Science.gov

Sample records for biocoenoses great salt

  1. Ecology of methanogenesis in two hypersaline biocoenoses: Great Salt Lake and a San Francisco Bay saltern

    SciTech Connect

    Paterek, J.R.

    1983-01-01

    Enrichment cultures were prepared from sediment and brine samples from two hypersaline ecosystems, Great Salt Lake in Utah and a solar saltern located in San Francisco Bay. Methane production was greater when enriched with the biopolymer chitin than with cellulose or peptone. Organisms indigenous to hypersaline ecosystems, brine shrimp (Artemia sp.), halobacteria (Halobacterium sp. and Halococcus sp.) and halophilic algae (Dunaliella sp. and others) were cultivated and added to anaerobic and aerobic microcosms prepared with brine and sediment from the ecosystems studied. Methane production and the concentration of the methanogenic precursor, trimethylamine were greatest with brine shrimp as a supplement. Choline produced the highest concentrations of methane in all samples examined. A number of marine-related ecosystems were also examined for their ability to support methanogenesis at various salinities. Methanogenesis occurred at sea water salinity in the majority of samples, and methane production was observed from three sites at salinity found in Great Salt Lake brine. A halophilic methanogenic bacterium species was isolated from both Great Salt Lake and the San Francisco Bay solar saltern sediments. Cells are irregular, nonmotile cocci, approximately 1.0uM in diameter and stain gram negative.

  2. The Great Salt Lake

    USGS Publications Warehouse

    Hassibe, W.R.; Keck, W.G.

    1991-01-01

    The western part of the conterminous United States is often thought of as being a desert without any large bodies of water. In the desert area of western Utah, however, lies Great Salt Lake, which in 1986 covered approximately 2,300 square miles and contained 30 million acre-feet of water (an acre-foot is the amount of water necessary to cover 1 acre of land with water 1 foot in depth or about 326,000 gallons). To emphasize its size, the Great Salt Lake is the largest lake west of the Mississippi River, larger than the states of Rhode Island and Delaware.

  3. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  4. Great Salt Lake, Utah, USA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  5. Great Salt Lake sets record

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    The level of the Great Salt Lake, Utah, broke its 1873 record on May 12, 1986, rising to 1283.7 m above mean sea level, according to the U.S. Geological Survey (USGS). Heavy snowpack remains in the lake's drainage basin, and the lake is likely to continue rising into June. “It could well go up another foot [i.e., ˜0.3 m],” this season, according to Ted Arnow, USGS district chief in Utah.The Utah state legislature convened a special session on May 13 to discuss measures to control the flooding. Last year, the legislature began to consider funding a plan to pump water from the Great Salt Lake to form a large, shallow pond in the desert 48 km to the west. Because the lake's level was predicted to drop this year, however, the lawmakers postponed action on the issue (Eos, September 10, 1985, p. 641). The Rose Park area of Salt Lake City, which lies below the lake's current level, has been diked, but groundwater is backing up into Rose Park and has to be pumped out over the dikes, Arnow said. Also, trains that use the Southern Pacific railroad causeway, which crosses the lake, have had to be temporarily rerouted south of the lake during storms. The causeway has been progressively raised since 1983, but engineers now say that they can raise it no further because the added weight will make it sink into the lake, Arnow said. If the lake rises much higher, the interstate highway that runs by it might also have to shut down temporarily during storms, he added.

  6. Monitoring Change in Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Naftz, David; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Carling, Gregory

    2013-08-01

    Great Salt Lake is the largest hypersaline lake in the Western Hemisphere and the fourth largest terminal lake in the world (Figure 1). The open water and adjacent wetlands of the Great Salt Lake ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere [Aldrich and Paul, 2002]. In addition, the area is of important economic value: Brine shrimp (Artemia franciscana) residing in Great Salt Lake support an aquaculture shrimp cyst industry with annual revenues as high as $60 million.

  7. Monitoring change in Great Salt Lake

    USGS Publications Warehouse

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  8. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  9. Ecology of Great Salt Pond, Block Island

    EPA Science Inventory

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  10. Early Holocene Great Salt Lake, USA

    NASA Astrophysics Data System (ADS)

    Oviatt, Charles G.; Madsen, David B.; Miller, David M.; Thompson, Robert S.; McGeehin, John P.

    2015-07-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5-10.2 cal ka BP; 10-9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column - a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  11. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    The dynamic physiography and population growth within the Great Salt Lake Basin provide the opportunity to observe climate and human-induced land-surface changes affecting water availability, water quality, and water use, thereby making the Great Salt Lake Basin a microcosm of contemporary water resource issues and an excellent site to pursue interdisciplinary and integrated hydrologic science. Important societal concerns center on: How do climate variability and human-induced landscape changes affect hydrologic processes, water quality and availability, and aquatic ecosystems over a range of scales? What are the resource, social, and economic consequences of these changes? The steep topography and large climatic gradients of the Great Salt Lake Basin yield hydrologic systems that are dominated by non-linear interactions between snow deposition and snow melt in the mountains, stream flow and groundwater recharge in the mid-elevations, and evaporative losses from the desert floor at lower elevations. Because the Great Salt Lake Basin terminates in a closed basin lake, it is uniquely suited to closing the water, solute, and sediment balances in a way that is rarely possible in a watershed of a size sufficient for coupling to investigations of atmospheric processes. Proposed infrastructure will include representative densely instrumented focus areas that will be nested within a basin-wide network, thereby quantifying fluxes, residence times, pathways, and storage volumes over a range of scales and land uses. The significant and rapid ongoing urbanization presents the opportunity for observations that quantify the interactions among hydrologic processes, human induced changes and social and economic dynamics. One proposed focus area will be a unique, highly instrumented mountain-to-basin transect that will quantify hydrologic processes extending from the mountain ridge top to the Great Salt Lake. The transect will range in elevation from about 1200 m to 3200 m, with a

  12. Microseisms from the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Goddard, K. J.; Koper, K. D.; Burlacu, V.

    2014-12-01

    Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA We performed frequency-dependent polarization and power analysis on continuous ambient seismic energy recorded by broadband seismic stations that were part of the Utah Regional Seismic Network (UU) for the years of 2001-2013. The number of broadband seismometers increased from 10 to 28 in this time period. As expected, at all 28 stations the single and double frequency peaks caused by microseisms were observed in the range of 3-20 s. At four of the stations located around the Great Salt Lake (BGU, HVU, NOQ, and SPU) an additional noise peak was intermittently observed in the period range of 0.8-1.2 s. This noise peak was strongest at SPU, a station located on the tip of a peninsula jutting into the lake from the north, and weakest at NOQ, a station located a few kilometers south of the lake in the Oquirrh Mountains. The noise peaks occur in both daytime and nighttime, and have durations lasting from a couple of hours to multiple days. They occur more frequently in the spring, summer, and fall, and less commonly in the winter. The occurrences of noise peaks in the summer show a day night pattern and seem to reach a peak during the night. The time dependence of this 1-s seismic noise was compared to records of wind speed measured at 1-hr intervals from nearby meteorological stations run by the NWS, and to lake level gage height measurements made by the USGS. Correlations with wind speed and lake level were done for every month of the year in 2013. Results showed that the correlations with wind varied throughout the year from a high of 0.49 in November to a low of 0.20 in the month of January. The correlation with lake level also varied throughout the year and the strongest correlation was found in the month of December with a correlation of 0.43. While these correlation values are statistically significant, neither wind nor lake level can completely explain the seismic observations

  13. Draft Mercury Aquatic Wildlife Benchmarks for Great Salt Lake Assessment

    EPA Science Inventory

    This document describes the EPA Region 8's rationale for selecting aquatic wildlife dietary and tissue mercury benchmarks for use in interpreting available data collected from the Great Salt Lake and surrounding wetlands.

  14. Winter Lake Breezes near the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2016-05-01

    Case studies of lake breezes during wintertime cold air pools in Utah's Salt Lake Valley are examined. While summer breezes originating from the Great Salt Lake are typically deeper, of longer duration, and have higher wind speeds than winter breezes, the rate of inland penetration and cross-frontal temperature differences can be higher during the winter. The characteristics of winter breezes and the forcing mechanisms controlling them (e.g., snow cover, background flow, vertical stability profile, clouds, lake temperature, lake sheltering, and drainage pooling) are more complex and variable than those evident in summer. During the afternoon in the Salt Lake Valley, these lake breezes can lead to elevated pollution levels due to the transport of fine particle pollutants from over the Great Salt Lake, decreased vertical mixing depth, and increased vertical stability.

  15. Volatile selenium flux from the great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.

    2009-01-01

    The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.

  16. Conceptual Model for Selenium Cycling in the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Conover, M. R.; Wurtsbaugh, W. A.; Adams, J.

    2006-12-01

    The conceptual model for Selenium cycling in the Great Salt Lake was developed to guide investigations in support of determining an open water selenium standard for the Great Salt Lake. The motivation to determine this particular selenium standard derives from public concern for a plan to allow disposal of reverse osmosis (RO) concentrate in the GSL, which would contain elevated concentrations of major and trace elements, including selenium. The development of an open water standard for selenium requires a working knowledge of the biological significance of existing selenium concentrations in the Great Salt Lake, as well as a working understanding of the likely changes of these concentrations over time given existing and proposed loads to the system. This working knowledge" is being represented in a conceptual model that accounts for selenium in various stocks" in the system (e.g. water, sediment, biota) and the flow" of selenium between stocks (e.g., precipitation and settling, volatilization, bioconcentration). It illustrates the critical pathway of selenium in the Great Salt Lake from water, to microorganisms, to brine shrimp and brine flies, to birds, and to their eggs. It also addresses the complexity of the GSL system: a) Spatially diverse, being comprised by four distinct bays and two layers, with major differences in salinity among their waters. b) Temporally dynamic, due to seasonal and inter-annual variations in runoff. The conceptual model is presently descriptive, but will serve as the basis for a semi-quantitative model that will be fed by data accumulated during subsequent investigations.

  17. Volatile Selenium Flux in the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Diaz, X.; Johnson, W. P.

    2006-12-01

    Volatilization of selenium has been proven to be the major source of selenium vapor from oceans and estuaries and it may be the major mechanism of permanent selenium removal from the Great Salt Lake (other than brine shrimp harvest). However, the volatilization flux of selenium from the Great Salt Lake has not been previously measured due to challenges of analysis in this hyper-saline environment. This work presents results from recent field studies examining the spatial distribution of volatile selenium (geographical and with depth) in the South Arm (main body) of the Great Salt Lake. The analyses involved collection of volatile selenium in a cryo-focusing trap system via sparging with helium. The cryo-trapped volatile selenium was digested with nitric acid and analyzed by ICP-MS. The results show concentrations of volatile selenium that are much greater than values reported for marine estuaries and oceans. Volatile selenium flux to the atmosphere was determined using mass transport equations corrected to simulate the highly saline environment of the South Arm of the Great Salt Lake.

  18. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, K.M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.

  19. The Younger Dryas phase of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  20. Selenium mass balance in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Naftz, D.L.

    2009-01-01

    A mass balance for Se in the south arm of the Great Salt Lake was developed for September 2006 to August 2007 of monitoring for Se loads and removal flows. The combined removal flows (sedimentation and volatilization) totaled to a geometric mean value of 2079??kg Se/yr, with the estimated low value being 1255??kg Se/yr, and an estimated high value of 3143??kg Se/yr at the 68% confidence level. The total (particulates + dissolved) loads (via runoff) were about 1560??kg Se/yr, for which the error is expected to be ?? 15% for the measured loads. Comparison of volatilization to sedimentation flux demonstrates that volatilization rather than sedimentation is likely the major mechanism of selenium removal from the Great Salt Lake. The measured loss flows balance (within the range of uncertainties), and possibly surpass, the measured annual loads. Concentration histories were modeled using a simple mass balance, which indicated that no significant change in Se concentration was expected during the period of study. Surprisingly, the measured total Se concentration increased during the period of the study, indicating that the removal processes operate at their low estimated rates, and/or there are unmeasured selenium loads entering the lake. The selenium concentration trajectories were compared to those of other trace metals to assess the significance of selenium concentration trends. ?? 2008 Elsevier B.V.

  1. Microbial mat mineralization in Great Salt Lake (Utah, USA)

    NASA Astrophysics Data System (ADS)

    PACE, Aurélie; Bouton, Anthony; Bourillot, Raphaël; Vennin, Emmanuelle; Visscher, Pieter; Dupraz, Christophe; Thomazo, Christophe; Serge, Galaup; Sophie, Leleu; Anna, Kwasniewski; Léa, Pigot; Michel, Franceschi

    2015-04-01

    Great Salt Lake is located in the Basin and Range province of Utah (USA). Its average surface is 4480 Km2 and its maximum depth is of about 15m. It is a partly rainfed endorheic hypersaline lake (average salinity: 140g/L). Due to the high salinity, little or no grazing organisms are present, favoring the development of microbialites that cover the margin of the lake. This work aims to understand the products and processes of mineralization in recent and modern microbialites on the western margin of Antelope Island. The distribution of microbialites and their morphology has been studied along lakeshore to center transects, showing a contrasting spatial distribution in bay versus headland. Fossil microbialites show a great diversity of macro- and microfabrics, some microbialites being essentially built by microbial-mediated carbonate precipitation, while other show the predominance of trapping and binding processes. The nature and composition of the microbial carbonates have been determined through polarizing, cathodoluminescence, reflected fluorescence microscopy, X-Ray diffractometry and isotope geochemistry (δ 18O and δ13C) in order to investigate the preservation of environmental signals in microbialites. Petrophysics analysis such as permeability and porosimetry, have been done to observe the structure of the microbialite. Microprobe and silver foils method have been used respectively to characterize oxygen production and sulfate reduction in living microbial mats. Mineralization zones seem to coincide with sulfate reduction hotspots. This mineralization results in mixed clotted-laminated fabric at the macro- and microscale. Several analysis such as Cryo-SEM, environmental SEM and raman spectroscopy three phases of mineralization allowed us to distinguish three type of minerals inside the mat: (1) a Mg and Si-rich clay developing on the organic matrix; (2) an intracellular Al-rich clay. (3) aragonite clots replacing the organic matrixes and embedding bacteria

  2. Geochemical evolution of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Jones, B.F.; Naftz, D.L.; Spencer, R.J.; Oviatt, Charles G.

    2009-01-01

    The Great Salt Lake (GSL) of Utah, USA, is the largest saline lake in North America, and its brines are some of the most concentrated anywhere in the world. The lake occupies a closed basin system whose chemistry reflects solute inputs from the weathering of a diverse suite of rocks in its drainage basin. GSL is the remnant of a much larger lacustrine body, Lake Bonneville, and it has a long history of carbonate deposition. Inflow to the lake is from three major rivers that drain mountain ranges to the east and empty into the southern arm of the lake, from precipitation directly on the lake, and from minor groundwater inflow. Outflow is by evaporation. The greatest solute inputs are from calcium bicarbonate river waters mixed with sodium chloride-type springs and groundwaters. Prior to 1930 the lake concentration inversely tracked lake volume, which reflected climatic variation in the drainage, but since then salt precipitation and re-solution, primarily halite and mirabilite, have periodically modified lake-brine chemistry through density stratification and compositional differentiation. In addition, construction of a railway causeway has restricted circulation, nearly isolating the northern from the southern part of the lake, leading to halite precipitation in the north. These and other conditions have created brine differentiation, mixing, and fractional precipitation of salts as major factors in solute evolution. Pore fluids and diagenetic reactions have been identified as important sources and especially sinks for CaCO3, Mg, and K in the lake, depending on the concentration gradient and clays. ?? U.S. Geological Survey 2008.

  3. Geochemistry of Great Salt Lake, Utah I: Hydrochemistry since 1850

    USGS Publications Warehouse

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.; Rettig, S.L.

    1985-01-01

    The hydrochemistry of Great Salt Lake, Utah, has been defined for the historic period, 1850 through 1982, from published data combined with new observations. The water balance depends largely on river inflow, atmospheric precipitation onto the lake surface and evaporation. Input of the major solutes can best be accounted for by mixing dilute calcium-bicarbonate type river waters with NaCl-dominated hydrothermal springs. Prior to 1930, lake concentrations fluctuated inversely with lake volume in response to small climatic variations. Since then, salt precipitation and dissolution have significantly modified lake brine compositions and have led to density stratification and the formation of brine pockets of differing composition. Brine mixing has become an important component of brine evolution. We have used calculated evaporation curves with mineral precipitation and dissolution to clarify these processes. Pore fluids represent important storage for solutes. Solute profiles can be modeled by simple one-dimensional diffusion calculations. Short-term historic variations in lake composition affect shallow pore fluids in the upper 2 metres of sediment. ?? 1985.

  4. Satellite microwave observations of the Utah Great Salt Lake Desert

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dellwig, L. F.; Schmugge, T. J.

    1975-01-01

    Microwave data acquired over the Great Salt Lake Desert by sensors aboard Skylab and Nimbus 5 indicate that microwave emission and backscatter were strongly influenced by contributions from subsurface layers of sediment saturated with brine. This phenomenon was observed by Skylab's S-194 radiometer operating at 1.4 GHz, S-193 RADSCAT (Radiometer-Scatterometer) operating at 13.9 GHz and the Nimbus 5 ESMR (Electrically Scanning Microwave Radiometer) operating at 19.35 GHz. The availability of ESMR data over an 18 month period allowed an investigation of temporal variations. Aircraft 1.4 GHz radiometer data acquired two days after one of the Skylab passes confirm the satellites observations. Data from the ESMR revealed similar responses over the Bolivian deserts, which have geologic features similar to those of the Utah desert.

  5. Salt Migration to the Northwest Body of Great Salt Lake, Utah.

    PubMed

    Adams, T C

    1964-03-01

    Interchange of saline lake water between the northwest body of Great Salt Lake, Utah, comprising about one-third of the lake area, and the main body of the lake, has been severely restricted by the completion of a railroad embankment across the lake in 1959. The northwest body has a relatively small volume of inflow and a somewhat greater rate of evaporation than the main body. As a result, there has been a net flow of saline water northward and accompanying deposition of a thick layer of salt over the bottom and shore of the northwest body. A unique set of hydrologic and physical-chemical influences are in action, and further important effects on the entire lake are expected. PMID:17733066

  6. The dry deposition of mercury into the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Lisonbee, Joel R.

    The Great Salt Lake (GSL) in the western United States has been identified as the most mercury laden body of water in the United States with a median water mercury concentration of 42 nanograms per liter. When Hg enters an aquatic ecosystem, it can be converted to the toxic organic mercury compound, methylmercury. Methylmercury bioaccumulates up the food chain and has been the cause of consumption advisories for game fish in many lakes and rivers in the historically pristine Intermountain West. In 2005, the Utah Department of Health and the Fish and Wildlife Service placed a similar consumption advisory on waterfowl on the GSL. The primary goal of this study is to identify the pathway of greatest influx of Hg pollution to the GSL to give insight toward the source and an eventual solution to the Hg pollution problem. Speciated atmospheric mercury measurements were collected at a field site on the eastern shore of the GSL for a 1-year period beginning on July 1, 2009. These atmospheric mercury concentrations, along with turbulence measurements, were used as input to a resistance-in-series dry deposition model (based on Wesley and Hicks 1977). The dry deposition flux of mercury was determined from the modeled dry deposition velocity and the measured concentrations. This dry deposition flux was compared to the wet deposition flux measured by the National Deposition Network and the riverine influx measured by the USGS. It was found that in the 1 year from July 1, 2009 through June 30, 2010, 10.7 nanograms per square meter of Hg was deposited into the GSL by dry deposition from the atmosphere. Dry deposition makes up 60% of the total Hg influx from all measured pathways. The flux from the dry deposition of the global background pool of Hg (1.5 +/- 0.2 nanograms per square meter) dominated the dry deposition flux, making up 82.5+/-8.5% of the dry deposition flux and 50% of the total Hg influx to the GSL. Lake sediment cores from the GSL suggest a much larger annual flux

  7. AN ALTERNATIVE FUTURES ANALYSIS OF FARMINGTON BAY WETLANDS IN THE GREAT SALT LAKE

    EPA Science Inventory

    An Alternative Futures Analysis (AFA) was conducted to evaluate tradeoffs between landscape design scenarios and ecological services for Farmington Bay, Great Salt Lake (GSL), wetlands. Model scenarios included plan trend and conservation "futures" scenarios projected to 2030. ...

  8. Alternative Futures Analysis Of Farmington Bay Wetlands In The Great Salt Lake Ecosystem

    EPA Science Inventory

    An Alternative Futures Analysis (AFA) was conducted to evaluate tradeoffs between landscape design scenarios and ecological services for Farmington Bay, Great Salt Lake (GSL), wetlands. Model scenarios included both plan trend and conservation "futures" projected to 2030. Scena...

  9. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    PubMed

    White, James S; Null, Sarah E; Tarboton, David G

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses. PMID:26641101

  10. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    PubMed

    White, James S; Null, Sarah E; Tarboton, David G

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.

  11. How Do Changes to the Railroad Causeway in Utah’s Great Salt Lake Affect Water and Salt Flow?

    PubMed Central

    White, James S.; Null, Sarah E.; Tarboton, David G.

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses. PMID:26641101

  12. River restoration and biocoenoses improvement in two streams renaturated using bioengeneering.

    NASA Astrophysics Data System (ADS)

    Leoni, B.; Forasacco, E.; Dobner, R.; Cotta Ramusino, M.

    2003-04-01

    that stations 1 and 2 are in good condition (Ecological status classification: II): therefore the level of diversity and abundance of macrobenthic taxa is slightly outside the range associated with the normal conditions and the most of the sensitive taxa of the type specific communities are present. The stations 3 and 4 are in moderate condition (Ecological status classification: III): the level of diversity and abundance of invertebrate taxa is moderately outside the normal condition range, the taxa indicative of pollution are present and many of the sensitive taxa of the type specific communities are absent. In the Rancina stream in all of the 4 stations the ecological status is indicated like moderate (Ecological status classification: III): there is a predominance of taxa more resistant at pollution and at changes in other biological components of the stream. The I.F.F. show that in Boesio stream the right shore score is moderate-good and the left shore score is moderate-poor. Differently, the Rancina stream presents the right shore with a value poor and the left shore with a wide gradient between good and poor-bad. In conclusion, we can affirm the low efficiency of Bioengineering to restore the Boesio and Rancina streams, because we cannot observe the habitat and aquatic biocoenoses improvement. An explication could be that the conversions are restricted to morphological measures, which are carried out on a small way of banks. Whereas, the restoration using the Bioengineering requires taking the entire catchment area into consideration.

  13. Characterization and origin of polar dissolved organic matter from the Great Salt Lake

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Rostad, C.E.; Davisson, M.L.

    2004-01-01

    Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.

  14. Ooid formation in the Great Salt Lake, Utah: Insights from clumped isotope paleothermometry

    NASA Astrophysics Data System (ADS)

    Anderson, R. P.; Bird, J. T.; Meneske, M.; Stefurak, E. J.; Berelson, W.; Petryshyn, V. A.; Shapiro, R. S.; Sessions, A. L.; Tripati, A.; Corsetti, F. A.

    2013-12-01

    Ooids (coated grains formed in agitated environments) are a relatively common constituent of the sedimentary record through time, but details of their formation remain enigmatic. Although not as abundant today as at other times in the past, ooids are known from several key carbonate environments, including the Bahamas, Persian Gulf, Shark Bay, and the Great Salt Lake. We collected ooids from the Great Salt Lake in association with the International GeoBiology Summer Course in 2012 and 2013 from the north shore of Antelope Island and Spiral Jetty in order to investigate their origin. Petrographic investigation reveals the ooids are composed of aragonite, and display an alternating radial, concentric, and radial-concentric fabric. The delicate nature of the radial fabric is suggestive, but not conclusive, that they form currently (agitation would abrade the fabric). The nuclei are typically rod shaped micritic peloids (up to 80%) or siliciclastic mineral grains. The Great Salt Lake surface water temperature undergoes a predictable annual cycle, with summer months approaching 25 degrees C or more, and winter months dipping to 5 degrees C or less, depending on the region of the lake. Clumped isotope temperatures allow us to constrain ooid formation to the warm months. A contrast between the isotopic composition of the waters for Antelope Island (~0 per mill), likely affected by spring runoff, and the ooids of the same location (~4.5 per mill) further suggest ooid formation took place after the spring runoff, constraining ooid formation to between mid-June and October. We calculated the summer and winter carbonate saturation state of the lake, and while the lake is supersaturated throughout the year, it is significantly more saturated during the summer months. Our results give new insight into ooid formation in the Great Salt Lake, and suggest that the ooids form predominantly during the warm months following the spring runoff.

  15. Textural variation within Great Salt Lake algal mounds: Chapter 8.5 in Stromatolites

    USGS Publications Warehouse

    1976-01-01

    This chapter discusses textural variation within the Great Salt Lake algal mounds. Great Salt Lake algal mounds contain: (1) a framework of non-skeletal, algally induced aragonite precipitates; (2) internal sediment; and (3) inorganic cement. These three elements create a variety of laminated, poorly laminated, and unlaminated internal textures. Interior framework precipitates bear little resemblance to the present living film of the mound surface. Internal texture of the mounds is believed to be largely relict and to have resulted from precipitation by algae different than those presently living at the surface. The most probable cause of local extinction of the algal flora is change in brine salinity. Precipitated blue-green algal structures in ancient rocks may indicate other than normal marine salinity and near shore sedimentation. Extreme variation of internal texture reflects extreme environmental variability typical of closed basin lakes. Recognition of mounds similar to those in the Great Salt Lake can be a first step toward recognition of ancient hyper-saline lake deposits, if such an interpretation is substantiated by consideration of the entire depositional milieu of precipitated algal mounds.

  16. On the isolation of halophilic microorganisms from salt deposits of great geological age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald

    1993-01-01

    From salt sediments of Triassic or Permian age from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteria. One group appears to represent novel strains; several properties of one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediment would have great implications with respect to our notions on evolution, the research for life in extraterrestrial environments, and the longterm survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  17. On the Isolation of Halophilic Microorganisms from Salt Deposits of Great Geological Age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald; Orans, Robin (Editor)

    1993-01-01

    From salt sediments of Triassic or Permian ace from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteriae. One group appears to represent novel strains; several properties or one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediments would have great implications with respect to our notions on evolution, the search for life in extraterrestrial environments and the long- term survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  18. Physical Monitoring of Flow Into and Within Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Kenney, T. A.; Naftz, D. L.; Perschon, W. C.

    2006-12-01

    Great Salt Lake (GSL) is the hydrologic terminus for the eastern part of the Great Basin. As the largest inland waterbody in the Western United States, GSL plays a critical ecologic role for many migratory bird species. In terms of harvest quantity and quality, the brine shrimp (Artemia) fishery of GSL is among the strongest in the world. The characteristic of GSL as a hydrologic sink amplifies anthropogenic activities throughout the basin, most specifically activities that occur along its eastern and southern shores, the urban corridor of the Wasatch Front. In 1959 GSL was divided into north and south parts by a rock-fill railroad causeway. Since then, an extreme density gradient between the north and south part exists as a result of limited conveyance of water from the south part where more than 95 percent of the total freshwater input occurs (Loving, and others, 2000). To date, little is known about the loading and cycling of various chemical constituents associated with human activities including nutrients, selenium, and mercury. Hydroacoustic technology, specifically acoustic Doppler technology, is currently being used to obtain a better physical understanding of GSL. Since 1999, stratified bi-directional discharge has been measured at the causeway breach with an acoustic Doppler current profiler. From these measurements, net flow components to the north and south have been used to assess the movement of water and salt through the causeway. Low hydraulic gradients and variable backwater conditions at the two largest inflows to GSL required the deployment of in-situ acoustic Doppler velocity meters to accurately compute continuous discharge, critical for constituent loading analyses. These discharge records, computed using the index velocity method, show sensitivity to large wind events that can lead to a complete reversal of flow. Velocity profiles acquired during two multi-day water-quality synoptic sampling runs with acoustic Doppler current profilers have

  19. Calculation of Area and Volume for the North Part of Great Salt Lake, Utah

    USGS Publications Warehouse

    Baskin, Robert L.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Forestry, Fire, and State Lands, collected bathymetric data for the north part of Great Salt Lake during the spring and early summer of 2006 using a single-beam, high-definition fathometer and real-time differential global positioning system. About 5.2 million depth measurements were collected along more than 765 miles (1,230 kilometers) of survey transects. Sound-velocity profiles were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping and calculation of area and volume. Area and volume calculations show a maximum area of about 385,000 acres (1,560 square kilometers) and a maximum volume of about 5,693,000 acre-feet (about 7 cubic kilometers) at a water-surface altitude of 4,200 feet (1,280 meters). Minimum natural water-surface altitude of the north part of Great Salt Lake is just below 4,167 feet (1,270 meters) in the area just north of the Union Pacific railroad causeway halfway between Saline and the western edge of the lake. The north part of Great Salt Lake generally grades gradually to the west and north and is bounded by steep scarps along its eastern border. Calculations for area and volume are based on a low altitude of 4,167 feet (1,270 meters) to a high altitude of 4,200 feet (1,280 meters).

  20. Bathymetric Map of the North Part of Great Salt Lake, Utah, 2006

    USGS Publications Warehouse

    Baskin, Robert L.; Turner, Jane

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Forestry, Fire, and State Lands, collected bathymetric data for the north part of Great Salt Lake during the spring and early summer of 2006 using a single-beam, high-definition fathometer and real-time differential global positioning system. About 5.2 million depth measurements were collected along more than 765 miles (1,230 kilometers) of survey transects. Sound-velocity profiles were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping and calculation of area and volume. Area and volume calculations show a maximum area of about 385,000 acres (1,560 square kilometers) and a maximum volume of about 5,693,000 acre-feet (about 7 cubic kilometers) at a water-surface altitude of 4,200 feet (1,280 meters). Minimum natural water-surface altitude of the north part of Great Salt Lake is just below 4,167 feet (1,270 meters) in the area just north of the Union Pacific railroad causeway halfway between Saline and the western edge of the lake. The north part of Great Salt Lake generally grades gradually to the west and north and is bounded by steep scarps along its eastern border. Calculations for area and volume are based on a low altitude of 4,167 feet (1,270 meters) to a high altitude of 4,200 feet (1,280 meters).

  1. STS-48 ESC Earth observation of southwestern corner of the Great Salt Lake

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation of the southwestern corner of the Great Salt Lake, 308 nautical miles below Discovery, Orbiter Vehicle (OV) 103, was provided by the electronic still camera (ESC). While the image is mostly covered with a thin veil of cirrus clouds, many of the surface features can be recognized. The causeway linking the northern tip of the peninsula to the southwest shore of the lake is clearly visible as is the interstate highway. Considerable topographic detail is visible in the snow covered peaks to the south of the lake. The commercial salt pans between the peninsula and the interstate show high contrast with the brightness dependent on the concentration of the brackish water in the pan. Recent heavy rainfall has caused considerable runoff into the lake but the flooding hazard of a few years past no longer exists due to a pumping system that now transfers excess water to the Bonneville Salt Flats. The ESC image was stored on a removable hard disk or small optical disk and

  2. Great Salt Lake, and precursors, Utah: The last 30,000 years

    USGS Publications Warehouse

    Spencer, R.J.; Baedecker, M.J.; Eugster, H.P.; Forester, R.M.; Goldhaber, M.B.; Jones, B.F.; Kelts, K.; McKenzie, J.; Madsen, D.B.; Rettig, S.L.; Rubin, M.; Bowser, C.J.

    1984-01-01

    Sediment cores up to 6.5 m in length from the South Arm of Great Salt Lake, Utah, have been correlated. Radiocarbon ages and volcanic tephra layers indicate a record of greater than 30,000 years. A variety of approaches have been employed to collect data used in stratigraphic correlation and lake elevation interpretation; these include acoustic stratigraphy, sedimentologic analyses, mineralogy, geochemistry (major element, C, O and S isotopes, and organics), paleontology and pollen. The results indicate that prior to 32,000 year B.P. an ephemeral saline lake-playa system was present in the basin. The perennial lake, which has occupied the basin since this time, rose in a series of three major steps; the freshest water conditions and presumably highest altitude was reached at about 17,000 year B.P. The lake remained fresh for a brief period, followed by a rapid increase in salinity and sharp lowering in elevation to levels below that of the present Great Salt Lake. The lake remained at low elevations, and divided at times into a north and south Basin, until about 8,000 year B.P. Since that time, with the exception of two short rises to about 1290 m, the lake level has remained near the present elevation of 1280 m. ?? 1984 Springer-Verlag.

  3. Remote Sensing as a Tool to Track Algal Blooms in the Great Salt Lake, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bradt, S. R.; Wurtsbaugh, W. A.; Naftz, D.; Moore, T.; Haney, J.

    2006-12-01

    The Great Salt Lake is a large hypersaline, terminal water body in northern Utah, USA. The lake has both a significant economic importance to the local community as a source of brine shrimp and mineral resources, as well as, an ecological importance to large numbers of migratory waterfowl. Due to nutrient input from sewage treatment plants, sections of the Great Salt Lake are subjected to highly eutrophic conditions. One of the main tributaries, Farmington Bay, experiences massive blooms of cyanobacteria which can reach concentrations in excess of 300 mg l-1 in the bay. Effects of these blooms can be observed stretching into the rest of the lake. The detrimental outcomes of the blooms include unsightly scums, foul odor and the danger of cyanobacterial toxins. While the blooms have an obvious effect on Farmington Bay, it is quite possible that the cyanobacteria impact a much wider area of the lake as currents move eutrophic water masses. Of particular interest is the reaction of brine shrimp to the plumes of cyanobacteria-rich water leaving Farmington Bay. We are employing remote sensing as a tool to map the distribution of algae throughout the lake and produce lake-wide maps of water quality on a regular basis. On-lake reflectance measurements have been coupled with MODIS satellite imagery to produce a time series of maps illustrating changes in algal distribution. The successes and shortcomings of our remote sensing technique will be a central topic of this presentation.

  4. Evaluating the Biological Influences on Ooid Formation in the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Bird, J. T.; Stefurak, E. J.; Anderson, R. P.; Meneske, M.; Berelson, W.; Sessions, A. L.; Osburn, M. R.; Spear, J. R.; Stamps, B. W.; Stevenson, B.; Shapiro, R. S.; Torres, M. A.; Corsetti, F. A.

    2013-12-01

    Recent studies from the Bahamas and Shark Bay imply microbial influence on ooid formation based on both 16S-rRNA and lipid biomarkers [1,2]. The Great Salt Lake, Utah, provides an opportunity to assess the possible role of microbes in ooid formation because of its unique environmental setting: the lake is divided into the more saline North Arm (NA) and the less saline South Arm (SA). The microbial community of the NA ooids was dominated by members of the Halobacteria, Gammaproteobacteria, and Bacteriodetes. The diversity of the surrounding water was identical to that of the NA ooids. The community from the SA ooids, dominated by Bacteriodetes, Alphaproteobacteria, and Gammaproteobacteria, was distinct from that of the surrounding water, which was dominated by Halobacteria, Gammaproteobacteria, and Bacteriodetes. OTUs related to Bacteriodetes and Gammaproteobacteria in SA ooids differed from the surrounding water and NA ooids. While ooid fabrics from the NA and SA were identical, their microbial communities differed which indicates the variance in diversity exerts no obvious control on ooid morphology. In addition, the microbial communities of the Great Salt Lake shared few similarities with those of recently examined ooids in the Bahamas and Shark Bay. The Great Salt Lake is supersaturated with respect to calcite, aragonite, and dolomite, suggesting that carbonate precipitation need not require biological mediation. However, we did identify taxa that can alter the local saturation state of calcium carbonate (e.g., Desulfohalobiaceae and Ectothiorhodospiraceae), although they were different between the two sites. Intriguingly, the ooids contain a significant amount of sulfur (up to 0.15 wt. %). The microbial communities observed, which include sulfate reducers and sulfide oxidizers, could facilitate this sulfur formation and in doing so provide a significant boost to the local alkalinity. We hypothesize that this observed microbial community could influence ooid

  5. Mercury in the Air, Water and Biota at the Great Salt Lake (Utah, USA)

    NASA Astrophysics Data System (ADS)

    Peterson, C.; Gustin, M. S.

    2008-12-01

    The Great Salt Lake, Utah (USA), is the fourth largest terminal lake on Earth and a stop-over location for 35 million birds on the Pacific Flyway. Recently, the Utah Department of Health and Utah Division of Wildlife Resources issued tissue mercury (Hg) consumption advisories for several species of birds that consume the lake's brine shrimp. Sources of Hg to the lake are the watershed and the atmosphere, and we hypothesized that the chemistry of the air above the Great Salt Lake would facilitate atmospheric deposition of Hg to the water. Because little information was available on Hg at the Great Salt Lake, and to begin to test this hypothesis, we measured atmospheric elemental (Hg0) and reactive gaseous mercury (RGM) concentrations as well as Hg concentrations in water and brine shrimp five times over a year. Surrogate surfaces and a dry deposition model were applied to estimate the amount of Hg that could be input to the lake surface. We found that atmospheric Hg0 and RGM concentrations were comparable to global ambient background values and those measured in rural areas (respectively). Both Hg0 and RGM exhibited regular diel variability, and no consistent seasonal periods of depleted or elevated values were observed. Based on these findings, local factors are thought to be important in generating elevated RGM concentrations that could be deposited to the lake. Model estimated deposition velocities for RGM to the lake ranged from 0.9 to 3.0 cm sec-1, with an estimated 19 kg of Hg deposited annually. Total Hg and methyl Hg concentrations in surface waters of the lake were consistent throughout the year (3.8 ± 0.8 ng L- 1 and 0.93 ± 0.59 ng L-1, respectively) and not significantly elevated relative to natural waters; however, the percent methyl Hg to total Hg was high (25 to 50%). Brine shrimp Hg concentrations were 384 ppb and had a statistically significant increase from early summer to fall. Based on modeled dry deposition and estimated wet deposition, the

  6. Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA).

    PubMed

    Wurtsbaugh, Wayne A; Gardberg, Jodi; Izdepski, Caleb

    2011-09-15

    The Great Salt Lake has a salinity near 150 g/L and is habitat for over 200 species of migratory birds. The diet of many of these birds is dependent on the food web of carbonaceous biostromes (stromatolites) that cover 260 km(2) of the lake's littoral zone. We investigated the biostrome community to understand their production processes and to assess whether they are a potential vector for bioconcentration of high mercury and selenium levels in the lake. The periphyton community of the biostromes was >99% colonial cyanobacteria. Periphyton chlorophyll levels averaged 900 mg m(-2) or nine times that of the lake's phytoplankton. Lake-wide estimates of chlorophyll suggest that their production is about 30% of that of the phytoplankton. Brine fly (Ephydra gracilis) larval densities on the biostromes increased from 7000 m(-2) in June to 20000m(-2) in December. Pupation and adult emergence halted in October and larvae of various instars overwintered at temperatures <5°C. Mean total dissolved and dissolved methyl mercury concentrations in water were 5.0 and 1.2 ηg L(-1). Total mercury concentrations in the periphyton, fly larvae, pupae, and adults were, respectively, 152, 189, 379 and 659 ηg g(-1) dry weight, suggesting that bioconcentration is only moderate in the short food web and through fly developmental stages. However, common goldeneye ducks (Bucephala clangula) that feed primarily on brine fly larvae at the Great Salt Lake had concentrations near 8000 ηg Hg g(-1) dry weight in muscle tissue. Data from a previous study indicated that selenium concentrations in periphyton, brine fly larvae and goldeneye liver tissue were high (1700, 1200 and 24,000 ηg g(-1), respectively) and Hg:Se molar ratios were <1.0 in all tissues, suggesting that the high mercury concentration in the ducks may be partially detoxified by combining with selenium. The study demonstrated that the high mercury levels in the Great Salt Lake are routed through the biostrome community resulting

  7. Great Salt Lake, Utah: chemical and physical variations of the brine, 1963-1966

    USGS Publications Warehouse

    Hahl, D.C.; Handy, A.H.

    1969-01-01

    Great Salt Lake is a shallow, closed-basin lake in northern Utah. Its surface area and concentration of dissolved solids vary in response to both annual and long-term climatic changes. The lake gains water mainly as streamflow from mountains to the east and loses water through evaporation. In 1965, at a lake-surface altitude of 4,194 feet, the surface area was about 1,000 square miles, and the maximum measured depth was 27 feet. Studies to define the variations in chemical and physical characteristics of the brine began in 1963, and detailed sampling of the lake at 29 sites was made in October 1965 and May 1966. Data resulting from concurrent sampling of the 29 sites indicated that four types of brine coexist in the lake. The concentration of dissolved solids in the Great Salt Lake brine has always varied from place to place and with depth. Inflow, evaporation, currents, wind, and density differences resulted in brine stratification in the deep parts and brine concentration in the shallow, isolated parts of the lake. Completion of a railroad causeway by the Southern Pacific Co. in 1957 divided the lake into two parts and altered the movement of brine. The northwestern part of the lake was essentially cut off from direct fresh-water inflow by the causeway, and as a result it was saturated and well mixed from 1963 to 1966. During the main evaporation season (June-October), a layer of salt crust was precipitated on the lakebed north of the causeway. Near Rozel Point the salt crust contained 99.6 percent sodium chloride. The southern two-thirds of the lake receives over 90 percent of the surface inflow and since 1957 has rarely reached saturation. The southern part of the lake is not well mixed, and three types of brine have been identified by their location, concentrations of specific ions, and concentrations of dissolved solids. These brines are located (1) in a zone from the surface to a depth of 16 feet, (2) in a zone below 16 feet south of the causeway, and (3) in

  8. Hydrologic characteristics of the Great Salt Lake, Utah, 1847-1986

    USGS Publications Warehouse

    Arnow, Ted; Stephens, Doyle W.

    1990-01-01

    The Great Salt Lake in Utah is a large body of water bordered on the west by barren desert and on the east by a major metropolitan area. It is the fourth largest terminal lake in the world, covering about 2,300 square miles in 1986. Since its historic low elevation of 4,191.35 feet in 1963, the lake rose to a new historic high elevation of 4,211.85 feet in 1986. Most of this increase (12.2 feet) occurred after 1982. The rise has caused $285 million of damage to lakeside industries, transportation, farming, and wildlife. Accompanying the rapid rise in lake level has been a decrease in salinity--from 28 percent in 1963 to about 6 percent in 1986. This has resulted in changes in the biota of the lake from obligate halophiles to opportunistic forms, such as blue-green algae and, most recently, a brackish-water fish.

  9. Geological applications of LANDSAT-1 imagery to the Great Salt Lake area

    NASA Technical Reports Server (NTRS)

    Anderson, A. T.; Smith, A. F.

    1975-01-01

    The ERTS program has been designed as a research and development tool to demonstrate that remote sensing from orbital altitudes is a feasible and practical approach to efficient management of earth resources. From this synoptic view and repetitive coverage provided by ERTS imagery of the Great Salt Lake area, large geological and structural features, trends, and patterns have been identified and mapped. A comparative analysis of lineaments observed in September and December data was conducted, existing mineral locations were plotted, and areas considered prospective for mineralization based on apparent structure-mineralization relationships were defined. The additional information obtained using ERTS data provides an added source of information to aid in the development of more effective mineral exploration programs.

  10. Isolation and Characterization of a Halophilic Methanogen from Great Salt Lake †

    PubMed Central

    Paterek, J. Robert; Smith, Paul H.

    1985-01-01

    A halophilic methanogenic microorganism isolated from sediments collected from the southern arm of Great Salt Lake, Utah, is described. Cells were irregular, nonmotile cocci approximately 1.0 μm in diameter and stained gram negative. Colonies from anaerobic plates and roll tubes were foamy, circular, and cream-yellow. Methanol, methylamine, dimethylamine, and trimethylamine supported growth and methanogenesis. Hydrogen-carbon dioxide, formate, and acetate were not utilized. Sodium and magnesium were required for growth; the optimum NaCl concentration ranged between 1.0 and 2.0 M, with the minimum doubling time occurring at 2.0 M. The optimum growth temperature was 35°C, with maximum growth rate occurring at pH 7.5. The DNA base composition was 48.5 mol% guanine + cytosine. SLP is the type strain designation (= ATCC 35705). Images PMID:16346919

  11. Chronic toxicity of arsenic to the Great Salt Lake brine shrimp, Artemia franciscana.

    PubMed

    Brix, Kevin V; Cardwell, Rick D; Adams, William J

    2003-02-01

    We determined the chronic toxicity of arsenic (sodium arsenate) to the Great Salt Lake brine shrimp, Artemia franciscana. Chronic toxicity was determined by measuring the adverse effects of arsenic on brine shrimp growth, survival, and reproduction under intermittent flow-through conditions. The study commenced with <24-h-old nauplii, continued through reproduction of the parental generation, and ended after 28 days of exposure. The concentrations tested were 4, 8, 15, 31, and 56mg/L dissolved arsenic. The test was conducted using water from the Great Salt Lake, Utah as the dilution water. Adult survival was the most sensitive biological endpoint, with growth and reproduction somewhat less sensitive than survival. The no observed effect concentration (NOEC) for survival was 8mg/L, and the lowest observed effect concentration (LOEC) was 15mg/L dissolved arsenic. The LOEC for growth and reproduction was greater than the highest concentration tested, 56mg/L. Based on survival, the final chronic value (geometric mean of the NOEC and LOEC) was 11mg/L dissolved arsenic. The F(1) generation appeared to acclimate to the prior arsenic exposure of the parental generation and was significantly less sensitive than the parental generation. For example, survival for the F(1) generation through day 12 was 100% in 56mg/L dissolved arsenic, compared to 26% for the parental generation. Growth of the F(1) generation was significantly less than that of the parental generation across all concentrations including the control, indicating a generational difference in brine shrimp growth rather than an arsenic effect. This study represents one of the few full life cycle toxicity tests conducted with brine shrimp. PMID:12550094

  12. Water Quality in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-2001

    USGS Publications Warehouse

    Waddell, Kidd M.; Gerner, Steven J.; Thiros, Susan A.; Giddings, Elise M.; Baskin, Robert L.; Cederberg, Jay R.; Albano, Christine M.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Great Salt Lake Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to water quality in other areas across the Nation. The water-quality conditions in the Great Salt Lake Basins summarized in this report are discussed in detail in other reports that can be accessed at http://ut.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed at the national NAWQA Web site http://water.usgs.gov/nawqa.

  13. Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah

    USGS Publications Warehouse

    Ackerman, Josh T.; Herzog, Mark P.; Hartman, Christopher A.; Isanhart, John P.; Herring, Garth; Vaughn, Sharon; Cavitt, John F.; Eagles-Smith, Collin A.; Browers, Howard; Cline, Chris; Vest, Josh

    2015-01-01

    The wetlands of the Great Salt Lake ecosystem are recognized regionally, nationally, and hemispherically for their importance as breeding, wintering, and migratory habitat for diverse groups of waterbirds. Bear River Migratory Bird Refuge is the largest freshwater component of the Great Salt Lake ecosystem and provides critical breeding habitat for more than 60 bird species. However, the Great Salt Lake ecosystem also has a history of both mercury and selenium contamination, and this pollution could reduce the health and reproductive success of waterbirds. The overall objective of this study was to evaluate the risk of mercury and selenium contamination to birds breeding within Great Salt Lake, especially at Bear River Migratory Bird Refuge, and to identify the waterbird species and areas at greatest risk to contamination. We sampled eggs from 33 species of birds breeding within wetlands of Great Salt Lake during 2010 ̶ 2012 and focused on American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), white-faced ibis (Plegadis chihi), and marsh wrens (Cistothorus palustris) for additional studies of the effects of contaminants on reproduction.

  14. Fluctuation history of Great Salt Lake, Utah, during the last 13,000 years, part 2

    NASA Technical Reports Server (NTRS)

    Murchison, Stuart B.

    1989-01-01

    Great Salt Lake level fluctuations from 13,000 yr B.P. to the present were interpreted by examination of shoreline geomorphic features, shoreline deposits, archeologic sites, isotopic data, and palynologic data. After the conclusion of the Bonneville paleolake cycle, between 13,000 and 12,000 yr B.P. the lake regressed to levels low enough to deposit a littoral oxidized red bed stratum and a pelagic Glauber's salt layer. A late Pleistocene lake cycle occurred between 12,000 and 10,000 yr B.P. depositing several beaches, the highest reaching an altitude of about 4250 ft (1295.3 m). The lake regressed after 10,000 yr B.P., only to rise to 4230 ft (1289.2 m) between 9700 and 9400 yr B.P. and then gradually lower at least 15 ft (4.5 m) or more. Lake levels fluctuated between 4212 and 4180 ft (1284 and 1274 m) for the next 4000 years. A late Holocene lake cycle, constrained by radiocarbon ages between 3440 and 1400 yr B.P., is reported at a highest static level of 4221 ft (1286.5 m). After a lake level drop to altitudes ranging between 4210 and 4205 ft (1283.2 and 1281.6 m), a 4217 ft (1285.7 m) level was reached after 400 yr B.P. This level lowered to 4214 ft (1284.4 m) in the mid to late 1700 s A.D. The lake levels have since stabilized aroung a 4200 ft (1280 m) mean.

  15. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    NASA Astrophysics Data System (ADS)

    Domagalski, Joseph L.; Orem, William H.; Eugster, Hans P.

    1989-11-01

    Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO 4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO 3-Cl-SO 4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies ( 13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to

  16. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    USGS Publications Warehouse

    Domagalski, J.L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to

  17. Estimating selenium removal by sedimentation from the Great Salt Lake, Utah

    USGS Publications Warehouse

    Oliver, W.; Fuller, C.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The mass of Se deposited annually to sediment in the Great Salt Lake (GSL) was estimated to determine the significance of sedimentation as a permanent Se removal mechanism. Lake sediment cores were used to qualitatively delineate sedimentation regions (very high to very low), estimate mass accumulation rates (MARs) and determine sediment Se concentrations. Sedimentation regions were defined by comparison of isopach contours of Holocene sediment thicknesses to linear sedimentation rates determined via analysis of 210Pb, 226Ra, 7Be and 137Cs activity in 20 short cores (<5 cm), yielding quantifiable results in 13 cores. MARs were developed via analysis of the same radioisotopes in eight long cores (>10 cm). These MARs in the upper 1-2 cm of each long core ranged from 0.019 to 0.105 gsed/cm2/a. Surface sediment Se concentrations in the upper 1 or 2 cm of each long core ranged from 0.79 to 2.47 mg/kg. Representative MARs and Se concentrations were used to develop mean annual Se removal by sedimentation in the corresponding sedimentation region. The spatially integrated Se sedimentation rate was estimated to be 624 kg/a within a range of uncertainty between 285 and 960 kg/a. Comparison to annual Se loading and other potential removal processes suggests burial by sedimentation is not the primary removal process for Se from the GSL. ?? 2009 Elsevier Ltd.

  18. Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites

    PubMed Central

    Pace, Aurélie; Bourillot, Raphaël; Bouton, Anthony; Vennin, Emmanuelle; Galaup, Serge; Bundeleva, Irina; Patrier, Patricia; Dupraz, Christophe; Thomazo, Christophe; Sansjofre, Pierre; Yokoyama, Yusuke; Franceschi, Michel; Anguy, Yannick; Pigot, Léa; Virgone, Aurélien; Visscher, Pieter T.

    2016-01-01

    Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA). Our results show that the mineralisation process takes place in three steps progressing along geochemical gradients produced through microbial activity. First, a poorly crystallized Mg-Si phase precipitates on alveolar extracellular organic matrix due to a rise of the pH in the zone of active oxygenic photosynthesis. Second, aragonite patches nucleate in close proximity to sulfate reduction hotspots, as a result of the degradation of cyanobacteria and extracellular organic matrix mediated by, among others, sulfate reducing bacteria. A final step consists of partial replacement of aragonite by dolomite, possibly in neutral to slightly acidic porewater. This might occur due to dissolution-precipitation reactions when the most recalcitrant part of the organic matrix is degraded. The mineralisation pathways proposed here provide pivotal insight for the interpretation of microbial processes in past hypersaline environments. PMID:27527125

  19. Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites.

    PubMed

    Pace, Aurélie; Bourillot, Raphaël; Bouton, Anthony; Vennin, Emmanuelle; Galaup, Serge; Bundeleva, Irina; Patrier, Patricia; Dupraz, Christophe; Thomazo, Christophe; Sansjofre, Pierre; Yokoyama, Yusuke; Franceschi, Michel; Anguy, Yannick; Pigot, Léa; Virgone, Aurélien; Visscher, Pieter T

    2016-01-01

    Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA). Our results show that the mineralisation process takes place in three steps progressing along geochemical gradients produced through microbial activity. First, a poorly crystallized Mg-Si phase precipitates on alveolar extracellular organic matrix due to a rise of the pH in the zone of active oxygenic photosynthesis. Second, aragonite patches nucleate in close proximity to sulfate reduction hotspots, as a result of the degradation of cyanobacteria and extracellular organic matrix mediated by, among others, sulfate reducing bacteria. A final step consists of partial replacement of aragonite by dolomite, possibly in neutral to slightly acidic porewater. This might occur due to dissolution-precipitation reactions when the most recalcitrant part of the organic matrix is degraded. The mineralisation pathways proposed here provide pivotal insight for the interpretation of microbial processes in past hypersaline environments. PMID:27527125

  20. A slab model of the Great Salt Lake for regional climate simulation

    NASA Astrophysics Data System (ADS)

    Strong, C.; Kochanski, A. K.; Crosman, E. T.

    2014-09-01

    A slab lake model was developed for the Great Salt Lake (GSL) and coupled to a regional climate model to enable better evaluation of regional effects of projected climate change. The GSL is hypersaline with an area of approximately 4400 km2, and its notable shallowness (the deeper sections average 6.5-9 m at current lake levels) renders it highly sensitive to climate change. A time-independent (constant) effective mixing depth of approximately 5 m was determined for the GSL by numerically optimizing model-observation agreement, and improvement gained using a time-dependent effective mixing depth assumption was smaller than the uncertainty in the satellite-based observations. The slab model with constant effective mixing depth accounted for more than 97% of the variance in satellite-based observations of GSL surface temperature for years 2001 through 2003. Using a lake surface temperature climatology in place of the lake model resulted in annual mean near-surface air temperature differences that were small (˜10-2 K) away from the lake, but differences in annual precipitation downstream reached 3 cm (4.5%) mainly because of enhanced turbulent heat fluxes off the lake during spring. When subjected to a range of pseudo global warming scenarios, the annual mean lake surface temperature increased by 0.8°C per degree of air temperature increase.

  1. Great Salt Lake Microbial Communities: The Foundation of a Terminal Lake Ecosystem

    NASA Astrophysics Data System (ADS)

    Baxter, B. K.; Acord, M.; Riddle, M. R.; Avery, B.

    2006-12-01

    Great Salt Lake (GSL) is a natural hypersaline ecosystem and a terminal lake of substantial size. The dramatic fluctuation in water levels and salinity creates an ecological backdrop selective for organisms with a high degree of adaptability. At the macro level, the biodiversity of the GSL ecosystem is simple, due to the limitations of an extreme saline environment: Birds eat the two invertebrates of the lake, and the invertebrates eat phytoplankton. However, analysis of the microbial level reveals an enormous diversity of species interacting with one another and the ecosystem as a whole. Our cultivation, biochemical tests, microscopy and DNA sequencing yielded data on dozens of isolates. These data demonstrate novel species, and possibly genera, living in the lake. In addition, we have discovered viruses (bacteriophage) that prey on the microorganisms. Preliminary data on bacteria dwelling in the gut of the brine shrimp, Artemia franciscana, link these prokaryotic organisms to the food chain for the first time. All of these results taken together open the door for the discussion of the significance of the microbial level of terminal lake ecosystem, particularly in light of lake water contamination and bioremediation possibilities.

  2. Formation of aragonite cement by nannobacteria in the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Pedone, Vicki A.; Folk, Robert L.

    1996-08-01

    Brine-shrimp egg cases in growth cavities in modern stromatolites in the Great Salt Lake, Utah, are replaced by aragonite and cemented together by aragonite cement. The fabric of the cement changes dramatically as the distance from the egg case increases. The cement within 50 to 70 μm of the egg case exhibits a random fabric of 10 to 20 μm equant crystals. The surface of the cement is covered by bead-like bumps, 0.1 μm in diameter, interpreted as nannobacteria. Overlying the random, “beaded” fabric with a relatively abrupt transition are epitaxial, prismatic aragonite crystals that have smooth crystal surfaces lacking bead-like bodies. The smooth-surfaced prismatic aragonite crystals are interpreted to be “normal” abiotic precipitates, whereas the “beaded” microspar is interpreted to result from biotic processes, where the nannobacteria serve as catalysts for creation of the cement. A population explosion of bacteria occurs as the organic material of egg case rots, which alters the microchemical environment and induces a rapid precipitation of aragonite, enclosing tens of thousands of nannobacteria. As the organic material is destroyed, reproduction of bacteria slows and epitaxial, prismatic aragonite crystals nucleate and grow abiotically on the structureless, “biotic” layer.

  3. A multi-proxy record of volume in the Great Salt Lake over the Holocene

    NASA Astrophysics Data System (ADS)

    Nielson, K. E.; Bowen, G. J.; Toney, J. L.; Tarozo, R.; Huang, Y.; Bowen, B.

    2010-12-01

    Continental paleoclimate records for the Holocene are essential for understanding the influence of climate modes on terrestrial settings. Terminal lakes, like the Great Salt Lake, UT (GSL) are particularly well suited for examining changes in water balance in response to large scale climate change. We present records of lipid abundance and hydrogen isotope data; hydrogen and oxygen isotope variability in brine shrimp cysts; carbonate oxygen and carbon isotopes; and variability in mineralogy from reflectance spectrometry in a core spanning 9 to 2 ka bp from the GSL. The isotopic value of lake waters are inferred from the cyst isotope records. The oxygen isotopic composition of cysts decreases slowly by about 2 ‰ from the beginning of the record (approx. 9 ka bp) to about 6 ka, and is highly variable after about 4.5 ka bp. This gradual isotopic decrease suggests increased water input into the GSL up to the Mid-Holocene and more variable inputs after. Some portion of the decrease is likely attributable to a reestablishment of equilibrium with local precipitation sources following the rapid evaporation of Lake Bonneville at the end of the Pleistocene. Carbonate oxygen and carbon isotope ratios co-vary before 5.5 ka and after 4.5 ka, and are anti-correlated between, suggesting a major restructuring of the hydrologic regime in the Mid-Holocene. Distributions of lipid and n

  4. An Equation of State for Hypersaline Water in Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.L.; Millero, F.J.; Jones, B.F.; Green, W.R.

    2011-01-01

    Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (??) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ?? of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L-1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (?? = ?? 0.32 kg m-3): ?? - ??0 = 184.01062 + 1.04708 * S - 1.21061*T + 3.14721E - 4*S2 + 0.00199T2 where ??0 is the density of pure water in kg m-3, S is conductivity salinity g L-1, and T is water temperature in degrees Kelvin. ?? 2011 U.S. Government.

  5. Impacts of harvesting on brine shrimp (Artemia franciscana) in Great Salt Lake, Utah, USA.

    PubMed

    Sura, Shayna A; Belovsky, Gary E

    2016-03-01

    Selective harvesting can cause evolutionary responses in populations via shifts in phenotypic characteristics, especially those affecting life history. Brine shrimp (Artemia franciscana) cysts in Great Salt Lake (GSL), Utah, USA are commercially harvested with techniques that select against floating cysts. This selective pressure could cause evolutionary changes over time. Our objectives are to (1) determine if there is a genetic basis to cyst buoyancy, (2) determine if cyst buoyancy and nauplii mortality have changed over time, and (3) to examine GSL environmental conditions over time to distinguish whether selective harvesting pressure or a trend in environmental conditions caused changes in cyst buoyancy and nauplii mortality. Mating crosses between floating and sinking parental phenotypes with two food concentrations (low and high) indicated there is a genetic basis to cyst buoyancy. Using cysts harvested from 1991-2011, we found cyst buoyancy decreased and nauplii mortality increased over time. Data on water temperature, salinity, and chlorophyll a concentration in GSL from 1994 to 2011 indicated that although water temperature has increased over time and chlorophyll a concentration has decreased over time, the selective harvesting pressure against floating cysts is a better predictor of changes in cyst buoyancy and nauplii mortality over time than trends in environmental conditions. Harvesting of GSL A. franciscana cysts is causing evolutionary changes, which has implications for the sustainable management and harvesting of these cysts. Monitoring phenotypic characteristics and life-history traits of the population should be implemented and appropriate responses taken to reduce the impacts of the selective harvesting. PMID:27209783

  6. Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy

    USGS Publications Warehouse

    Colman, Steven M.; Kelts, K.R.; Dinter, D.A.

    2002-01-01

    High-resolution seismic-reflection data from Great Salt Lake show that the basinal sediment sequence is cut by numerous faults with N-S and NE-SW orientations. This faulting shows evidence of varied timing and relative offsets, but includes at least three events totaling about 12 m following the Bonneville phase of the lake (since about 13.5 ka). Several faults displace the uppermost sediments and the lake floor. Bioherm structures are present above some faults, which suggests that the faults served as conduits for sublacustrine discharge of fresh water. A shallow, fault-controlled ridge between Carrington Island and Promontory Point, underlain by a well-cemented pavement, separates the main lake into two basins. The pavement appears to be early Holocene in age and younger sediments lap onto it. Onlap-offlap relationships, reflection truncations, and morphology of the lake floor indicate a low lake, well below the present level, during the early Holocene, during which most of the basin was probably a playa. This low stand is represented by irregular reflections in seismic profiles from the deepest part of the basin. Other prominent reflectors in the profiles are correlated with lithologic changes in sediment cores related to the end of the Bonneville stage of the lake, a thick mirabilite layer in the northern basin, and the Mazama tephra. Reflections below those penetrated by sediment cores document earlier lacustrine cycles. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. An observational and numerical modeling investigation of Great Salt Lake-effect snow

    NASA Astrophysics Data System (ADS)

    Onton, Daryl John

    2000-05-01

    The structure and evolution of a lake-effect snow event associated with the Great Salt Lake (GSL) is described using observational and numerical modeling approaches. This event occurred in an environment characterized by low-level instability, large lake-land and lake-700 hPa temperature differences, and low-level flow nearly parallel to the major axis of the GSL. Localized heating over the relatively warm GSL is shown to have induced mesoscale pressure troughing, land-breeze circulations, and low-level convergence that led to the development of convective updrafts, and a wind-parallel band of clouds and precipitation. The hyper-saline content of the GSL produced reduced moisture fluxes compared to fresh water. Resulting moisture fluxes were sufficient, however, to enhance precipitation rates. Orographically-induced circulations did not play a major role in the formation of the bands, but orographic uplift (subsidence) enhanced (reduced) precipitation rates. Model diagnostics and sensitivity studies are used to examine the predictability of this event given known uncertainties in the specification of lake/land properties and large-scale conditions.

  8. Diurnal trends in methylmercury concentration in a wetland adjacent to Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.L.; Cederberg, J.R.; Krabbenhoft, D.P.; Beisner, K.R.; Whitehead, J.; Gardberg, J.

    2011-01-01

    A 24-h field experiment was conducted during July 2008 at a wetland on the eastern shore of Great Salt Lake (GSL) to assess the diurnal cycling of methylmercury (MeHg). Dissolved (<0.45??m) MeHg showed a strong diurnal variation with consistently decreasing concentrations during daylight periods and increasing concentrations during non-daylight periods. The proportion of MeHg relative to total Hg in the water column consistently decreased with increasing sunlight duration, indicative of photodegradation. During the field experiment, measured MeHg photodegradation rates ranged from 0.02 to 0.06ngL-1h-1. Convective overturn of the water column driven by nighttime cooling of the water surface was hypothesized as the likely mechanism to replace the MeHg in the water column lost via photodegradation processes. A hydrodynamic model of the wetland successfully simulated convective overturn of the water column during the field experiment. Study results indicate that daytime monitoring of selected wetlands surrounding GSL may significantly underestimate the MeHg content in the water column. Wetland managers should consider practices that maximize the photodegradation of MeHg during daylight periods. ?? 2011.

  9. Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites

    NASA Astrophysics Data System (ADS)

    Pace, Aurélie; Bourillot, Raphaël; Bouton, Anthony; Vennin, Emmanuelle; Galaup, Serge; Bundeleva, Irina; Patrier, Patricia; Dupraz, Christophe; Thomazo, Christophe; Sansjofre, Pierre; Yokoyama, Yusuke; Franceschi, Michel; Anguy, Yannick; Pigot, Léa; Virgone, Aurélien; Visscher, Pieter T.

    2016-08-01

    Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA). Our results show that the mineralisation process takes place in three steps progressing along geochemical gradients produced through microbial activity. First, a poorly crystallized Mg-Si phase precipitates on alveolar extracellular organic matrix due to a rise of the pH in the zone of active oxygenic photosynthesis. Second, aragonite patches nucleate in close proximity to sulfate reduction hotspots, as a result of the degradation of cyanobacteria and extracellular organic matrix mediated by, among others, sulfate reducing bacteria. A final step consists of partial replacement of aragonite by dolomite, possibly in neutral to slightly acidic porewater. This might occur due to dissolution-precipitation reactions when the most recalcitrant part of the organic matrix is degraded. The mineralisation pathways proposed here provide pivotal insight for the interpretation of microbial processes in past hypersaline environments.

  10. Sapropels in the Great Salt Lake basin: Indicators of massive groundwater-discharge events

    NASA Astrophysics Data System (ADS)

    Oviatt, C. G.

    2012-12-01

    Two stratigraphic intervals of finely laminated, organic-rich muds (referred to as sapropels), which in places are interbedded with mirabilite (Na2SO4 10H2O) and/or halite (NaCl), are present in cores of sediments from the floor of Great Salt Lake, UT (GSL). The muds vary in thickness, including the interbedded salt, from less than 0.5 m to over 10 m (in the case of the younger sapropel in the north arm of GSL). They contain brine-shrimp cysts and well-defined laminations less than 1 mm thick. Immediately after recovery in cores, the muds are pure black, but they oxidize to brown colors after a few days of exposure to the atmosphere. Organic-carbon contents in the younger sapropel are 3-5 %, and nitrogen percentages range from about 0.2 to 0.4. The sapropels are overlain by muds deposited in shallow hypersaline lakes, and overlie sediments of deep, freshwater lakes. Independent evidence from radiocarbon ages and shoreline chronology indicates that the upper sapropel was deposited while the lake was shallow (less than 25 m deep; average maximum depth of modern GSL is ~10 m; maximum depth of Lake Bonneville is >300 m). The age of the upper sapropel is about 10-11.5 cal ka, and it was deposited immediately following the regression of Lake Bonneville, which filled the basin during marine oxygen-isotope stage 2. The older sapropel directly overlies sediments of a deep lake that is likely correlative with oxygen-isotope stage 6. A hypothesis to explain sapropel deposition is that groundwater that had been stored in mountain aquifers during the high-lake periods was discharged onto the basin floor where it ran into the lake and formed a freshwater cap on the saline water; organic matter that settled to the bottom of the lake from the surface exhausted dissolved oxygen and accumulated on the bottom of the stratified lake. The ages of spring and wetland deposits at numerous localities around the basin are consistent with this hypothesis. This hypothetical cause for sapropel

  11. Total- and Methyl-mercury Response to Causeway Closure in the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Valdes, C. A.; Tingey, C.; Frederick, L.; Black, F.; Stringham, B.; Johnson, W. P.

    2015-12-01

    In 2007, high mercury (Hg) concentrations were measured in various waterfowl species residing at the Great Salt Lake (GSL), Utah. During this time high monomethylmercury (MMHg, the toxic bioaccumulative form of Hg) concentrations were also determined in the anoxic deep brine layer (DBL) of the GSL, ranging from 0.8 to >30 ng-L-1. The DBL is therefore suspected as a source of MMHg to the surrounding ecosystem; however, the pathways by which MMHg is able to propagate from the DBL upward into the higher trophic levels of the GSL ecosystem is unknown. The DBL has recently retreated from the southernmost basin of the GSL following the closure of culverts in the causeway separating the north and south arms of the lake. Anoxic, reductive conditions and high dissolved organic matter (DOM) content in the DBL allow the persistence of MMHg, thus the retreat of the DBL could affect total mercury (THg) and MMHg concentrations in brine and sediment, as well as the Hg burdens in invertebrates and waterfowl. Because the extent of the DBL depends on flux of north arm brine through causeway openings, this temporary closing of flow provides a unique opportunity to monitor the response of Hg concentrations in the DBL, sediment, and biota during this transient. Waterfowl and invertebrate tissues, plant, sediment, and brine samples were collected before and after the culvert closure. Biota and sediment samples were digested, and all samples were analyzed using cold vapor adsorption atomic fluorescence spectroscopy (CVAFS). The samples from pre- and post-closure will be compared and described in order to deduce the role of the DBL as a potential reservoir of MMHg in the GSL.

  12. Comparison of Radiocarbon Ages for Multiproxy Paleoclimate Reconstruction of the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Nielson, K. E.; Bowen, G. J.; Eglinton, T. I.

    2008-12-01

    Multiproxy paleoclimate reconstructions from high sedimentation-rate systems offer promising opportunities to deconvolve multiple aspects climate system response to past forcing. However, the time-equivalence of proxies must be established before such reconstructions can be usefully interpreted. Differences in source ages, transport pathways, and surface residence times for substrates may lead to differences in lag times between proxy formation and deposition, compromising comparative analysis of data from multiple proxies. We used multi-substrate radiocarbon dating to investigate the potential for multi-proxy reconstruction of Holocene changes in the volume of the Great Salt Lake (GSL), Utah, based on the stable isotope composition of organic and inorganic substrates in lake sediment cores. Among potential substrates for this work are normal alkanes of vascular higher plant and algal origin, fossil cysts of lake-dwelling brine shrimp (Artemia), and micritic aragonite. Radiocarbon ages for all organic substrates (alkanes, cysts) sampled at any given core depth are concordant within analytical uncertainty and are similar to ages determined on land-plant debris and filamentous algae isolated from the sediment. Inorganic carbonate, in contrast, is depleted in 14C compare to the organic proxies, giving ages that were apparently 2000 to 3000 years older, likely due to winnowing and re-deposition of carbonate at the core site. These results suggest that the maximum temporal resolution achievable through analysis of mineral substrates is on the order of several millennia. Although the limited precision of the radiocarbon analysis precludes precise determination of the maximum potential resolution of organic-proxy based climate reconstructions, the relatively high sedimentation rates (50--150 cm/kyr) and age-equivalence of the substrates analyzed implies that sub- centennial scale resolution should be achievable throughout much of the Holocene portion of the GSL

  13. Enhanced development of lacustrine microbialites on gravity flow deposits, Great Salt Lake, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bouton, Anthony; Vennin, Emmanuelle; Mulder, Thierry; Pace, Aurélie; Bourillot, Raphaël; Thomazo, Christophe; Brayard, Arnaud; Goslar, Tomasz; Buoncristiani, Jean-François; Désaubliaux, Guy; Visscher, Pieter T.

    2016-07-01

    The Great Salt Lake, Utah, USA is a shallow, hypersaline, intracontinental lake hosting extensive microbial deposits. At a large spatial scale, the distribution of these deposits is driven by environmental and geodynamical factors (i.e. water-level fluctuations and a fault-related framework). A detailed mapping of the Buffalo Point area, in the north-western part of Antelope Island, indicates the presence of an anomalous concentration of microbial deposits dated ca. 5.8 ka BP and distributed along a lobe-shaped geometry. This uncommon microbial deposit geometry results from an extensive colonization of a conglomerate substrate exhibiting an accumulation of m-sized rounded Cambrian quartzite boulders. We suggest that this conglomerate substrate provides a stable nucleation point that promotes the development and preservation of the lobe-shaped microbial deposits. Microbial deposits may also have protected the conglomerate substrate from erosional processes and thereby increased the preservation potential of the lobe-shaped structure. Based on the characteristics of the conglomerate (e.g. grain size, texture) and its location (i.e. 200 m beyond the average shoreline), this lobe-shaped structure likely results from subaqueous debris or a hyperconcentrated density flow that transports sedimentary material from the Buffalo Point slopes downward to the shore. We estimate the age of the conglomerate deposition to be between 21 and 12 ka BP. The initiation of the flow may have been triggered by various mechanisms, but the existence of a major active normal fault in the vicinity of these deposits suggests that an earthquake could have destabilized the accumulated sediments and resulted in conglomerate emplacement. The catastrophic 15 ka BP Bonneville Flood, which led to a drop in the lake level (approximately 110 m), may also provide an explanation for the initiation of the flow.

  14. Diel variation of selenium and arsenic in a wetland of the Great Salt Lake, Utah

    USGS Publications Warehouse

    Dicataldo, G.; Johnson, W.P.; Naftz, D.L.; Hayes, D.F.; Moellmer, W.O.; Miller, T.

    2011-01-01

    Diel (24-h) changes in Se and As concentrations in a freshwater wetland pond bordering the Great Salt Lake (GSL) were examined. Selenium concentrations (filtered and unfiltered) changed on a diel basis, i.e., were depleted during early morning and enriched during daytime over August 17-18. During the May 24-25, 2006 and September 29-30 diel studies, no significant 24-h trends were observed in Se concentrations compared to August, which showed daily maximums up to 59% greater than the daily minimum. Both filtered and unfiltered As concentrations also varied on a diel cycle, with increased concentrations during early morning and decreased concentrations during daytime. Filtered As concentrations increased 110% during the May 24-25, 2006 diel study. Selenium varied in phase with pH, dissolved O2 (DO), and water temperature (Tw) whereas As varied opposite to Se, pH, DO and Tw. Changes in pH, DO and Tw showed a direct linear correlation (r=0.74, 0.75, and 0.55, respectively) to filtered Se. Also pH, DO and Tw were inversely correlated to filtered As concentration (r=-0.88, -0.87, and -0.84, respectively). Equilibrium geochemical speciation and sorption models were used to examine the potential oxidation state changes in Se and As, and sorption and desorption reactions corresponding to the observed 24-h variations in pe and pH. In this wetland it was postulated that diel Se variation was driven by sorption and desorption due to photosynthesis-induced changes in pH and redox conditions. Diel variations of As were hypothesized to be linked to pH-driven sorption and desorption as well as co-precipitation and co-dissolution with mineral phases of Mn. ?? 2010 Elsevier Ltd.

  15. Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah.

    PubMed

    Meuser, Jonathan E; Baxter, Bonnie K; Spear, John R; Peters, John W; Posewitz, Matthew C; Boyd, Eric S

    2013-08-01

    Phylogenetic examinations of communities sampled along geochemical gradients provide a framework for inferring the relative importance of niche-based ecological interactions (competition, environmental filtering) and neutral-based evolutionary interactions in structuring biodiversity. Great Salt Lake (GSL) in Utah exhibits strong spatial gradients due to both seasonal variation in freshwater input into the watershed and restricted fluid flow within North America's largest saline terminal lake ecosystem. Here, we examine the phylogenetic structure and composition of archaeal, bacterial, and eukaryal small subunit (SSU) rRNA genes sampled along a stratified water column (DWR3) in the south arm of GSL in order to infer the underlying mechanism of community assembly. Communities sampled from the DWR3 epilimnion were phylogenetically clustered (i.e., coexistence of close relatives due to environmental filtering) whereas those sampled from the DWR3 hypolimnion were phylogenetically overdispersed (i.e., coexistence of distant relatives due to competitive interactions), with minimal evidence for a role for neutral processes in structuring any assemblage. The shift from phylogenetically clustered to overdispersed assemblages was associated with an increase in salinity and a decrease in dissolved O2 (DO) concentration. Likewise, the phylogenetic diversity and phylogenetic similarity of assemblages was strongly associated with salinity or DO gradients. Thus, salinity and/or DO appeared to influence the mechanism of community assembly as well as the phylogenetic diversity and composition of communities. It is proposed that the observed patterns in the phylogenetic composition and structure of DWR3 assemblages are attributable to the meromictic nature of GSL, which prevents significant mixing between the epilimnion and the hypolimnion. This leads to strong physicochemical gradients at the halocline, which are capable of supporting a greater diversity. However, concomitant

  16. Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma.

    PubMed

    Caton, T M; Witte, L R; Ngyuen, H D; Buchheim, J A; Buchheim, M A; Schneegurt, M A

    2004-11-01

    The Salt Plains National Wildlife Refuge (SPNWR) near Cherokee, Oklahoma, contains a barren salt flat where Permian brine rises to the surface and evaporates under dry conditions to leave a crust of white salt. Rainfall events dissolve the salt crust and create ephemeral streams and ponds. The rapidly changing salinity and high surface temperatures, salinity, and UV exposure make this an extreme environment. The Salt Plains Microbial Observatory (SPMO) examined the soil microbial community of this habitat using classic enrichment and isolation techniques and phylogenetic rDNA studies. Rich growth media have been emphasized that differ in total salt concentration and composition. Aerobic heterotrophic enrichments were performed under a variety of conditions. Heterotrophic enrichments and dilution plates have generated 105 bacterial isolates, representing 46 phylotypes. The bacterial isolates have been characterized phenotypically and subjected to rDNA sequencing and phylogenetic analyses. Fast-growing isolates obtained from enrichments with 10% salt are predominantly from the gamma subgroup of the Proteobacteria and from the low GC Gram-positive cluster. Several different areas on the salt flats have yielded a variety of isolates from the Gram-negative genera Halomonas, Idiomarina, Salinivibrio, and Bacteroidetes. Gram-positive bacteria are well represented in the culture collection including members of the Bacillus, Salibacillus, Oceanobacillus, and Halobacillus. PMID:15696379

  17. Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma.

    PubMed

    Caton, T M; Witte, L R; Ngyuen, H D; Buchheim, J A; Buchheim, M A; Schneegurt, M A

    2004-11-01

    The Salt Plains National Wildlife Refuge (SPNWR) near Cherokee, Oklahoma, contains a barren salt flat where Permian brine rises to the surface and evaporates under dry conditions to leave a crust of white salt. Rainfall events dissolve the salt crust and create ephemeral streams and ponds. The rapidly changing salinity and high surface temperatures, salinity, and UV exposure make this an extreme environment. The Salt Plains Microbial Observatory (SPMO) examined the soil microbial community of this habitat using classic enrichment and isolation techniques and phylogenetic rDNA studies. Rich growth media have been emphasized that differ in total salt concentration and composition. Aerobic heterotrophic enrichments were performed under a variety of conditions. Heterotrophic enrichments and dilution plates have generated 105 bacterial isolates, representing 46 phylotypes. The bacterial isolates have been characterized phenotypically and subjected to rDNA sequencing and phylogenetic analyses. Fast-growing isolates obtained from enrichments with 10% salt are predominantly from the gamma subgroup of the Proteobacteria and from the low GC Gram-positive cluster. Several different areas on the salt flats have yielded a variety of isolates from the Gram-negative genera Halomonas, Idiomarina, Salinivibrio, and Bacteroidetes. Gram-positive bacteria are well represented in the culture collection including members of the Bacillus, Salibacillus, Oceanobacillus, and Halobacillus.

  18. Numerical weather prediction of Great Salt Lake effect precipitation at convection-permitting grid spacings

    NASA Astrophysics Data System (ADS)

    McMillen, John Daniel

    This dissertation examines Weather Research and Forecasting (WRF) simulations of Great Salt Lake Effect (GSLE) precipitation. An evaluation of banded and nonbanded GSLE-event simulations shows that WRF has low skill predicting GSLE precipitation. An object-based verification method is used in this evaluation to quantify a precipitation bias that contributes to WRF models' low skill. We also analyze WRF simulations of the 27 October 2010 banded GSLE event to evaluate the sensitivity of precipitation prediction to the choice of microphysics parameterization (MP). WRF simulations of 11 banded and eight nonbanded GSLE events are evaluated with subjective, traditional, and object-based verification. Subjectively, a majority of simulations of banded GSLE events produce realistic precipitation features, whereas a majority of simulations of nonbanded GSLE events do not. Simulations of both banded and nonbanded GSLE events record low equitable threat scores, but simulations of banded GSLE events outperform simulations of nonbanded events. Verification using the Method for Object-based Diagnostic Evaluation (MODE) developed by Davis et al. shows that simulations of banded and nonbanded GSLE events exhibit a southward (rightward and downstream relative to the flow) bias in event total precipitation location that limits forecast skill. WRF simulations of the 27 October 2010 GSLE event are sensitive to the choice of MP. Precipitation simulated using the Thompson MP scheme (THOM) verifies best against radar-estimated precipitation and gauge observations. The Goddard, Morrison, and WRF double-moment 6-class (WDM6) schemes produce more precipitation than THOM, with WDM6 producing the most. Analyses of hydrometeor mass tendencies show that WDM6 creates more graupel and total precipitation than the other schemes and indicate that the rate of graupel and snow production can strongly influence the precipitation efficiency in simulations of lake-effect storms. These results show that

  19. Bioadvection of mercury from the Great Salt Lake to surrounding terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Black, F.; Goodman, J.; Collins, J.; Saxton, H.; Mansfield, C.

    2015-12-01

    The Great Salt Lake (GSL), Utah, USA, is a hypersaline terminal lake that is home to some of the highest concentrations of methylmercury (MeHg) ever measured in natural waters. While terrestrial organisms typically have very low concentrations of MeHg because it is produced almost exclusively in sub-oxic aquatic environments, we documented elevated concentrations of MeHg in brine flies (Ephydra spp.) and spiders along the shores of the GSL. We hypothesized that brine flies, with their larval and pupal stages in the GSL, act as vectors that transfer Hg from the lake to surrounding terrestrial ecosystems as flying adults where they are eaten by spiders and other organisms. The GSL is visited annually by millions of migratory birds, and a major food source for both resident and migratory birds at the GSL are brine flies, so brine flies may represent an important source of Hg to birds here. We conducted a spatial and temporal study of HgT and MeHg in surface waters, brine flies, spiders, and Loggerhead Shrikes (Lanius ludovicianus) a predatory terrestrial songbird of conservation concern, and investigated sublethal effects due to Hg exposure on Antelope Island in the GSL. Samples were also analyzed for their stable carbon and nitrogen isotopic ratios. While HgT and MeHg concentrations in surface waters were elevated, they varied relatively little throughout the year and exhibited no clear seasonal trends. However, seasonal maxima in concentrations of HgT and MeHg in brine flies and spiders occurred in spring and fall, periods of peak migratory bird numbers at the GSL. Approximately 20% of adult/juvenile shrikes had blood HgT concentrations above thresholds previously shown to reduce breeding success in other songbirds, with these concentrations increasing after the annual appearance of orb weaving spiders. HgT concentrations of shrikes decreased with increasing distance from the shoreline and decreasing brine fly abundance, again suggesting the GSL is the ultimate

  20. Prediction of water surface elevation of Great Salt Lake using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Shrestha, N. K.; Urroz, G.

    2009-12-01

    Record breaking rises of Great Salt Lake (GSL) water levels that were observed in the period 1982-1987 resulted in severe economic impact to the State of Utah. Rising lake levels caused flooding that damaged highways, railways, recreation facilities and industries located in exposed lake bed. Prediction of GSL water levels necessitates the development of a model for accurate predictions of such levels in order to reduce or prevent economic loss due to flooding as happened in the past. A data-driven model, whose intent is to determine the relationship between inputs and outputs without knowing underlying physical process, was used in this project. A data-driven model can bridge the gap between classical regression-based and physically-based hydrological models. A Support Vector Machines (SVM) was used to predict water surface elevation of the GSL. The SVM-based reconstruction was used to develop time series forecast for multiple lead times. The model is able to extract the dynamics of the system by using only a few observed data points for training. The reliability of the algorithm in learning and forecasting the dynamics of the system was tested by changing two parameters: the integer time lag and the dimension (d) of the system. Parameter tau models the delay in which the dynamics unfolds by creating vectors of dimension d out of single measurements. For a given set of parameters tau and d, the discrepancy between observation and prediction is reduced by changing the cost parameter and a parameter called epsilon that controls the width of the SVM insensitive zone. All the data points within the epsilon insensitive zone are neglected in the SVM analysis. The analysis was performed for two time periods. The period of 1982 to 1987 was used to test the model performance in predicting the corresponding dramatic rise of GSL elevation. The period of 1987 to 2008 was used to test the performance of model for the normal water level rise and fall of the GSL. This analysis

  1. Carbon substrate utilization, antibiotic sensitivity, and numerical taxonomy of bacterial isolates from the Great Salt Plains of Oklahoma.

    PubMed

    Litzner, Brandon R; Caton, Todd M; Schneegurt, Mark A

    2006-05-01

    The current work extends the phenotypic characterization of a bacterial culture collection from the Great Salt Plains of Oklahoma. This barren expanse of mud flats is typically crusted with thalassohaline salt evaporites. The initial account of the aerobic heterotrophic bacteria from the Great Salt Plains described 105 halotolerant isolates that represented 47 phylotypes. Extensive phenotypic analyses were performed on 76 isolates representing 37 unique phylotypes. The current report extends these observations for 60 of the isolates by measuring a wider set of phenotypic characteristics. Utilization patterns for 45 carbon substrates were used to assign the isolates into seven coherent phenons, along with several singletons and a group of isolates that did not grow on single carbon substrates. Most of the isolates were able to utilize nearly all of the nitrogen sources tested, with nitrate being the least utilized. Little antibiotic resistance was seen in the collection as a whole; however, certain phenons were enriched for antibiotic-resistant organisms. A total of 81 phenotypic characteristics were used to generate dendrograms. The numerical taxonomy trees essentially agreed with those generated using 16S rRNA gene sequences. The pattern of carbon substrate utilization showed substantial changes at different salinities that may have relevance to the variable salinities microbes experience at the Salt Plains over time. PMID:16518618

  2. Carbon substrate utilization, antibiotic sensitivity, and numerical taxonomy of bacterial isolates from the Great Salt Plains of Oklahoma.

    PubMed

    Litzner, Brandon R; Caton, Todd M; Schneegurt, Mark A

    2006-05-01

    The current work extends the phenotypic characterization of a bacterial culture collection from the Great Salt Plains of Oklahoma. This barren expanse of mud flats is typically crusted with thalassohaline salt evaporites. The initial account of the aerobic heterotrophic bacteria from the Great Salt Plains described 105 halotolerant isolates that represented 47 phylotypes. Extensive phenotypic analyses were performed on 76 isolates representing 37 unique phylotypes. The current report extends these observations for 60 of the isolates by measuring a wider set of phenotypic characteristics. Utilization patterns for 45 carbon substrates were used to assign the isolates into seven coherent phenons, along with several singletons and a group of isolates that did not grow on single carbon substrates. Most of the isolates were able to utilize nearly all of the nitrogen sources tested, with nitrate being the least utilized. Little antibiotic resistance was seen in the collection as a whole; however, certain phenons were enriched for antibiotic-resistant organisms. A total of 81 phenotypic characteristics were used to generate dendrograms. The numerical taxonomy trees essentially agreed with those generated using 16S rRNA gene sequences. The pattern of carbon substrate utilization showed substantial changes at different salinities that may have relevance to the variable salinities microbes experience at the Salt Plains over time.

  3. Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake

    NASA Technical Reports Server (NTRS)

    Mann, Michael E.; Lall, Upmanu; Saltzman, Barry

    1995-01-01

    We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.

  4. Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah

    SciTech Connect

    Stutz, Jochen; Ackermann, Ralf; Fast, Jerome D.; Barrie, Leonard

    2002-05-15

    The presence of reactive chlorine in the lower troposphere has been postulated in literature but thus far only indirect measurements have been reported. Here we present the first direct observations of chlorine oxide (ClO). During the Vertical Transport and MiXing (VTMX) study in Salt Lake City in October 2000 we observed mixing ratios of 15 ppt ClO and 6 ppt of BrO downwind of salt flats and upwind from the urban area of Salt Lake City. The observed levels lead to a doubling of the atmospheric oxidation capacity. The ozone concentrations observed simulataneously appear to be anticorrelated to the halogen oxide levels, indicating that ozone depletion by catalytic cycles may have occurred.

  5. Development of a Site-specific Standard for Selenium in Open Waters of Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Moellmer, W. O.; Miller, T.; Ohlendorf, H.; Denbleyker, J.

    2006-12-01

    The Great Salt Lake (GSL) is a unique terminal lake located adjacent to a rapidly growing metropolitan area in the western United States. The open water of the GSL is protected for its current beneficial uses through the application of a narrative criteria clause in the state water quality standards. The Utah Department of Environmental Quality (DEQ) initiated a process in 2004 to develop a site-specific numeric water quality standard for selenium for the open waters of the GSL to balance protection of the GSL's unique ecology and beneficial uses with burgeoning development. The process the DEQ initiated included the formation of a Great Salt Lake Water Quality Steering Committee and a Science Panel to identify the studies required, manage the studies and finally recommend a site-specific standard. Great Salt Lake Water Quality Steering Committee. The DEQ established the GSL Water Quality Steering Committee (Steering Committee) to provide a forum for stakeholders to assist in guiding the process of developing numeric standards for the lake. This group consists of federal and state regulatory agencies, other public entities, conservation organizations, recreation groups, and industrial users of the lake. Great Salt Lake Science Panel. The DEQ established the GSL Science Panel (Science Panel) to advise the DEQ and Steering Committee and provide overall technical direction and review for the program. The Science Panel is composed of 9 members representing federal and state regulatory agencies, industry and academia. The purpose of the panel is to identify data gaps in the literature, design and oversee scientific investigations to fill critical data gaps, and finally recommend a numeric water quality standard to the Steering Committee. Studies Currently Underway. A partnership of researchers—including local and national experts from education and industry—are collaborating with the DEQ, the Steering Committee, and the Science Panel to complete the studies required

  6. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  7. Inorganic Contaminant Concentrations and Body Condition in Wintering Waterfowl from Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Vest, J.; Conover, M.; Perschon, C.; Luft, J.

    2006-12-01

    The Great Salt Lake (GSL) is the fourth largest terminal lake in the world and is an important region for migratory and breeding waterbirds. Because the GSL is a closed basin, contaminants associated with industrial and urban development may accumulate in this system. Recently, water and sediment samples from the GSL revealed high concentrations of Hg and Se and methylmercury concentrations in GSL water samples were among the highest ever recorded in surface water by the USGS Mercury Laboratory. Thus, GSL waterbirds are likely exposed to these contaminants and elevated contaminant concentrations may adversely affect survival and reproduction in waterfowl. Our objectives were to 1) estimate mercury (Hg), selenium (Se), cadmium (Cd), copper (Cu), and zinc (Zn) concentrations in wintering waterfowl from GSL and, 2) evaluate relationships between measures of waterfowl body condition and internal organ masses (hereafter body condition) with trace metal concentrations. We collected common goldeneye (COGO), northern shoveler (NSHO), and American green-winged teal (AGWT) from the GSL during early winter. We used ICP-MS to analyze liver and muscle tissue samples for contaminant concentrations. We developed species specific regression models for each of 5 condition indices, including ingesta-free plucked body mass (IFPBM), abdominal fat mass, spleen, liver, and pancreas masses. Independent variables were comprised of Hg, Se, Cd, Cu, and Zn and we included sex and age as covariates in each regression. We used Akaike's Information Criterion adjusted for small sample size to select best and competing models. Subsequently, we used partial correlations to depict inverse relationships identified in competing models. Hg concentrations in COGO and NSHO muscle tissue generally exceeded or approached the 1 ppm wet weight (ww) threshold considered unsafe for human consumption in fish and game. Hg concentrations in liver tissue exceeded or were among the highest reported in published

  8. Selected aquatic biological investigations in the Great Salt Lake basins, 1875-1998, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Giddings, Elise M.P.; Stephens, Doyle W.

    1999-01-01

    This report summarizes previous investigations of aquatic biological communities, habitat, and contaminants in streams and selected large lakes within the Great Salt Lake Basins study unit as part of the U.S. Geological Survey?s National Water-Quality Assessment Program (NAWQA). The Great Salt Lake Basins study unit is one of 59 such units designed to characterize water quality through the examination of chemical, physical, and biological factors in surface and ground waters across the country. The data will be used to aid in the planning, collection, and analysis of biological information for the NAWQA study unit and to aid other researchers concerned with water quality of the study unit. A total of 234 investigations conducted during 1875-1998 are summarized in this report. The studies are grouped into three major subjects: (1) aquatic communities and habitat, (2) contamination of streambed sediments and biological tissues, and (3) lakes. The location and a general description of each study is listed. The majority of the studies focus on fish and macroinvertebrate communities. Studies of algal communities, aquatic habitat, riparian wetlands, and contamination of streambed sediment or biological tissues are less common. Areas close to the major population centers of Salt Lake City, Provo, and Logan, Utah, are generally well studied, but more rural areas and much of the Bear River Basin are lacking in detailed information, except for fish populations..

  9. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    USGS Publications Warehouse

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  10. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard.

    PubMed

    Shope, Christopher L; Angeroth, Cory E

    2015-12-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s. We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates, we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency. PMID:26231769

  11. Experimental evaluation of atmospheric effects on radiometric measurements using the EREP of Skylab. [Salton Sea and Great Salt Lake

    NASA Technical Reports Server (NTRS)

    Chang, D. T. (Principal Investigator); Isaacs, R. G.

    1975-01-01

    The author has identified the following significant results. Test sites were located near the Great Salt Lake and the Salton Sea. Calculations were performed for a set of atmospheric models corresponding to the test sites, in addition to standard models for summer and winter midlatitude atmospheres with respective integrated water vapor amount of 2.4 g/sq cm and 0.9 g/sq cm. Each atmosphere was found to contain an average amount of continental aerosol. Computations were valid for high solar elevation angles. Atmospheric attenuation quantities were computed in addition to simulated EREP S192 radiances.

  12. Draft Genome Sequence of Bacillus sp. Strain NSP2.1, a Nonhalophilic Bacterium Isolated from the Salt Marsh of the Great Rann of Kutch, India

    PubMed Central

    Pal, Kamal Krishna; Sherathia, Dharmesh; Dalsania, Trupti; Savsani, Kinjal; Patel, Ilaxi; Sukhadiya, Bhoomika; Mandaliya, Mona; Thomas, Manesh; Ghorai, Sucheta; Vanpariya, Sejal; Rupapara, Rupal; Rawal, Priya; Saxena, Anil Kumar

    2013-01-01

    The 5.52-Mbp draft genome sequence of Bacillus sp. strain NSP2.1, a nonhalophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India, is reported here. An analysis of the genome of this organism will facilitate the understanding of its survival in the salt marsh. PMID:24158559

  13. Preliminary projections of the effects of chloride-control structures on the Quaternary aquifer at Great Salt Plains, Oklahoma

    USGS Publications Warehouse

    Reed, J.E.

    1982-01-01

    About 1,200 tons of chloride per day are added to the salt load of the Salt Fork of the Arkansas River at Great Salt Plains Lake from natural sources. The source of this chloride is brine discharge from the rocks of Permian age in the vicinity of the lake. The U.S. Army Corps of Engineers has planned a chloride-control project. The Corps requested that the U.S. Geological Survey use a digital model to project the effects of the chloride-control plan on ground water. Ground-water flow and ground-water transport models were calibrated to represent the Quaternary aquifer that is the near-surface part of the flow system. The models were used to project the effects of planned chloride-control structures. Based on model results, ground-water levels are projected to rise as much as 19 feet. However, these water-level rises will occur only in areas near three reservoirs. Changes in ground-water level caused by the project will be small throughout most of the area. Chloride concentration of ground water is projected to increase by more than 90,000 milligrams per liter at one location. However, significant increases in chloride concentration during the 50-year period simulated are projected to be limited to areas where the ground water already contains excessive chloride concentrations.

  14. Great Salt Lake halophilic microorganisms as models for astrobiology: evidence for desiccation tolerance and ultraviolet irradiation resistance

    NASA Astrophysics Data System (ADS)

    Baxter, Bonnie K.; Eddington, Breanne; Riddle, Misty R.; Webster, Tabitha N.; Avery, Brian J.

    2007-09-01

    Great Salt Lake (GSL) is home to halophiles, salt-tolerant Bacteria and Archaea, which live at 2-5M NaCl. In addition to salt tolerance, GSL halophiles exhibit resistance to both ultraviolet (UV) irradiation and desiccation. First, to understand desiccation resistance, we sought to determine the diversity of GSL halophiles capable of surviving desiccation in either recently formed GSL halite crystals or GSL Artemia (brine shrimp) cysts. From these desiccated environments, surviving microorganisms were cultured and isolated, and genomic DNA was extracted from the individual species for identification by 16S rRNA gene homology. From the surface-sterilized cysts we also extracted DNA of the whole microbial population for non-cultivation techniques. We amplified the archaeal or bacterial 16S rRNA gene from all genomic DNA, cloned the cyst population amplicons, and sequenced. These sequences were compared to gene databases for determination of closest matched species. Interestingly, the isolates from the crystal dissolution are distinct from those previously isolated from GSL brine. The cyst population results reveal species not found in crystals or brine, and may indicate microorganisms that live as endosymbionts of this hypersaline arthropod. Second, we explored UV resistance in a GSL haloarchaea species, "H. salsolis." This strain resists UV irradiation an order of magnitude better than control species, all of which have intact repair systems. To test the hypothesis that halophiles have a photoprotection system, which prevents DNA damage from occurring, we designed an immunoassay to detect thymine dimers following UV irradiation. "H. salsolis" showed remarkable resistance to dimer formation. Evidence for both UV and desiccation resistance in these salt-tolerant GSL halophiles makes them well-suited as models for Astrobiological studies in pursuit of questions about life beyond earth.

  15. Near-infrared spectroscopy of lacustrine sediments in the Great Salt Lake Desert: An analog study for Martian paleolake basins

    NASA Astrophysics Data System (ADS)

    Lynch, Kennda L.; Horgan, Briony H.; Munakata-Marr, Junko; Hanley, Jennifer; Schneider, Robin J.; Rey, Kevin A.; Spear, John R.; Jackson, W. Andrew; Ritter, Scott M.

    2015-03-01

    The identification and characterization of aqueous minerals within ancient lacustrine environments on Mars are a high priority for determining the past habitability of the red planet. Terrestrial analog studies are useful both for understanding the mineralogy of lacustrine sediments, how the mineralogy varies with location in a lacustrine environment, and for validating the use of certain techniques such as visible-near-infrared (VNIR) spectroscopy. In this study, sediments from the Pilot Valley paleolake basin of the Great Salt Lake desert were characterized using VNIR as an analog for Martian paleolake basins. The spectra and subsequent interpretations were then compared to mineralogical characterization by ground truth methods, including X-ray diffraction, automated scanning electron microscopy, and several geochemical analysis techniques. In general, there is good agreement between VNIR and ground truth methods on the major classes of minerals present in the lake sediments and VNIR spectra can also easily discriminate between clay-dominated and salt-dominated lacustrine terrains within the paleolake basin. However, detection of more detailed mineralogy is difficult with VNIR spectra alone as some minerals can dominate the spectra even at very low abundances. At this site, the VNIR spectra are dominated by absorption bands that are most consistent with gypsum and smectites, though the ground truth methods reveal more diverse mineral assemblages that include a variety of sulfates, primary and secondary phyllosilicates, carbonates, and chlorides. This study provides insight into the limitations regarding the use of VNIR in characterizing complex mineral assemblages inherent in lacustrine settings.

  16. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    NASA Astrophysics Data System (ADS)

    Gillies, Robert R.; Chung, Oi-Yu; Simon Wang, S.-Y.; DeRose, R. Justin; Sun, Yan

    2015-10-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover less than a century, forecasting the predominant yet under-represented decadal variability of the GSL level with such relatively short instrumental records poses a challenge. To overcome data limitations, this study assesses two options: (1) developing a model using the observational GSL elevation record of 137 years to predict itself; (2) incorporating the recently reconstructed GSL elevation that utilized 576 years worth of tree-ring records into the predictive model. It was found that the statistical models that combined the tree-ring reconstructed data with the observed data outperformed those that did not, in terms of reducing the root mean squared errors. Such predictive models can serve as a means toward practical water risk management.

  17. Hydrologic reconnaissance of the southern Great Salt Lake Desert and summary of the hydrology of west-central Utah

    USGS Publications Warehouse

    Gates, Joseph S.; Kruer, Stacie A.

    1981-01-01

    This report is the last of 19 hydrologic reconnaissances of the basins in western Utah. The purposes of this series of studies are (1) to analyze available hydrologic data and describe the hydrologic system, (2) to evaluate existing and potential water-resources development, and (3) to identify additional studies that might be needed. Part 1 of this report gives an estimate of recharge and discharge, an estimate of the potential for water-resources development, and a statement on the quality of water in the southern Great Salt Lake Desert part of west-central Utah. Part 2 deals with the same aspects of west-central Utah as a whole. Part 2 also summarizes the evidence of interbasin ground-water flow in west-central Utah and presents a theory for the origin of the water discharged from Fish Springs.

  18. West Nile Virus Transmission in Winter: The 2013 Great Salt Lake Bald Eagle and Eared Grebes Mortality Event

    PubMed Central

    Ip, Hon S.; Van Wettere, Arnaud J.; McFarlane, Leslie; Shearn-Bochsler, Valerie; Dickson, Sammie Lee; Baker, JoDee; Hatch, Gary; Cavender, Kimberly; Long, Renee; Bodenstein, Barbara

    2014-01-01

    West Nile Virus (WNV) infection has been reported in over 300 species of birds and mammals. Raptors such as eagles, hawks and falcons are remarkably susceptible, but reports of WNV infection in Bald Eagles (Haliaeetus leucocephalus) are rare and reports of WNV infection in grebes (Podicipediformes) even rarer. We report an unusually large wild bird mortality event involving between 15,000-20,000 Eared Grebes (Podiceps nigricollis) and over 40 Bald Eagles around the Great Salt Lake, Utah, in November-December 2013. Mortality in grebes was first reported in early November during a period when the area was unseasonably warm and the grebes were beginning to gather and stage prior to migration. Ten out of ten Eared Grebes collected during this period were WNV RT-PCR and/or isolation positive. This is the first report of WNV infection in Eared Grebes and the associated mortality event is matched in scale only by the combined outbreaks in American White Pelican (Pelecanus erythrorhynchos) colonies in the north central states in 2002-2003. We cannot be sure that all of the grebes were infected by mosquito transmission; some may have become infected through contact with WNV shed orally or cloacally from other infected grebes. Beginning in early December, Bald Eagles in the Great Salt Lake area were observed to display neurological signs such as body tremors, limb paralysis and lethargy. At least 43 Bald Eagles had died by the end of the month. Nine of nine Bald Eagles examined were infected with WNV. To the best of our knowledge, this is the largest single raptor mortality event since WNV became endemic in the USA. Because the majority of the eagles affected were found after onset of below-freezing temperatures, we suggest at least some of the Bald Eagles were infected with WNV via consumption of infected Eared Grebes or horizontal transmission at roost sites. PMID:24761310

  19. West nile virus transmission in winter: the 2013 great salt lake bald eagle and eared grebes mortality event.

    PubMed

    Ip, Hon S; Van Wettere, Arnaud J; McFarlane, Leslie; Shearn-Bochsler, Valerie; Dickson, Sammie Lee; Baker, Jodee; Hatch, Gary; Cavender, Kimberly; Long, Renee; Bodenstein, Barbara

    2014-04-18

    West Nile Virus (WNV) infection has been reported in over 300 species of birds and mammals. Raptors such as eagles, hawks and falcons are remarkably susceptible, but reports of WNV infection in Bald Eagles (Haliaeetus leucocephalus) are rare and reports of WNV infection in grebes (Podicipediformes) even rarer. We report an unusually large wild bird mortality event involving between 15,000-20,000 Eared Grebes (Podiceps nigricollis) and over 40 Bald Eagles around the Great Salt Lake, Utah, in November-December 2013. Mortality in grebes was first reported in early November during a period when the area was unseasonably warm and the grebes were beginning to gather and stage prior to migration. Ten out of ten Eared Grebes collected during this period were WNV RT-PCR and/or isolation positive. This is the first report of WNV infection in Eared Grebes and the associated mortality event is matched in scale only by the combined outbreaks in American White Pelican (Pelecanus erythrorhynchos) colonies in the north central states in 2002-2003. We cannot be sure that all of the grebes were infected by mosquito transmission; some may have become infected through contact with WNV shed orally or cloacally from other infected grebes. Beginning in early December, Bald Eagles in the Great Salt Lake area were observed to display neurological signs such as body tremors, limb paralysis and lethargy. At least 43 Bald Eagles had died by the end of the month. Nine of nine Bald Eagles examined were infected with WNV. To the best of our knowledge, this is the largest single raptor mortality event since WNV became endemic in the USA. Because the majority of the eagles affected were found after onset of below-freezing temperatures, we suggest at least some of the Bald Eagles were infected with WNV via consumption of infected Eared Grebes or horizontal transmission at roost sites.

  20. West Nile Virus transmission in winter: the 2013 Great Salt Lake Bald Eagle and Eared Grebes Mortality event

    USGS Publications Warehouse

    Ip, Hon S.; Van Wettere, Arnaud J.; McFarlan, Leslie; Shearn-Bochsler, Valerie I.; Dickson, Sammie L.; Baker, JoDee; Hatch, Gary; Cavender, Kimberly; Long, Renee Romaine; Bodenstein, Barbara L.

    2014-01-01

    West Nile Virus (WNV) infection has been reported in over 300 species of birds and mammals. Raptors such as eagles, hawks and falcons are remarkably susceptible, but reports of WNV infection in Bald Eagles (Haliaeetus leucocephalus) are rare and reports of WNV infection in grebes (Podicipediformes) even rarer. We report an unusually large wild bird mortality event involving between 15,000-20,000 Eared Grebes (Podiceps nigricollis) and over 40 Bald Eagles around the Great Salt Lake, Utah, in November-December 2013. Mortality in grebes was first reported in early November during a period when the area was unseasonably warm and the grebes were beginning to gather and stage prior to migration. Ten out of ten Eared Grebes collected during this period were WNV RT-PCR and/or isolation positive. This is the first report of WNV infection in Eared Grebes and the associated mortality event is matched in scale only by the combined outbreaks in American White Pelican (Pelecanus erythrorhynchos) colonies in the north central states in 2002-2003. We cannot be sure that all of the grebes were infected by mosquito transmission; some may have become infected through contact with WNV shed orally or cloacally from other infected grebes. Beginning in early December, Bald Eagles in the Great Salt Lake area were observed to display neurological signs such as body tremors, limb paralysis and lethargy. At least 43 Bald Eagles had died by the end of the month. Nine of nine Bald Eagles examined were infected with WNV. To the best of our knowledge, this is the largest single raptor mortality event since WNV became endemic in the USA. Because the majority of the eagles affected were found after onset of below-freezing temperatures, we suggest at least some of the Bald Eagles were infected with WNV via consumption of infected Eared Grebes or horizontal transmission at roost sites.

  1. West nile virus transmission in winter: the 2013 great salt lake bald eagle and eared grebes mortality event.

    PubMed

    Ip, Hon S; Van Wettere, Arnaud J; McFarlane, Leslie; Shearn-Bochsler, Valerie; Dickson, Sammie Lee; Baker, Jodee; Hatch, Gary; Cavender, Kimberly; Long, Renee; Bodenstein, Barbara

    2014-01-01

    West Nile Virus (WNV) infection has been reported in over 300 species of birds and mammals. Raptors such as eagles, hawks and falcons are remarkably susceptible, but reports of WNV infection in Bald Eagles (Haliaeetus leucocephalus) are rare and reports of WNV infection in grebes (Podicipediformes) even rarer. We report an unusually large wild bird mortality event involving between 15,000-20,000 Eared Grebes (Podiceps nigricollis) and over 40 Bald Eagles around the Great Salt Lake, Utah, in November-December 2013. Mortality in grebes was first reported in early November during a period when the area was unseasonably warm and the grebes were beginning to gather and stage prior to migration. Ten out of ten Eared Grebes collected during this period were WNV RT-PCR and/or isolation positive. This is the first report of WNV infection in Eared Grebes and the associated mortality event is matched in scale only by the combined outbreaks in American White Pelican (Pelecanus erythrorhynchos) colonies in the north central states in 2002-2003. We cannot be sure that all of the grebes were infected by mosquito transmission; some may have become infected through contact with WNV shed orally or cloacally from other infected grebes. Beginning in early December, Bald Eagles in the Great Salt Lake area were observed to display neurological signs such as body tremors, limb paralysis and lethargy. At least 43 Bald Eagles had died by the end of the month. Nine of nine Bald Eagles examined were infected with WNV. To the best of our knowledge, this is the largest single raptor mortality event since WNV became endemic in the USA. Because the majority of the eagles affected were found after onset of below-freezing temperatures, we suggest at least some of the Bald Eagles were infected with WNV via consumption of infected Eared Grebes or horizontal transmission at roost sites. PMID:24761310

  2. Responses of Wetland Biota to Water Quality in Farmington Bay, Great Salt Lake, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Madon, S.; Hoven, H.; Miller, T.; Myers, L.

    2006-12-01

    The Farmington Bay wetlands are part of the Great Salt Lake ecosystem and are valued as important feeding and nesting areas for migratory birds and for support of aquatic life and various recreational activities. The construction of a causeway in 1969 subsequently reduced natural mixing between Farmington Bay and the Great Salt Lake, often causing nutrients to remain concentrated in Farmington Bay. In recent years, there has also been growing concern among natural resource agencies and local stakeholders about the effects of nutrient loads from publicly-owned treatment works (POTWs) and other natural and anthropogenic sources on the assimilative capacity of the Farmington Bay wetlands. In response to these concerns, the Utah Division of Water Quality began a program in 2004 to characterize the wetland ecosystems of Farmington Bay. The results presented in this study mainly represent the first year of a three-year characterization effort. Wetland sites representing a variety of wetland types along Farmington Bay were sampled in the fall of 2004 and included 16 sites receiving sheet-flow hydrology and 13 impounded sites. Sites included areas receiving flows from POTWs and reference sites which lacked such flows. Sampling was conducted at each site along established transects to characterize water quality (pH, total dissolved solids or TDS, dissolved oxygen, total P, total-N, and water temperature), wetland soils (pH, conductivity and organic matter), wetland plants (species, percent cover and plant height) and macroinvertebrates (species and numbers). Univariate and multivariate statistical tests were used to explore relationships between physical, chemical and biological variables and define key metrics of wetland function in relation to water quality. This study provides a preliminary evaluation of the ecological relationships and patterns between key biological and water quality parameters and offers useful insights into potential metrics that may be useful in

  3. Derivation of a chronic site-specific water quality standard for selenium in the Great Salt Lake, Utah, USA.

    PubMed

    Brix, Kevin V; DeForest, David K; Cardwell, Rick D; Adams, William J

    2004-03-01

    The purpose of this study was to develop a site-specific water quality standard for selenium in the Great Salt Lake, Utah, USA. The study examined the bioavailability and toxicity of selenium, as selenate, to biota resident to the Great Salt Lake and the potential for dietary selenium exposure to aquatic dependent birds that might consume resident biota. Because of its high salinity, the lake has limited biological diversity with bacteria, algae, diatoms, brine shrimp, and brine flies being the only organisms present in the main (hypersaline) portions of the lake. To evaluate their sensitivity to selenium, a series of acute and chronic toxicity studies were conducted on brine shrimp (Artemia franiciscana), brine fly (Ephydra cinerea), and a hypersaline alga (Dunaliella viridis). The resulting acute and chronic toxicity data indicated that resident species are more selenium tolerant than many freshwater species. Because sulfate is known to reduce selenate bioavailability, this selenium tolerance is thought to result in part from the lake's high ambient sulfate concentrations (>5,800 mg/L). The acute and chronic test results were compared to selenium concentrations expected to occur in a mining effluent discharge located at the south end of the lake. Based on these comparisons, no appreciable risks to resident aquatic biota were projected. Field and laboratory data collected on selenium bioaccumulation in brine shrimp demonstrated a linear relationship between water and tissue selenium concentrations. Applying a dietary selenium threshold of 5 mg/kg dry weight for aquatic birds to this relationship resulted in an estimate of 27 microg/L Se in water as a safe concentration for this exposure pathway and an appropriate chronic site-specific water quality standard. Consequently, protection of aquatic birds represents the driving factor in determining a site-specific water quality standard for selenium. PMID:15285352

  4. Tolerance to cadmium and cadmium-binding ligands in Great Salt Lake brine shrimp (Artemia salina)

    SciTech Connect

    Jayasekara, S.; Drown, D.B.; Sharma, R.P.

    1986-02-01

    Information on the accumulation of cadmium in cytosolic proteins of Great Lake brine shrimp (Artemia salina) was obtained from animals collected directly from the lake and also from animal hatched and maintained in three sublethal concentrations of cadmium (0.5, 2.0, 5.0 ppm) in saltwater aquaria. Brine shrimp growth under these conditions was monitored by measuring body lengths during a 7-day exposure period. Heat-stable, cadmium-binding ligands were isolated and identified by Sephadex G-75 chromatography and atomic absorption spectrophotometry. Cadmium was found to be equally distributed between high and low molecular weight proteins in animals collected from the lake and the 0.5 ppm cadmium group. There was also a slight growth stimulation noted in the 0.5-pm group. Higher cadmium incorporation was noted in low molecular weight fractions with increasing cadmium concentration in the exposure media. Low molecular weight fractions were also found to have high uv absorption characteristics at 250 nm and low absorption at 280 nm. Molecular weight of the cadmium-binding ligands was found to be 11,000 as estimated by the gel filtration method. De novo synthesis of this protein was increased as a function of cadmium concentration in the media. However, slow accumulation of cadmium in other protein fractions was also noticed in higher cadmium exposure groups, suggesting the existence of possible tolerance mechanisms in brine shrimp exposed to suspected acute cadmium concentrations.

  5. Stable isotope record of Holocene climate and ecological change from brine shrimp cyst chitin for the Great Salt Lake, UT

    NASA Astrophysics Data System (ADS)

    Nielson, K. E.; Bowen, G. J.

    2009-12-01

    We present a record of oxygen and hydrogen isotopes in brine shrimp cysts from the Great Salt Lake, a terminal lake in the Great Basin, US. Water balance for the region is influenced by strength of the El Niño in Pacific and by the strength of the summer monsoon. Brine shrimp cysts are a novel proxy for isotope reconstruction, and allow reconstruction of water isotopes (oxygen, hydrogen) and ecology (hydrogen). Oxygen isotopes in chitin respond to water, while both diet and growth water contribute to hydrogen isotopes, allowing reconstruction of both environmental and ecological information from a single molecule. Values of δ18O decrease from about +15‰ to about +11‰ over course of the 8000 year record. This may suggest the importance of snow melt increased over the Holocene, or it may suggest lake is larger today than it was in mid-Holocene. Hydrogen isotopes are relatively stable for most of record, fluctuating around -140‰. Modeled hydrogen isotopes in food, also stable in the beginning of the record at about -150‰, become much heavier, shifting toward about -75‰ starting about 5000 ybp. This may suggest a shift from a primarily aquatic diet in the Mid-Holocene to a diet with a greater contribution of terrestrial material later in the Holocene. These observations agree broadly with previous inferences of a warm Mid-Holocene and associated low terrestrial productivity, followed by a more moist, and consequently more productive Late Holocene.

  6. [FeFe]-Hydrogenase Abundance and Diversity along a Vertical Redox Gradient in Great Salt Lake, USA

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Swanson, Kevin D.; Howells, Alta E.; Baxter, Bonnie K.; Meuser, Jonathan E.; Posewitz, Matthew C.; Peters, John W.

    2014-01-01

    The use of [FeFe]-hydrogenase enzymes for the biotechnological production of H2 or other reduced products has been limited by their sensitivity to oxygen (O2). Here, we apply a PCR-directed approach to determine the distribution, abundance, and diversity of hydA gene fragments along co-varying salinity and O2 gradients in a vertical water column of Great Salt Lake (GSL), UT. The distribution of hydA was constrained to water column transects that had high salt and relatively low O2 concentrations. Recovered HydA deduced amino acid sequences were enriched in hydrophilic amino acids relative to HydA from less saline environments. In addition, they harbored interesting variations in the amino acid environment of the complex H-cluster metalloenzyme active site and putative gas transfer channels that may be important for both H2 transfer and O2 susceptibility. A phylogenetic framework was created to infer the accessory cluster composition and quaternary structure of recovered HydA protein sequences based on phylogenetic relationships and the gene contexts of known complete HydA sequences. Numerous recovered HydA are predicted to harbor multiple N- and C-terminal accessory iron-sulfur cluster binding domains and are likely to exist as multisubunit complexes. This study indicates an important role for [FeFe]-hydrogenases in the functioning of the GSL ecosystem and provides new target genes and variants for use in identifying O2 tolerant enzymes for biotechnological applications. PMID:25464382

  7. Density-stratified flow events in Great Salt Lake, Utah, USA: implications for mercury and salinity cycling

    USGS Publications Warehouse

    Naftz, David L.; Carling, Gregory T.; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Pazmiño, Eddy

    2014-01-01

    Density stratification in saline and hypersaline water bodies from throughout the world can have large impacts on the internal cycling and loading of salinity, nutrients, and trace elements. High temporal resolution hydroacoustic and physical/chemical data were collected at two sites in Great Salt Lake (GSL), a saline lake in the western USA, to understand how density stratification may influence salinity and mercury (Hg) distributions. The first study site was in a causeway breach where saline water from GSL exchanges with less saline water from a flow restricted bay. Near-surface-specific conductance values measured in water at the breach displayed a good relationship with both flow and wind direction. No diurnal variations in the concentration of dissolved (total and MeHg loadings was observed during periods of elevated salinity. The second study site was located on the bottom of GSL where movement of a high-salinity water layer, referred to as the deep brine layer (DBL), is restricted to a naturally occurring 1.5-km-wide “spillway” structure. During selected time periods in April/May, 2012, wind-induced flow reversals in a railroad causeway breach, separating Gunnison and Gilbert Bays, were coupled with high-velocity flow pulses (up to 55 cm/s) in the DBL at the spillway site. These flow pulses were likely driven by a pressure response of highly saline water from Gunnison Bay flowing into the north basin of Gilbert Bay. Short-term flow reversal events measured at the railroad causeway breach have the ability to move measurable amounts of salt and Hg from Gunnison Bay into the DBL. Future disturbance to the steady state conditions currently imposed by the railroad causeway infrastructure could result in changes to the existing chemical balance between Gunnison and Gilbert Bays. Monitoring instruments were installed at six additional sites in the DBL during October 2012 to assess impacts from any future modifications to the railroad causeway.

  8. Water quality at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2000

    USGS Publications Warehouse

    Gerner, Steven J.

    2003-01-01

    The Great Salt Lake Basins (GRSL) study unit of the National Water-Quality Assessment program encompasses the Bear River, Weber River, and Utah Lake/Jordan River systems, all of which discharge to Great Salt Lake in Utah. Data were collected during each month at 10 sites in the GRSL study unit from October 1998 to September 2000 to define spatial and temporal distribution and variability in concentration of nutrients, major ions, trace elements, suspended sediments, and organic compounds. Water samples collected from rangeland and forest sites in the GRSL study unit generally contained low concentrations of dissolved solids. Median dissolved-solids concentration in water samples was highest at sites with mixed land uses. Dissolved-solids concentration in some parts of the Bear River during low flow exceeded Utah State standards for agricultural use. Total-nitrogen concentration in water samples from GRSL sites ranged from 0.06 to 11 milligrams per liter. Water samples from predominantly forest and rangeland sites generally had a low total-nitrogen concentration. Many samples from sites with a higher percentage of agricultural and urban land cover had higher concentrations of total nitrogen. Fifty percent of the samples collected at GRSL sites had total phosphorus concentrations that exceeded 0.1 milligram per liter, the recommended limit for the prevention of nuisance aquatic-plant growth in streams not discharging directly into lakes or impoundments. Concentration of most trace elements in water samples from the fixed sites generally was low; however, arsenic concentrations, as high as 284 micrograms per liter, sometimes exceeded aquatic-life guidelines. Forty-three pesticides and 35 volatile organic compounds were detected in water samples from three GRSL sites; however, the concentration of most was low, less than 1 microgram per liter. The herbicides atrazine and prometon and the insecticides carbaryl and diazinon were the most frequently detected pesticides

  9. Mineralogic Causes of Variations in Magnetic Susceptibility of Late Pleistocene and Holocene Sediment from Great Salt Lake, Utah

    USGS Publications Warehouse

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Thompson, Robert S.

    2008-01-01

    We describe here results of magnetic susceptibility (MS) measurements and magnetic mineralogy of sediments sampled in three cores from the south basin of Great Salt Lake. The cores were obtained in 1996 with a Kullenburg-type piston corer at sites in close proximity: core 96-4 at 41 deg 01.00' N, 112 deg 28.00' W and cores 96-5 and 96-6 at 41 deg 00.09' N, 112 deg 23.05' W. Cores 96-5 (2.16 m long) and -6 combine to make a composite 11.31-m sediment record. Sediments in core 96-4 (5.54 m long) correspond to the approximate depth interval of 3.9-9.6 m in the composite core of 96-5 and -6 based on similarities in the MS records as described below. The central goal of the research was to provide a sediment record of paleoenvironmental change in the northeastern Basin and Range Province over the past 40,000 years. Specific targets included a sedimentologic record of lake-level change combined with a pollen record of climatic change.

  10. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.

    PubMed

    Shen, Peter S; Domek, Matthew J; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M; Hoggan, Ryan; Culumber, Michele D; Oberg, Craig J; Breakwell, Donald P; Prince, John T; Belnap, David M

    2012-08-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1.

  11. Continuous seismic-reflection survey of the Great Salt Lake, Utah- east of Antelope and Fremont Islands

    USGS Publications Warehouse

    Lambert, P.M.; West, J.C.

    1989-01-01

    A continuous seismic-reflection survey of the Great Salt Lake, Utah, was conducted east of Fremont and Antelope Islands in 1984 by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources and produced data along approximately 80 miles of seismic lines. The survey was conducted to determine depth to consolidated rock, and definition and continuity of overlying basin fill under the lake. Interpretation of the data indicates the presence of faulted rock dipping away from Fremont and Antelope Islands. A north-south-trending consolidated-rock ridge is identified 200 ft below lake bottom, 275 miles east of Fremont Island. Shallow rock is also inferred 380 ft below lake bottom, near Hooper Hot Springs, and 520 ft below lake bottom approximately 4 miles east of the south end of Antelope Island. Interpretation of reflections from overlying basin fill indicates fine-grained, thinly-bedded deposits that become coarser with depth. Strong reflectors in the basin fill can be correlated with water-bearing strata penetrated by wells near the north end of Antelope Island and along the east shore of the lake. Many continuous, high-amplitude reflections can be identified in data from basin fill and may represent sedimentary sections or aquifer boundaries but cannot be defined because of a lack of subsurface control in the area. (USGS)

  12. Temporal Study of the Microbial Diversity of the North Arm of Great Salt Lake, Utah, U.S.

    PubMed

    Almeida-Dalmet, Swati; Sikaroodi, Masoumeh; Gillevet, Patrick M; Litchfield, Carol D; Baxter, Bonnie K

    2015-07-02

    We employed a temporal sampling approach to understand how the microbial diversity may shift in the north arm of Great Salt Lake, Utah, U.S. To determine how variations in seasonal environmental factors affect microbial communities, length heterogeneity PCR fingerprinting was performed using consensus primers for the domain Bacteria, and the haloarchaea. The archaeal fingerprints showed similarities during 2003 and 2004, but this diversity changed during the remaining two years of the study, 2005 and 2006. We also performed molecular phylogenetic analysis of the 16S rRNA genes of the whole microbial community to characterize the taxa in the samples. Our results indicated that in the domain, Bacteria, the Salinibacter group dominated the populations in all samplings. However, in the case of Archaea, as noted by LIBSHUFF for phylogenetic relatedness analysis, many of the temporal communities were distinct from each other, and changes in community composition did not track with environmental parameters. Around 20-23 different phylotypes, as revealed by rarefaction, predominated at different periods of the year. Some phylotypes, such as Haloquadradum, were present year-round although they changed in their abundance in different samplings, which may indicate that these species are affected by biotic factors, such as nutrients or viruses, that are independent of seasonal temperature dynamics.

  13. Linking the distribution of microbial deposits from the Great Salt Lake (Utah, USA) to tectonic and climatic processes

    NASA Astrophysics Data System (ADS)

    Bouton, Anthony; Vennin, Emmanuelle; Boulle, Julien; Pace, Aurélie; Bourillot, Raphaël; Thomazo, Christophe; Brayard, Arnaud; Désaubliaux, Guy; Goslar, Tomasz; Yokoyama, Yusuke; Dupraz, Christophe; Visscher, Pieter T.

    2016-10-01

    The Great Salt Lake is a modern hypersaline lake, in which an extended modern and ancient microbial sedimentary system has developed. Detailed mapping based on aerial images and field observations can be used to identify non-random distribution patterns of microbial deposits, such as paleoshorelines associated with extensive polygons or fault-parallel alignments. Although it has been inferred that climatic changes controlling the lake level fluctuations explain the distribution of paleoshorelines and polygons, straight microbial deposit alignments may underline a normal fault system parallel to the Wasatch Front. This study is based on observations over a decimetre to kilometre spatial range, resulting in an integrated conceptual model for the controls on the distribution of the microbial deposits. The morphology, size and distribution of these deposits result mainly from environmental changes (i.e. seasonal to long-term water level fluctuations, particular geomorphological heritage, fault-induced processes, groundwater seepage) and have the potential to bring further insights into the reconstruction of paleoenvironments and paleoclimatic changes through time. New radiocarbon ages obtained on each microbial macrofabric described in this study improve the chronological framework and question the lake level variations that are commonly assumed.

  14. Sequence and Structural Characterization of Great Salt Lake Bacteriophage CW02, a Member of the T7-Like Supergroup

    PubMed Central

    Shen, Peter S.; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M.; Hoggan, Ryan; Culumber, Michele D.; Oberg, Craig J.; Breakwell, Donald P.; Prince, John T.

    2012-01-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1. PMID:22593163

  15. Temporal Study of the Microbial Diversity of the North Arm of Great Salt Lake, Utah, U.S.

    PubMed Central

    Almeida-Dalmet, Swati; Sikaroodi, Masoumeh; Gillevet, Patrick M.; Litchfield, Carol D.; Baxter, Bonnie K.

    2015-01-01

    We employed a temporal sampling approach to understand how the microbial diversity may shift in the north arm of Great Salt Lake, Utah, U.S. To determine how variations in seasonal environmental factors affect microbial communities, length heterogeneity PCR fingerprinting was performed using consensus primers for the domain Bacteria, and the haloarchaea. The archaeal fingerprints showed similarities during 2003 and 2004, but this diversity changed during the remaining two years of the study, 2005 and 2006. We also performed molecular phylogenetic analysis of the 16S rRNA genes of the whole microbial community to characterize the taxa in the samples. Our results indicated that in the domain, Bacteria, the Salinibacter group dominated the populations in all samplings. However, in the case of Archaea, as noted by LIBSHUFF for phylogenetic relatedness analysis, many of the temporal communities were distinct from each other, and changes in community composition did not track with environmental parameters. Around 20–23 different phylotypes, as revealed by rarefaction, predominated at different periods of the year. Some phylotypes, such as Haloquadradum, were present year-round although they changed in their abundance in different samplings, which may indicate that these species are affected by biotic factors, such as nutrients or viruses, that are independent of seasonal temperature dynamics.

  16. Draft Genome Sequence of the Obligate Halophilic Bacillus sp. Strain NSP22.2, Isolated from a Seasonal Salt Marsh of the Great Rann of Kutch, India

    PubMed Central

    Pal, Kamal Krishna; Sherathia, Dharmesh; Vanpariya, Sejal; Patel, Ilaxi; Dalsania, Trupti; Savsani, Kinjal; Sukhadiya, Bhoomika; Mandaliya, Mona; Thomas, Manesh; Ghorai, Sucheta; Rupapara, Rupal; Rawal, Priya

    2013-01-01

    Here, we report the 4.0-Mbp draft genome of an obligate halophile, Bacillus sp. strain NSP22.2, isolated from a seasonal salt marsh of the Great Rann of Kutch, India. To understand the mechanism(s) of obligate halophilism and to isolate the relevant gene(s), the genome of Bacillus sp. NSP22.2 was sequenced. PMID:24356848

  17. Draft Genome Sequence of Bacillus sp. Strain NSP9.1, a Moderately Halophilic Bacterium Isolated from the Salt Marsh of the Great Rann of Kutch, India

    PubMed Central

    Pal, Kamal Krishna; Sherathia, Dharmesh; Dalsania, Trupti; Savsani, Kinjal; Patel, Ilaxi; Thomas, Manesh; Ghorai, Sucheta; Vanpariya, Sejal; Rupapara, Rupal; Rawal, Priya; Sukhadiya, Bhoomika; Mandaliya, Mona; Saxena, Anil Kumar

    2013-01-01

    We report the 4.52-Mbp draft genome sequence of Bacillus sp. strain NSP9.1, a moderately halophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India. Analysis of the genome of this organism will lead to a better understanding of the genes and metabolic pathways involved in imparting osmotolerance. PMID:24115550

  18. Size and elemental distributions of nano- to micro-particulates in the geochemically-stratified Great Salt Lake

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.

    2009-01-01

    The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating

  19. Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Beisner, K.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24 h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.

  20. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    USGS Publications Warehouse

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  1. A decision support model to assess vulnerability to salt water intrusion in the great bend prairie aquifer of Kansas

    USGS Publications Warehouse

    Sophocleous, M.; Ma, T.

    1998-01-01

    A relatively simple ground water decision support system (DSS) was developed to assist in identifying salt water vulnerable areas and in developing management policies to prevent salt water intrusion in central Kansas. The DSS is based on a combination of numerical modeling sensitivity analyses, multiple regression analyses, and classification procedures derived from our knowledge of the area. Six ground water salinity models are proposed to evaluate irrigation well permit applications. The choice of model depends on the availability of site-specific data. The DSS takes advantage of GIS database management procedures, and is applied to an actual salt water intrusion problem site in south-central Kansas. This approach can help local ground water management districts make better decisions on protecting ground water use in salt water vulnerable areas.

  2. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    NASA Technical Reports Server (NTRS)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  3. Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.; Angeroth, C.; Kenney, T.; Waddell, B.; Darnall, N.; Silva, S.; Perschon, C.; Whitehead, J.

    2008-01-01

    Despite the ecological and economic importance of Great Salt Lake (GSL), little is known about the input and biogeochemical cycling of nutrients and trace elements in the lake. In response to increasing public concern regarding anthropogenic inputs to the GSL ecosystem, the US Geological Survey (USGS) and US Fish and Wildlife Service (USFWS) initiated coordinated studies to quantify and evaluate the significance of nutrient and Hg inputs into GSL. A 6??? decrease in ??15N observed in brine shrimp (Artemia franciscana) samples collected from GSL during summer time periods is likely due to the consumption of cyanobacteria produced in freshwater bays entering the lake. Supporting data collected from the outflow of Farmington Bay indicates decreasing trends in ??15N in particulate organic matter (POM) during the mid-summer time period, reflective of increasing proportions of cyanobacteria in algae exported to GSL on a seasonal basis. The C:N molar ratio of POM in outflow from Farmington Bay decreases during the summer period, supportive of the increased activity of N fixation indicated by decreasing ??15N in brine shrimp and POM. Although N fixation is only taking place in the relatively freshwater inflows to GSL, data indicate that influx of fresh water influences large areas of the lake. Separation of GSL into two distinct hydrologic and geochemical systems from the construction of a railroad causeway in the late 1950s has created a persistent and widespread anoxic layer in the southern part of GSL. This anoxic layer, referred to as the deep brine layer (DBL), has high rates of SO42 - reduction, likely increasing the Hg methylation capacity. High concentrations of methyl mercury (CH3Hg) (median concentration = 24 ng/L) were observed in the DBL with a significant proportion (31-60%) of total Hg in the CH3Hg form. Hydroacoustic and sediment-trap evidence indicate that turbulence introduced by internal waves generated during sustained wind events can temporarily mix the

  4. Estimation of Selenium Loads Entering the South Arm of Great Salt Lake, Utah, from May 2006 through March 2008

    USGS Publications Warehouse

    Naftz, David L.; Johnson, William P.; Freeman, Michael L.; Beisner, Kimberly; Diaz, Ximena; Cross, VeeAnn A.

    2009-01-01

    Discharge and water-quality data collected from six streamflow-gaging stations were used in combination with the LOADEST software to provide an estimate of total (dissolved + particulate) selenium (Se) load to the south arm of Great Salt Lake (GSL) from May 2006 through March 2008. Total estimated Se load to GSL during this time period was 2,370 kilograms (kg). The 12-month estimated Se load to GSL for May 1, 2006, to April 30, 2007, was 1,560 kg. During the 23-month monitoring period, inflows from the Kennecott Utah Copper Corporation (KUCC) Drain and Bear River outflow contributed equally to the largest proportion of total Se load to GSL, accounting for 49 percent of the total Se load. Five instantaneous discharge measurements at three sites along the railroad causeway indicate a consistent net loss of Se mass from the south arm to the north arm of GSL (mean = 2.4 kg/day, n = 5). Application of the average daily loss rate equates to annual Se loss rate to the north arm of 880 kg (56 percent of the annual Se input to the south arm). The majority of Se in water entering GSL is in the dissolved (less than 0.45 micron) state and ranges in concentration from 0.06 to 35.7 micrograms per liter (ug/L). Particulate Se concentration ranged from less than 0.05 to 2.5 ug/L. Except for the KUCC Drain streamflow-gaging station, dissolved (less than 0.45 um) inflow samples contain an average of 21 percent selenite (SeO32-) during two sampling events (May 2006 and 2007). Selenium concentration in water samples collected from four monitoring sites within GSL during May 2006 through August 2007 were used to understand how the cumulative Se load was being processed by various biogeochemical processes within the lake. On the basis of the Mann-Kendall test results, changes in dissolved Se concentration at the four monitoring sites indicate a statistically significant (90-percent confidence interval) upward trend in Se concentration over the 16-month monitoring period. Furthermore

  5. Hydrology and water quality of an urban stream reach in the Great Basin--Little Cottonwood Creek near Salt Lake City, Utah, water years 1999-2000

    USGS Publications Warehouse

    Gerner, Steven J.; Waddell, Kidd M.

    2003-01-01

    The hydrology and water quality of an urbanized reach of Little Cottonwood Creek near Salt Lake City, Utah, were examined as part of the Great Salt Lake Basins study, part of the U.S. Geological Survey National Water-Quality Assessment program. Physical and chemical properties of the stream were referenced to established aquatic-life criteria as available. Two fixed sampling sites were established on Little Cottonwood Creek with the purpose of determining the influence of urbanization on the water quality of the stream. The fixed-site assessment is a component of the National Water-Quality Assessment surface-water study design used to assess the spatial and temporal distribution of selected water-quality constituents. The occurrence and distribution of major ions, nutrients, trace elements, dissolved and suspended organic carbon, pesticides, volatile organic compounds, and suspended sediment were monitored during this study. From October 1998 to September 2000, stream samples were collected at regular intervals at the two fixed sites. Additional samples were collected at these sites during periods of high flow, which included runoff from snowmelt in the headwaters and seasonal thunderstorms in the lower basin.

  6. An investigation of several aspects of LANDSAT-5 data quality. [Palmer County, Shelby, mt; White sands, NM; Great Salt Lake, UT; San Matted Bridge and Sacramento, California

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C. (Principal Investigator)

    1984-01-01

    Band-to-band registration, geodetic registration, interdector noise, and the modulation transfer function (MTE) are discussed for the Palmer County; TX scene. Band combinations for several LANDSAT 4 and LANDSAT 5 scenes; the geodetic registration test for the Sacramento, CA area; periodic noise components in TM band 5; and grey level measurements by detector for Great Salt Lake (UT) dark water forescans and backscans are considered. Results of MTF analyses of the San Mateo Bridge and of TM high resolution and aerial Daedalus scanner imagery are consistent and appear to be repeatable. An oil-on-sand target was constructed on the White Sands Missile Range in New Mexico. The two-image analysis procedure used is summarized.

  7. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA.

    PubMed

    Johnson, William P; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Greg; Fernandez, Diego P; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark

    2015-04-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible 'reactive' Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values of kmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation. PMID:25576792

  8. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Johnson, William P.; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Gregory; Fernandez, Diego P.; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark C.

    2015-01-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible ‘reactive’ Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values ofkmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation.

  9. Relationships of surface water, pore water, and sediment chemistry in wetlands adjacent to Great Salt Lake, Utah, and potential impacts on plant community health.

    PubMed

    Carling, Gregory T; Richards, David C; Hoven, Heidi; Miller, Theron; Fernandez, Diego P; Rudd, Abigail; Pazmino, Eddy; Johnson, William P

    2013-01-15

    We collected surface water, pore water, and sediment samples at five impounded wetlands adjacent to Great Salt Lake, Utah, during 2010 and 2011 in order to characterize pond chemistry and to compare chemistry with plant community health metrics. We also collected pore water and sediment samples along multiple transects at two sheet flow wetlands during 2011 to investigate a potential link between wetland chemistry and encroachment of invasive emergent plant species. Samples were analyzed for a suite of trace and major elements, nutrients, and relevant field parameters. The extensive sampling campaign provides a broad assessment of Great Salt Lake wetlands, including a range of conditions from reference to highly degraded. We used nonmetric multidimensional scaling (NMS) to characterize the wetland sites based on the multiple parameters measured in surface water, pore water, and sediment. NMS results showed that the impounded wetlands fall along a gradient of high salinity/low trace element concentrations to low salinity/high trace element concentrations, whereas the sheet flow wetlands have both elevated salinity and high trace element concentrations, reflecting either different sources of element loading or different biogeochemical/hydrological processes operating within the wetlands. Other geochemical distinctions were found among the wetlands, including Fe-reducing conditions at two sites and sulfate-reducing conditions at the remaining sites. Plant community health metrics in the impounded wetlands showed negative correlations with specific metal concentrations in sediment (THg, Cu, Zn, Cd, Sb, Pb, Ag, Tl), and negative correlations with nutrient concentrations in surface water (nitrite, phosphate, nitrate). In the sheet flow wetlands, invasive plant species were inversely correlated with pore water salinity. These results indicate that sediment and pore water chemistry play an important role in wetland plant community health, and that monitoring and

  10. Trace Elements and Organic Compounds in Sediment and Fish Tissue from the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-99

    USGS Publications Warehouse

    Waddell, Kidd M.; Giddings, Elise M.

    2004-01-01

    A study to determine the occurrence and distribution of trace elements, organochlorine pesticides, polychlorinated biphenyls (PCBs), and semivolatile organic compounds in sediment and in fish tissue was conducted in the Great Salt Lake Basins study unit of the National Water-Quality Assessment (NAWQA) program during 1998-99. Streambed-sediment and fish-tissue samples were collected concurrently at 11 sites and analyzed for trace-element concentration. An additional four sites were sampled for streambed sediment only and one site for fish tissue only. Organic compounds were analyzed from streambed-sediment and fish-tissue samples at 15 sites concurrently. Bed-sediment cores from lakes, reservoirs, and Farmington Bay collected by the NAWQA program in 1998 and by other researchers in 1982 were used to examine historical trends in trace-element concentration and to determine anthropogenic sources of contaminants. Cores collected in 1982 from Mirror Lake, a high-mountain reference location, showed an enrichment of arsenic, cadmium, copper, lead, tin, and zinc in the surface sediments relative to the deeper sediments, indicating that enrichment likely began after about 1900. This enrichment was attributed to atmospheric deposition during the period of metal-ore mining and smelting. A core from Echo Reservoir, in the Weber River Basin, however, showed a different pattern of trace-element concentration that was attributed to a local source. This site is located downstream from the Park City mining district, which is the most likely historical source of trace elements. Cores collected in 1998 from Farmington Bay show that the concentration of lead began to increase after 1842 and peaked during the mid-1980s and has been in decline since. Recent sediments deposited during 1996-98 indicate a 41- to 62-percent reduction since the peak in the mid-1980s. The concentration of trace elements in streambed sediment was greatest at sites that have been affected by historic mining

  11. Nutrient, suspended-sediment, and total suspended-solids data for surface water in the Great Salt Lake basins study unit, Utah, Idaho, and Wyoming, 1980-95

    USGS Publications Warehouse

    Hadley, Heidi K.

    2000-01-01

    Selected nitrogen and phosphorus (nutrient), suspended-sediment and total suspended-solids surface-water data were compiled from January 1980 through December 1995 within the Great Salt Lake Basins National Water-Quality Assessment study unit, which extends from southeastern Idaho to west-central Utah and from Great Salt Lake to the Wasatch and western Uinta Mountains. The data were retrieved from the U.S. Geological Survey National Water Information System and the State of Utah, Department of Environmental Quality, Division of Water Quality database. The Division of Water Quality database includes data that are submitted to the U.S. Environmental Protection Agency STOrage and RETrieval system. Water-quality data included in this report were selected for surface-water sites (rivers, streams, and canals) that had three or more nutrient, suspended-sediment, or total suspended-solids analyses. Also, 33 percent or more of the measurements at a site had to include discharge, and, for non-U.S. Geological Survey sites, there had to be 2 or more years of data. Ancillary data for parameters such as water temperature, pH, specific conductance, streamflow (discharge), dissolved oxygen, biochemical oxygen demand, alkalinity, and turbidity also were compiled, as available. The compiled nutrient database contains 13,511 samples from 191 selected sites. The compiled suspended-sediment and total suspended-solids database contains 11,642 samples from 142 selected sites. For the nutrient database, the median (50th percentile) sample period for individual sites is 6 years, and the 75th percentile is 14 years. The median number of samples per site is 52 and the 75th percentile is 110 samples. For the suspended-sediment and total suspended-solids database, the median sample period for individual sites is 9 years, and the 75th percentile is 14 years. The median number of samples per site is 76 and the 75th percentile is 120 samples. The compiled historical data are being used in the

  12. Marsh wrens as bioindicators of mercury in wetlands of Great Salt Lake: do blood and feathers reflect site-specific exposure risk to bird reproduction?

    USGS Publications Warehouse

    Hartman, C. Alex; Ackerman, Joshua T.; Herring, Garth; Isanhart, John; Herzog, Mark

    2013-01-01

    Nonlethal sampling of bird blood and feathers are among the more common ways of estimating the risk of mercury exposure to songbird reproduction. The implicit assumption is that mercury concentrations in blood or feathers of individuals captured in a given area are correlated with mercury concentrations in eggs from the same area. Yet, this assumption is rarely tested. We evaluated mercury concentrations in blood, feathers, and eggs of marsh wrens in wetlands of Great Salt Lake, Utah, and, at two spatial scales, specifically tested the assumption that mercury concentrations in blood and feather samples from birds captured in a defined area were predictive of mercury concentrations in eggs collected in the same area. Mercury concentrations in blood were not correlated with mercury concentrations in eggs collected within the same wetland unit, and were poorly correlated with mercury concentrations in eggs collected at the smaller home range spatial scale of analysis. Moreover, mercury exposure risk, as estimated via tissue concentrations, differed among wetland units depending upon whether blood or egg mercury concentrations were sampled. Mercury concentrations in feathers also were uncorrelated with mercury concentrations in eggs, and were poorly correlated with mercury concentrations in blood. These results demonstrate the potential for contrasting management actions that may be implemented based solely on the specific avian tissue that is sampled, and highlight the importance of developing avian tissues as biomonitoring tools for assessing local risk of mercury exposure to bird reproduction.

  13. Image-based terrain modeling with thematic mapper applied to resolving the limit of Holocene Lake expansion in the Great Salt Lake Desert, Utah, part 1

    NASA Technical Reports Server (NTRS)

    Merola, John A.

    1989-01-01

    The LANDSAT Thematic Mapper (TM) scanner records reflected solar energy from the earth's surface in six wavelength regions, or bands, and one band that records emitted energy in the thermal region, giving a total of seven bands. Useful research was extracted about terrain morphometry from remote sensing measurements and this information is used in an image-based terrain model for selected coastal geomorphic features in the Great Salt Lake Desert (GSLD). Technical developments include the incorporation of Aerial Profiling of Terrain System (APTS) data in satellite image analysis, and the production and use of 3-D surface plots of TM reflectance data. Also included in the technical developments is the analysis of the ground control point spatial distribution and its affects on geometric correction, and the terrain mapping procedure; using satellite data in a way that eliminates the need to degrade the data by resampling. The most common approach for terrain mapping with multispectral scanner data includes the techniques of pattern recognition and image classification, as opposed to direct measurement of radiance for identification of terrain features. The research approach in this investigation was based on an understanding of the characteristics of reflected light resulting from the variations in moisture and geometry related to terrain as described by the physical laws of radiative transfer. The image-based terrain model provides quantitative information about the terrain morphometry based on the physical relationship between TM data, the physical character of the GSLD, and the APTS measurements.

  14. Helminth parasites of Artemia franciscana (Crustacea: Branchiopoda) in the Great Salt Lake, Utah: first data from the native range of this invader of European wetlands.

    PubMed

    Redon, Stella; Berthelemy, Nicole J; Mutafchiev, Yasen; Amat, Francisco; Georgiev, Boyko B; Vasileva, Gergana P

    2015-01-01

    The present study is the first survey on the role of Artemia franciscana Kellogg as intermediate host of helminth parasites in its native geographical range in North America (previous studies have recorded nine cestode and one nematode species from this host in its invasive habitats in the Western Mediterranean). Samples of Artemia franciscana were collected from four sites in the Great Salt Lake (GSL), Utah, across several months (June-September 2009). A. franciscana serves as intermediate host of five helminth species in this lake. Four of them are cestodes: three hymenolepidids, i.e. Confluaria podicipina (Szymanski, 1905) (adults parasitic in grebes), Hymenolepis (sensu lato) californicus Young, 1950 (adults parasitic in gulls), Wardium sp. (definitive host unknown, probably charadriiform birds), and one dilepidid, Fuhrmannolepis averini Spassky et Yurpalova, 1967 (adults parasitic in phalaropes). In addition, an unidentified nematode of the family Acuariidae was recorded. Confluaria podicipina is the most prevalent and abundant parasite at all sampling sites, followed by H. (s. l.) californicus. The species composition of the parasites and the spatial variations in their prevalence and abundance reflect the abundance and distribution of aquatic birds serving as their definitive hosts. The temporal dynamics of the overall helminth infections exhibits the highest prevalence in the last month of study at each site (August or September). This native population of A. franciscana from GSL is characterised with higher prevalence, intensity and abundance of the overall cestode infection compared to the introduced populations of this species in the Palaearctic Region. The values of the infection descriptors in the native population of A. franciscana are slightly lower or in some cases similar to those of the Palaearctic species Artemia parthenogenetica Barigozzi (diploid populations) and Artemia salina (Linnaeus) in their native habitats. PMID:26040582

  15. Effects of Amendment of Biochar and Pyroligneous Solution from wheat straw pyrolysis on Yield and soil and crop salinity in a Salt stressed cropland from Central China Great Plain

    NASA Astrophysics Data System (ADS)

    Li, L.; Liu, Y.; Pan, W.; Pan, G.; Zheng, J.; Zheng, J.; Zhang, X.

    2012-04-01

    Crop production has been subject to salt stress in large areas of world croplands. Organic and/or bio-fertilizers have been applied as soil amendments for alleviating salt stress and enhancing crop productivity in these salt-stressed croplands. While biochar production systems using pyrolysis of crop straw materials have been well developed in the world, there would be a potential measure to use materials from crop straw pyrolysis as organic amendments in depressing salt stress in agriculture. In this paper, a field experiment was conducted on the effect of biochar and pyroligneous solution from cropstraw pyrolysis on soil and crop salinity, and wheat yield in a moderately salt stressed Entisol from the Central Great Plain of North China. Results indicated that: biochar and pyroligneous solution increased soil SOC, total nitrogen, available potassium and phosphorous by 43.77%, 6.50%, 45.54% and 108.01%, respectively. While Soil bulk density was decreased from 1.30 to 1.21g cm-3; soil pH (H2O) was decreased from 8.23 to 7.94 with a decrease in soluble salt content by 38.87%. Wheat yield was doubled over the control without amendment. In addition, sodium content was sharply declined by 78.80% in grains, and by 70.20% and 67.00% in shoot and root, respectively. Meanwhile, contents of potassium and phosphorus in plant tissue were seen also increased despite of no change in N content. Therefore, the combined amendment of biochar with pyroligneous solution would offer an effective measure to alleviate the salt stress and improving crop productivity in world croplands. Keywords: biochar, salt affected soils, wheat, crop productivity, salinity

  16. Long-term monitoring of arsenic, copper, selenium, and other elements in Great Salt Lake (Utah, USA) surface water, brine shrimp, and brine flies.

    PubMed

    Adams, William J; DeForest, David K; Tear, Lucinda M; Payne, Kelly; Brix, Kevin V

    2015-03-01

    This paper presents long-term monitoring data for 19 elements with a focus on arsenic (As), copper (Cu), and selenium (Se), in surface water (2002-2011), brine shrimp (2001-2011), and brine flies (1995-1996) collected from Great Salt Lake (GSL, Utah, USA). In open surface waters, mean (±standard deviation [SD]; range; n) As concentrations were 112 (±22.1; 54.0-169; 47) and 112 μg/L (±35.6; 5.1-175; 68) in filtered and unfiltered surface water samples, respectively, and 16.3 μg/g (±5.6; 5.1-35.2; 62) dry weight (dw) in brine shrimp. Mean (±SD; range; n) Cu concentrations were 4.2 (±2.1; 1.3-12.5; 47) and 6.9 μg/L (±6.6; 1.9-38.1; 68) in filtered and unfiltered surface water samples, respectively, and 20.6 μg/g (±18.4; 5.4-126; 62) dw in brine shrimp. Finally, mean (±SD; range; n) dissolved and total recoverable Se concentrations were 0.6 (±0.1; 0.4-1.2; 61) and 0.9 μg/L (±0.7; 0.5-3.6; 89), respectively, and 3.6 μg/g (±2.2; 1.1-14.9; 98) dw in brine shrimp. Thus, Se in open lake surface waters was most often in the range of 0.5-1 μg/L, and concentrations in both surface water and brine shrimp were comparable to concentrations measured in other monitoring programs for the GSL. Temporally, the statistical significance of differences in mean dissolved or total recoverable As, Cu, and Se concentrations between years was highly variable depending which test statistic was used, and there was no clear evidence of increasing or decreasing trends. In brine shrimp, significant differences in annual mean concentrations of As, Cu, and Se were observed using both parametric and nonparametric statistical approaches, but, as for water, there did not appear to be a consistent increase or decrease in concentrations of these elements over time. PMID:25690606

  17. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This book contains lesson plans that provide an integrated approach to incorporating Great Lakes environmental issues into elementary subjects. The book is divided into three subject areas: (1) History, which includes the origins of the Great Lakes, Great Lakes people, and shipwrecks; (2) Social Studies, which covers government, acid rain as a…

  18. Characterization of Habitat and Biological Communities at Fixed Sites in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, Water Years 1999-2001

    USGS Publications Warehouse

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested. High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites. Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species. Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  19. Great Lakes: Great Gardening.

    ERIC Educational Resources Information Center

    New York Sea Grant Inst., Albany, NY.

    This folder contains 12 fact sheets designed to improve the quality of gardens near the Great Lakes. The titles are: (1) "Your Garden and the Great Lakes"; (2) "Organic Gardening"; (3) "Fruit and Vegetable Gardening"; (4) "Composting Yard Wastes"; (5) "Herbicides and Water Quality"; (6) "Watering"; (7) "Soil Erosion by Water"; (8) "Soil…

  20. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This booklet introduces an environmental curriculum for use in a variety of elementary subjects. The lesson plans provide an integrated approach to incorporating Great Lakes environmental issues into the subjects of history, social studies, and environmental sciences. Each of these sections contains background information, discussion points, and a…

  1. Utah: Salt Lake City

    Atmospheric Science Data Center

    2014-05-15

    ... backdrops for the 2002 Winter Olympics, to be held in Salt Lake City, Utah. The mountains surrounding Salt Lake City are renowned for ... western edge of the Rocky Mountains and eastern rim of the Great Basin. This early-winter image pair was acquired by the Multi-angle ...

  2. Analysis of nitrate and volatile organic compound data for ground water in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1980-98, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Thiros, Susan A.

    2000-01-01

    In 1995, ground water was the source of drinking water to about 52 percent of the population served by public drinking water systems in the Great Salt Lake Basins study unit, which includes parts of Utah, Idaho, and Wyoming. Existing nitrate and volatile organic compound data for ground water collected in the study unit were compiled and summarized as part of the National Water-Quality Assessment Program?s objective to describe water-quality conditions in the Nation?s aquifers. Prerequisites for the inclusion of nitrate and volatile organic compound data into this retrospective analysis are that the data set is available in electronic form, the data were collected during 1980-98, the data set is somewhat regional in coverage, and the locations of the sampled sites are known. Ground-water data stored in the U.S. Geological Survey?s National Water Information Systemand the Idaho and Utah Public DrinkingWater Systems databases were reviewed. Only the most recent analysis was included in the data sets if more than one analysis was available for a site. The National Water Information System data set contained nitrate analyses for water from 480 wells. The median concentration of nitratewas 1.30 milligrams per liter for the 388 values above minimum reporting limits. The maximum contaminant level for nitrate as established by the U.S. Environmental Protection Agency was exceeded in water from 10 of the 200 wells less than or equal to 150 feet deep and in water from3 of 280 wells greater than 150 feet deep. The Public Drinking Water Systems data set contained nitrate analyses for water from 587 wells. The median concentration of nitrate was 1.12 milligrams per liter for the 548 values above minimum reporting limits. The maximum contaminant level for nitrate was exceeded at 1 site and 22 sites had concentrations equal to or greater than 5 milligrams per liter. The types of land use surrounding a well and the well depth were related to measured nitrate concentrations in the

  3. Great Apes

    USGS Publications Warehouse

    Sleeman, Jonathan M.; Cerveny, Shannon

    2014-01-01

    Anesthesia of great apes is often necessary to conduct diagnostic analysis, provide therapeutics, facilitate surgical procedures, and enable transport and translocation for conservation purposes. Due to the stress of remote delivery injection of anesthetic agents, recent studies have focused on oral delivery and/or transmucosal absorption of preanesthetic and anesthetic agents. Maintenance of the airway and provision of oxygen is an important aspect of anesthesia in great ape species. The provision of analgesia is an important aspect of the anesthesia protocol for any procedure involving painful stimuli. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are often administered alone, or in combination to provide multi-modal analgesia. There is increasing conservation management of in situ great ape populations, which has resulted in the development of field anesthesia techniques for free-living great apes for the purposes of translocation, reintroduction into the wild, and clinical interventions.

  4. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  5. Great Comets

    NASA Astrophysics Data System (ADS)

    Burnham, Robert

    2000-05-01

    Spectacular and mysterious objects that come and go in the night sky, comets have dwelt in our popular culture for untold ages. As remnants from the formation of the Solar system, they are objects of key scientific research and space missions. As one of nature's most potent and dramatic dangers, they pose a threat to our safety--and yet they were the origin of our oceans and perhaps even life itself. This beautifully illustrated book tells the story of the biggest and most awe-inspiring of all comets: those that have earned the title "Great." Robert Burnham focuses on the Great comets Hyakutake in 1996 and Hale-Bopp in 1997, which gripped attention worldwide because, for many, they were the first comets ever seen. He places these two recent comets in the context of their predecessors from past ages, among them the famous Comet Halley. Great Comets explains the exciting new discoveries that have come from these magnificent objects and profiles the spaceprobes to comets due for launch in the next few years. The book even takes a peek behind Hollywood's science-fiction fantasies to assess the real risks humanity faces from potential impacts of both comets and asteroids. For everyone interested in astronomy, this exciting book reveals the secrets of the Great Comets and provides essential tools for keeping up to date with comet discoveries in the future. Robert Burnham has been an amateur astronomer since the mid-1950s. He has been a senior editor of Astronomy magazine (1986-88) and is the author of many books and CD-ROMS, including Comet Hale-Bopp: Find and Enjoy the Great Comet and Comet Explorer.

  6. Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The wild plants and animals and the natural systems that support them in the Great Lakes region are valuable resources of considerable local, regional, and national interest. They are also, in part, transboundary resources that the U.S. shares with its Canadian neighbors to the north. The way these resources are changing over time is inadequately known and is a concern for resource users and for those charged with managing and protecting these unique and valuable resources. This chapter describes the wild plants and animals and the systems that support them in the Great Lakes region; addresses their condition; and points out the gaps in our knowledge about them that, if filled, would aid in their conservation and appropriate use.

  7. Great Expectations for "Great Expectations."

    ERIC Educational Resources Information Center

    Ridley, Cheryl

    Designed to make the study of Dickens'"Great Expectations" an appealing and worthwhile experience, this paper presents a unit of study intended to help students gain (1) an appreciation of Dickens' skill at creating realistic human characters; (2) an insight into the problems of a young man confused by false values and unreal ambitions and ways to…

  8. Great Ideas for Great Behavior.

    ERIC Educational Resources Information Center

    Reep, Beverly B.

    1991-01-01

    Describes a South Carolina elementary school principal's program for decreasing discipline referrals and creating a positive school environment. The Great Behavior program involves weekly drawings and prizes for well-behaved students and an end-of-school party and pie-throwing event. Following a first-year 47 percent reduction in discipline…

  9. [Salt and cancer].

    PubMed

    Strnad, Marija

    2010-05-01

    Besides cardiovascular disease, a high salt intake causes other adverse health effects, i.e., gastric and some other cancers, obesity (risk factor for many cancer sites), Meniere's disease, worsening of renal disease, triggering an asthma attack, osteoporosis, exacerbation of fluid retention, renal calculi, etc. Diets containing high amounts of food preserved by salting and pickling are associated with an increased risk of cancers of the stomach, nose and throat. Because gastric cancer is still the most common cancer in some countries (especially in Japan), its prevention is one of the most important aspects of cancer control strategy. Observations among Japanese immigrants in the U.S.A. and Brazil based on the geographic differences, the trend in cancer incidence with time, and change in the incidence patterns indicate that gastric cancer is closely associated with dietary factors such as the intake of salt and salted food. The findings of many epidemiological studies suggest that high dietary salt intake is a significant risk factor for gastric cancer and this association was found to be strong in the presence of Helicobacter (H.) pylori infection with atrophic gastritis. A high-salt intake strips the lining of the stomach and may make infection with H. pylori more likely or may exacerbate the infection. Salting, pickling and smoking are traditionally popular ways of preparing food in Japan and some parts of Asia. In addition to salt intake, cigarette smoking and low consumption of fruit and vegetables increase the risk of stomach cancer. However, it is not known whether it is specifically the salt in these foods or a combination of salt and other chemicals that can cause cancer. One study identified a mutagen in nitrite-treated Japanese salted fish, and chemical structure of this mutagen suggests that it is derived from methionine and that salt and nitrite are precursors for its formation. Working under conditions of heat stress greatly increased the workers

  10. GREAT optics

    NASA Astrophysics Data System (ADS)

    Wagner-Gentner, Armin; Graf, Urs U.; Philipp, Martin; Rabanus, David; Stutzki, Jürgen

    2004-10-01

    The German REceiver for Astronomy at Terahertz frequencies (GREAT) is a first generation PI instrument for the SOFIA telescope, developed by a collaboration between the MPIfR, KOSMA, DLR, and the MPAe. The first three institutes each contribute one heterodyne receiver channel to operate at 1.9, 2.7 and 4.7 THz, respectively. A later addition of a e.g. 1.4 THz channel is planned. The GREAT instrument is developed to carry two cryostats at once. That means that any two of the three frequencies can be observed simultaneously. Therefore, we need to be able to quickly exchange the optics benches, the local oscillator (LO) subsystems, and the cryostats containing the mixer devices. This demands a high modularity and flexibility of our receiver concept. Our aim is to avoid the need for realignment when swapping receiver channels. After an overview of the common GREAT optics, a detailed description of several parts (optics benches, calibration units, diplexer, focal plane imager) is given. Special emphasis is given to the LO optics of the KOSMA 1.9 THz channel, because its backward wave oscillator has an astigmatic output beam profile, which has to be corrected for. We developed astigmatic off-axis mirrors to compensate this astigmatism. The mirrors are manufactured in-house on a 5 axis CNC milling machine. We use this milling machine to obtain optical components with highest surface accuracy (about 5 microns) appropriate for these wavelengths. Based on the CNC machining capabilities we present our concept of integrated optics, which means to manufacture optical subsystems monolithically. The optics benches are located on three point mounts, which in conjunction with the integrated optics concept ensure the required adjustment free optics setup.

  11. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  12. Boosting salt resistance of short antimicrobial peptides.

    PubMed

    Chu, Hung-Lun; Yu, Hui-Yuan; Yip, Bak-Sau; Chih, Ya-Han; Liang, Chong-Wen; Cheng, Hsi-Tsung; Cheng, Jya-Wei

    2013-08-01

    The efficacies of many antimicrobial peptides are greatly reduced under high salt concentrations, therefore limiting their use as pharmaceutical agents. Here, we describe a strategy to boost salt resistance and serum stability of short antimicrobial peptides by adding the nonnatural bulky amino acid β-naphthylalanine to their termini. The activities of the short salt-sensitive tryptophan-rich peptide S1 were diminished at high salt concentrations, whereas the activities of its β-naphthylalanine end-tagged variants were less affected.

  13. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Salt water freeboard. 45.77 Section 45.77 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Freeboards § 45.77 Salt water freeboard. (a) The salt water addition in inches to freeboard applicable to each fresh...

  14. Salt tongues in northern Gulf of Mexico

    SciTech Connect

    Wang, Y.F.

    1988-01-01

    Salt tongues are generally flat-lying tongue-shaped salt sheets that have been found in the deep-slope area in the northern Gulf of Mexico. These tongues, usually buried at shallow depth, are embedded in Pleistocene, possibly in Pliocene or older, sediments. Their size varies greatly from 5 to over 100 km in length, and from a few tons to over 4,500 m in thickness. Most of the salt tongues are marked by high-amplitude seismic reflectors at the top and sometimes at the base. A typical salt tongue consists of a feeder, a bulging neck and butt, and a tapering tongue pointing downslope. The salt tongues in the northern gulf are believed to be extrusive in origin. These tongues were formed as a result of updip sedimentary loading from the shelf and upper slope. A salt tongue probably originates from a diapiric salt dome or from a fault connecting it to the buried mother salt. As the sedimentary wedge progrades downdip toward the slope, the mother salt is mobilized and moves upward. When salt approaches the sea floor, it expands laterally and creeps gradually down-slope under the influence of gravity. The advance of the tongue is sustained by the continuing supply of salt from the feeder, which is mobilized by loading and buoyancy. The eventual cessation of tongue advancement comes when the sedimentary cover reaches a critical thickness and/or the salt supply is depleted. In the event that the mother salt supply remains plentiful and loading continues, the salt moves vertically and the feeder evolves into a salt dome.

  15. Salt tongues in northern Gulf of Mexico

    SciTech Connect

    Wang, Yun Fei

    1988-02-01

    Salt tongues are generally flat-lying tongue-shaped salt sheets that have been found in the deep-slope area in the northern Gulf of Mexico. These tongues, usually buried at shallow depth, are embedded in Pleistocene, possibly in Pliocene or older, sediments. Their size varies greatly from 5 to over 100 km in length, and from a few tens to over 4500 m in thickness. Most of the salt tongues are marked by high-amplitude seismic reflectors at the top and sometimes at the base. A typical salt tongue consists of a feeder, a bulging neck and butt, and a tapering tongue pointing downslope. The salt tongues in the northern gulf are believed to be extrusive in origin. These tongues were formed as a result of updip sedimentary loading from the shelf and upper slope. A salt tongue probably originates from a diapiric salt dome or from a fault connecting it to the buried mother salt. As the sedimentary wedge progrades downdip toward the slope, the mother salt is mobilized and moves upward. When salt approaches the sea floor, it expands laterally and creeps gradually down-slope under the influence of gravity. The advance of the tongue is sustained by the continuing supply of salt from the feeder, which is mobilized by loading and buoyancy. The eventual cessation of the tongue advancement comes when the sedimentary cover reaches a critical thickness and/or the salt supply is depleted. In the event that the mother salt supply remains plentiful and loading continues, the salt moves vertically and the feeder will evolve into a salt dome.

  16. Investigation of Salt Loss from the Bonneville Salt Flats, Northwestern Utah

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1997-01-01

    The Bonneville Salt Flats study area is located in the western part of the Great Salt Lake Desert in northwestern Utah, about 110 miles west of Salt Lake City. The salt crust covers about 50 square miles, but the extent varies yearly as a result of salt being dissolved by the formation and movement of surface ponds during the winter and redeposited with the evaporation of these ponds during the summer. A decrease in thickness and extent of the salt crust on the Bonneville Salt Flats has been documented during 1960-88 (S. Brooks, Bureau of Land Management, written commun., 1989). Maximum salt-crust thickness was 7 feet in 1960 and 5.5 feet in 1988. No definitive data are available to identify and quantify the processes that cause salt loss. More than 55 million tons of salt are estimated to have been lost from the salt crust during the 28-year period. The Bureau of Land Management needs to know the causes of salt loss to make appropriate management decisions.

  17. Salt budget for West Pond, Utah, April 1987 to June 1989

    USGS Publications Warehouse

    Wold, S.R.; Waddell, K.M.

    1994-01-01

    During operation of the West Desert pumping project, April 10. 1987, to June 30, 1989, data were collected as part of a monitoring program to evaluate the effects of pumping brine from Great Salt Lake into West Pond in northern Utah. The removal of brine from Great Sail was part of an effort to lower the level of Great Salt Lake when the water level was at a high in 1986. These data were used to prepare a salt budget that indicates about 695 million tons of salt or about 14.2 percent of salt contained in Great Salt Lake was pumped into West Pond. Of the 695 million tons of salt pumped into West Pond, 315 million tons (45 percent) were dissolved in West Pond, 71 million tons (10.2 percent) formed a salt crust at the bottom of the pond, 10 million tons (1.4 percent) infiltrated the subsurface areas inundated by storage in the pond, 88 million tons (12.7 percent) were withdrawn by American Magnesium Corporation, and 123 million tons (17.7 percent) discharged from the pond through the Newfoundland weir. About 88 million tons (13 percent) of the salt pumped from the lake could not be accounted for in the salt budget. About 94 million tons of salt (1.9 percent of the total salt in Great Salt Lake) flowed back to Great Salt Lake.

  18. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  19. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  20. [Arsenic (V) removal from drinking water by ferric salt and aluminum salt coagulation/microfiltration process].

    PubMed

    Li, Xiao-bo; Wu, Shui-bo; Gu, Ping

    2007-10-01

    Two lab-scale coagulation/microfiltration membrane reactors were used to compare the arsenic removal from drinking water by ferric salt and aluminum salt coagulation/microfiltration process. FeCl3 and Al2(SO4)3 were appointed as the coagulants. The results show that the arsenic removal efficiency of the two processes are almost equal. Arsenic concentration can be lowered from about 100 microg/L to below 10 microg/L and the lowest is 1.68 microg x L(-1). All of the turbidity of the treated water is less than 0.1 NTU. The concentrations of ferric, aluminum and SO4(2-) of the treated water are entirely satisfied the standard of drinking water. After treated by ferric salt process, pH value of the treated water is increased about 0.5. However, aluminum salt process does not change pH of the drinking water. The concentration ratio of the ferric salt process is 1,791 which is about 2.54 times of the aluminum salt process. Arsenic concentration of the sludge of ferric salt process is also higher greatly than that of the aluminum salt process. Therefore, the volume of the sludge produced by the ferric salt process is smaller than that of the aluminum salt process when equal amount of drinking water was treated. Accordingly, ferric salt process should be used when only high concentration arsenic existed in drinking water. On the other hand, fluoride also can be removed simultaneously while arsenic was removed by aluminum salt process. The amount of coagulant needed is the amount of coagulant required to remove fluoride separately. Fluoride can not be removed from drinking water by the ferric salt process. It was concluded that aluminum salt process should be used to remove arsenic and fluoride simultaneously from high arsenic and high fluoride coexisted drinking water.

  1. Great Lakes: Chemical Monitoring

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1976-01-01

    The Tenth Great Lakes Regional Meeting of the American Chemical Society met to assess current Chemical Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)

  2. Atlas of Great Comets

    NASA Astrophysics Data System (ADS)

    Stoyan, Ronald; Dunlop, Storm

    2015-01-01

    Foreword; Using this book; Part I. Introduction: Cometary beliefs and fears; Comets in art; Comets in literature and poetry; Comets in science; Cometary science today; Great comets in antiquity; Great comets of the Middle Ages; Part II. The 30 Greatest Comets of Modern Times: The Great Comet of 1471; Comet Halley 1531; The Great Comet of 1556; The Great Comet of 1577; Comet Halley, 1607; The Great Comet of 1618; The Great Comet of 1664; Comet Kirch, 1680; Comet Halley, 1682; The Great Comet of 1744; Comet Halley, 1759; Comet Messier, 1769; Comet Flaugergues, 1811; Comet Halley, 1835; The Great March Comet of 1843; Comet Donati, 1858; Comet Tebbutt, 1861; The Great September Comet of 1882; The Great January Comet of 1910; Comet Halley, 1910; Comet Arend-Roland, 1956; Comet Ikeya-Seki, 1965; Comet Bennett, 1970; Comet Kohoutek, 1973-4; Comet West, 1976; Comet Halley, 1986; Comet Shoemaker-Levy 9, 1994; Comet Hyakutake, 1996; Comet Hale-Bopp, 1997; Comet McNaught, 2007; Part III. Appendices; Table of comet data; Glossary; References; Photo credits; Index.

  3. [Salt-alkaline tolerance of sorghum germplasm at seedling stage].

    PubMed

    Gao, Jian-Ming; Xia, Bu-Xian; Yuan, Qing-Hua; Luo, Feng; Han, Yun; Gui, Zhi; Pei, Zhong-You; Sun, Shou-Jun

    2012-05-01

    A sand culture experiment with Hoagland solution plus NaCl and Na2CO3 was conducted to study the responses of sorghum seedlings to salt-alkaline stress. An assessment method for identifying the salt-alkaline tolerance of sorghum at seedling stage was established, and the salt-alkaline tolerance of 66 sorghum genotypes was evaluated. At the salt concentrations 8.0-12.5 g x L(-1), there was a great difference in the salt-alkaline tolerance between tolerant genotype 'TS-185' and susceptive 'Tx-622B', suggesting that this range of salt concentrations was an appropriate one to evaluate the salt-alkaline tolerance of sorghum at seedling stage. At the salt concentrations 10.0 and 12.5 g x L(-1), there existed significant differences in the relative livability, relative fresh mass, and relative height among the 66 genotypes, indicating a great difference in the salt-alkaline tolerance among these genotypes. The genotype 'Sanchisan' was highly tolerant, 16 genotypes such as 'MN-2735' were tolerant, 32 genotypes such as 'EARLY HONEY' were mild tolerant, 16 genotypes such as 'Tx-622B' were susceptive, and genotype 'MN-4588' was highly susceptive to salt-alkaline stress. Most of the sorghum genotypes belonging to Sudangrasses possessed a high salt-alkaline tolerance, while the sorghum genotypes belonging to maintainer lines were in adverse. PMID:22919841

  4. Salt tectonics on Venus

    SciTech Connect

    Wood, C.A.; Amsbury, D.

    1986-05-01

    The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

  5. Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts.

    PubMed

    Gutteridge, J M; Quinlan, G J; Clark, I; Halliwell, B

    1985-07-31

    Aluminium salts do not themselves stimulate peroxidation of ox-brain phospholipid liposomes, but they greatly accelerate the peroxidation induced by iron(II) salts at acidic pH values. This effect of Al(III) is not seen at pH 7.4, perhaps because Al(III) salts form insoluble complexes at this pH in aqueous solution. Peroxidation of liposomes in the presence of Al(III) and Fe(II) salts is inhibited by the chelating agent desferrioxamine, and by EDTA and diethylenetriaminepentaacetic acid at concentrations greater than those of Fe(II) salt. Aluminium salts slightly stimulate the peroxidation of peroxide-depleted linolenic acid micelles, but they do not accelerate the peroxidation induced by addition of iron(II) salts to the micelles at acidic pH. Aluminium salts accelerate the peroxidation observed when human erythrocytes are treated with hydrogen peroxide at pH 7.4. Desferrioxamine decreases the peroxidation. We suggest that Al(III) ions produce an alteration in membrane structure that facilitates lipid peroxidation, and that the increased formation of fluorescent age pigments in the nervous system of patients exposed to toxic amounts of Al(III) may be related to this phenomenon. The ability of desferal to bind both iron (III) and aluminium(III) salts and to inhibit lipid peroxidation makes it an especially useful chelating agent in the treatment of 'aluminium overload'. PMID:2861853

  6. PySALT: SALT science pipeline

    NASA Astrophysics Data System (ADS)

    Crawford, S. M.; Still, M.; Schellart, P.; Balona, L.; Buckley, D. A. H.; Gulbis, A. A. S.; Kniazev, A.; Kotze, M.; Loaring, N.; Nordsieck, K. H.; Pickering, T. E.; Potter, S.; Romero Colmenero, E.; Vaisanen, P.; Wiliams, T.; Zietsman, E.

    2012-07-01

    The PySALT user package contains the primary reduction and analysis software tools for the SALT telescope. Currently, these tools include basic data reductions for RSS and SALTICAM in both imaging, spectroscopic, and slot modes. Basic analysis software for slot mode data is also provided. These tools are primarily written in python/PyRAF with some additional IRAF code.

  7. The Next Great Generation?

    ERIC Educational Resources Information Center

    Brownstein, Andrew

    2000-01-01

    Discusses ideas from a new book, "Millennials Rising: The Next Great Generation," (by Neil Howe and William Strauss) suggesting that youth culture is on the cusp of a radical shift with the generation beginning with this year's college freshmen who are typically team oriented, optimistic, and poised for greatness on a global scale. Includes a…

  8. Great Lakes Literacy Principles

    NASA Astrophysics Data System (ADS)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  9. Great Lakes Teacher's Guide.

    ERIC Educational Resources Information Center

    Reid, Ron

    The Great Lakes are one of the world's greatest reservoirs of fresh water, the foundation of Ontario's economic development, a primary force in ecological systems, and a base for pleasure and recreation. They are also a magnificent resource for the teachers of Ontario. Study of the Great Lakes can bring to life the factors that shape the ecology…

  10. Low-salt diet

    MedlinePlus

    ... away from foods that are always high in salt. Some common ones are: Processed foods, such as cured or smoked meats, bacon, hot dogs, sausage, bologna, ham, and salami ... salt with other seasonings. Pepper, garlic, herbs, and lemon ...

  11. The fluids in salt.

    USGS Publications Warehouse

    Roedder, E.

    1984-01-01

    The characteristics of fluid inclusions in salt, the geological processes through which these fluids evolve, and the possible problems such inclusions pose for nuclear waste disposal in salt beds or domes are reviewed.-J.A.Z.

  12. What Are Bath Salts?

    MedlinePlus

    ... Are bath salts becoming more popular? Marsha Lopez Hi, Lauren. Nope! Actually quite the opposite! This family ... and how dangerous for your body? Michelle Rankin Hi ParkerPanella - Bath salts are drugs known as synthetic ...

  13. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    article title:  Winter and Summer Views of the Salt Lake Region     View Larger Image Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the ...

  14. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  15. Molten salt technology

    SciTech Connect

    Lovering, D.G.

    1982-01-01

    In this volume, the historical background, scope, problems, economics, and future applications of molten salt technologies are discussed. Topics presented include molten salts in primary production of aluminum, general principles and handling and safety of the alkali metals, first-row transition metals, group VIII metals and B-group elements, solution electrochemistry, transport phenomena, corrosion in different molten salts, cells with molten salt electrolytes and reactants, fuel cell design, hydrocracking and liquefaction, heat storage in phase change materials, and nuclear technologies.

  16. Retrospective salt tectonics

    SciTech Connect

    Jackson, M.P.A.

    1996-12-31

    The conceptual breakthroughs in understanding salt tectonics can be recognized by reviewing the history of salt tectonics, which divides naturally into three parts: the pioneering era, the fluid era, and the brittle era. The pioneering era (1856-1933) featured the search for a general hypothesis of salt diapirism, initially dominated by bizarre, erroneous notions of igneous activity, residual islands, in situ crystallization, osmotic pressures, and expansive crystallization. Gradually data from oil exploration constrained speculation. The effects of buoyancy versus orogeny were debated, contact relations were characterized, salt glaciers were discovered, and the concepts of downbuilding and differential loading were proposed as diapiric mechanisms. The fluid era (1933-{approximately}1989) was dominated by the view that salt tectonics resulted from Rayleigh-Taylor instabilities in which a dense fluid overburden having negligible yield strength sinks into a less dense fluid salt layer, displacing it upward. Density contrasts, viscosity contrasts, and dominant wavelengths were emphasized, whereas strength and faulting of the overburden were ignored. During this era, palinspastic reconstructions were attempted; salt upwelling below thin overburdens was recognized; internal structures of mined diapirs were discovered; peripheral sinks, turtle structures, and diapir families were comprehended; flow laws for dry salt were formulated; and contractional belts on divergent margins and allochthonous salt sheets were recognized. The 1970s revealed the basic driving force of salt allochthons, intrasalt minibasins, finite strains in diapirs, the possibility of thermal convection in salt, direct measurement of salt glacial flow stimulated by rainfall, and the internal structure of convecting evaporites and salt glaciers. The 1980`s revealed salt rollers, subtle traps, flow laws for damp salt, salt canopies, and mushroom diapirs.

  17. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  18. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  19. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  20. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  1. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  2. Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes

    NASA Astrophysics Data System (ADS)

    Escapa, Mauricio; Perillo, Gerardo M. E.; Iribarne, Oscar

    2015-01-01

    Salt-marshes are under increasing threat, particularly from sea-level rise and increased wave action associated with climate change. The development and stability of these valuable habitats largely depend on complex interactions between biotic and abiotic processes operating at different scales. Also, interactions between biotic and abiotic processes drive internal morphological change in salt-marshes. In this paper we used a biogeomorphological approach to assess the impact of biological activities and interactions on salt pan formation in Sarcocornia-dominated salt marshes. Salt pans represent a key physiographic feature of salt-marshes and recent studies hypothesized that biogeomorphic processes could be related to salt pan formation in SW Atlantic salt-marshes. The glasswort Sarcocornia perennis is one of the dominant plants in the salt-marshes of the Bahía Blanca Estuary (Argentina) where they form patches up to 8 m in diameter. These salt-marshes are also inhabited in great densities by the burrowing crab Neohelice (Chasmagnathus) granulata whose bioturbation rates are among the highest reported for salt-marshes worldwide. A set of biological interactions between N. granulata and S. perennis appears to be responsible for salt pan development in these areas which has not been described elsewhere. The main objective of this work was to determine the ecological interactions occurring between plants and crabs that lead to salt pan formation by using field-based sampling and manipulative experiments. Our results showed that S. perennis facilitated crab colonization of the salt-marsh by buffering otherwise stressful physical conditions (e.g., temperature, desiccation). Crabs preferred to construct burrows underneath plants and, once they reach high densities (up to 40 burrows m- 2), the sediment reworking caused plant die-off in the central area of patches. At this state, the patches lose elevation and become depressed due to the continuous bioturbation by crabs

  3. A comparison of Bromus tectorum growth and mycorrhizal colonization in salt desert versus sagebrush habitat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cheatgrass has recently invaded marginal low elevation salt desert habitats across the Great Basin, USA. We tested the hypothesis that cheatgrass seed produced in populations from the more stressful salt desert versus upland sagebrush habitats should grow differently in salt desert soils compared to...

  4. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged on foreign and coastwise voyages other than the Great Lakes voyages, shall not submerge in salt water...

  5. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged on foreign and coastwise voyages other than the Great Lakes voyages, shall not submerge in salt water...

  6. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged on foreign and coastwise voyages other than the Great Lakes voyages, shall not submerge in salt water...

  7. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged on foreign and coastwise voyages other than the Great Lakes voyages, shall not submerge in salt water...

  8. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Nonsubmergence subdivision load lines in salt water. 46... in salt water. (a) Passenger vessels required to be marked with subdivision load lines, engaged on foreign and coastwise voyages other than the Great Lakes voyages, shall not submerge in salt water...

  9. [Transposition of Great Artery].

    PubMed

    Konuma, Takeshi; Shimpo, Hideto

    2015-07-01

    Transposition of the great artery is one of common congenital cardiac disease resulting cyanosis. Death occurs easily in untreated patients with transposition and intact ventricular septal defect (VSD) in infancy at a few days of age when posterior descending coronary artery (PDA) closed. Since there are 2 parallel circulations, flow from pulmonary to systemic circulation is necessary for systemic oxygenation, and Balloon atrial septostomy or prostaglandin infusion should be performed especially if patient do not have VSD. Although the advent of fetal echocardiography, it is difficult to diagnose the transposition of the great arteries (TGA) as abnormality of great vessels is relatively undistinguishable. The diagnosis of transposition is in itself an indication for surgery, and arterial switch procedure is performed in the case the left ventricle pressure remains more than 2/3 of systemic pressure. Preoperative diagnosis is important as associated anomalies and coronary artery branching patterns are important to decide the operative indication and timing of surgery.

  10. The Great Lakes whitefish

    USGS Publications Warehouse

    Van Oosten, John; Elliot, Charles

    1942-01-01

    In every one of the Great Lakes- Ontario, Erie, Huron, Michigan, and Superior- the most valuable fishes are declining, and there is no evidence that this trend will be reversed. Under existing conditions of a diversity of regulations that vary between states and between the two countries, and with the present methods of fishing, the Great Lakes fisheries are doomed. This chapter deals with the common whitefish, a valuable species which many believe to be the next that will go unless positive action is forthcoming soon.

  11. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution

  12. Photochemistry of triarylsulfonium salts

    SciTech Connect

    Dektar, J.L.; Hacker, N.P. )

    1990-08-01

    The photolysis of triphenylsulfonium, tris(4-methylphenyl)sulfonium, tris(4-chlorophenyl)sulfonium, several monosubstituted (4-F, 4-Cl, 4-Me, 4-MeO, 4-PhS, and 4-PhCO), and disubstituted (4,4{prime}-Me{sub 2} and 4,4{prime}-(MeO){sub 2}) triphenylsulfonium salts was examined in solution. It was found that direct irradiation of triphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts, gave the new rearrangement products. The mechanism for direct photolysis is proposed to occur from the singlet excited states to give a predominant heterolytic cleavage along with some homolytic cleavage.

  13. Evolution of salt-related structures

    SciTech Connect

    Bishop, R.S.

    1988-01-01

    Several types of structures (piercements, turtles, and nonpiercements) are caused by salt movement. Reconstructions show that the emplacement process is basically the same for many geometrically dissimilar structures, but that the great differences of shape originated from different patterns of sediment loading, salt thickness, and basin evolution. The reconstructions are generalizations derived from numerous real examples to show timing, evolution of dip, origin of thickness changes and overchanges, how the salt-sediment volume exchange occurs, and diagnostic criteria to interpret these events. Such reconstructions help to discriminate between turtles and nonpiercements, to interpret lithofacies, and to unravel the role of sedimentary events on the structural evolution. In addition, they illustrate the mechanism of diapirism, using criteria to help distinguish diapirism in an overburden having strength (the mechanism assumed here) from diapirism in a viscous overburden (the classical buoyancy theory). In general, many piercements may start quite early (even before a density inversion exists) and move primarily by extrusion or may alternate between extrusion and intrusion beneath a thin overburden. The pattern of sedimentation largely determines the pattern of diapirism. In contrast, nonpiercements and turtle structures are passive features and may form whenever salt migrates away from them to an adjacent ''escape hatch.'' For example, nonpiercements may not form by salt rising vertically, but rather by salt moving away horizontally to some point of escape. In other words, the dome remains static while the overburden collapses into the rim syncline.

  14. A history of salt.

    PubMed

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  15. Iodised salt is safe.

    PubMed

    Ranganathan, S

    1995-01-01

    Iodine deficiency disorders are prevalent in all the States and Union Territories in India. Under the National Iodine Deficiency Disorders control programme, the Government of India has adopted a strategy to iodisation of all edible salt in the country which is a long term and sustainable preventive solution to eliminate iodine deficiency disorders. The benefits to be derived from universal salt iodisation are more to the population. Iodised salt is safe and does not cause any side effect. PMID:8690505

  16. Great Expectations. [Lesson Plan].

    ERIC Educational Resources Information Center

    Devine, Kelley

    Based on Charles Dickens' novel "Great Expectations," this lesson plan presents activities designed to help students understand the differences between totalitarianism and democracy; and a that a writer of a story considers theme, plot, characters, setting, and point of view. The main activity of the lesson involves students working in groups to…

  17. The Great Mathematician Project

    ERIC Educational Resources Information Center

    Goldberg, Sabrina R.

    2013-01-01

    The Great Mathematician Project (GMP) introduces both mathematically sophisticated and struggling students to the history of mathematics. The rationale for the GMP is twofold: first, mathematics is a uniquely people-centered discipline that is used to make sense of the world; and second, students often express curiosity about the history of…

  18. The Great Lakes.

    ERIC Educational Resources Information Center

    Seasons, 1987

    1987-01-01

    The Great Lakes are one of the world's greatest reserviors of fresh water, the foundation of Ontario's economic development, a primary force in ecological systems, and a base for pleasure and recreation. These lakes and their relationship with people of Canada and the United States can be useful as a subject for teaching the impact of human…

  19. 1 Great Question

    ERIC Educational Resources Information Center

    Nethery, Carrie

    2011-01-01

    In this article, the author presents an ideal question that can take an art teacher and his or her students through all the levels of thought in Bloom's taxonomy--perfect for modeling the think-aloud process: "How many people is the artist inviting into this picture?" This great question always helps the students look beyond the obvious and dig…

  20. Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A better than average view of the Great Barrier Reef was captured by SeaWiFS on a recent overpass. There is sunglint northeast of the reef and there appears to be some sort of filamentous bloom in the Capricorn Channel.

  1. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  2. Salinization of the Upper Colorado River - Fingerprinting Geologic Salt Sources

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Grauch, Richard I.

    2009-01-01

    Salt in the upper Colorado River is of concern for a number of political and socioeconomic reasons. Salinity limits in the 1974 U.S. agreement with Mexico require the United States to deliver Colorado River water of a particular quality to the border. Irrigation of crops, protection of wildlife habitat, and treatment for municipal water along the course of the river also place restrictions on the river's salt content. Most of the salt in the upper Colorado River at Cisco, Utah, comes from interactions of water with rock formations, their derived soil, and alluvium. Half of the salt comes from the Mancos Shale and the Eagle Valley Evaporite. Anthropogenic activities in the river basin (for example, mining, farming, petroleum exploration, and urban development) can greatly accelerate the release of constituents from these geologic materials, thus increasing the salt load of nearby streams and rivers. Evaporative concentration further concentrates these salts in several watersheds where agricultural land is extensively irrigated. Sulfur and oxygen isotopes of sulfate show the greatest promise for fingerprinting the geologic sources of salts to the upper Colorado River and its major tributaries and estimating the relative contribution from each geologic formation. Knowing the salt source, its contribution, and whether the salt is released during natural weathering or during anthropogenic activities, such as irrigation and urban development, will facilitate efforts to lower the salt content of the upper Colorado River.

  3. Great Lakes Energy Institute

    SciTech Connect

    Alexander, J. Iwan

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  4. The great intimidators.

    PubMed

    Kramer, Roderick M

    2006-02-01

    After Disney's Michael Eisner, Miramax's Harvey Weinstein, and Hewlett-Packard's Carly Fiorina fell from their heights of power, the business media quickly proclaimed thatthe reign of abrasive, intimidating leaders was over. However, it's premature to proclaim their extinction. Many great intimidators have done fine for a long time and continue to thrive. Their modus operandi runs counter to a lot of preconceptions about what it takes to be a good leader. They're rough, loud, and in your face. Their tactics include invading others' personal space, staging tantrums, keeping people guessing, and possessing an indisputable command of facts. But make no mistake--great intimidators are not your typical bullies. They're driven by vision, not by sheer ego or malice. Beneath their tough exteriors and sharp edges are some genuine, deep insights into human motivation and organizational behavior. Indeed, these leaders possess political intelligence, which can make the difference between paralysis and successful--if sometimes wrenching--organizational change. Like socially intelligent leaders, politically intelligent leaders are adept at sizing up others, but they notice different things. Those with social intelligence assess people's strengths and figure out how to leverage them; those with political intelligence exploit people's weaknesses and insecurities. Despite all the obvious drawbacks of working under them, great intimidators often attract the best and brightest. And their appeal goes beyond their ability to inspire high performance. Many accomplished professionals who gravitate toward these leaders want to cultivate a little "inner intimidator" of their own. In the author's research, quite a few individuals reported having positive relationships with intimidating leaders. In fact, some described these relationships as profoundly educational and even transformational. So before we throw out all the great intimidators, the author argues, we should stop to consider what

  5. Not so Great Lakes?

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    In 1965, Frank Sinatra won the Grammy Award for his album, “September of My Years” “Early Bird,” the first commercial communications satellite, was launched; and Dr. Martin Luther King, Jr. was arrested in Selma, Alabama, during demonstrations against voter-registration rules.The year 1965 was also the last time water levels in the U.S. Great Lakes were as low as they are now.

  6. Not so Great Lakes?

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    In 1965, Frank Sinatra won the Grammy Award for his album, "September of My Years;" "Early Bird," the first commercial communications satellite, was launched; and Dr. Martin Luther King, Jr. was arrested in Selma, Alabama, during demonstrations against voter-registration rules.The year 1965 was also the last time water levels in the U.S. Great Lakes were as low as they are now.

  7. The great intimidators.

    PubMed

    Kramer, Roderick M

    2006-02-01

    After Disney's Michael Eisner, Miramax's Harvey Weinstein, and Hewlett-Packard's Carly Fiorina fell from their heights of power, the business media quickly proclaimed thatthe reign of abrasive, intimidating leaders was over. However, it's premature to proclaim their extinction. Many great intimidators have done fine for a long time and continue to thrive. Their modus operandi runs counter to a lot of preconceptions about what it takes to be a good leader. They're rough, loud, and in your face. Their tactics include invading others' personal space, staging tantrums, keeping people guessing, and possessing an indisputable command of facts. But make no mistake--great intimidators are not your typical bullies. They're driven by vision, not by sheer ego or malice. Beneath their tough exteriors and sharp edges are some genuine, deep insights into human motivation and organizational behavior. Indeed, these leaders possess political intelligence, which can make the difference between paralysis and successful--if sometimes wrenching--organizational change. Like socially intelligent leaders, politically intelligent leaders are adept at sizing up others, but they notice different things. Those with social intelligence assess people's strengths and figure out how to leverage them; those with political intelligence exploit people's weaknesses and insecurities. Despite all the obvious drawbacks of working under them, great intimidators often attract the best and brightest. And their appeal goes beyond their ability to inspire high performance. Many accomplished professionals who gravitate toward these leaders want to cultivate a little "inner intimidator" of their own. In the author's research, quite a few individuals reported having positive relationships with intimidating leaders. In fact, some described these relationships as profoundly educational and even transformational. So before we throw out all the great intimidators, the author argues, we should stop to consider what

  8. Great Basin Paleontological Bibliography

    USGS Publications Warehouse

    Blodgett, Robert B.; Zhang, Ning; Hofstra, Albert H.; Morrow, Jared R.

    2007-01-01

    Introduction This work was conceived as a derivative product for 'The Metallogeny of the Great Basin' project of the Mineral Resources Program of the U.S. Geological Survey. In the course of preparing a fossil database for the Great Basin that could be accessed from the Internet, it was determined that a comprehensive paleontological bibliography must first be compiled, something that had not previously been done. This bibliography includes published papers and abstracts as well as unpublished theses and dissertations on fossils and stratigraphy in Nevada and adjoining portions of California and Utah. This bibliography is broken into first-order headings by geologic age, secondary headings by taxonomic group, followed by ancillary topics of interest to both paleontologists and stratigraphers; paleoecology, stratigraphy, sedimentary petrology, paleogeography, tectonics, and petroleum potential. References were derived from usage of Georef, consultation with numerous paleontologists and geologists working in the Great Basin, and literature currently on hand with the authors. As this is a Web-accessible bibliography, we hope to periodically update it with new citations or older references that we have missed during this compilation. Hence, the authors would be grateful to receive notice of any new or old papers that the readers think should be added. As a final note, we gratefully acknowledge the helpful reviews provided by A. Elizabeth J. Crafford (Anchorage, Alaska) and William R. Page (USGS, Denver, Colorado).

  9. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt?

    PubMed Central

    Yuan, Fang; Leng, Bingying; Wang, Baoshan

    2016-01-01

    To survive in a saline environment, halophytes have evolved many strategies to resist salt stress. The salt glands of recretohalophytes are exceptional features for directly secreting salt out of a plant. Knowledge of the pathway(s) of salt secretion in relation to the function of salt glands may help us to change the salt-tolerance of crops and to cultivate the extensive saline lands that are available. Recently, ultrastructural studies of salt glands and the mechanism of salt secretion, particularly the candidate genes involved in salt secretion, have been illustrated in detail. In this review, we summarize current researches on salt gland structure, salt secretion mechanism and candidate genes involved, and provide an overview of the salt secretion pathway and the asymmetric ion transport of the salt gland. A new model recretohalophyte is also proposed. PMID:27446195

  10. SALT for Language Acquisition.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  11. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  12. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  13. Integrated Salt Studies

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Kukla, Peter A.

    2015-04-01

    The growing importance of salt in the energy, subsurface storage, and chemical and food industries also increases the challenges with prediction of geometries, kinematics, stress and transport in salt. This requires an approach, which integrates a broader range of knowledge than is traditionally available in the different scientific and engineering disciplines. We aim to provide a starting point for a more integrated understanding of salt, by presenting an overview of the state of the art in a wide range of salt-related topics, from (i) the formation and metamorphism of evaporites, (ii) rheology and transport properties, (iii) salt tectonics and basin evolution, (iv) internal structure of evaporites, (v) fluid flow through salt, to (vi) salt engineering. With selected case studies we show how integration of these domains of knowledge can bring better predictions of (i) sediment architecture and reservoir distribution, (ii) internal structure of salt for optimized drilling and better cavern design, (iii) reliable long-term predictions of deformations and fluid flow in subsurface storage. A fully integrated workflow is based on geomechanical models, which include all laboratory and natural observations and links macro- and micro-scale studies. We present emerging concepts for (i) the initiation dynamics of halokinesis, (ii) the rheology and deformation of the evaporites by brittle and ductile processes, (iii) the coupling of processes in evaporites and the under- and overburden, and (iv) the impact of the layered evaporite rheology on the structural evolution.

  14. Salting the landscapes in Transbaikalia: natural and technogenic factors

    NASA Astrophysics Data System (ADS)

    Peryazeva, E. G.; Plyusnin, A. M.; Chinavlev, A. M.

    2010-05-01

    , sulphur, strontium, lithium, molybdenum, nickel, and vanadium are widely spread there. Geochemical habit of basalts largely determines chemical compositions of waters and mineral formations in hearths of salting. Unloading the fissure-vein waters that evacuate solute from the Jurassic-Cretaceous volcanogenic-sedimentary deposits greatly effects chemical composition in some hearths of salting. Irrigation systems in many intermountain depressions influence the salting hearth formation. The associated secondary salting occurs as spots in the areas, where ground water surface reaches foot of loams during irrigation. Salting the landscapes takes out big areas of fertile lands from agricultural use, threatens with breakdowns at enterprises of thermal energetic that consume water as heat carrier.

  15. Winter and Summer Views of the Salt Lake Region

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera. Salt Lake City, situated near the southeastern shore of the Great Salt Lake, is host to the 2002 Winter Olympic Games, which open Friday, February 8. Venues for five of the scheduled events are at city (indoor) locations, and five in mountain (outdoor) facilities. All ten can be found within the area contained in these images. Some of the outdoor events take place at Ogden, situated north of Salt Lake City and at Park City, located to the east. Salt Lake City is surrounded by mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake and the overlying atmosphere enhances the moisture content of winter storms. These factors, in combination with natural cloud seeding by salt crystals from the lake, are believed to result in greater snowfall in neighboring areas compared to more distant locales. In addition to the obvious difference in snow cover between the winter and summer views, water color changes in parts of the Great Salt Lake are apparent in these images. The distinctly different coloration between the northern and southern arms of the Great Salt Lake is the result of a rock-filled causeway built in 1953 to support a permanent railroad. The causeway has resulted in decreased circulation between the two arms and higher salinity on the northern side. The southern part of the lake includes the large Antelope Island, and at full resolution a bridge connecting it to the mainland can be discerned. These images are natural color views acquired on February 8, 2001 and June 16, 2001, respectively. Each image represents an area of about 220 kilometers x 285 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  16. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  17. Great Basin paleontological database

    USGS Publications Warehouse

    Zhang, N.; Blodgett, R.B.; Hofstra, A.H.

    2008-01-01

    The U.S. Geological Survey has constructed a paleontological database for the Great Basin physiographic province that can be served over the World Wide Web for data entry, queries, displays, and retrievals. It is similar to the web-database solution that we constructed for Alaskan paleontological data (www.alaskafossil.org). The first phase of this effort was to compile a paleontological bibliography for Nevada and portions of adjacent states in the Great Basin that has recently been completed. In addition, we are also compiling paleontological reports (Known as E&R reports) of the U.S. Geological Survey, which are another extensive source of l,egacy data for this region. Initial population of the database benefited from a recently published conodont data set and is otherwise focused on Devonian and Mississippian localities because strata of this age host important sedimentary exhalative (sedex) Au, Zn, and barite resources and enormons Carlin-type An deposits. In addition, these strata are the most important petroleum source rocks in the region, and record the transition from extension to contraction associated with the Antler orogeny, the Alamo meteorite impact, and biotic crises associated with global oceanic anoxic events. The finished product will provide an invaluable tool for future geologic mapping, paleontological research, and mineral resource investigations in the Great Basin, making paleontological data acquired over nearly the past 150 yr readily available over the World Wide Web. A description of the structure of the database and the web interface developed for this effort are provided herein. This database is being used ws a model for a National Paleontological Database (which we am currently developing for the U.S. Geological Survey) as well as for other paleontological databases now being developed in other parts of the globe. ?? 2008 Geological Society of America.

  18. Blanket of Snow Covers Salt Lake City

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On December 23, 2001, less than two months before the start of the 2002 Winter Olympics, snow blankets Salt Lake City and the surrounding area. The Great Salt Lake, on the left hand side of the image above, often contributes to the region's snowfall through the 'lake-effect.' As cold air passes over a large body of water it both warms and absorbs moisture. The warm air then rises (like a hot air balloon) and cools again. As it cools, the water vapor condenses out, resulting in snowfall. Just to the east (right) of the Great Salt Lake the mountains of the Wasatch Range lift air from the lake even higher, enhancing the lake-effect, resulting in an average snowfall of 64 inches a year in Salt Lake City and 140 inches in Park City, which is located at the foot of the Wasatch Front. For more information about the lake-effect, read Lake-Effect Snowfalls. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Great cities look small.

    PubMed

    Sim, Aaron; Yaliraki, Sophia N; Barahona, Mauricio; Stumpf, Michael P H

    2015-08-01

    Great cities connect people; failed cities isolate people. Despite the fundamental importance of physical, face-to-face social ties in the functioning of cities, these connectivity networks are not explicitly observed in their entirety. Attempts at estimating them often rely on unrealistic over-simplifications such as the assumption of spatial homogeneity. Here we propose a mathematical model of human interactions in terms of a local strategy of maximizing the number of beneficial connections attainable under the constraint of limited individual travelling-time budgets. By incorporating census and openly available online multi-modal transport data, we are able to characterize the connectivity of geometrically and topologically complex cities. Beyond providing a candidate measure of greatness, this model allows one to quantify and assess the impact of transport developments, population growth, and other infrastructure and demographic changes on a city. Supported by validations of gross domestic product and human immunodeficiency virus infection rates across US metropolitan areas, we illustrate the effect of changes in local and city-wide connectivities by considering the economic impact of two contemporary inter- and intra-city transport developments in the UK: High Speed 2 and London Crossrail. This derivation of the model suggests that the scaling of different urban indicators with population size has an explicitly mechanistic origin. PMID:26179988

  20. Great cities look small

    PubMed Central

    Sim, Aaron; Yaliraki, Sophia N.; Barahona, Mauricio; Stumpf, Michael P. H.

    2015-01-01

    Great cities connect people; failed cities isolate people. Despite the fundamental importance of physical, face-to-face social ties in the functioning of cities, these connectivity networks are not explicitly observed in their entirety. Attempts at estimating them often rely on unrealistic over-simplifications such as the assumption of spatial homogeneity. Here we propose a mathematical model of human interactions in terms of a local strategy of maximizing the number of beneficial connections attainable under the constraint of limited individual travelling-time budgets. By incorporating census and openly available online multi-modal transport data, we are able to characterize the connectivity of geometrically and topologically complex cities. Beyond providing a candidate measure of greatness, this model allows one to quantify and assess the impact of transport developments, population growth, and other infrastructure and demographic changes on a city. Supported by validations of gross domestic product and human immunodeficiency virus infection rates across US metropolitan areas, we illustrate the effect of changes in local and city-wide connectivities by considering the economic impact of two contemporary inter- and intra-city transport developments in the UK: High Speed 2 and London Crossrail. This derivation of the model suggests that the scaling of different urban indicators with population size has an explicitly mechanistic origin. PMID:26179988

  1. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  2. Molten salt destruction of base hydrolysate

    SciTech Connect

    Watkins, B.E.; Kanna, R.L.; Chambers, R.D.; Upadhye, R.S.; Promeda, C.O.

    1996-10-01

    There is a great need for alternatives to open burn/open detonation of explosives and propellants from dismantled munitions. LANL has investigated the use of base hydrolysis for the demilitarization of explosives. Hydrolysates of Comp B, Octol, Tritonal, and PBXN-109 were processed in the pilot molten salt unit (in building 191). NOx and CO emissions were found to be low, except for CO from PBXN-109 processing. This report describes experimental results of the destruction of the base hydrolysates.

  3. The Great Scientists

    NASA Astrophysics Data System (ADS)

    Meadows, Jack

    1989-11-01

    This lively history of the development of science and its relationship to society combines vivid biographies of twelve pivotal scientists, commentary on the social and historical events of their time, and over four hundred illustrations, including many in color. The biographies span from classical times to the Atomic Age, covering Aristotle, Galileo, Harvey, Newton, Lavoisier, Humboldt, Faraday, Darwin, Pasteur, Curie, Freud, and Einstein. Through the biographies and a wealth of other material, the volume reveals how social forces have influenced the course of science. Along with the highly informative color illustrations, it contains much archival material never before published, ranging from medieval woodcuts, etchings from Renaissance anatomy texts, and pages from Harvey's journal, to modern false-color x-rays and infrared photographs of solar flares. A beautifully-designed, fact-filled, stimulating work, The Great Scientists will fascinate anyone with an interest in science and how history can influence scientific discovery.

  4. Europa's Great Lakes

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2012-04-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.

  5. The bioenergetics of salt tolerance

    SciTech Connect

    Packer, L.

    1991-01-01

    The aim of this project was to try to understand the adaptive mechanisms that organisms develop in order to respond to a sudden transformation in their environment to a salt shock.'' To study this problem we used a fresh water oxygenic photosynthetic cyanobacterium known as Synecoccus 6311. This organism suffers injury after this sudden exposure to high concentrations of sodium chloride equivalent to or even higher than that in sea water. Yet they are able to re-establish their photosynthetic activity which is partially injured and return to virtually normal growth rates. Identification of the temporal sequence of changes involved in adaptation to this stress was the rationale. Indeed this project employed a wide variety of biochemical and biophysical methods, including electron spin resonance techniques and nuclear magnetic resonance to study the bioenergetics and transport mechanisms, growth and energy changes in these organisms and how the structural components of the cells changed in response to adaptation to growth at high salinity. The problem has relevance for higher plants because most of the arable farmland in the work is already under use and that which is not used is usually in salite environments. Hence, understanding basic mechanisms of salt tolerance is a fundamental biological problem with great applications for bioproductivity and agriculture. 18 refs.

  6. Salt or cocrystal of salt? Probing the nature of multicomponent crystal forms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Cameron Capeletti; Guimarães, Freddy Fernandes; Ribeiro, Leandro; Martins, Felipe Terra

    2016-10-01

    The recognition of the nature of a multicomponent crystal form (solvate, salt, cocrystal or cocrystal of salt) is of great importance for pharmaceutical industry because it is directly related to the performance of a pharmaceutical ingredient, since there is interdependence between the structure, its energy and its physical properties. In this context, here we have identified the nature of multicomponent crystal forms of the anti-HIV drug lamivudine with mandelic acid through infrared spectroscopy. These investigated crystal forms were the known S-mandelic acid cocrystal of lamivudine R-mandelate trihydrate (1), a cocrystal of salt, and lamivudine R-mandelate (2), a salt. This approach also supports the identification and distinction of both ionized and unionized forms of mandelic acid in the infrared spectrum of 1. In this way, infrared spectroscopy can be useful to distinguish a cocrystal of salt from either salt or cocrystal forms. In the course of this study, for the first time we have also characterized and determined the crystal structure of R-mandelic acid cocrystal of sodium R-mandelate (3).

  7. Cooking without salt

    MedlinePlus

    ... flavor and nutrition. Plant-based foods -- carrots, spinach, apples, and peaches -- are naturally salt-free. Sun-dried ... types of pepper, including black, white, green, and red. Experiment with vinegars (white and red wine, rice ...

  8. Molten salt electrochemistry

    SciTech Connect

    Gallegos, U.F.; Williamson, M.A.

    1997-12-31

    The objective of this work is to develop preparation and clean-up processes for the fuel and carrier salt used in the Los Alamos Accelerator-Driven Transmutation Technology molten salt nuclear system. The front-end or fuel preparation process focuses on the removal of fission products, uranium, and zirconium from spent nuclear fuel by utilizing electrochemical methods. The same method provide the separation of the transition metal fission products at the back end of the fuel cycle. Molten salts provide a natural medium for the separation of actinides and fission products from one another because they are robust, radiation resistant solvents that can be recycled. The presentation will describe the design of the electrochemistry system, the method used for salt purification, and results of preliminary experiments.

  9. Shaking the Salt Habit

    MedlinePlus

    ... use the pepper shaker or mill. Add fresh lemon juice instead of salt to season fish and ... soups, salads, vegetables, tomatoes, potatoes Ginger: Chicken, fruits Lemon juice: Lean meats, fish, poultry, salads, vegetables Mace: ...

  10. Amine salts of nitroazoles

    DOEpatents

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  11. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  12. The bioenergetics of salt tolerance: Final report (1)

    SciTech Connect

    Packer, L.

    1986-10-28

    Studies on the sequence of events that lead to salt adaptation in the cyanobacterium Synechococcus 6311 are reported. We present here our major findings on how this freshwater organism responds to a transition from low salt (12 M NaCl) to high salt (0.5 M NaCl) medium; we have studied immediate and long-term osmotic responses, identified deleterious effects of NaCl on cellular processes, and analyzed adaptations of the bioenergetic systems that permit Synechococcus 6311 to tolerate a high salt environment. We have also developed new electron spin resonance (ESR) methods for measuring intracellular O/sub 2/ concentrations and intracellular pH. These new methods will continue to be of great value in our future studies on the bioenergetics of salt tolerance. 26 refs.

  13. Salt bridge as a gatekeeper against partial unfolding.

    PubMed

    Hinzman, Mark W; Essex, Morgan E; Park, Chiwook

    2016-05-01

    Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. PMID:26916981

  14. The Great Hydrometer Construction Contest!

    ERIC Educational Resources Information Center

    McGinnis, James Randy; Padilla, Michael J.

    1991-01-01

    The relationship between specific gravity, salinity, and density in brine solutions is investigated. Students construct hydrometers to reinforce concepts learned in oceanography. Background information, salt requirements for the unknowns, directions, and reproducible worksheets are included. (KR)

  15. Mass transport in bedded salt and salt interbeds

    SciTech Connect

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports.

  16. Great Wall of China

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER sub-image covers a 12 x 12 km area in northern Shanxi Province, China, and was acquired January 9, 2001. The low sun angle, and light snow cover highlight a section of the Great Wall, visible as a black line running diagonally through the image from lower left to upper right. The Great Wall is over 2000 years old and was built over a period of 1000 years. Stretching 4500 miles from Korea to the Gobi Desert it was first built to protect China from marauders from the north.

    This image is located at 40.2 degrees north latitude and 112.8 degrees east longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and

  17. Selected hydrologic data for the Bonneville Salt Flats and Pilot Valley, western Utah, 1991-93

    USGS Publications Warehouse

    Mason, James L.; Brothers, W.C.; Gerner, L.J.; Muir, P.S.

    1995-01-01

    This report contains hydrologic data collected during 1991-93 in the Bonneville Salt Flats and Pilot Valley study area of western Utah. These data were collected in cooperation with the U.S. Department of the Interior, Bureau of Land Management, as part of a study to investigate possible salt loss from the Bonneville Salt Flats. The Bonneville Salt Flats and adjacent Pilot Valley are located in the western part of the Great Salt Lake Desert in Utah, near the Nevada border. The Bonneville Salt Flats playa has a thick, perennial salt crust and the Pilot Valley playa has a thin, ephemeral salt crust. Well-completion data, including well depth and screened intervals, are presented in this report for selected shallow and deep monitoring wells. Water-level measurements are reported with corresponding specfic-gravity and temperature measurements. Results of chemical analyses are reported for brine collected from wells and pore fluids extracted from cores.

  18. Missing great earthquakes

    USGS Publications Warehouse

    Hough, Susan E.

    2013-01-01

    The occurrence of three earthquakes with moment magnitude (Mw) greater than 8.8 and six earthquakes larger than Mw 8.5, since 2004, has raised interest in the long-term global rate of great earthquakes. Past studies have focused on the analysis of earthquakes since 1900, which roughly marks the start of the instrumental era in seismology. Before this time, the catalog is less complete and magnitude estimates are more uncertain. Yet substantial information is available for earthquakes before 1900, and the catalog of historical events is being used increasingly to improve hazard assessment. Here I consider the catalog of historical earthquakes and show that approximately half of all Mw ≥ 8.5 earthquakes are likely missing or underestimated in the 19th century. I further present a reconsideration of the felt effects of the 8 February 1843, Lesser Antilles earthquake, including a first thorough assessment of felt reports from the United States, and show it is an example of a known historical earthquake that was significantly larger than initially estimated. The results suggest that incorporation of best available catalogs of historical earthquakes will likely lead to a significant underestimation of seismic hazard and/or the maximum possible magnitude in many regions, including parts of the Caribbean.

  19. Saturn's Great White Spots.

    PubMed

    Sanchez-Lavega, Agustin

    1994-06-01

    The term, Great White Spot, is used for large and unusual atmospheric disturbances on the planet Saturn. The phenomenology has been recorded only in five occasions during the last century, and its evolution can be described in terms of four different phases: (i) Onset (first week), outburst and rapid growth of a very bright cloud up to a size of approximately 20 000 km; (ii) planetary disturbance (

  20. Australia's Great Barrier Reef

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Great Barrier Reef extends for 2,000 kilometers along the northeastern coast of Australia. It is not a single reef, but a vast maze of reefs, passages, and coral cays (islands that are part of the reef). This nadir true-color image was acquired by the MISR instrument on August 26, 2000 (Terra orbit 3679), and shows part of the southern portion of the reef adjacent to the central Queensland coast. The width of the MISR swath is approximately 380 kilometers, with the reef clearly visible up to approximately 200 kilometers from the coast. It may be difficult to see the myriad details in the browse image, but if you retrieve the higher resolution version, a zoomed display reveals the spectacular structure of the many reefs.

    The more northerly coastal area in this image shows the vast extent of sugar cane cultivation, this being the largest sugar producing area in Australia, centered on the city of Mackay. Other industries in the area include coal, cattle, dairying, timber, grain, seafood, and fruit. The large island off the most northerly part of the coast visible in this image is Whitsunday Island, with smaller islands and reefs extending southeast, parallel to the coast. These include some of the better known resort islands such as Hayman, Lindeman, Hamilton, and Brampton Islands.

    Further south, just inland of the small semicircular bay near the right of the image, is Rockhampton, the largest city along the central Queensland coast, and the regional center for much of central Queensland. Rockhampton is just north of the Tropic of Capricorn. Its hinterland is a rich pastoral, agricultural, and mining region.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  1. Fundamental Properties of Salts

    SciTech Connect

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  2. Salt intake and iodine status of women in Samoa.

    PubMed

    Land, Mary-Anne; Webster, Jacqui L; Ma, Gary; Li, Mu; Su'a, Sarah Asi Faletoese; Ieremia, Merina; Viali, Satu; Faeamani, Gavin; Bell, A Colin; Quested, Christine; Neal, Bruce C; Eastman, Creswell J

    2016-01-01

    The objective of this study was to determine iodine nutrition status and whether iodine status differs across salt intake levels among a sample of women aged 18-45 years living in Samoa. A cross-sectional survey was completed and 24-hr urine samples were collected and assessed for iodine (n=152) and salt excretion (n=119). The median urinary iodine concentration (UIC) among the women was 88 μg/L (Interquartile range (IQR)=54-121 μg/L). 62% of the women had a UIC <100 μg/L. The crude estimated mean 24-hr urinary salt excretion was 6.6 (standard deviation 3.2) g/day. More than two-thirds (66%) of the women exceeded the World Health Organization recommended maximum level of 5 g/day. No association was found between median UIC and salt excretion (81 μg/L iodine where urinary salt excretion >=5 g/day versus 76 μg/L where urinary salt excretion <5 g/day; p=0.4). Iodine nutrition appears to be insufficient in this population and may be indicative of iodine deficiency disorders in Samoan women. A collaborative approach in monitoring iodine status and salt intake will strengthen both programs and greatly inform the level of iodine fortification required to ensure optimal iodine intake as population salt reduction programs take effect. PMID:26965773

  3. Salt intake and iodine status of women in Samoa.

    PubMed

    Land, Mary-Anne; Webster, Jacqui L; Ma, Gary; Li, Mu; Su'a, Sarah Asi Faletoese; Ieremia, Merina; Viali, Satu; Faeamani, Gavin; Bell, A Colin; Quested, Christine; Neal, Bruce C; Eastman, Creswell J

    2016-01-01

    The objective of this study was to determine iodine nutrition status and whether iodine status differs across salt intake levels among a sample of women aged 18-45 years living in Samoa. A cross-sectional survey was completed and 24-hr urine samples were collected and assessed for iodine (n=152) and salt excretion (n=119). The median urinary iodine concentration (UIC) among the women was 88 μg/L (Interquartile range (IQR)=54-121 μg/L). 62% of the women had a UIC <100 μg/L. The crude estimated mean 24-hr urinary salt excretion was 6.6 (standard deviation 3.2) g/day. More than two-thirds (66%) of the women exceeded the World Health Organization recommended maximum level of 5 g/day. No association was found between median UIC and salt excretion (81 μg/L iodine where urinary salt excretion >=5 g/day versus 76 μg/L where urinary salt excretion <5 g/day; p=0.4). Iodine nutrition appears to be insufficient in this population and may be indicative of iodine deficiency disorders in Samoan women. A collaborative approach in monitoring iodine status and salt intake will strengthen both programs and greatly inform the level of iodine fortification required to ensure optimal iodine intake as population salt reduction programs take effect.

  4. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.

  5. Diversity and Evolution of Salt Tolerance in the Genus Vigna

    PubMed Central

    Iseki, Kohtaro; Takahashi, Yu; Muto, Chiaki; Naito, Ken; Tomooka, Norihiko

    2016-01-01

    Breeding salt tolerant plants is difficult without utilizing a diversity of wild crop relatives. Since the genus Vigna (family Fabaceae) is comprised of many wild relatives adapted to various environmental conditions, we evaluated the salt tolerance of 69 accessions of this genus, including that of wild and domesticated accessions originating from Asia, Africa, Oceania, and South America. We grew plants under 50 mM and 200 mM NaCl for two weeks and then measured the biomass, relative quantum yield of photosystem II, leaf Na+ concentrations, and leaf K+ concentrations. The accessions were clustered into four groups: the most tolerant, tolerant, moderately susceptible, and susceptible. From the most tolerant group, we selected six accessions, all of which were wild accessions adapted to coastal environments, as promising sources of salt tolerance because of their consistently high relative shoot biomass and relative quantum yield. Interestingly, variations in leaf Na+ concentration were observed between the accessions in the most tolerant group, suggesting different mechanisms were responsible for their salt tolerance. Phylogenetic analysis with nuclear DNA sequences revealed that salt tolerance had evolved independently at least four times in the genus Vigna, within a relatively short period. The findings suggested that simple genetic changes in a few genes might have greatly affected salt tolerances. The elucidation of genetic mechanisms of salt tolerances in the selected accessions may contribute to improving the poor salt tolerance in legume crops. PMID:27736995

  6. The Next Great Science

    NASA Astrophysics Data System (ADS)

    Hodges, K. V.

    2007-12-01

    value of systems-level thinking, and it makes good sense to make this the essential mantra of Earth science undergraduate and graduate programs of the future. We must emphasize that Earth science plays a central role in understanding processes that have shaped our planet since the origin of our species, processes that have thus influenced the rise and fall of human societies. By studying the co-evolution of Earth and human societies, we lay a critical part of the foundation for future environmental policymaking. If we can make this point persuasively, Earth science might just be the "next great science".

  7. Native American Politics: Power Relationships in the Western Great Basin Today.

    ERIC Educational Resources Information Center

    Houghton, Ruth M., Ed.

    Prepared for a symposium presented September 1972 at the Great Basin Anthropological Conference (Salt Lake City) these papers represent political and ethnological research on western Great Basin Indians. The topics include (1) "Developing Political Power in Two Southern Paiute Communities", (2) "Channels of Political Expression among the Western…

  8. Mineral resource of the month: salt

    USGS Publications Warehouse

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  9. Miocene precursors to Great Barrier Reef

    SciTech Connect

    Davies, P.J.; Symonds, P.A.; Feary, D.A.; Pigram, C.

    1988-01-01

    Huge reefs of Miocene age are present in the Gulf of Papua north of the present-day Great Barrier Reef and to the east on the Marion and Queensland Plateaus. In the Gulf of Papua, Miocene barrier reefs formed the northern forerunner of the Great Barrier Reef, extending for many hundreds of kilometers along the eastern and northern margin of the Australian craton within a developing foreland basin. Barrier reefs, slope pinnacle reefs, and platform reefs are seen in seismic sections and drill holes. Leeside talus deposits testify to the high energy impinging on the eastern margin of these Miocene reefs. The Queensland Plateau is a marginal plateau east of the central Great Barrier Reef and separated from it by a rift trough. Miocene reefs occupied an area of about 50,000 km/sup 2/ and grew on salt-controlled highs on the western margin of the plateau and on a regional basement high extending from the platform interior to its southern margin. Reef growth has continued to the present day, although two major contractions in the area covered by reefs occurred during the Miocene. The Marion Plateau is present directly east of the Great Barrier Reef and during the Micoene formed a 30,000-km/sup 2/ platform with barrier reefs along its northern margin and huge platform reefs and laggons on the platform interior. These reefs grew on a flat peneplained surface, the whole area forming a large shallow epicontinental sea. In all three areas, the middle Miocene formed the acme of reef expansion in the region.

  10. Gas releases from salt

    SciTech Connect

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  11. Mechanism for salt scaling

    NASA Astrophysics Data System (ADS)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  12. Unitized paramagnetic salt thermometer

    SciTech Connect

    Abraham, B.M.

    1982-06-01

    The details of construction and assembly of a cerous magnesium nitrate (CMN) paramagnetic thermometer are presented. The thermometer is a small unit consisting of a primary, two secondaries, the salt pill, and thermal links. The thermometer calibration changes very little on successive coolings and is reliable to 35 mK. A typical calibration curve is also presented.

  13. Dalapon, sodium salt

    Integrated Risk Information System (IRIS)

    Dalapon , sodium salt ; CASRN 75 - 99 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  14. Uranium, soluble salts

    Integrated Risk Information System (IRIS)

    Uranium , soluble salts ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  15. Thallium (I), soluble salts

    Integrated Risk Information System (IRIS)

    Thallium ( I ) , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  16. Nickel, soluble salts

    Integrated Risk Information System (IRIS)

    Nickel , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  17. Chlorite (sodium salt)

    Integrated Risk Information System (IRIS)

    Chlorite ( sodium salt ) ; CASRN 7758 - 19 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  18. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  19. Sodium (Salt or Sodium Chloride)

    MedlinePlus

    ... reduce the salt in your diet and for information, strategies, and tools you need to lead a healthier ... reduce the salt in your diet and get information, strategies, and tools you need to lead a healthier ...

  20. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  1. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  2. The Great Newbury Marsh Hike.

    ERIC Educational Resources Information Center

    Blais, Heidi; And Others

    Designed to acquaint students at Triton Regional High School (Massachusetts) with the importance of the salt marshes and marine environment around Triton, this outdoor education curriculum guide includes three sections emphasizing an interdisciplinary approach to physics, ecology, and history. The unit is designed for 50 students and 5 teachers…

  3. The ecology of regularly flooded salt marshes of New England: A community profile

    SciTech Connect

    Teal, J.M.

    1986-06-01

    The current state-of-the-art in scientific knowledge about intertidal salt marshes is presented, but restricted to one habitat in New England, specifically Great Sippewissett at Falmouth, Massachusetts. (PSB)

  4. The ecology of Dunaliella in high-salt environments.

    PubMed

    Oren, Aharon

    2014-12-01

    Halophilic representatives of the genus Dunaliella, notably D. salina and D. viridis, are found worldwide in salt lakes and saltern evaporation and crystallizer ponds at salt concentrations up to NaCl saturation. Thanks to the biotechnological exploitation of D. salina for β-carotene production we have a profound knowledge of the physiology and biochemistry of the alga. However, relatively little is known about the ecology of the members of the genus Dunaliella in hypersaline environments, in spite of the fact that Dunaliella is often the main or even the sole primary producer present, so that the entire ecosystem depends on carbon fixed by this alga. This review paper summarizes our knowledge about the occurrence and the activities of different Dunaliella species in natural salt lakes (Great Salt Lake, the Dead Sea and others), in saltern ponds and in other salty habitats where members of the genus have been found. PMID:25984505

  5. The ecology of Dunaliella in high-salt environments.

    PubMed

    Oren, Aharon

    2014-12-01

    Halophilic representatives of the genus Dunaliella, notably D. salina and D. viridis, are found worldwide in salt lakes and saltern evaporation and crystallizer ponds at salt concentrations up to NaCl saturation. Thanks to the biotechnological exploitation of D. salina for β-carotene production we have a profound knowledge of the physiology and biochemistry of the alga. However, relatively little is known about the ecology of the members of the genus Dunaliella in hypersaline environments, in spite of the fact that Dunaliella is often the main or even the sole primary producer present, so that the entire ecosystem depends on carbon fixed by this alga. This review paper summarizes our knowledge about the occurrence and the activities of different Dunaliella species in natural salt lakes (Great Salt Lake, the Dead Sea and others), in saltern ponds and in other salty habitats where members of the genus have been found.

  6. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This detailed view of the Great Barrier Reef, Queensland, Australia (19.5S, 149.5E) shows several small patch reefs within the overall reef system. The Great Barrier Reef, largest in the world, comprises thousands of individual reefs of great variety and are closely monitored by marine ecologists. These reefs are about 6000 years old and sit on top of much older reefs. The most rapid coral growth occurs on the landward side of the reefs.

  7. Salt stress or salt shock: which genes are we studying?

    PubMed

    Shavrukov, Yuri

    2013-01-01

    Depending on the method of NaCl application, whether gradual or in a single step, plants may experience either salt stress or salt shock, respectively. The first phase of salt stress is osmotic stress. However, in the event of salt shock, plants suffer osmotic shock, leading to cell plasmolysis and leakage of osmolytes, phenomena that do not occur with osmotic stress. Patterns of gene expression are different in response to salt stress and salt shock. Salt stress initiates relatively smooth changes in gene expression in response to osmotic stress and a more pronounced change in expression of significant numbers of genes related to the ionic phase of salt stress. There is a considerable time delay between changes in expression of genes related to the osmotic and ionic phases of salt stress. In contrast, osmotic shock results in strong, rapid changes in the expression of genes with osmotic function, and fewer changes in ionic-responsive genes that occur earlier. There are very few studies in which the effects of salt stress and salt shock are described in parallel experiments. However, the patterns of changes in gene expression observed in these studies are consistently as described above, despite the use of diverse plant species. It is concluded that gene expression profiles are very different depending the method of salt application. Imposition of salt stress by gradual exposure to NaCl rather than salt shock with a single application of a high concentration of NaCl is recommended for genetic and molecular studies, because this more closely reflects natural incidences of salinity. PMID:23186621

  8. Molten salt techniques. Volume 3

    SciTech Connect

    Lovering, D.G.; Gale, R.J.

    1987-01-01

    This collection of five papers on molten salts deals with the following specific topics: the actinides and their salts, including their availability along with techniques and equipment for their handling, preparation, purification, and physical property measurement; cryolite systems and methods for their handling, preparation, and thermodynamic and physicochemical property assessment, as well as the use of electrodes in molten cryolite; the theory, construction, and application of reference electrodes for molten salt electrolytes; neutron diffraction in molten salt systems including isotope exchange methods for sample preparation; and dry boxes and inert atmosphere techniques for molten salt handling and analysis.

  9. Cerebral salt wasting syndrome.

    PubMed

    Harrigan, M R

    2001-01-01

    There is significant evidence to show that many patients with hyponatremia and intracranial disease who were previously diagnosed with SIADH actually have CSW. The critical difference between SIADH and CSW is that CSW involves renal salt loss leading to hyponatremia and volume loss, whereas SIADH is a euvolemic or hypervolemic condition. Attention to volume status in patients with hyponatremia is essential. The primary treatment for CSW is water and salt replacement. The mechanisms underlying CSW are not understood but may involve ANP or other natriuretic factors and direct neural influence on renal function. Future investigation is needed to better define the incidence of CSW in patients with intracranial disease, identify other disorders that can lead to CSW, and elucidate the mechanisms underlying this syndrome.

  10. Great Explorers to the East.

    ERIC Educational Resources Information Center

    Baker, Rosalie F., Ed.; Baker, Charles F. III, Ed.

    1990-01-01

    This issue of "Calliope," a world history magazine for young people is devoted to "Great Explorers of the East" and features articles on famous explorers of the eastern hemisphere. The following articles are included: "Ancient Egyptian Mariners"; "Alexander: The Great Reconciler"; "Marco Polo: Describing the World"; "By Water to India";…

  11. The Great Lakes Food Web.

    ERIC Educational Resources Information Center

    Baker, Marjane L.

    1997-01-01

    Presents a play for students in grades four to nine that incorporates the scientific names, physical characteristics, feeding habits, interactions, and interdependence of the plants and animals that make up the Great Lakes food web to facilitate the learning of this complex system. Includes a Great Lakes food web chart. (AIM)

  12. Yurok Aristocracy and "Great Houses."

    ERIC Educational Resources Information Center

    Pilling, Arnold R.

    1989-01-01

    Discusses evidence for social stratification and aristocracy among northwestern California Indians, particularly the Yurok tribe. Examines the place of ritual and ceremony in the concept of aristocracy, the great houses, the role of great house priests, and the elaborate speech of the Yurok aristocracy. Contains 47 references. (DHP)

  13. What Caused the Great Depression?

    ERIC Educational Resources Information Center

    Caldwell, Jean; O'Driscoll, Timothy G.

    2007-01-01

    Economists and historians have struggled for almost 80 years to account for the American Great Depression, which began in 1929 and lasted until the early years of World War II. In this article, the authors discuss three major schools of thought on the causes of the Great Depression and the long failure of the American economy to return to full…

  14. Michigan: The Great Lakes State

    ERIC Educational Resources Information Center

    McKay, Sandra Lee; La Luzerne-Oi, Sally

    2009-01-01

    Although Michigan is often called the "Wolverine State," its more common nickname is the "Great Lakes State." This name comes from the fact that Michigan is the only state in the United States that borders four of the five Great Lakes. Also referred to as the "Water Wonderland," Michigan has 11,000 additional lakes, 36,000 miles of streams, and…

  15. SALT IN AYURVEDA I

    PubMed Central

    Mooss, N S

    1987-01-01

    In basic Ayurveda texts, Susruta, Caraka and Vagbhata, some quite specific Salts (Lavanam) have been described and their properties and actions are enumerated. By comparing those accounts with the present methods of preparation, conclusions have been made and evidently spurious methods are pointed out. The reported properties of Saindhava, Samudra, Vida, Sauvarcha, Romaka, Audbhida, Gutika, the Katu Group, Krsna and Pamsuja Lavanas are discussed in terms of their chemical constituents here and, thus, the authors establish its inter-connections. PMID:22557573

  16. A Trail of Salts

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative abundances of sulfur (in the form of sulfur tri-oxide) and chlorine at three Meridiani Planum sites: soil measured in the small crater where Opportunity landed; the rock dubbed 'McKittrick' in the outcrop lining the inner edge of the crater; and the rock nicknamed 'Guadalupe,' also in the outcrop. The 'McKittrick' data shown here were taken both before and after the rover finished grinding the rock with its rock abrasion tool to expose fresh rock underneath. The 'Guadalupe' data were taken after the rover grounded the rock. After grinding both rocks, the sulfur abundance rose to high levels, nearly five times higher than that of the soil. This very high sulfur concentration reflects the heavy presence of sulfate salts (approximately 30 percent by weight) in the rocks. Chloride and bromide salts are also indicated. Such high levels of salts strongly suggest the rocks contain evaporite deposits, which form when water evaporates or ice sublimes into the atmosphere.

  17. Winter and Summer Views of the Salt Lake Region

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera. Salt Lake City, situated near the southeastern shore of the Great Salt Lake, is host to the 2002 Winter Olympic Games, which open Friday, February 8. Venues for five of the scheduled events are at city (indoor) locations, and five in mountain (outdoor) facilities. All ten can be found within the area contained in these images. Some of the outdoor events take place at Ogden, situated north of Salt Lake City and at Park City, located to the east.

    Salt Lake City is surrounded by mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake and the overlying atmosphere enhances the moisture content of winter storms. These factors, in combination with natural cloud seeding by salt crystals from the lake, are believed to result in greater snowfall in neighboring areas compared to more distant locales.

    In addition to the obvious difference in snow cover between the winter and summer views, water color changes in parts of the Great Salt Lake are apparent in these images. The distinctly different coloration between the northern and southern arms of the Great Salt Lake is the result of a rock-filled causeway built in 1953 to support a permanent railroad. The causeway has resulted in decreased circulation between the two arms and higher salinity on the northern side. The southern part of the lake includes the large Antelope Island, and at full resolution a bridge connecting it to the mainland can be discerned.

    These images are natural color views acquired on February 8, 2001 and June 16, 2001, during Terra orbits 6093 and 7957, respectively. Each image represents an area of about 220 kilometers x 285 kilometers.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth

  18. Salt and hypertension: is salt dietary reduction worth the effort?

    PubMed

    Frisoli, Tiberio M; Schmieder, Roland E; Grodzicki, Tomasz; Messerli, Franz H

    2012-05-01

    In numerous epidemiologic, clinical, and experimental studies, dietary sodium intake has been linked to blood pressure, and a reduction in dietary salt intake has been documented to lower blood pressure. In young subjects, salt intake has a programming effect in that blood pressure remains elevated even after a high salt intake has been reduced. Elderly subjects, African Americans, and obese patients are more sensitive to the blood pressure-lowering effects of a decreased salt intake. Depending on the baseline blood pressure and degree of salt intake reduction, systolic blood pressure can be lowered by 4 to 8 mm Hg. A greater decrease in blood pressure is achieved when a reduced salt intake is combined with other lifestyle interventions, such as adherence to Dietary Approaches to Stop Hypertension. A high salt intake has been shown to increase not only blood pressure but also the risk of stroke, left ventricular hypertrophy, and proteinuria. Adverse effects associated with salt intake reduction, unless excessive, seem to be minimal. However, data linking a decreased salt intake to a decrease in morbidity and mortality in hypertensive patients are not unanimous. Dietary salt intake reduction can delay or prevent the incidence of antihypertensive therapy, can facilitate blood pressure reduction in hypertensive patients receiving medical therapy, and may represent a simple cost-saving mediator to reduce cardiovascular morbidity and mortality.

  19. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other

  20. Glass-wool study of laser-induced spin currents en route to hyperpolarized Cs salt

    SciTech Connect

    Ishikawa, Kiyoshi

    2011-07-15

    The nuclear spin polarization of optically pumped Cs atoms flows to the surface of Cs hydride in a vapor cell. A fine glass wool lightly coated with the salt helps greatly increase the surface area in contact with the pumped atoms and enhance the spin polarization of the salt nuclei. Even though the glass wool randomly scatters the pump light, the atomic vapor can be polarized with unpolarized light in a magnetic field. The measured enhancement in the salt enables study of the polarizations of light and atomic nuclei very near the salt surface.

  1. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  2. The Sixth Great Mass Extinction

    ERIC Educational Resources Information Center

    Wagler, Ron

    2012-01-01

    Five past great mass extinctions have occurred during Earth's history. Humanity is currently in the midst of a sixth, human-induced great mass extinction of plant and animal life (e.g., Alroy 2008; Jackson 2008; Lewis 2006; McDaniel and Borton 2002; Rockstrom et al. 2009; Rohr et al. 2008; Steffen, Crutzen, and McNeill 2007; Thomas et al. 2004;…

  3. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Along the coast of Queensland, Australia (18.0S, 147.5E), timbered foothills of the Great Dividing Range separate the semi-arid interior of Queensland from the farmlands of the coastal plains. Prominent cleared areas in the forest indicate deforestation for farm and pasture lands. Offshore, islands and the Great Barrier Reef display sand banks along the southern sides of the structures indicating a dominant southerly wind and current direction.

  4. Cerebral salt wasting syndrome.

    PubMed

    Uygun, M A; Ozkal, E; Acar, O; Erongun, U

    1996-01-01

    Hyponatremia following acute or chronic central nervous system injury which is due to excessive Na+ loss in the urine without an increase in the body fluid, has been described as Cerebral Salt Wasting Syndrome (CSWS). This syndrome is often confused with dilutional hyponatremia secondary to inappropriate ADH secretion. Accurate diagnosis and management are mandatory for to improve the course of the disease. In this study a patient with CSW Syndrome is presented and the treatment and diagnosis of this syndrome are discussed in view of the literature.

  5. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  6. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  7. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  8. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  9. [The salt content of food: a public health problem].

    PubMed

    Uzan, A; Delaveau, P

    2009-07-01

    Salt abuse in nutrition may exert harmful effects on health, increasing arterial hypertension and its cardiovascular consequences. It is a risk factor, particularly for older subjects and those having chronic diseases such as arterial hypertension, some renal diseases, and obesity. In subjects more particularly vulnerable, the maintenance of sodium balance, which is mainly aldosterone dependent, is perturbed. Although the use of salt for food preservation has greatly declined, it remains a serious risk factor. Excessive salt intake however results more often from poor dietary habits. The WHO and AFSSA have advised to reduce daily salt intake to 5 g, whereas it is currently about 9-10 g. In spite of repeated warnings, salt abuse remains the causal agent for many disease conditions, mainly arterial hypertension. That is why legislative measures should be taken in order to limit the salt content of food industry products, particularly as a preservative in foods. A large-scale public information campaign would be necessary with participation of public health partners, particularly physicians and pharmacists.

  10. Salt stress represses production of extracellular proteases in Bacillus pumilus.

    PubMed

    Liu, R F; Huang, C L; Feng, H

    2015-05-11

    Bacillus pumilus is able to secrete subtilisin-like prote-ases, one of which has been purified and characterized biochemically, demonstrating great potential for use in industrial applications. In the current study, the biosynthesis and transcription of extracellular pro-teases in B. pumilus (BA06) under salt stress were investigated using various methods, including a proteolytic assay, zymogram analysis, and real-time PCR. Our results showed that total extracellular proteolytic activity, both in fermentation broth and on milk-containing agar plates, was considerably repressed by salt in a dosage-dependent manner. As Bacillus species usually secret multiple extracellular proteases, a vari-ety of individual extracellular protease encoding genes were selected for real-time PCR analysis. It was shown that proteases encoded by the aprE and aprX genes were the major proteases in the fermentation broth in terms of their transcripts in B. pumilus. Further, transcription of aprE, aprX, and epr genes was indeed repressed by salt stress. In con-trast, transcription of other genes (e.g., vpr and wprA) was not repressed or significantly affected by the salt. Conclusively, salt stress represses total extracellular proteolytic activity in B. pumilus, which can largely be ascribed to suppression of the major protease-encoding genes (aprE, aprX) at the transcriptional level. In contrast, transcription of other pro-tease-encoding genes (e.g., vpr, wprA) was not repressed by salt stress.

  11. Electrochromic Salts, Solutions, and Devices

    SciTech Connect

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  12. Electrochromic salts, solutions, and devices

    SciTech Connect

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  13. Electrochromic Salts, Solutions, and Devices

    SciTech Connect

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  14. Salt appetite in the elderly.

    PubMed

    Hendi, Khadeja; Leshem, Micah

    2014-11-28

    The present study investigated whether salt appetite in the elderly is impaired similar to thirst because of the commonality of their physiological substrates and whether alterations in salt appetite are related to mood. Elderly (65-85 years, n 30) and middle-aged (45-58 years, n 30) men and women were compared in two test sessions. Thirst, psychophysical ratings of taste solutions, dietary Na and energy intakes, seasoning with salt and sugar, number of salty and sweet snacks consumed, preferred amounts of salt in soup and sugar in tea, and an overall measure of salt appetite and its relationship with mood, nocturia and sleep were measured. Elderly participants were found to be less thirsty and respond less to thirst. In contrast, no impairment of salt appetite was found in them, and although they had a reduced dietary Na intake, it dissipated when corrected for their reduced dietary energy intake. Diet composition and Na intake were found to be similar in middle-aged and elderly participants, despite the lesser intake in elderly participants. There were no age-related differences in the intensity of taste or hedonic profile of Na, in salting habits, in tests of salting soup, or number of salty snacks consumed. No relationship of any measure of salt appetite with mood measured by the Positive and Negative Affect Schedule, frequency of nocturia, or sleep duration was observed. The age-related impairment of the physiology of mineralofluid regulation, while compromising thirst and fluid intake, spares salt appetite, suggesting that salt appetite in humans is not regulated physiologically. Intact salt appetite in the elderly might be utilised judiciously to prevent hyponatraemia, increase thirst and improve appetite. PMID:25287294

  15. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  16. [Salt consumption and cerebrovascular diseases].

    PubMed

    Demarin, Vida; Morović, Sandra

    2010-05-01

    Stroke is the second leading cause of death and disability in Croatia. Risk factors for cerebrovascular disease can be divided into evidence-based risk factors and those with supposed relationship. Strong evidence suggests that current salt consumption is one of the most important factors influencing the increase in blood pressure, along with the risk of cerebrovascular disease. Hypertension is an important modifiable risk factor for stroke. Studies on salt have shown that a decrease in blood pressure is in correlation with lower salt intake. Over-consumption of salt carries a higher risk of cerebrovascular disease in overweight individuals. Conservative estimates suggest that salt intake reduction by 3 g/day could reduce the stroke rate by 13%; this percentage would be almost double if salt intake be reduced by 6 g/day and triple with a 9 g/day reduction. Salt intake reduction by 9 g/day could reduce the stroke rate by almost 30%. This corresponds to about 20,500 prevented strokes each year. There is evidence supporting a positive correlation of salt intake and stroke, independent of hypertension. The introduction of salt reduction proposal should be considered in future updates of recommendations for stroke prevention.

  17. Molten salt techniques. Volume 2

    SciTech Connect

    Gale, R.J.; Lovering, D.G.

    1984-01-01

    This is the second volume in a series addressing the practical aspects of molten salt research. The book covers experiments with alkali metal carbonates, oxides, silicates, phosphates and borates. Additional sections cover molten salt spectroscopy, electrochemistry, and automated admittance spectroscopy of the semiconductor/molten salt electrolyte interface. Particular emphasis is given to safety considerations for working with these high temperature, often corrosive materials. Planning of experiments is of interest, and several experiments are described. Attention is given to the selection of materials to be used in this research, including the purification of the salts themselves, and the requirements for laboratory apparatus.

  18. Dietary Salt Intake and Hypertension

    PubMed Central

    2014-01-01

    Over the past century, salt has been the subject of intense scientific research related to blood pressure elevation and cardiovascular mortalities. Moderate reduction of dietary salt intake is generally an effective measure to reduce blood pressure. However, recently some in the academic society and lay media dispute the benefits of salt restriction, pointing to inconsistent outcomes noted in some observational studies. A reduction in dietary salt from the current intake of 9-12 g/day to the recommended level of less than 5-6 g/day will have major beneficial effects on cardiovascular health along with major healthcare cost savings around the world. The World Health Organization (WHO) strongly recommended to reduce dietary salt intake as one of the top priority actions to tackle the global non-communicable disease crisis and has urged member nations to take action to reduce population wide dietary salt intake to decrease the number of deaths from hypertension, cardiovascular disease and stroke. However, some scientists still advocate the possibility of increased risk of CVD morbidity and mortality at extremes of low salt intake. Future research may inform the optimal sodium reduction strategies and intake targets for general populations. Until then, we have to continue to build consensus around the greatest benefits of salt reduction for CVD prevention, and dietary salt intake reduction strategies must remain at the top of the public health agenda. PMID:25061468

  19. Salt pretreatment enhance salt tolerance in Zea mays L. seedlings.

    PubMed

    Tajdoost, S; Farboodnia, T; Heidari, R

    2007-06-15

    Recent molecular studies show that genetic factors of salt tolerance in halophytes exist in glycophytes too, but they are not active. If these plants expose to low level salt stress these factors may become active and cause plants acclimation to higher salt stresses. So because of the importance of these findings in this research the effect of salt pretreatment has been examined in Zea mays seedlings. To do the experiment four day old Zea mays seedlings (Var. single cross 704) pretreated with 50 mM NaCl for the period of 20 h. Then they were transferred to 200 and 300 mM NaCl for 48 h. At the end of treatment roots and shoots of seedlings were harvested separately. The changes of K+ -leakage, the amount of malondialdehyde, proline, soluble sugars and the Hill reaction rate were analyzed. The results indicated that the amount of K+ -leakage and malondialdehyde (MDA) have been increased because of salt-induced lipid peroxidation and membrane unstability. Soluble sugars and proline as osmoregulators has been increased in stress condition and in pretreated plants with NaCl were the highest. The rate of Hill reaction was reduced significantly in stressed plants. Therefore we concluded that salt stress causes serious physiological and biochemical damages in plants and salt pretreatment enhances tolerance mechanisms of plants and help them to tolerate salt stress and grow on salty environments. PMID:19093451

  20. Theory Of Salt Effects On Protein Solubility

    NASA Astrophysics Data System (ADS)

    Dahal, Yuba; Schmit, Jeremy

    Salt is one of the major factors that effects protein solubility. Often, at low salt concentration regime, protein solubility increases with the salt concentration(salting in) whereas at high salt concentration regime, solubility decreases with the increase in salt concentration(salting out). There are no quantitative theories to explain salting in and salting out. We have developed a model to describe the salting in and salting out. Our model accounts for the electrostatic Coulomb energy, salt entropy and non-electrostatic interaction between proteins. We analytically solve the linearized Poisson Boltzmann equation modelling the protein charge by a first order multipole expansion. In our model, protein charges are modulated by the anion binding. Consideration of only the zeroth order term in protein charge doesn't help to describe salting in phenomenon because of the repulsive interaction. To capture the salting in behaviour, it requires an attractive electrostatic interaction in low salt regime. Our work shows that at low salt concentration, dipole interaction is the cause for salting in and at high salt concentration a salt-dependent depletion interaction dominates and gives the salting out. Our theoretical result is consistent with the experimental result for Chymosin protein NIH Grant No R01GM107487.

  1. Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles

    PubMed Central

    Choi, Yun-Sang

    2015-01-01

    This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle. PMID:26761884

  2. Lowering Salt in Your Diet

    MedlinePlus

    ... needs some salt to function. Also known as sodium chloride, salt helps maintain the body's balance of fluids. ... select foods that provide 5% or less for sodium, per serving. back to ... substitutes contain potassium chloride and can be used by individuals to replace ...

  3. Structure of liquid trivalent salts

    SciTech Connect

    Price, D.L.; Saboungi, M.L.; Howells, W.S.; Tosi, M.P.

    1993-04-01

    Total neutron scattering measurements have been made on three trivalent molten salts: InCl{sub 3} (605C), BiCl{sub 3}(300C) and BiI{sub 3} (420C). Results are discussed in the general context of ordering, bonding and macroscopic properties of trivalent molten salts.

  4. Structure of liquid trivalent salts

    SciTech Connect

    Price, D.L.; Saboungi, M.L. . Materials Science Div.); Howells, W.S. ); Tosi, M.P. )

    1993-04-01

    Total neutron scattering measurements have been made on three trivalent molten salts: InCl[sub 3] (605C), BiCl[sub 3](300C) and BiI[sub 3] (420C). Results are discussed in the general context of ordering, bonding and macroscopic properties of trivalent molten salts.

  5. Ammoniated salt heat pump

    NASA Astrophysics Data System (ADS)

    Haas, W. R.; Jaeger, F. J.; Giordano, T. J.

    A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat. Several liquid ammoniates are identified and the critical properties of three of the most promising are presented. Results of small scale (5000 Btu) system tests are discussed and a design concept for a prototype system is given. This system represents a significant improvement over the system using solid ammoniates investigated previously because of the increase in heat transfer rates (5 to 60 Btu/hr sq ft F) and the resulting reduction in heat exchanger size. As a result the concept shows promise of being cost competitive with conventional systems.

  6. History Leaves Salts Behind

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which uses curium-244 to assess the elemental composition of rocks and soil. Only portions of the targets' full spectra are shown to highlight the significant differences in elemental concentrations between 'McKittrick' and 'Tarmac.' Intensities are plotted on a logarithmic scale.

    A nearby rock named Guadalupe similarly has extremely high concentrations of sulfur, but very little bromine. This 'element fractionation' typically occurs when a watery brine slowly evaporates and various salt compounds are precipitated in sequence.

  7. Aspects of the thermal and transport properties of crystalline salt in designing radioactive waste storages in halogen formations

    SciTech Connect

    Nikitin, A. N. Pocheptsova, O. A.; Matthies, S.

    2010-05-15

    Some of the properties of natural rock salt are described. This rock is of great practical interest, because, along with its conventional applications in the chemical and food industries, it is promising for use in engineering underground radioactive waste storages and natural gas reservoirs. The results of structural and texture studies of rock salt by neutron diffraction are discussed. The nature of the salt permeability under temperature and stress gradients is theoretically estimated.

  8. The Great War. [Teaching Materials].

    ERIC Educational Resources Information Center

    Public Broadcasting Service, Washington, DC.

    This package of teaching materials is intended to accompany an eight-part film series entitled "The Great War" (i.e., World War I), produced for public television. The package consists of a "teacher's guide,""video segment index,""student resource" materials, and approximately 40 large photographs. The video series is not a war story of battles,…

  9. Great Books 2.0

    ERIC Educational Resources Information Center

    Clemens, David

    2009-01-01

    As documented by multiple NEA studies ("Reading at Risk," 2004; "To Read or Not to Read," 2007), reading has become devalued in American life, on sale in the clearance bin along with notions of greatness, classic works and ideas, and Western civilization itself. Trying to teach fine literature, writes the author, has become the struggle of how to…

  10. Trichomoniasis in great horned owls.

    PubMed

    Jessup, D A

    1980-07-01

    Three cases of Trichomonas gallinae infection of deep tissues of the skull or of unusual tissues in great horned owls (Bubo virginianus), refractory to recommended doses but responsive to higher doses of dimetridazole, are discussed. Trichomonads were isolated from the lesions. PMID:7432340

  11. Great Expectations and New Beginnings

    ERIC Educational Resources Information Center

    Davis, Frances A.

    2009-01-01

    Great Expectation and New Beginnings is a prenatal family support program run by the Family, Infant, and Preschool Program (FIPP) in North Carolina. FIPP has developed an evidence-based integrated framework of early childhood intervention and family support that includes three primary components: providing intervention in everyday family…

  12. Great cleanup skims the surface

    SciTech Connect

    Dillingham, S.

    1990-09-03

    Appalled by the pollution of the Great Lakes, the United States embarked on a multibillion-dollar cleanup. Twenty years later the nation's largest freshwater source is teeming with life, but problems caused by man and nature remain. Amid the finger-pointing, states in the region and Congress are continuing to clean up the mess.

  13. Making a Great First Impression

    ERIC Educational Resources Information Center

    Evenson, Renee

    2007-01-01

    Managers and business owners often base hiring decisions on first impressions. That is why it is so important to teach students to make a great first impression--before they go on that first job interview. Managers do not have unrealistic expectations, they just want to hire people who they believe can develop into valuable employees. A nice…

  14. Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul

    2016-04-01

    We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.

  15. The Great Bug Hunt 2011

    ERIC Educational Resources Information Center

    Dixon-Watmough, Rebecca

    2011-01-01

    The Association For Science Education's "schoolscience.co.uk Great Bug Hunt 2011," in association with Martin Rapley and Gatekeeper Educational, has been a resounding success--not only because it fits into the science curriculum so neatly, but also because of the passion it evoked in the children who took part. This year's entries were truly…

  16. Particle formation above natural and simulated salt lakes

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Sattler, Tobias; Krause, Torsten; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Western Australia was originally covered by natural eucalyptus forests, but land-use has changed considerably after large scale deforestation from 1950 to 1970. Thus, the ground-water level rose and brought dissolved salts and minerals to the surface. Nowadays, Western Australia is known for a great plenty of salt lakes with pH levels reaching from 2.5 to 7.1. The land is mainly used for wheat farming and livestock and becomes drier due to the lack of rain periods. One possible reason could be the formation of ultrafine particles from salt lakes, which increases the number of cloud condensation nuclei and thus potentially suppresses precipitation. Several field campaigns have been conducted between 2006 and 2011 with car-based and airborne measurements, where new particle formation has been observed and has been related to the Western Australian salt lakes (Junkermann et al., 2009). To identify particle formation directly above the salt lakes, a 1.5 m³ Teflon chamber was set up above several lakes in 2012. Inside the chamber, photochemistry may take place whereas mixing through wind or advection of already existing particles is prevented. Salt lakes with a low pH level lead to strongly increased aerosol formation. As salt lakes have been identified as a source for reactive halogen species (RHS; Buxmann et al., 2012) and RHS seem to interact with precursors of secondary organic aerosol (SOA), they could be producers of halogen induced secondary organic aerosol (XOA) (Ofner et al., 2012). As reference experiments, laboratory based aerosol smog-chamber runs were performed to examine XOA formation under atmospheric conditions using simulated sunlight and the chemical composition of a chosen salt lake. After adding α-pinene to the simulated salt lake, a strong nucleation event began in the absence of ozone comparable to the observed events in Western Australia. First results from the laboratory based aerosol smog-chamber experiments indicate a halogen-induced aerosol

  17. Plant salt-tolerance mechanisms

    SciTech Connect

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  18. Plant salt-tolerance mechanisms

    DOE PAGESBeta

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  19. DESCRIPTIVE ANALYSIS OF DIVALENT SALTS

    PubMed Central

    YANG, HEIDI HAI-LING; LAWLESS, HARRY T.

    2005-01-01

    Many divalent salts (e.g., calcium, iron, zinc), have important nutritional value and are used to fortify food or as dietary supplements. Sensory characterization of some divalent salts in aqueous solutions by untrained judges has been reported in the psychophysical literature, but formal sensory evaluation by trained panels is lacking. To provide this information, a trained descriptive panel evaluated the sensory characteristics of 10 divalent salts including ferrous sulfate, chloride and gluconate; calcium chloride, lactate and glycerophosphate; zinc sulfate and chloride; and magnesium sulfate and chloride. Among the compounds tested, iron compounds were highest in metallic taste; zinc compounds had higher astringency and a glutamate-like sensation; and bitterness was pronounced for magnesium and calcium salts. Bitterness was affected by the anion in ferrous and calcium salts. Results from the trained panelists were largely consistent with the psychophysical literature using untrained judges, but provided a more comprehensive set of oral sensory attributes. PMID:16614749

  20. Salt brickwork as long-term sealing in salt formations

    SciTech Connect

    Walter, F.; Yaramanci, U.

    1993-12-31

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated.

  1. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    SciTech Connect

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  2. Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

    SciTech Connect

    Ahrens, E.H.; Hansen, F.D.

    1995-10-01

    Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.

  3. SSA 02-1 SALT AND HYPERTENSION IN MIDDLE EAST.

    PubMed

    Arici, Mustafa

    2016-09-01

    Middle East and Eastern Mediterranean Region (EMR) is a transcontinental region centered on Western Asia, east of the Mediterranean Sea and the Egypt. The whole area has almost 20 countries with an approximate population of 400 million with different ethnicities. The whole area has basically a hot and dry climate. In some parts of the Middle East, there is a desert climate.Cardiovascular diseases were the leading causes of death in the Middle East, similar to the many other territories of the World. Beyond that, the World Health Organization (WHO) has recognized this region as a hotspot for cardiovascular disease, where disease projections will exceed those of other regions. The major reason for this is the great epidemiological transition in these countries. There is a great prevalence of smoking, increasing obesity, and a change in dietary patterns, as well, from traditional to ones higher in calories and processed foods.Diets high in salt increase blood pressure levels that are the leading contributor to cardiovascular disease mortality. Hypertension is very prevalent in the EMR and the Middle East. The average hypertension prevalence in this territory is around 30% and unawareness, untreated and uncontrolled hypertension rates were very high. Middle East ranks on the top levels for high salt intake compared to many other territories. The global salt consumption analysis showed that average sodium intake ranges from 3.74 to 4.12 grams of sodium per day in the Middle East. This corresponds to 9.35 to 10.3 grams of salt per day. This amount was nearly twice the WHO recommended limit of 5 g/day. Estimated intakes in Middle East countries were also diverse, ranging from 7,8 grams of salt per day in Lebanon to 15 grams of salt per day in Turkey.It is well known that decreasing dietary salt intake from 10 grams to 5 grams per day could reduce cardiovascular diseases rate by 17% worldwide. Several analyses have also showed that salt reduction strategies will be cost

  4. SSA 02-1 SALT AND HYPERTENSION IN MIDDLE EAST.

    PubMed

    Arici, Mustafa

    2016-09-01

    Middle East and Eastern Mediterranean Region (EMR) is a transcontinental region centered on Western Asia, east of the Mediterranean Sea and the Egypt. The whole area has almost 20 countries with an approximate population of 400 million with different ethnicities. The whole area has basically a hot and dry climate. In some parts of the Middle East, there is a desert climate.Cardiovascular diseases were the leading causes of death in the Middle East, similar to the many other territories of the World. Beyond that, the World Health Organization (WHO) has recognized this region as a hotspot for cardiovascular disease, where disease projections will exceed those of other regions. The major reason for this is the great epidemiological transition in these countries. There is a great prevalence of smoking, increasing obesity, and a change in dietary patterns, as well, from traditional to ones higher in calories and processed foods.Diets high in salt increase blood pressure levels that are the leading contributor to cardiovascular disease mortality. Hypertension is very prevalent in the EMR and the Middle East. The average hypertension prevalence in this territory is around 30% and unawareness, untreated and uncontrolled hypertension rates were very high. Middle East ranks on the top levels for high salt intake compared to many other territories. The global salt consumption analysis showed that average sodium intake ranges from 3.74 to 4.12 grams of sodium per day in the Middle East. This corresponds to 9.35 to 10.3 grams of salt per day. This amount was nearly twice the WHO recommended limit of 5 g/day. Estimated intakes in Middle East countries were also diverse, ranging from 7,8 grams of salt per day in Lebanon to 15 grams of salt per day in Turkey.It is well known that decreasing dietary salt intake from 10 grams to 5 grams per day could reduce cardiovascular diseases rate by 17% worldwide. Several analyses have also showed that salt reduction strategies will be cost

  5. Exploration targets in the Great Basin of Utah

    SciTech Connect

    Allison, M.L.; Chidsey, T.C. Jr. )

    1993-08-01

    Three types of petroleum exploration targets are present in the Great Basin of Utah: structural traps in Tertiary sedimentary and volcanic rocks, unconformity traps of buried hills of Paleozoic rocks draped by Tertiary deposits, and structural traps related to thrusting where a wide variety of potential reservoir rocks are juxtaposed against Paleozoic source rocks. Tertiary targets are delineated by seismic surveys and consist of tilted fault blocks and faulted anticlines. The only success to date is Amoco's West Rozel field, in Great Salt Lake, which has in-place reserves estimated at 100 million to 1 billion bbl of oil, but is presently uneconomic. The oil is low gravity (4[degrees] API) with an extremely high sulfur content (12.5%). Little exploration has been done for these targets since the early 1980s when Amoco decided not to develop the field due to high water-cut and costs for offshore development.

  6. Iodized Salt Sales in the United States

    PubMed Central

    Maalouf, Joyce; Barron, Jessica; Gunn, Janelle P.; Yuan, Keming; Perrine, Cria G.; Cogswell, Mary E.

    2015-01-01

    Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt. PMID:25763528

  7. Great Lakes Steel -- PCI facility

    SciTech Connect

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  8. Great Lakes management: Ecological factors

    NASA Astrophysics Data System (ADS)

    Sonzogni, W. C.; Robertson, A.; Beeton, A. M.

    1983-11-01

    Although attempts to improve the quality of the Great Lakes generally focus on chemical pollution, other factors are important and should be considered Ecological factors, such as invasion of the lakes by foreign species, habitat changes, overfishing, and random variations in organism populations, are especially influential. Lack of appreciation of the significance of ecological factors stems partly from the inappropriate application of the concept of eutrophication to the Great Lakes. Emphasis on ecological factors is not intended to diminish the seriousness of pollution, but rather to point out that more cost-effective management, as well as more realistic expectations of management efforts by the public, should result from an ecosystem management approach in which ecological factors are carefully considered.

  9. Will salt repositories be dry?

    NASA Astrophysics Data System (ADS)

    Bredehoeft, John D.

    The National Academy of Science committee that considered geologic disposal of nuclear waste in the mid-1950s recommended salt as a repository medium, partly because of its high thermal conductivity and because it was believed to be “dry” (perhaps the appropriate thought is “impermeable”). Certainly, the fact that Paleozoic salt deposits exist in many parts of t h e world is evidence for very low rates of dissolution by moving groundwater. The fact that the dissolution rates were so small led many scientists to the conclusion that the salt beds were nearly impermeable. The major source of brine within the salt beds was thought to be fluid inclusions within salt crystals, which could migrate through differential solution toward a source of high heat. The idea that salt was uniformly “dry” was revised when exploratory drilling in the vicinity of the Waste Isolation Pilot Plant (WIPP) in New Mexico encountered brines within the Castile Formation, an evaporite deposit below the Salado Formation. The brine reservoirs were thought to be isolated pockets of brine in an otherwise “impermeable” salt section.

  10. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Great Barrier Reef of Queensland, Australia extends for roughly 2,000 km along the northeast coast of Australia and is made up of thousands of individual reefs which define the edge of the Continental shelf. Swan Reef, the southern part of the reef system, is seen in this view. Water depths around the reefs are quite shallow (less than 1 to 36 meters) but only a few kilometers offshore, water depths can reach 1,000 meters.

  11. Southern Great Plains Safety Orientation

    SciTech Connect

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  12. Great Basin geoscience data base

    USGS Publications Warehouse

    Raines, Gary L.; Sawatzky, Don L.; Connors, Katherine A.

    1996-01-01

    This CD-ROM serves as the archive for 73 digital GIS data set for the Great Basin. The data sets cover Nevada, eastern California, southeastern Oregon, southern Idaho, and western Utah. Some of the data sets are incomplete for the total area. On the CD-ROM, the data are provided in three formats, a prototype Federal Data Exchange standard format, the ESRI PC ARCVIEW1 format for viewing the data, and the ESRI ARC/INFO export format. Extensive documentation is provided to describe the data, the sources, and data enhancements. The following data are provided. One group of coverages comes primarily from 1:2,000,000-scale National Atlas data and can be assembled for use as base maps. These various forms of topographic information. In addition, public land system data sets are provided from the 1:2,500,000-scale Geologic Map of the United States and 1:500,000-scale geologic maps of Nevada, Oregon, and Utah. Geochemical data from the National Uranium Resource Evaluation (NURE) program are provided for most of the Great Basin. Geophysical data are provided for most of the Great Basin, typically gridded data with a spacing of 1 km. The geophysical data sets include aeromagnetics, gravity, radiometric data, and several derivative products. The thematic data sets include geochronology, calderas, pluvial lakes, tectonic extension domains, distribution of pre-Cenozoic terranes, limonite anomalies, Landsat linear features, mineral sites, and Bureau of Land Management exploration and mining permits.

  13. Sea salt CCN contribution

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Jha, V.; Noble, S.

    2011-12-01

    Volatility measurements (Twomey 1971; Hudson and Da 1996) showed that most CCN over the ocean are not NaCl. However, other reports indicate NaCl as a major CCN component. Here we contrast cloud condensation nuclei (CCN) spectral volatility (thermal fractionation) measurements from three aircraft field projects to provide insight into the relative contribution of sea salt. The most remote location, PASE (mid-Pacific), had the highest average CCN concentrations (NCCN) probably because it was the least cloudy whereas the less remote, but more cloudy,RICO(Caribbean)had the lowest average NCCN (Hudson and Noble 2009). In RICO particle concentrations in all size ranges larger than 0.3 micrometers were well correlated with wind speed (R ~ 0.87) but uncorrelated with NCCN (Fig. 1A). Smaller particles in RICO were correlated with NCCN but uncorrelated with wind speed. In PASE only particles larger than 10 micrometers were correlated with wind speed and concentrations in these size ranges were uncorrelated with NCCN. Particles smaller than 10 micrometers in PASE were uncorrelated with wind speed but well correlated with NCCN. In both projects particle concentrations smaller than these respective sizes were highly correlated with NCCN, at all S in PASE but mainly with NCCN at high S in RICO. CCN volatility measurements showed high correlations between refractory NCCN and wind speed, especially for low supersaturation (S) NCCN, and no correlation of volatile NCCN at all S with wind speed. In PASE there was only a weak positive correlation between refractory NCCN and wind and also no correlation between volatile NCCN and wind. These results indicate that in clean maritime air the wind originated component of NCCN can be substantial (i.e., > 30% for wind > 14 m/s) but that in maritime air with higher NCCN the wind derived CCN component is probably less than 10%. The contrast in cloudiness between the two projects was responsible for many of the differences noted between them. A

  14. Effect of water in salt repositories. Final report

    SciTech Connect

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  15. Is the great attractor really a great wall

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Turner, Michael S.

    1988-01-01

    Some of the cosmological consequences are discussed of a late time phase transition which produces light domain walls. The observed peculiar velocity field of the Universe and the observed isotropy of the microwave background radiation severely constrain the wall surface density in such a scenario. The most interesting consequence of such a phase transition is the possibility that the local, coherent streaming motion reported by the Seven Samurai could be explained by the repulsive effect of a relic domain wall with the Hubble volume (the Great Wall).

  16. LIFE Materails: Molten-Salt Fuels Volume 8

    SciTech Connect

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  17. Temporal contrast of salt delivery in mouth increases salt perception.

    PubMed

    Busch, Johanneke L H C; Tournier, Carole; Knoop, Janine E; Kooyman, Gonnie; Smit, Gerrit

    2009-05-01

    The impact of salt delivery in mouth on salt perception was investigated. It was hypothesized that fast concentration changes in the delivery to the receptor can reduce sensory adaptation, leading to an increased taste perception. Saltiness ratings were scored by a panel over time during various stimulation conditions involving relative changes in NaCl concentration of 20% and 38%. Changes in salt delivery profile had similar effect on saltiness perception when delivered either by a sipwise method or by a gustometer. The impact of concentration variations and frequency of concentration changes was further investigated with the gustometer method. Five second boosts and 2 s pulses were delivered during 3 sequential 10-s intervals, whereas the delivered total salt content was the same for all conditions. Two second pulses were found to increase saltiness perception, but only when the pulses were delivered during the first seconds of stimulation. Results suggest that the frequency, timing, and concentration differences of salt stimuli can affect saltiness. Specifically, a short and intense stimulus can increase salt perception, possibly through a reduction of adaptation.

  18. Salt intake, plasma sodium, and worldwide salt reduction.

    PubMed

    He, Feng J; Macgregor, Graham A

    2012-06-01

    There is overwhelming evidence that a reduction in salt intake from the current level of approximately 9-12 g/d in most countries of the world to the recommended level of 5-6 g/d lowers blood pressure (BP) in both hypertensive and normotensive individuals. A further reduction to 3-4 g/d has a greater effect. Prospective studies and outcome trials have demonstrated that a lower salt intake is related to a reduced risk of cardiovascular disease. Cost-effectiveness analyses have documented that salt reduction is more or at the very least just as cost-effective as tobacco control in reducing cardiovascular disease, the leading cause of death and disability worldwide. The mechanisms whereby salt raises blood pressure and increases cardiovascular risk are not fully understood. The existing concepts focus on the tendency for an increase in extracellular fluid volume. Increasing evidence suggests that small increases in plasma sodium may have a direct effect on BP and the cardiovascular system, independent of extracellular volume. All countries should adopt a coherent and workable strategy to reduce salt intake in the whole population. Even a modest reduction in population salt intake will have major beneficial effects on health, along with major cost savings.

  19. Salting-in and salting-out of water-soluble polymers in aqueous salt solutions.

    PubMed

    Sadeghi, Rahmat; Jahani, Farahnaz

    2012-05-01

    To obtain further experimental evidence for the mechanisms of the salting effect produced by the addition of salting-out or sating-in inducing electrolytes to aqueous solutions of water-soluble polymers, systematic studies on the vapor-liquid equilibria and liquid-liquid equilibria of aqueous solutions of several polymers are performed in the presence of a large series of electrolytes. Polymers are polyethylene glycol 400 (PEG400), polyethylene glycol dimethyl ether 250 (PEGDME250), polyethylene glycol dimethyl ether 2000 (PEGDME2000), and polypropylene glycol 400 (PPG400), and the investigated electrolytes are KCl, NH(4)Cl, MgCl(2), (CH(3))(4)NCl, NaCl, NaNO(3), Na(2)CO(3), Na(2)SO(4), and Na(3)Cit (tri-sodium citrate). Aqueous solutions of PPG400 form aqueous two-phase systems with all the investigated salts; however, other investigated polymers form aqueous two-phase systems only with Na(2)CO(3), Na(2)SO(4), and Na(3)Cit. A relation was found between the salting-out or sating-in effects of electrolyte on the polymer aqueous solutions and the slopes of the constant water activity lines of ternary polymer-salt aqueous solutions, so that, in the case of the salting-out effect, the constant water activity lines had a concave slope, but in the case of the salting-in effects, the constant water activity lines had a convex slope. The effect of temperature, anion of electrolyte, cation of electrolyte, and type and molar mass of polymers were studied and the results interpreted in terms of the solute-water and solute-solute interactions. The salting-out effect results from the formation of ion (specially anion)-water hydration complexes, which, in turn, decreases hydration, and hence, the solubility of the polymer and the salting-in effect results from a direct binding of the cations to the ether oxygens of the polymers.

  20. Nucleophilic arylation with tetraarylphosphonium salts

    PubMed Central

    Deng, Zuyong; Lin, Jin-Hong; Xiao, Ji-Chang

    2016-01-01

    Organic phosphonium salts have served as important intermediates in synthetic chemistry. But the use of a substituent on the positive phosphorus as a nucleophile to construct C–C bond remains a significant challenge. Here we report an efficient transition-metal-free protocol for the direct nucleophilic arylation of carbonyls and imines with tetraarylphosphonium salts in the presence of caesium carbonate. The aryl nucleophile generated from phosphonium salt shows low basicity and good nucleophilicity, as evidenced by the successful conversion of enolizable aldehydes and ketones. The reaction is not particularly sensitive to water, shows wide substrate scope, and is compatible with a variety of functional groups including cyano and ester groups. Compared with the arylmetallic reagents that are usually moisture sensitive, the phosphonium salts are shelf-stable and can be easily handled. PMID:26822205

  1. Space Radar Image of Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  2. What killed Alexander the Great?

    PubMed

    Battersby, Cameron

    2007-01-01

    The cause of the death of the Macedonian King, Alexander the Great, at Babylon in 323 BC has excited interest and conjecture throughout the ages. The information available in the surviving ancient sources, none of which is contemporaneous, has been reviewed and compared with modern knowledge as set out in several well-known recent surgical texts. The ancient sources record epic drinking by the Macedonian nobility since at least the time of Phillip II, Alexander's father. Alexander's sudden illness and death is likely to have resulted from a surgical complication of acute alcoholic excess.

  3. Salinity tolerance in soybean is modulated by natural variation in GmSALT3.

    PubMed

    Guan, Rongxia; Qu, Yue; Guo, Yong; Yu, Lili; Liu, Ying; Jiang, Jinghan; Chen, Jiangang; Ren, Yulong; Liu, Guangyu; Tian, Lei; Jin, Longguo; Liu, Zhangxiong; Hong, Huilong; Chang, Ruzhen; Gilliham, Matthew; Qiu, Lijuan

    2014-12-01

    The identification of genes that improve the salt tolerance of crops is essential for the effective utilization of saline soils for agriculture. Here, we use fine mapping in a soybean (Glycine max (L.) Merr.) population derived from the commercial cultivars Tiefeng 8 and 85-140 to identify GmSALT3 (salt tolerance-associated gene on chromosome 3), a dominant gene associated with limiting the accumulation of sodium ions (Na+) in shoots and a substantial enhancement in salt tolerance in soybean. GmSALT3 encodes a protein from the cation/H+ exchanger family that we localized to the endoplasmic reticulum and which is preferentially expressed in the salt-tolerant parent Tiefeng 8 within root cells associated with phloem and xylem. We identified in the salt-sensitive parent, 85-140, a 3.78-kb copia retrotransposon insertion in exon 3 of Gmsalt3 that truncates the transcript. By sequencing 31 soybean landraces and 22 wild soybean (Glycine soja) a total of nine haplotypes including two salt-tolerant haplotypes and seven salt-sensitive haplotypes were identified. By analysing the distribution of haplotypes among 172 Chinese soybean landraces and 57 wild soybean we found that haplotype 1 (H1, found in Tiefeng 8) was strongly associated with salt tolerance and is likely to be the ancestral allele. Alleles H2-H6, H8 and H9, which do not confer salinity tolerance, were acquired more recently. H1, unlike other alleles, has a wide geographical range including saline areas, which indicates it is maintained when required but its potent stress tolerance can be lost during natural selection and domestication. GmSALT3 is a gene associated with salt tolerance with great potential for soybean improvement.

  4. Recycling of aluminum salt cake

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Karvelas, D.E.

    1991-12-01

    The secondary aluminum industry generates more than 110 {times} 10{sup 3} tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In addition, over 50 {times} 10{sup 3} tons of black dross that is not economical to reprocess a rotary furnace for aluminum recovery ends up in landfills. The composition of the dross is similar to that of salt cake, except that it contains higher concentrations of aluminum (up to 20%) and correspondingly lower amounts of salts. Because of the high solubility of the salts in water, these residues, when put in landfills, represent a potential source of pollution to surface-water and groundwater supplies. The increasing number of environmental regulations on the generation and disposal of industrial wastes are likely to restrict the disposal of these salt-containing wastes in conventional landfills. Processes exist that employ the dissolution and recovery of the salts from the waste stream. These wet-processing methods are economical only when the aluminum concentration in that waste exceeds about 10%. Argonne National Laboratory (ANL) conducted a study in which existing technologies were reviewed and new concepts that are potentially more cost-effective than existing processes were developed and evaluated. These include freeze crystallization, solvent/antisolvent extraction, common-ion effect, high-pressure/high-temperature process, and capillary-effect systems. This paper presents some of the technical and economic results of the aforementioned ANL study.

  5. Microbiology of solar salt ponds

    NASA Technical Reports Server (NTRS)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  6. Molten salt spectroelectrochemistry: recent developments

    SciTech Connect

    Mamantov, G.; Chapman, D.M.; Harward, B.L.; Klatt, L.N.; Smith, G.P.

    1985-01-01

    Molten salt spectroelectrochemistry will be reviewed in this paper. UV-visible transmission, infrared reflectance, resonance and normal Raman, and electron spin resonance spectroelectrochemistry have been used for molten salt studies. Two recent applications of uv-visible transmission spectroelectrochemistry to studies of organic and inorganic solutes in molten SbCl/sub 3/-AlCl/sub 3/-N-(1-butyl)pyridinium chloride and AlCl/sub 3/-NaCl will be described.

  7. Salt intake and kidney disease.

    PubMed

    Boero, Roberto; Pignataro, Angelo; Quarello, Francesco

    2002-01-01

    We have reviewed the role of salt intake in kidney diseases, particularly in relation to renal hemodynamics, renal excretion of proteins, renal morphological changes and progression of chronic renal failure. High salt intake may have detrimental effects on glomerular hemodynamics, inducing hyperfiltration and increasing the filtration fraction and glomerular pressure. This may be particularly important in elderly, obese, diabetic or black patients, who have a high prevalence of salt-sensitivity. Changes in salt intake may influence urinary excretion of proteins in patients with essential hypertension, or diabetic and non diabetic nephropathies. Moreover, high sodium intake may blunt the antiproteinuric effect of various drugs, including angiotensin-converting-enzyme inhibitors and calcium antagonists. Experimental studies show a direct tissue effect of salt on the kidney, independent of its ability to increase blood pressure, inducing hypertrophy, fibrosis and a decrease in glomerular basement membrane anionic sites. However, no firm conclusion can be drawn about the relationship between salt consumption and progression of chronic renal failure, because most information comes from conflicting, small, retrospective, observational studies. In conclusion, it would appear that restriction of sodium intake is an important preventive and therapeutic measure in patients with chronic renal diseases of various origin, or at risk of renal damage, such as hypertensive or diabetic patients.

  8. Isostacy again: Explanation of salt movements

    SciTech Connect

    Lowrie, A.; Hamiter, R.; Lerche, I.; Petersen, K.; Egloff, J.

    1996-12-31

    The notion of isostacy is applicable to explain vertically-rising salt movements in those situations with large lateral extrusion of salt tongues. A salt tongue may be regarded as occurring at that depth within the earth above which the average density, regardless of lithology, is equal to that of salt, i.e., the salt tongue balances the material above it. The supra-salt tongue section can be salt diapirs or sedimentary sequences. Accumulating sediments compact and increase in their density with depth until equaling the density of the plastic balancing salt tongue. Under the heading of isostacy, with the balancing horizon being the salt tongue, the salt tongue is at the depth range where salt becomes buoyant relative to the overlying sediments. The isostatic depth/buoyancy level could then direct the advancing position depth of the salt tongue in the basin. Computer modeling of excess pressure under moving salt tongues indicates pressure build-ups of some 170 atm. The excess pressure may build up geologically instantaneously as the laterally migrating salt over-rides another column of sediment. Presumably the excess pressure evaporates as a discrete salt tongue leaves a supporting underlying sediment column. A puzzling question concerns how noses of salt tongues approach and even intersect the seafloor. Determining geologic reasons for positioning of salt tongues within terrigenous sediment complexes along passive margins is important due to major changes that salt insertion causes: impermeable barrier to rising hydrocarbons, stress fractures around advancing salt noses, possible regional faulting due to stress couple developed between dynamic salt tongue and stationary basement. Predicting potential stresses and deformation above, in front of, and below, a salt tongue is essential to successful wildcat drilling.

  9. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    PubMed

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products.

  10. Insecticides and the Great Lakes

    USGS Publications Warehouse

    Reinert, Robert E.

    1969-01-01

    Cracks in the perfect image of DDT appeared when traces of the insecticide began to show up in a wide variety of organisms throughout the world. As more and more people investigated this problem, it became increasingly evident that terrestrial and aquatic animals were accumulating comparatively high concentrations of DDT from extremely low levels in their environment. It also became apparent that DDT and all of the other chlorinated hydrocarbon insecticides were not species-specific, but were toxic to all forms of animal life including man. In 1965, when the Great Lakes Fishery Laboratory of the U.S. Bureau of Commercial Fisheries began to monitor pesticide residues in fish from the Great Lakes, it was discovered that the fish contained not only DDT, but also dieldrin, another chlorinated hydrocarbon insecticide. Fish from Lake Michigan in particular contained relatively high levels of both of these insecticides; concentrations of DDT were in the parts per million (ppm) range, a factor at least several million times greater than the few parts per trillion found in the water. Two questions presented themselves: first, How did these insecticides get into the water? and second, How did the fish build up such high concentrations in their bodies from such low concentrations in the water?

  11. Speech About the Great Wall

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Of all the sights that I saw during that trip, the one that provoked the most thought on my part was the Great Wall. The Great Wall defies imagination. It is simple and strong. It winds gracefully up and down. It scales slowly but steadily the distant hill, to disappear down into the valley beyond, only to climb again, inexorably, to surmount the next mountain in its path. As one examines the individual stones with which it was built, one realizes how much sweat and blood there must have been in its complex history. As one looks at the overall structure, at its strength and elegance, its real significance begins to emerge. It is long. It is tenacious. It is flexible in every turn, but is persistent and persisting in the long range development. Its overall unity of purpose is what gives it strength and character. And its overall unity of purpose is what makes it one of the man-made structures on the surface of the earth to become first visible to a visitor approaching our planet from outer space...

  12. Study on a regeneration process of LiCl-KCl eutectic based waste salt generated from the pyrochemical process

    SciTech Connect

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.; Kim, J.H.; Lee, T.K.; Park, H.S.; Kim, I.T.; Park, G.I.

    2013-07-01

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  13. PLAT X41601 EAST (SALT LAKE CITY CEMETERY LOCATER), SALT LAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAT X-4-160-1 EAST (SALT LAKE CITY CEMETERY LOCATER), SALT LAKE CITY, UT. VIEW LOOKING SOUTH AT CEMETERY BETWEEN OLIVE STREET (1020 EAST) AND 1000 EAST STREET, REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 12049, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  14. Radiated Energy of Great Earthquakes

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Ide, S.; Beroza, G. C.

    2011-12-01

    We investigate the radiated seismic energy of recent great (Mw>8great earthquakes, and average the radiated energy from all eGf events and all three components (P-wave vertical, S-wave radial and transverse). The radiated energy, Es , of each of the great earthquakes analyzed is very consistent with individual estimates of Convers and Newman [2011]. The scaled energy, Es/Mo , for each of these events is between 1- and 2x10-5, the same range of scaled energy that is observed for earthquakes over a wide range of sizes, from M 1.0 to M 9.0. This corroborates the fact that scaled energy and apparent stress is constant globally and not dependent on earthquake magnitude. Using P-wave vertical, and S- wave radial and transverse components yields consistent source spectra and radiated energy estimates, indicating that the eGf deconvolution results in stable and reliable results. For each of these earthquakes, we find a strong azimuthal dependence of Es , which we attribute to rupture directivity. In the case of the Tohoku 2011 earthquake, we interpret

  15. Hazardous occupations in Great Britain.

    PubMed

    Roberts, Stephen E

    2002-08-17

    The aim of this study was to investigate the most hazardous of all occupations in Great Britain. The causes of all deaths in British merchant seafaring and trawler fishing, traditionally the two most dangerous occupations, were established for the period between 1976 and 1995 and compared with official mortality statistics for other occupations. Fishermen were 52.4 times more likely to have a fatal accident at work (95% CI 42.9-63.8), and seafarers were 26.2 times more likely (19.8-34.7), compared with other British workers. Although the number of work-related deaths has decreased in recent decades, in relative terms the occupations of fishing and seafaring remain as hazardous as before. If mortality rates in these occupations are to decrease, unsafe working practices, especially unnecessary operations in treacherous conditions, should be reduced. PMID:12241660

  16. Great Time to Do Physics

    NASA Astrophysics Data System (ADS)

    White, Gary

    2011-10-01

    Has there ever been a more exciting time to do physics? Whether you're interested in the big philosophical questions of matter and energy or just the next cool wireless gadget, in saving the world from nuclear annihilation or saving a single life with positron emission tomography, physics is a great place to begin the journey. In this talk, I'll expound a bit on career trajectories of hidden physicists, and touch on tales from a variety of physics research topics, from spintronics to spallation to spandex. Yes, it is an unlikely trio, but within each are opportunities for ``a meaningful undergraduate research experience,'' the kind advocated by the SPS Council for all undergraduate physics majors. Along the way, I'll mention some pointers for physics undergraduates about preparing for their future, whether it includes summer research internships, industry aspirations, or graduate school.

  17. 'They of the Great Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.'

  18. The Great Warming Brian Fagan

    NASA Astrophysics Data System (ADS)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  19. Salt excretion in Suaeda fruticosa.

    PubMed

    Labidi, Nehla; Ammari, Manel; Mssedi, Dorsaf; Benzerti, Maali; Snoussi, Sana; Abdelly, C

    2010-09-01

    Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species after long-term treatment with high salinity levels. Seedlings had been treated for three months with seawater (SW) diluted with tap water (0, 25, 50 and 75% SW). Leaf scanning electron microscopy revealed a convex adaxial side sculpture and a higher accumulation of saline crystals at the lamina margin, with a large variability on repartition and size between treatments. No salt gland or salt bladder was found. Threedimensional wax decorations were the only structures found on leaf surface. Washing the leaf surface with water indicated that sodium and chloride predominated in excreted salts, and that potassium was poorly represented. Optimal growth of whole plant was recorded at 25% SW, correlating with maximum Na(+) and Cl(-) absolute secretion rate. The leaves of plants treated with SW retained more water than those of plants treated with tap water due to lower solute potential, especially at 25% SW. Analysis of compatible solute, such as proline, total soluble carbohydrates and glycinebetaine disclosed strong relationship between glycinebetaine and osmotic potential (r = 0.92) suggesting that tissue hydration was partly maintained by glycinebetaine accumulation. Thus in S. fruticosa , increased solute accumulation associated with water retention, and steady intracellular ion homeostasis confirms the "includer" strategy of salt tolerance previously demonstrated. However, salt excretion at leaf surface also participated in conferring to this species a capacity in high salinity tolerance.

  20. 33 CFR 125.08 - Great Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Great Lakes. 125.08 Section 125... VESSELS § 125.08 Great Lakes. The term Great Lakes as used in the regulations in this subchapter shall include the Great Lakes and their connecting and tributary waters....

  1. Conversion of Ca2+ salt of an organic compound to its Li+ salt to simplify the fast atom bombardment mass spectrum.

    PubMed

    Morisaki, Naoko; Kobayashi, Hisayoshi; Nagasawa, Kazuo; Baba, Yoshiyasu; Sodeoka, Mikiko; Hashimoto, Yuichi

    2003-11-01

    The FAB mass spectrum of the Ca(2+) salt of RK-682 (1, MW 368), a potent protein tyrosine phosphatase inhibitor, shows a complex pattern due to Ca(2+) adduct ions with multimers of 1 and their decomposition ions. Addition of LiCl greatly simplified the FAB mass spectrum, providing a prominent Li(+) adduct ion of 1 at m/z 381 [M+2Li-H](+). The addition of LiCl also greatly simplified the FAB mass spectrum of calcium pantothenate. This approach may be generally useful for molecular weight determination of multivalent metal salts of organic compounds, or organic compounds that can form Li salts, by FAB mass spectrometry. PMID:14600389

  2. Sedimentation dynamics about salt features

    SciTech Connect

    Lowrie, A.; Blake, D.W.

    1985-02-01

    Detailed side-scan sonar and gridded bathymetric surveys on continental margins reveal the existence of numerous submarine canyons. Recently published compilations of current velocities in submarine canyons indicate that alternating and undirectionaly flows often exceed 20-30 cm/sec with peak velocities ranging from 70 to 100 cm/sec. Current meters attached to the ocean floor have been lost at current velocities of 190 cm/sec. Such velocities are ample to transport sand-size sediments. The results of DSDP Leg 96 show the existence of massive sands and gravels on the Louisiana slope, deposited during the last glacial advance. Thus, present physical oceanographic data may be an analog to conditions during glacially induced lowered sea levels. Salt ridges and domes underlie much of the Louisiana slope, determining morphology. Submarine canyons lace the slope. Given a prograding shelf, the net sediment transport routes will be down the submarine canyons. Sediment deposition patterns around the salt ridges and domes include parallel-bedded foredrifts on the upslope side, lee drifts on the downslope side, and moats along the lateral flanks of the salt features. Major differences exist between the sedimentation patterns around a ridge and a dome. The size and shape of the flow pattern will determine whether there can be a flow over the salt feature with a resulting turbulent wave that may influence sedimentation. Sedimentation patterns about salt features on the present slope should be applicable to similar paleoenvironments.

  3. Fracture and Healing of Rock Salt Related to Salt Caverns

    SciTech Connect

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-03-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  4. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary.

    PubMed

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  5. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    NASA Astrophysics Data System (ADS)

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-06-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE.

  6. Comparative Study on the Nutritional Value of Pidan and Salted Duck Egg

    PubMed Central

    Kaewmanee, T.; Benjakul, S.

    2014-01-01

    Pidan and salted duck eggs are of nutritional rich alternative duck egg products which are predominantly consumed in China, Thailand, South Korea and other Chinese migrated countries. Both eggs are rich in proteins, lipids, unsaturated fatty acids and minerals. A Pidan whole egg contains 13.1% of protein, 10.7% of fat, 2.25% of carbohydrate and 2.3% of ash, whereas the salted duck egg contains 14% of protein, 16.6% of fat, 4.1% of carbohydrate and 7.5% of ash. The fresh duck egg contains a range of 9.30-11.80% of protein, 11.40-13.52% of fat, 1.50-1.74% of sugar and 1.10-1.17% of ash. Proteins, lipids, and ash contents are found to be greatly enhanced during the pickling and salting process of pidan and salted duck eggs. However, the alkaline induced aggregation of pidan leads to degradation and subsequent generation of free peptides and amino acids. Very few amino acids are found to be lost during the pickling and storage. However, no such losses of amino acids are reported in salted duck eggs during the salting process of 14 d. Phospholipids and cholesterol contents are lower in pidan oil and salted duck egg yolk oil. Thus, the pidan and salted duck eggs are nutritionally rich alternatives of duck egg products which will benefit the human health during consumption. PMID:26760738

  7. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    PubMed Central

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  8. Comparative Study on the Nutritional Value of Pidan and Salted Duck Egg.

    PubMed

    Ganesan, P; Kaewmanee, T; Benjakul, S; Baharin, B S

    2014-01-01

    Pidan and salted duck eggs are of nutritional rich alternative duck egg products which are predominantly consumed in China, Thailand, South Korea and other Chinese migrated countries. Both eggs are rich in proteins, lipids, unsaturated fatty acids and minerals. A Pidan whole egg contains 13.1% of protein, 10.7% of fat, 2.25% of carbohydrate and 2.3% of ash, whereas the salted duck egg contains 14% of protein, 16.6% of fat, 4.1% of carbohydrate and 7.5% of ash. The fresh duck egg contains a range of 9.30-11.80% of protein, 11.40-13.52% of fat, 1.50-1.74% of sugar and 1.10-1.17% of ash. Proteins, lipids, and ash contents are found to be greatly enhanced during the pickling and salting process of pidan and salted duck eggs. However, the alkaline induced aggregation of pidan leads to degradation and subsequent generation of free peptides and amino acids. Very few amino acids are found to be lost during the pickling and storage. However, no such losses of amino acids are reported in salted duck eggs during the salting process of 14 d. Phospholipids and cholesterol contents are lower in pidan oil and salted duck egg yolk oil. Thus, the pidan and salted duck eggs are nutritionally rich alternatives of duck egg products which will benefit the human health during consumption. PMID:26760738

  9. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS.

    PubMed

    Hagey, Lee R; Vidal, Nicolas; Hofmann, Alan F; Krasowski, Matthew D

    2010-10-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway.

  10. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS

    PubMed Central

    Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

  11. Great Plains Synfuels` hidden treasures

    SciTech Connect

    Kuhn, A.K.; Duncan, D.H.

    1996-12-31

    The Great Plains Synfuels Project was commissioned 12 years ago. While demonstrating success regarding SNG production, DGC quietly started development of chemical products derived from the liquid by-product streams of Lurgi moving bed gasifiers. Naphtha, crude phenol, and tar oil are the primary by-products, and these contain valuable compounds such as phenol, cresylic acid, catechols, naphthols, fluorene, and BTX. Process technologies have been developed for (1) separation of various impurities from cresylic acid distillate fractions or from whole cresylic acid; (2) extracting cresylic acid from tar oil; (3) conversion of tar pitch to a blend stock used in making anode binder pitch; and (4) separating high purity catechol and methyl catechols. As a result of this work, DGC built a phenol/cresylic acid facility. The cresylic acid side supplies over 10 percent of the world market. The achievement with the catechols is presently leading to bench scale routes for synthesis of chemical intermediates which ultimately may include compounds such as vanillin, pyrogallol, sesamol, homoveratrylamine, and many others, penetrating the fields of flavors and fragrances, pharmaceuticals, pesticides, photographic chemicals, dyes, etc. These efforts stimulate DGC`s growth and will provide an economic uplift. By-products already contribute more than 10% of revenues and are destined to rival natural gas in importance.

  12. The Great 1787 Mexican Tsunami

    NASA Astrophysics Data System (ADS)

    Nunez-Cornu, F. J.; Ortiz, M.; Sanchez, J. J.; Suarez-Plascencia, C.

    2008-12-01

    Tsunamis have proven to represent a significant hazard around the globe and there is increased awareness about their occurrence. The Pacific coast in southern México is no exception, because there is firm evidence of the effects of past large tsunamis. Here we present results from computer-aided modeling of the March 28, 1787 - 'San Sixto' earthquake and tsunami, and focus on the regions of Acapulco, Corralero, Jamiltepec, and Tehuantepec, located along the Guerrero- Oaxaca coast. The theoretical waveforms suggest wave heights in excess of 4 m, and 18 m at specific locations in Acapulco and Corralero, respectively, and wave heights of at least 2 m at locations in Jamiltepec and Tehuantepec. From our modelling results and based on historical documents and the topography of the area, we conclude that these wave heights would have been sufficient to cause inundations that in the case of Acapulco were restricted to several meters inland, but in other areas like Corralero reached at least 6 km inland. Our results are consistent with published and unpublished damage reports that attest to the hazards associated with great earthquakes and tsunamis along the subduction zone in Mexico.

  13. Protein aggregation in salt solutions

    PubMed Central

    Kastelic, Miha; Kalyuzhnyi, Yurij V.; Hribar-Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2015-01-01

    Protein aggregation is broadly important in diseases and in formulations of biological drugs. Here, we develop a theoretical model for reversible protein–protein aggregation in salt solutions. We treat proteins as hard spheres having square-well-energy binding sites, using Wertheim’s thermodynamic perturbation theory. The necessary condition required for such modeling to be realistic is that proteins in solution during the experiment remain in their compact form. Within this limitation our model gives accurate liquid–liquid coexistence curves for lysozyme and γ IIIa-crystallin solutions in respective buffers. It provides good fits to the cloud-point curves of lysozyme in buffer–salt mixtures as a function of the type and concentration of salt. It than predicts full coexistence curves, osmotic compressibilities, and second virial coefficients under such conditions. This treatment may also be relevant to protein crystallization. PMID:25964322

  14. Salt splitting with ceramic membranes

    SciTech Connect

    Kurath, D.

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  15. The molten salt reactor adventure

    SciTech Connect

    MacPherson, H.G.

    1985-08-01

    A personal history of the development of molten salt reactors in the United States is presented. The initial goal was an aircraft propulsion reactor, and a molten fluoride-fueled Aircraft Reactor Experiment was operated at Oak Ridge National Laboratory in 1954. In 1956, the objective shifted to civilian nuclear power, and reactor concepts were developed using a circulating UF4-ThF4 fuel, graphite moderator, and Hastelloy N pressure boundary. The program culminated in the successful operation of the Molten Salt Reactor Experiment in 1965 to 1969. By then the Atomic Energy Commission's goals had shifted to breeder development; the molten salt program supported on-site reprocessing development and study of various reactor arrangements that had potential to breed. Some commercial and foreign interest contributed to the program which, however, was terminated by the government in 1976. The current status of the technology and prospects for revived interest are summarized.

  16. Salt site performance assessment activities

    SciTech Connect

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  17. Protein aggregation in salt solutions.

    PubMed

    Kastelic, Miha; Kalyuzhnyi, Yurij V; Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2015-05-26

    Protein aggregation is broadly important in diseases and in formulations of biological drugs. Here, we develop a theoretical model for reversible protein-protein aggregation in salt solutions. We treat proteins as hard spheres having square-well-energy binding sites, using Wertheim's thermodynamic perturbation theory. The necessary condition required for such modeling to be realistic is that proteins in solution during the experiment remain in their compact form. Within this limitation our model gives accurate liquid-liquid coexistence curves for lysozyme and γ IIIa-crystallin solutions in respective buffers. It provides good fits to the cloud-point curves of lysozyme in buffer-salt mixtures as a function of the type and concentration of salt. It than predicts full coexistence curves, osmotic compressibilities, and second virial coefficients under such conditions. This treatment may also be relevant to protein crystallization.

  18. Molten fluoride fuel salt chemistry

    NASA Astrophysics Data System (ADS)

    Toth, L. M.; Del Cul, G. D.; Dai, S.; Metcalf, D. H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed.

  19. Molten fluoride fuel salt chemistry

    NASA Astrophysics Data System (ADS)

    Toth, L. M.; Delcul, G. D.; Dai, S.; Metcalf, D. H.

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed.

  20. Cerebral salt wasting syndrome: review.

    PubMed

    Cerdà-Esteve, M; Cuadrado-Godia, E; Chillaron, J J; Pont-Sunyer, C; Cucurella, G; Fernández, M; Goday, A; Cano-Pérez, J F; Rodríguez-Campello, A; Roquer, J

    2008-06-01

    Hyponatremia is the most frequent electrolyte disorder in critically neurological patients. Cerebral salt wasting syndrome (CSW) is defined as a renal loss of sodium during intracranial disease leading to hyponatremia and a decrease in extracellular fluid volume. The pathogenesis of this disorder is still not completely understood. Sympathetic responses as well as some natriuretic factors play a role in this syndrome. Distinction between SIADH and CSW might be difficult. The essential point is the volemic state. It is necessary to rule out other intermediate causes. Treatment requires volume replacement and maintenance of a positive salt balance. Mineral corticoids may be useful in complicated cases.

  1. The variety of subaerial active salt deformations in the Kuqa fold-thrust belt (China) constrained by InSAR

    NASA Astrophysics Data System (ADS)

    Colón, Cindy; Webb, A. Alexander G.; Lasserre, Cécile; Doin, Marie-Pierre; Renard, François; Lohman, Rowena; Li, Jianghai; Baudoin, Patrick F.

    2016-09-01

    Surface salt bodies in the western Kuqa fold-thrust belt of northwestern China allow study of subaerial salt kinematics and its possible correlations with weather variations. Ephemeral subaerial salt exposure during the evolution of a salt structure can greatly impact the subsequent development and deformation of its tectonic setting. Here, we present a quantitative time-lapse survey of surface salt deformation measured from interferometric synthetic aperture radar (InSAR) using Envisat radar imagery acquired between 2003 and 2010. Time series analysis and inspection of individual interferograms confirm that the majority of the salt bodies in western Kuqa are active, with significant InSAR observable displacements at 3 of 4 structures studied in the region. Subaerial salt motion toward and away from the satellite at rates up to 5 mm/yr with respect to local references. Rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) and temperature from a local weather station are used to test the relationship between seasonality and surface salt motion. We observe decoupling between surface salt motion and seasonality and interpret these observations to indicate that regional and local structural regimes exert primary control on surface salt displacement rates.

  2. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  3. Great East Japan Earthquake Tsunami

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.

    2011-12-01

    The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by

  4. Microplastic Pollution in Table Salts from China.

    PubMed

    Yang, Dongqi; Shi, Huahong; Li, Lan; Li, Jiana; Jabeen, Khalida; Kolandhasamy, Prabhu

    2015-11-17

    Microplastics have been found in seas all over the world. We hypothesize that sea salts might contain microplastics, because they are directly supplied by seawater. To test our hypothesis, we collected 15 brands of sea salts, lake salts, and rock/well salts from supermarkets throughout China. The microplastics content was 550-681 particles/kg in sea salts, 43-364 particles/kg in lake salts, and 7-204 particles/kg in rock/well salts. In sea salts, fragments and fibers were the prevalent types of particles compared with pellets and sheets. Microplastics measuring less than 200 μm represented the majority of the particles, accounting for 55% of the total microplastics, and the most common microplastics were polyethylene terephthalate, followed by polyethylene and cellophane in sea salts. The abundance of microplastics in sea salts was significantly higher than that in lake salts and rock/well salts. This result indicates that sea products, such as sea salts, are contaminated by microplastics. To the best of our knowledge, this is the first report on microplastic pollution in abiotic sea products.

  5. Transposition of the great arteries.

    PubMed

    Martins, Paula; Castela, Eduardo

    2008-01-01

    Transposition of the great arteries (TGA), also referred to as complete transposition, is a congenital cardiac malformation characterised by atrioventricular concordance and ventriculoarterial (VA) discordance. The incidence is estimated at 1 in 3,500-5,000 live births, with a male-to-female ratio 1.5 to 3.2:1. In 50% of cases, the VA discordance is an isolated finding. In 10% of cases, TGA is associated with noncardiac malformations. The association with other cardiac malformations such as ventricular septal defect (VSD) and left ventricular outflow tract obstruction is frequent and dictates timing and clinical presentation, which consists of cyanosis with or without congestive heart failure. The onset and severity depend on anatomical and functional variants that influence the degree of mixing between the two circulations. If no obstructive lesions are present and there is a large VSD, cyanosis may go undetected and only be perceived during episodes of crying or agitation. In these cases, signs of congestive heart failure prevail. The exact aetiology remains unknown. Some associated risk factors (gestational diabetes mellitus, maternal exposure to rodenticides and herbicides, maternal use of antiepileptic drugs) have been postulated. Mutations in growth differentiation factor-1 gene, the thyroid hormone receptor-associated protein-2 gene and the gene encoding the cryptic protein have been shown implicated in discordant VA connections, but they explain only a small minority of TGA cases.The diagnosis is confirmed by echocardiography, which also provides the morphological details required for future surgical management. Prenatal diagnosis by foetal echocardiography is possible and desirable, as it may improve the early neonatal management and reduce morbidity and mortality. Differential diagnosis includes other causes of central neonatal cyanosis. Palliative treatment with prostaglandin E1 and balloon atrial septostomy are usually required soon after birth

  6. Iodisation of Salt in Slovenia: Increased Availability of Non-Iodised Salt in the Food Supply

    PubMed Central

    Žmitek, Katja; Pravst, Igor

    2016-01-01

    Salt iodisation is considered a key public health measure for assuring adequate iodine intake in iodine-deficient countries. In Slovenia, the iodisation of all salt was made mandatory in 1953. A considerable regulatory change came in 2003 with the mandatory iodisation of rock and evaporated salt only. In addition, joining the European Union’s free single market in 2004 enabled the import of non-iodised salt. The objective of this study was to investigate the extent of salt iodising in the food supply. We examined both the availability and sale of (non-)iodised salt. Average sales-weighted iodine levels in salt were calculated using the results of a national monitoring of salt quality. Data on the availability and sales of salts were collected in major food retailers in 2014. Iodised salt represented 59.2% of the salt samples, and 95.9% of salt sales, with an average (sales-weighted) level of 24.2 mg KI/kg of salt. The average sales-weighted KI level in non-iodised salts was 3.5 mg KI/kg. We may conclude that the sales-weighted average iodine levels in iodised salt are in line with the regulatory requirements. However, the regulatory changes and the EU single market have considerably affected the availability of non-iodised salt. While sales of non-iodised salt are still low, non-iodised salt represented 33.7% of the salts in our sample. This indicates the existence of a niche market which could pose a risk of inadequate iodine intake in those who deliberately decide to consume non-iodised salt only. Policymakers need to provide efficient salt iodisation intervention to assure sufficient iodine supply in the future. The reported sales-weighting approach enables cost-efficient monitoring of the iodisation of salt in the food supply. PMID:27438852

  7. Iodisation of Salt in Slovenia: Increased Availability of Non-Iodised Salt in the Food Supply.

    PubMed

    Žmitek, Katja; Pravst, Igor

    2016-07-16

    Salt iodisation is considered a key public health measure for assuring adequate iodine intake in iodine-deficient countries. In Slovenia, the iodisation of all salt was made mandatory in 1953. A considerable regulatory change came in 2003 with the mandatory iodisation of rock and evaporated salt only. In addition, joining the European Union's free single market in 2004 enabled the import of non-iodised salt. The objective of this study was to investigate the extent of salt iodising in the food supply. We examined both the availability and sale of (non-)iodised salt. Average sales-weighted iodine levels in salt were calculated using the results of a national monitoring of salt quality. Data on the availability and sales of salts were collected in major food retailers in 2014. Iodised salt represented 59.2% of the salt samples, and 95.9% of salt sales, with an average (sales-weighted) level of 24.2 mg KI/kg of salt. The average sales-weighted KI level in non-iodised salts was 3.5 mg KI/kg. We may conclude that the sales-weighted average iodine levels in iodised salt are in line with the regulatory requirements. However, the regulatory changes and the EU single market have considerably affected the availability of non-iodised salt. While sales of non-iodised salt are still low, non-iodised salt represented 33.7% of the salts in our sample. This indicates the existence of a niche market which could pose a risk of inadequate iodine intake in those who deliberately decide to consume non-iodised salt only. Policymakers need to provide efficient salt iodisation intervention to assure sufficient iodine supply in the future. The reported sales-weighting approach enables cost-efficient monitoring of the iodisation of salt in the food supply.

  8. Iodisation of Salt in Slovenia: Increased Availability of Non-Iodised Salt in the Food Supply.

    PubMed

    Žmitek, Katja; Pravst, Igor

    2016-01-01

    Salt iodisation is considered a key public health measure for assuring adequate iodine intake in iodine-deficient countries. In Slovenia, the iodisation of all salt was made mandatory in 1953. A considerable regulatory change came in 2003 with the mandatory iodisation of rock and evaporated salt only. In addition, joining the European Union's free single market in 2004 enabled the import of non-iodised salt. The objective of this study was to investigate the extent of salt iodising in the food supply. We examined both the availability and sale of (non-)iodised salt. Average sales-weighted iodine levels in salt were calculated using the results of a national monitoring of salt quality. Data on the availability and sales of salts were collected in major food retailers in 2014. Iodised salt represented 59.2% of the salt samples, and 95.9% of salt sales, with an average (sales-weighted) level of 24.2 mg KI/kg of salt. The average sales-weighted KI level in non-iodised salts was 3.5 mg KI/kg. We may conclude that the sales-weighted average iodine levels in iodised salt are in line with the regulatory requirements. However, the regulatory changes and the EU single market have considerably affected the availability of non-iodised salt. While sales of non-iodised salt are still low, non-iodised salt represented 33.7% of the salts in our sample. This indicates the existence of a niche market which could pose a risk of inadequate iodine intake in those who deliberately decide to consume non-iodised salt only. Policymakers need to provide efficient salt iodisation intervention to assure sufficient iodine supply in the future. The reported sales-weighting approach enables cost-efficient monitoring of the iodisation of salt in the food supply. PMID:27438852

  9. Chromium(III), insoluble salts

    Integrated Risk Information System (IRIS)

    Chromium ( III ) , insoluble salts ; CASRN 16065 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments

  10. Clean salt process final report

    SciTech Connect

    Herting, D.L.

    1996-09-30

    A process has been demonstrated in the laboratory for separating clean, virtually non-radioactive sodium nitrate from Hanford tank waste using fractional crystallization. The name of the process is the Clean Salt Process. Flowsheet modeling has shown that the process is capable of reducing the volume of vitrified low activity waste (LAW) by 80 to 90 %. Construction of the Clean Salt processing plant would cost less than $1 10 million, and would eliminate the need for building a $2.2 billion large scale vitrification plant planned for Privatization Phase 11. Disposal costs for the vitrified LAW would also be reduced by an estimated $240 million. This report provides a summary of five years of laboratory and engineering development activities, beginning in fiscal year 1992. Topics covered include laboratory testing of a variety of processing options; proof-of-principle demonstrations with actual waste samples from Hanford tanks 241-U-110 (U-110), 241-SY-101 (101-SY), and 241-AN-102 (102-AN); descriptions of the primary solubility phase diagrams that govem the process; a review of environmental regulations governing disposition of the reclaimed salt and an assessment of the potential beneficial uses of the reclaimed salt; preliminary plant design and construction cost estimates. A detailed description is given for the large scale laboratory demonstration of the process using waste from tank 241-AW-101 (101-AW), a candidate waste for 0044vitrification during Phase I Privatization.

  11. Hydrogen Cyanide and Cyanide Salts

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 016 F www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN CYANIDE AND CYANIDE SALTS ( CAS No . various ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2010 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This docu

  12. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  13. Infrared Spectrometry of Inorganic Salts

    ERIC Educational Resources Information Center

    Ackermann, Martin N.

    1970-01-01

    Describes a general chemistry experiment which uses infrared spectroscopy to analyze inorganic ions and thereby serves to introduce an important instrumental method of analysis. Presents a table of eight anions and the ammonium ion with the frequencies of their normal modes, as well as the spectra of three sulfate salts. (RR)

  14. TOXAPHENE STUDY OF GREAT LAKES TRIBUTARY SEDIMENTS

    EPA Science Inventory

    The Product is the paper "Pulp and Paper Mills as Sources of Toxaphene to Lake Superior and Northern Lake Michigan" published in the Journal of Great Lakes Research, 25(2):383-394 International Association of Great Lakes 1999.

  15. Cosmic Reason of Great Glaciation

    NASA Astrophysics Data System (ADS)

    Bagrov, Alexander; Murtazov, Andrey

    The origin of long-time and global glaciations in the past of our planet, which have been named «great», is still not clear. Both the advance of glaciers and their subsequent melting must be connected with some energy consuming processes. There is a powerful energy source permanently functioning throughout the Earth’s history - the solar radiation. The equality of the incoming shortwave solar energy and the transformed long-wave energy emitted by the Earth provides for the whole ecosphere’s sustainable evolution. Great glaciations might be caused by space body falls into the world oceans. If the body is large enough, it can stir waters down to the bottom. The world waters are part of the global heat transfer from the planet’s equator to its poles (nowadays, mostly to the North Pole). The mixing of the bottom and surface waters breaks the circulation of flows and they stop. The termination of heat transfer to the poles will result in an icecap at high latitudes which in its turn will decrease the total solar heat inflow to the planet and shift the pole ice boarder to the equator. This positive feedback may last long and result in long-time glaciations. The oceanic currents will remain only near the equator. The factor obstructing the global cooling is the greenhouse effect. Volcanic eruptions supply a lot of carbon dioxide into the atmosphere. When due to the increased albedo the planet receives less solar heat, plants bind less carbon oxide into biomass and more of it retains in the atmosphere. Therefore, the outflow of heat from the planet decreases and glaciations does not involve the whole planet. The balance established between the heat inflow and heat losses is unstable. Any imbalance acts as a positive feed-back factor. If the volcanic activity grows, the inflow of the carbon dioxide into the atmosphere will cause its heating-up (plants will fail to reproduce themselves quickly enough to utilize the carbonic acid). The temperature growth will lead to

  16. Cleanup of plutonium oxide reduction black salts

    SciTech Connect

    Giebel, R.E.; Wing, R.O.

    1986-12-17

    This work describes pyrochemical processes employed to convert direc oxide reduction (DOR) black salts into discardable white salt and plutonium metal. The DOR process utilizes calcium metal as the reductant in a molten calcium chloride solvent salt to convert plutonium oxide to plutonium metal. An insoluble plutonium-rich dispersion called black salt sometimes forms between the metal phase and the salt phase. Black salts accumulated for processing were treated by one of two methods. One method utilized a scrub alloy of 70 wt % magnesium/30 wt % zinc. The other method utilized a pool of plutonium metal to agglomerate the metal phase. The two processes were similar in that calcium metal reductant and calcium chloride solvent salt were used in both cases. Four runs were performed by each method, and each method produced greater than 93% conversion of the black salt.

  17. Plant Zonation in a Salt Marsh.

    ERIC Educational Resources Information Center

    Etri, Lawrence R.

    1978-01-01

    The zonation of plants within a salt marsh environment is detailed via illustrations and scientific nomeclature for purposes of encouraging outdoor educators to use the salt marsh environment as a learning laboratory. (JC)

  18. Salt dome discoveries mounting in Mississippi

    SciTech Connect

    Ericksen, R.L.

    1996-06-17

    Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

  19. Chlorine Salts at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Horgan, B.

    2016-09-01

    Although chlorine salts (perchlorates, chlorides) are known to exist at the Phoenix landing site, their distribution and type have not been positively identified yet. We look for these salts through a novel NIR remote sensing technique.

  20. DEVELOPING INDICATORS OF SALT MARSH HEALTH

    EPA Science Inventory

    We relate plant zonation in salt marshes to key ecosystem services such as erosion control and wildlife habitat. Ten salt marshes in Narragansett Bay, with similar geological bedrock and sea exchange, were identified to examine plant zonation. Sub-watersheds adjacent to the salt ...

  1. Reactivity of pyrylium salts toward basic reactants

    NASA Technical Reports Server (NTRS)

    Neidlein, R.; Witerzens, P.

    1981-01-01

    The reactivity of some N-acyl and N-sulfonyl-hydrazines 2-4, 10a-10g, 12, 13, 16a, 16b and of hydrazones 18, benzyldihydrazone 21 towards pyrylium salts 1 was examined. By reaction of 2,4,6-trimethyl-pyrylium salt 1 with substituted hydrazines some pyridinium salts were obtained. Relationships between basicity and reactivity were discussed.

  2. The economics of salt cake recycling

    SciTech Connect

    Graziano, D.; Hryn, J.N.; Daniels, E.J.

    1996-03-01

    The Process Evaluation Section at Argonne National Laboratory (ANL) has a major program aimed at developing cost-effective technologies for salt cake recycling. This paper addresses the economic feasibility of technologies for the recovery of aluminum, salt, and residue-oxide fractions from salt cake. Four processes were assessed for salt recovery from salt cake: (1) base case: leaching in water at 25{degree}C, with evaporation to crystallize salts; (2) high-temperature case: leaching in water at 250{degree}C, with flash crystallization to precipitate salts; (3) solventlantisolvent case: leaching in water at 25{degree}C, concentrating by evaporation, and reacting with acetone to precipitate salts; and (4) electrodialysis: leaching in water at 25{degree}C, with concentration and recovery of salts by electrodialysis. All test cases for salt recovery had a negative present value, given current pricing structure and 20% return on investment. Although manufacturing costs (variable plus fixed) could reasonably be recovered in the sales price of the salt product, capital costs cannot. The economics for the recycling processes are improved, however, if the residueoxide can be sold instead of landfilled. For example, the base case process would be profitable at a wet oxide value of $220/metric ton. The economics of alternative scenarios were also considered, including aluminum recovery with landfilling of salts and oxides.

  3. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  4. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  5. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  6. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  7. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  8. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  9. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  10. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  11. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  12. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  13. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  14. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  15. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  16. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  17. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  18. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  19. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  20. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  1. 7 CFR 58.328 - Salt.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Salt. 58.328 Section 58.328 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....328 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  2. 7 CFR 58.721 - Salt.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Salt. 58.721 Section 58.721 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....721 Salt. Salt shall be free flowing, white refined sodium chloride and shall meet the requirements...

  3. 7 CFR 58.437 - Salt.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Salt. 58.437 Section 58.437 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections....437 Salt. The salt shall be free-flowing, white refined sodium chloride and shall meet...

  4. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  5. 40 CFR 721.6085 - Phosphonocarboxylate salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphonocarboxylate salts. 721.6085... Substances § 721.6085 Phosphonocarboxylate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphonocarboxylate salts (PMNs...

  6. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  7. 40 CFR 721.7655 - Alkylsulfonium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkylsulfonium salt. 721.7655 Section... Substances § 721.7655 Alkylsulfonium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylsulfonium salt (PMN P-93-1166)...

  8. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    PubMed

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-01

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  9. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    PubMed

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-01

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed. PMID:15773087

  10. INTERSECTION OF 445 NORTH & 1040 EAST, SALT LAKE CITY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERSECTION OF 445 NORTH & 1040 EAST, SALT LAKE CITY, UT. VIEW LOOKING SOUTH. REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18272, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  11. 200 MAIN STREET, SALT LAKE CITY, UT. VIEW LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    200 MAIN STREET, SALT LAKE CITY, UT. VIEW LOOKING EAST OF "MAIN' STREET. REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18273, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  12. A Great Moment for Astronomy

    NASA Astrophysics Data System (ADS)

    1998-05-01

    astronomers will have at their disposal the best optical/infrared telescope in the world. We can now look forward with great expectations to the realization of many exciting research projects. The First Light Images Images of various celestial objects were obtained with the VLT CCD Test Camera, some of which are included in a new series, First Astronomical Images from the VLT UT1. None have been subjected to image processing beyond flat-fielding (to remove variations of the digital detector sensitivity over the field) and cosmetic cleaning. They all display the recorded image structure, pixel by pixel. A detailed evaluation with accompanying explanations is presented in the figure captions. 1. Omega Centauri Tracking Tests This 10-minute image demonstrates that the telescope is able to track continuously with a very high precision and thus is able to take full advantage of the frequent, very good atmospheric conditions at Paranal. The images of the stars in this southern globular cluster are very sharp (0.43 arcsec) and are perfectly round, everywhere in the field. 2. The Quadruple Clover Leaf Quasar This 2-minute exposure of the well-known Clover Leaf quasar, a quadruple gravitational lens in which the largest distance between two components is only 1.3 arcsec, was obtained during a period of excellent seeing (0.32 arcsec) measured with a seeing monitor at the top of Paranal. The recorded angular resolution of just 0.38 arcsec demonstrates near-perfect optical quality of the telescope . 3. The Central Area of Globular Cluster M4 This is a colour composite of a field near the centre of the nearest globular cluster. At a seeing of 0.53 arcsec, the blue exposure reaches magnitude B = 24 in only 2 minutes (at signal-to-noise ratio = 5) in a bright sky. A simple extrapolation shows that B ~ 28 would be reached in a 1-hour exposure in a dark sky. The large mirror surface of the VLT UT1 and its ability to produce very sharp images, ensures that faint objects may be observed

  13. Ultrasonic characterization of pork meat salting

    NASA Astrophysics Data System (ADS)

    García-Pérez, J. V.; De Prados, M.; Pérez-Muelas, N.; Cárcel, J. A.; Benedito, J.

    2012-12-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p<0.05) linear relationships were found between the ultrasonic velocity and the salt (R2 = 0.975) and moisture (R2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  14. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach.

    PubMed

    Thouvenot, Lise; Deleu, Carole; Berardocco, Solenne; Haury, Jacques; Thiébaut, Gabrielle

    2015-03-01

    The effects of salt stress on freshwater plants has been little studied up to now, despite the fact that they are expected to present different levels of salt sensitivity or salt resistance depending on the species. The aim of this work was to assess the effect of NaCl at two concentrations on three invasive freshwater species, Elodea canadensis, Myriophyllum aquaticum and Ludwigia grandiflora, by examining morphological and physiological parameters and using metabolic profiling. The growth rate (biomass and stem length) was reduced for all species, whatever the salt treatment, but the response to salt differed between the three species, depending on the NaCl concentration. For E. canadensis, the physiological traits and metabolic profiles were only slightly modified in response to salt, whereas M. aquaticum and L. grandiflora showed great changes. In both of these species, root number, photosynthetic pigment content, amino acids and carbohydrate metabolism were affected by the salt treatments. Moreover, we are the first to report the salt-induced accumulation of compatible solutes in both species. Indeed, in response to NaCl, L. grandiflora mainly accumulated sucrose. The response of M. aquaticum was more complex, because it accumulated not only sucrose and myo-inositol whatever the level of salt stress, but also amino acids such as proline and GABA, but only at high NaCl concentrations. These responses are the metabolic responses typically found in terrestrial plants.

  15. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach.

    PubMed

    Thouvenot, Lise; Deleu, Carole; Berardocco, Solenne; Haury, Jacques; Thiébaut, Gabrielle

    2015-03-01

    The effects of salt stress on freshwater plants has been little studied up to now, despite the fact that they are expected to present different levels of salt sensitivity or salt resistance depending on the species. The aim of this work was to assess the effect of NaCl at two concentrations on three invasive freshwater species, Elodea canadensis, Myriophyllum aquaticum and Ludwigia grandiflora, by examining morphological and physiological parameters and using metabolic profiling. The growth rate (biomass and stem length) was reduced for all species, whatever the salt treatment, but the response to salt differed between the three species, depending on the NaCl concentration. For E. canadensis, the physiological traits and metabolic profiles were only slightly modified in response to salt, whereas M. aquaticum and L. grandiflora showed great changes. In both of these species, root number, photosynthetic pigment content, amino acids and carbohydrate metabolism were affected by the salt treatments. Moreover, we are the first to report the salt-induced accumulation of compatible solutes in both species. Indeed, in response to NaCl, L. grandiflora mainly accumulated sucrose. The response of M. aquaticum was more complex, because it accumulated not only sucrose and myo-inositol whatever the level of salt stress, but also amino acids such as proline and GABA, but only at high NaCl concentrations. These responses are the metabolic responses typically found in terrestrial plants. PMID:25544588

  16. Bile salt metabolism in tropical sprue.

    PubMed

    Bevan, G; Engert, R; Klipstein, F A; Maldonado, N; Rubulis, A; Turner, M D

    1974-04-01

    Mean and peak jejunal bile salt concentrations during digestion of a standard fat meal were found to be significantly lower in six Puerto Rican patients with untreated tropical sprue, all of whom had steatorrhoea, than in six asymptomatic subjects who had normal fat absorption. Bile salt pool size and turnover time did not differ significantly in the two groups.It is suggested that bile salt concentrations may be reduced in the proximal small intestine of patients with tropical sprue as a result of excessive dilution by intestinal fluid. The finding of low bile salt concentrations in two asymptomatic subjects indicates that bile salt lack alone may not be sufficient to produce steatorrhoea.

  17. Community solar salt production in Goa, India.

    PubMed

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  18. Community solar salt production in Goa, India

    PubMed Central

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa’s riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans. Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1–2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested. Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced. The aim of this review is to describe salt farming in Goa’s history, importance of salt production as a community activity, traditional method of salt production and the

  19. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress.

    PubMed

    Zhang, Xia; Wei, Liqin; Wang, Zizhang; Wang, Tai

    2013-03-01

    Saline-alkali soil seriously threatens agriculture productivity; therefore, understanding the mechanism of plant tolerance to alkaline-salt stress has become a major challenge. Halophytic Puccinellia tenuiflora can tolerate salt and alkaline-salt stress, and is thus an ideal plant for studying this tolerance mechanism. In this study, we examined the salt and alkaline-salt stress tolerance of P. tenuiflora, and analyzed gene expression profiles under these stresses. Physiological experiments revealed that P. tenuiflora can grow normally with maximum stress under 600 mmol/L NaCl and 150 mmol/L Na2 CO3 (pH 11.0) for 6 d. We identified 4,982 unigenes closely homologous to rice and barley. Furthermore, 1,105 genes showed differentially expressed profiles under salt and alkaline-salt treatments. Differentially expressed genes were overrepresented in functions of photosynthesis, oxidation reduction, signal transduction, and transcription regulation. Almost all genes downregulated under salt and alkaline-salt stress were related to cell structure, photosynthesis, and protein synthesis. Comparing with salt stress, alkaline-salt stress triggered more differentially expressed genes and significantly upregulated genes related to H(+) transport and citric acid synthesis. These data indicate common and diverse features of salt and alkaline-salt stress tolerance, and give novel insights into the molecular and physiological mechanisms of plant salt and alkaline-salt tolerance.

  20. Beryllium Interactions in Molten Salts

    SciTech Connect

    G. S. Smolik; M. F. Simpson; P. J. Pinhero; M. Hara; Y. Hatano; R. A. Anderl; J. P. Sharpe; T. Terai; S. Tanaka; D. A. Petti; D.-K. Sze

    2006-01-01

    Molten flibe (2LiF·BeF2) is a candidate as a cooling and tritium breeding media for future fusion power plants. Neutron interactions with the salt will produce tritium and release excess free fluorine ions. Beryllium metal has been demonstrated as an effective redox control agent to prevent free fluorine, or HF species, from reacting with structural metal components. The extent and rate of beryllium solubility in a pot design experiments to suppress continuously supplied hydrogen fluoride gas has been measured and modeled[ ]. This paper presents evidence of beryllium loss from specimens, a dependence of the loss upon bi-metal coupling, i.e., galvanic effect, and the partitioning of the beryllium to the salt and container materials. Various posttest investigative methods, viz., scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) were used to explore this behavior.

  1. The taste of table salt.

    PubMed

    Roper, Stephen D

    2015-03-01

    Solutions of table salt (NaCl) elicit several tastes, including of course saltiness but also sweet, sour, and bitter. This brief review touches on some of the mileposts concerning what is known about taste transduction for the Na(+) ion, the main contributor to saltiness. Electrophysiological recordings, initially from single gustatory nerve fibers, and later, integrated impulse activity from gustatory nerves led researchers to predict that Na(+) ions interacted with a surface molecule. Subsequent studies have resolved that this molecule is likely to be an epithelial sodium channel, ENaC. Other Na(+) transduction mechanisms are also present in taste buds but have not yet been identified. The specific type(s) of taste cells responsible for salt taste also remains unknown.

  2. Non-accidental salt poisoning.

    PubMed Central

    Meadow, R

    1993-01-01

    The clinical features of 12 children who incurred non-accidental salt poisoning are reported. The children usually presented to hospital in the first six months of life with unexplained hypernatraemia and associated illness. Most of the children suffered repetitive poisoning before detection. The perpetrator was believed to the mother for 10 children, the father for one, and either parent for one. Four children had serum sodium concentrations above 200 mmol/l. Seven children had incurred other fabricated illness, drug ingestion, physical abuse, or failure to thrive/neglect. Two children died; the other 10 remained healthy in alternative care. Features are described that should lead to earlier detection of salt poisoning; the importance of checking urine sodium excretion, whenever hypernatraemia occurs, is stressed. PMID:8503665

  3. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  4. Great Expectations: Emergent Professional Development Schools.

    ERIC Educational Resources Information Center

    Winitzky, Nancy; And Others

    1992-01-01

    One of five articles on professional development schools in this theme issue. Describes the establishment of a professional development school reflecting Holmes Group principles by the University of Utah/Salt Lake City School District partnership. Discusses several dilemmas, including: didactic versus constructivist views of teaching and learning,…

  5. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  6. Thermoluminescence dosimetric characteristics of beta irradiated salt.

    PubMed

    Murthy, K V R; Pallavi, S P; Rahul, G; Patel, Y S; Sai Prasad, A S; Elangovan, D

    2006-01-01

    The thermoluminescence (TL) characteristics of sodium chloride (NaCl), known as common salt, used for cooking purposes (iodised salt), have been studied in the present paper considering its usage as an 'accidental dosemeter' in the case of a nuclear fallout. TL characteristics of common salt have been examined under excitation with a beta dose of 20 Gy from a 90Sr beta source. The salt specimens are used in the form of discs. The average salt grain that sticks to the disc is measured to be approximately 1 mg. The TL of the beta irradiated salt is recorded in the conventional TL apparatus. Initially three peaks were observed at 133, 205 and 238 degrees C. All three peaks are well resolved, having maximum intensity at 238 degrees C. The material under investigation, i.e. 'common salt' possesses many good dosimetric properties and therefore this can be considered as an 'accidental dosemeter'.

  7. Salt stains from evaporating droplets.

    PubMed

    Shahidzadeh, Noushine; Schut, Marthe F L; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  8. Metals Electroprocessing in Molten Salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1985-01-01

    The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.

  9. Salt stains from evaporating droplets

    PubMed Central

    Shahidzadeh, Noushine; Schut, Marthe F. L.; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  10. Solubility of pllutonium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1993-02-26

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model.

  11. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites

    PubMed Central

    2010-01-01

    Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense). Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax) have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old) showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites preserved in arid climates

  12. Leading Good Schools to Greatness: Mastering What Great Principals Do Well

    ERIC Educational Resources Information Center

    Gray, Susan Penny; Streshly, William A.

    2010-01-01

    Great leaders are made, not born. Written by the authors of "From Good Schools to Great Schools," this sequel shows how great school leaders can be developed and how leaders can acquire the powerful personal leadership characteristics that the best administrators use to lead their schools to greatness. Based on sound strategies and the work of Jim…

  13. Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance1

    PubMed Central

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; García-Ramírez, Liliana; Pantoja, Omar

    2005-01-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H+-ATPases from leaves and roots. TP Na+/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H+-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na+/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H+-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM. PMID:16244148

  14. Deviations from Electroneutrality in Membrane Barrier Layers: A Possible Mechanism Underlying High Salt Rejections.

    PubMed

    Yaroshchuk, Andriy; Zhu, Yan; Bondarenko, Mykola; Bruening, Merlin L

    2016-03-22

    Reverse osmosis and nanofiltration (NF) employ composite membranes whose ultrathin barrier layers are significantly more permeable to water than to salts. Although solution-diffusion models of salt transport through barrier layers typically assume ubiquitous electroneutrality, in the case of ultrathin selective skins and low ion partition coefficients, space-charge regions may occupy a significant fraction of the membrane barrier layer. This work investigates the implications of these deviations from electroneutrality on salt transport. Both immobile external surface charge and unequal cation and anion solvation energies in the barrier layer lead to regions with excess mobile charge, and the size of these regions increases with decreasing values of either feed concentrations or ion partition coefficients. Moreover, the low concentration of the more excluded ion in the space-charge region can greatly increase resistance to salt transport to enhance salt rejection during NF. These effects are especially pronounced for membranes with a fixed external surface charge density whose sign is the same as that of the more excluded ion in a salt. Because of the space-charge regions, the barrier-layer resistance to salt transport initially rises rapidly with increasing barrier thickness and then plateaus or even declines within a certain thickness range. This trend in resistance implies that thin, defect-free barrier layers will exhibit higher salt rejections than thicker layers during NF at a fixed transmembrane pressure. Deviations from electroneutrality are consistent with both changes in NF salt rejections that occur upon changing the sign of the membrane fixed external surface charge, and CaCl2 rejections that in some cases may first decrease, then increase and then decrease again with increasing CaCl2 concentrations in NF feed solutions. PMID:26894470

  15. Fourier Transform Infrared Spectroscopy Demonstrates The Reactivity Of The Protonated Carboxyl Group Of The Acid Salt Of Calcium Bilirubinate.

    NASA Astrophysics Data System (ADS)

    Soloway, R. D.; Wu, J.-G.; Xu, D.-F.; Zhang, Y.-F.; Martini, D. K.; Hong, N.-K.; Crowther, R. S.

    1989-12-01

    Calcium bilirubinate is a major salt in pigment gallstones. Bilirubin IX (H2BR) is a tetrapyrrole with 1 propionic acid side chain on both the B and C rings. A striking feature is the strong intramolecular hydrogen bonding of both carboxyl groups as determined by x-ray diffraction. This greatly reduces aqueous solubility. Much less is known about the structure of the salts of calcium bilirubinate since single crystals have not been formed. One or both carboxyl groups of bilirubin may coordinate with calcium in stone, forming the acid or neutral salt.

  16. Sea spray aerosol in the Great Barrier Reef and the presence of nonvolatile organics

    NASA Astrophysics Data System (ADS)

    Mallet, Marc; Cravigan, Luke; Miljevic, Branka; Vaattovaara, Petri; Deschaseaux, Elisabeth; Swan, Hilton; Jones, Graham; Ristovski, Zoran

    2016-06-01

    Sea spray aerosol (SSA) particles produced from the ocean surface in regions of biological activity can vary greatly in size, number and composition, and in their influence on cloud formation. Algal species such as phytoplankton can alter the SSA composition. Numerous studies have investigated nascent SSA properties, but all of these have focused on aerosol particles produced by seawater from noncoral related phytoplankton and in coastal regions. Bubble chamber experiments were performed with seawater samples taken from the reef flat around Heron Island in the Great Barrier Reef during winter 2011. Here we show that the SSA from these samples was composed of an internal mixture of varying fractions of sea salt, semivolatile organics, as well as nonvolatile (below 550°C) organics. A relatively constant volume fraction of semivolatile organics of 10%-13% was observed, while nonvolatile organic volume fractions varied from 29% to 49% for 60 nm SSA. SSA organic fractions were estimated to reduce the activation ratios of SSA to cloud condensation nuclei by up to 14% when compared with artificial sea salt. Additionally, a sea-salt calibration was applied so that a compact time-of-flight aerosol mass spectrometer could be used to quantify the contribution of sea salt to submicron SSA, which yielded organic volume fractions of 3%-6%. Overall, these results indicate a high fraction of organics associated with wintertime Aitken mode SSA generated from Great Barrier Reef seawater. Further work is required to fully distinguish any differences coral reefs have on SSA composition when compared to open oceans.

  17. Dopamine alleviates salt-induced stress in Malus hupehensis.

    PubMed

    Li, Chao; Sun, Xiangkai; Chang, Cong; Jia, Dongfeng; Wei, Zhiwei; Li, Cuiying; Ma, Fengwang

    2015-04-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, ion homeostasis and the response to salinity in Malus hupehensis Rehd. Both hydroponics and field-pot experiments were conducted under saline conditions. Salt-stressed plants had reduced growth and a marked decline in their net photosynthetic rates, values for Fv /Fm and chlorophyll contents. However, pretreatment with 100 or 200 μM dopamine significantly alleviated this inhibition and enabled plants to maintain their photosynthetic capacity. In addition to changing stomatal behavior, supplementation with dopamine positively influenced the uptake of K, N, P, S, Cu and Mn ions but had an inhibitory effect on Na and Cl uptake, the balance of which is responsible for managing the response to salinity by Malus plants. Dopamine pretreatment also controlled the burst of hydrogen peroxide, possibly through direct scavenging and by enhancing the activities of antioxidative enzymes and the capacity of the ascorbate-glutathione cycle. We also investigated whether dopamine might regulate salt overly sensitive pathway genes under salinity. Here, MdHKT1, MdNHX1 and MdSOS1 were greatly upregulated in roots and leaves, which possibly contributed to the maintenance of ion homeostasis and, thus, improved salinity resistance in plants exposed earlier to exogenous dopamine. These results support our conclusion that dopamine alleviates salt-induced stress not only at the level of antioxidant defense but also by regulating other mechanisms of ion homeostasis.

  18. Salt Bridges: Geometrically Specific, Designable Interactions

    PubMed Central

    Donald, Jason E.; Kulp, Daniel W.; DeGrado, William F.

    2010-01-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, cooperativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction upon formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but at close distances there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. PMID:21287621

  19. Salt bridges: geometrically specific, designable interactions.

    PubMed

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms.

  20. Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley Playa, Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1979-01-01

    The Bonneville Salt Flats and Pilot Valley are in the western part of the Great Salt Lake Desert in northwest Utah. The areas are separate, though similar, hydrologic basins, and both contain a salt crust. The Bonneville salt crust covered about 40 square miles in the fall of 1976, and the salt crust in Pilot Valley covered 7 square miles. Both areas lack any noticeable surface relief (in 1976, 1.3 feet on the Bonneville salt crust and 0.3 foot on the Pilot Valley salt crust). The salt crust on the Salt Flats has been used for many years for automobile racing, and brines from shallow lacustrine deposits have been used for the production of potash. In recent years, there has been an apparent conflict between these two major uses of the area as the salt crust has diminished in both thickness and extent. Much of the Bonneville Racetrack has become rougher, and there has also been an increase in the amount of sediment on the south end of the racetrack. The Pilot Valley salt crust and surrounding playa have been largely unused. Evaporite minerals on the Salt Flats and the Pilot Valley playa are concentrated in three zones: (1) a carbonate zone composed mainly of authigenic clay-size carbonate minerals, (2) a sulfate zone composed mainly of authigenic gypsum, and (3) a chloride zone composed of crystalline halite (the salt crust). Five major types of salt crust were recognized on the Salt Flats, but only one type was observed in Pilot Valley. Geomorphic differences in the salt crust are caused by differences in their hydrologic environments. The salt crusts are dynamic features that are subject to change because of climatic factors and man's activities. Ground water occurs in three distinct aquifers in much of the western Great Salt Lake Desert: (1) the basin-fill aquifer, which yields water from conglomerate in the lower part of the basin fill, (2) the alluvial-fan aquifer, which yields water from sand and gravel along the western margins of both playas, and (3) the

  1. From Good to Great: Discussion Starter Tool

    ERIC Educational Resources Information Center

    Center on Great Teachers and Leaders, 2014

    2014-01-01

    In the report "From Good to Great: Exemplary Teachers Share Perspectives on Increasing Teacher Effectiveness across the Career Continuum," (See full report in ERIC at ED555657) National and State Teachers of the Year shared their views on what helped them become great teachers. This accompanying "Discussion Starter Tool" builds…

  2. Life on the Great Plains. [Lesson Plan].

    ERIC Educational Resources Information Center

    2000

    In this four-part lesson, students examine the concept of geographic region by exploring the history of the United States Great Plains. In Part I, students gather information about the location and environment of the Great Plains in order to produce a map outlining the region in formal terms. In Part II, students examine how the region has been…

  3. Great Lakes Education Booklet, 1990-1991.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    This booklet integrates science, history, and environmental education to help students acquire a basic understanding of the importance of the Great Lakes located in the United States. The packet also contains a Great Lakes Basin resource map and a sand dune poster. These materials introduce students to a brief history of the lakes, the diversity…

  4. EPA Research Strengthens Great Lakes Restoration Initiative

    EPA Science Inventory

    As the largest group of freshwater lakes on Earth, the Great Lakes (Lakes Erie, Huron, Michigan, Ontario and Superior) are a source of economic prosperity, recreation and raw materials. Human activity, however, has resulted in pollution and other stressors. The Great Lakes curren...

  5. Habitat Suitability Index Models: Great blue heron

    USGS Publications Warehouse

    Short, Henry L.; Cooper, Robert J.

    1985-01-01

    The great blue heron is the largest, most widely distributed, and best known of the American herons (Henny 1972). Great blue herons occur in a variety of habitats from freshwater lakes and rivers to brackish marshes, lagoons, mangrove areas, and coastal wetlands (Spendelow and Patton in prep.).

  6. Notes from the Great American Desert

    ERIC Educational Resources Information Center

    Grady, Marilyn L.; LaCost, Barbara Y.

    2005-01-01

    In the good old days, the state that is Nebraska was identified as part of the Great American Desert. In many ways, in climate and terrain, it still bears a resemblance to a desert. As a frontier or a land of pioneers, it deserves recognition. Invisibility may be one of the greatest challenges women face. One of the great flaws in the writing of…

  7. Great Expectations for Middle School Counselors

    ERIC Educational Resources Information Center

    Wright, Robert J.

    2012-01-01

    During the Great Recession, 2008 to 2010, school systems scrambled to balance budgets, and the ratio of counselors to students became even larger. To make matters worse, the Great Recession had a major impact on cuts in educational funding. Budget cutbacks tend to occur where the public will be least likely to notice. The loss of teachers and the…

  8. 25 Great Ideas for Hispanic Heritage

    ERIC Educational Resources Information Center

    Instructor, 2007

    2007-01-01

    Hispanic Heritage Month, celebrated September 15th through October 15th, is a great opportunity to kick off a whole year of cultural discovery. This article presents 25 great ideas for Hispanic heritage. These 25 fresh ideas--from Aztec math to Carnaval masks--are easy to put together, and they offer students the chance to celebrate their own…

  9. Great Books. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2011

    2011-01-01

    "Great Books" is a program that aims to improve the reading, writing, and critical thinking skills of students in kindergarten through high school. The program is implemented as a core or complementary curriculum and is based on the Shared Inquiry[TM] method of learning. The purpose of "Great Books" is to engage students in higher-order thinking…

  10. Scientific review of great basin wildfire issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The University Nevada Reno, College of Agriculture and Resource Concepts Inc., co-sponsored a Great Basin Wildfire Forum in September 2007 to address a “Scientific Review of the Ecological and Management History of Great Basin Natural Resources and Recommendations to Achieve Ecosystem Restoration”. ...

  11. Scientific Review of Great Basin Wildfire Issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The University Nevada Reno, College of Agriculture and Resource Concepts Inc., co-sponsored a Great Basin Wildfire Forum in September 2007 to address a “Scientific Review of the Ecological and Management History of Great Basin Natural Resources and Recommendations to Achieve Ecosystem Restoration”. ...

  12. Revisiting the Great Lessons. Spotlight: Cosmic Education.

    ERIC Educational Resources Information Center

    Chattin-McNichols, John

    2002-01-01

    Considers the role of the Great Lessons--formation of the universe, evolution of life, evolution of humans, and discovery of language and mathematics--in the Montessori elementary curriculum. Discusses how the Great Lessons guide and organize the curriculum, as well as the timing of the lessons across the 6-12 age span. (JPB)

  13. Salt splitting using ceramic membranes

    SciTech Connect

    Kurath, D.E.

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  14. Salt Lake City, Utah, Winter 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal

  15. Molten fluoride fuel salt chemistry

    NASA Astrophysics Data System (ADS)

    Toth, L. M.; Del Cul, G. D.; Dai, S.; Metcalf, D. H.

    1995-09-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  16. Molten fluoride fuel salt chemistry

    SciTech Connect

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  17. Short-term effects of diet on salt taste preference.

    PubMed

    Ayya, N; Beauchamp, G K

    1992-02-01

    The purpose of this experiment was to determine whether optimal salt levels in soup were influenced by consumption of a meal either high or low in salt. Following a lunch high in salt, optimal salt levels were reduced; no change in optimal levels followed a lunch low in salt. No changes in optimal sweet preference were observed for either condition. It is suggested that changes in optimal salt levels are due to factors associated with exposure to salt during the meal. PMID:1562204

  18. Salt fluoridation in Germany since 1991.

    PubMed

    Schulte, Andreas G

    2005-01-01

    Since 1991, fluoridated salt has been on sale in household-size packages in Germany. Potassium or sodium fluoride is added to iodized salt until the fluoride concentration reaches 250 mg/kg. The use of fluoridated salt to prevent caries is officially recommended by the Deutsche Gesellschaft für Zahn-, Mund- und Kieferheilkunde (DGZMK) and several other associations and groups interested in public health. In the course of the past thirteen years, the market share of fluoridated and iodized domestic salt rose to 63.1% in Germany. However, this positive development must not obscure the fact that fluoridated and iodized salt is still not allowed to be used in restaurant or cafeteria kitchens. This restriction now needs to be revoked in view of the fact that many children, adolescents and adults take their main meals in cafeterias or restaurants. Scientific studies have demonstrated beyond doubt that using fluoridated and iodized salt in cafeteria kitchens poses no problem whatever.

  19. Alkali Metal Salts with Designable Aryltrifluoroborate Anions.

    PubMed

    Iwasaki, Kazuki; Yoshii, Kazuki; Tsuzuki, Seiji; Matsumoto, Hajime; Tsuda, Tetsuya; Kuwabata, Susumu

    2016-09-01

    Aryltrifluoroborate ([ArBF3](-)) has a designable basic anion structure. Various [ArBF3](-)-based anions were synthesized to create novel alkali metal salts using a simple and safe process. Nearly 40 novel alkali metal salts were successfully obtained, and their physicochemical characteristics, particularly their thermal properties, were elucidated. These salts have lower melting points than those of simple inorganic alkali halide salts, such as KCl and LiCl, because of the weaker interactions between the alkali metal cations and the [ArBF3](-) anions and the anions' larger entropy. Moreover, interestingly, potassium cations were electrochemically reduced in the potassium (meta-ethoxyphenyl)trifluoroborate (K[m-OEtC6H4BF3]) molten salt at 433 K. These findings contribute substantially to furthering molten salt chemistry, ionic liquid chemistry, and electrochemistry. PMID:27510799

  20. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    PubMed Central

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  1. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    PubMed Central

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  2. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology.

    PubMed

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  3. Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach

    PubMed Central

    Mukhopadhyay, Aindrila; He, Zhili; Alm, Eric J.; Arkin, Adam P.; Baidoo, Edward E.; Borglin, Sharon C.; Chen, Wenqiong; Hazen, Terry C.; He, Qiang; Holman, Hoi-Ying; Huang, Katherine; Huang, Rick; Joyner, Dominique C.; Katz, Natalie; Keller, Martin; Oeller, Paul; Redding, Alyssa; Sun, Jun; Wall, Judy; Wei, Jing; Yang, Zamin; Yen, Huei-Che; Zhou, Jizhong; Keasling, Jay D.

    2006-01-01

    The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms. PMID:16707698

  4. Salt Stress in Desulfovibrio vulgaris Hildenborough: An integratedgenomics approach

    SciTech Connect

    Mukhopadhyay, Aindrila; He, Zhili; Alm, Eric J.; Arkin, Adam P.; Baidoo, Edward E.; Borglin, Sharon C.; Chen, Wenqiong; Hazen, Terry C.; He, Qiang; Holman, Hoi-Ying; Huang, Katherine; Huang, Rick; Hoyner,Dominique C.; Katz, Natalie; Keller, Martin; Oeller, Paul; Redding,Alyssa; Sun, Jun; Wall, Judy; Wei, Jing; Yang, Zamin; Yen, Huei-Che; Zhou, Jizhong; Keasling Jay D.

    2005-12-08

    The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.

  5. Florida's salt-marsh management issues: 1991-98.

    PubMed

    Carlson, D B; O'Bryan, P D; Rey, J R

    1999-06-01

    During the 1990s, Florida has continued to make important strides in managing salt marshes for both mosquito control and natural resource enhancement. The political mechanism for this progress continues to be interagency cooperation through the Florida Coordinating Council on Mosquito Control and its Subcommittee on Managed Marshes (SOMM). Continuing management experience and research has helped refine the most environmentally acceptable source reduction methods, which typically are Rotational Impoundment Management or Open Marsh Water Management. The development of regional marsh management plans for salt marshes within the Indian River Lagoon by the SOMM has helped direct the implementation of the best management practices for these marshes. Controversy occasionally occurs concerning what management technique is most appropriate for individual marshes. The most common disagreement is over the benefits of maintaining an impoundment in an "open" vs. "closed" condition, with the "closed" condition, allowing for summer mosquito control flooding or winter waterfowl management. New federal initiatives influencing salt-marsh management have included the Indian River Lagoon-National Estuary Program and the Pesticide Environmental Stewardship Program. A new Florida initiative is the Florida Department of Environmental Protection's Eco-system Management Program with continuing involvement by the Surface Water Improvement and Management program. A developing mitigation banking program has the potential to benefit marsh management but mosquito control interests may suffer if not handled properly. Larvicides remain as an important salt-marsh integrated pest management tool with the greatest acreage being treated with temephos, followed by Bacillus thuringiensis israelensis and methoprene. However, over the past 14 years, use of biorational larvicides has increased greatly.

  6. Li(+) solvation in glyme-Li salt solvate ionic liquids.

    PubMed

    Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji; Saito, Soshi; Doi, Hiroyuki; Yoshida, Kazuki; Mandai, Toshihiko; Matsugami, Masaru; Umebayashi, Yasuhiro; Dokko, Kaoru; Watanabe, Masayoshi

    2015-03-28

    Certain molten complexes of Li salts and solvents can be regarded as ionic liquids. In this study, the local structure of Li(+) ions in equimolar mixtures ([Li(glyme)]X) of glymes (G3: triglyme and G4: tetraglyme) and Li salts (LiX: lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]), lithium bis(pentafluoroethanesulfonyl)amide (Li[BETI]), lithium trifluoromethanesulfonate (Li[OTf]), LiBF4, LiClO4, LiNO3, and lithium trifluoroacetate (Li[TFA])) was investigated to discriminate between solvate ionic liquids and concentrated solutions. Raman spectra and ab initio molecular orbital calculations have shown that the glyme molecules adopt a crown-ether like conformation to form a monomeric [Li(glyme)](+) in the molten state. Further, Raman spectroscopic analysis allowed us to estimate the fraction of the free glyme in [Li(glyme)]X. The amount of free glyme was estimated to be a few percent in [Li(glyme)]X with perfluorosulfonylamide type anions, and thereby could be regarded as solvate ionic liquids. Other equimolar mixtures of [Li(glyme)]X were found to contain a considerable amount of free glyme, and they were categorized as traditional concentrated solutions. The activity of Li(+) in the glyme-Li salt mixtures was also evaluated by measuring the electrode potential of Li/Li(+) as a function of concentration, by using concentration cells against a reference electrode. At a higher concentration of Li salt, the amount of free glyme diminishes and affects the electrode reaction, leading to a drastic increase in the electrode potential. Unlike conventional electrolytes (dilute and concentrated solutions), the significantly high electrode potential found in the solvate ILs indicates that the solvation of Li(+) by the glyme forms stable and discrete solvate ions ([Li(glyme)](+)) in the molten state. This anomalous Li(+) solvation may have a great impact on the electrode reactions in Li batteries. PMID:25733406

  7. [Strengthening Effects of Sodium Salts on Washing Kerosene Contaminated Soil with Surfactants].

    PubMed

    Huang, Zhao-lu; Chen, Quan-yuan; Zhou, Juan; Xie, Mo-han

    2015-05-01

    The impact of sodium salt on kerosene contaminated soil washing with surfactants was investigated. The results indicated that sodium silicate greatly enhanced the washing efficiency of SDS. Sodium tartrate can largely enhance the washing efficiency of SDBS and Brij35. Sodium salts can enhance the washing efficiency on kerosene contaminated with TX-100. No significant differences were observed between different sodium salts. Sodium salt of humic acid and sodium silicate had similar enhancement on kerosene contaminated soil washing with saponin. Sodium humate can be a better choice since its application can also improve soil quality. The enhancement of sodium silicate on kerosene contaminated soil washing with Tw-80 increased with the increase of Tw-80 dosage. However, the impact of sodium chloride and sodium tartrate was opposite to sodium silicate. Sodium salts can reduce surface tension and critical micelle concentration of ionic surfactants to enhance the washing. Sodium salts can also reduce re-adsorption of oil to soil with nonionic surfactants to enhance the washing. Kerosene contamination can increase the contact angle of soil, which indicated the increase of hydrophilicity of soil. Washing with surfactants can reduce the hydrophilicitiy of soil according to contact angle measurement, which indicated that kerosene contaminated soil remediation with surfactant can also benefit nutrient and water transportation in the contaminated soil.

  8. Extremely halophilic archaea from ancient salt sediments and their long term survival.

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, Helga; Fendrihan, Sergiu; Dornmayr-Pfaffenhuemer, Marion

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, marine solar salterns and alkaline salt lakes; they have also been isolated from rock salt of great geological age (195-250 million years) and some of those strains were described as novel species (1). The cells survived perhaps while being enclosed within small fluid inclusions in the halite. When simulating the embedding process of haloarchaea in laboratory-grown salt crystals, cells accumulated preferentially in fluid inclusions, as could be demonstrated by pre-staining with fluorescent dyes. The issue of extreme long term microbial survival in rock salt has considerable implications for the search for extraterrestrial life. Halite has been found in Martian meteorites, salts are present on the Martian surface and there is good evidence for a salty ocean on the Jovian moon Europa. Therefore the search for halophilic prokaryotic life in such environments appears plausible. The development of detection methods for subsurface haloarchaea, which might also be applicable to samples from future missions to space, is important and some examples such as fluorescence microscopy methods with novel dyes will be described. (1) Fendrihan, S., Legat, A., Gruber, C., Pfaffenhuemer, M., Weidler, G., Gerbl, F., Stan- Lotter, H. (2006) Extremely halophilic archaea and the issue of long term microbial survival. Reviews in Environmental Science and Bio/technology 5, 1569-1605.

  9. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.

    PubMed

    Jacobson, Kyle S; Drew, David M; He, Zhen

    2011-01-01

    Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC--upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDSL(-1)d(-1) (salt solution volume) or 5.25 g TDSL(-1)d(-1) (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4d. The UMDC produced a maximum power density of 30.8 W/m(3). The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes.

  10. Interior cavern conditions and salt fall potential

    SciTech Connect

    Munson, D.E.; Molecke, M.A.; Myers, R.E.

    1998-03-01

    A relatively large number of salt caverns are used for fluid hydrocarbon storage, including an extensive set of facilities in the Gulf Coast salt domes for the Strategic Petroleum Reserve (SPR) Program. Attention is focused on the SPR caverns because of available histories that detail events involving loss and damage of the hanging string casing. The total number of events is limited, making the database statistically sparse. The occurrence of the events is not evenly distributed, with some facilities, and some caverns, more susceptible than others. While not all of these events could be attributed to impacts from salt falls, many did show the evidence of such impacts. As a result, a study has been completed to analyze the potential for salt falls in the SPR storage caverns. In this process, it was also possible to deduce some of the cavern interior conditions. Storage caverns are very large systems in which many factors could possibly play a part in casing damage. In this study, all of the potentially important factors such as salt dome geology, operational details, and material characteristics were considered, with all being logically evaluated and most being determined as secondary in nature. As a result of the study, it appears that a principal factor in determining a propensity for casing damage from salt falls is the creep and fracture characteristics of salt in individual caverns. In addition the fracture depends strongly upon the concentration of impurity particles in the salt. Although direct observation of cavern conditions is not possible, the average impurity concentration and the accumulation of salt fall material can be determined. When this is done, there is a reasonable correlation between the propensity for a cavern to show casing damage events and accumulation of salt fall material. The accumulation volumes of salt fall material can be extremely large, indicating that only a few of the salt falls are large enough to cause impact damage.

  11. Louisiana slope salt-ridge continuity confirmed

    SciTech Connect

    Lowrie, A.; Hoffman, K.S.; Sullivan, N.

    1989-03-01

    The Louisiana offshore is a world-class hydrocarbon province. Abundant reservoirs develop as the result of interaction between salt tectonics and sedimentation. Thus, it is essential to know both regional and local characteristics of the extent and timing of salt tectonics as an aid in hydrocarbon exploration. Exploration mythology mandates that salt domes and ridges are virtually random across the slope area. In sharp contrast, the authors describe a definite pattern to the salt ridges of slightly concave (to the north) arcs, with the southernmost arc located along the Sigsbee Escarpment and the northernmost along the shelf break. Furthermore, salt domes may not be truly randomly located but rather part of ancestral or existent salt ridges. Confirming data are provided by dip bathymatric and seismic profiles. The bathymetric profiles are at 5-mi (8-km) spacings from 1987 published charts of the Gulf of Mexico. Dip seismic lines reveal that bathymetric highs are associated with underlying salt. Buried salt accumulations are surficially expressed by actual ridges and domes, a leveling of sea floor, or a local decrease in the rate of regional slope descent. Salt is the Neogene-age basement of the Louisiana slope. The existence of an overall salt-ridge pattern implies that there is a single dynamic geologic system controlling the evolution of this slope. As salt tectonic rates and timing are deciphered for specific sites along dip, intervening rates may be interpolated to unmapped zones. Confirming an overall salt tectonic pattern is mandatory prior to quantifying regional and specific rates for the whole slope.

  12. Molten Salt Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Maru, H. C.; Dullea, J. F.; Kardas, A.; Paul, L.; Marianowski, L. G.; Ong, E.; Sampath, V.; Huang, V. M.; Wolak, J. C.

    1978-01-01

    The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored.

  13. Graphene Oxide Nanofiltration Membranes Stabilized by Cationic Porphyrin for High Salt Rejection.

    PubMed

    Xu, Xiao-Ling; Lin, Fu-Wen; Du, Yong; Zhang, Xi; Wu, Jian; Xu, Zhi-Kang

    2016-05-25

    Swelling has great influences on the structure stability and separation performance of graphene oxide laminate membranes (GOLMs) for water desalination and purification. Herein, we report cross-linked GOLMs from GO assembled with cationic tetrakis(1-methyl-pyridinium-4-yl)porphyrin (TMPyP) by a vacuum-assisted strategy. The concave nonoxide regions (G regions) of GO are used as cross-linking sites for the first time to precisely control the channel size for water permeation and salt ion retention. Channels around 1 nm are constructed by modulating the assembly ratio of TMPyP/GO, and these cross-linked GOLMs show high salt rejection.

  14. Graphene Oxide Nanofiltration Membranes Stabilized by Cationic Porphyrin for High Salt Rejection.

    PubMed

    Xu, Xiao-Ling; Lin, Fu-Wen; Du, Yong; Zhang, Xi; Wu, Jian; Xu, Zhi-Kang

    2016-05-25

    Swelling has great influences on the structure stability and separation performance of graphene oxide laminate membranes (GOLMs) for water desalination and purification. Herein, we report cross-linked GOLMs from GO assembled with cationic tetrakis(1-methyl-pyridinium-4-yl)porphyrin (TMPyP) by a vacuum-assisted strategy. The concave nonoxide regions (G regions) of GO are used as cross-linking sites for the first time to precisely control the channel size for water permeation and salt ion retention. Channels around 1 nm are constructed by modulating the assembly ratio of TMPyP/GO, and these cross-linked GOLMs show high salt rejection. PMID:27158976

  15. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange

    PubMed Central

    Silva, Paulo

    2009-01-01

    Over the last decades several efforts have been carried out to determine the mechanisms of salt homeostasis in plants and, more recently, to identify genes implicated in salt tolerance, with some plants being successfully genetically engineered to improve resistance to salt. It is well established that the efficient exclusion of Na+ excess from the cytoplasm and vacuolar Na+ accumulation are the most important steps towards the maintenance of ion homeostasis inside the cell. Therefore, the vacuole of plant cells plays a pivotal role in the storage of salt. After the identification of the vacuolar Na+/H+ antiporter Nhx1 in Saccharomyces cerevisiae, the first plant Na+/H+ antiporter, AtNHX1, was isolated from Arabidopsis and its overexpression resulted in plants exhibiting increased salt tolerance. Also, the identification of the plasma membrane Na+/H+ exchanger SOS1 and how it is regulated by a protein kinase SOS2 and a calcium binding protein SOS3 were great achievements in the understanding of plant salt resistance. Both tonoplast and plasma membrane antiporters exclude Na+ from the cytosol driven by the proton-motive force generated by the plasma membrane H+-ATPase and by the vacuolar membrane H+-ATPase and H+-pyrophosphatase and it has been shown that the activity of these proteins responds to salinity. In this review we focus on the transcriptional and post-transcriptional regulation by salt of tonoplast proton pumps and Na+/H+ exchangers and on the signalling pathways involved in salt sensing. PMID:19820346

  16. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  17. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  18. Properties of dynamically compacted WIPP salt

    SciTech Connect

    Brodsky, N.S.; Hansen, F.D.; Pfeifle, T.W.

    1996-07-01

    Dynamic compaction of mine-run salt is being investigated for the Waste Isolation Pilot Plant (WIPP), where compacted salt is being considered for repository sealing applications. One large-scale and two intermediate-scale dynamic compaction demonstrations were conducted. Initial fractional densities of the compacted salt range form 0.85 to 0.90, and permeabilities vary. Dynamically-compacted specimens were further consolidated in the laboratory by application of hydrostatic pressure. Permeability as a function of density was determined, and consolidation microprocesses were studied. Experimental results, in conjunction with modeling results, indicate that the compacted salt will function as a viable seal material.

  19. Strategies for salt reduction in foods.

    PubMed

    Toldrá, Fidel; Barat, José M

    2012-04-01

    The amounts of sodium chloride in the formulation of a variety of foods like bakery, meats and dairy foods, ready meals, sauces and snacks, are relatively large and thus, have a strong contribution on the salt dietary intake. There is a clear demand by the consumers and medical associations to reduce the salt content in foods. Different strategies have been proposed and most of them consist of the replacement of sodium chloride by other salts and the addition of other substances for an acceptable sensory quality. The recent patents for salt reduction and their applications in foods are reviewed in this manuscript.

  20. Helping crops stand up to salt

    SciTech Connect

    Raeburn, P.

    1985-05-01

    A new approach to the problem of increasing soil salinity is to raise salt-tolerant plants. The search for such plants involves finding new applications for naturally occurring salt-resistant plants (halophytes), using conventional breeding techniques to identify and strengthen crop varieties known to have better-than-average salt tolerance, and applying recombinant DNA methods to introduce salt resistance into existing plants. One promising plant is salicornia, which produces oil high in polyunsaturates at a greater yield than soybeans. Two varieties of atriplex yield as much animal feed as alfalfa and can be harvested several times a year. Seed companies are supporting the research.