, Yong-Wang; Zhang, Qianwen; Wen, Xiao-Dong; Ma, Ding

    2016-08-16

    Zn- and Na-modulated Fe catalysts were fabricated by a simple coprecipitation/washing method. Zn greatly changed the size of iron species, serving as the structural promoter, while the existence of Na on the surface of the Fe catalyst alters the electronic structure, making the catalyst very active for CO activation. Most importantly, the electronic structure of the catalyst surface suppresses the hydrogenation of double bonds and promotes desorption of products, which renders the catalyst unexpectedly reactive toward alkenes-especially C5+ alkenes (with more than 50% selectivity in hydrocarbons)-while lowering the selectivity for undesired products. This study enriches C1 chemistry and the design of highly selective new catalysts for high-value chemicals.

  18. Magnetic Fe@g??C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    EPA Pesticide Factsheets

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation, and the reaction can be accomplished using visible light without the need for external sources of energy.This dataset is associated with the following publication:Baig, N., S. Verma, R. Varma , and M. Nadagouda. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(3): 1661-1664, (2016).

  19. Copper- and cobalt-catalyzed direct coupling of sp(3) α-carbon of alcohols with alkenes and hydroperoxides.

    PubMed

    Cheng, Jun-Kee; Loh, Teck-Peng

    2015-01-14

    A zerovalent copper- and cobalt-catalyzed direct coupling of the sp(3) α-carbon of alcohols with alkenes and hydroperoxides was developed in which the hydroperoxides acted as radical initiator and then coupling partner. 1,3-Enynes and vinylarenes underwent alkylation-peroxidation to give β-peroxy alcohols and β-hydroxyketones correspondingly with excellent functional group tolerance. The resulting β-peroxy alcohols could be further transformed into β-hydroxyynones and propargylic 1,3-diols.

  20. Physisorption and chemisorption of alkanes and alkenes in H-FAU: a combined ab initio-statistical thermodynamics study.

    PubMed

    De Moor, Bart A; Reyniers, Marie-Françoise; Marin, Guy B

    2009-04-28

    The sorption in H-FAU zeolite of C4-C12 n-alkanes, and linear and branched C2-C8 alkenes has been quantified up to 800 K by combining QM-Pot(MP2//B3LYP) with statistical thermodynamics calculations. The physisorption strength increases linearly with increasing carbon number by 8.5 kJ mol(-1) and does not depend on the detailed alkane or alkene structure. Van der Waals interactions are dominant in physisorption, but alkenes are additionally stabilized by 20 kJ mol(-1) by formation of a pi-complex. Protonation of an alkene leads to the formation of alkoxides, which are more stable than the physisorbed species. As for physisorption a linear relation between the chemisorption energy and the carbon number is obtained. Protonation energies are independent of the carbon number but depend on the type of CC double bond being protonated. The relative stability difference between the secondary and tertiary alkoxides is 15 kJ mol(-1) in favor of the former. Both physisorption and chemisorption are accompanied with entropy losses which increase linearly with the carbon number. A typical compensation effect is obtained: the stronger the stabilization of the sorbed species the more pronounced the entropy loss. For temperatures ranging from 0 to 800 K, all of the derived linear relations expressing the physisorption and/or chemisorption enthalpy and entropy of the alkanes and the alkanes as function of the carbon number are independent of temperature. A good agreement between calculated and experimental values for alkanes is obtained at 500 K.

  1. Intramolecular alkylative arylation of oxabicylic alkene: a potential diene approach for the synthesis of estrone and analogous steroid structures.

    PubMed

    Li, Wei-Dong Z; Wei, Kun

    2004-04-15

    Regioselective and stereospecific intramolecular alkylative arylation of unsaturated oxabicyclic diol 6, mediated by Lewis acid or strong protic acid to give the tetracyclic products 7a and 7b, as shown above, represents the first example of an electrophilic (cationic in character) ring-opening-cyclization of oxabicyclic alkene. This constitutes the key cyclization step for a long-standing and potentially useful diene approach for the synthesis of estrone and analogous steroid structures. [structure: see text

  2. Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane.

    PubMed

    Itami, Kenichiro; Mitsudo, Koichi; Nishino, Akira; Yoshida, Jun-ichi

    2002-04-19

    Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane is described. The hydrosilylation of alkenes using dimethyl(2-pyridyl)silane (2-PyMe(2)SiH) proceeded well in the presence of a catalytic amount of RhCl(PPh(3))(3) with virtually complete regioselectivity. By taking advantage of the phase tag property of the 2-PyMe(2)Si group, hydrosilylation products were isolated in greater than 95% purity by simple acid-base extraction. Strategic catalyst recovery was also demonstrated. The hydrosilylation of alkynes using 2-PyMe(2)SiH proceeded with a Pt(CH(2)=CHSiMe(2))(2)O/P(t-Bu)(3) catalyst to give alkenyldimethyl(2-pyridyl)silanes in good yield with high regioselectivity. A reactivity comparison of 2-PyMe(2)SiH with other related hydrosilanes (3-PyMe(2)SiH, 4-PyMe(2)SiH, and PhMe(2)SiH) was also performed. In the rhodium-catalyzed reaction, the reactivity order of hydrosilane was 2-PyMe(2)SiH > 3-PyMe(2)SiH, 4-PyMe(2)SiH, PhMe(2)SiH, indicating a huge rate acceleration with 2-PyMe(2)SiH. In the platinum-catalyzed reaction, the reactivity order of hydrosilane was PhMe(2)SiH, 3-PyMe(2)SiH > 4-PyMe(2)SiH > 2-PyMe(2)SiH, indicating a rate deceleration with 2-PyMe(2)SiH and 4-PyMe(2)SiH. It seems that these reactivity differences stem primarily from the governance of two different mechanisms (Chalk-Harrod and modified Chalk-Harrod mechanisms). From the observed reactivity order, coordination and electronic effects of dimethyl(pyridyl)silanes have been implicated.

  3. Acid-Promoted Reaction of Trifluoromethylated Allyl Alcohols with Arenes. Stereoselective Synthesis of CF3-Alkenes and CF3-Indanes.

    PubMed

    Kazakova, Anna N; Iakovenko, Roman O; Boyarskaya, Irina A; Nenajdenko, Valentine G; Vasilyev, Aleksander V

    2015-10-02

    Reaction of 4-aryl-1,1,1-trifluorobut-3-en-2-ols [CF3-allyl alcohols, ArCH═CHCH(OH)CF3] with arenes under activation with anhydrous FeCl3 or FSO3H was studied. We found that the transformation led to trifluoromethylated alkenes [Ar(Ar')CHCH═CHCF3] or 1-trifluoromethylated indanes (CF3-indanes). The formation of these two types of reaction products strongly depends on the nucleophilicity of the starting arene and the electrophilicity of cationic intermediates generated from CF3-allyl alcohols under reaction conditions. Benzene, anisole, veratrole, and ortho-xylene lead exclusively to CF3-alkenes with an E-configuration. More π-donating polymethylated arenes (pseudocumene, mesitylene) afford only CF3-indanes with a predominantly cis-orientation of substituents at positions 1 and 3 of the indane ring. Meta- and para-xylenes show an intermediate behavior; they may form both CF3-alkenes and/or CF3-indanes. The mechanisms of the investigated transformations are discussed.

  4. Purification of CYP2B-like protein from feral leaping mullet (Liza saliens) liver microsomes and its biocatalytic, molecular, and immunological characterization.

    PubMed

    Bozcaarmutlu, Azra; Arinç, Emel

    2008-01-01

    In this study, CYP2B-immunoreactive protein was purified to electrophoretic homogeneity from the liver microsomes of leaping mullet. The purified cytochrome P450 (CYP) gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis having a M(r) of 49,300 Da. Absolute absorption spectrum of the purified CYP showed a maximum at 417 nm and CO-difference spectrum of dithionite-reduced cytochrome P450 gave a peak at 450 nm. The purified CYP was found to be active in N-demethylation of benzphetamine, erythromycin, and ethylmorphine, and O-dealkylation of pentoxyresorufin in the reconstituted system. However, it was unable to catalyze O-dealkylation of ethoxyresorufin, methoxyresorufin, benzyloxyresorufin, and hydroxylation of lauric acid and aniline. The purified CYP showed strong cross-reactivity with anti-sheep lung CYP2B, a homologue of CYP2B4. N-terminal amino acid sequence of the mullet P450 had the highest degree of homology with CYP2Bs among the known CYPs. Spectral, electrophoretic, immunochemical, N-terminal amino acid sequence, and biocatalytic properties of the purified CYP are most similar to those of mammalian cytochrome P4502B. All these data indicate that the purified CYP is certainly 2B-like. In this study, we not only purified biocatalytically active CYP2B-like protein from fish, but also demonstrated detailed functional properties of CYP2B-like protein for the first time.

  5. Orthogonene redux: a nearly orthogonal alkene predicted to exhibit considerable stability. A computational study.

    PubMed

    Lewars, Errol G

    2005-11-03

    A strongly twisted, as yet unknown, alkene, orthogonene (tetracyclo[8,2,2,0(2,7),0(3,10)]tetradecene-2(3)), was computationally reinvestigated: earlier work had indicated that the stereoisomer with the pair of bridgehead hydrogens on the methine group at one end of the double bond syn to the pair at the other end (C-H/C-H "up-up/up-up", C(2) symmetry, B3LYP/6-31G double bond angle 83 degrees) is at best of low stability, rearranging with a very small barrier to a carbene or possibly a cyclopropane. Here it is shown that the anti ("up-up/down-down") stereoisomer (ideally D(2) symmetry, CASSCF(4,4)/6-31G* double bond torsional dihedral angle 88 degrees) is much more stable: the barrier to rearrangement to a carbene is calculated to be ca. 200 kJ mol(-1) (CASSCF(4,4)/6-31G*), indicating this compound to be a realistic synthetic objective. The vertical ionization energy of this molecule is predicted to be ca. 5.3 eV, comparable to that of the alkali metals and similar to that predicted by others for a hypothetical planar tetracoordinate carbon molecule.

  6. Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase.

    PubMed

    Rui, Zhe; Li, Xin; Zhu, Xuejun; Liu, Joyce; Domigan, Bonnie; Barr, Ian; Cate, Jamie H D; Zhang, Wenjun

    2014-12-23

    Aliphatic medium-chain 1-alkenes (MCAEs, ∼10 carbons) are "drop-in" compatible next-generation fuels and precursors to commodity chemicals. Mass production of MCAEs from renewable resources holds promise for mitigating dependence on fossil hydrocarbons. An MCAE, such as 1-undecene, is naturally produced by Pseudomonas as a semivolatile metabolite through an unknown biosynthetic pathway. We describe here the discovery of a single gene conserved in Pseudomonas responsible for 1-undecene biosynthesis. The encoded enzyme is able to convert medium-chain fatty acids (C10-C14) into their corresponding terminal olefins using an oxygen-activating, nonheme iron-dependent mechanism. Both biochemical and X-ray crystal structural analyses suggest an unusual mechanism of β-hydrogen abstraction during fatty acid substrate activation. Our discovery unveils previously unidentified chemistry in the nonheme Fe(II) enzyme family, provides an opportunity to explore the biology of 1-undecene in Pseudomonas, and paves the way for tailored bioconversion of renewable raw materials to MCAE-based biofuels and chemical commodities.

  7. Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans.

    PubMed

    Richter, Nina; Gröger, Harald; Hummel, Werner

    2011-01-01

    A recombinant enoate reductase from Gluconobacter oxydans was heterologously expressed, purified, characterised and applied in the asymmetric reduction of activated alkenes. In addition to the determination of the kinetic properties, the major focus of this work was to utilise the enzyme in the biotransformation of different interesting compounds such as 3,5,5-trimethyl-2-cyclohexen-1,4-dione (ketoisophorone) and (E/Z)-3,7-dimethyl-2,6-octadienal (citral). The reaction proceeded with excellent stereoselectivities (>99% ee) as well as absolute chemo- and regioselectivity, only the activated C=C bond of citral was reduced by the enoate reductase, while non-activated C=C bond and carbonyl moiety remained untouched. The described strategy can be used for the production of enantiomerically pure building blocks, which are difficult to prepare by chemical means. In general, the results show that the investigated enoate reductase is a promising catalyst for the use in asymmetric C=C bond reductions.

  8. Electrophilic bromination of alkenes: environmental, health and safety aspects of new alternative methods.

    PubMed

    Eissen, Marco; Lenoir, Dieter

    2008-01-01

    More than twenty new alternative methods for bromination of alkenes have been evaluated taking into consideration their resource demands, waste production as well as environmental, health and safety aspects. The cost of bromine and the substances designated to circumvent the application of molecular bromine have also been taken into account. As bromine is only one of several problematic substances being used, its avoidance-by applying bromine supported on solid material or by performing the in situ generation of bromine-does not significantly reduce the technological requirements. On the contrary, the resource demands and amount of waste produced by most new methods are significantly higher compared to the standard methods, especially if the recycling of a carrying agent is not efficient. The method using hydrobromic acid and hydrogen peroxide can be regarded as a competitive alternative to the standard method. The application of certain carrying agents could be interesting, because solvents such as carbon tetrachloride or chloroform used during synthesis could be replaced with less problematic ones during work-up. However, problems associated with these alternatives are not resolved as yet.

  9. Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model

    PubMed Central

    Jaja-Chimedza, Asha; Gantar, Miroslav; Gibbs, Patrick D. L.; Schmale, Michael C.; Berry, John P.

    2012-01-01

    Cyanobacteria are recognized producers of a wide array of toxic or otherwise bioactive secondary metabolites. The present study utilized the zebrafish (Danio rerio) embryo as an aquatic animal model of vertebrate development to identify, purify and characterize lipophilic inhibitors of development (i.e., developmental toxins) from an isolate of the freshwater cyanobacterial species, Aphanizomenon ovalisporum.Bioassay-guided fractionation led to the purification, and subsequent chemical characterization, of an apparent homologous series of isotactic polymethoxy-1-alkenes (1–6), including three congeners (4–6) previously identified from the strain, and two variants previously identified from other species (2 and 3), as well as one apparently novel member of the series (1). Five of the PMAs in the series (1–5) were purified in sufficient quantity for comparative toxicological characterization, and toxicity in the zebrafish embryo model was found to generally correlate with relative chain length and/or methoxylation. Moreover, exposure of embryos to a combination of variants indicates an apparent synergistic interaction between the congeners. Although PMAs have been identified previously in cyanobacteria, this is the first report of their apparent toxicity. These results, along with the previously reported presence of the PMAs from several cyanobacterial species, suggest a possibly widespread distribution of the PMAs as toxic secondary metabolites and warrants further chemical and toxicological investigation. PMID:23170087

  10. Reductive dechlorination of chlorinated alkanes and alkenes by iron metal and metal mixtures

    SciTech Connect

    Orth, R.G.; McKenzie, D.E.

    1995-12-31

    Reductive dechlorination using zero valent metals such as iron has seen an increase in interest over the past few years with the extension of iron dechlorination to in-situ treatment of ground water using a process developed by Gillham and O`Hannes in 1994. Earlier applications included the use of metals for water treatment for the degradation of halogenated pesticides. This increased interest is demonstrated by the recent ACS symposium on zero valent metal dechlorination. The work that will be presented involves the reduction of selected chlorinated alkanes and alkenes beginning with chlorobutanes. The position of the chlorines on the carbon chain relative to each other was studied by determining the rates of the dechlorination processes. These studies were carried out in seated batch reactors so that loss of the chlorinated hydrocarbons was minimized and total carbon and chloride mass balances could be obtained. The goal of the studies was to understand the mechanism of the reaction that is believed to follow metal corrosion processes involving two electron transfer reactions.

  11. Metal-Organic Frameworks as Catalysts for Oxidation Reactions.

    PubMed

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; Garcia, Hermenegildo

    2016-06-06

    This Concept is aimed at describing the current state of the art in metal-organic frameworks (MOFs) as heterogeneous catalysts for liquid-phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal-free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion.

  12. Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe-Schmitt synthesis.

    PubMed

    Pesci, Lorenzo; Glueck, Silvia M; Gurikov, Pavel; Smirnova, Irina; Faber, Kurt; Liese, Andreas

    2015-04-01

    Microbial decarboxylases, which catalyse the reversible regioselective ortho-carboxylation of phenolic derivatives in anaerobic detoxification pathways, have been studied for their reverse carboxylation activities on electron-rich aromatic substrates. Ortho-hydroxybenzoic acids are important building blocks in the chemical and pharmaceutical industries and are currently produced via the Kolbe-Schmitt process, which requires elevated pressures and temperatures (≥ 5 bar, ≥ 100 °C) and often shows incomplete regioselectivities. In order to resolve bottlenecks in view of preparative-scale applications, we studied the kinetic parameters for 2,6-dihydroxybenzoic acid decarboxylase from Rhizobium sp. in the carboxylation- and decarboxylation-direction using 1,2-dihydroxybenzene (catechol) as starting material. The catalytic properties (K(m), V(max)) are correlated with the overall thermodynamic equilibrium via the Haldane equation, according to a reversible random bi-uni mechanism. The model was subsequently verified by comparing experimental results with simulations. This study provides insights into the catalytic behaviour of a nonoxidative aromatic decarboxylase and reveals key limitations (e.g. substrate oxidation, CO2 pressure, enzyme deactivation, low turnover frequency) in view of the employment of this system as a 'green' alternative to the Kolbe-Schmitt processes.

  13. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    PubMed Central

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    Background There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. Results The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed. PMID:21691461

  14. Exploring the Electron Transfer Pathway in the Oxidation of Avermectin by CYP107Z13 in Streptomyces ahygroscopicus ZB01

    PubMed Central

    Li, Mei; Zhang, Yujie; Zhang, Lin; Yang, Xiaoyan; Jiang, Xiliang

    2014-01-01

    Streptomyces ahygroscopicus ZB01 can effectively oxidize 4″-OH of avermectin to form 4″-oxo-avermectin. CYP107Z13 is responsible for this site-specific oxidation in ZB01. In the present study, we explored the electron transfer pathway in oxidation of avermectin by CYP107Z13 in ZB01. A putative [3Fe-4S] ferredoxin gene fd68 and two possible NADH-dependent ferredoxin reductase genes fdr18 and fdr28 were cloned from the genomic DNA of ZB01. fd68 gene disruption mutants showed no catalytic activity in oxidation of avermectin to form 4″-oxo-avermectin. To clarify whether FdR18 and FdR28 participate in the electron transfer during avermectin oxidation by CYP107Z13, two whole-cell biocatalytic systems were designed in E. coli BL21 (DE3), with one co-expressing CYP107Z13, Fd68 and FdR18 and the other co-expressing CYP107Z13, Fd68 and FdR28. Both of the two biocatalytic systems were found to be able to mediate the oxidation of avermectin to form 4″-oxo-avermectin. Thus, we propose an electron transfer pathway NADH→FdR18/FdR28→Fd68→CYP107Z13 for oxidation of avermectin to form 4″-oxo-avermectin in ZB01. PMID:24905717

  15. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes

    PubMed Central

    Loder, Andrew J.; Zeldes, Benjamin M.; Garrison, G. Dale; Lipscomb, Gina L.; Adams, Michael W. W.

    2015-01-01

    n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. PMID:26253677

  16. Chronic toxicity of a mixture of chlorinated alkanes and alkenes in ICR mice.

    PubMed

    Wang, Fun-In; Kuo, Min-Liang; Shun, Chia-Tung; Ma, Yee-Chung; Wang, Jung-Der; Ueng, Tzuu-Huei

    2002-02-01

    The aim of this study was to determine the chronic toxicity of a mixture of chlorinated alkanes and alkenes (CA) consisting of chloroform, 1,1-dichloroethane, 1,1-dichloroethylene, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene. These chlorinated organic solvents were present in the underground water near an electronic appliances manufactory in Taoyuan, Taiwan. Male and female weanling ICR mice were treated with low-, medium-, and high-dose CA mixtures in drinking water for 16 and 18 mo, respectively. A significant number of male mice treated with the high-dose CA mixture developed tail alopecia and deformation, which was not prominent in CA-treated female mice. Medium- and high-dose CA mixtures induced marginal increases of liver and lung weights, blood urea nitrogen, and serum creatinine levels in male mice. In female mice, the high-dose CA mixture increased liver, kidney, and uterus and ovary total weights, without affecting serum biochemistry parameters. CA mixtures had no effects on the total glutathione content or the level of glutathione S-transferase activity in the livers and kid- neys of male and female mice. Treatments with CA mixtures produced a trend of increasing frequency of hepatocelluar neoplasms in male mice, compared to male and female controls and CA-treated female mice. The high-dose CA mixture induced a significantly higher incidence of mammary adenocarcinoma in female mice. The calculated odds ratios of mammary adenocarcinoma in female mice induced by low-, medium-, and high-dose CA mixtures were 1.14, 1.37, and 3.53 times that of the controls, respectively. The low-dose CA mixture induced a higher incidence of cysts and inflammation in and around the ovaries. This study has demonstrated that the CA mixture is a potential carcinogen to male and female mice. These animal toxicology data may be important in assessing the health effects of individuals exposed to the CA mixture.

  17. Homochiral nickel coordination polymers based on salen(Ni) metalloligands: synthesis, structure, and catalytic alkene epoxidation.

    PubMed

    Huang, Yuanbiao; Liu, Tianfu; Lin, Jingxiang; Lü, Jian; Lin, Zujin; Cao, Rong

    2011-03-21

    One-dimensional (1D) homochiral nickel coordination polymers [Ni(3)(bpdc)(RR-L)(2)·(DMF)](n) (2R, RR-L = (R,R)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene), bpdc = 4,4'-biphenyldicarboxylic acid) and [Ni(3)(bpdc)(SS-L)(2)·(DMF)](n) (2S, SS-L = (S,S)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene) based on enantiopure pyridyl-functionalized salen(Ni) metalloligand units NiL ((1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene))Ni(II)) have been synthesized and characterized by microanalysis, IR spectroscopy, solid-state UV-vis spectroscopy, thermogravimetric analysis (TGA), circular dichroism (CD) spectroscopy, cyclic voltammetric measurement, and powder and single crystal X-ray diffraction. Each NiL as unbridging pendant metalloligand uses one terminal pyridyl group to coordinate achiral unit (nickel and bpdc(2-)) building a helical chain, while the other pyridyl group remains uncoordinated. Both 2R and 2S contain left- and right-handed helical chains made of the achiral building blocks, while the NiL as remote external chiral source is perpendicular to the backbone of the helices. The nickel coordination polymers 2R and 2S containing unsaturated active nickel center in metalloligand NiL can be used as self-supported heterogeneous catalysts. They show catalytic activity comparable with their homogeneous counterpart in alkene epoxidation and exhibit great potential as recyclable catalysts.

  18. Terminal Alkene Formation by the Thioesterase of Curacin A Biosynthesis: Structure of a Decarboxylating Thioesterase

    SciTech Connect

    Gehret, Jennifer J.; Gu, Liangcai; Gerwick, William H.; Wipf, Peter; Sherman, David H.; Smith, Janet L.

    2011-11-07

    Curacin A is a polyketide synthase (PKS)-non-ribosomal peptide synthetase-derived natural product with potent anticancer properties generated by the marine cyanobacterium Lyngbya majuscula. Type I modular PKS assembly lines typically employ a thioesterase (TE) domain to off-load carboxylic acid or macrolactone products from an adjacent acyl carrier protein (ACP) domain. In a striking departure from this scheme the curacin A PKS employs tandem sulfotransferase and TE domains to form a terminal alkene moiety. Sulfotransferase sulfonation of {beta}-hydroxy-acyl-ACP is followed by TE hydrolysis, decarboxylation, and sulfate elimination (Gu, L., Wang, B., Kulkarni, A., Gehret, J. J., Lloyd, K. R., Gerwick, L., Gerwick, W. H., Wipf, P., Hakansson, K., Smith, J. L., and Sherman, D. H. (2009) J. Am. Chem. Soc. 131, 16033-16035). With low sequence identity to other PKS TEs (<15%), the curacin TE represents a new thioesterase subfamily. The 1.7-{angstrom} curacin TE crystal structure reveals how the familiar {alpha}/{beta}-hydrolase architecture is adapted to specificity for {beta}-sulfated substrates. A Ser-His-Glu catalytic triad is centered in an open active site cleft between the core domain and a lid subdomain. Unlike TEs from other PKSs, the lid is fixed in an open conformation on one side by dimer contacts of a protruding helix and on the other side by an arginine anchor from the lid into the core. Adjacent to the catalytic triad, another arginine residue is positioned to recognize the substrate {beta}-sulfate group. The essential features of the curacin TE are conserved in sequences of five other putative bacterial ACP-ST-TE tridomains. Formation of a sulfate leaving group as a biosynthetic strategy to facilitate acyl chain decarboxylation is of potential value as a route to hydrocarbon biofuels.

  19. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts

    PubMed Central

    2014-01-01

    Background Lipase-catalyzed biotransformation of acylglycerides or fatty acids into biodiesel via immobilized enzymes or whole cell catalysts has been considered as one of the most promising methods to produce renewable and environmentally friendly alternative liquid fuels, thus being extensively studied so far. In all previously pursued approaches, however, lipase enzymes are prepared in an independent process separated from enzymatic biodiesel production, which would unavoidably increase the cost and energy consumption during industrial manufacture of this cost-sensitive energy product. Therefore, there is an urgent need to develop novel cost-effective biocatalysts and biocatalytic processes with genuine industrial feasibility. Result Inspired by the consolidated bioprocessing of lignocellulose to generate bioethanol, an integrated process with coupled lipase production and in situ biodiesel synthesis in a recombinant P. pastoris yeast was developed in this study. The novel and efficient dual biocatalytic system based on Thermomyces lanuginosus lipase took advantage of both cell free enzymes and whole cell catalysts. The extracellular and intracellular lipases of growing yeast cells were simultaneously utilized to produce biodiesel from waste cooking oils in situ and in one pot. This integrated system effectively achieved 58% and 72% biodiesel yield via concurrent esterified-transesterified methanolysis and stepwise hydrolysis-esterification at 3:1 molar ratio between methanol and waste cooking oils, respectively. Further increasing the molar ratio of methanol to waste cooking oils to 6:1 led to an 87% biodiesel yield using the stepwise strategy. Both water tolerance and methanol tolerance of this novel system were found to be significantly improved compared to previous non-integrated biodiesel production processes using separately prepared immobilized enzymes or whole cell catalysts. Conclusion We have proposed a new concept of integrated biodiesel production

  20. Synthesis of bi-metallic Au-Ag nanoparticles loaded on functionalized MCM-41 for immobilization of alkaline protease and study of its biocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sadjadi, M. S.; Farhadyar, N.; Zare, K.

    2009-10-01

    In this work, Au-Ag nanoparticles (Au-Ag-bi-MNPs) have been prepared on amine functionalized Si-MCM-41 (NH 2-Si-MCM-41) particles through a reduction of AgNO 3 and HAuCl 4 by NaBH 4 at ambient conditions. Au-Ag-bi-MNPs loaded on the NH2-Si-MCM-41, provide a good biocompatible surface for immobilization of the enzyme alkaline protease. This immobilization, presumably due to bonding between core shell nanoparticles and OH in serine 183 in alkaline protease seems to be of an ionic exchange nature. We found that the alkaline protease immobilized on the Au-Ag-bi-MNPs/Si-MCM-41 is an active biocatalyst, stable at different pH and temperature. The bio catalytic activity of free alkaline protease in solution was 64 U/mg (Units per milligram), whereas that of the alkaline protease immobilized on Au-Ag-bi-MNPs/Si-MCM-41 was 75 U/mg. This improvement of the biocatalytic activity may be due to a really increased activity per molecule of immobilized enzyme or to a purification of the enzyme. The alkaline protease molecules immobilized on the (Au-Ag)/ NH 2-MCM-41 surface retained as much as 80% of the catalytic activity recorded at pH=8, and showed significant catalytic activity of alkaline protease in the bioconjugate material. The biocatalytic materials were easily separated from the reaction medium by mild centrifugation and exhibits excellent reuse and stability characteristics over four successive cycles. The optimum temperature ranged from 35 ∘C-55 ∘C and pH=8 for bioactivity of the alkaline protease in the assembly system was observed to be higher than that of the free enzyme in solution. The enzyme biocatalytic activity was monitored by UV-visible spectroscopy. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and dispersive analysis of X-RAY (EDAX) were used to characterize the size and morphology of the prepared materials.

  1. Metal ion hydrocarbon bidentate bonding in alkyl acetates, methyl alkanoates, alcohols and 1-alkenes: a comparative study.

    PubMed

    Burgers, Peter C; Holmes, John L; Terlouwc, Johan K

    2016-01-01

    The relative affinity of the monovalent metal ions Li(+), Na(+), Cu(+) and Ag(+) towards a series of aliphatic alkyl acetates and some selected 1-alkenes (P) was examined using the kinetic method. A detailed analysis of the dissociation characteristics of a series of mixed metal-bound dimer ions of the type P1-M(+)-P2 and the evaluated proton affinities (PAs) of the monomers shows that the affinity of the cation towards long-chain alkyl acetates and alkenes (having a chain length ≤ C4) is markedly enhanced. In line with recent studies of nitriles, alcohols and methyl alkanoates, this is attributed to a bidentate interaction of the metal ion with the functional group or double bond and the aliphatic chain. In particular, the longer chain alkyl acetates, methyl alkanoates and alcohols show a remarkably similar behaviour with respect to silver ion hydrocarbon bonding. The Ag(+) adducts of the alkyl acetates dissociate by loss of CH3COOH. This reaction becomes more pronounced at longer chain lengths, which points to metal ion bidentate formation in [Ag(+)···1-alkene] product ions having a long hydrocarbon chain. In the same vein, the heterodimers [1- hexene···Ag(+)···1-heptene] and [1- heptene···Ag(+)···1-octene] dissociate primarily into [Ag(+)···1-heptene] and [Ag(+)···1-octene] ions, respectively. Hydrocarbon bidentate formation in [Ag(+)···1-octene] also reveals itself by the reluctance of this ion to react with water in an ion trap, as opposed to [Ag(+)···1-hexene] which readily undergoes hydration.

  2. Binding Energy of d¹º Transition Metals to Alkenes By Wave Function Theory and Density Functional Theory

    SciTech Connect

    Averkiev, Boris B; Zhao, Yan; Truhlar, Donald G

    2010-06-01

    The structures of Pd(PH₃)₂ and Pt(PH₃)₂ complexes with ethene and conjugated CnHn+2 systems (n=4, 6, 8, and 10) were studied. Their binding energies were calculated using both wave function theory (WFT) and density functional theory (DFT). Previously it was reported that the binding energy of the alkene to the transition metal does not depend strongly on the size of the conjugated CnHn+2 ligand, but that DFT methods systematically underestimate the binding energy more and more significantly as the size of the conjugated system is increased. Our results show that recently developed density functionals predict the binding energy for these systems much more accurately. New benchmark calculations carried out by the coupled cluster method based on Brueckner orbitals with double excitations and a quasiperturbative treatment of connected triple excitations (BCCD(T)) with a very large basis set agree even better with the DFT predictions than do the previous best estimates. The mean unsigned error in absolute and relative binding energies of the alkene ligands to Pd(PH₃)₂ is 2.5 kcal/mol for the ωB97 and M06 density functionals and 2.9 kcal/mol for the M06-L functional. Adding molecular mechanical damped dispersion yields even smaller mean unsigned errors: 1.3 kcal/mol for the M06-D functional, 1.5 kcal/mol for M06- L-D, and 1.8 kcal/mol for B97-D and ωB97X-D. The new functionals also lead to improved accuracy for the analogous Pt complexes. These results show that recently developed density functionals may be very useful for studying catalytic systems involving Pd d¹º centers and alkenes.

  3. Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp.

    PubMed

    Schäfer, Franziska; Muzica, Liudmila; Schuster, Judith; Treuter, Naemi; Rosell, Mònica; Harms, Hauke; Müller, Roland H; Rohwerder, Thore

    2011-09-01

    Bacterial degradation pathways of fuel oxygenates such as methyl tert-butyl and tert-amyl methyl ether (MTBE and TAME, respectively) have already been studied in some detail. However, many of the involved enzymes are still unknown, and possible side reactions have not yet been considered. In Aquincola tertiaricarbonis L108, Methylibium petroleiphilum PM1, and Methylibium sp. strain R8, we have now detected volatile hydrocarbons as by-products of the degradation of the tert-alkyl ether metabolites tert-butyl and tert-amyl alcohol (TBA and TAA, respectively). The alkene isobutene was formed only during TBA catabolism, while the beta and gamma isomers of isoamylene were produced only during TAA conversion. Both tert-alkyl alcohol degradation and alkene production were strictly oxygen dependent. However, the relative contribution of the dehydration reaction to total alcohol conversion increased with decreasing oxygen concentrations. In resting-cell experiments where the headspace oxygen content was adjusted to less than 2%, more than 50% of the TAA was converted to isoamylene. Isobutene formation from TBA was about 20-fold lower, reaching up to 4% alcohol turnover at low oxygen concentrations. It is likely that the putative tert-alkyl alcohol monooxygenase MdpJ, belonging to the Rieske nonheme mononuclear iron enzymes and found in all three strains tested, or an associated enzymatic step catalyzed the unusual elimination reaction. This was also supported by the detection of mdpJK genes in MTBE-degrading and isobutene-emitting enrichment cultures obtained from two treatment ponds operating at Leuna, Germany. The possible use of alkene formation as an easy-to-measure indicator of aerobic fuel oxygenate biodegradation in contaminated aquifers is discussed.

  4. In situ forming hydrogels via catalyst-free and bioorthogonal "tetrazole-alkene" photo-click chemistry.

    PubMed

    Fan, Yaping; Deng, Chao; Cheng, Ru; Meng, Fenghua; Zhong, Zhiyuan

    2013-08-12

    In situ forming hydrogels were developed from 4-arm poly(ethylene glycol)-methacrylate (PEG-4-MA) and -tetrazole (PEG-4-Tet) derivatives through catalyst-free and bioorthogonal "tetrazole-alkene" photo-click chemistry. PEG-4-MA and PEG-4-Tet (Mn = 10 kg/mol) were soluble at 37 °C in phosphate buffer (PB, pH 7.4, 10 mM) at total polymer concentrations ranging from 20 to 60 wt % but formed fluorescent hydrogels upon 365 nm UV irradiation at an intensity of 20.6, 30.7, or 60 mW/cm(2). The gelation times ranged from ca. 50 s to 5 min, and storage moduli varied from 0.65 to 25.2 kPa depending on polymer concentrations and degrees of Tet substitution in PEG-4-Tet conjugates. The cell experiments via an indirect contact assay demonstrated that these "tetrazole-alkene" photo-click PEG hydrogels were noncytotoxic. The high specificity of photo-click reaction renders thus obtained PEG hydrogels particularly interesting for controlled protein release. Notably, in vitro release studies showed that cytochrome c (CC), γ-globulins (Ig), and recombinant human interleukin-2 (rhIL-2) all were released from PEG hydrogels in a sustained and quantitative manner over a period of 14-20 days. Importantly, released CC and rhIL-2 exhibited comparable biological activities to native CC and rhIL-2, respectively. These results confirm that "tetrazole-alkene" photo-click reaction is highly compatible with these loaded proteins. This photo-controlled, specific, efficient, and catalyst-free click chemistry provides a new and versatile strategy to in situ forming hydrogels that hold tremendous potentials for protein delivery and tissue engineering.

  5. An inexpensive and recyclable silver-foil catalyst for the cyclopropanation of alkenes with diazoacetates under mechanochemical conditions.

    PubMed

    Chen, Longrui; Bovee, Mark O; Lemma, Betsegaw E; Keithley, Kimberlee S M; Pilson, Sara L; Coleman, Michael G; Mack, James

    2015-09-14

    The diastereoselective cyclopropanation of various alkenes with diazoacetate derivatives can be achieved under mechanochemical conditions using metallic silver foil and a stainless-steel vial and ball system. This solvent-free method displays analogous reactivity and selectivity to solution-phase reactions without the need for slow diazoacetate addition or an inert atmosphere. The heterogeneous silver-foil catalyst system is easily recyclable without any appreciable loss of activity or selectivity being observed. The cyclopropanation products were obtained with excellent diastereoselectivities (up to 98:2 d.r.) and in high yields (up to 96 %).

  6. Metal-free oxysulfenylation of alkenes with 1-(arylthio)pyrrolidine-2,5-diones and alcohols.

    PubMed

    Yu, Jipan; Gao, Chang; Song, Zhixuan; Yang, Haijun; Fu, Hua

    2015-05-07

    β-Alkoxy sulfides are widely used as versatile building blocks in organic synthesis. Therefore, it is highly desirable to develop a convenient and efficient method for oxysulfenylation of alkenes. In this communication, an easy and efficient metal-free approach to β-alkoxy sulfides has been developed. The protocol uses readily available 1-(arylthio)pyrrolidine-2,5-diones and alcohols as the oxysulfenylating agents, chloroform as the solvent, and no ligand, additive and exclusion of air were required. Therefore, the present method provides a useful strategy for synthesis of β-alkoxy sulfides.

  7. Direct synthesis of 1,4-diols from alkenes by iron-catalyzed aerobic hydration and C-H hydroxylation.

    PubMed

    Hashimoto, Takuma; Hirose, Daisuke; Taniguchi, Tsuyoshi

    2014-03-03

    Various 1,4-diols are easily accessible from alkenes through iron-catalyzed aerobic hydration. The reaction system consists of a user-friendly iron phthalocyanine complex, sodium borohydride, and molecular oxygen. Furthermore, the effect of additional ligands on the iron complex was examined for a model reaction. The second hydroxy group is installed by direct C(sp(3))-H oxygenation, which is based on a [1,5] hydrogen shift process of a transient alkoxy radical that is formed by formal hydration of the olefin.

  8. Tandem hydroformylation/hydrogenation of alkenes to normal alcohols using Rh/Ru dual catalyst or Ru single component catalyst.

    PubMed

    Takahashi, Kohei; Yamashita, Makoto; Nozaki, Kyoko

    2012-11-14

    The catalyst system for tandem hydroformylation/hydrogenation of terminal alkenes to the corresponding homologated normal alcohol was developed. The reaction mechanism for the Rh/Ru dual catalyst was investigated by real-time IR monitoring experiments and (31)P NMR spectroscopy, which proved the mutual orthogonality of Rh-catalyzed hydroformylation and Ru-catalyzed hydrogenation. Detailed investigation about Ru-catalyzed hydrogenation of undecanal under H(2)/CO pressure clarified different kinetics from the hydrogenation under H(2) and gave a clue to design more active hydrogenation catalysts under H(2)/CO atmosphere. The solely Ru-catalyzed normal selective hydroformylation/hydrogenation is also reported.

  9. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long-Chain Alkenes.

    PubMed

    Passananti, Monica; Kong, Lingdong; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; Chen, Jianmin; Donaldson, D James; George, Christian

    2016-08-22

    The heterogeneous reaction between SO2 and unsaturated compounds results in the efficient production of organosulfates for several fatty acids and long-chain alkenes. The presence of an acid group, the physical state of the reactants (solid or liquid), the nature of the double bond (cis, trans, terminal), and the use of light irradiation all have an impact on the reaction rate. The reaction was investigated using different set-ups (coated flow tube, aerosol flow tube, and diffuse reflectance infrared Fourier transform cell). The reaction products were identified by high-resolution mass spectrometry and the impact of this reaction on organosulfate formation in the atmosphere is discussed.

  10. 1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil.

    PubMed

    Compton, David L; Laszlo, Joseph A

    2009-06-01

    1,3-Diferuloyl-sn-glycerol is found ubiquitously throughout the plant kingdom, possessing ultraviolet adsorbing and antioxidant properties. Diferuloyl glycerol was synthesized and isolated as a byproduct in up to 5% yield from a pilot plant scale packed-bed, biocatalytic transesterification of ethyl ferulate with soybean oil or mono- and diacylglycerols from soybean oil. The yield of the diferuloyl glycerol byproduct was directly proportional to the overall water concentration of the bioreactor. The isolated diferuloyl glycerol exhibited good ultraviolet adsorbing properties, 280-360 nm with a lambda(max) 322 nm, and compared well to the efficacy of commercial sunscreen active ingredients. The antioxidant capacity of diferuloyl glycerol (0.25-2.5 mM) was determined by its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and was comparable to that of ferulic acid. At current pilot plant scale production capacity, 120 kg diferuloyl glycerol byproduct could be isolated per year.

  11. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose.

    PubMed

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2014-12-26

    In the present study, we have synthesized a biocompatible hybrid carrier of hypromellose (HY) and poly(vinyl alcohol) (PVA) for immobilization of Burkholderia cepacia lipase (BCL). The immobilized biocatalyst HY:PVA:BCL was subjected to determination of half-life time (τ) and deactivation rate constant (K(D)) in various organic solvents. Biocatalyst showed higher τ-value in a nonpolar solvent like cyclohexane (822 h) as compared to that of a polar solvent such as acetone (347 h), which signifies better compatibility of biocatalyst in the nonpolar solvents. Furthermore, the K(D)-value was found to be less in cyclohexane (0.843 × 10(-3)) as compared to acetone (1.997 × 10(-3)), indicating better stability in the nonpolar solvents. Immobilized-BCL (35 mg) was sufficient to achieve 99% conversion of phenethyl butyrate (natural constituent of essential oils and has wide industrial applications) using phenethyl alcohol (2 mmol) and vinyl butyrate (6 mmol) at 44 °C in 3 h. The activation energy (E(a)) was found to be lower for immobilized-BCL than crude-BCL, indicating better catalytic efficiency of immobilized lipase BCL. The immobilized-BCL reported 6-fold superior biocatalytic activity and 8 times recyclability as compared to crude-BCL. Improved catalytic activity of immobilized enzyme in nonpolar media was also supported by thermodynamic activation parameters such as enthalpy (ΔH(⧧)), entropy (ΔS(⧧)) and Gibb's free energy (ΔG(⧧)) study, which showed that phenethyl butyrate synthesis catalyzed by immobilized-BCL was feasible as compared to crude-BCL. The present work explains a thermodynamic investigation and superior biocatalytic activity for phenethyl butyrate synthesis using biocompatible immobilized HY:PVA:BCL in nonaqueous media for the first time.

  12. Cycloaddition Reaction of Vinylphenylfurans and Dimethyl Acetylenedicarboxylate to [8 + 2] Isomers via Tandem [4 + 2]/Diradical Alkene-Alkene Coupling/[1,3]-H Shift Reactions: Experimental Exploration and DFT Understanding of Reaction Mechanisms.

    PubMed

    Chen, Kai; Wu, Feng; Ye, Lijuan; Tian, Zi-You; Yu, Zhi-Xiang; Zhu, Shifa

    2016-09-16

    An experimental test of designed [8 + 2] reaction of vinylphenylfuran and dimethyl acetylenedicarboxylate (DMAD) has been carried out, showing that the reaction gave unexpected addition products under different conditions. When the reaction was conducted under thermal conditions in toluene, expoxyphenanthrene, which was named as a [8 + 2] isomer, was generated. The scope of this reaction has been investigated in the present study. In addition, experiments and DFT calculations have been conducted to investigate how the reaction between vinylphenylfuran and DMAD took place. Surprisingly, the reaction did not involve the expected [8 + 2] intermediate, o-quinodimethane. Instead, the reaction starts from intermolecular Diels-Alder reactions between DMAD and the furan moiety of vinylphenylfuran, followed by unexpected intramolecular alkene-alkene coupling. This step generates a diradical species, which then undergoes [1,3]-H shift to give the experimentally observed expoxyphenanthrene. DFT calculations revealed that, the [8 + 2] cycloadduct cannot be obtained because the [1,5]-H shift process from the [1,5]-vinyl shift intermediate is disfavored kinetically compared to the [1,3]-H shift to the [8 + 2] isomer.

  13. Rh(III)-catalyzed oxidative coupling of 1,2-disubstituted arylhydrazines and olefins: a new strategy for 2,3-dihydro-1H-indazoles.

    PubMed

    Han, Sangil; Shin, Youngmi; Sharma, Satyasheel; Mishra, Neeraj Kumar; Park, Jihye; Kim, Mirim; Kim, Minyoung; Jang, Jinbong; Kim, In Su

    2014-05-02

    A rhodium(III)-catalyzed oxidative olefination of 1,2-disubstituted arylhydrazines with alkenes via sp(2) C-H bond activation followed by an intramolecular aza-Michael reaction is described. This strategy allows the direct and efficient construction of highly substituted 2,3-dihydro-1H-indazole scaffolds.

  14. Co-complexes Derived from Alkene Insertion to Alkyne-dicobaltpentacarbonyl complexes: Insight into the Regioselectivity of Pauson-Khand Reactions of Cyclopropenes

    PubMed Central

    Pallerla, Mahesh K.; Yap, Glenn P. A.; Fox, Joseph M.

    2009-01-01

    Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to μ-bonded, five-carbon “flyover” carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes. PMID:18637694

  15. Efficient addition of alcohols, amines and phenol to unactivated alkenes by Au(III) or Pd(II) stabilized by CuCl2.

    PubMed

    Zhang, Xin; Corma, Avelino

    2008-01-21

    The nucleophilic addition of alcohols, amines and phenol to unactivated alkenes catalyzed by cationic gold and palladium becomes limited due to the fast reduction into metallic gold under reaction conditions. The presence of CuCl2 retards the reduction of Au(III) and Pd", strongly increasing the turnover number of gold and palladium catalysts. It is shown that new Au(III)-CuCl2 and Pd(II)-CuCl2 catalysts are active and selective for the nucleophilic addition of alcohols, amines and phenol to unactivated alkenes.

  16. Addition of carboxyalkyl radicals to alkenes through a catalytic process, using a Mn(II)/Co(II)/O2 redox system.

    PubMed

    Hirase, Koji; Sakaguchi, Satoshi; Ishii, Yasutaka

    2003-07-25

    A novel strategy for production of mono- and dicarboxylic acids by the addition of carboxyalkyl radicals to alkenes and dienes, respectively, was successfully developed through a catalytic process with use of Mn(II)/Co(II)/O(2) system. Thus, a variety of carboxylic acids were prepared by the reaction of alkenes and dienes with acid anhydrides in the presence of a very small amount of Mn(OAc)(2) (0.5 mol %) and Co(OAc)(2) (0.1 mol %) under dilute dioxygen.

  17. Photochemical Formation of Mononuclear Bis and Tris Ethylene Complexes from Irradiation of Iron Pentacarbonyl or Triruthenium Dodecarcarbonyl: Species Involved in Catalytic Alkene Isomerization.

    DTIC Science & Technology

    1986-09-09

    6(alkene)2 5 are in fact mononuclear Fe(CO)3(alkene)2 complexes, consistent with a report by Fleckner, Grevels , and Hess. 7 Other important...and turnover rates of -600 mnn-1 at 293K. These results are in qualitative agreement with the report by Grevels and coworkers 7 in which Fe(CO) 3 (n2...Hance, R.L.; Daniels, L.M. J. Am. Chem. Soc., 1981, 103, 2129. *7. Fleckner, H.; Grevels , F.-W.; Hess, D. J. Am. Chew. Soc., 1984, 106, 2027. 8

  18. Donor-Acceptor Cyclopropanes as 1,2-Dipoles in GaCl3-Mediated [4 + 2]-Annulation with Alkenes: Easy Access to the Tetralin Skeleton.

    PubMed

    Novikov, Roman A; Tarasova, Anna V; Korolev, Victor A; Shulishov, Evgeny V; Timofeev, Vladimir P; Tomilov, Yury V

    2015-08-21

    A new process for (4 + 2)-annulation of donor-acceptor cyclopropanes (DACs) with unsaturated compounds in the presence of anhydrous GaCl3 has been developed. In this process, DACs act as sources of formal 1,2- and 1,4-dipoles to give polysubstituted tetralins in high yields and with high regio- and diastereoselectivity. Alkenes with both aryl and alkyl substituents at the double bond undergo this reaction equally readily. A most likely mechanism of the reaction has been proposed. It involves preliminary generation of a key 1,2-dipolar gallium complex and its subsequent participation in annulation with an alkene.

  19. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds.

    PubMed

    Sousa, Bebiana C; Pitt, Andrew R; Spickett, Corinne M

    2017-02-10

    The process of lipid oxidation generates a diverse array of small aldehydes and carbonyl-containing compounds, which may occur in free form or esterified within phospholipids and cholesterol esters. These aldehydes mostly result from fragmentation of fatty acyl chains following radical oxidation, and the products can be subdivided into alkanals, alkenals (usually α,β-unsaturated), γ-substituted alkenals and bis-aldehydes. Isolevuglandins are non-fragmented di-carbonyl compounds derived from H2-isoprostanes, and oxidation of the ω-3-fatty acid docosahexenoic acid yield analogous 22 carbon neuroketals. Non-radical oxidation by hypochlorous acid can generate α-chlorofatty aldehydes from plasmenyl phospholipids. Most of these compounds are reactive and have generally been considered as toxic products of a deleterious process. The reactivity is especially high for the α,β-unsaturated alkenals, such as acrolein and crotonaldehyde, and for γ-substituted alkenals, of which 4-hydroxy-2-nonenal and 4-oxo-2-nonenal are best known. Nevertheless, in recent years several previously neglected aldehydes have been investigated and also found to have significant reactivity and biological effects; notable examples are 4-hydroxy-2-hexenal and 4-hydroxy-dodecadienal. This has led to substantial interest in the biological effects of all of these lipid oxidation products and their roles in disease, including proposals that HNE is a second messenger or signalling molecule. However, it is becoming clear that many of the effects elicited by these compounds relate to their propensity for forming adducts with nucleophilic groups on proteins, DNA and specific phospholipids. This emphasizes the need for good analytical methods, not just for free lipid oxidation products but also for the resulting adducts with biomolecules. The most informative methods are those utilizing HPLC separations and mass spectrometry, although analysis of the wide variety of possible adducts is very challenging

  20. Computational Insight to Improve the Thermal Isomerisation Performance of Overcrowded Alkene-Based Molecular Motors through Structural Redesign.

    PubMed

    Oruganti, Baswanth; Wang, Jun; Durbeej, Bo

    2016-11-04

    Synthetic overcrowded alkene-based molecular motors achieve 360° unidirectional rotary motion of one motor half (rotator) relative to the other (stator) through sequential photochemical and thermal isomerisation steps. In order to facilitate and expand the use of these motors for various applications, it is important to investigate ways to increase the rates and efficiencies of the reactions governing the rotary motion. Here, we use computational methods to explore whether the thermal isomerisation performance of some of the fastest available motors of this type can be further improved by reducing the sizes of the motor halves. Presenting three new redesigned motors that combine an indanylidene rotator with a cyclohexadiene, pyran or thiopyran stator, we first use multiconfigurational quantum chemical methods to verify that the photoisomerisations of these motors sustain unidirectional rotary motion. Then, by performing density functional calculations, we identify both stepwise and concerted mechanisms for the thermal isomerisations of the motors and show that the rate-determining free-energy barriers of these processes are up to 25 kJ mol(-1) smaller than those of the original motors. Furthermore, the thermal isomerisations of the redesigned motors proceed in fewer steps. Altogether, the results suggest that the redesigned motors are useful templates for improving the thermal isomerisation performance of existing overcrowded alkene-based motors.

  1. Domino rhodium/palladium-catalyzed dehydrogenation reactions of alcohols to acids by hydrogen transfer to inactivated alkenes.

    PubMed

    Trincado, Mónica; Grützmacher, Hansjörg; Vizza, Francesco; Bianchini, Claudio

    2010-03-01

    The combination of the d(8) Rh(I) diolefin amide [Rh(trop(2)N)(PPh(3))] (trop(2)N=bis(5-H-dibenzo[a,d]cyclohepten-5-yl)amide) and a palladium heterogeneous catalyst results in the formation of a superior catalyst system for the dehydrogenative coupling of alcohols. The overall process represents a mild and direct method for the synthesis of aromatic and heteroaromatic carboxylic acids for which inactivated olefins can be used as hydrogen acceptors. Allyl alcohols are also applicable to this coupling reaction and provide the corresponding saturated aliphatic carboxylic acids. This transformation has been found to be very efficient in the presence of silica-supported palladium nanoparticles. The dehydrogenation of benzyl alcohol by the rhodium amide, [Rh]N, follows the well established mechanism of metal-ligand bifunctional catalysis. The resulting amino hydride complex, [RhH]NH, transfers a H(2) molecule to the Pd nanoparticles, which, in turn, deliver hydrogen to the inactivated alkene. Thus a domino catalytic reaction is developed which promotes the reaction R-CH(2)-OH+NaOH+2 alkene-->R-COONa+2 alkane.

  2. Selective surface reactions of single crystal metal carbides: alkene production from short chain alcohols on titanium carbide and vanadium carbide

    NASA Astrophysics Data System (ADS)

    Guenard, Rebecca L.; Fernández-Torres, Luis C.; Kim, Byung-Il; Perry, Scott S.; Frantz, Peter; Didziulis, Stephen V.

    2002-08-01

    The adsorption and reaction of ethanol and 2-propanol on the (1 0 0) surface of single crystal vanadium carbide (VC) and titanium carbide (TiC) have been studied using temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy. A mixture of molecular and dissociative adsorption is observed at cryogenic temperatures on both of the carbide surfaces. Dissociative adsorption of the short chain alcohols leads to the formation of an alkoxy intermediate at 153 K on both VC(1 0 0) and TiC(1 0 0). With increasing temperature, the alkoxy intermediate selectively reacts with the carbide surfaces to produce an alkene. A comparison of TPD intensities indicates that dissociative adsorption occurs to a greater extent on TiC; however, the reaction yield for dehydration of the alkoxy surface species is ˜20% greater on VC(1 0 0) as compared to TiC(1 0 0). Specific isotopic labeling studies of the ethanol reaction identify γ-hydride elimination as a key step in alkene formation on VC(1 0 0). This pattern of reactivity on metal carbide surfaces significantly differs from the decomposition reactions, producing carbon monoxide and hydrogen, or the β-hydride elimination reactions, producing an aldehyde and hydrogen, that are observed on most transition metal surfaces.

  3. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction.

    PubMed

    Liu, Qian; Wu, Kaiyue; Cheng, Yongbo; Lu, Lei; Xiao, Erting; Zhang, Yuchen; Deng, Zixin; Liu, Tiangang

    2015-03-01

    Alkanes and alkenes are ideal biofuels, due to their high energy content and ability to be safely transported. To date, fatty acid-derived pathways for alkane and alkene bioproduction have been thoroughly explored. In this study, we engineered the pathway of the iterative Type I polyketide synthase (PKS) SgcE with the cognate thioesterase (TE) SgcE10 in Escherichia coli, with the goal of overproducing pentadecaheptaene (PDH) followed by its hydrogenation to pentadecane (PD). Based on initial in vitro titration assays, we learned that PDH production is strongly dependent on the SgcE10:SgcE ratio. Thus, we engineered a high-yield E. coli strain by fine-tuning SgcE10 expression via synthetic promoters. We analyzed engineered E. coli strains using a modified multiple reactions monitoring mass spectrometry (MRM-MS)-based targeted proteomic approach, using a chimeric SgcE10 and SgcE fusion construct to gain insight into expression levels of the two proteins. Lastly, through fed-batch fermentation followed by flow chemical hydrogenation, we obtained a PD yield of nearly 140mg/L in single-alkane form. Thus, we not only employed a metabolic engineering approach to the iterative polyketide pathway, we highlighted the potential of PKS shunt products to play a role in the production of single-form and high-value chemicals.

  4. Biocatalytic Synthesis of Vanillin

    PubMed Central

    Li, Tao; Rosazza, John P. N.

    2000-01-01

    The conversions of vanillic acid and O-benzylvanillic acid to vanillin were examined by using whole cells and enzyme preparations of Nocardia sp. strain NRRL 5646. With growing cultures, vanillic acid was decarboxylated (69% yield) to guaiacol and reduced (11% yield) to vanillyl alcohol. In resting Nocardia cells in buffer, 4-O-benzylvanillic acid was converted to the corresponding alcohol product without decarboxylation. Purified Nocardia carboxylic acid reductase, an ATP and NADPH-dependent enzyme, quantitatively reduced vanillic acid to vanillin. Structures of metabolites were established by 1H nuclear magnetic resonance and mass spectral analyses. PMID:10653736

  5. THE BIOCATALYTIC DESULFURIZATION PROJECT

    SciTech Connect

    Scott Collins; David Nunn

    2003-10-01

    The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate derivatives of the entire IGTS8 BDS plasmid that will allow for its easy transfer and manipulation into a variety of hosts. To support this activity and to gain an understanding of additional genes that may potentially affect BDS activity, the nucleotide sequence of the entire complement of plasmids in IGTS8 is being determined. Lastly, we continue to develop genetic screens and selections for the discovery and improvement of the biodesulfurization genes and strains.

  6. Oxidation of 1-Tetradecene by Pseudomonas aeruginosa

    PubMed Central

    Markovetz, A. J.; Klug, M. J.; Forney, F. W.

    1967-01-01

    Pseudomonas aeruginosa strain Sol 20 was grown on 1-tetradecene as sole carbon source, and a vinyl-unsaturated 14-carbon monocarboxylic acid, 13-tetradecenoic acid, was identified from culture fluid. This acid was not produced when n-tetradecane served as substrate for growth. Oxidation of the methyl group represents one method of attack on the 1-alkene by this organism. Tentative identification of 2-tetradecanol indicates that an attack on the double bond is also occurring. α, ω-Dienes would not support growth. PMID:4962057

  7. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile.

  8. Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee Intermediate as oligomer chain unit

    NASA Astrophysics Data System (ADS)

    Sadezky, A.; Winterhalter, R.; Kanawati, B.; Römpp, A.; Spengler, B.; Mellouki, A.; Le Bras, G.; Chaimbault, P.; Moortgat, G. K.

    2008-05-01

    An important fraction of secondary organic aerosol (SOA) formed by atmospheric oxidation of diverse volatile organic compounds (VOC) has recently been shown to consist of high-molecular weight oligomeric species. In our previous study (Sadezky et al., 2006), we reported the identification and characterization of oligomers as main constituents of SOA from gas-phase ozonolysis of small enol ethers. These oligomers contained repeated chain units of the same chemical composition as the main Criegee Intermediates (CI) formed during the ozonolysis reaction, which were CH2O2 (mass 46) for alkyl vinyl ethers (AVE) and C2H4O2 (mass 60) for ethyl propenyl ether (EPE). In the present work, we extend our previous study to another enol ether (ethyl butenyl ether EBE) and a variety of structurally related small alkenes (trans-3-hexene, trans-4-octene and 2,3-dimethyl-2-butene). Experiments have been carried out in a 570 l spherical glass reactor at atmospheric conditions in the absence of seed aerosol. SOA formation was measured by a scanning mobility particle sizer (SMPS). SOA filter samples were collected and chemically characterized off-line by ESI(+)/TOF MS and ESI(+)/TOF MS/MS, and elemental compositions were determined by ESI(+)/FTICR MS and ESI(+)/FTICR MS/MS. The results for all investigated unsaturated compounds are in excellent agreement with the observations of our previous study. Analysis of the collected SOA filter samples reveal the presence of oligomeric compounds in the mass range 200 to 800 u as major constituents. The repeated chain units of these oligomers are shown to systematically have the same chemical composition as the respective main Criegee Intermediate (CI) formed during ozonolysis of the unsaturated compounds, which is C3H6O2 (mass 74) for ethyl butenyl ether (EBE), trans-3-hexene, and 2,3-dimethyl-2-butene, and C4H8O2 (mass 88) for trans-4-octene. Analogous fragmentation pathways among the oligomers formed by gas-phase ozonolysis of the different

  9. Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee Intermediate as oligomer chain unit

    NASA Astrophysics Data System (ADS)

    Sadezky, A.; Winterhalter, R.; Kanawati, B.; Römpp, A.; Spengler, B.; Mellouki, A.; Le Bras, G.; Chaimbault, P.; Moortgat, G. K.

    2007-10-01

    An important fraction of secondary organic aerosol (SOA) formed by atmospheric oxidation of diverse volatile organic compounds (VOC) has recently been shown to consist of high-molecular weight oligomeric species. In our previous study (Sadezky et al., 2006), we reported the identification and characterization of oligomers as main constituents of SOA from gas-phase ozonolysis of small enol ethers. These oligomers contained repeated chain units of the same chemical composition as the main Criegee Intermediates (CI) formed during the ozonolysis reaction, which were CH2O2 (mass 46) for alkyl vinyl ethers (AVE) and C2H4O2 (mass 60) for ethyl propenyl ether (EPE). In the present work, we extend our previous study (Sadezky et al., 2006) to another enol ether (ethyl butenyl ether EBE) and a variety of structurally related small alkenes (trans-3-hexene, trans-4-octene and 2,3-dimethyl-2-butene). Experiments have been carried out in a 570 l spherical glass reactor at atmospheric conditions in the absence of seed aerosol. SOA formation was measured by a scanning mobility particle sizer (SMPS). SOA filter samples were collected and chemically characterized off-line by ESI(+)/MS-TOF and ESI(+)/MS/MS-TOF, and elemental compositions were confirmed by ESI(+)/MS/MS-FTICR. The results for all investigated unsaturated compounds are in excellent agreement with the observations of our previous study (Sadezky et al., 2006). Analysis of the collected SOA filter samples reveal the presence of oligomeric compounds in the mass range 200 to 800 u as major constituents. The repeated chain units of these oligomers are shown to systematically have the same chemical composition as the respective main Criegee Intermediate (CI) formed during ozonolysis of the unsaturated compounds, which is C3H6O2 (mass 74) for ethyl butenyl ether (EBE), trans-3-hexene, and 2,3-dimethyl-2-butene, and C4H8O2 (mass 88) for trans-4-octene. Analogous fragmentation pathways among the oligomers formed by gas

  10. Parallel Synthesis and Biocatalytic Amplification of Marine-Inspired Libraries: An Integrated Approach Toward Discovering New Chemotherapeutics

    DTIC Science & Technology

    2007-09-01

    m (Cyt-m). We chose to study the oxidation of camphor to hydroxycamphor (Scheme 1) because it is the natural reaction for P450cam and there was...only one known reaction product. 10 O O HO camphor 5-exo-hydroxycamphor Scheme 1. The hydroxylation of camphor by P450cam, producing...phases, and 250 rpm. The oxidation of camphor to hydroxycamphor is 100% coupled with NADH oxidation, allowing for a direct correlation of NADH

  11. Controllable stereoselective synthesis of trisubstituted alkenes by a catalytic three-component reaction of terminal alkynes, benzylic alcohols, and simple arenes.

    PubMed

    Li, Hai-Hua; Jin, Yin-Huan; Wang, Jie-Qi; Tian, Shi-Kai

    2009-08-21

    The acid-catalyzed three-component reaction of terminal alkynes, benzylic alcohols, and simple arenes provides convenient and atom-economic access to an array of both Z- and E-isomers of trisubstituted alkenes with excellent stereoselectivity by switching reaction temperature and acidic catalysts.

  12. 1,4-Hydroiodination of dienyl alcohols with TMSI to form homoallylic alcohols containing a multisubstituted Z-alkene and application to Prins cyclization.

    PubMed

    Xu, Yongjin; Yin, Zhiping; Lin, Xinglong; Gan, Zubao; He, Yanyang; Gao, Lu; Song, Zhenlei

    2015-04-17

    A regioselective 1,4-hydroiodination of dienyl alcohols has been developed using trimethylsilyl iodide as Lewis acid and iodide source. A range of homoallylic alcohols containing a multisubstituted Z-alkene was synthesized with good to excellent configurational control. The approach was applied in sequential hydroiodination/Prins cyclization to afford multisubstituted tetrahydropyrans diastereoselectively.

  13. Cobalt(II)-catalyzed 1,4-addition of organoboronic acids to activated alkenes: an application to highly cis-stereoselective synthesis of aminoindane carboxylic acid derivatives.

    PubMed

    Chen, Min-Hsien; Mannathan, Subramaniyan; Lin, Pao-Shun; Cheng, Chien-Hong

    2012-11-19

    It all adds up: The 1,4-addition of organoboronic acids to activated alkenes catalyzed by [Co(dppe)Cl(2)] is described. A [3+2]-annulation reaction of ortho-iminoarylboronic acids with acrylates to give various aminoindane carboxylic acid derivatives with cis-stereoselectivity is also demonstrated (see scheme; dppe = 1,2-bis(diphenylphosphino)ethane).

  14. Phosphine-catalyzed [3+2] cycloaddition reactions of azomethine imines with electron-deficient alkenes: a facile access to dinitrogen-fused heterocycles.

    PubMed

    Li, Zhen; Yu, Hao; Liu, Honglei; Zhang, Lei; Jiang, Hui; Wang, Bo; Guo, Hongchao

    2014-02-03

    An efficient method for the phosphine-catalyzed [3+2] cycloaddition reaction of azomethine imines with diphenylsulfonyl alkenes to give dinitrogen-fused bi- or tricyclic heterocyclic compounds in high yields has been described. Moreover, two phenylsulfonyl groups installed on the heterocyclic products could be conveniently removed or transformed to other functional groups, making the reaction more useful.

  15. Regioselective Synthesis of a Stereodefined Heterocyclic Push-Pull Alkene (Super 1)H NMR Studies and Two-Dimensional TLC Illustrating Z/E Isomerization

    ERIC Educational Resources Information Center

    Markovic, Rade; Baranac, Marija; Jovanovic, Vesna; Dzambaski, Zdravko

    2004-01-01

    The experiment describes the regioselective synthesis of a stereodefined push-pull alkene from inexpensive chemicals. Important concepts in organic chemistry, such as resonance theory and role of solvent polarity on formation of intra- and intermolecular hydrogen bonds, which affect the configuration of the double bond in predictable way are…

  16. Copper(II)-catalyzed direct dioxygenation of alkenes with air and N-hydroxyphthalimide: synthesis of β-keto-N-alkoxyphthalimides.

    PubMed

    Bag, Raghunath; Sar, Dinabandhu; Punniyamurthy, Tharmalingam

    2015-04-17

    Copper(II)-catalyzed direct dioxygenation of alkenes using air and a simple N-hydroxyphthalimide leading to β-keto-N-alkoxyphthalimides has been developed. The reaction system is mild, efficient, and effective at room temperature with broad substrate scope and substantial steric hindrance. The radical-trapping and (18)O-labeling experiments have been demonstrated.

  17. Quantitative determination of triperpene saponins and alkenated-phenolics from Labisia pumila using LC-UV/ELSD method and confirmation by LC-ESI-TOF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study describes the first analytical method for the determination of saponins and alkenated-phenolics from the leaves, leaves/stems and roots of Labisia pumila using a HPLC-UV-ELSD method. The separation was achieved using a reversed phase column, PDA and ELS detection, and a water/acetonitrile...

  18. Quantitative determination of triterpene saponins and alkenated-phenolics from Labisia pumila using LC-UV/ELSD method and confirmation by LC-ESI-TOF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study describes the first analytical method for the determination of saponins and alkenated-phenolics from the leaves, leaves/stems and roots of Labisia pumila using a HPLC-UV-ELSD method. The separation was achieved using a reversed phase column, PDA and ELS detection, and a water/acetonitrile...

  19. Investigations into Chemical Hydrogen Storage and the anti-Markovnikov Hydroamination of Alkenes

    NASA Astrophysics Data System (ADS)

    St. John, Anthony J.

    The known carbon-boron-nitrogen (CBN) material ethylenediamine bisborane (EDBB) has been prepared and tested as a potential hydrogen storage material. Dehydrogenation of EDBB was achieved using the (t BuPOCOP)Ir(H)2 (t BuPOCOP = 2,6-bis(OPtBu2)C 6H3) catalyst. This reaction results in the release of two equivalents of hydrogen per molecule of EDBB. The product of this reaction is an insoluble, likely oligomeric, species. Heating the reaction mixture does not result in the release of additional equivalents of hydrogen. A new CBN material, 1,2-B,N-cyclohexane, was targeted as a potential hydrogen storage material. The enthalpy of dehydrogenation of 1,2-B,N-cyclohexane to 1,2-dihydro-1,2-azaborine was calculated to be 23.5 kcal/mol at 298 K using the B3LYP basis set. Ultimately, our collaborators at the University of Oregon prepared 1,2-B,N-cyclohexane. This molecule is a stable solid and undergoes thermal dehydrogenation of the B-N bond at 150 °C. The dehydrogenation of a variety of cyclic CBN materials was studied with the ( tBuPOCOP)Ir(H)2 catalyst. A number of cobalt-pincer complexes were tested as ammonia borane (AB) dehydrogenation catalysts. (PhPSiNSiP)CoCl (PhPSiNSiP = (N(SiMe2CH2PPh 2)2) was found to be a very active precatalyst for AB dehydrogenation, releasing 1 equivalent of hydrogen at 2.0 mol % catalyst loading within 5 minutes. The product of this reaction was characterized as cyclopentaborazane. The catalyst lifetime is limited and the identity of the active species remains unknown. A novel [(tBuPOCOP)Co] 2Hg complex was synthesized by reaction of (t BuPOCOP)CoI with Na/Hg. This complex was fully characterized by 1H NMR spectroscopy, elemental analysis, and X-ray crystallography. A new catalytic pathway for the anti-Markovnikov hydroamination of alkenes is proposed. The individual steps of this pathway were studied with the [(MTPA)Rh(propene)][BPh 4] (MTPA = tris((6-methyl-2-pyridyl)methyl)amine) complex. Protonation of this complex with anilinium

  20. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells[S

    PubMed Central

    Awada, Manar; Soulage, Christophe O.; Meynier, Anne; Debard, Cyrille; Plaisancié, Pascale; Benoit, Bérengère; Picard, Grégory; Loizon, Emmanuelle; Chauvin, Marie-Agnès; Estienne, Monique; Peretti, Noël; Guichardant, Michel; Lagarde, Michel; Genot, Claude; Michalski, Marie-Caroline

    2012-01-01

    Dietary intake of long-chain n-3 PUFA is now widely advised for public health and in medical practice. However, PUFA are highly prone to oxidation, producing potentially deleterious 4-hydroxy-2-alkenals. Even so, the impact of consuming oxidized n-3 PUFA on metabolic oxidative stress and inflammation is poorly described. We therefore studied such effects and hypothesized the involvement of the intestinal absorption of 4-hydroxy-2-hexenal (4-HHE), an oxidized n-3 PUFA end-product. In vivo, four groups of mice were fed for 8 weeks high-fat diets containing moderately oxidized or unoxidized n-3 PUFA. Other mice were orally administered 4-HHE and euthanized postprandially versus baseline mice. In vitro, human intestinal Caco-2/TC7 cells were incubated with 4-hydroxy-2-alkenals. Oxidized diets increased 4-HHE plasma levels in mice (up to 5-fold, P < 0.01) compared with unoxidized diets. Oxidized diets enhanced plasma inflammatory markers and activation of nuclear factor kappaB (NF-κB) in the small intestine along with decreasing Paneth cell number (up to −19% in the duodenum). Both in vivo and in vitro, intestinal absorption of 4-HHE was associated with formation of 4-HHE-protein adducts and increased expression of glutathione peroxidase 2 (GPx2) and glucose-regulated protein 78 (GRP78). Consumption of oxidized n-3 PUFA results in 4-HHE accumulation in blood after its intestinal absorption and triggers oxidative stress and inflammation in the upper intestine. PMID:22865918

  1. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells.

    PubMed

    Awada, Manar; Soulage, Christophe O; Meynier, Anne; Debard, Cyrille; Plaisancié, Pascale; Benoit, Bérengère; Picard, Grégory; Loizon, Emmanuelle; Chauvin, Marie-Agnès; Estienne, Monique; Peretti, Noël; Guichardant, Michel; Lagarde, Michel; Genot, Claude; Michalski, Marie-Caroline

    2012-10-01

    Dietary intake of long-chain n-3 PUFA is now widely advised for public health and in medical practice. However, PUFA are highly prone to oxidation, producing potentially deleterious 4-hydroxy-2-alkenals. Even so, the impact of consuming oxidized n-3 PUFA on metabolic oxidative stress and inflammation is poorly described. We therefore studied such effects and hypothesized the involvement of the intestinal absorption of 4-hydroxy-2-hexenal (4-HHE), an oxidized n-3 PUFA end-product. In vivo, four groups of mice were fed for 8 weeks high-fat diets containing moderately oxidized or unoxidized n-3 PUFA. Other mice were orally administered 4-HHE and euthanized postprandially versus baseline mice. In vitro, human intestinal Caco-2/TC7 cells were incubated with 4-hydroxy-2-alkenals. Oxidized diets increased 4-HHE plasma levels in mice (up to 5-fold, P < 0.01) compared with unoxidized diets. Oxidized diets enhanced plasma inflammatory markers and activation of nuclear factor kappaB (NF-κB) in the small intestine along with decreasing Paneth cell number (up to -19% in the duodenum). Both in vivo and in vitro, intestinal absorption of 4-HHE was associated with formation of 4-HHE-protein adducts and increased expression of glutathione peroxidase 2 (GPx2) and glucose-regulated protein 78 (GRP78). Consumption of oxidized n-3 PUFA results in 4-HHE accumulation in blood after its intestinal absorption and triggers oxidative stress and inflammation in the upper intestine.

  2. Encapsulated Laccases for the Room-Temperature Oxidation of Aromatics: Towards Synthetic Low-Molecular-Weight Lignins.

    PubMed

    Pistone, Lucia; Ottolina, Gianluca; De, Sudipta; Romero, Antonio A; Martins, Lígia O; Luque, Rafael

    2016-04-07

    A new approach for the encapsulation of laccases with enhanced activity and stability by biomimetic silica mineralisation is reported. A range of lignin model compounds, which includes syringol, syringyl acid, 4-vinylphenol, gallic acid, vanillic acid and guaiacol, was oxidised to lignin-type polymers by the silica-immobilised laccase systems at room temperature. The oxidation rate of the immobilised systems was lower than that of the free enzyme counterparts, but interesting products were observed with the new bio-catalytic materials, which showed reusability and good stability.

  3. Copper-catalysed cyanoalkylative cycloetherification of alkenes to 1,3-dihydroisobenzofurans: development and application to the synthesis of citalopram.

    PubMed

    Ha, Tu M; Wang, Qian; Zhu, Jieping

    2016-09-25

    A copper-catalysed cyanoalkylative cycloetherification of alkenes was developed. Heating a solution of substituted (2-vinylphenyl)methanol in MeCN/MeOH (v/v 7/3) in the presence of a catalytic amount of copper(ii) tetrafluoroborate hydrate [Cu(BF4)2·6H2O], bathophenanthroline, K3PO4, BnOH and (tBuO)2 afforded 1,3-dihydroisobenzofurans (phthalanes) via formation of one C(sp(3))-C(sp(3)) and one C(sp(3))-O bonds. A concise synthesis of citalopram, a marketed anti-depressant drug, was accomplished by applying this novel synthetic transformation.

  4. Mechanism, reactivity, and regioselectivity in rhodium-catalyzed asymmetric ring-opening reactions of oxabicyclic alkenes: a DFT Investigation

    PubMed Central

    Qi, Zheng-Hang; Zhang, Yi; Gao, Yun; Zhang, Ye; Wang, Xing-Wang; Wang, Yong

    2017-01-01

    The origin of the enantio- and regioselectivity of ring-opening reaction of oxabicyclic alkenes catalyzed by rhodium/Josiphos has been examined using M06-2X density functional theory(DFT). DFT calculations predict a 98% ee for the enantioselectivity and only the 1,2-trans product as one regio- and diastereomer, in excellent agreement with experimental results. The solvent tetrahydrofuran(THF) plays a key role in assisting nucleophilic attack. Orbital composition analysis of the LUMO and the NPA atomic charge calculations were conducted to probe the origins of the regioselectivity. The orbital composition analysis reveals two potential electrophilic sites of the Rh–π-allyl intermediate M3 and the NPA atomic charges demonstrate that Cα carries more positive charges than Cγ, which suggests that Cα is the electrophilic site. PMID:28074930

  5. Asymmetric epoxidation of unfunctionalized alkenes catalyzed by sugar moiety-modified chiral salen-Mn(III) complexes.

    PubMed

    Zhao, Jiquan; Zhang, Yuecheng; Han, Furong; Zhao, Shanshan

    2009-01-05

    Several chiral Schiff-base ligands with sugar moieties at C-3 (3') or C-5 (5') of salicylaldehyde were synthesized from reaction of salicylaldehyde derivatives with diamine. These ligands coordinated with Mn(III) to afford the corresponding chiral salen-Mn(III) complexes characterized by FT-IR, MS, and elementary analysis. These complexes were used as catalysts for the asymmetric epoxidation of unfunctionalized alkenes. Only weak enantioselectivity is induced by the chiral sugar moieties at C-3 (3') or C-5 (5') in the case of absence of chirality in the diimine bridge moiety. It was also shown that the sugars at C-5 (5') having the same rotation direction of polarized light as the diimine bridge in the catalyst could enhance the chiral induction in the asymmetric epoxidation, but the sugars with the opposite rotation direction would reduce the chiral induction.

  6. Bis(imino)pyridine cobalt-catalyzed alkene isomerization-hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity.

    PubMed

    Obligacion, Jennifer V; Chirik, Paul J

    2013-12-26

    Bis(imino)pyridine cobalt methyl complexes are active for the catalytic hydroboration of terminal, geminal, disubstituted internal, tri- and tetrasubstituted alkenes using pinacolborane (HBPin). The most active cobalt catalyst was obtained by introducing a pyrrolidinyl substituent into the 4-position of the bis(imino)pyridine chelate, enabling the facile hydroboration of sterically hindered substrates such as 1-methylcyclohexene, α-pinene, and 2,3-dimethyl-2-butene. Notably, these hydroboration reactions proceed with high activity and anti-Markovnikov selectivity in neat substrates at 23 °C. With internal olefins, the cobalt catalyst places the boron substituent exclusively at the terminal positions of an alkyl chain, providing a convenient method for hydrofunctionalization of remote C-H bonds.

  7. Catalytic Friedel-Crafts C-H Borylation of Electron-Rich Arenes: Dramatic Rate Acceleration by Added Alkenes.

    PubMed

    Yin, Qin; Klare, Hendrik F T; Oestreich, Martin

    2017-03-20

    In the electrophilic C-H borylation of electron-rich aromatic compounds with catecholborane, the catalytic generation of the boron electrophile is initiated by heterolysis of the B-H bond by various Lewis and Brønsted acids, with a boronium ion formed exclusively. After ligand dissociation, the corresponding borenium ion undergoes regioselective electrophilic aromatic substitution on aniline derivatives as well as nitrogen-containing heterocycles. The catalysis is optimized using B(C6 F5 )3 as the initiator and proceeds without the addition of an external base or dihydrogen acceptor. Temperatures above 80 °C are generally required to secure efficient turnover in these Friedel-Crafts-type reactions. Mechanistic experiments reveal that regeneration of the boronium/borenium ion with dihydrogen release is rate-determining. This finding finally led to the discovery that, with added alkenes, catalytic C-H borylations can, for the first time, be carried out at room temperature.

  8. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide.

    PubMed

    Kuwata, Keith T; Hermes, Matthew R; Carlson, Matthew J; Zogg, Cheryl K

    2010-09-02

    Alkene ozonolysis is a major source of hydroxyl radical (*OH), the most important oxidant in the troposphere. Previous experimental and computational work suggests that for many alkenes the measured *OH yields should be attributed to the combined impact of both chemically activated and thermalized syn-alkyl Criegee intermediates (CIs), even though the thermalized CI should be susceptible to trapping by molecules such as water. We have used RRKM/master equation and variational transition state theory calculations to quantify the competition between unimolecular isomerization and bimolecular hydration reactions for the syn and anti acetaldehyde oxide formed in trans-2-butene ozonolysis and for the CIs formed in isoprene ozonolysis possessing syn-methyl groups. Statistical rate theory calculations were based on quantum chemical data provided by the B3LYP, QCISD, and multicoefficient G3 methods, and thermal rate constants were corrected for tunneling effects using the Eckart method. At tropospheric temperatures and pressures, all thermalized CIs with syn-methyl groups are predicted to undergo 1,4-hydrogen shifts from 2 to 8 orders of magnitude faster than they react with water monomer at its saturation number density. For thermalized anti acetaldehyde oxide, the rates of dioxirane formation and hydration should be comparable.

  9. Immobilization of the α-amylase of Bacillus amyloliquifaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance.

    PubMed

    Kikani, B A; Pandey, S; Singh, S P

    2013-05-01

    The α-amylase of Bacillus amyloliquifaciens TSWK1-1 (GenBank Number, GQ121033) was immobilized by various methods, including ionic binding with DEAE cellulose, covalent coupling with gelatin and entrapment in polyacrylamide and agar. The immobilization of the purified enzyme was most effective with the DEAE cellulose followed by gelatin, agar and polyacrylamide. The K m increased, while V max decreased upon immobilization on various supports. The temperature and pH profiles broadened, while thermostability and pH stability enhanced after immobilization. The immobilized enzyme exhibited greater activity in various non-ionic surfactants, such as Tween-20, Tween-80 and Triton X-100 and ionic surfactant, SDS. Similarly, the enhanced stability of the immobilized α-amylase in various organic solvents was among the attractive features of the study. The reusability of the immobilized enzyme in terms of operational stability was assessed. The DEAE cellulose immobilized α-amylase retained its initial activity even after 20 consequent cycles. The DEAE cellulose immobilized enzyme hydrolyzed starch with 27 % of efficiency. In summary, the immobilization of B. amyloliquifaciens TSWK1-1 α-amylase with DEAE cellulose appeared most suitable for the improved biocatalytic properties and stability.

  10. Biocatalytic Synthesis of Flavor Ester “Pentyl Valerate” Using Candida rugosa Lipase Immobilized in Microemulsion Based Organogels: Effect of Parameters and Reusability

    PubMed Central

    Raghavendra, Tripti; Panchal, Nilam; Divecha, Jyoti; Shah, Amita; Madamwar, Datta

    2014-01-01

    Pentyl valerate was synthesized biocatalytically using Candida rugosa lipase (CRL) immobilized in microemulsion based organogels (MBGs). The optimum conditions were found to be pH 7.0, temperature of 37°C, ratio of concentration of water to surfactant (Wo) of 60, and the surfactant sodium bis-2-(ethylhexyl)sulfosuccinate (AOT) for MBG preparation. Although kinetic studies revealed that the enzyme in free form had high affinity towards substrates (Km = 23.2 mM for pentanol and 76.92 mM for valeric acid) whereas, after immobilization, the Km values increased considerably (74.07 mM for pentanol and 83.3 mM for valeric acid) resulting in a slower reaction rate, the maximum conversion was much higher in case of immobilized enzyme (~99%) as compared to free enzyme (~19%). Simultaneous effects of important parameters were studied using response surface methodology (RSM) conjugated with Box-Behnken design (BBD) with five variables (process parameters), namely, enzyme concentration, initial water content (Wo), solvent used for MBG preparation, substrate ratio and time, and response as the final product formation, that is, pentyl valerate (%). The MBGs were reused for 10 consecutive cycles for ester synthesis. Efficacy of AOT/isooctane as dehydrating agent for extracting excess water from MBGs was found to exert a positive effect on the esterification reaction. PMID:25093166

  11. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    PubMed Central

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-01-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol. PMID:27185089

  12. Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode.

    PubMed

    Zhao, Wei-Wei; Ma, Zheng-Yuan; Yu, Pei-Pei; Dong, Xiao-Ya; Xu, Jing-Juan; Chen, Hong-Yuan

    2012-01-17

    Herein we demonstrate the protocol of a biocatalytic precipitation (BCP)-based sandwich photoelectrochemical (PEC) horseradish peroxidase (HRP)-linked immunoassay on the basis of their synergy effect for the ultrasensitive detection of mouse IgG (antigen, Ag) as a model protein. The hybrid film consisting of oppositely charged polyelectrolytes and CdS quantum dots (QDs) is developed by the classic layer by layer (LbL) method and then employed as the photoactive antibody (Ab) immobilization matrix for the subsequent sandwich-type Ab-Ag affinity interactions. Improved sensitivity is achieved through using the bioconjugates of HRP-secondary antibodies (Ab(2)). In addition to the much enhanced steric hindrance compared with the original one, the presence of HRP would further stimulate the BCP onto the electrode surface for signal amplification, concomitant to a competitive nonproductive absorption that lowers the photocurrent intensity. As a result of the multisignal amplification in this HRP catalyzed BCP-based PEC immunoassay, it possesses excellent analytical performance. The antigen could be detected from 0.5 pg/mL to 5.0 ng/mL with a detection limit of 0.5 pg/mL.

  13. Biocatalytic behaviour of immobilized Rhizopus oryzae lipase in the 1,3-selective ethanolysis of sunflower oil to obtain a biofuel similar to biodiesel.

    PubMed

    Luna, Carlos; Verdugo, Cristóbal; Sancho, Enrique D; Luna, Diego; Calero, Juan; Posadillo, Alejandro; Bautista, Felipa M; Romero, Antonio A

    2014-08-04

    A new biofuel similar to biodiesel was obtained in the 1,3-selective transesterification reaction of sunflower oil with ethanol using as biocatalyst a Rhizopus oryzae lipase (ROL) immobilized on Sepiolite, an inorganic support. The studied lipase was a low cost powdered enzyme preparation, Biolipase-R, from Biocon-Spain, a multipurpose additive used in food industry. In this respect, it is developed a study to optimize the immobilization procedure of these lipases on Sepiolite. Covalent immobilization was achieved by the development of an inorganic-organic hybrid linker formed by a functionalized hydrocarbon chain with a pendant benzaldehyde, bonded to the AlPO4 support surface. Thus, the covalent immobilization of lipases on amorphous AlPO4/sepiolite (20/80 wt %) support was evaluated by using two different linkers (p-hydroxybenzaldehyde and benzylamine-terephthalic aldehyde, respectively). Besides, the catalytic behavior of lipases after physical adsorption on the demineralized sepiolite  was also evaluated. Obtained results indicated that covalent immobilization with the p-hydroxybenzaldehyde linker gave the best biocatalytic behavior. Thus, this covalently immobilized lipase showed a remarkable stability as well as an excellent capacity of reutilization (more than five successive reuses) without a significant loss of its initial catalytic activity. This could allow a more efficient fabrication of biodiesel minimizing the glycerol waste production.

  14. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    NASA Astrophysics Data System (ADS)

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-05-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.

  15. Biocatalytic synthesis of flavor ester "pentyl valerate" using Candida rugosa lipase immobilized in microemulsion based organogels: effect of parameters and reusability.

    PubMed

    Raghavendra, Tripti; Panchal, Nilam; Divecha, Jyoti; Shah, Amita; Madamwar, Datta

    2014-01-01

    Pentyl valerate was synthesized biocatalytically using Candida rugosa lipase (CRL) immobilized in microemulsion based organogels (MBGs). The optimum conditions were found to be pH 7.0, temperature of 37 °C, ratio of concentration of water to surfactant (Wo) of 60, and the surfactant sodium bis-2-(ethylhexyl)sulfosuccinate (AOT) for MBG preparation. Although kinetic studies revealed that the enzyme in free form had high affinity towards substrates (K(m) = 23.2 mM for pentanol and 76.92 mM for valeric acid) whereas, after immobilization, the K(m) values increased considerably (74.07 mM for pentanol and 83.3 mM for valeric acid) resulting in a slower reaction rate, the maximum conversion was much higher in case of immobilized enzyme (~99%) as compared to free enzyme (~19%). Simultaneous effects of important parameters were studied using response surface methodology (RSM) conjugated with Box-Behnken design (BBD) with five variables (process parameters), namely, enzyme concentration, initial water content (Wo), solvent used for MBG preparation, substrate ratio and time, and response as the final product formation, that is, pentyl valerate (%). The MBGs were reused for 10 consecutive cycles for ester synthesis. Efficacy of AOT/isooctane as dehydrating agent for extracting excess water from MBGs was found to exert a positive effect on the esterification reaction.

  16. Understanding the plasticity of the alpha/beta hydrolase fold: lid swapping on the Candida antarctica lipase B results in chimeras with interesting biocatalytic properties.

    PubMed

    Skjøt, Michael; De Maria, Leonardo; Chatterjee, Robin; Svendsen, Allan; Patkar, Shamkant A; Ostergaard, Peter R; Brask, Jesper

    2009-02-13

    The best of both worlds. Long molecular dynamics (MD) simulations of Candida antarctica lipase B (CALB) confirmed the function of helix alpha5 as a lid structure. Replacement of the helix with corresponding lid regions from CALB homologues from Neurospora crassa and Gibberella zeae resulted in new CALB chimeras with novel biocatalytic properties. The figure shows a snapshot from the MD simulation. The Candida antarctica lipase B (CALB) has found very extensive use in biocatalysis reactions. Long molecular dynamics simulations of CALB in explicit aqueous solvent confirmed the high mobility of the regions lining the channel that leads into the active site, in particular, of helices alpha5 and alpha10. The simulation also confirmed the function of helix alpha5 as a lid of the lipase. Replacing it with corresponding lid regions from the CALB homologues from Neurospora crassa and Gibberella zeae resulted in two new CALB mutants. Characterization of these revealed several interesting properties, including increased hydrolytic activity on simple esters, specifically substrates with C(alpha) branching on the carboxylic side, and much increased enantioselectivity in hydrolysis of racemic ethyl 2-phenylpropanoate (E>50), which is a common structure of the profen drug family.

  17. An anomalous hydration/dehydration sequence for the mild generation of a nitrile oxide.

    PubMed

    Nishiwaki, Nagatoshi; Kobiro, Kazuya; Kiyoto, Hideyuki; Hirao, Shotaro; Sawayama, Jun; Saigo, Kazuhiko; Okajima, Yoshikazu; Uehara, Toshiharu; Maki, Asaka; Ariga, Masahiro

    2011-04-21

    A nitrile oxide containing a carbamoyl group is readily generated upon the treatment of 2-methyl-4-nitro-3-isoxazolin-5(2H)-one with water under mild reaction conditions, even in the absence of special reagents. The obtained nitrile oxide undergoes cycloaddition with dipolarophiles, alkynes and alkenes, to afford the corresponding isoxazol(in)es, which are useful intermediates in the synthesis of polyfunctionalized compounds. A plausible mechanism underlying the formation of the nitrile oxide is proposed, which involves an anomalous hydration/dehydration sequence. DFT calculations were also performed to support this mechanism.

  18. Simplifying Nickel(0) Catalysis: An Air-stable, COD-free Nickel Precatalyst for the Internally-selective Benzylation of Terminal Alkenes

    PubMed Central

    Standley, Eric A.; Jamison, Timothy F.

    2013-01-01

    The synthesis and characterization of the air-stable nickel(II) complex trans-(PCy2Ph)2Ni(o-tolyl)Cl is described in conjunction with an investigation of its use for Mizoroki Heck-type, room temperature, internally-selective coupling of substituted benzyl chlorides with terminal alkenes. This reaction, which employs a terminal alkene as an alkenylmetal equivalent, provides rapid, convergent access to substituted allylbenzene derivatives in high yield and with regioselectivity greater than 95:5 in nearly all cases. The reaction is operationally simple, can be carried out on the bench-top with no purification or degassing of solvents or reagents, and requires no exclusion of air or water during setup. Synthesis of the precatalyst is accomplished through a straightforward procedure that employs inexpensive, commercially available reagents, requires no purification steps, and proceeds in high yield. PMID:23316879

  19. The role of minerals in the thermal alteration of organic matter. IV - Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments

    NASA Technical Reports Server (NTRS)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, Isaac R.

    1987-01-01

    The effect of common sedimentary minerals (illite, Na-montmorillonite, or calcite) under different water concentrations on the generation and release of n-alkanes, acyclic isoprenoids, and select alkenes from oil-prone kerogens was investigated. Matrices containing Green River Formation kerogen or Monterey Formation kerogen, alone or in the presence of minerals, were heated at 200 or 300 C for periods of up to 1000 hours, and the pyrolysis products were analyzed. The influence of the first two clay minerals was found to be critically dependent on the water content. Under the dry pyrolysis conditions, both minerals significantly reduced alkene formation; the C12+ n-alkanes and acyclic isoprenoids were mostly destroyed by montmorillonite, but underwent only minor alteration with illite. Under hydrous conditions (mineral/water of 2/1), the effects of both minerals were substantially reduced. Calcite had no significant effect on the thermal evolution of the hydrocarbons.

  20. Zn-catalyzed enantio- and diastereoselective formal [4 + 2] cycloaddition involving two electron-deficient partners: asymmetric synthesis of piperidines from 1-azadienes and nitro-alkenes.

    PubMed

    Chu, John C K; Dalton, Derek M; Rovis, Tomislav

    2015-04-08

    We report a catalytic asymmetric synthesis of piperidines through [4 + 2] cycloaddition of 1-azadienes and nitro-alkenes. The reaction uses earth abundant Zn as catalyst and is highly diastereo- and regioselective. A novel BOPA ligand (F-BOPA) confers high reactivity and enantioselectivity in the process. The presence of ortho substitution on the arenes adjacent to the bis(oxazolines) was found to be particularly impactful, due to limiting the undesired coordination of 1-azadiene to the Lewis acid and thus allowing the reaction to be carried out at lower temperature. A series of secondary kinetic isotope effect studies using a range of ligands implicates a stepwise mechanism for the transformation, involving an initial Michael-type addition of the imine to the nitro-alkene followed by a cyclization event. The stepwise mechanism obviates the electronic requirement inherent to a concerted mechanism, explaining the successful cycloaddition between two electron-deficient partners.

  1. The role of minerals in the thermal alteration of organic matter. IV - Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, Isaac R.

    1987-05-01

    The effect of common sedimentary minerals (illite, Na-montmorillonite, or calcite) under different water concentrations on the generation and release of n-alkanes, acyclic isoprenoids, and select alkenes from oil-prone kerogens was investigated. Matrices containing Green River Formation kerogen or Monterey Formation kerogen, alone or in the presence of minerals, were heated at 200 or 300 C for periods of up to 1000 hours, and the pyrolysis products were analyzed. The influence of the first two clay minerals was found to be critically dependent on the water content. Under the dry pyrolysis conditions, both minerals significantly reduced alkene formation; the C12+ n-alkanes and acyclic isoprenoids were mostly destroyed by montmorillonite, but underwent only minor alteration with illite. Under hydrous conditions (mineral/water of 2/1), the effects of both minerals were substantially reduced. Calcite had no significant effect on the thermal evolution of the hydrocarbons.

  2. Parallel Synthesis and Biocatalytic Amplification of Marine-Inspired Libraries: An Integrated Approach Toward Discovering New Chemotherapeutics

    DTIC Science & Technology

    2005-09-01

    suspended in hexane. The activity of P450cam toward the oxidation of camphor was assayed for both systems. The formation of the product, hydroxycamphor...was monitored using gas chromatography for reactions containing varying amounts of camphor . Results from experiments in surfactant- stabilized...cofactor, NADH, near- 5 complete conversion of camphor into hydroxycamphor was achieved. The high product yields obtained with P450cam in two-phase

  3. Construction of a visible light-driven hydrocarboxylation cycle of alkenes by the combined use of Rh(i) and photoredox catalysts.

    PubMed

    Murata, Kei; Numasawa, Nobutsugu; Shimomaki, Katsuya; Takaya, Jun; Iwasawa, Nobuharu

    2017-03-09

    A visible light driven catalytic cycle for hydrocarboxylation of alkenes with CO2 was established using a combination of a Rh(i) complex as a carboxylation catalyst and [Ru(bpy)3](2+) (bpy = 2,2'- bipyridyl) as a photoredox catalyst. Two key steps, the generation of Rh(i) hydride species and nucleophilic addition of π-benzyl Rh(i) species to CO2, were found to be mediated by light.

  4. Atom-economical chemoselective synthesis of 1,4-enynes from terminal alkenes and propargylic alcohols catalyzed by Cu(OTf)2.

    PubMed

    Huang, Guo-Bao; Wang, Xu; Pan, Ying-Ming; Wang, Heng-Shan; Yao, Gui-Yang; Zhang, Ye

    2013-03-15

    A novel and efficient Cu(OTf)2-catalyzed sp(3)-sp(2) C-C bond formation reaction through the direct coupling of propargylic alcohols with terminal alkenes has been realized under mild conditions. The reaction is tolerant to air and is atom-economical, in accordance with the concept of modern green chemistry. The present protocol provides an attractive approach to a diverse range of 1,4-enynes in high to excellent yields.

  5. Base-promoted synthesis of coumarins from salicylaldehydes and aryl-substituted 1,1-dibromo-1-alkenes under transition-metal-free conditions.

    PubMed

    Liu, Jianming; Zhang, Xin; Shi, Lijun; Liu, Muwen; Yue, Yuanyuan; Li, Fuwei; Zhuo, Kelei

    2014-09-07

    Facile synthesis of coumarin via the tandem reaction of salicylaldehyde with aryl-substituted 1,1-dibromo-1-alkene was developed. This new protocol proceeds smoothly under mild and transition-metal-free conditions, it allows rapid access to coumarins containing various heteroatoms that are more difficult to prepare by traditional methods. Based on the isolated intermediate of 4-(diethylamino)-3-phenylchroman-2-one and detailed mechanistic studies, a credible tandem pathway was proposed.

  6. Molecular weight growth in Titan's atmosphere: branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes.

    PubMed

    Kirk, Benjamin B; Savee, John D; Trevitt, Adam J; Osborn, David L; Wilson, Kevin R

    2015-08-28

    The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.

  7. Brønsted acid catalyzed phosphoramidic acid additions to alkenes: diastereo- and enantioselective halogenative cyclizations for the synthesis of C- and P-chiral phosphoramidates.

    PubMed

    Toda, Yasunori; Pink, Maren; Johnston, Jeffrey N

    2014-10-22

    The first highly diastereo- and enantioselective additions of a halogen and phosphoramidic acid to unactivated alkenes have been developed, catalyzed by a chiral Brønsted acid. A unique feature of these additions is the opportunity for stereocontrol at two noncontiguous chiral centers, carbon and phosphorus, leading to cyclic P-chiral phosphoramidates. In addition to their inherent value, the phosphoramidates are precursors to enantioenriched epoxy allylamines.

  8. Modular synthesis of polyene side chain analogues of the potent macrolide antibiotic etnangien by a flexible coupling strategy based on hetero-bis-metallated alkenes.

    PubMed

    Altendorfer, Mario; Raja, Aruna; Sasse, Florenz; Irschik, Herbert; Menche, Dirk

    2013-04-07

    An efficient procedure for the concise synthesis of hetero-bis-metallated alkenes as useful building blocks for the modular access to highly elaborate polyenes and stabilized analogues is reported. By applying these bifunctional olefins in convergent Stille/Suzuki-Miyaura couplings, novel, carefully selected side chain analogues of the potent RNA polymerase inhibitor etnangien were synthesized by a modular late stage coupling strategy and evaluated for antibacterial and antiproliferative activities.

  9. Molecular weight growth in Titan's atmosphere: Branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes

    SciTech Connect

    Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.; Osborn, David L.; Wilson, Kevin R.

    2015-07-16

    The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH3 = 73%) and (–H = 14%, –CH3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.

  10. Molecular weight growth in Titan's atmosphere: Branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes

    DOE PAGES

    Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.; ...

    2015-07-16

    The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product from the high-energymore » photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH3 = 73%) and (–H = 14%, –CH3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.« less

  11. Cross metathesis with hydroxamate and benzamide BOC-protected alkenes to access HDAC inhibitors and their biological evaluation highlighted intrinsic activity of BOC-protected dihydroxamates.

    PubMed

    Zwick, Vincent; Nurisso, Alessandra; Simões-Pires, Claudia; Bouchet, Samuel; Martinet, Nadine; Lehotzky, Attila; Ovadi, Judit; Cuendet, Muriel; Blanquart, Christophe; Bertrand, Philippe

    2016-01-01

    Conditions for the metathesis of alkenes in the convergent synthesis of HDAC inhibitors have been improved by continuous catalyst flow injection in the reaction media. Intermediate and target compounds obtained were tested for their ability to induce HDAC inhibition and tubulin acetylation, revealing the key role of the tert-butyloxycarbonyl (BOC) group for more HDAC6 selectivity. Molecular modelling added rationale for this BOC effect.

  12. New insights into the stability of alkenes and alkynes, fluoro-substituted or not: a DFT, G4, QTAIM and GVB study.

    PubMed

    Silva de Freitas, Gutto Raffyson; Firme, Caio Lima

    2013-12-01

    Many undergraduate organic chemistry books do not agree with the order of relative stability of alkenes towards hydrogenation reactions. Although they ascribe the stability of alkenes to the number and spatial position of the alkyl groups attached to the vinyl carbon atoms, results from the quantum theory of atoms in molecules indicate that the influence of an alkyl substituent on the stability of unsaturated hydrocarbons arises from the slight removal of electron density of the π bond, not from donation of their charge density to unsaturated carbon atoms as stated in many text books. There is an inverse relation between delocalization index--the number of shared electrons between two atoms, or Wiberg bond index of C=C bond--and the number of methyl groups attached to the vinyl carbon atoms. Electron withdrawing groups (EWGs) attached to unsaturated carbon atoms of alkenes and alkynes have two different behaviors: slight EWGs (alkyl groups) stabilize unsaturated carbon atoms while the strong EWG destabilizes the unsaturated carbon atoms. Generalized valence bond theory was also used to study the ambiguous behavior of fluorine substituents bonded to vinyl carbon atoms.

  13. Effect of α-Heteroatoms on the Formation of Alkene-Derived Monolayers on H-Si(111): A Combined Experimental and Theoretical Study.

    PubMed

    Gangarapu, Satesh; Pujari, Sidharam P; Alon, Hadas; Rijksen, Bart; Sukenik, Chaim N; Zuilhof, Han

    2015-08-04

    We investigate herein whether the reactivity and surface coverage of 1-alkenes toward hydrogen-terminated Si(111) surfaces [H-Si(111)] can be improved by introducing heteroatoms such as oxygen and sulfur at the α-position next to the alkene functional group. To this end, the reactivity of 1-pentene, 1-pentyne, vinyl ethyl ether, and vinyl ethyl sulfide toward H-Si(111) and the surface coverage of the resulting monolayers were studied and compared. All modified surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), and infrared absorption reflection spectroscopy (IRRAS). Quantum chemical calculations were performed to calculate the activation barriers and driving forces for monolayer formation at the M11-L/6-311G(d,p) level of theory. Both experiments and theory indicate that the presence of α-heteroatoms next to the alkene function improved both the reactivity and surface coverage on H-terminated Si(111) surfaces.

  14. Tandem Silylformylation-Crotylsilylation/Tamao Oxidation of Internal Alkynes: A Remarkable Example of Generating Complexity from Simplicity

    PubMed Central

    Spletstoser, Jared T.; Zacuto, Michael J.; Leighton, James L.

    2009-01-01

    The rhodium-catalyzed tandem silylformylation-crotylsilylation reaction has been extended to include internal alkynes. Tamao oxidation of the initial product leads to the production of a substituted enol, which undergoes highly diastereoselective tautomerization. The resulting one-pot procedure fashions three new stereocenters, a ketone, and a terminal alkene from a butenyl group, a propynyl group, a silyl hydride, H2O2, and CO. PMID:19007175

  15. Solid State, Surface and Catalytic Studies of Oxides

    SciTech Connect

    Kung, H. H.

    2004-11-23

    This project investigates the catalytic properties of oxides for the selective oxidative dehydrogenation of light alkanes and for hydrocarbon reduction of NO{sub x}. Various vanadium oxide based catalysts were investigated to elucidate the relationship between the chemical and structural properties of the catalysts and their selectivity for the formation of alkenes. It was found that vanadium oxide units that are less reducible give higher selectivities. For hydrocarbon reduction of NO{sub x}, it was found that alumina-based catalysts can be effective at higher temperatures than the corresponding zeolite-based catalysts. On some catalysts, such as SnO{sub 2}/Al{sub 2}O{sub 3}. Ag/Al{sub 2}O{sub 3}, the alumina participates directly in the reaction, making the catalyst bifunctional. These results are useful in research to improve the performance of this stress of catalysts.

  16. Copper(I)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes.

    PubMed

    Berrocal, José Augusto; Nieuwenhuizen, Marko M L; Mandolini, Luigi; Meijer, E W; Di Stefano, Stefano

    2014-08-28

    Olefin cross-metathesis of diluted dichloromethane solutions (≤0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The composition of the libraries is strongly dependent on the monomer concentration, but independent of whether C1 or 1 is used as feedstock, as expected for truly equilibrated systems. Accordingly, the limiting value 0.022 M approached by the equilibrium concentration of C1 when the total monomer concentration approaches the critical value, as predicted by the Jacobson-Stockmayer theory, provides a reliable estimate of the thermodynamically effective molarity. Catenand 1 behaves as a virtual component of the dynamic libraries, in that there is no detectable trace of its presence in the equilibrated mixtures, but becomes the major component - in the form of its copper(I) complex - when olefin cross-metathesis is carried out in the presence of a copper(I) salt.

  17. Identification of teratogenic polymethoxy-1-alkenes from Cylindrospermopsis raciborskii, and taxonomically diverse freshwater cyanobacteria and green algae

    PubMed Central

    Jaja-Chimedza, Asha; Saez, Christopher; Sanchez, Kristel; Gantar, Miroslav; Berry, John P.

    2015-01-01

    Cylindrospermopsis raciborskii is among the most commonly recognized toxigenic cyanobacteria associated with harmful algal blooms (HAB) in freshwater systems, and specifically associated with multiple water-soluble toxins. Lipophilic metabolites from C. raciborskii, however, were previously shown to exert teratogenicity (i.e. inhibition of vertebrate development) in the zebrafish (Danio rerio) embryo model, specifically suggesting the presence of additional bioactive compounds unrelated to the currently known toxins. In the present study, a series of known teratogenic polymethoxy-1-alkenes (PMA) were identified, purified and chemically characterized from an otherwise well-characterized strain of toxigenic C. raciborskii. Although PMA have been previously identified in other cyanobacteria, this is the first time they have been identified from this recognized HAB species. Following their identification from C. raciborskii, the taxonomic distribution of the PMA was additionally investigated by chemical screening of a freshwater algal (i.e. cyanobacteria, green algal) culture collection. Screening suggests that these compounds are distributed among phylogenetically diverse taxa. Furthermore, parallel screening of the algal culture collection, using the zebrafish embryo model of teratogenicity, the presence of PMA was found to closely correlate with developmental toxicity of these diverse algal isolates. Taken together, the data suggest PMA contribute to the toxicity of C. raciborskii, as well as apparently several other taxonomically disparate cyanobacterial and green algal genera, and may, accordingly, contribute to the toxicity of diverse freshwater HAB. PMID:26770179

  18. Ab initio study on the kinetics of hydrogen abstraction for the H+alkene-->H2+alkenyl reaction class.

    PubMed

    Huynh, Lam K; Panasewicz, Sylwester; Ratkiewicz, Artur; Truong, Thanh N

    2007-03-22

    Kinetics of the hydrogen abstraction reaction class of the H+alkene has been studied using the reaction class transition state theory (RC-TST) combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. The rate constants for the reference reaction, H+C2H4, were obtained by the canonical variational transition state theory (CVT) with the small curvature tunneling (SCT) correction in the temperature range of 300-3000 K. Combined with these data, both the RC-TST/LER, where only reaction energy is needed, and RC-TST/BHG, where no other information is needed, are found to be promising methods for predicting rate constants for a large number of reactions in this reaction class. Our analysis indicates that less than 50% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method while in comparison to explicit rate calculations the differences are less than 100% or a factor of 2 on the average.

  19. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    SciTech Connect

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  20. Predicting hydrophobic solvation by molecular simulation: 2. New united-atom model for alkanes, alkenes, and alkynes.

    PubMed

    Jorge, Miguel

    2017-03-05

    Existing united-atom models for non-polar hydrocarbons lead to systematic deviations in predicted solvation free energies in hydrophobic solvents. In this article, an improved set of parameters is proposed for alkane molecules that corrects this systematic deviation and accurately predicts solvation free energies in hydrophobic media, while simultaneously providing a very good description of pure liquid densities. The model is then extended to alkenes and alkynes, again yielding very accurate predictions of solvation free energies and densities for these classes of compounds. For alkynes in particular, this work represents the first attempt at a systematic parameterization using the united-atom approach. Averaging over all 95 solute/solvent pairs tested, the mean signed deviation from experimental data is very close to zero, indicating no systematic error in the predictions. The fact that predictions are robust even for relatively large molecules suggests that the new model may be applicable to solvation of non-polar macromolecules without accumulation of errors. The root mean squared deviation of the simulations is only 0.6 kJ/mol, which is lower than the estimated uncertainty in the experimental measurements. This excellent performance constitutes a solid basis on which a more general model can be parameterized to describe solvation in both polar and non-polar environments. © 2016 Wiley Periodicals, Inc.