Science.gov

Sample records for biocompatible gecko-inspired tissue

  1. A biodegradable and biocompatible gecko-inspired tissue adhesive.

    PubMed

    Mahdavi, Alborz; Ferreira, Lino; Sundback, Cathryn; Nichol, Jason W; Chan, Edwin P; Carter, David J D; Bettinger, Chris J; Patanavanich, Siamrut; Chignozha, Loice; Ben-Joseph, Eli; Galakatos, Alex; Pryor, Howard; Pomerantseva, Irina; Masiakos, Peter T; Faquin, William; Zumbuehl, Andreas; Hong, Seungpyo; Borenstein, Jeffrey; Vacanti, Joseph; Langer, Robert; Karp, Jeffrey M

    2008-02-19

    There is a significant medical need for tough biodegradable polymer adhesives that can adapt to or recover from various mechanical deformations while remaining strongly attached to the underlying tissue. We approached this problem by using a polymer poly(glycerol-co-sebacate acrylate) and modifying the surface to mimic the nanotopography of gecko feet, which allows attachment to vertical surfaces. Translation of existing gecko-inspired adhesives for medical applications is complex, as multiple parameters must be optimized, including: biocompatibility, biodegradation, strong adhesive tissue bonding, as well as compliance and conformability to tissue surfaces. Ideally these adhesives would also have the ability to deliver drugs or growth factors to promote healing. As a first demonstration, we have created a gecko-inspired tissue adhesive from a biocompatible and biodegradable elastomer combined with a thin tissue-reactive biocompatible surface coating. Tissue adhesion was optimized by varying dimensions of the nanoscale pillars, including the ratio of tip diameter to pitch and the ratio of tip diameter to base diameter. Coating these nanomolded pillars of biodegradable elastomers with a thin layer of oxidized dextran significantly increased the interfacial adhesion strength on porcine intestine tissue in vitro and in the rat abdominal subfascial in vivo environment. This gecko-inspired medical adhesive may have potential applications for sealing wounds and for replacement or augmentation of sutures or staples.

  2. Strong, reversible underwater adhesion via gecko-inspired hydrophobic fibers.

    PubMed

    Soltannia, Babak; Sameoto, Dan

    2014-12-24

    Strong, reversible underwater adhesion using gecko-inspired surfaces is achievable through the use of a hydrophobic structural material and does not require surface modification or suction cup effects for this adhesion to be effective. Increased surface energy can aid in dry adhesion in an air environment but strongly degrades wet adhesion via reduction of interfacial energy underwater. A direct comparison of structurally identical but chemically different mushroom shaped fibers shows that strong, reversible adhesion, even in a fully wetted, stable state, is feasible underwater if the structural material of the fibers is hydrophobic and the mating surface is not strongly hydrophilic. The exact adhesion strength will be a function of the underwater interfacial energy between surfaces and the specific failure modes of individual fibers. This underwater adhesion has been calculated to be potentially greater than the dry adhesion for specific combinations of hydrophobic surfaces.

  3. Gecko inspired carbon nanotube based thermal gap pads

    NASA Astrophysics Data System (ADS)

    Sethi, Sunny; Dhinojwala, Ali

    2012-02-01

    Thermal management has become a critical factor in designing the next generation of microprocessors. The bottleneck in design of material for efficient heat transfer from electronic units to heat sinks is to enhance heat flow across interface between two dissimilar, rough surfaces. Carbon nanotubes (CNT) have been shown to be promising candidates for thermal transport. However, the heat transport across the interface continues to be a challenging hurdle. In the current work we designed free standing thermal pads based on gecko-inspired carbon nanotube adhesives. The pads were made of metallic carbon nanotubes and the structure was designed such that it would allow large area of intimate contact. We showed that these adhesive pads can be used as electrical and thermal interconnects.

  4. Gecko-Inspired, Controlled Adhesion and Its Applications

    NASA Astrophysics Data System (ADS)

    Menguc, Yigit

    This thesis work is primarily concerned with taking inspiration from the principles of gecko-adhesion in order to control the attachment of synthetic structured adhesives. We present gecko-inspired angled elastomer micropillars with flat or round tip endings as compliant pick-and-place micromanipulators. The pillars are 35 mum in diameter, 90 mum tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick-to-release adhesive forces was measured as 39 to 1. We find that a flat tip shape and shear displacement control provide a higher pick-to-release adhesion ratio than a round tip and vertical displacement control, respectively. We present a model of forces to serve as a framework for the operation of this micromanipulator. Finally, demonstrations of pick-and-place manipulation of mum-scale silicon microplatelets and a cm-scale glass cover slip serve as proofs of concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments. We present a study of the self-cleaning and contamination resistance phenomena of synthetic gecko-inspired adhesives made from elastomeric polyurethane. The phenomenon of self-cleaning makes the adhesive foot of the gecko robust against dirt, and makes it effectively sticky throughout the lifetime of the material (within the molting cycles

  5. Gecko-Inspired, Controlled Adhesion and Its Applications

    NASA Astrophysics Data System (ADS)

    Menguc, Yigit

    This thesis work is primarily concerned with taking inspiration from the principles of gecko-adhesion in order to control the attachment of synthetic structured adhesives. We present gecko-inspired angled elastomer micropillars with flat or round tip endings as compliant pick-and-place micromanipulators. The pillars are 35 mum in diameter, 90 mum tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick-to-release adhesive forces was measured as 39 to 1. We find that a flat tip shape and shear displacement control provide a higher pick-to-release adhesion ratio than a round tip and vertical displacement control, respectively. We present a model of forces to serve as a framework for the operation of this micromanipulator. Finally, demonstrations of pick-and-place manipulation of mum-scale silicon microplatelets and a cm-scale glass cover slip serve as proofs of concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments. We present a study of the self-cleaning and contamination resistance phenomena of synthetic gecko-inspired adhesives made from elastomeric polyurethane. The phenomenon of self-cleaning makes the adhesive foot of the gecko robust against dirt, and makes it effectively sticky throughout the lifetime of the material (within the molting cycles

  6. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    PubMed

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

  7. Gecko-inspired bidirectional double-sided adhesives.

    PubMed

    Wang, Zhengzhi; Gu, Ping; Wu, Xiaoping

    2014-05-14

    A new concept of gecko-inspired double-sided adhesives (DSAs) is presented. The DSAs, constructed by dual-angled (i.e. angled base and angled tip) micro-pillars on both sides of the backplane substrate, are fabricated by combinations of angled etching, mould replication, tip modification, and curing bonding. Two types of DSA, symmetric and antisymmetric (i.e. pillars are patterned symmetrically or antisymmetrically relative to the backplane), are fabricated and studied in comparison with the single-sided adhesive (SSA) counterparts through both non-conformal and conformal tests. Results indicate that the DSAs show controllable and bidirectional adhesion. Combination of the two pillar-layers can either amplify (for the antisymmetric DSA, providing a remarkable and durable adhesion capacity of 25.8 ± 2.8 N cm⁻² and a high anisotropy ratio of ∼8) or counteract (for the symmetric DSA, generating almost isotropic adhesion) the adhesion capacity and anisotropic level of one SSA (capacity of 16.2 ± 1.7 N cm⁻² and anisotropy ratio of ∼6). We demonstrate that these two DSAs can be utilized as a facile fastener for two individual objects and a small-scale delivery setup, respectively, complementing the functionality of the commonly studied SSA. As such, the double-sided patterning is believed to be a new branch in the further development of biomimetic dry adhesives.

  8. A gecko-inspired double-sided adhesive.

    PubMed

    Wang, Zhengzhi; Gu, Ping; Wu, Xiaoping

    2013-12-21

    Geckos' outstanding abilities to adhere to various surfaces are widely credited to the large actual contact areas of the fibrillar and hierarchical structures on their feet. These special features regulate the essential structural compliance for every attachment and thus provide robust yet reversible adhesions. Inspired by gecko's feet and our commonly used double-faced tape, we have successfully fabricated a gecko-inspired double-sided dry adhesive by using porous anodic alumina template assisted nano-wetting on a stiff polymer. It was determined that the obtained 2-sided structure showed largely decreased effective stiffness compared with its 1-sided counterpart, which favored better compliance and interfacial integrity. We also demonstrated that the repeatable double-sided adhesive improved the macroscopic normal and shear adhesion capacities over the widely-studied 1-side structure by ~50% and ~85%, respectively. By using the synthetic double-sided adhesive, the usage of traditional pressure-sensitive/chemical adhesives could be well avoided. Besides, the double-sided nanostructures showed great potential in finding new interesting properties and practical applications for the synthetic dry adhesives.

  9. Human climbing with efficiently scaled gecko-inspired dry adhesives

    PubMed Central

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A−1/4. We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A−1/50. Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm2 of adhesive per hand. PMID:25411404

  10. Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae.

    PubMed

    Ho, Audrey Yoke Yee; Yeo, Lip Pin; Lam, Yee Cheong; Rodríguez, Isabel

    2011-03-22

    A gecko's superb ability to adhere to surfaces is widely credited to the large attachment area of the hierarchical and fibrillar structure on its feet. The combination of these two features provides the necessary compliance for the gecko toe-pad to effectively engage a high percentage of the spatulae at each step to any kind of surface topography. With the use of multi-tiered porous anodic alumina template and capillary force assisted nanoimprinting, we have successfully fabricated a gecko-inspired hierarchical topography of branched nanopillars on a stiff polymer. We also demonstrated that the hierarchical topography improved the shear adhesion force over a topography of linear structures by 150%. A systematic analysis to understand the phenomenon was performed. It was determined that the effective stiffness of the hierarchical branched structure was lower than that of the linear structure. The reduction in effective stiffness favored a more efficient bending of the branched topography and a better compliance to a test surface, hence resulting in a higher area of residual deformation. As the area of residual deformation increased, the shear adhesion force emulated. The branched pillar topography also showed a marked increase in hydrophobicity, which is an essential property in the practical applications of these structures for good self-cleaning in dry adhesion conditions.

  11. A microfabricated gecko-inspired controllable and reusable dry adhesive

    NASA Astrophysics Data System (ADS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  12. Fabrication and Characterization of Gecko-inspired Fibrillar Adhesive

    NASA Astrophysics Data System (ADS)

    Kim, Yongkwan

    Over the last decade, geckos' remarkable ability to stick to and climb surfaces found in nature has motivated a wide range of scientific interest in engineering gecko-mimetic surface for various adhesive and high friction applications. The high adhesion and friction of its pads have been attributed to a complex array of hairy structures, which maximize surface area for van der Waals interaction between the toes and the counter-surface. While advances in micro- and nanolithography technique have allowed fabrication of increasingly sophisticated gecko mimetic surfaces, it remains a challenge to produce an adhesive as robust as that of the natural gecko pads. In order to rationally design gecko adhesives, understanding the contact behavior of fibrillar interface is critical. The first chapter of the dissertation introduces gecko adhesion and its potential applications, followed by a brief survey of gecko-inspired adhesives. Challenges that limit the performance of the current adhesives are presented. In particular, it is pointed out that almost all testing of gecko adhesives have been on clean, smooth glass, which is ideal for adhesion due to high surface energy and low roughness. Surfaces in application are more difficult to stick to, so the understanding of failure modes in low energy and rough surfaces is important. The second chapter presents a fabrication method for thermoplastic gecko adhesive to be used for a detailed study of fibrillar interfaces. Low-density polyethylene nanofibers are replicated from a silicon nanowire array fabricated by colloidal lithography and metal-catalyzed chemical etching. This process yields a highly ordered array of nanofibers over a large area with control over fiber diameter, length, and number density. The high yield and consistency of the process make it ideal for a systematic study on factors that affect adhesion and friction of gecko adhesives. The following three chapters examine parameters that affect macroscale friction of

  13. Adhesive behaviour of gecko-inspired nanofibrillar arrays: combination of experiments and finite element modelling

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-zhi; Xu, Yun; Gu, Ping

    2012-04-01

    A polypropylene nanofibrillar array was successfully fabricated by template-assisted nanofabrication strategy. Adhesion properties of this gecko-inspired structure were studied through two parallel and independent approaches: experiments and finite element simulations. Experimental results show relatively good normal adhesion, but accompanied by high preloads. The interfacial adhesion was modelled by effective spring elements with piecewise-linear constitution. The effective elasticity of the fibre-array system was originally calculated from our measured elasticity of single nanowire. Comparisons of the experimental and simulative results reveal quantitative agreement except for some explainable deviations, which suggests the potential applicability of the present models and applied theories.

  14. Staying sticky: contact self-cleaning of gecko-inspired adhesives.

    PubMed

    Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-05-01

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.

  15. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    PubMed

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  16. Shear adhesion strength of thermoplastic gecko-inspired synthetic adhesive exceeds material limits.

    PubMed

    Gillies, Andrew G; Fearing, Ronald S

    2011-09-20

    Natural gecko array wearless dynamic friction has recently been reported for 30,000 cycles on a smooth substrate. Following these findings, stiff polymer gecko-inspired synthetic adhesives have been proposed for high-cycle applications such as robot feet. Here we examine the behavior of high-density polyethylene (HDPE) and polypropylene (PP) microfiber arrays during repeated cycles of engagement on a glass surface, with a normal preload of less than 40 kPa. We find that fiber arrays maintained 54% of the original shear stress of 300 kPa after 10,000 cycles, despite showing a marked plastic deformation of fiber tips. This deformation could be due to shear-induced plastic creep of the fiber tips from high adhesion forces, adhesive wear, or thermal effects. We hypothesize that a fundamental material limit has been reached for these fiber arrays and that future gecko synthetic adhesive designs must take into account the high adhesive forces generated to avoid damage. Although the synthetic material and natural gecko arrays have a similar elastic modulus, the synthetic material does not show the same wear-free dynamic friction as the gecko.

  17. Importance of loading and unloading procedures for gecko-inspired controllable adhesives.

    PubMed

    Tamelier, John; Chary, Sathya; Turner, Kimberly L

    2013-08-27

    The importance of loading and unloading procedures has been shown in a variety of different methods for biological dry adhesives, such as the fibers on the feet of the Tokay gecko, but biomimetic dry adhesives have yet to be explored in a similar manner. To date, little work has systematically varied multiple parameters to discern the influence of the testing procedure, and the effect of the approach angle remains uncertain. In this study, a synthetic adhesive is moved in 13 individual approach and retraction angles relative to a flat substrate as well as 9 different shear lengths to discern how loading and unloading procedures influence the preload, adhesion, and shear/friction forces supported. The synthetic adhesive, composed of vertical 10 μm diameter semicircular poly(dimethylsiloxane) fibers, is tested against a 4 mm diameter flat glass puck on a home-built microtribometer using both vertical approach and retraction tests and angled approach and retraction tests. The results show that near maximum adhesion and friction can be obtained for most approach and retraction angles, provided that a sufficient shear length is performed. The results also show that the reaction forces during adhesive placement can be significantly reduced by using specific approach angles, resulting for the vertical fibers in a 38-fold increase in the ratio of adhesion force to preload force, μ', when compared to that when using a vertical approach. These results can be of use to those currently researching gecko-inspired adhesives when designing their testing procedures and control algorithms for climbing and perching robots.

  18. Tuning micropillar tapering for optimal friction performance of thermoplastic gecko-inspired adhesive.

    PubMed

    Kim, Yongkwan; Chung, Yunsie; Tsao, Angela; Maboudian, Roya

    2014-05-14

    We present a fabrication method and friction testing of a gecko-inspired thermoplastic micropillar array with control over the tapering angle of the pillar sidewall. A combination of deep reactive ion etching of vertical silicon pillars and subsequent maskless chemical etching produces templates with various widths and degrees of taper, which are then replicated with low-density polyethylene. As the silicon pillars on the template are chemically etched in a bath consisting of hydrofluoric acid, nitric acid, and acetic acid (HNA), the pillars are progressively thinned, then shortened. The replicated polyethylene pillar arrays exhibit a corresponding increase in friction as the stiffness is reduced with thinning and then a decrease in friction as the stiffness is again increased. The dilution of the HNA bath in water influences the tapering angle of the silicon pillars. The friction of the replicated pillars is maximized for the taper angle that maximizes the contact area at the tip which in turn is influenced by the stiffness of the tapered pillars. To provide insights on how changes in microscale geometry and contact behavior may affect friction of the pillar array, the pillars are imaged by scanning electron microscopy after friction testing, and the observed deformation behavior from shearing is related to the magnitude of the macroscale friction values. It is shown that the tapering angle critically changes the pillar compliance and the available contact area. Simple finite element modeling calculations are performed to support that the observed deformation is consistent with what is expected from a mechanical analysis. We conclude that friction can be maximized via proper pillar tapering with low stiffness that still maintains enough contact area to ensure high adhesion.

  19. Biocompatibility of microparticles into soft tissue fillers.

    PubMed

    Laeschke, Klaus

    2004-12-01

    The increasing need for long-lasting injectable soft tissue fillers for the treatment of wrinkles and folds requires a critical discussion of the biocompatibility on a scientific background. Since biological fillers made of collagen and hyaluronic acid will be resorbed over time, copolymer biomaterials with microparticles have been developed in recent years. The microparticles followed special and essential demands because of the interaction with the tissue. In search of an ideal soft tissue filler substance, a variety of biomaterials with microparticles suspended have been created for injecting into dermal defects, into the urethra of patients with urinary incontinence, and in patients with vocal cord insufficiency. The particles differ in chemical composition, surface structure, surface charge, and particle size and evoke different host reactions, accordingly.

  20. Regulation of the elastic modulus of polyurethane microarrays and its influence on gecko-inspired dry adhesion

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhao, Aiwu; Jiang, Rui; Wang, Dapeng; Li, Da; Guo, Hongyan; Tao, Wenyu; Gan, Zibao; Zhang, Maofeng

    2011-02-01

    We studied the influence of the elastic modulus on the gecko-inspired dry adhesion by regulating the elastic modulus of bulk polyurethane combined with changing the size of microarrays. Segmented polyurethane (PU) was utilized to fabricate micro arrays by the porous polydimethyl siloxane (PDMS) membrane molding method. The properties of the micro arrays, such as the elastic modulus and adhesion, were investigated by Triboindenter. The study demonstrates that bulk surfaces show the highest elastic modulus, with similar values at around 175 MPa and decreasing the arrays radius causes a significant decrease in E, down to 0.62 MPa. The corresponding adhesion experiments show that decrease of the elastic modulus can enhance the adhesion which is consistent with the recent theoretical models.

  1. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator.

    PubMed

    Guo, Dong-Jie; Liu, Rui; Cheng, Yu; Zhang, Hao; Zhou, Li-Ming; Fang, Shao-Ming; Elliott, Winston Howard; Tan, Wei

    2015-03-11

    Inspired by how geckos abduct, rotate, and adduct their setal foot toes to adhere to different surfaces, we have developed an artificial muscle material called ion-exchange polymer-metal composite (IPMC), which, as a synthetic adhesive, is capable of changing its adhesion properties. The synthetic adhesive was cast from a Si template through a sticky colloid precursor of poly(methylvinylsiloxane) (PMVS). The PMVS array of setal micropillars had a high density of pillars (3.8 × 10(3) pillars/mm(2)) with a mean diameter of 3 μm and a pore thickness of 10 μm. A graphene oxide monolayer containing Ag globular nanoparticles (GO/Ag NPs) with diameters of 5-30 nm was fabricated and doped in an ion-exchanging Nafion membrane to improve its carrier transfer, water-saving, and ion-exchange capabilities, which thus enhanced the electromechanical response of IPMC. After being attached to PMVS micropillars, IPMC was actuated by square wave inputs at 1.0, 1.5, or 2.0 V to bend back and forth, driving the micropillars to actively grip or release the surface. To determine the adhesion of the micropillars, the normal adsorption and desorption forces were measured as the IPMC drives the setal micropillars to grip and release, respectively. Adhesion results demonstrated that the normal adsorption forces were 5.54-, 14.20-, and 23.13-fold higher than the normal desorption forces under 1.0, 1.5, or 2.0 V, respectively. In addition, shear adhesion or friction increased by 98, 219, and 245%, respectively. Our new technique provides advanced design strategies for reversible gecko-inspired synthetic adhesives, which might be used for spiderman-like wall-climbing devices with unprecedented performance.

  2. Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: a numerical analysis of peel-zone.

    PubMed

    Zhou, Ming; Pesika, Noshir; Zeng, Hongbo; Wan, Jin; Zhang, Xiangjun; Meng, Yonggang; Wen, Shizhu; Tian, Yu

    2012-10-01

    Despite successful fabrication of gecko-inspired fibrillar surfaces with strong adhesion forces, how to achieve an easy-removal property becomes a major concern that may restrict the wide applications of these bio-inspired surfaces. Research on how geckos detach rapidly has inspired the design of novel adhesive surfaces with strong and reversible adhesion capabilities, which relies on further fundamental understanding of the peeling mechanisms. Recent studies showed that the peel-zone plays an important role in the peeling off of adhesive tapes or fibrillar surfaces. In this study, a numerical method was developed to evaluate peel-zone deformation and the resulting mechanical behaviour due to the deformations of fibrillar surfaces detaching from a smooth rigid substrate. The effect of the geometrical parameters of pillars and the stiffness of backing layer on the peel-zone and peel strength, and the strong attachment and easy-removal properties have been analysed to establish a design map for bio-inspired fibrillar surfaces, which shows that the optimized strong attachment and easy-removal properties can vary by over three orders of magnitude. The adhesion and peeling design map established provides new insights into the design and development of novel gecko-inspired fibrillar surfaces.

  3. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  4. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system

    NASA Astrophysics Data System (ADS)

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-11-01

    climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm-2) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment. Electronic supplementary information (ESI) available: Photograph of a custom-built adhesion measurement system, video snapshots showing the switchable adhesion via gecko-inspired detachment mechanism, schematic of fabricating a master mould, and a SEM image showing the thickness of the nanomembrane. See DOI: 10.1039/c3nr02008h

  5. Biocompatibility evaluation of alendronate paste in rat's subcutaneous tissue.

    PubMed

    Mori, Graziela Garrido; de Moraes, Ivaldo Gomes; Nunes, Daniele Clapes; Castilho, Lithiene Ribeiro; Poi, Wilson Roberto; Capaldi, Maria Luciana P Manzoli

    2009-04-01

    Alendronate is a known inhibitor of root resorption and the development of alendronate paste would enhance its utilization as intracanal medication. Therefore, this study aimed to investigate the biocompatibility of experimental alendronate paste in subcutaneous tissue of rats, for utilization in teeth susceptible to root resorption. The study was conducted on 15 male rats, weighing approximately 180-200 grams. The rats' dorsal regions were submitted to one incision on the median region and, laterally to the incision, the subcutaneous tissue was raised and gently dissected for introduction of two tubes, in each rat. The tubes were sealed at one end with gutta-percha and taken as control. The tubes were filled with experimental alendronate paste. The animals were killed at 7, 15 and 45 days after surgery and the specimens were processed in laboratory. The histological sections were stained with hematoxylin-eosin and analyzed by light microscopy. Scores were assigned to the inflammatory process and statistically compared by the Tukey test (P < 0.05). Alendronate paste promoted severe inflammation process at 7 days, with statistically significant difference compared to the control (P < 0.05%). However, at 15 days, there was a regression of inflammation and the presence of connective tissue with collagen fibers, fibroblasts and blood vessels was observed. After 45 days, it was observed the presence of well-organized connective tissue, with collagen fibers and fibroblasts, and few inflammatory cells. No statistical difference was observed between the control and experimental paste at 15 and 45 days. The experimental alendronate paste was considered biocompatible with subcutaneous tissue of rat.

  6. Biocompatibility of acetazolamide pastes in the subcutaneous tissue of rats.

    PubMed

    Mori, Graziela Garrido; Moraes, Ivaldo Gomes de; Nunes, Daniele Clapes; Castilho, Lithiene Ribeiro; Poi, Wilson Roberto

    2009-01-01

    This aim of this study was to investigate the biocompatibility of two experimental acetazolamide (AZ)-based pastes in the subcutaneous tissue of rats. Both pastes contained AZ as the main component in similar concentration. The vehicle in experimental paste 1 was saline, while experimental paste 2 was prepared with propylene glycol. Sixty polyethylene tubes were sealed at one end with gutta-percha (GP), which served as a control. Half of the tubes were filled with paste 1 and half with paste 2. The tubes were implanted in the subcutaneous tissue of 15 rats, being 4 tubes for each animal. The animals were killed 7, 15 and 45 days after surgery and the specimens were processed in laboratory. The histological sections were stained with hematoxylin and eosin and were analyzed by light microscopy. Scores were assigned to level of inflammatory process: 1- none; 2- mild; 3- moderate; 4- severe. The data were analyzed statistically by the Kruskal-Wallis test (p< or =0.05). Paste 1 produced an inflammatory process at 7 days. However, the intensity of this inflammation decreased with time and was nearly absent at 45 days. No statistically significant difference (p>0.05) was observed between the control (GP) and paste 1. However, paste 2 produced inflammatory response at all study periods and differed significantly (p<0.05) from the control. In conclusion, in the present study, the experimental AZ-based paste 1 was considered as biocompatible as the control matrial (GP), while experimental paste 2 was irritating to rat subcutaneous tissue.

  7. Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord

    PubMed Central

    Aurand, Emily R.; Wagner, Jennifer; Lanning, Craig; Bjugstad, Kimberly B.

    2012-01-01

    Tissue engineering strategies employing biomaterials have made great progress in the last few decades. However, the tissues of the brain and spinal cord pose unique challenges due to a separate immune system and their nature as soft tissue. Because of this, neural tissue engineering for the brain and spinal cord may require re-establishing biocompatibility and functionality of biomaterials that have previously been successful for tissue engineering in the body. The goal of this review is to briefly describe the distinctive properties of the central nervous system, specifically the neuroimmune response, and to describe the factors which contribute to building polymer hydrogels compatible with this tissue. These factors include polymer chemistry, polymerization and degradation, and the physical and mechanical properties of the hydrogel. By understanding the necessities in making hydrogels biocompatible with tissue of the brain and spinal cord, tissue engineers can then functionalize these materials for repairing and replacing tissue in the central nervous system. PMID:24955749

  8. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application.

    PubMed

    Hussein, Kamal Hany; Park, Kyung-Mee; Kang, Kyung-Sun; Woo, Heung-Myong

    2016-10-01

    Biomaterials based on seeding of cells on decellularized scaffolds have gained increasing interest in the last few years and suggested to serve as an alternative approach to bioengineer artificial organs and tissues for transplantation. The reaction of the host toward the decellularized scaffold and transplanted cells depends on the biocompatibility of the construct. Before proceeding to the clinical application step of decellularized scaffolds, it is greatly important to apply a number of biocompatibility tests in vitro and in vivo. This review describes the different methodology involved in cytotoxicity, pathogenicity, immunogenicity and biodegradability testing for evaluating the biocompatibility of various decellularized matrices obtained from human or animals. PMID:27287176

  9. [Intravascular biocompatibility of decellularized xenogenic vascular scaffolds/PHBHHx hybrid material for cardiovascular tissue engineering].

    PubMed

    Wu, Song; Liu, Yinglong; Cui, Bin; Tang, Yue; Wang, Qiang; Qu, Xianghua; Chen, Guoqiang

    2008-04-01

    Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx) has superior mechanical and biocompatibility that may enable it to meet cardiovascular tissue engineering applications. We developed hybrid materials based on decellularized xenogenic vascular scaffolds that were coated with PHBHHx to investigate the intravascular biocompatibility. The hybrid patches were implanted in the rabbit abdominal aorta (hybrid patch, n = 12). Only decellularized xenogenic vascular scaffolds were implanted without coating as control (uncoated patch, n = 12). The patches were explanted and examined histologically, and biochemically at 1, 4 and 12 weeks after the surgery. The hybrid patches maintained original shapes, covered by confluent layer of cells and had less calcification than uncoated control. The results indicated that PHBHHx coating reduced calcification, promoted the repopulation of hybrid patch with recipients cells. In conclusion, PHBHHx showed remarkable intravascular biocompatibility and would benefit endothelization which would be a useful candidate for lumen of cardiovascular tissue engineering. PMID:18616171

  10. Biocompatibility evaluation of porous ceria foams for orthopedic tissue engineering.

    PubMed

    Ball, Jordan P; Mound, Brittnee A; Monsalve, Adam G; Nino, Juan C; Allen, Josephine B

    2015-01-01

    Ceria ceramics have the unique ability to protect cells from free radical-induced damage, making them materials of interest for biomedical applications. To expand upon the understanding of the potential of ceria as a biomaterial, porous ceria, fabricated via direct foaming, was investigated to assess its biocompatibility and its ability to scavenge free radicals. A mouse osteoblast (7F2) cell line was cultured with the ceria foams to determine the extent of the foams' toxicity. Toxicity assessments indicate that mouse osteoblasts cultured directly on the ceria scaffold for 72 h did not show a significant (p > 0.05) increase in toxicity, but rather show comparable toxicity to cells cultured on porous 45S5 Bioglass. The in vitro inflammatory response elicited from porous ceria foams was measured as a function of tumor necrosis factor alpha (TNF-α) secreted from a human monocytic leukemia cell line. Results indicate that the ceria foams do not cause a significant inflammatory response, eliciting a response of 27.1 ± 7.1 pg mL(-1) of TNF-α compared to 36.3 ± 5.8 pg mL(-1) from cells on Bioglass, and 20.1 ± 2.9 pg mL(-1) from untreated cells. Finally, we report cellular toxicity in response to free radicals from tert-butyl hydroperoxide with and without foamed ceria. Our preliminary results show that the foamed ceria is able to decrease the toxic effect of induced oxidative stress. Collectively, this study demonstrates that foamed ceria scaffolds do not activate an inflammatory response, and show potential free radical scavenging ability, thus they have promise as an orthopedic biomaterial.

  11. Evaluation of the biocompatibility of resin-based root canal sealers in rat periapical tissue.

    PubMed

    Mutoh, Noriko; Satoh, Takenori; Watabe, Hirotaka; Tani-Ishii, Nobuyuki

    2013-01-01

    We evaluated the biocompatibility of resin-based root canal sealers (RCSs) in the periapical tissues of rats. Wistar rats underwent tooth replantation for reproducing the response of periapical tissue with RCSs. The resin-based Epipany SE, AH Plus Jet, the eugenol-based sealer (Canals) and a control group were employed. The upper right first molar was extracted and applied with RCSs on apices, and then the tooth was repositioned. Histological evaluation demonstrated that mild inflammation occurred in the periapical tissue with Epiphany and AH Plus Jet sealers on day 7, whereas Canals induced severe-to-moderate inflammation. The statistical analyses demonstrated that the significant differences were observed between Canals and the other groups on day 7 regarding inflammatory response. On day 14, the lesions induced by all sealers were healed and replaced predominantly by fibrous connective tissue. Our results suggest that Epiphany SE and AH Plus Jet are good biocompatible materials. PMID:23719002

  12. Evaluation of the biocompatibility of resin-based root canal sealers in rat periapical tissue.

    PubMed

    Mutoh, Noriko; Satoh, Takenori; Watabe, Hirotaka; Tani-Ishii, Nobuyuki

    2013-01-01

    We evaluated the biocompatibility of resin-based root canal sealers (RCSs) in the periapical tissues of rats. Wistar rats underwent tooth replantation for reproducing the response of periapical tissue with RCSs. The resin-based Epipany SE, AH Plus Jet, the eugenol-based sealer (Canals) and a control group were employed. The upper right first molar was extracted and applied with RCSs on apices, and then the tooth was repositioned. Histological evaluation demonstrated that mild inflammation occurred in the periapical tissue with Epiphany and AH Plus Jet sealers on day 7, whereas Canals induced severe-to-moderate inflammation. The statistical analyses demonstrated that the significant differences were observed between Canals and the other groups on day 7 regarding inflammatory response. On day 14, the lesions induced by all sealers were healed and replaced predominantly by fibrous connective tissue. Our results suggest that Epiphany SE and AH Plus Jet are good biocompatible materials.

  13. Biocompatibility of a calcium hydroxide-propolis experimental paste in rat subcutaneous tissue.

    PubMed

    Mori, Graziela Garrido; Rodrigues, Sindineia da Silva; Shibayama, Sheila Tieko; Pomini, Marcelo; do Amaral, Cristhiane Olivia Ferreira

    2014-01-01

    Intracanal medications are fundamental for disinfection of the root canal system and participate in periapical repair, so their biocompatibility is of utmost importance to avoid tissue damage. This study evaluated the biocompatibility of a experimental paste of calcium hydroxide and propolis in the subcutaneous tissue of rats. The study was conducted on 15 male Wistar rats. Two incisions were made on the dorsal region of each animal for introduction of 4 tubes: one tube was empty; one contained zinc oxide-eugenol cement, and the two other tubes were filled with experimental paste. After 7, 14 and 30 days, the animals were euthanized and the specimens were subjected to histotechnical preparation. The hematoxylin and eosin-stained histological sections were analyzed by light microscopy. Scores were established according to the inflammatory process and statistically compared by the Tukey test (α = 5%). The analysis of histological sections showed non-significant or mild inflammatory reaction in the connective tissue in contact with the empty tubes in all study periods while the contact of subcutaneous tissue with zinc oxide-eugenol elicited moderate or severe inflammation similarly without significant difference among the study periods. The connective tissue was moderately inflamed at 7 days when contacting the experimental paste, but the inflammatory process was non-significant or mild at 14 and 30 days. The experimental paste was biocompatible with the tissues after 14 days of subcutaneous implantation.

  14. Biocompatible tissue scaffold compliance promotes salivary gland morphogenesis and differentiation.

    PubMed

    Peters, Sarah B; Naim, Nyla; Nelson, Deirdre A; Mosier, Aaron P; Cady, Nathaniel C; Larsen, Melinda

    2014-06-01

    Substrate compliance is reported to alter cell phenotype, but little is known about the effects of compliance on cell development within the context of a complex tissue. In this study, we used 0.48 and 19.66 kPa polyacrylamide gels to test the effects of the substrate modulus on submandibular salivary gland development in culture and found a significant decrease in branching morphogenesis in explants grown on the stiff 19.66 kPa gels relative to those grown on the more physiologically compliant 0.48 kPa gels. While proliferation and apoptosis were not affected by the substrate modulus, tissue architecture and epithelial acinar cell differentiation were profoundly perturbed by aberrant, high stiffness. The glands cultured on 0.48 kPa gels were similar to developing glands in morphology and expression of the differentiation markers smooth muscle alpha-actin (SM α-actin) in developing myoepithelial cells and aquaporin 5 (AQP5) in proacinar cells. At 19.66 kPa, however, tissue morphology and the expression and distribution of SM α-actin and AQP5 were disrupted. Significantly, aberrant gland development at 19.66 kPa could be rescued by both mechanical and chemical stimuli. Transfer of glands from 19.66 to 0.48 kPa gels resulted in substantial recovery of acinar structure and differentiation, and addition of exogenous transforming growth factor beta 1 at 19.66 kPa resulted in a partial rescue of morphology and differentiation within the proacinar buds. These results indicate that environmental compliance is critical for organogenesis, and suggest that both mechanical and chemical stimuli can be exploited to promote organ development in the contexts of tissue engineering and organ regeneration.

  15. Tissue reaction to sealing materials: different view at biocompatibility

    PubMed Central

    2010-01-01

    The biodegradability of root canal sealers in areas other than the root canal system is crucial to the overall success rate of endodontic treatment. The aim of the present study was to investigate, the cell and tissue reaction to GuttaFlow and AHPlus, both in vitro and in vivo. For the in vitro experiments the materials were incubated with Human Periodontal Ligament Fibroblasts and cell proliferation and cytotoxicity analyses were performed. Additional fluorescence-microscope stainings were carried out in order to visualize cell growth and morphology. For assessment of the tissue reaction to the materials a subcutaneous implantation model in Wistar rats was employed and the inflammatory response to the materials was visualized by means of general and specific histology after 6 weeks. Human gingival fibroblasts proliferation seemed to be dependent upon dental material and cultivation time. After an incubation period of 96 hrs AHPlus proved to be significantly (p < 0.002) more cytotoxic than GuttaFlow, as only a small number of fibroblasts survived on AHPlus. In vivo, GuttaFlow was surrounded by a fibrous capsule and no degradation took place, while AHPlus induced a well-vascularized granulation tissue in which the material was phagocyted by macrophages. The results of this study demonstrate that a potential cytotoxic effect of a sealing material may beneficial in order to have antibacterial properties and induce self degradation when accidentally extruded over the apical foramen. PMID:21159573

  16. Silk fibroin and polyethylene glycol-based biocompatible tissue adhesives

    PubMed Central

    Serban, Monica A.; Panilaitis, Bruce; Kaplan, David L.

    2012-01-01

    Tissue sealants have emerged in recent years as strong candidates for hemostasis. A variety of formulations are currently commercially available and though they satisfy many of the markets’ needs there are still key aspects of each that need improvement. Here we present a new class of blends, based on silk fibroin and chemically active polyethylene glycols (PEGs) with strong adhesive properties. These materials are cytocompatible, crosslink within seconds via chemical reaction between thiols and maleimides present on the constituent PEGs and have the potential to further stabilize through β-sheet formation by silk. Based on the silk concentration in the final formulation, the adhesive properties of these materials are comparable or better than the current leading PEG-based sealant. In addition, the silk-PEG based materials show decreased swelling and longer degradation times. Such properties would make them suitable for applications for which the current sealants are contraindicated. PMID:21681949

  17. Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics.

    PubMed

    Park, Gayoung; Chung, Hyun-Joong; Kim, Kwanghee; Lim, Seon Ah; Kim, Jiyoung; Kim, Yun-Soung; Liu, Yuhao; Yeo, Woon-Hong; Kim, Rak-Hwan; Kim, Stanley S; Kim, Jong-Seon; Jung, Yei Hwan; Kim, Tae-Il; Yee, Cassian; Rogers, John A; Lee, Kyung-Mi

    2014-04-01

    Recent development of flexible/stretchable integrated electronic sensors and stimulation systems has the potential to establish an important paradigm for implantable electronic devices, where shapes and mechanical properties are matched to those of biological tissues and organs. Demonstrations of tissue and immune biocompatibility are fundamental requirements for application of such kinds of electronics for long-term use in the body. Here, a comprehensive set of experiments studies biocompatibility on four representative flexible/stretchable device platforms, selected on the basis of their versatility and relevance in clinical usage. The devices include flexible silicon field effect transistors (FETs) on polyimide and stretchable silicon FETs, InGaN light-emitting diodes (LEDs), and AlInGaPAs LEDs, each on low modulus silicone substrates. Direct cytotoxicity measured by exposure of a surrogate fibroblast line and leachable toxicity by minimum essential medium extraction testing reveal that all of these devices are non-cytotoxic. In vivo immunologic and tissue biocompatibility testing in mice indicate no local inflammation or systemic immunologic responses after four weeks of subcutaneous implantation. The results show that these new classes of flexible implantable devices are suitable for introduction into clinical studies as long-term implantable electronics.

  18. Tissue biocompatibility of kevlar aramid fibers and polymethylmethacrylate, composites in rabbits.

    PubMed

    Henderson, J D; Mullarky, R H; Ryan, D E

    1987-01-01

    Two groups of female NZW rabbits were implanted in the paravertebral muscles with aramid (du Pont Kevlar aramid 49) fibers and aramid-polymethylmethacrylate (PMMA) composites for 14 and 28 days. Rabbits were killed at these times periods, necropsies performed, sites scored for gross tissue response, and tissue specimens containing the implants removed for histopathological evaluation. A mild fibrous tissue reaction was observed around all implants containing aramid fiber similar to that observed around the silicone control implant. Some foreign body giant cells were also present adjacent to the fibers. An intense necrotic inflammatory reaction was present around the positive control material (PVC Y-78). The tissue response to implantation of aramid fiber and fiber-PMMA composites indicates that aramid is a biocompatible material.

  19. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study

    PubMed Central

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold. PMID:26380018

  20. Short-pulse laser beam interactions with biocompatible polymer materials and tissue

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.

    1996-12-01

    Pulsed laser beams, of very short duration, appear to be very promising tools for polymer surface processing. Recently we have studied the interaction of picosecond and femtosecond laser radiation in the visible region of the spectrum with synthetic polymer films and we have compared these studies with our similar studies with nanosecond duration laser radiation. Biocompatible polymers have been extensively used for sutures, vascular grafts or bone and other hard tissue replacements. The use of surgical lasers for intervention on biocompatible material - tissue interfaces has attracted a great deal of interest, as both the high intensity, short pulse duration lasers and the prosthetic biomaterials are in increasing use. Our recent ablation studies, using ultrashort laser pulses, of biocompatible materials, are described in this article. Lasers were introduced in medical research in the early sixties but the laser beam ability to remove efficiently and safely soft or hard tissue, the lateral thermal damage and the final surface characteristics are still under investigation. In the past few years, by virtue of their water or water and hydroxyapatite content respectively, exhibit strong absorption restricting residual thermal damage to a relatively small zone. Recently we have investigated the interaction of short pulse laser radiation of picosecond and femtosecond duration with soft and hard tissue, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. The experimental results obtained, including ablation rates, ablation wavelength dependence, pulse duration dependence, fluence dependence, etc. are presented. These results are discussed according to simple theoretical models of laser energy absorption and the possible mechanisms of ultrashort pulse laser ablation, which in some cases involves multiphoton photodissociation processes. Finally, the design characteristics of the lasers employed in our

  1. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    PubMed

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  2. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.

    PubMed

    Elango, Jeevithan; Zhang, Jingyi; Bao, Bin; Palaniyandi, Krishnamoorthy; Wang, Shujun; Wenhui, Wu; Robinson, Jeya Shakila

    2016-10-01

    In the present investigation, an attempt was made to find an alternative to mammalian collagen with better osteogenesis ability. Three types of collagen scaffolds - collagen, collagen-chitosan (CCH), and collagen-hydroxyapatite (CHA) - were prepared from the cartilage of Blue shark and investigated for their physico-functional and mechanical properties in relation to biocompatibility and osteogenesis. CCH scaffold was superior with pH 4.5-4.9 and viscosity 9.7-10.9cP. Notably, addition of chitosan and HA (hydroxyapatite) improved the stiffness (11-23MPa) and degradation rate but lowered the water binding capacity and porosity of the scaffold. Interestingly, CCH scaffolds remained for 3days before complete in-vitro biodegradation. The decreased amount of viable T-cells and higher level of FAS/APO-1 were substantiated the biocompatibility properties of prepared collagen scaffolds. Osteogenesis study revealed that the addition of CH and HA in both fish and mammalian collagen scaffolds could efficiently promote osteoblast cell formation. The ALP activity was significantly high in CHA scaffold-treated osteoblast cells, which suggests an enhanced bone-healing process. Therefore, the present study concludes that the composite scaffolds prepared from fish collagen with higher stiffness, lower biodegradation rate, better biocompatible, and osteogenesis properties were suitable biomaterial for a bone tissue engineering application as an alternative to mammalian collagen scaffolds. PMID:27211297

  3. Selective laser sintering of biocompatible polymers for applications in tissue engineering.

    PubMed

    Tan, K H; Chua, C K; Leong, K F; Cheah, C M; Gui, W S; Tan, W S; Wiria, F E

    2005-01-01

    The ability to use biological substitutes to repair or replace damaged tissues lead to the development of Tissue Engineering (TE), a field that is growing in scope and importance within biomedical engineering. Anchorage dependent cell types often rely on the use of temporary three-dimensional scaffolds to guide cell proliferation. Computer-controlled fabrication techniques such as Rapid Prototyping (RP) processes have been recognised to have an edge over conventional manual-based scaffold fabrication techniques due to their ability to create structures with complex macro- and micro-architectures. Despite the immense capabilities of RP fabrication for scaffold production, commercial available RP modelling materials are not biocompatible and are not suitable for direct use in the fabrication of scaffolds. Work is carried out with several biocompatible polymers such as Polyetheretherketone (PEEK), Poly(vinyl alcohol) (PVA), Polycaprolactone (PCL) and Poly(L-lactic acid) (PLLA) and a bioceramic namely, Hydroxyapatite (HA). The parameters of the selective laser sintering (SLS) process are optimised to cater to the processing of these materials. SLS-fabricated scaffold specimens are examined using a Scanning Electron Microscope (SEM). Results observed from the micrographs indicate the viability of them being used for building TE scaffolds and ascertain the capabilities of the SLS process for creating highly porous scaffolds for Tissue Engineering applications.

  4. Evaluation of Biocompatibility of Alloplastic Materials: Development of a Tissue Culture In Vitro Test System.

    PubMed

    Gerullis, Holger; Georgas, Evangelos; Eimer, Christoph; Goretzki, Peter E; Lammers, Bernhard J; Klosterhalfen, Bernd; Boros, Mihaly; Wishahi, Mohamed; Heusch, Gerd; Otto, Thomas

    2011-12-01

    Optimized biocompatibility is a major requirement for alloplastic materials currently applied in surgical approaches for hernia, incontinence, and prolapse situations. Tissue ingrowth/adherence and formation of connective tissue seem to have important influence in mesh incorporation at the implant site. In an in vitro approach we randomly investigated 7 different mesh types currently used in surgeries with various indications with regard to their adherence performance. Using a tissue culture approach, meshes were incubated with tissue representative of fibroblasts, muscle cells, and endothelial cells originating from 10 different patients. After 6 weeks, the meshes were assessed microscopically and a ranking of their adherence performance was established. Tissue culture was successful in 100% of the probes. We did not remark on interindividual differences concerning the growth and adherence performance after incubation with the different meshes in the investigated 10 patients. The ranking was consistent in all patients. In this test system, PVDF Dynamesh® (FEG Textiltechnik, Aachen, Germany) was the mesh with the best growth-in score. The test system was feasible and reproducible. Pore size seems to be a predictor of adherence performance. The test system may be a helpful tool for further investigations, and the predictive value should be assessed in further in vitro and in vivo experiments. PMID:22504966

  5. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Pistone, Alessandro; Iannazzo, Daniela; Panseri, Silvia; Montesi, Monica; Tampieri, Anna; Galvagno, Signorino

    2014-10-01

    New magnetic hydroxyapatite-based nanomaterials as bone-specific systems for controlled drug delivery have been synthesized. The synthesized hydroxyapatite, HA, decorated with magnetite nanoparticles by a deposition method (HA/Fe3O4) and the nanocomposite system obtained using magnetic multi-walled carbon nanotubes (HA/MWCNT/Fe3O4) as a filler for HA have been characterized by chemical and morphological analyses, and their biological behavior was investigated. The systems have also been doped with clodronate in order to combine the effect of bone biomineralization induced by hydroxyapatite-based composites with the decrease of osteoclast formation induced by the drug. An analysis of the preosteoclastic RAW264.7 cell proliferation by MTT assay confirmed the high biocompatibility of the three systems. TRAP staining of RAW 264.7 conditioned with sRAKL to induce osteoclastogenesis, cultured in the presence of the systems doped and undoped with clodronate, showed the inhibitory effect of clodronate after we counted the MNC TRAP+cells but only in the osteoclast formation; in particular, the system HA/Fe3O4-Clo exerted a high inhibitory effect compared to the drug alone. These results demonstrate that the synthesized nanocomposites are a biocompatible magnetic drug delivery system and can represent a useful multimodal platform for applications in bone tissue engineering.

  6. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering.

    PubMed

    Pistone, Alessandro; Iannazzo, Daniela; Panseri, Silvia; Montesi, Monica; Tampieri, Anna; Galvagno, Signorino

    2014-10-24

    New magnetic hydroxyapatite-based nanomaterials as bone-specific systems for controlled drug delivery have been synthesized. The synthesized hydroxyapatite, HA, decorated with magnetite nanoparticles by a deposition method (HA/Fe3O4) and the nanocomposite system obtained using magnetic multi-walled carbon nanotubes (HA/MWCNT/Fe3O4) as a filler for HA have been characterized by chemical and morphological analyses, and their biological behavior was investigated. The systems have also been doped with clodronate in order to combine the effect of bone biomineralization induced by hydroxyapatite-based composites with the decrease of osteoclast formation induced by the drug. An analysis of the preosteoclastic RAW264.7 cell proliferation by MTT assay confirmed the high biocompatibility of the three systems. TRAP staining of RAW 264.7 conditioned with sRAKL to induce osteoclastogenesis, cultured in the presence of the systems doped and undoped with clodronate, showed the inhibitory effect of clodronate after we counted the MNC TRAP(+)cells but only in the osteoclast formation; in particular, the system HA/Fe3O4-Clo exerted a high inhibitory effect compared to the drug alone. These results demonstrate that the synthesized nanocomposites are a biocompatible magnetic drug delivery system and can represent a useful multimodal platform for applications in bone tissue engineering.

  7. A biocompatible model for evaluation of the responses of rat periapical tissue to a new zinc oxide-eugenol sealer.

    PubMed

    Mutoh, Noriko; Tani-Ishii, Nobuyuki

    2011-01-01

    We aimed to establish an experimental animal model to evaluate materials for endodontic therapy. We focused on the biocompatibility of new paste-type zinc oxide-eugenol (ZOE) sealer. The results of this sealer were compared with those of conventional powder/liquid ZOE and eugenol-free sealers. The molars of Wistar rats were extracted and repositioned in the original socket after application of the sealers on the root apices. Mild inflammation occurred in the periapical tissue of the replanted teeth with both ZOE sealers on day 7, whereas the eugenol-free sealer induced severe inflammation. On day 14, the lesions induced by all types of sealers were healed and replaced predominantly by fibrous connective tissue. Thus, all endodontic materials showed high biocompatibility, although the extent of inflammatory reactions during the early stages varied depending on the types of materials. We demonstrated that our animal model was useful for the assessment of the biocompatibility of endodontic materials.

  8. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity.

    PubMed

    Lastra, M Laura; Molinuevo, M Silvina; Giussi, Juan M; Allegretti, Patricia E; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Cortizo, M Susana

    2015-06-01

    β-Ketonitrile tautomeric copolymers have demonstrated tunable hydrophilicity/hydrophobicity properties according to surrounding environment, and mechanical properties similar to those of human bone tissue. Both characteristic properties make them promising candidates as biomaterials for bone tissue engineering. Based on this knowledge we have designed two scaffolds based on β-ketonitrile tautomeric copolymers which differ in chemical composition and surface morphology. Two of them were nanostructured, using an anodized aluminum oxide (AAO) template, and the other two obtained by solvent casting methodology. They were used to evaluate the effect of the composition and their structural modifications on the biocompatibility, cytotoxicity and degradation properties. Our results showed that the nanostructured scaffolds exhibited higher degradation rate by macrophages than casted scaffolds (6 and 2.5% of degradation for nanostructured and casted scaffolds, respectively), a degradation rate compatible with bone regeneration times. We also demonstrated that the β-ketonitrile tautomeric based scaffolds supported osteoblastic cell proliferation and differentiation without cytotoxic effects, suggesting that these biomaterials could be useful in the bone tissue engineering field.

  9. Tissue Reaction and Biocompatibility of Implanted Mineral Trioxide Aggregate with Silver Nanoparticles in a Rat Model

    PubMed Central

    Zand, Vahid; Lotfi, Mehrdad; Aghbali, Amirala; Mesgariabbasi, Mehran; Janani, Maryam; Mokhtari, Hadi; Tehranchi, Pardis; Pakdel, Seyyed Mahdi Vahid

    2016-01-01

    Introduction: Biocompatibility and antimicrobial activity of endodontic materials are of utmost importance. Considering the extensive applications of mineral trioxide aggregate (MTA) in dentistry and antimicrobial properties of silver nanoparticles, this study aimed to evaluate the subcutaneous inflammatory reaction of rat connective tissues to white MTA with and without nanosilver (NS) particles. Methods and Materials: Polyethylene tubes (1.1×8 mm) containing experimental materials (MTA and MTA+NS and empty control tubes) were implanted in subcutaneous tissues of seventy-five male rats. Animals were divided into five groups (n=15) according to the time of evaluation: group 1; after 7 days, group 2; after 15 days, group 3; after 30 days, group 4; after 60 days and group 5; after 90 days. The inflammatory reaction was graded and data was analyzed using the Kruskal-Wallis and Mann-Whitney U tests. Statistical significance was defined at 0.05. Results: Comparison of cumulative inflammatory reaction at all intervals revealed that the mean grade of inflammatory reaction to MTA, MTA+NS and control samples were 3, 2 and 2, respectively. According to the Mann-Whitney analysis there were no significant differences between MTA+NS and MTA (P=0.42). Conclusion: Incorporation of 1% nanosilver to MTA does not affect the inflammatory reaction of subcutaneous tissue in rat models. PMID:26843871

  10. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity.

    PubMed

    Lastra, M Laura; Molinuevo, M Silvina; Giussi, Juan M; Allegretti, Patricia E; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Cortizo, M Susana

    2015-06-01

    β-Ketonitrile tautomeric copolymers have demonstrated tunable hydrophilicity/hydrophobicity properties according to surrounding environment, and mechanical properties similar to those of human bone tissue. Both characteristic properties make them promising candidates as biomaterials for bone tissue engineering. Based on this knowledge we have designed two scaffolds based on β-ketonitrile tautomeric copolymers which differ in chemical composition and surface morphology. Two of them were nanostructured, using an anodized aluminum oxide (AAO) template, and the other two obtained by solvent casting methodology. They were used to evaluate the effect of the composition and their structural modifications on the biocompatibility, cytotoxicity and degradation properties. Our results showed that the nanostructured scaffolds exhibited higher degradation rate by macrophages than casted scaffolds (6 and 2.5% of degradation for nanostructured and casted scaffolds, respectively), a degradation rate compatible with bone regeneration times. We also demonstrated that the β-ketonitrile tautomeric based scaffolds supported osteoblastic cell proliferation and differentiation without cytotoxic effects, suggesting that these biomaterials could be useful in the bone tissue engineering field. PMID:25842133

  11. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  12. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Zha, Zhengbao; Deng, Zijian; Li, Yanyan; Li, Changhui; Wang, Jinrui; Wang, Shumin; Qu, Enze; Dai, Zhifei

    2013-05-01

    Photoacoustic tomography (PAT) has emerged as a hybrid, nonionizing imaging modality because of its satisfactory spatial resolution and high soft tissue contrast. Here, we demonstrate the application of a novel organic PAT contrast agent based on polypyrrole nanoparticles (PPy NPs). Monodisperse PPy NPs are ~46 nm in diameter with strong absorption in the near-infrared (NIR) range, which allowed visualization of PPy NP-containing agar gel embedded in chicken breast muscle at a depth of ~4.3 cm. Compared with PAT images based on the intrinsic optical contrast in mice, the PAT images acquired within 1 h after intravenous administration of PPy NPs showed the brain vasculature with greater clarity than hemoglobin in blood. Preliminary results showed no acute toxicity to the vital organs (heart, liver, spleen, lungs and kidneys) in mice following a single imaging dose of PPy NPs. Our results indicate that PPy NPs are promising contrast agents for PAT with good biocompatibility, high spatial resolution and enhanced sensitivity.

  13. A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair.

    PubMed

    Almeida, J Carlos; Wacha, András; Gomes, Pedro S; Alves, Luís C; Fernandes, M Helena Vaz; Salvado, Isabel M Miranda; Fernandes, M Helena R

    2016-05-01

    The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS-SiO2 have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS-SiO2-CaO-SrO, was prepared with the incorporation of 0.05 mol of titanium per mol of SiO2. Calcium and strontium were added using the respective acetates as sources, following a sol-gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity. PMID:26952443

  14. Bio-Corrosion Resistance and Biocompatibility of a ZrTi-BASED Bmgmc as Potential Hard Tissue Implants

    NASA Astrophysics Data System (ADS)

    Huang, Xiaobo; Zou, Jiaojuan; Wang, Chan; Hang, Ruiqiang; Qiao, Junwei; Tang, Bin

    2013-07-01

    In this study, we compared the bio-corrosion resistance and biocompatibility of a ZrTi-based BMGMC (Zr58.5Ti14.3Ni4.9Cu6.1Nb5.2Be11.0). The Ti-6Al-4V alloy was used as a reference material. By utilizing the electrochemical measurements and M3T3 cell culture, the corrosion resistance and biocompatibility of this BMGMC were evaluated. The BMGMC displayed high positive corrosion potentials and low corrosion current densities, which indicated that this material exhibited a highly improved corrosion resistance than the Ti alloy. The cells could adhere on the surface of this BMGMC and exhibited improved cellular behaviors, such as cellular viability and cytoskeketal structure. In summary, the ZrTi-based BMGMC showed great potential for applications in the hard tissue implants.

  15. Biocompatibility study of a silk fibroin-chitosan scaffold with adipose tissue-derived stem cells in vitro

    PubMed Central

    JI, WENCHEN; ZHANG, YUELIN; HU, SHOUYE; ZHANG, YONGTAO

    2013-01-01

    The use of tissue engineering technology in the repair of spinal cord injury (SCI) is a topic of current interest. The success of the repair of the SCI is directly affected by the selection of suitable seed cells and scaffold materials with an acceptable biocompatibility. In this study, adipose tissue-derived stem cells (ADSCs) were incorporated into a silk fibroin-chitosan scaffold (SFCS), which was constructed using a freeze-drying method, in order to assess the biocompatibility of the ADSCs and the SFCS and to provide a foundation for the use of tissue engineering technology in the repair of SCI. Following the seeding of the cells onto the scaffold, the adhesion characteristics of the ADSCs and the SFCS were assessed. A significant difference was observed between the experimental group (a composite of the ADSCs with the SFCS) and the control group (ADSCs without the scaffold) following a culture period of 6 h (P<0.05). The differences in the results at the following time-points were statistically insignificant (P>0.05). The use of an MTT assay to assess the proliferation of the cells on the scaffold revealed that there were significant differences between the experimental and control groups following culture periods of 2 and 4 days (P<0.05). However, the results at the subsequent time-points were not statistically significantly different (P>0.05). Scanning electron microscopy (SEM), using hematoxylin and eosin (H&E) staining, was used to observe the cellular morphology following seeding, and this revealed that the cells displayed the desired morphology. The results indicate that ADSCs have a good biocompatibility with a SFCS and thus provide a foundation for further studies using tissue engineering methods for the repair of SCI. PMID:24137218

  16. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery.

  17. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. PMID:25809455

  18. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.

    PubMed

    van Midwoud, Paul M; Janse, Arnout; Merema, Marjolijn T; Groothuis, Geny M M; Verpoorte, Elisabeth

    2012-05-01

    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision-cut liver slices, that are not possible with conventional systems. However, PDMS, a silicone rubber material, is very hydrophobic and tends to exhibit significant adsorption and absorption of hydrophobic drugs and their metabolites. Although glass could be used as an alternative, thermoplastics are better from a cost and fabrication perspective. Thermoplastic polymers (plastics) allow easy surface treatment and are generally transparent and biocompatible. This study focuses on the fabrication of biocompatible microfluidic devices with low adsorption properties from the thermoplastics poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and cyclic olefin copolymer (COC) as alternatives for PDMS devices. Thermoplastic surfaces were oxidized using UV-generated ozone or oxygen plasma to reduce adsorption of hydrophobic compounds. Surface hydrophilicity was assessed over 4 weeks by measuring the contact angle of water on the surface. The adsorption of 7-ethoxycoumarin, testosterone, and their metabolites was also determined after UV-ozone treatment. Biocompatibility was assessed by culturing human hepatoma (HepG2) cells on treated surfaces. Comparison of the adsorption properties and biocompatibility of devices in different plastics revealed that only UV-ozone-treated PC and COC devices satisfied both criteria. This paper lays an important foundation that will help researchers make informed decisions with respect to the materials they select for microfluidic cell-based culture experiments.

  19. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  20. Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering.

    PubMed

    Mistry, A S; Mikos, A G; Jansen, J A

    2007-12-15

    In this work, we evaluated the in vitro cytotoxicity and in vivo biocompatibility of a novel poly(propylene fumarate) (PPF)-based/alumoxane nanocomposite for bone tissue engineering applications. The incorporation of functionalized alumoxane nanoparticles into the PPF-based polymer was previously shown to significantly increase the material's flexural mechanical properties. In the current study, samples underwent accelerated in vitro degradation to allow the study of biological responses to these materials over the course of their degradation on a shortened timescale. The polymer, a macrocomposite composed of the polymer and micron-sized particles, and the nanocomposite were evaluated at three stages of degradation for in vitro cytotoxicity with a fibroblast cell line and in vivo soft-tissue response after 3 and 12 weeks of implantation in adult goats. All three material groups experienced mass loss during degradation, but the nanocomposite group eroded significantly faster than the other groups. Nondegraded materials demonstrated minimal cytotoxicity and a minor inflammatory response in soft tissue. On the contrary, predegraded samples elicited more pronounced responses, though these were due to the increase in surface area, surface roughness, and fragmentation associated with the degradation process. The presence of alumoxane nanoparticles in the PPF-based nanocomposite did not significantly affect its cytotoxicity or biocompatibility.

  1. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation. PMID:26277184

  2. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering

    PubMed Central

    Chan, Wing P.; Kung, Fu-Chen; Kuo, Yu-Lin; Yang, Ming-Chen; Lai, Wen-Fu Thomas

    2015-01-01

    A technique for synthesizing biocompatible hydrogels by cross-linking calcium-form poly(γ-glutamic acid), alginate sodium, and Pluronic F-127 was created, in which alginate can be cross-linked by Ca2+ from Ca–γ-PGA directly and γ-PGA molecules introduced into the alginate matrix to provide pH sensitivity and hemostasis. Mechanical properties, swelling behavior, and blood compatibility were investigated for each hydrogel compared with alginate and for γ-PGA hydrogel with the sodium form only. Adding F-127 improves mechanical properties efficiently and influences the temperature-sensitive swelling of the hydrogels but also has a minor effect on pH-sensitive swelling and promotes anticoagulation. MG-63 cells were used to test biocompatibility. Gelation occurred gradually through change in the elastic modulus as the release of calcium ions increased over time and caused ionic cross-linking, which promotes the elasticity of gel. In addition, the growth of MG-63 cells in the gel reflected nontoxicity. These results showed that this biocompatible scaffold has potential for application in bone materials. PMID:26504784

  3. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering.

    PubMed

    Chan, Wing P; Kung, Fu-Chen; Kuo, Yu-Lin; Yang, Ming-Chen; Lai, Wen-Fu Thomas

    2015-01-01

    A technique for synthesizing biocompatible hydrogels by cross-linking calcium-form poly(γ-glutamic acid), alginate sodium, and Pluronic F-127 was created, in which alginate can be cross-linked by Ca(2+) from Ca-γ-PGA directly and γ-PGA molecules introduced into the alginate matrix to provide pH sensitivity and hemostasis. Mechanical properties, swelling behavior, and blood compatibility were investigated for each hydrogel compared with alginate and for γ-PGA hydrogel with the sodium form only. Adding F-127 improves mechanical properties efficiently and influences the temperature-sensitive swelling of the hydrogels but also has a minor effect on pH-sensitive swelling and promotes anticoagulation. MG-63 cells were used to test biocompatibility. Gelation occurred gradually through change in the elastic modulus as the release of calcium ions increased over time and caused ionic cross-linking, which promotes the elasticity of gel. In addition, the growth of MG-63 cells in the gel reflected nontoxicity. These results showed that this biocompatible scaffold has potential for application in bone materials. PMID:26504784

  4. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    NASA Technical Reports Server (NTRS)

    Laurencin, Cato T. (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor); Botchwey, Edward (Inventor); Lu, Helen H. (Inventor); Khan, Mohammed Yusuf (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  5. Preparation of biocompatible, UV-cured fumarated poly(ether-ester)-based tissue-engineering hydrogels.

    PubMed

    Akdemir, Z Seden; Kayaman-Apohan, Nilhan; Kahraman, M Vezir; Kuruca, Serap Erdem; Güngör, Atilla; Karadenizli, Sabriye

    2011-01-01

    The aim of this study was to develop biodegradable, photo-polymerizable in situ gel-forming systems prepared from a fumaric acid monoethyl ester (FAME) modified poly(lactide-co-glycolide) (PLGA) co-polymer. By reacting lactide and glycolide in the presence of stannous octoate as a catalyst and 2-ethyl,2-hydroxymethyl 1,3-propanediol as an initiator, hydroxyl terminated branched PLGA was synthesized. Afterwards, at room temperature hydroxyl terminated branched PLGA was reacted with fumaric acid monoethyl ester (FAME). N,N'-dicyclohexylcarbodiimide and triethylamine were used as a coupling agent and catalyst, respectively. The gel percentage, equilibrium mass swelling, degradation profile and polymerization kinetics of the hydrogels were investigated. All of the results were influenced by the amount of FAME modified PLGA co-polymer. Biocompatibility of the hydrogels was examined by using MTT cytotoxicity assay. According to the results, hydrogels are biocompatible and cell viability percentage depends on the amount of PLGA co-polymer. While the amount was 15% in hydrogel composition, cell viability was 100%, but after increasing the PLGA co-polymer amount to 30% the viability reduced to 78%. PMID:20566062

  6. Preparation and Reinforcement of Dual‐Porous Biocompatible Cellulose Scaffolds for Tissue Engineering

    PubMed Central

    Pircher, Nicole; Fischhuber, David; Carbajal, Leticia; Strauß, Christine; Nedelec, Jean‐Marie; Kasper, Cornelia; Rosenau, Thomas

    2015-01-01

    1 Biocompatible cellulose‐based aerogels composed of nanoporous struts, which embed interconnected voids of controlled micron‐size, have been prepared employing temporary templates of fused porogens, reinforcement by interpenetrating PMMA networks and supercritical carbon dioxide drying. Different combinations of cellulose solvent (Ca(SCN)2/H2O/LiCl or [EMIm][OAc]/DMSO) and anti‐solvent (EtOH), porogen type (paraffin wax or PMMA spheres) and porogen size (various fractions in the range of 100–500 μm) as well as intensity of PMMA reinforcement have been investigated to tailor the materials for cell scaffolding applications. All aerogels exhibited an open and dual porosity (micronporosity >100 μm and nanoporosity extending to the low micrometer range). Mechanical properties of the dual‐porous aerogels under compressive stress were considerably improved by introduction of interpenetrating PMMA networks. The effect of the reinforcing polymer on attachment, spreading, and proliferation of NIH 3T3 fibroblast cells, cultivated on selected dual‐porous aerogels to pre‐evaluate their biocompatibility was similarly positive. PMID:26941565

  7. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds.

    PubMed

    Applegate, Matthew B; Coburn, Jeannine; Partlow, Benjamin P; Moreau, Jodie E; Mondia, Jessica P; Marelli, Benedetto; Kaplan, David L; Omenetto, Fiorenzo G

    2015-09-29

    Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light-matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach.

  8. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds

    PubMed Central

    Applegate, Matthew B.; Coburn, Jeannine; Partlow, Benjamin P.; Moreau, Jodie E.; Mondia, Jessica P.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light–matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach. PMID:26374842

  9. Tissue Engineering of Ureteral Grafts: Preparation of Biocompatible Crosslinked Ureteral Scaffolds of Porcine Origin

    PubMed Central

    Koch, Holger; Hammer, Niels; Ossmann, Susann; Schierle, Katrin; Sack, Ulrich; Hofmann, Jörg; Wecks, Mike; Boldt, Andreas

    2015-01-01

    The surgical reconstruction of ureteric defects is often associated with post-operative complications and requires additional medical care. Decellularized ureters originating from porcine donors could represent an alternative therapy. Our aim was to investigate the possibility of manufacturing decellularized ureters, the characteristics of the extracellular matrix (ECM) and the biocompatibility of these grafts in vitro/in vivo after treatment with different crosslinking agents. To achieve these goals, native ureters were obtained from pigs and were decellularized. The success of decellularization and the ECM composition were characterized by (immuno)histological staining methods and a DNA-assay. In vitro: scaffolds were crosslinked either with carbodiimide (CDI), genipin (GP), glutaraldehyde, left chemically untreated or were lyophilized. Scaffolds in each group were reseeded with Caco2, LS48, 3T3 cells, or native rat smooth muscle cells (SMC). After 2 weeks, the number of ingrown cells was quantified. In vivo: crosslinked scaffolds were implanted subcutaneously into rats and the type of infiltrating cells were determined after 1, 9, and 30 days. After decellularization, scaffold morphology and composition of ECM were maintained, all cellular components were removed, DNA destroyed and strongly reduced. In vitro: GP and CDI scaffolds revealed a higher number of ingrown 3T3 and SMC cells as compared to untreated scaffolds. In vivo: at day 30, implants were predominantly infiltrated by fibroblasts and M2 anti-inflammatory macrophages. A maximum of MMP3 was observed in the CDI group at day 30. TIMP1 was below the detection limit. In this study, we demonstrated the potential of decellularization to create biocompatible porcine ureteric grafts, whereas a CDI-crosslink may facilitate the remodeling process. The use of decellularized ureteric grafts may represent a novel therapeutic method in reconstruction of ureteric defects. PMID:26157796

  10. Diels-Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability

    NASA Astrophysics Data System (ADS)

    Mata, D.; Amaral, M.; Fernandes, A. J. S.; Colaço, B.; Gama, A.; Paiva, M. C.; Gomes, P. S.; Silva, R. F.; Fernandes, M. H.

    2015-05-01

    The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT membranes (p,f-CNTs). The in vivo subcutaneously implanted materials showed a higher biological reactivity, thus inducing a slighter intense inflammatory response compared to non-functionalized CNT membranes (p-CNTs), but still showing a reduced cytotoxicity profile. Moreover, the in vivo biodegradation of CNTs was superior for p,f-CNT membranes, likely mediated by the oxidation-induced myeloperoxidase (MPO) in neutrophil and macrophage inflammatory milieus. This proves the biodegradability faculty of functionalized CNTs, which potentially avoids long-term tissue accumulation and triggering of acute toxicity. On the whole, the proposed Diels-Alder functionalization accounts for the improved CNT biological response in terms of the biocompatibility and biodegradability profiles. Therefore, CNTs can be considered for use in bone tissue engineering without notable toxicological threats.The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT

  11. Raman spectroscopy in the study of normal and pathological tissue structure and of prosthetic material biocompatibility

    NASA Astrophysics Data System (ADS)

    Bertoluzza, Alessandro; Fagnano, C.; Tinti, A.; Mancini, S.; Caramazza, R.; Marchetti, P. G.; Maggi, G.

    1993-06-01

    Vibrational Raman spectroscopy has proven to be a powerful tool for biomedical applications such as the molecular characterization of normal and pathological tissues as well as the evaluation of prosthetic material bicompatibility. This work deals with the applications of Raman spectroscopy to the study of ocular tissues (lens, cornea, vitreous humour), the respective prosthetic biomaterials, bone tissue, and the main biomaterials used in the prosthetic surgery of bone. In particular the Raman spectra of the cornea in different conditions, of vitreous humour, and of pathological bone are reported and discussed. The Raman spectrum of air dried cornea suggests that the tissue is made up almost entirely of collagen. The spectra of normal and pathological bone tissues indicate that pathological bone has a more minor phosphate content than normal bone and some modifications are also observed for the amide III components. Moreover, the Raman spectrum of an arthroplastic bone before defatting suggests a substitution of phosphate with carbonate ions.

  12. Lithographic microfabrication of biocompatible polymers for tissue engineering and lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Balciunas, Evaldas; Jonusauskas, Linas; Valuckas, Vytautas; Baltriukiene, Daiva; Bukelskiene, Virginija; Gadonas, Roaldas; Malinauskas, Mangirdas

    2012-06-01

    In this work, a combination of Direct Laser Writing (DLW), PoliDiMethylSiloxane (PDMS) soft lithography and UV lithography was used to create cm- scale microstructured polymer scaolds for cell culture experiments out of dierent biocompatible materials: novel hybrid organic-inorganic SZ2080, PDMS elastomer, biodegradable PEG- DA-258 and SU-8. Rabbit muscle-derived stem cells were seeded on the fabricated dierent periodicity scaolds to evaluate if the relief surface had any eect on cell proliferation. An array of microlenses was fabricated using DLW out of SZ2080 and replicated in PDMS and PEG-DA-258, showing good potential applicability of the used techniques in many other elds like micro- and nano- uidics, photonics, and MicroElectroMechanical Systems (MEMS). The synergetic employment of three dierent fabrication techniques allowed to produce desired objects with low cost, high throughput and precision as well as use materials that are dicult to process by other means (PDMS and PEG-DA-258). DLW is a relatively slow fabrication method, since the object has to be written point-by-point. By applying PDMS soft lithography, we were enabled to replicate laser-fabricated scaolds for stem cell growth and micro-optical elements for lab-on-a-chip applications with high speed, low cost and good reproducible quality.

  13. Acellular human glans extracellular matrix as a scaffold for tissue engineering: in vitro cell support and biocompatibility

    PubMed Central

    Egydio, Fernanda M.; Freitas, Luiz G.; Sayeg, Kleber; Laks, Marcus; Oliveira, Andréia S.; Almeida, Fernando G.

    2015-01-01

    ABSTRACT Objectives: Diseases of the genitourinary tract can lead to significant damage. Current reconstructive techniques are limited by tissue availability and compatibility. This study aims to assess if the decellularized human glans can be used as a biomaterial for penile reconstruction. Materials and Methods: Samples of the glans matrices were descellularized. We evaluate the presence of collagen type I and III, and elastic fibers. Biocompatibility assays were performed to assess the cytotoxic and non-cytotoxic interactions between the acellular matrix and 3T3 cells. The matrices were seeded with mesenchymal stem cells and were assessed for viability and integration of these cells. Biomechanical tests in native tissue, descellularized matrix and seeded matrix were performed to characterize their biomechanical properties. Results: The tissue architecture of the decellularized matrix of human glans was preserved as well as the maintenance of the biomechanical and biological properties. The analyzes of glans seeded with mesenchymal stem cells revealed the integration of these cells to the matrices, and its viability during two weeks “in vitro”. Conclusion: The decellularization process did not alter the biological and biomechanical characteristics of the human glans. When these matrices were seeded they were able to maintain the cells integrity and vitality. PMID:26689526

  14. Polyanionic collagen membranes for guided tissue regeneration: Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation.

    PubMed

    Veríssimo, D M; Leitão, R F C; Ribeiro, R A; Figueiró, S D; Sombra, A S B; Góes, J C; Brito, G A C

    2010-10-01

    The ultimate goal of periodontal therapy is to control periodontal tissue inflammation and to produce predictable regeneration of that part of the periodontium which has been lost as a result of periodontal disease. In guided tissue regeneration membranes function as mechanical barriers, excluding the epithelium and gingival corium from the root surface and allowing regeneration by periodontal ligament cells. This report aims to study the effect of glutaraldehyde (GA) cross-linking on mineralized polyanionic collagen (PAC) membranes by conducting a histological evaluation of the tissue response (biocompatibility) and by assessing the biodegradation of subcutaneous membrane implants in rats. We studied six different samples: a PAC, a PAC mineralized by alternate soaking processes for either 25 or 75 cycles (PAC 25 and PAC 75, respectively) and these films cross-linked by GA. Inflammatory infiltrate, cytokine dosage, fibrosis capsule thickness, metalloproteinase immunohistochemistry and membrane biodegradation after 1, 7, 15 and 30 days were measured. The inflammatory response was found to be more intense in membranes without cross-linking, while the fibrosis capsules became thicker in cross-linked membranes after 30 days. The membranes without cross-linking suffered intense biodegradation, while the membranes with cross-linking remained intact after 30 days. The cross-linking with GA reduced the inflammatory response and prevented degradation of the membranes over the entire course of the observation period. These membranes are thus an attractive option when the production of new bone depends on the prolonged presence of a mechanical barrier.

  15. In vitro degradation and in vivo biocompatibility of poly(lactic acid) mesh for soft tissue reinforcement in vaginal surgery.

    PubMed

    de Tayrac, Renaud; Chentouf, Samir; Garreau, Henri; Braud, Christian; Guiraud, Isabelle; Boudeville, Philippe; Vert, Michel

    2008-05-01

    This study was aimed at evaluating the in vitro degradation, the in vivo biocompatibility and at comparing the effects of two methods of sterilization on poly(L-lactic acid) (PLA(94)) resorbable mesh. The mesh was manufactured to be used as surgical soft tissue reinforcement in the vaginal area. Samples of 100 mg of PLA(94) mesh (10 x 10 mm(2)) were immersed in isoosmolar 0.13M, pH 7.4 phosphate buffer solution at 37 degrees C, during 12 months. The hydrolytic degradation up to 12 months after immersion was monitored by measuring weight loss, mesh area changes, and by various analytical techniques namely Differential scanning calorimetry (DSC), capillary zone electrophoresis (CZE), size exclusion chromatography (SEC), and environmental scanning electron microscopy (ESEM). Specimens of nonsterilized, ethylene-oxide (ETO) sterilized, and gamma-ray sterilized PLA(94) mesh were compared. Fifteen samples were implanted in an incisional hernia Wistar rat model. Histopathology was performed up to 90 days after implantation to evaluate the inflammatory response and the collagen deposition. Although the decrease of molecular weight due to polymer chain scissions started 6 weeks after in vitro immersion, water-soluble degradation products and decrease of tensile strength appeared after 8 months only. Analyses showed also that ETO sterilization did not affect the degradation of the PLA(94) mesh. In contrast, gamma-ray sterilization increased very much the sensitivity of the mesh to the hydrolytic degradation. In vivo, the PLA(94) mesh exhibited good biocompatibility over the investigated time period. PMID:18161812

  16. Effect of surface texture by ion beam sputtering on implant biocompatibility and soft tissue attachment

    NASA Technical Reports Server (NTRS)

    Gibbons, D. F.

    1977-01-01

    The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.

  17. Cytotoxicity of Cyanoacrylate-Based Tissue Adhesives and Short-Term Preclinical In Vivo Biocompatibility in Abdominal Hernia Repair

    PubMed Central

    Rodríguez, Marta; Pérez-Köhler, Bárbara; Kühnhardt, Andreé; Fernández-Gutiérrez, Mar; San Román, Julio; Bellón, Juan Manuel

    2016-01-01

    Background Cyanoacrylate(CA)-based tissue adhesives, although not widely used, are a feasible option to fix a mesh during abdominal hernia repair, due to its fast action and great bond strength. Their main disadvantage, toxicity, can be mitigated by increasing the length of their alkyl chain. The objective was to assess the in vitro cytotoxicity and in vivo biocompatibility in hernia repair of CAs currently used in clinical practice (Glubran(n-butyl) and Ifabond(n-hexyl)) and a longer-chain CA (OCA(n-octyl)), that has never been used in the medical field. Methods Formaldehyde release and cytotoxicity of unpolymerized(UCAs) and polymerized CAs(PCAs) were evaluated by macroscopic visual assessment, flow cytometry and Alamar Blue assays. In the preclinical evaluation, partial defects were created in the rabbit abdominal wall and repaired by fixing polypropylene prostheses using the CAs. At 14 days post-surgery, animals were euthanized for morphology, macrophage response and cell damage analyses. Results Formaldehyde release was lower as the molecular weight of the monomer increased. The longest side-chain CA(OCA) showed the highest cytotoxicity in the UCA condition. However, after polymerization, was the one that showed better behavior on most occasions. In vivo, all CAs promoted optimal mesh fixation without displacements or detachments. Seroma was evident with the use of Glubran, (four of six animals: 4/6) and Ifabond (2/6), but it was reduced with the use of OCA (1/6). Significantly greater macrophage responses were observed in groups where Glubran and Ifabond were used vs. sutures and OCA. TUNEL-positive cells were significantly higher in the Glubran and OCA groups vs. the suture group. Conclusions Although mild formaldehyde release occurred, OCA was the most cytotoxic during polymerization but the least once cured. The CAs promoted proper mesh fixation and have potential to replace traditional suturing techniques in hernia repair; the CAs exhibited good tissue

  18. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.

    PubMed

    Salgado, Christiane Laranjo; Grenho, Liliana; Fernandes, Maria Helena; Colaço, Bruno Jorge; Monteiro, Fernando Jorge

    2016-01-01

    Designing biomimetic biomaterials inspired by the natural complex structure of bone and other hard tissues is still a challenge nowadays. The control of the biomineralization process onto biomaterials should be evaluated before clinical application. Aiming at bone regeneration applications, this work evaluated the in vitro biodegradation and interaction between human bone marrow stromal cells (HBMSC) cultured on different collagen/nanohydroxyapatite cryogels. Cell proliferation, differentiation, morphology, and metabolic activity were assessed through different protocols. All the biocomposite materials allowed physiologic apatite deposition after incubation in simulated body fluid and the cryogel with the highest nanoHA content showed to have the highest mechanical strength (DMA). The study clearly showed that the highest concentration of nanoHA granules on the cryogels were able to support cell type's survival, proliferation, and individual functionality in a monoculture system, for 21 days. In fact, the biocomposites were also able to differentiate HBMSCs into osteoblastic phenotype. The composites behavior was also assessed in vivo through subcutaneous and bone implantation in rats to evaluate its tissue-forming ability and degradation rate. The cryogels Coll/nanoHA (30 : 70) promoted tissue regeneration and adverse reactions were not observed on subcutaneous and bone implants. The results achieved suggest that scaffolds of Coll/nanoHA (30 : 70) should be considered promising implants for bone defects that present a grotto like appearance with a relatively small access but a wider hollow inside. This material could adjust to small dimensions and when entering into the defect, it could expand inside and remain in close contact with the defect walls, thus ensuring adequate osteoconductivity.

  19. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering.

    PubMed

    Sasaki, Masato; Karikkineth, Bijoy Chandapillai; Nagamine, Kuniaki; Kaji, Hirokazu; Torimitsu, Keiichi; Nishizawa, Matsuhiko

    2014-11-01

    Hydrogel-based, molecular permeable electronic devices are considered to be promising for electrical stimulation and recording of living tissues, either in vivo or in vitro. This study reports the fabrication of the first hydrogel-based devices that remain highly electrically conductive under substantial stretch and bending. Using a simple technique involving a combination of chemical polymerization and electropolymerization of poly (3,4-ethylenedioxythiophene) (PEDOT), a tight bonding of a conductive composite of PEDOT and polyurethane (PU) to an elastic double-network hydrogel is achieved to make fully organic PEDOT/PU-hydrogel hybrids. Their response to repeated bending, mechanical stretching, hydration-dessication cycles, storage in aqueous condition for up to 6 months, and autoclaving is assessed, demonstrating excellent stability, without any mechanical or electrical damage. The hybrids exhibit a high electrical conductivity of up to 120 S cm(-1) at 100% elongation. The adhesion, proliferation, and differentiation of neural and muscle cells cultured on these hybrids are demonstrated, as well as the fabrication of 3D hybrids, advancing the field of tissue engineering with integrated electronics. PMID:24912988

  20. Fabrication of biocompatible electro-conductive silk films with natural compounds for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Dimitrakakis, Nikolaos

    In the present study electro conductive natural compounds are incorporated in silk based films, and the effects on film conductivity and dissolution are studied. Natural conducting compounds melanin and riboflavin were blended with silk to increase conductivity. Other compounds such as Fe(0) powder ferrofluid and NaCl solution also improved conductivity. Film properties and dissolution were studied for the different blends, and tuned using addition of glycerol and horseradish peroxidase cross-linking. Techniques such as electrospinning, doctor blade, spin coating, and paper-like film fabrication techniques were also explored to generate films with controlled dimensions and properties. The findings suggest that the incorporation of riboflavin along with NaCl and glycerol in silk films, along with water vapor annealing results in semiconductor films. More specifically, the two compositions of the films that exhibited highest conductivity contain 2 % w/v silk, 20 % w/v glycerol, 2 % w/v polyethylene oxide (PEO), 30 % v/v phosphate buffered saline (PBS) and 5 % w/v silk, 20 % w/v glycerol, 10 % w/v NaCl with conductivities of 5.72*10-2 S/m and 5.96*10-2 S/m at 20 °C. When silk is doped with riboflavin, NaCl, and glycerol, semiconducting behavior similar to drinking water conductivity is observed. Mass loss studies of the films included the immersion of the films for 7 days in 37° C in PBS. Film processing included samples that were heated for 2 hours in 60 °C immediately after casting, as well as those cured at room temperature. The results indicated that the heated samples provided the lowest mass loss of approximately 27 %. In conclusion, the present study demonstrates the correlation between composition and processing of silk films with their conductivity. These semiconductive films have the potential to be applied in tissue engineering applications such as nerve conduits, where conductivity plays an instrumental role in tissue restoration.

  1. Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold.

    PubMed

    Panda, Niladri Nath; Pramanik, Krishna; Sukla, Lala Behari

    2014-03-01

    In bone tissue engineering, porous hydroxyapatite (HAp) is used as filling material for bone defects, augmentation, artificial bone graft and scaffold material. The present paper compares the preparation and characterization of HAp from fish scale (FS) and synthetic body fluid (SBF) solution. Thermo gravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and particle size analysis of the samples have been performed. The analysis indicates that synthesized HAp consists of sub-micron HAp particle with Ca/P ratio corresponding to FS and SBF 1.62 and 1.71, respectively. MTT assay and quantitative DNA analysis show growth and proliferation of cells over the HA scaffold with the increase in time. The shape and size (morphology) of mesenchymal stem cells after 3 days show a transition from rounded shape to elongated and flattened shape expressing its spreading behavior. These results confirm that HAp bio-materials from fish scale are physico-chemically and biologically equivalent to the chemically synthesized HAp from SBF. Biological HAp, thus, possesses a great potential for conversion of industrial by-product into highly valuable compounds using simple effective and novel processes.

  2. Bimodal fibrous structures for tissue engineering: Fabrication, characterization and in vitro biocompatibility.

    PubMed

    Tiwari, Arjun Prasad; Joshi, Mahesh Kumar; Kim, Jeong In; Unnithan, Afeesh Rajan; Lee, Joshua; Park, Chan Hee; Kim, Cheol Sang

    2016-08-15

    We report for the first time a polycaprolactone-human serum albumin (PCL-HSA) membrane with bimodal structures comprised of spider-web-like nano-nets and conventional fibers via facile electro-spinning/netting (ESN) technique. Such unique controllable morphology was developed by electrospinning the blend solution of PCL (8wt% in HFIP 1,1,1,3,3,3,-Hexafluoro-2-propanol) and HSA (10wt% deionized water). The phase separation during electrospinning caused the formation of bimodal structure. Various processing factors such as applied voltage, feeding rate, and distance between nozzle tip and collector were found responsible for the formation and distribution of the nano-nets throughout the nanofibrous mesh. Field emission electron microscopy (FE-SEM) confirmed that the nano-nets were composed of interlinked nanowires with an ultrathin diameter (10-30nm). When compared with a pure PCL membrane, the membrane containing nano-nets was shown to have better support for cellular activities as determined by cell viability and attachment assays. These results revealed that the blending of albumin, a hydrophilic biomolecule, with PCL, a hydrophobic polymer, proves to be an outstanding approach to developing membranes with controlled spider-web-like nano-nets for tissue engineering. PMID:27179176

  3. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Dong, Zhihong; Li, Yubao; Zou, Qin

    2009-04-01

    Porous scaffold containing 30 wt% nano-hydroxyapatite (n-HA) and 70 wt% polyurethane (PU) from castor oil was prepared by a foaming method and investigated by X-ray diffraction (XRD), Fourier transform infrared absorption (FTIR), scanning electron microscopy (SEM) techniques. The results show that n-HA particles disperse homogeneously in the PU matrix. The porous scaffold has not only macropores of 100-800 μm in size but also a lot of micropores on the walls of macropores. The porosity and compressive strength of scaffold are 80% and 271 kPa, respectively. After soaking in simulated body fluid (SBF), hydrolysis and deposition partly occur on the scaffold. The biological evaluation in vitro and in vivo shows that the n-HA/PU scaffold is non-cytotoxic and degradable. The porous structure provides a good microenvironment for cell adherence, growth and proliferation. The n-HA/PU composite scaffold can be satisfied with the basic requirement for tissue engineering, and has the potential to be applied in repair and substitute of human menisci of the knee-joint and articular cartilage.

  4. Micro- and Nanostructured Biomaterials for Sutureless Tissue Repair.

    PubMed

    Frost, Samuel J; Mawad, D; Hook, J; Lauto, Antonio

    2016-02-18

    Sutureless procedures for wound repair and closure have recently integrated nanostructured devices to improve their effectiveness and clinical outcome. This review highlights the major advances in gecko-inspired bioadhesives that relies mostly on van der Waals bonding forces. These are challenged by the moist environment of surgical settings that weaken adherence to tissue. The incorporation of nanoparticles in biomatrices and their role in tissue repair and drug delivery is also reviewed with an emphasis on procedures involving adhesives that are laser-activated. Nanostructured adhesive devices have the advantage of being minimally invasive to tissue, can seal wounds, and deliver drugs in situ. All these tasks are very difficult to accomplish by sutures or staples that are invasive to host organs and often cause scarring. PMID:26725593

  5. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo.

    PubMed

    Wang, Peng; Liu, Pengzheng; Peng, Haitao; Luo, Xiaoman; Yuan, Huipin; Zhang, Juncai; Yan, Yonggang

    2016-08-01

    In vitro cytocompatibility of ternary biocomposite of dicalcium phosphate (DCP) and calcium sulfate (CS) containing 40 wt% poly (amino acid) (PAA) was evaluated using L929 fibroblasts and MG-63 osteoblast-like cells. Thereafter, the biocompatibility of biocomposite in vivo was investigated using an implantation in muscle and bone model. In vitro L929 and MG-63 cell culture experiments showed that the composite and PAA polymer were noncytotoxic and allowed cells to adhere and proliferate. The scanning electron microscope (SEM) confirmed that two kinds of cells maintained their phenotype on all of samples surfaces. Moreover, the DCP/CS/PAA composite showed higher cellular viability than that of PAA; meanwhile, the cell proliferation and ALP activity were much higher when DCP/CS had added into PAA. After implanted in muscle of rabbits for 12 weeks, the histological evaluation indicated that the composite exhibited excellent biocompatibility and no inflammatory responses were found. When implanted into bone defects of femoral condyle of rabbits, the composite was combined directly with the host bone tissue without fibrous capsule tissue, which shown good biocompatibility and osteoconductivity. Thus, this novel composite may have potential application in the clinical setting.

  6. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo.

    PubMed

    Wang, Peng; Liu, Pengzheng; Peng, Haitao; Luo, Xiaoman; Yuan, Huipin; Zhang, Juncai; Yan, Yonggang

    2016-08-01

    In vitro cytocompatibility of ternary biocomposite of dicalcium phosphate (DCP) and calcium sulfate (CS) containing 40 wt% poly (amino acid) (PAA) was evaluated using L929 fibroblasts and MG-63 osteoblast-like cells. Thereafter, the biocompatibility of biocomposite in vivo was investigated using an implantation in muscle and bone model. In vitro L929 and MG-63 cell culture experiments showed that the composite and PAA polymer were noncytotoxic and allowed cells to adhere and proliferate. The scanning electron microscope (SEM) confirmed that two kinds of cells maintained their phenotype on all of samples surfaces. Moreover, the DCP/CS/PAA composite showed higher cellular viability than that of PAA; meanwhile, the cell proliferation and ALP activity were much higher when DCP/CS had added into PAA. After implanted in muscle of rabbits for 12 weeks, the histological evaluation indicated that the composite exhibited excellent biocompatibility and no inflammatory responses were found. When implanted into bone defects of femoral condyle of rabbits, the composite was combined directly with the host bone tissue without fibrous capsule tissue, which shown good biocompatibility and osteoconductivity. Thus, this novel composite may have potential application in the clinical setting. PMID:27126299

  7. Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration.

    PubMed

    Unalan, Irem; Colpankan, Oylum; Albayrak, Aylin Ziylan; Gorgun, Cansu; Urkmez, Aylin Sendemir

    2016-11-01

    The objective of this study was to produce biocompatible plasma-treated and silk-fibroin (SF) modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofiber mats. The mats were plasma-treated using O2 or N2 gas to increase their hydrophilicity followed by SF immobilization for the improvement of biocompatibility. Contact angle measurements and SEM showed increased hydrophilicity and no disturbed morphology, respectively. Cell proliferation assay revealed that SF modification together with N2 plasma (PS/N2) promoted higher osteoblastic (SaOs-2) cell viability. Although, O2 plasma triggered more mineral formation on the mats, it showed poor cell viability. Consequently, the PS/N2 nanofiber mats would be a potential candidate for bone tissue engineering applications. PMID:27524087

  8. Reengineered graft copolymers as a potential alternative for the bone tissue engineering application by inducing osteogenic markers expression and biocompatibility.

    PubMed

    Thangavelu, Muthukumar; R Narasimha, Raghavan; Adithan, Aravinthan; A, Chandrasekaran; Jong-Hoon, Kim; Thotapalli Parvathaleswara, Sastry

    2016-07-01

    Composite scaffolds of nano-hydroxyapatite with demineralized bone matrix were prepared and they were graft copolymerized for better bone regeneration and drug delivery applications. The graft copolymers were characterized for their physiochemical properties using conventional methods like FTIR, TGA, XRD and SEM. The scaffolds were seeded with 3T3 and MG63 cells for studying their biocompatibility and their temporal expression of ALP activity, the rate of calcium deposition and their gene expression of collagen type I (Coll-1), osteopontin (OP), osteonectin (ON), and osteocalcin (OC) were studied. In vivo studies were conducted using sub-cutaneous implantation models in male Wister rats for 6 months. Periodic radiography and post-autopsy histopathology was analysed at 15days, 1, 2, 3, 4, 5, and 6 months. The obtained in vitro results clearly confirm that the bone scaffolds prepared in this study are biocompatible, superior osteoinductivity, capable of supporting growth, maturation of MG 63 osteoblast like cells; the gene expression profile revealed that the material is capable of supporting the in vitro growth and maturation of osteoblast-like cells and maturation. The in vivo results stand a testimony to the in vitro results in proving the biocompatibility and osteoinductivity of the materials.

  9. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation.

    PubMed

    Duan, Nannan; Geng, Xue; Ye, Lin; Zhang, Aiying; Feng, Zengguo; Guo, Lianrui; Gu, Yongquan

    2016-01-01

    In this article, a tubular vascular tissue engineering scaffold with core-shell structured fibers was produced by coaxial electrospinning at an appropriate flow rate ratio between the inner and outer solution. PCL was selected as the core to provide the mechanical property and integrity to the scaffold while collagen was used as the shell to improve the attachment and proliferation of vascular cells due to its excellent biocompatibility. The fine core-shell structured fibers were demonstrated by scanning electron microscope and transmission electron microscope observations. Subsequently, the collagen shell was crosslinked by genipin and further bound with heparin. The crosslinking process was confirmed by the increasing of tensile strength, swelling ratio and thermogravimetric analysis measurements while the surface heparin content was characterized by means of a UV-spectrophotometer and activated partial thromboplastin time tests. Furthermore, the mechanical properties such as stitch strength and bursting pressure of the as-prepared scaffold were measured. Moreover, the biocompatibility of the scaffold was evaluated by cytotoxicity investigation with L929 cells via MTT assay. Endothelial cell adhesion assessments were conducted to reveal the possibility of the formation of an endothelial cell layer on the scaffold surface, while the ability of smooth muscle cell penetration into the scaffold wall was also assessed by confocal laser scanning microscopy. The as-prepared core-shell structured scaffold showed promising potential for use in vascular tissue engineering. PMID:27206161

  10. Poly(ε-caprolactone)/nano fluoridated hydroxyapatite scaffolds for bone tissue engineering: in vitro degradation and biocompatibility study.

    PubMed

    Johari, N; Fathi, M H; Golozar, M A; Erfani, E; Samadikuchaksaraei, A

    2012-03-01

    In this study, biodegradation and biocompatibility of novel poly(ε-caparolactone)/nano fluoridated hydroxyapatite (PCL-FHA) scaffolds were investigated. The FHA nanopowders were prepared via mechanical alloying method and had a chemical composition of Ca(10)(PO(4))(6)OH(2-x )F(x) (where x values were selected equal to 0.5 and 2.0). In order to fabricate PCL-FHA scaffolds, 10, 20, 30 and 40 wt% of the FHA were added to the PCL. The PCL-FHA scaffolds were produced by the solvent casting/particulate leaching using sodium chloride particles (with diameters of 300-500 μm) as the porogen. The phase structure, microstructure and morphology of the scaffolds were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques. Porosity of the scaffolds was measured using the Archimedes' Principle. In vitro degradation of PCL-FHA scaffolds was studied by incubating the samples in phosphate buffered saline at 37°C and pH 7.4 for 30 days. Moreover, biocompatibility was evaluated by MTT assay after seeding and culture of osteoblast-like cells on the scaffolds. Results showed that the osteoblast-like cells attached to and proliferated on PCL-FHA and increasing the porosity of the scaffolds increased the cell viability. Also, degradation rate of scaffolds were increased with increasing the fluorine content in scaffolds composition. PMID:22190197

  11. Long-term biocompatibility, imaging appearance and tissue effects associated with delivery of a novel radiopaque embolization bead for image-guided therapy.

    PubMed

    Sharma, Karun V; Bascal, Zainab; Kilpatrick, Hugh; Ashrafi, Koorosh; Willis, Sean L; Dreher, Matthew R; Lewis, Andrew L

    2016-10-01

    The objective of this study was to undertake a comprehensive long-term biocompatibility and imaging assessment of a new intrinsically radiopaque bead (LC Bead LUMI™) for use in transarterial embolization. The sterilized device and its extracts were subjected to the raft of ISO10993 biocompatibility tests that demonstrated safety with respect to cytotoxicity, mutagenicity, blood contact, irritation, sensitization, systemic toxicity and tissue reaction. Intra-arterial administration was performed in a swine model of hepatic arterial embolization in which 0.22-1 mL of sedimented bead volume was administered to the targeted lobe(s) of the liver. The beads could be visualized during the embolization procedure with fluoroscopy, DSA and single X-ray snapshot imaging modalities. CT imaging was performed before and 1 h after embolization and then again at 7, 14, 30 and 90 days. LC Bead LUMI™ could be clearly visualized in the hepatic arteries with or without administration of IV contrast and appeared more dense than soluble contrast agent. The CT density of the beads did not deteriorate during the 90 day evaluation period. The beads embolized predictably and effectively, resulting in areas devoid of contrast enhancement on CT imaging suggesting ischaemia-induced necrosis nearby the sites of occlusion. Instances of off target embolization were easily detected on imaging and confirmed pathologically. Histopathology revealed a classic foreign body response at 14 days, which resolved over time leading to fibrosis and eventual integration of the beads into the tissue, demonstrating excellent long-term tissue compatibility. PMID:27419364

  12. Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: a comparative study in rabbits

    PubMed Central

    2010-01-01

    Background Recent studies have shown the potential suitability of magnesium alloys as biodegradable implants. The aim of the present study was to compare the soft tissue biocompatibility of MgCa0.8 and commonly used surgical steel in vivo. Methods A biodegradable magnesium calcium alloy (MgCa0.8) and surgical steel (S316L), as a control, were investigated. Screws of identical geometrical conformation were implanted into the tibiae of 40 rabbits for a postoperative follow up of two, four, six and eight weeks. The tibialis cranialis muscle was in direct vicinity of the screw head and thus embedded in paraffin and histologically and immunohistochemically assessed. Haematoxylin and eosin staining was performed to identify macrophages, giant cells and heterophil granulocytes as well as the extent of tissue fibrosis and necrosis. Mouse anti-CD79α and rat anti-CD3 monoclonal primary antibodies were used for B- and T-lymphocyte detection. Evaluation of all sections was performed by applying a semi-quantitative score. Results Clinically, both implant materials were tolerated well. Histology revealed that a layer of fibrous tissue had formed between implant and overlying muscle in MgCa0.8 and S316L, which was demarcated by a layer of synoviocyte-like cells at its interface to the implant. In MgCa0.8 implants cavities were detected within the fibrous tissue, which were surrounded by the same kind of cell type. The thickness of the fibrous layer and the amount of tissue necrosis and cellular infiltrations gradually decreased in S316L. In contrast, a decrease could only be noted in the first weeks of implantation in MgCa0.8, whereas parameters were increasing again at the end of the observation period. B-lymphocytes were found more often in MgCa0.8 indicating humoral immunity and the presence of soluble antigens. Conversely, S316L displayed a higher quantity of T-lymphocytes. Conclusions Moderate inflammation was detected in both implant materials and resolved to a minimum

  13. Design and fabrication of gecko-inspired adhesives.

    PubMed

    Jin, Kejia; Tian, Yu; Erickson, Jeffrey S; Puthoff, Jonathan; Autumn, Kellar; Pesika, Noshir S

    2012-04-01

    Recently, there has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure-sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties; the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this study, we present an easy, scalable method, relying on conventional and unconventional techniques, to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provides anisotropic adhesion properties. We measured the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function. Consistent with the peel zone model, samples with lower tilt angles yielded larger adhesion forces. The tribological properties of the synthetic arrays were highly anisotropic, reminiscent of the frictional adhesion behavior of gecko setal arrays. When a 60° tilt sample was actuated in the gripping direction, a static adhesion strength of ~1.4 N/cm(2) and a static friction strength of ~5.4 N/cm(2) were obtained. In contrast, when the dry adhesive was actuated in the releasing direction, we measured an initial repulsive normal force and negligible friction.

  14. Gecko-Inspired Carbon Nanotube-Based Adhesives

    NASA Astrophysics Data System (ADS)

    Ge, Liehui; Sethi, Sunny; Goyal, Anubha; Ci, Lijie; Ajayan, Pulickel; Dhinojwala, Ali

    2009-03-01

    Nature has developed hierarchical hairy structure on the wall-climbing gecko's foot, consisting of microscopic hairs called setae, which further split into hundreds of smaller structures called spatulas. In the last five years, numerous attempts to mimic gecko foot-hair using polymer soft molding and photolithography methods have been reported. However, most of these polymer-based synthetic gecko hairs fall short of the clinging ability of geckos. Vertically aligned carbon nanotubes (CNT) have shown strong adhesion at nanometer scale. Here, we present our work on developing CNT-based macroscopic flexible tape mimicking the hierarchical structure found on gecko's foot. The synthetic gecko tape is made by transferring aligned CNT array onto flexible polymer tape. The unpatterned CNT-gecko tape can support a shear force stress similar to gecko foot (10 N/cm^2). The supported shear stress increase by a factor of four, when we use micro-patterned CNT patches (50 to 500 μm). We find that both setae (replicated by CNT bundles) and spatulas (individual CNT) are necessary to achieve large macroscopic shear adhesion. The carbon nanotube-based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics, and space applications.

  15. Vertical anisotropic microfibers for a gecko-inspired adhesive.

    PubMed

    Tamelier, John; Chary, Sathya; Turner, Kimberly L

    2012-06-12

    Geckos are able to adhere strongly and release easily from surfaces because the structurally anisotropic fibers on their toes naturally exhibit force anisotropy based on the direction of articulation. Here, semicircular fibers, with varying amounts of contact area on the two faces, are investigated to ascertain whether fiber shape can be used to gain anisotropy in shear and shear adhesion forces. Testing of 10-μm-diameter polydimethylsiloxane (PDMS) fibers against a 4-mm-diameter flat glass puck show that shear and shear adhesion forces were two to five times greater when in-plane movement caused the flat face, rather than the curved face, of the fiber to come in contact with the glass puck. The directional adhesion and shear force anisotropy results are close to theoretical approximations using the Kendall peel model and clearly demonstrate how fiber shape may be used to influence the properties of the adhesive. This result has broad applicability, and by combining the results shown here with other current vertical and angled designs, synthetic adhesives can be further improved to behave more like their natural counterparts.

  16. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives.

    PubMed

    Murphy, Michael P; Kim, Seok; Sitti, Metin

    2009-04-01

    The complex structures that allow geckos to repeatably adhere to surfaces consist of multilevel branching fibers with specialized tips. We present a novel technique for fabricating similar multilevel structures from polymer materials and demonstrate the fabrication of arrays of two- and three-level structures, wherein each level terminates in flat mushroom-type tips. Adhesion experiments are conducted on two-level fiber arrays on a 12-mm-diameter glass hemisphere, which exhibit both increased adhesion and interface toughness over one-level fiber samples and unstructured control samples. These adhesion enhancements are the result of increased surface conformation as well as increased extension during detachment.

  17. Rational design and nanofabrication of gecko-inspired fibrillar adhesives.

    PubMed

    Hu, Shihao; Xia, Zhenhai

    2012-08-20

    Gecko feet integrate many intriguing functions such as strong adhesion, easy detachment, and self-cleaning. Mimicking gecko toe pad structure leads to the development of new types of fibrillar adhesives useful for various applications. In this Concept article, in addition to the design of adhesive mimics by replicating gecko geometric features, we show a new trend of rational design by adding other physical, chemical, and biological principles on to the geometric merits, for enhancing robustness, responsive control, and durability. Current challenges and future directions are highlighted in the design and nanofabrication of biomimetic fibrillar adhesives.

  18. A micro/nano-fabricated gecko-inspired reversible adhesive

    NASA Astrophysics Data System (ADS)

    Northen, Michael Thomas

    The gecko adhesive has been of scientific interest for over two millennia, ever since Aristotle observed a gecko running up and down a tree. Since then, advances in optical and electron microscopy have provided increased information on the structure of the pad of the gecko's foot, for it is the structure that leads to the adhesion and not the chemistry. Each toe contains many ridges, or scansors, displaying arrays of ˜100 mum long, ˜5 mum wide setae, each branching into hundreds of smaller fibers called spatulae, ˜200 nm across and 5 nm thick. The combination of the setal flexibility and the nanoscale compliance of the spatulae creates a large amount of intimate surface contact, enhancing van der Waals interactions, and promoting adhesion. In this work, an adhesive---inspired by the gecko---was micro/nanofabricated. There were two main thrusts in this work. The first was to show the importance of the hierarchical structure on the performance of the gecko adhesive, and the future need to for multiple levels of compliance in synthetic dry adhesives. The second thrust was to create a surface with controllable adhesion. While the adhesion properties of the gecko are of great scientific interest, it is the ability to switch adhesion on and off that provides the technological driving force for mimicking the gecko system. The microscale setae of the gecko have been replicated by microfabricating flexible silicon dioxide freestanding structures ˜100 mum long and ˜10 mum wide. These structures were coated with aligned vertical polymeric nanorods ˜4 mum tall and ˜200 nm in diameter, analogous to the gecko spatulae. Testing of the synthetic structures shows that the multi-scale system provides a 5-fold increase in adhesion over nanorods alone, demonstrating the need for a hierarchical structure. To create a switchable adhesive, the silicon dioxide microstructures were replaced with nickel micro-paddles. When the nickel structures were placed in a magnetic field, a conformation change was induced, rotating the paddles away from an adherent surface, and adhesion was reduced by a factor of 40. This is the first demonstration of a surface displaying reversible and controllable adhesion.

  19. Carbon nanotube based gecko inspired self-cleaning adhesives

    NASA Astrophysics Data System (ADS)

    Sethi, Sunny; Ge, Liehui; Ajayan, Pulickel; Ali, Dhinojwala

    2008-03-01

    Wall climbing organisms like geckos have unique ability to attach to different surfaces without use of any viscoelastic material. The hairy structure found in gecko feet allows them to obtain intimate contact over a large area thus allowing then to adhere using van der Waals interactions. Not only high adhesion, the geometry of the hairs makes gecko feet self cleaning, thus allowing them to walk continuously without worrying about loosing adhesive strength. Such properties if mimicked synthetically could form basis of a new class of materials, which, unlike conventional adhesives would show two contradictory properties, self cleaning and high adhesion. Such materials would form essential component of applications like wall climbing robot. We tried to synthesize such material using micropatterened vertically aligned carbon nanotubes. When dealing with large areas, probability of defects in the structure increase, forming patterns instead of using uniform film of carbon nanotubes helps to inhibit crack propagation, thus gives much higher adhesive strength than a uniform film. When carbon nanotube patterns with optimized aspect ratio are used, both high adhesion and self cleaning properties are observed.

  20. Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering.

    PubMed

    Zhao, Yanteng; He, Meng; Zhao, Lei; Wang, Shiqun; Li, Yinping; Gan, Li; Li, Mingming; Xu, Li; Chang, Peter R; Anderson, Debbie P; Chen, Yun

    2016-02-01

    A series of epichlorohydrin-cross-linked hydroxyethyl cellulose/soy protein isolate composite films (EHSF) was fabricated from hydroxyethyl cellulose (HEC) and soy protein isolate (SPI) using a process involving blending, cross-linking, solution casting, and evaporation. The films were characterized with FTIR, solid-state (13)C NMR, UV-vis spectroscopy, and mechanical testing. The results indicated that cross-linking interactions occurred in the inter- and intramolecules of HEC and SPI during the fabrication process. The EHSF films exhibited homogeneous structure and relative high light transmittance, indicating there was a certain degree of miscibility between HEC and SPI. The EHSF films exhibited a relative high mechanical strength in humid state and an adjustable water uptake ratio and moisture absorption ratio. Cytocompatibility, hemocompatibility and biodegradability were evaluated by a series of in vitro and in vivo experiments. These results showed that the EHSF films had good biocompatibility, hemocompatibility, and anticoagulant effect. Furthermore, EHSF films could be degraded in vitro and in vivo, and the degradation rate could be controlled by adjusting the SPI content. Hence, EHSF films might have a great potential for use in the biomedical field.

  1. Biocompatible Silk Noil-Based Three-Dimensional Carded-Needled Nonwoven Scaffolds Guide the Engineering of Novel Skin Connective Tissue.

    PubMed

    Chiarini, Anna; Freddi, Giuliano; Liu, Daisong; Armato, Ubaldo; Dal Prà, Ilaria

    2016-08-01

    Retracting hypertrophic scars resulting from healed burn wounds heavily impact on the patients' life quality. Biomaterial scaffolds guiding burned-out skin regeneration could suppress or lessen scar retraction. Here we report a novel silk noil-based three-dimensional (3D) nonwoven scaffold produced by carding and needling with no formic acid exposure, which might improve burn healing. Once wetted, it displays human skin-like physical features and a high biocompatibility. Human keratinocyte-like cervical carcinoma C4-I cells seeded onto the carded-needled nonwovens in vitro quickly adhered to them, grew, and actively metabolized glutamine releasing lactate. As on plastic, they released no proinflammatory IL-1β, although secreting tumor necrosis factor-alpha, an inducer of the autocrine mitogen amphiregulin in such cells. Once grafted into interscapular subcutaneous tissue of mice, carded-needled nonwovens guided the afresh assembly of a connective tissue enveloping the fibroin microfibers and filling the interposed voids within 3 months. Fibroblasts and a few poly- or mononucleated macrophages populated the engineered tissue. Besides, its extracellular matrix contained thin sparse collagen fibrils and a newly formed vascular network whose endothelin-1-expressing endothelial cells grew first on the fibroin microfibrils and later expanded into the intervening matrix. Remarkably, no infiltrates of inflammatory leukocytes and no packed collagen fibers bundles among fibroin microfibers, no fibrous capsules at the grafts periphery, and hence no foreign body response was obtained at the end of 3 months of observation. Therefore, we posit that silk noil-based 3D carded-needled nonwoven scaffolds are tools for translational medicine studies as they could guide connective tissue regeneration at deep burn wounds averting scar retraction with good functional results. PMID:27411949

  2. Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells.

    PubMed

    Haslauer, Carla M; Avery, Matthew R; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2015-07-01

    Polymeric scaffolds have emerged as a means of generating three-dimensional tissues, such as for the treatment of bone injuries and nonunions. In this study, a fibrous scaffold was designed using the biocompatible, degradable polymer poly-lactic acid in combination with a water dispersible sacrificial polymer, EastONE. Fibers were generated via industry relevant, facile scale-up melt-spinning techniques with an islands-in-the-sea geometry. Following removal of EastONE, a highly porous fiber remained possessing 12 longitudinal channels and pores throughout all internal and external fiber walls. Weight loss and surface area characterization confirmed the generation of highly porous fibers as observed via focused ion beam/scanning electron microscopy. Porous fibers were then knit into a three-dimensional scaffold and seeded with human adipose-derived stem cells (hASC). Confocal microscopy images confirmed hASC attachment to the fiber walls and proliferation throughout the knit structure. Quantification of cell-mediated calcium accretion following culture in osteogenic differentiation medium confirmed hASC differentiation throughout the porous constructs. These results suggest incorporation of a sacrificial polymer within islands-in-the-sea fibers generates a highly porous scaffold capable of supporting stem cell viability and differentiation with the potential to generate large three-dimensional constructs for bone regeneration and/or other tissue engineering applications.

  3. Translating Textiles to Tissue Engineering: Creation and Evaluation of Microporous, Biocompatible, Degradable Scaffolds Using Industry Relevant Manufacturing Approaches and Human Adipose Derived Stem Cells

    PubMed Central

    Haslauer, Carla M.; Avery, Matthew R.; Pourdeyhimi, Behnam; Loboa, Elizabeth G.

    2014-01-01

    Polymeric scaffolds have emerged as a means of generating three-dimensional tissues, such as for the treatment of bone injuries and non-unions. In this study, a fibrous scaffold was designed using the biocompatible, degradable polymer poly-lactic acid in combination with a water dispersible sacrificial polymer, EastONE. Fibers were generated via industry relevant, facile scale-up melt-spinning techniques with an islands-in-the-sea geometry. Following removal of EastONE, a highly porous fiber remained possessing 12 longitudinal channels and pores throughout all internal and external fiber walls. Weight loss and surface area characterization confirmed the generation of highly porous fibers as observed via focused ion beam/scanning electron microscopy. Porous fibers were then knit into a three-dimensional scaffold and seeded with human adipose-derived stem cells (hASC). Confocal microscopy images confirmed hASC attachment to the fiber walls and proliferation throughout the knit structure. Quantification of cell-mediated calcium accretion following culture in osteogenic differentiation medium confirmed hASC differentiation throughout the porous constructs. These results suggest incorporation of a sacrificial polymer within islands-in-the-sea fibers generates a highly porous scaffold capable of supporting stem cell viability and differentiation with the potential to generate large three-dimensional constructs for bone regeneration and/or other tissue engineering applications. PMID:25229198

  4. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering.

    PubMed

    Stewart, Elise; Kobayashi, Nao R; Higgins, Michael J; Quigley, Anita F; Jamali, Sina; Moulton, Simon E; Kapsa, Robert M I; Wallace, Gordon G; Crook, Jeremy M

    2015-04-01

    Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.

  5. Chemical Synthesis, Characterization, and Biocompatibility Study of Hydroxyapatite/Chitosan Phosphate Nanocomposite for Bone Tissue Engineering Applications

    PubMed Central

    Pramanik, Nabakumar; Mishra, Debasish; Banerjee, Indranil; Maiti, Tapas Kumar; Bhargava, Parag; Pramanik, Panchanan

    2009-01-01

    A novel bioanalogue hydroxyapatite (HAp)/chitosan phosphate (CSP) nanocomposite has been synthesized by a solution-based chemical methodology with varying HAp contents from 10 to 60% (w/w). The interfacial bonding interaction between HAp and CSP has been investigated through Fourier transform infrared absorption spectra (FTIR) and x-ray diffraction (XRD). The surface morphology of the composite and the homogeneous dispersion of nanoparticles in the polymer matrix have been investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The mechanical properties of the composite are found to be improved significantly with increase in nanoparticle contents. Cytotoxicity test using murine L929 fibroblast confirms that the nanocomposite is cytocompatible. Primary murine osteoblast cell culture study proves that the nanocomposite is osteocompatible and highly in vitro osteogenic. The use of CSP promotes the homogeneous distribution of particles in the polymer matrix through its pendant phosphate groups along with particle-polymer interfacial interactions. The prepared HAp/CSP nanocomposite with uniform microstructure may be used in bone tissue engineering applications. PMID:20130797

  6. Pegylation of Antimicrobial Peptides Maintains the Active Peptide Conformation, Model Membrane Interactions, and Antimicrobial Activity while Improving Lung Tissue Biocompatibility following Airway Delivery

    PubMed Central

    Morris, Christopher J.; Beck, Konrad; Fox, Marc A.; Ulaeto, David; Clark, Graeme C.

    2012-01-01

    Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC50s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections. PMID:22430978

  7. In Vitro and In Vivo Evaluation of Self-Mineralization and Biocompatibility of Injectable, Dual-Gelling Hydrogels for Bone Tissue Engineering

    PubMed Central

    Spicer, Patrick P.; Watson, Brendan M.; Tzouanas, Stephanie N.; Roh, Terrence T.; Mikos, Antonios G.

    2015-01-01

    In this study, we investigated the mineralization capacity and biocompatibility of injectable, dual-gelling hydrogels in a rat cranial defect as a function of hydrogel hydrophobicity from either the copolymerization of a hydrolyzable lactone ring or the hydrogel polymer content. The hydrogel system comprised a poly(N-isopropylacrylamide)-based thermogelling macromer (TGM) and a polyamidoamine crosslinker. The thermogelling macromer was copolymerized with (TGM/DBA) or without (TGM) a dimethyl-γ-butyrolactone acrylate (DBA)-containing lactone ring that modulated the lower critical solution temperature and thus, the hydrogel hydrophobicity, over time. Three hydrogel groups were examined: (1) 15 wt% TGM, (2) 15 wt% TGM/DBA, and (3) 20 wt% TGM/DBA. The hydrogels were implanted within an 8 mm critical size rat cranial defect for 4 and 12 weeks. Implants were harvested at each timepoint and analyzed for bone formation, hydrogel mineralization and tissue response using microcomputed tomography (microCT). Histology and fibrous capsule scoring showed a light inflammatory response at 4 weeks that was mitigated by 12 weeks for all groups. MicroCT scoring and bone volume quantification demonstrated similar bone formation at 4 weeks that was significantly increased for the more hydrophobic hydrogel formulations - 15 wt% TGM and 20 wt% TGM/DBA - from 4 weeks to 12 weeks. A complementary in vitro acellular mineralization study revealed that the hydrogels exhibited calcium binding properties in the presence of serum-containing media, which was modulated by the hydrogel hydrophobicity. The tailored mineralization capacity of these injectable, dual-gelling hydrogels with hydrolysis-dependent hydrophobicity presents an exciting property for their use in bone tissue engineering applications. PMID:25483428

  8. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.

    PubMed

    Menaa, Farid; Abdelghani, Adnane; Menaa, Bouzid

    2015-12-01

    The discovery of the interesting intrinsic properties of graphene, a two-dimensional nanomaterial, has boosted further research and development for various types of applications from electronics to biomedicine. During the last decade, graphene and several graphene-derived materials, such as graphene oxide, carbon nanotubes, activated charcoal composite, fluorinated graphenes and three-dimensional graphene foams, have been extensively explored as components of biosensors or theranostics, or to remotely control cell-substrate interfaces, because of their remarkable electro-conductivity. To date, despite the intensive progress in human stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. Interestingly, most of the recent in vitro studies indicate that graphene-based nanomaterials (i.e. mainly graphene, graphene oxide and carbon nanotubes) promote stem cell adhesion, growth, expansion and differentiation. Although cell viability in vitro is not affected, their potential nanocytoxicity (i.e. nanocompatibility and consequences of uncontrolled nanobiodegradability) in a clinical setting using humans remains unknown. Therefore, rigorous internationally standardized clinical studies in humans that would aim to assess their nanotoxicology are requested. In this paper we report and discuss the recent and pertinent findings about graphene and derivatives as valuable nanomaterials for stem cell research (i.e. culture, maintenance and differentiation) and tissue engineering, as well as for regenerative, translational and personalized medicine (e.g. bone reconstruction, neural regeneration). Also, from scarce nanotoxicological data, we also highlight the importance of functionalizing graphene-based nanomaterials to minimize the cytotoxic effects, as well as other critical safety parameters that remain important to take into consideration when developing nanobionanomaterials.

  9. Method of making biocompatible electrodes

    DOEpatents

    Wollam, John S.

    1992-01-01

    A process of improving the sensing function of biocompatible electrodes and the product so made are disclosed. The process is designed to alter the surfaces of the electrodes at their tips to provide increased surface area and therefore decreased contact resistance at the electrode-tissue interface for increased sensitivity and essentially includes rendering the tips atomically clean by exposing them to bombardment by ions of an inert gas, depositing an adhesion layer on the cleaned tips, forming a hillocked layer on the adhesion layer by increasing the temperature of the tips, and applying a biocompatible coating on the hillocked layer. The resultant biocompatible electrode is characterized by improved sensitivity, minimum voltage requirement for organ stimulation and a longer battery life for the device in which it is employed.

  10. Electrospinning of Biocompatible Nanofibers

    NASA Astrophysics Data System (ADS)

    Coughlin, Andrew J.; Queen, Hailey A.; McCullen, Seth D.; Krause, Wendy E.

    2006-03-01

    Artificial scaffolds for growing cells can have a wide range of applications including wound coverings, supports in tissue cultures, drug delivery, and organ and tissue transplantation. Tissue engineering is a promising field which may resolve current problems with transplantation, such as rejection by the immune system and scarcity of donors. One approach to tissue engineering utilizes a biodegradable scaffold onto which cells are seeded and cultured, and ideally develop into functional tissue. The scaffold acts as an artificial extracellular matrix (ECM). Because a typical ECM contains collagen fibers with diameters of 50-500 nm, electrostatic spinning (electrospinning) was used to mimic the size and structure of these fibers. Electrospinning is a novel way of spinning a nonwoven web of fibers on the order of 100 nm, much like the web of collagen in an ECM. We are investigating the ability of several biocompatible polymers (e.g., chitosan and polyvinyl alcohol) to form defect-free nanofiber webs and are studying the influence of the zero shear rate viscosity, molecular weight, entanglement concentration, relaxation time, and solvent on the resulting fiber size and morphology.

  11. A Biocompatible Arginine-based Polycation

    PubMed Central

    Zern, Blaine J.; Chu, Hunghao; Osunkoya, Adeboye O.; Gao, Jin; Wang, Yadong

    2013-01-01

    Self assembly between cations and anions is ubiquitous throughout nature. Important biological structures such as chromatin often use polyvalent assembly between a polycation and a polyaninon. Biomedical importance of synthetic polycations arises from their affinity to polyanions such as nucleic acid and heparan sulfate. However, the limited biocompatibility of synthetic polycations hampers the realization of their immense potential. By examining biocompatible cationic peptides, we hypothesize that a biocompatible polycation should be biodegradable and made from endogenous cations. We designed an arginine-based biodegradable polycation and demonstrated that it was orders of magnitude more compatible than conventional polycations in vitro and in vivo. This biocompatibility diminishes when L-arginine is substituted with D-arginine or when the biodegradable ester linker changes to a biostable ether linker. We believe this design can lead to many biocompatible polycations that can significantly advance a wide range of applications including controlled release, tissue engineering, biosensing, and medical devices. PMID:23393493

  12. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  13. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine

    PubMed Central

    Vielreicher, M.; Schürmann, S.; Detsch, R.; Schmidt, M. A.; Buttgereit, A.; Boccaccini, A.; Friedrich, O.

    2013-01-01

    This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging. PMID:23864499

  14. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility.

    PubMed

    Li, Chang-Qing; Huang, Bo; Luo, Gang; Zhang, Chuan-Zhi; Zhuang, Ying; Zhou, Yue

    2010-02-01

    To construct a novel scaffold for nucleus pulposus (NP) tissue engineering, The porous type II collagen (CII)/hyaluronate (HyA)-chondroitin-6-sulfate (6-CS) scaffold was prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking system. The physico-chemical properties and biocompatibility of CII/HyA-CS scaffolds were evaluated. The results suggested CII/HyA-CS scaffolds have a highly porous structure (porosity: 94.8 +/- 1.5%), high water-binding capacity (79.2 +/- 2.8%) and significantly improved mechanical stability by EDC/NHS crosslinking (denaturation temperature: 74.6 +/- 1.8 and 58.1 +/- 2.6 degrees C, respectively, for the crosslinked scaffolds and the non-crosslinked; collagenase degradation rate: 39.5 +/- 3.4 and 63.5 +/- 2.0%, respectively, for the crosslinked scaffolds and the non-crosslinked). The CII/HyA-CS scaffolds also showed satisfactory cytocompatibility and histocompatibility as well as low immunogenicity. These results indicate CII/HyA-CS scaffolds may be an alternative material for NP tissue engineering due to the similarity of its composition and physico-chemical properties to those of the extracellular matrices (ECM) of native NP.

  15. Application of the lithium and magnesium initiators for the synthesis of glycolide, lactide, and epsilon-caprolactone copolymers biocompatible with brain tissue.

    PubMed

    Dobrzyński, Piotr; Kasperczyk, Janusz; Jelonek, Katarzyna; Ryba, Mirosław; Walski, Michał; Bero, Maciej

    2006-12-15

    The subject of this work is new method of the synthesis of biodegradable copolymers compatible with brain tissue. Copolymerization of glycolide with lactide was conducted in solution or in bulk in the presence of LiBu, LiAcac, MgBu(2), Mg(acac)(2) as initiators. In all cases, copolymers with molecular weight of 20000-40000 were obtained, which enables to use them as drug carriers. During the reactions of copolymer chain growth, the intermolecular transesterification occurs, changing the distribution of comonomeric units in copolymer chain. Magnesium initiators showed a lower contribution to transesterification in comparison with lithium and calcium compounds. The copolymerization of glycolide with epsilon-caprolactone using magnesium compounds as initiators was also described. The random glycolide/epsilon-caprolactone copolymer (10/90) obtained with MgBu(2) was used in in vivo study in the forms of microspheres and foils. Complete degradation of microspheres during 6 weeks was observed after the implantation to brain tissue. All implanted copolymers are compatible with brain tissue. PMID:16886217

  16. Bioglass: A novel biocompatible innovation

    PubMed Central

    Krishnan, Vidya; Lakshmi, T.

    2013-01-01

    Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass) as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as “bioactive glass-bioglass.” It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as “bioactive ceramics.” The aim of this article is to give a bird's-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone. PMID:23833747

  17. Biocompatibility of plasma nanostructured biopolymers

    NASA Astrophysics Data System (ADS)

    Slepičková Kasálková, N.; Slepička, P.; Bačáková, L.; Sajdl, P.; Švorčík, V.

    2013-07-01

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell's adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  18. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.

    PubMed

    Nga, Nguyen Kim; Hoai, Tran Thanh; Viet, Pham Hung

    2015-04-01

    This study presents a facile synthesis of biomimetic hydroxyapatite nanorod/poly(D,L) lactic acid (HAp/PDLLA) scaffolds with the use of solvent casting combined with a salt-leaching technique for bone-tissue engineering. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were used to observe the morphologies, pore structures of synthesized scaffolds, interactions between hydroxyapatite nanorods and poly(D,L) lactic acid, as well as the compositions of the scaffolds, respectively. Porosity of the scaffolds was determined using the liquid substitution method. Moreover, the apatite-forming capability of the scaffolds was evaluated through simulated body fluid (SBF) incubation tests, whereas the viability, attachment, and distribution of human osteoblast cells (MG 63 cell line) on the scaffolds were determined through alamarBlue assay and confocal laser microscopy after nuclear staining with 4',6-diamidino-2-phenylindole and actin filaments of a cytoskeleton with Oregon Green 488 phalloidin. Results showed that hydroxyapatite nanorod/poly(D,L) lactic acid scaffolds that mimic the structure of natural bone were successfully produced. These scaffolds possessed macropore networks with high porosity (80-84%) and mean pore sizes ranging 117-183 μm. These scaffolds demonstrated excellent apatite-forming capabilities. The rapid formation of bone-like apatites with flower-like morphology was observed after 7 days of incubation in SBFs. The scaffolds that had a high percentage (30 wt.%) of hydroxyapatite demonstrated better cell adhesion, proliferation, and distribution than those with low percentages of hydroxyapatite as the days of culture increased. This work presented an efficient route for developing biomimetic composite scaffolds, which have potential applications in bone-tissue engineering.

  19. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.

    PubMed

    Nga, Nguyen Kim; Hoai, Tran Thanh; Viet, Pham Hung

    2015-04-01

    This study presents a facile synthesis of biomimetic hydroxyapatite nanorod/poly(D,L) lactic acid (HAp/PDLLA) scaffolds with the use of solvent casting combined with a salt-leaching technique for bone-tissue engineering. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were used to observe the morphologies, pore structures of synthesized scaffolds, interactions between hydroxyapatite nanorods and poly(D,L) lactic acid, as well as the compositions of the scaffolds, respectively. Porosity of the scaffolds was determined using the liquid substitution method. Moreover, the apatite-forming capability of the scaffolds was evaluated through simulated body fluid (SBF) incubation tests, whereas the viability, attachment, and distribution of human osteoblast cells (MG 63 cell line) on the scaffolds were determined through alamarBlue assay and confocal laser microscopy after nuclear staining with 4',6-diamidino-2-phenylindole and actin filaments of a cytoskeleton with Oregon Green 488 phalloidin. Results showed that hydroxyapatite nanorod/poly(D,L) lactic acid scaffolds that mimic the structure of natural bone were successfully produced. These scaffolds possessed macropore networks with high porosity (80-84%) and mean pore sizes ranging 117-183 μm. These scaffolds demonstrated excellent apatite-forming capabilities. The rapid formation of bone-like apatites with flower-like morphology was observed after 7 days of incubation in SBFs. The scaffolds that had a high percentage (30 wt.%) of hydroxyapatite demonstrated better cell adhesion, proliferation, and distribution than those with low percentages of hydroxyapatite as the days of culture increased. This work presented an efficient route for developing biomimetic composite scaffolds, which have potential applications in bone-tissue engineering. PMID:25791418

  20. SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY

    PubMed Central

    Thevenot, Paul; Hu, Wenjing; Tang, Liping

    2011-01-01

    Implantable medical devices are increasingly important in the practice of modern medicine. Unfortunately, almost all medical devices suffer to a different extent from adverse reactions, including inflammation, fibrosis, thrombosis and infection. To improve the safety and function of many types of medical implants, a major need exists for development of materials that evoked desired tissue responses. Because implant-associated protein adsorption and conformational changes thereafter have been shown to promote immune reactions, rigorous research efforts have been emphasized on the engineering of surface property (physical and chemical characteristics) to reduce protein adsorption and cell interactions and subsequently improve implant biocompatibility. This brief review is aimed to summarize the past efforts and our recent knowledge about the influence of surface functionality on protein:cell:biomaterial interactions. It is our belief that detailed understandings of bioactivity of surface functionality provide an easy, economic, and specific approach for the future rational design of implantable medical devices with desired tissue reactivity and, hopefully, wound healing capability. PMID:18393890

  1. Biocompatibility and osteogenic properties of porous tantalum

    PubMed Central

    WANG, QIAN; ZHANG, HUI; LI, QIJIA; YE, LEI; GAN, HONGQUAN; LIU, YINGJIE; WANG, HUI; WANG, ZHIQIANG

    2015-01-01

    Porous tantalum has been reported to be a promising material for use in bone tissue engineering. In the present study, the biocompatibility and osteogenic properties of porous tantalum were studied in vitro and in vivo. The morphology of porous tantalum was observed using scanning electron microscopy (SEM). Osteoblasts were cultured with porous tantalum, and cell morphology, adhesion and proliferation were investigated using optical microscopy and SEM. In addition, porous tantalum rods were implanted in rabbits, and osteogenesis was observed using laser scanning confocal microscopy and hard tissue slice examination. The osteoblasts were observed to proliferate over time and adhere to the tantalum surface and pore walls, exhibiting a variety of shapes and intercellular connections. The porous tantalum rod connected tightly with the host bone. At weeks 2 and 4 following implantation, new bone and small blood vessels were observed at the tantalum-host bone interface and pores. At week 10 after the porous tantalum implantation, new bone tissue was observed at the tantalum-host bone interface and pores. By week 12, the tantalum-host bone interface and pores were covered with new bone tissue and the bone trabeculae had matured and connected directly with the materials. Therefore, the results of the present study indicate that porous tantalum is non-toxic, biocompatible and a promising material for use in bone tissue engineering applications. PMID:25667628

  2. Friction and adhesion of gecko-inspired PDMS flaps on rough surfaces.

    PubMed

    Yu, Jing; Chary, Sathya; Das, Saurabh; Tamelier, John; Turner, Kimberly L; Israelachvili, Jacob N

    2012-08-01

    Geckos have developed a unique hierarchical structure to maintain climbing ability on surfaces with different roughness, one of the extremely important parameters that affect the friction and adhesion forces between two surfaces. Although much attention has been paid on fabricating various structures that mimic the hierarchical structure of a gecko foot, yet no systematic effort, in experiment or theory, has been made to quantify the effect of surface roughness on the performance of the fabricated structures that mimic the hierarchical structure of geckos. Using a modified surface forces apparatus (SFA), we measured the adhesion and friction forces between microfabricated tilted PDMS flaps and optically smooth SiO(2) and rough SiO(2) surfaces created by plasma etching. Anisotropic adhesion and friction forces were measured when sliding the top glass surface along (+y) and against (-y) the tilted direction of the flaps. Increasing the surface roughness first increased the adhesion and friction forces measured between the flaps and the rough surface due to topological matching of the two surfaces but then led to a rapid decrease in both of these forces. Our results demonstrate that the surface roughness significantly affects the performance of gecko mimetic adhesives and that different surface textures can either increase or decrease the adhesion and friction forces of the fabricated adhesives.

  3. Gecko-inspired carbon nanotube-based self-cleaning adhesives.

    PubMed

    Sethi, Sunny; Ge, Liehui; Ci, Lijie; Ajayan, P M; Dhinojwala, Ali

    2008-03-01

    The design of reversible adhesives requires both stickiness and the ability to remain clean from dust and other contaminants. Inspired by gecko feet, we demonstrate the self-cleaning ability of carbon nanotube-based flexible gecko tapes.

  4. Sticking to the story: outstanding challenges in gecko-inspired adhesives.

    PubMed

    Niewiarowski, Peter H; Stark, Alyssa Y; Dhinojwala, Ali

    2016-04-01

    The natural clinging ability of geckos has inspired hundreds of studies seeking design principles that could be applied to creating synthetic adhesives with the same performance capabilities as the gecko: adhesives that use no glue, are self-cleaning and reusable, and are insensitive to a wide range of surface chemistries and roughness. Important progress has been made, and the basic mechanics of how 'hairy' adhesives work have been faithfully reproduced, advancing theory in surface science and portending diverse practical applications. However, after 15 years, no synthetic mimic can yet perform as well as a gecko and simultaneously meet of all the criteria listed above. Moreover, processes for the production of inexpensive and scalable products are still not clearly in view. Here, we discuss our perspective on some of the gaps in understanding that still remain; these gaps in our knowledge should stimulate us to turn to deeper study of the way in which free-ranging geckos stick to the variety of surfaces found in their natural environments and to a more complete analysis of the materials composing the gecko toe pads. PMID:27030772

  5. Monitoring the Contact Stress Distribution of Gecko-Inspired Adhesives Using Mechano-Sensitive Surface Coatings.

    PubMed

    Neubauer, Jens W; Xue, Longjian; Erath, Johann; Drotlef, Dirk-M; Campo, Aránzazu Del; Fery, Andreas

    2016-07-20

    The contact geometry of microstructured adhesive surfaces is of high relevance for adhesion enhancement. Theoretical considerations indicate that the stress distribution in the contact zone is crucial for the detachment mechanism, but direct experimental evidence is missing so far. In this work, we propose a method that allows, for the first time, the detection of local stresses at the contact area of biomimetic adhesive microstructures during contact formation, compression and detachment. We use a mechano-sensitive polymeric layer, which turns mechanical stresses into changes of fluorescence intensity. The biomimetic surface is brought into contact with this layer in a well-defined fashion using a microcontact printer, while the contact area is monitored with fluorescence microscopy in situ. Thus, changes in stress distribution across the contact area during compression and pull-off can be visualized with a lateral resolution of 1 μm. We apply this method to study the enhanced adhesive performance of T-shaped micropillars, compared to flat punch microstructures. We find significant differences in the stress distribution of the both differing contact geometries during pull-off. In particular, we find direct evidence for the suppression of crack nucleation at the edge of T-shaped pillars, which confirms theoretical models for the superior adhesive properties of these structures. PMID:27327111

  6. Effect of leaning angle of gecko-inspired slanted polymer nanohairs on dry adhesion

    NASA Astrophysics Data System (ADS)

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kwak, Moon Kyu; Moon, Sang Heup; Suh, Kahp Yang

    2010-01-01

    We present analysis of adhesion properties of angled polymer nanohairs with a wide range of leaning angles from 0° to 45° and ultraviolet (UV)-curable polyurethane acrylate (PUA) materials of two different elastic moduli (19.8 and 320 MPa). It is demonstrated that shear adhesion and adhesion hysteresis can be greatly enhanced by increasing the leaning angle of nanohairs both for soft and hard materials due to increased contact area and reduced structural stiffness.

  7. Sticking to the story: outstanding challenges in gecko-inspired adhesives.

    PubMed

    Niewiarowski, Peter H; Stark, Alyssa Y; Dhinojwala, Ali

    2016-04-01

    The natural clinging ability of geckos has inspired hundreds of studies seeking design principles that could be applied to creating synthetic adhesives with the same performance capabilities as the gecko: adhesives that use no glue, are self-cleaning and reusable, and are insensitive to a wide range of surface chemistries and roughness. Important progress has been made, and the basic mechanics of how 'hairy' adhesives work have been faithfully reproduced, advancing theory in surface science and portending diverse practical applications. However, after 15 years, no synthetic mimic can yet perform as well as a gecko and simultaneously meet of all the criteria listed above. Moreover, processes for the production of inexpensive and scalable products are still not clearly in view. Here, we discuss our perspective on some of the gaps in understanding that still remain; these gaps in our knowledge should stimulate us to turn to deeper study of the way in which free-ranging geckos stick to the variety of surfaces found in their natural environments and to a more complete analysis of the materials composing the gecko toe pads.

  8. Harnessing tunable scanning probe techniques to measure shear enhanced adhesion of gecko-inspired fibrillar arrays.

    PubMed

    Li, Yasong; Zhou, James H-W; Zhang, Cheng; Menon, Carlo; Gates, Byron D

    2015-02-01

    The hierarchical arrays of mesoscale to nanoscale fibrillar structures on a gecko's foot enable the animal to climb surfaces of varying roughness. Adhesion force between the fibrillar structures and various surfaces is maximized after the gecko drags its foot in one direction, which has also been demonstrated to improve the adhesion forces of artificial fibrillar arrays. Essential conditions that influence the magnitude of these interactions include the lateral distance traveled and velocity between the contacting surfaces, as well as the velocity at which the two surfaces are subsequently separated. These parameters have, however, not been systematically investigated to assess the adhesion properties of artificial adhesives. We introduce a systematic study that investigates these conditions using a scanning probe microscope to measure the adhesion forces of artificial adhesives through a process that mimics the mechanism by which a gecko climbs. The measured adhesion response was different for arrays of shorter and longer fibrils. These results from 9000 independent measurements also provide further insight into the dynamics of the interactions between fibrillar arrays and contacting surfaces. These studies establish scanning probe microscopy techniques as a versatile approach for measuring a variety of adhesion properties of artificial fibrillar adhesives.

  9. Monitoring the Contact Stress Distribution of Gecko-Inspired Adhesives Using Mechano-Sensitive Surface Coatings.

    PubMed

    Neubauer, Jens W; Xue, Longjian; Erath, Johann; Drotlef, Dirk-M; Campo, Aránzazu Del; Fery, Andreas

    2016-07-20

    The contact geometry of microstructured adhesive surfaces is of high relevance for adhesion enhancement. Theoretical considerations indicate that the stress distribution in the contact zone is crucial for the detachment mechanism, but direct experimental evidence is missing so far. In this work, we propose a method that allows, for the first time, the detection of local stresses at the contact area of biomimetic adhesive microstructures during contact formation, compression and detachment. We use a mechano-sensitive polymeric layer, which turns mechanical stresses into changes of fluorescence intensity. The biomimetic surface is brought into contact with this layer in a well-defined fashion using a microcontact printer, while the contact area is monitored with fluorescence microscopy in situ. Thus, changes in stress distribution across the contact area during compression and pull-off can be visualized with a lateral resolution of 1 μm. We apply this method to study the enhanced adhesive performance of T-shaped micropillars, compared to flat punch microstructures. We find significant differences in the stress distribution of the both differing contact geometries during pull-off. In particular, we find direct evidence for the suppression of crack nucleation at the edge of T-shaped pillars, which confirms theoretical models for the superior adhesive properties of these structures.

  10. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  11. Gecko-inspired but chemically switched friction and adhesion on nanofibrillar surfaces.

    PubMed

    Ma, Shuanhong; Wang, Daoai; Liang, Yongmin; Sun, Baoquan; Gorb, Stanislav N; Zhou, Feng

    2015-03-01

    Chemically switched friction nano-fibrillar surfaces (SiNWAs-PSPMA & SiNWAs-PMAA arrays) can be constructed by finely decorating ordered Si nanowire arrays with responsive polymer brushes. As expected, these surfaces sense humidity or pH smartly and show reversible friction switching, based on swelling and shrinking of the polymer brushes, which is successfully monitored by AFM in liquid media.

  12. There is no such thing as a biocompatible material.

    PubMed

    Williams, David F

    2014-12-01

    This Leading Opinion Paper discusses a very important matter concerning the use of a single word in biomaterials science. This might be considered as being solely concerned with semantics, but it has implications for the scientific rationale for biomaterials selection and the understanding of their performance. That word is the adjective 'biocompatible', which is often used to characterize a material property. It is argued here that biocompatibility is a perfectly acceptable term, but that it subsumes a variety of mechanisms of interaction between biomaterials and tissues or tissue components and can only be considered in the context of the characteristics of both the material and the biological host within which it placed. De facto it is a property of a system and not of a material. It follows that there can be no such thing as a biocompatible material. It is further argued that in those situations where it is considered important, or necessary, to use a descriptor of biocompatibility, as in a scientific paper, a regulatory submission or in a legal argument, the phrase 'intrinsically biocompatible system' would be the most appropriate. The rationale for this linguistic restraint is that far too often it has been assumed that some materials are 'universally biocompatible' on the basis of acceptable clinical performance in one situation, only for entirely unacceptable performance to ensue in quite different clinical circumstances.

  13. Biocompatibility of Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Ruan, Jing; Song, Hua; Zhang, Jiali; Wo, Yan; Guo, Shouwu; Cui, Daxiang

    2011-12-01

    Herein, we report the effects of graphene oxides on human fibroblast cells and mice with the aim of investigating graphene oxides' biocompatibility. The graphene oxides were prepared by the modified Hummers method and characterized by high-resolution transmission electron microscope and atomic force microscopy. The human fibroblast cells were cultured with different doses of graphene oxides for day 1 to day 5. Thirty mice divided into three test groups (low, middle, high dose) and one control group were injected with 0.1, 0.25, and 0.4 mg graphene oxides, respectively, and were raised for 1 day, 7 days, and 30 days, respectively. Results showed that the water-soluble graphene oxides were successfully prepared; graphene oxides with dose less than 20 μg/mL did not exhibit toxicity to human fibroblast cells, and the dose of more than 50 μg/mL exhibits obvious cytotoxicity such as decreasing cell adhesion, inducing cell apoptosis, entering into lysosomes, mitochondrion, endoplasm, and cell nucleus. Graphene oxides under low dose (0.1 mg) and middle dose (0.25 mg) did not exhibit obvious toxicity to mice and under high dose (0.4 mg) exhibited chronic toxicity, such as 4/9 mice death and lung granuloma formation, mainly located in lung, liver, spleen, and kidney, almost could not be cleaned by kidney. In conclusion, graphene oxides exhibit dose-dependent toxicity to cells and animals, such as inducing cell apoptosis and lung granuloma formation, and cannot be cleaned by kidney. When graphene oxides are explored for in vivo applications in animal or human body, its biocompatibility must be considered.

  14. Biocompatible nanoparticles and biopolyelectrolytes

    NASA Astrophysics Data System (ADS)

    Zribi, Olena

    The research presented in this manuscript encompasses a merger of two research directions: a study of aqueous nanoparticle colloids and a study of biological polyelectrolytes. The majority of biomedical applications of nanoparticles require stable aqueous colloids of nanoparticles as a starting point. A new one-step method of preparation of aqueous solutions of ultra-fine ferroelectric barium titanate nanoparticles was developed and generalized to the preparation of stable aqueous colloids of semiconductor nanoparticles. This high-energy ball milling technique is low cost, environmentally friendly, and allows for control of nanoparticle size by changing milling time. Aqueous colloids of BaTiO3 nanoparticles are stable over time, maintain ferroelectricity and can be used as second harmonic generating nanoprobes for biomedical imaging. Biopolyelectrolytes exhibit a variety of novel liquid-crystalline phases in aqueous solutions where their electrolytic nature is a driving force behind phase formation. We study medically relevant mixtures of F-actin, DNA and oppositely charged ions (such as multivalent salts and antibiotic drugs) and map out phase diagrams and laws that govern phase transitions. We combine these research directions in studies of the condensation behavior in aqueous solutions of biocompatible nanoparticles and biopolyelectrolytes.

  15. Carbon Fiber Biocompatibility for Implants

    PubMed Central

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  16. Biocompatibility of Textile Titanium Nickel Implants with Fibroblast Culture.

    PubMed

    Kokorev, O V; Khodorenko, V N; Anikeev, S G; Gunther, V E

    2015-05-01

    The parameters of biocompatibility of titanium nickel implants of different design with fibroblast culture are studied. Colonization of textile and mesh implants with fibroblasts and tissue development depend on the size of mesh cells and thread diameter. Titanium nickel implants of different constructions do not inhibit the growth of fibroblast culture. PMID:26028231

  17. Biocompatibility of Textile Titanium Nickel Implants with Fibroblast Culture.

    PubMed

    Kokorev, O V; Khodorenko, V N; Anikeev, S G; Gunther, V E

    2015-05-01

    The parameters of biocompatibility of titanium nickel implants of different design with fibroblast culture are studied. Colonization of textile and mesh implants with fibroblasts and tissue development depend on the size of mesh cells and thread diameter. Titanium nickel implants of different constructions do not inhibit the growth of fibroblast culture.

  18. Step-Index Optical Fiber Made of Biocompatible Hydrogels.

    PubMed

    Choi, Myunghwan; Humar, Matjaž; Kim, Seonghoon; Yun, Seok-Hyun

    2015-07-15

    A biocompatible step-index optical fiber made of poly(ethylene glycol) and alginate hydrogels is demonstrated. The fabricated fiber exhibits excellent light-guiding efficiency in biological tissues. Moreover, the core of hydrogel fibers can be easily doped with functional molecules and nanoparticles for localized light emission, sensing, and therapy.

  19. Biocompatibility of Bacterial Cellulose Based Biomaterials

    PubMed Central

    Torres, Fernando G.; Commeaux, Solene; Troncoso, Omar P.

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed. PMID:24955750

  20. Ultraflexible organic amplifier with biocompatible gel electrodes.

    PubMed

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-01-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue. PMID:27125910

  1. Ultraflexible organic amplifier with biocompatible gel electrodes

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm-2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ~200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  2. Biocompatibility of root-end filling materials: recent update

    PubMed Central

    Gupta, Saurabh Kumar; Newaskar, Vilas

    2013-01-01

    The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials. PMID:24010077

  3. The quantification of biocompatibility: toward a new definition

    NASA Astrophysics Data System (ADS)

    Ratner, Buddy

    2008-03-01

    Implantable medical devices, and the biomaterials that comprise them, form a 100B business worldwide. Medical devices save lives and/or improve the quality of life for millions. Tissue engineering also makes extensive use of biomaterials -- biomaterials are an enabling technology for tissue engineering. A central word to understanding the effectiveness of such materials and devices is biocompatibility. The word ``biocompatible'' is widely used in reference to biomaterials and medical devices and most everyone has some value understanding of its meaning. Many formal definitions have been proposed for this word, but it is still largely used in an imprecise manner. Four descriptions or definitions of biocompatibility will be reviewed: a widely adopted definition from a consensus conference, a surgeon's perspective on this word, the regulatory agency view and the factors that clearly influence biocompatibility. In this talk, the classical definition of biocompatibility will be contrasted to a newer definition embracing molecular concepts and the understanding of normal wound healing. The biological data on the in vivo healing responses of mammals to implants will be described. A strategy to improve the healing of biomaterials will be presented. It is based upon surface molecular engineering. First, non-specific protein adsorption must be inhibited. Strategies to achieve this design parameter will be presented. Then methods to deliver the specific protein signals will be addressed. Matricellular proteins such as osteopontin, thrombospondin 2 and SPARC will be introduced with an emphasis on exploiting the special reactivity of such proteins. A discussion of the influence of surface textures and porosities will also be presented. Finally a new scheme based upon macrophage phenotypic pathways will be proposed that may allow a quantitative measure of extent of biocompatibility.

  4. [IN VIVO EVALUATION OF POLYCAPROLACTONE-HYDROXYAPATITE SCAFFOLD BIOCOMPATIBILITY].

    PubMed

    Ivanov, A N; Kozadaev, M N; Bogomolova, N V; Matveeva, O V; Puchinyan, D M; Norkin, I A; Sal'kovskii, Yu E; Lyubun, G P

    2015-01-01

    Biocompatibility is one of the main and very important properties for scaffolds. The aim of the present study was to investigate cells population dynamics in vivo in the process of original polycaprolactone-hydroxyapatite scaffold colonization, as well as tissue reactions to the implantation to assess the biocompatibility of the matrix. It has been found that tissue reactive changes in white rats subside completely up to the 21st day after subcutaneous polycaprolactone-hydroxyapatite scaffold implantation. Matrix was actively colonized by connective tissue cells in the period from the 7th to the 21st day of the experiment. However, intensive scaffold vascularization started from the 14th day after implantation. These findings suggest a high degree of the polycaprolactone-hydroxyapatite scaffold biocompatiblilitye.

  5. Biocompatibility of implantable biomedical devices

    NASA Astrophysics Data System (ADS)

    Lyu, Suping

    2008-03-01

    Biomedical devices have been broadly used to treat human disease, especially chronic diseases where pharmaceuticals are less effective. Heart valve and artificial joint are examples. Biomedical devices perform by delivering therapies such as electric stimulations, mechanical supports and biological actions. While the uses of biomedical devices are highly successful they can trigger adverse biological reactions as well. The property that medical devices perform with intended functions but not causing unacceptable adverse effects was called biocompatibility in the early time. As our understanding of biomaterial-biological interactions getting broader, biocompatibility has more meanings. In this talk, I will present some adverse biological reactions observed with implantable biomedical devices. Among them are surface fouling of implantable sensors, calcification with vascular devices, restenosis with stents, foreign particle migration and mechanical fractures of devices due to inflammation reactions. While these effects are repeatable, there are very few quantitative data and theories to define them. The purpose of this presentation is to introduce this biocompatibility concept to biophysicists to stimulate research interests at different angles. An open question is how to quantitatively understand the biocompatibility that, like many other biological processes, has not been quantified experimentally.

  6. Biocompatibility of clinically applied hydroxylapatite ceramic

    SciTech Connect

    van Blitterswijk, C.A.; Grote, J.J. )

    1990-02-01

    The biocompatibility of 11 porous canal wall prostheses and 4 dense incus prostheses, both types made of hydroxylapatite, was studied by light microscopy, scanning electron microscopy, transmission electron microscopy, and x-ray microanalysis. The duration of implantation varied between 4 and 40 months, and the 15 retrieved implants constitute 4% of the 375 clinically applied hydroxylapatite prostheses involved in this study. With respect to integration characteristics, coverage by epithelium and fibrous tissue, and biodegradation, the performance of clinically applied hydroxylapatite generally resembled that seen in animal experiments. However, the reactions during chronic infection in the human ear were more severe than those in experimentally induced acute infections in the rat middle ear. One of the canal wall prostheses showed trace element accumulation in the cytoplasm of phagocytes.

  7. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    PubMed

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  8. CYTOTOXICITY AND BIOCOMPATIBILITY OF DIRECT AND INDIRECT PULP CAPPING MATERIALS

    PubMed Central

    Modena, Karin Cristina da Silva; Casas-Apayco, Leslie Caroll; Atta, Maria Teresa; Costa, Carlos Alberto de Souza; Hebling, Josimeri; Sipert, Carla Renata; Navarro, Maria Fidela de Lima; Santos, Carlos Ferreira

    2009-01-01

    There are several studies about the cytotoxic effects of dental materials in contact with the pulp tissue, such as calcium hydroxide (CH), adhesive systems, resin composite and glass ionomer cements. The aim of this review article was to summarize and discuss the cytotoxicity and biocompatibility of materials used for protection of the dentin-pulp complex, some components of resin composites and adhesive systems when placed in direct or indirect contact with the pulp tissue. A large number of dental materials present cytotoxic effects when applied close or directly to the pulp, and the only material that seems to stimulate early pulp repair and dentin hard tissue barrier formation is CH. PMID:20027424

  9. Biocompatibility of Ti-alloys for long-term implantation.

    PubMed

    Abdel-Hady Gepreel, Mohamed; Niinomi, Mitsuo

    2013-04-01

    The design of new low-cost Ti-alloys with high biocompatibility for implant applications, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals, is a challenge. To meet the demands of longer human life and implantation in younger patients, the development of novel metallic alloys for biomedical applications is aiming at providing structural materials with excellent chemical, mechanical and biological biocompatibility. It is, therefore, likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect. Among the other mechanical properties, the low Young's modulus alloys have been given a special attention recently, in order to avoid the occurrence of stress shielding after implantation. Therefore, many Ti-alloys were developed consisting of biocompatible elements such as Ti, Zr, Nb, Mo, and Ta, and showed excellent mechanical properties including low Young's modulus. However, a recent attention was directed towards the development of low cost-alloys that have a minimum amount of the high melting point and high cost rare-earth elements such as Ta, Nb, Mo, and W. This comes with substituting these metals with the common low cost, low melting point and biocompatible metals such as Fe, Mn, Sn, and Si, while keeping excellent mechanical properties without deterioration. Therefore, the investigation of mechanical and biological biocompatibility of those low-cost Ti-alloys is highly recommended now lead towards commercial alloys with excellent biocompatibility for long-term implantation. PMID:23507261

  10. Biocompatibility of Ti-alloys for long-term implantation.

    PubMed

    Abdel-Hady Gepreel, Mohamed; Niinomi, Mitsuo

    2013-04-01

    The design of new low-cost Ti-alloys with high biocompatibility for implant applications, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals, is a challenge. To meet the demands of longer human life and implantation in younger patients, the development of novel metallic alloys for biomedical applications is aiming at providing structural materials with excellent chemical, mechanical and biological biocompatibility. It is, therefore, likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect. Among the other mechanical properties, the low Young's modulus alloys have been given a special attention recently, in order to avoid the occurrence of stress shielding after implantation. Therefore, many Ti-alloys were developed consisting of biocompatible elements such as Ti, Zr, Nb, Mo, and Ta, and showed excellent mechanical properties including low Young's modulus. However, a recent attention was directed towards the development of low cost-alloys that have a minimum amount of the high melting point and high cost rare-earth elements such as Ta, Nb, Mo, and W. This comes with substituting these metals with the common low cost, low melting point and biocompatible metals such as Fe, Mn, Sn, and Si, while keeping excellent mechanical properties without deterioration. Therefore, the investigation of mechanical and biological biocompatibility of those low-cost Ti-alloys is highly recommended now lead towards commercial alloys with excellent biocompatibility for long-term implantation.

  11. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    PubMed Central

    Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo

    2011-01-01

    Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869

  12. In vitro biocompatibility testing of some synthetic polymers used for the achievement of nervous conduits

    PubMed Central

    Florescu, IP; Coroiu, V; Oancea, A; Lungu, M

    2011-01-01

    Biocompatible synthetic polymers are largely used in the bio–medical domain, tissue engineering and in controlled release of medicines. Polymers can be used in the achievement of cardiac and vascular devices, mammary implants, eye lenses, surgical threads, nervous conduits, adhesives, blood substitutes, etc. Our study was axed on the development of cytotoxicity tests for 3 synthetic polymers, namely polyvinyl alcohol, polyethylene glycol and polyvinyl chloride. These tests targeted to determine the viability and morphology of cells (fibroblasts) that were in indirect contact with the studied polymers. Cell viability achieved for all the studied synthetic polymers allowed their frame in biocompatible material category. Cell morphology did not significantly change, thus accomplishing a new biocompatibility criterion. The degree of biocompatibility of the studied polymers varied. Polyvinyl alcohol presented the highest grade of biocompatibility and polyvinyl chloride placed itself at the lowest limit of biocompatibility. The results achieved allowed the selection of those polymers that (by enhancing their degrees of biocompatibility due to the association with various biopolymers) will be used in the development of new biocompatible materials, useful in nervous conduits manufacture. PMID:22567047

  13. Self-Assembled Antimicrobial and biocompatible copolymer films on Titanium

    PubMed Central

    Pfaffenroth, Cornelia; Winkel, Andreas; Dempwolf, Wibke; Gamble, Lara J.; Castner, David G.; Stiesch, Meike; Menzel, Henning

    2013-01-01

    Biofilm formation on biomedical devices such as dental implants can result in serious infections and finally in device failure. Polymer coatings which provide antimicrobial action to surfaces without compromising the compatibility with human tissue are of great interest. Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate are interesting candidates in this respect. These copolymers form ultrathin polycationic layers on titanium surfaces. As the copolymerization reaction is almost ideal statistical, copolymers with varying compositions can be synthesized and immobilized onto titanium surfaces for comprehensive screening concerning antimicrobial activity and biocompatibility. Copolymer films on titanium were characterized by contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Antibacterial properties were assessed by investigation of adherence of S. mutans which represents a strain found in the human oral cavity. Biocompatibility was rated based on human gingival fibroblast adhesion, proliferation and cell morphology. Depending on polymer composition the coatings displayed a behavior ranging from biocompatibility equal to titanium but no antibacterial action to highly antimicrobial activity but poor biocompatibility. By balancing these two opposing effects by tailoring chemical composition, copolymer coatings were fabricated, which were able to inhibit the growth of S. mutans on the surface significantly but still show a sufficient attachment of gingival fibroblasts. PMID:21818855

  14. Antimicrobial biocompatible bioscaffolds for orthopaedic implants.

    PubMed

    Qureshi, Ammar T; Terrell, Lekeith; Monroe, W Todd; Dasa, Vinod; Janes, Marlene E; Gimble, Jeffrey M; Hayes, Daniel J

    2014-05-01

    Nationally, nearly 1.5 million patients in the USA suffer from ailments requiring bone grafts and hip and other joint replacements. Infections following internal fixation in orthopaedic trauma can cause osteomyelitis in 22-66% of cases and, if uncontrolled, the mortality rate can be as high as 2%. We characterize a procedure for the synthesis of antimicrobial and biocompatible poly-l-lactic acid (PLLA) and poly-ethyleneglycol (PEG) bioscaffolds designed to degrade and absorb at a controlled rate. The bioscaffold architecture aims to provide a suitable substrate for the controlled release of silver nanoparticles (SNPs) to reduce bacterial growth and to aid the proliferation of human adipose-derived stem cells (hASCs) for tissue-engineering applications. The fabricated bioscaffolds were characterized by scanning transmission microscope (SEM) and it showed that the addition of tncreasing concentrations of SNPs results in the formation of dendritic porous channels perpendicular to the axis of precipitation. The antimicrobial properties of these porous bioscaffolds were tested according to a modified ISO 22196 standard across varying concentrations of biomass-mediated SNPs to determine an efficacious antimicrobial concentration. The bioscaffolds reduced the Staphylococcus aureus and Escherichia coli viable colony-forming units by 98.85% and 99.9%, respectively, at an antimicrobial SNPs concentration of 2000 ppm. Human ASCs were seeded on bioscaffolds and cultured in vitro for 20 days to study the effect of SNPs concentration on the viability of cells. SEM analysis and the metabolic activity-based fluorescent dye, AlamarBlue®, demonstrated the growth of cells on the efficacious antimicrobial bioscaffolds. The biocompatibility of in vitro leached silver, quantified by inductively coupled plasma optical emission spectroscopy (ICP-OES), proved non-cytotoxic when tested against hASCs, as evaluated by MTT assay.

  15. Cysteine modified polyaniline films improve biocompatibility for two cell lines.

    PubMed

    Yslas, Edith I; Cavallo, Pablo; Acevedo, Diego F; Barbero, César A; Rivarola, Viviana A

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using l-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV-visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86°±1 to 90°±1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering.

  16. Factors influencing alginate gel biocompatibility.

    PubMed

    Tam, Susan K; Dusseault, Julie; Bilodeau, Stéphanie; Langlois, Geneviève; Hallé, Jean-Pierre; Yahia, L'Hocine

    2011-07-01

    Alginate remains the most popular polymer used for cell encapsulation, yet its biocompatibility is inconsistent. Two commercially available alginates were compared, one with 71% guluronate (HiG), and the other with 44% (IntG). Both alginates were purified, and their purities were verified. After 2 days in the peritoneal cavity of C57BL/6J mice, barium (Ba)-gel and calcium (Ca)-gel beads of IntG alginate were clean, while host cells were adhered to beads of HiG alginate. IntG gel beads, however, showed fragmentation in vivo while HiG gel beads stayed firm. The physicochemical properties of the sodium alginates and their gels were thoroughly characterized. The intrinsic viscosity of IntG alginate was 2.5-fold higher than that of HiG alginate, suggesting a greater molecular mass. X-ray photoelectron spectroscopy indicated that both alginates were similar in elemental composition, including low levels of counterions in all gels. The wettabilities of the alginates and gels were also identical, as measured by contact angles of water on dry films. Ba-gel beads of HiG alginate resisted swelling and degradation when immersed in water, much more than the other gel beads. These results suggest that the main factors contributing to the biocompatibility of gels of purified alginate are the mannuronate/guluronate content and/or intrinsic viscosity.

  17. Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles.

    PubMed

    García-Astrain, Clara; Chen, Cheng; Burón, María; Palomares, Teodoro; Eceiza, Arantxa; Fruk, Ljiljana; Corcuera, M Ángeles; Gabilondo, Nagore

    2015-04-13

    Bionanocomposite materials, combining the properties of biopolymers and nanostructured materials, are attracting interest of the wider scientific community due to their potential application in design of implants, drug delivery systems, and tissue design platforms. Herein, we report on the use of maleimide-coated silver nanoparticles (Ag NPs) as cocross-linkers for the preparation of a bionanocomposite gelatin based hydrogel. Diels-Alder cycloaddition of benzotriazole maleimide (BTM) functionalized Ag NPs and furan containing gelatin in combination with additional amide coupling resulted in stable and biocompatible hybrid nanocomposite. The storage moduli values for the hydrogel are nearly three times higher than that of control hydrogel without NPs indicating a stabilizing role of the covalently bound NPs. Finally, the swelling and drug release properties of the materials as well as the biocompatibility and toxicity tests indicate the biomedical potential of this type of material.

  18. Nanostructure of biocompatible titania/hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Steinhauer, Aleksey B.; Fomina, Marina A.; Petrova, Natalia V.; Zakharevich, Andrey M.; Skaptsov, Aleksandr A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2014-01-01

    The article describes prospective composite biocompatible titania coatings modified with hydroxyapatite nanoparticles and obtained on intraosseous implants fabricated from commercially pure titanium VT1-00. Consistency changes of morphological characteristics, crystalline structure, physical and mechanical properties and biocompatibility of experimental titanium implant coatings obtained by the combination of oxidation and surface modification with hydroxyapatite during induction heat treatment are defined.

  19. Enhanced Biocompatibility of Porous Nitinol

    NASA Astrophysics Data System (ADS)

    Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem

    2009-08-01

    Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08.

  20. Enhanced Biocompatibility of Porous Nitinol

    PubMed Central

    Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem

    2009-01-01

    Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08. PMID:19956797

  1. Polycrystalline Silicon: a Biocompatibility Assay

    SciTech Connect

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-21

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  2. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system.

    PubMed

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-12-01

    Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm(-2)) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment.

  3. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system

    PubMed Central

    Stark, Alyssa Y.; Klittich, Mena R.; Sitti, Metin; Niewiarowski, Peter H.; Dhinojwala, Ali

    2016-01-01

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system’s performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both. PMID:27480603

  4. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system.

    PubMed

    Stark, Alyssa Y; Klittich, Mena R; Sitti, Metin; Niewiarowski, Peter H; Dhinojwala, Ali

    2016-01-01

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system's performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both. PMID:27480603

  5. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system.

    PubMed

    Stark, Alyssa Y; Klittich, Mena R; Sitti, Metin; Niewiarowski, Peter H; Dhinojwala, Ali

    2016-08-02

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system's performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both.

  6. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.

    PubMed

    George, Paul M; Lyckman, Alvin W; LaVan, David A; Hegde, Anita; Leung, Yuika; Avasare, Rupali; Testa, Chris; Alexander, Phillip M; Langer, Robert; Sur, Mriganka

    2005-06-01

    Finding a conductive substrate that promotes neural interactions is an essential step for advancing neural interfaces. The biocompatibility and conductive properties of polypyrrole (PPy) make it an attractive substrate for neural scaffolds, electrodes, and devices. Stand-alone polymer implants also provide the additional advantages of flexibility and biodegradability. To examine PPy biocompatibility, dissociated primary cerebral cortical cells were cultured on PPy samples that had been doped with polystyrene-sulfonate (PSS) or sodium dodecylbenzenesulfonate (NaDBS). Various conditions were used for electrodeposition to produce different surface properties. Neural networks grew on all of the PPy surfaces. PPy implants, consisting of the same dopants and conditions, were surgically implanted in the cerebral cortex of the rat. The results were compared to stab wounds and Teflon implants of the same size. Quantification of the intensity and extent of gliosis at 3- and 6-week time points demonstrated that all versions of PPy were at least as biocompatible as Teflon and in fact performed better in most cases. In all of the PPy implant cases, neurons and glial cells enveloped the implant. In several cases, neural tissue was present in the lumen of the implants, allowing contact of the brain parenchyma through the implants.

  7. Tissue response: biomaterials, dental implants, and compromised osseous tissue.

    PubMed

    Babu RS, Arvind; Ogle, Orrett

    2015-04-01

    Tissue response represents an important feature in biocompatibility in implant procedures. This review article highlights the fundamental characteristics of tissue response after the implant procedure. This article also highlights the tissue response in compromised osseous conditions. Understanding the histologic events after dental implants in normal and abnormal bone reinforces the concept of case selection in dental implants.

  8. Biocompatibility of chemical-vapour-deposited diamond.

    PubMed

    Tang, L; Tsai, C; Gerberich, W W; Kruckeberg, L; Kania, D R

    1995-04-01

    The biocompatibility of chemical-vapour-deposited (CVD) diamond surfaces has been assessed. Our results indicate that CVD diamond is as biocompatible as titanium (Ti) and 316 stainless steel (SS). First, the amount of adsorbed and 'denatured' fibrinogen on CVD diamond was very close to that of Ti and SS. Second, both in vitro and in vivo there appears to be less cellular adhesion and activation on the surface of CVD diamond surfaces compared to Ti and SS. This evident biocompatibility, coupled with the corrosion resistance and notable mechanical integrity of CVD diamond, suggests that diamond-coated surfaces may be highly desirable in a number of biomedical applications. PMID:7654876

  9. Metallic Zinc Exhibits Optimal Biocompatibility for Bioabsorbable Endovascular Stents

    PubMed Central

    Bowen, Patrick K.; Guillory, Roger J.; Shearier, Emily R.; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-01-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5 months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5 months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616

  10. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents.

    PubMed

    Bowen, Patrick K; Guillory, Roger J; Shearier, Emily R; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-11-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells.

  11. 3D structuring of biocompatible and biodegradable polymers via stereolithography.

    PubMed

    Gill, Andrew A; Claeyssens, Frederik

    2011-01-01

    The production of user-defined 3D microstructures from biocompatible and biodegradable materials via free-form fabrication is an important step to create off-the-shelf technologies to be used as tissue engineering scaffolds. One method of achieving this is the microstereolithography of block copolymers, allowing high resolution microstructuring of materials with tuneable physical properties. A versatile protocol for the production and photofunctionalisation of pre-polymers for microstereolithography is presented along with a discussion of the possible microstereolithography set-ups and previous work in the field.

  12. Mechanical biocompatibilities of titanium alloys for biomedical applications.

    PubMed

    Niinomi, Mitsuo

    2008-01-01

    Young's modulus as well as tensile strength, ductility, fatigue life, fretting fatigue life, wear properties, functionalities, etc., should be adjusted to levels that are suitable for structural biomaterials used in implants that replace hard tissue. These factors may be collectively referred to as mechanical biocompatibilities. In this paper, the following are described with regard to biomedical applications of titanium alloys: the Young's modulus, wear properties, notch fatigue strength, fatigue behaviour on relation to ageing treatment, improvement of fatigue strength, fatigue crack propagation resistance and ductility by the deformation-induced martensitic transformation of the unstable beta phase, and multifunctional deformation behaviours of titanium alloys.

  13. Biocompatible implants and methods of making and attaching the same

    DOEpatents

    Rowley, Adrian P; Laude, Lucien D; Humayun, Mark S; Weiland, James D; Lotfi, Atoosa; Markland, Jr., Francis S

    2014-10-07

    The invention provides a biocompatible silicone implant that can be securely affixed to living tissue through interaction with integral membrane proteins (integrins). A silicone article containing a laser-activated surface is utilized to make the implant. One example is an implantable prosthesis to treat blindness caused by outer retinal degenerative diseases. The device bypasses damaged photoreceptors and electrically stimulates the undamaged neurons of the retina. Electrical stimulation is achieved using a silicone microelectrode array (MEA). A safe, protein adhesive is used in attaching the MEA to the retinal surface and assist in alleviating focal pressure effects. Methods of making and attaching such implants are also provided.

  14. Biocompatibility of crystalline opal nanoparticles

    PubMed Central

    2012-01-01

    Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2′-deoxyuridine (BrdU). Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells. PMID:23088559

  15. In Vitro Models in Biocompatibility Assessment for Biomedical-Grade Chitosan Derivatives in Wound Management

    PubMed Central

    Keong, Lim Chin; Halim, Ahmad Sukari

    2009-01-01

    One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (β-1,4-D-glucosamine) has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing. PMID:19399250

  16. Biocompatibility of dental materials used in contemporary endodontic therapy: a review. Part 1. Intracanal drugs and substances.

    PubMed

    Hauman, C H J; Love, R M

    2003-02-01

    Irrigation solutions and intracanal medicaments are used within the root canal to clean and aid in disinfecting the dentinal walls. Although these materials are intended to be contained within the root canal, they invariably contact the periapical tissues, either through inadvertent extrusion through the apex or leaching. This paper is a review on the methodology involved in biocompatibility testing followed by a discussion on biocompatibility of contemporary intracanal drugs and substances used in endodontics. PMID:12657150

  17. Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite.

    PubMed

    Zhang, S M; Cui, F Z; Liao, S S; Zhu, Y; Han, L

    2003-07-01

    Porous nano-hydroxyapatite/collagen/alginate (nHAC/Alginate) composite containing nHAC and Ca-crosslinked alginate is synthesized biomimetically. This composite shows a significant improvement in mechanical properties over nHAC material. Mechanical test results show that the compressive modulus and yield strength of this composite are in direct proportion to the percentage of Ca-crosslinked alginate in the composite. Primary biocompatibility experiments in vitro including fibroblasts and osteoblasts co-culture with nHAC/alginate composite indicated the high biocompatibility of this composite. Therefore the composite can be a promising candidate of scaffold material for bone tissue engineering.

  18. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials

    PubMed Central

    Pelling, Andrew E.

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6–9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson’s Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial. PMID:27328066

  19. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials.

    PubMed

    Modulevsky, Daniel J; Cuerrier, Charles M; Pelling, Andrew E

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6-9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson's Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial. PMID:27328066

  20. Biocompatibility of dental materials used in contemporary endodontic therapy: a review. Part 2. Root-canal-filling materials.

    PubMed

    Hauman, C H J; Love, R M

    2003-03-01

    Root-canal-filling materials are either placed directly onto vital periapical tissues or may leach through dentine. The tissue response to these materials therefore becomes important and may influence the outcome of endodontic treatment. This paper is a review of the biocompatibility of contemporary orthograde and retrograde root-canal-filling materials. PMID:12657140

  1. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats

    PubMed Central

    Palejwala, Ali H.; Fridley, Jared S.; Mata, Javier A.; Samuel, Errol L. G.; Luerssen, Thomas G.; Perlaky, Laszlo; Kent, Thomas A.; Tour, James M.; Jea, Andrew

    2016-01-01

    Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury. PMID:27625885

  2. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats

    PubMed Central

    Palejwala, Ali H.; Fridley, Jared S.; Mata, Javier A.; Samuel, Errol L. G.; Luerssen, Thomas G.; Perlaky, Laszlo; Kent, Thomas A.; Tour, James M.; Jea, Andrew

    2016-01-01

    Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury.

  3. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  4. Adhesion of biocompatible and biodegradable micropatterned surfaces.

    PubMed

    Kaiser, Jessica S; Kamperman, Marleen; de Souza, Emerson J; Schick, Bernhard; Arzt, Eduard

    2011-02-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PLGA) polymer systems. Micropatterned and non-patterned compliant PDMS did not show significant differences in adhesion on compliant mice ear skin or on gelatin-glycerin model substrates. However, adhesion measurements for micropatterned stiff PLGA on compliant gelatin-glycerin model substrates showed significant enhancement in pull-off strengths compared to non-patterned controls.

  5. A pore way to heal and regenerate: 21st century thinking on biocompatibility

    PubMed Central

    Ratner, Buddy D.

    2016-01-01

    This article raises central questions about the definition of biocompatibility, and also about how we assess biocompatibility. We start with the observation that a porous polymer where every pore is spherical, ∼40 microns in diameter and interconnected, can heal into vascularized tissues with little or no fibrosis and good restoration of vascularity (i.e., little or no foreign body reaction). The same polymer in solid form will trigger the classic foreign body reaction characterized by a dense, collagenous foreign body capsule and low vascularity. A widely used definition of biocompatibility is ‘the ability of a material to perform with an appropriate host response in a specific application’. With precision-porous polymers, in direct comparison with the same polymer in solid form, we have the same material, in the same application, with two entirely different biological reactions. Can both reactions be ‘biocompatible?’ This conundrum will be elaborated upon and proposals will be made for future considerations and measurement of biocompatibility. PMID:27047676

  6. [Study on biocompatibility of titanium alloys].

    PubMed

    Kodama, T

    1989-06-01

    The biocompatibility of two different titanium alloys, Ti-6Al-4V ELI and Ti-5Al-2, 5Fe, and pure titanium were evaluated. The results were as follows: 1) Titanium alloys were implanted into the dorsal subcutaneous tissues of the Hartley guinea-pig for 12 weeks, immersed in calf serum or in Ringer's solution for 8 weeks. The surface changes of the titanium alloys were observed by SEM and the chemical composition was analyzed by XMA. No evident surface changes were found. 2) Three hundred mg, 200 mg and 100 mg of the powders of the tested materials were immersed in 2ml of Eagle's MEM, incubated for 1-7 days, 8-21 days and 22-70 days at 37 C degrees. The amount of metallic elements dissolved in the solutions was measured by ICP and AAS. The detected corrosion rates of V and Al contained in the solution, in which Ti-6Al-4V ELI 100 mg was immersed for 1-7 days, were 194.3 +/- 17.6 and 73.0 +/- 28, 1 pg/mg alloy/day, respectively. V was released more than Al. The amount of Ti was below the detectable limit. The solution Ti-5Al-2.5 Fe 100 mg immersed for 1-7 days contained 31.9 +/- 34.4 pg/mg alloy/day Fe and 25.7 +/- 6.3 pg/mg alloy/day Al. Only in the solution 300 mg immersed for 1-7 days was Ti detected at 1.4 pg/mg alloy/day. 3) By the bacterial mutation assay of Salmonella typhimurium TA 98, Salmonella typhimurium TA 100 and Escherichia coli WP2 uvrA, the solutions, in which the tested materials were immersed, were not found to be mutagenic. 4) By the UDS assay, the grain counts on autoradiography with the solutions, in which the tested materials were immersed, were not greater than the negative control. The results suggest an excellent corrosion resistance of the titanium alloys. Mutagenicity was negative by these mutation assays, indicating that the tested alloys and pure titanium are safe for humans and animals.

  7. Biocompatibility of supercritical CO2-treated titanium implants in a rat model.

    PubMed

    Hill, C M; Kang, Q K; Wahl, C; Jimenez, A; Laberge, M; Drews, M; Matthews, M A; An, Y H

    2006-04-01

    Supercritical phase CO2 is a promising method for sterilizing implantable devices and tissue grafts. The goal of this study is to evaluate the biocompatibility of titanium implants sterilized by supercritical phase CO2 in a rat subcutaneous implantation model. At 5 weeks post implantation titanium implants sterilized by supercritical phase CO2 produce a soft tissue reaction that is comparable to other methods of sterilization (steam autoclave, ultraviolet light radiation, ethylene oxide gas, and radio-frequency glow-discharge), as indicated by the thickness and density of the foreign body capsule, although there were some differences on the capillary density. Overall the soft tissue response to the implants was similar among all methods of sterilization, indicating supercritical phase CO2 treatment did not compromise the biocompatibility of the titanium implant.

  8. Biocompatibility of supercritical CO2-treated titanium implants in a rat model.

    PubMed

    Hill, C M; Kang, Q K; Wahl, C; Jimenez, A; Laberge, M; Drews, M; Matthews, M A; An, Y H

    2006-04-01

    Supercritical phase CO2 is a promising method for sterilizing implantable devices and tissue grafts. The goal of this study is to evaluate the biocompatibility of titanium implants sterilized by supercritical phase CO2 in a rat subcutaneous implantation model. At 5 weeks post implantation titanium implants sterilized by supercritical phase CO2 produce a soft tissue reaction that is comparable to other methods of sterilization (steam autoclave, ultraviolet light radiation, ethylene oxide gas, and radio-frequency glow-discharge), as indicated by the thickness and density of the foreign body capsule, although there were some differences on the capillary density. Overall the soft tissue response to the implants was similar among all methods of sterilization, indicating supercritical phase CO2 treatment did not compromise the biocompatibility of the titanium implant. PMID:16705612

  9. Biocompatible Silk-Poly(Pyrrole) Composite Trilayer Actuators

    NASA Astrophysics Data System (ADS)

    Fengel, Carly; Bradshaw, Nathan; Severt, Sean; Murphy, Amanda; Leger, Janelle

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymers (CPs) have some desirable traits for use as an actuator, such as the ability to operate in biologically relevant fluids and responsiveness to low voltages. However CPs alone are limited due to their brittle nature and poor solubility. Recently we have shown that a composite material of silk and the CP poly(pyrrole) (PPy) shows promising characteristics as an actuator; it is mechanically robust as well as fully biocompatible. Initial proof-of-concept experiments demonstrated that these composites bend under an applied voltage (or current) using a simple bilayer device. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. This configuration results in more charge is passed in comparison to the analogous bilayer system, as well as a more sustainable current response through cycling, resulting in a larger angle of deflection per volt applied. In addition, the motion of the trilayer devices is more symmetric than that of the bilayer analogs, resulting in a more repeatable movement. We will discuss the fabrication and characterization of these devices, as well as their performance and future applications of this technology.

  10. Biocompatibility of beta-stabilizing elements of titanium alloys.

    PubMed

    Eisenbarth, E; Velten, D; Müller, M; Thull, R; Breme, J

    2004-11-01

    In comparison to the presently used alpha + beta titanium alloys for biomedical applications, beta-titanium alloys have many advantageous mechanical properties, such as an improved wear resistance, a high elasticity and an excellent cold and hot formability. This will promote their future increased application as materials for orthopaedic joint replacements. Not all elements with beta-stabilizing properties in titanium alloys are suitable for biomaterial applications-corrosion and wear processes cause a release of these alloying elements to the surrounding tissue. In this investigation, the biocompability of alloying elements for beta- and near beta-titanium alloys was tested in order to estimate their suitability for biomaterial components. Titanium (grade 2) and the implant steel X2CrNiMo18153 (AISI 316 L) were tested as reference materials. The investigation included the corrosion properties of the elements, proliferation, mitochondrial activity, cell morphology and the size of MC3T3-E1 cells and GM7373 cells after 7 days incubation in direct contact with polished slices of the metals. The statistical significance was considered by Weir-test and Lord-test (alpha = 0.05). The biocompatibility range of the investigated metals is (decreasing biocompatibility): niobium-tantalum, titanium, zirconium-aluminium-316 L-molybdenum.

  11. Biocompatible Silk-Poly(Pyrrole) Composite Trilayer Electromechanical Actuators

    NASA Astrophysics Data System (ADS)

    Klemke, Carly; Bradshaw, Nathan; Larson, Jesse; Severt, Sean; Ostrovsky-Snider, Nicholas; Murphy, Amanda; Leger, Janelle

    2015-03-01

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymers (CPs) have some desirable traits for use as an actuator, such as the ability to operate in biologically relevant fluids and responsiveness to low voltages. However CPs alone are limited due to their brittle nature and poor solubility. Recently we have shown that a composite material of silk and the CP poly(pyrrole) (PPy) shows promising characteristics as an actuator; it is mechanically robust as well as fully biocompatible. Initial proof-of-concept experiments demonstrated that these composites bend under an applied voltage (or current) using a simple bilayer device. Here we present the development of a trilayer device, composed of two conductive layers separated by an insulating silk layer. This configuration has twice the active surface area as a bilayer, potentially increasing the amount of mechanical motion per volt applied. We will discuss the fabrication and characterization of these devices, as well as their performance and future applications of this technology.

  12. Plasmonic biocompatible silver-gold alloyed nanoparticles.

    PubMed

    Sotiriou, Georgios A; Etterlin, Gion Diego; Spyrogianni, Anastasia; Krumeich, Frank; Leroux, Jean-Christophe; Pratsinis, Sotiris E

    2014-11-14

    The addition of Au during scalable synthesis of nanosilver drastically minimizes its surface oxidation and leaching of toxic Ag(+) ions. These biocompatible and inexpensive silver-gold nanoalloyed particles exhibit superior plasmonic performance than commonly used pure Au nanoparticles, and as such these nanoalloys have great potential in theranostic applications.

  13. Biocompatibility of Experimental Polymeric Tracheal Matrices.

    PubMed

    Kiselevskii, M V; Chikileva, I O; Vlasenko, R Ya; Sitdikova, S M; Tenchurin, T Kh; Mamagulashvili, V G; Shepelev, A D; Grigoriev, T A; Chvalun, S N

    2016-08-01

    Biocompatibility of a new tracheal matrix is studied. The new matrix is based on polymeric ultra-fiber material colonized by mesenchymal multipotent stromal cells. The experiments demonstrate cytoconductivity of the synthetic matrices and no signs of their degradation within 2 months after their implantation to recipient mice. These data suggest further studies of the synthetic tracheal matrices on large laboratory animals. PMID:27591876

  14. Preparation of small bio-compatible microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1979-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  15. Biodegradation and biocompatibility of a degradable chitosan vascular prosthesis

    PubMed Central

    Kong, Xiaoying; Xu, Wenhua

    2015-01-01

    An instrument made by ourselves was used to fabricate biodegradable chitosan-heparin artificial vascular prosthesis with small internal diameter (2 mm) and different crosslinking degree from biodegradable chitosan, chitosan derivates and heparin. In vivo and in vitro degradation studies, inflammatory analysis and electron microscope scanning of this artificial vascular prosthesis were performed. It was observed that 50% of the prosthesis decomposed in vivo and was replaced by natural tissues. The degradation process of the chitosan-heparin artificial vascular prosthesis of small diameter could be controlled by changing the crosslinking degree. This kind of artificial vascular prosthesis shows good biocompatibility that can be controllability designed to achieve desirable in vascular replacement application. PMID:26064241

  16. Biocompatible surgical meshes based on decellularized human amniotic membrane.

    PubMed

    Shi, Peina; Gao, Mengna; Shen, Qiuxia; Hou, Lei; Zhu, Yabin; Wang, Jun

    2015-09-01

    Meshes play important roles to repair human tissue defect. In this work, human amniotic membrane (HAM) was decellularized and explored the efficacy as an implantable biological mesh. Surfactant, hypertonic saline, lipase and DNAase were used individually or collectively to remove all cell components and remain the extracellular matrix. Results of H&E and DAPI staining demonstrated that the method of surfactant and lipase combining with DNAase is the most effective treatment for HAM decellularization. Primary smooth muscle cells were seeded to evaluate the decellularized HAM's (dHAM) in vitro cytocompatibility. The in vivo test was performed via implantation at rabbits' uterus with clinic polypropylene mesh (PP) as the control. The results indicated that dHAM possessed good biocompatibility and will be a potential candidate for biological mesh.

  17. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells

    NASA Astrophysics Data System (ADS)

    Ion, Raluca; Vizireanu, Sorin; Luculescu, Catalin; Cimpean, Anisoara; Dinescu, Gheorghe

    2016-07-01

    The response of MC3T3-E1 pre-osteoblasts to vertically aligned, interconnected carbon nanowalls prepared by plasma enhanced chemical vapor deposition on silicon substrate has been evaluated in terms of cell adhesion, viability and cell proliferation. The behavior of osteoblasts seeded on carbon nanowalls was analyzed in parallel and compared with the behavior of the cells maintained in contact with tissue culture polystyrene (TCPS). The results demonstrate that osteoblasts adhere and remain viable in the long term on carbon nanowalls. Moreover, on the investigated scaffold cell proliferation was significantly promoted, although to a lower extent than on TCPS. Overall, the successful culture of osteoblasts on carbon nanowalls coated substrate confirms the biocompatibility of this scaffold, which could have potential applications in the development of orthopedic biomaterials.

  18. Physicochemical characterization and biocompatibility of alginate-polycation microcapsules designed for islet transplantation

    NASA Astrophysics Data System (ADS)

    Tam, Susan Kimberly

    Microencapsulation represents a method for immunoprotecting transplanted therapeutic cells or tissues from graft rejection using a physical barrier. This approach is advantageous in that it eliminates the need to induce long-term immunosuppression and allows the option of transplanting non-cadaveric cell sources, such as animal cells and stem cell-derived tissues. The microcapsules that we have investigated are designed to immunoprotect islets of Langerhans (i.e. clusters of insulin-secreting cells), with the goal of treating insulin-dependent diabetes. With the aid of techniques for physicochemical analysis, this research focused on understanding which properties of the microcapsule are the most important for determining its biocompatibility. The objective of this work was to elucidate correlations between the chemical make-up, physicochemical properties, and in vivo biocompatibility of alginate-based microcapsules. Our approach was based on the hypothesis that the immune response to the microcapsules is governed by, and can therefore be controlled by, specific physicochemical properties of the microcapsule and its material components. The experimental work was divided into five phases, each associated with a specific aim : (1) To prove that immunoglobulins adsorb to the surface of alginate-polycation microcapsules, and to correlate this adsorption with the microcapsule chemistry. (2) To test interlaboratory reproducibility in making biocompatible microcapsules, and evaluate the suitability of our materials and fabrication protocols for subsequent studies. (3) To determine which physicochemical properties of alginates affect the in vivo biocompatibility of their gels. (4) To determine which physiochemical properties of alginate-polycation microcapsules are most important for determining their in vivo biocompatibility (5) To determine whether a modestly immunogenic membrane hinders or helps the ability of the microcapsule to immunoprotect islet xenografts in

  19. Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries

    PubMed Central

    Whelan, D; van der Giessen, W J; Krabbendam, S; van Vliet, E A; Verdouw, P; Serruys, P; van Beusekom, H M M

    2000-01-01

    OBJECTIVE—To improve the biocompatibility of stents using a phosphorylcholine coated stent as a form of biomimicry.
INTERVENTIONS—Implantation of phosphorylcholine coated (n = 20) and non-coated (n = 21) stents was performed in the coronary arteries of 25 pigs. The animals were killed after five days (n = 6), four weeks (n = 7), and 12 weeks (n = 8), and the vessels harvested for histology, scanning electron microscopy, and morphometry.
MAIN OUTCOME MEASURES—Stent performance was assessed by studying early endothelialisation, neointima formation, and vessel wall reaction to the synthetic coating.
RESULTS—Stent thrombosis did not occur in either group. Morphometry showed no significant differences between the two study groups at any time point. At five days both the coated and non-coated stents were equally well endothelialised (91% v 92%, respectively). At four and 12 weeks there was no difference in intimal thickness between the coated and non-coated stents. Up to 12 weeks postimplant the phosphorylcholine coating was still discernible in the stent strut voids, and did not appear to elicit an adverse inflammatory response.
CONCLUSION—In this animal model the phosphorylcholine coating showed excellent blood and tissue compatibility, unlike a number of other polymers tested in a similar setting. Given that the coating was present up to 12 weeks postimplant with no adverse tissue reaction, it may be a potential candidate polymer for local drug delivery.


Keywords: phosphorylcholine; stents; coatings; biocompatible materials PMID:10677417

  20. Electroactive biocompatible materials for nerve cell stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Chen, Jun; Liu, Yong

    2015-04-01

    In the past decades, great efforts have been developed for neurobiologists and neurologists to restore nervous system functions. Recently much attention has been paid to electrical stimulation (ES) of the nervous system as a potential way to repair it. Various conductive biocompatible materials with good electrical conductivity, biocompatibility, and long-term ES or electrical stability have been developed as the substrates for ES. In this review, we summarized different types of materials developed in the purpose for ES of nervous system, including conducting polymers, carbon nanomaterials and composites from conducting polymer/carbon nanomaterials. The present review will give our perspective on the future research directions for further investigation on development of ES particularly on the nerve system.

  1. A biocompatible magnetic film: synthesis and characterization

    PubMed Central

    Chatterjee, Jhunu; Haik, Yousef; Chen, Ching Jen

    2004-01-01

    Background Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. Methods A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (γ-Fe2O3, ~7 nm) have been used to produce the magnetic gel. Results The surface morphology and magnetic properties of the gel films were studied. The iron oxide particles are superparamagnetic and the gel film also showed superparamagnetic behavior. Conclusion Magnetic gel made out of crosslinked magnetic nanoparticles in the polymer network was found to be stable and possess the magnetic properties of the nanoparticles. PMID:14761251

  2. [Animal experiment studies of the biocompatibility of colored and plain lens haptics of polymethylmethacrylate].

    PubMed

    Imkamp, E; Mittermayer, C; Hunold, W

    1990-01-01

    In spite of the great clinical success of cataract surgery and intraocular lens implantation, adverse reactions still occur. In 2-3% of all cases, there is acute or chronic inflammation. One reason might be that the biocompatibility of the lens material is insufficient. This study evaluates the biocompatibility of dyed and undyed transparent PMMA lens haptics. The haptics were implanted subcutaneously in mobile and immobile mice tissue. After different implantation periods varying from 1 week to 6 months, the haptics were removed and evaluated histologically. The undyed PMMA lens haptics showed no adverse reactions. The dyed PMMA lens haptics showed a strong inflammatory response caused by diffusion of the dye into the surrounding tissue.

  3. An effective and biocompatible antibiofilm coating for central venous catheter.

    PubMed

    Silva Paes Leme, Annelisa Farah; Ferreira, Aline Siqueira; Alves, Fernanda Aparecida Oliveira; de Azevedo, Bruna Martinho; de Bretas, Liza Porcaro; Farias, Rogerio Estevam; Oliveira, Murilo Gomes; Raposo, Nádia Rezende Barbosa

    2015-05-01

    The aim of this study was to investigate the in vitro and in vivo efficacy and the tissue reaction of an antibiofilm coating composed of xylitol, triclosan, and polyhexamethylene biguanide. The antimicrobial activity was analyzed by a turbidimetric method. Scanning electron microscopy was used to evaluate the antiadherent property of central venous catheter (CVC) fragments impregnated with an antibiofilm coating (I-CVC) in comparison with noncoated CVC (NC-CVC) fragments. Two in vivo assays using subcutaneous implantation of NC-CVC and I-CVC fragments in the dorsal area of rats were performed. The first assay comprised hematological and microbiological analysis. The second assay evaluated tissue response by examining the inflammatory reactions after 7 and 21 days. The formulation displayed antimicrobial activity against all tested strains. A biofilm disaggregation with significant reduction of microorganism's adherence in I-CVC fragments was observed. In vivo antiadherence results demonstrated a reduction of early biofilm formation of Staphylococcus aureus ATCC 25923, mainly in an external surface of the I-CVC, in comparison with the NC-CVC. All animals displayed negative hemoculture. No significant tissue reaction was observed, indicating that the antibiofilm formulation could be considered biocompatible. The use of I-CVC could decrease the probability of development of localized or systemic infections. PMID:25826042

  4. Biocompatibility and degradation of tendon-derived scaffolds

    PubMed Central

    Alberti, Kyle A.; Xu, Qiaobing

    2016-01-01

    Decellularized extracellular matrix has often been used as a biomaterial for tissue engineering applications. Its function, once implanted can be crucial to determining whether a tissue engineered construct will be successful, both in terms of how the material breaks down, and how the body reacts to the material’s presence in the first place. Collagen is one of the primary components of extracellular matrix and has been used for a number of biomedical applications. Scaffolds comprised of highly aligned collagen fibrils can be fabricated directly from decellularized tendon using a slicing, stacking, and rolling technique, to create two- and three-dimensional constructs. Here, the degradation characteristics of the material are evaluated in vitro, showing that chemical crosslinking can reduce degradation while maintaining fiber structure. In vivo, non-crosslinked and crosslinked samples are implanted, and their biological response and degradation evaluated through histological sectioning, trichrome staining, and immunohistochemical staining for macrophages. Non-crosslinked samples are rapidly degraded and lose fiber morphology while crosslinked samples retain both macroscopic structure as well as fiber orientation. The cellular response of both materials is also investigated. The in vivo response demonstrates that the decellularized tendon material is biocompatible, biodegradable and can be crosslinked to maintain surface features for extended periods of time in vivo. This study provides material characteristics for the use of decellularized tendon as biomaterial for tissue engineering. PMID:26816651

  5. Biocompatibility of six elastomers in vitro.

    PubMed

    Bakker, D; Van Blitterswijk, C A; Daems, W T; Grote, J J

    1988-05-01

    The biocompatibility of two silicone rubbers, Silastic and Dow Corning Elastomer, and of a polyether and a polyester urethane, a polyether polyester copolymer, and polypropylene oxide was assessed in vitro. These elastomers were selected for assessment as a possible alloplastic tympanic membrane. For these studies use was made of rat middle ear mucosa explants and serially cultured epithelium. The quantitative results were based on epithelial growth curves, the morphological picture was based on the findings in epithelium, and the aging of a biomaterial was simulated. Epithelium morphology was investigated by scanning and transmission electron microscopy and x-ray microanalysis. Quantitative results showed that on Dow Corning Elastomer and polypropylene oxide, cell proliferation was significantly lower compared to normal growth curves. The morphological findings were negative for polypropylene oxide, and did not discriminate between the other biomaterials under study. The simulation results indicated better biocompatibility for the polyurethanes and the polyether polyester copolymer compared with that of polypropylene oxide and both silicone rubbers. Under the simulation conditions, cells exposed to Silastic showed silicon-containing inclusions. These in vitro results suggest that the biocompatibility of the polyurethanes and the polyether polyester copolymer is better than that of both silicone rubbers and polypropylene oxide.

  6. Physicochemical characterization and biocompatibility of alginate-polycation microcapsules designed for islet transplantation

    NASA Astrophysics Data System (ADS)

    Tam, Susan Kimberly

    Microencapsulation represents a method for immunoprotecting transplanted therapeutic cells or tissues from graft rejection using a physical barrier. This approach is advantageous in that it eliminates the need to induce long-term immunosuppression and allows the option of transplanting non-cadaveric cell sources, such as animal cells and stem cell-derived tissues. The microcapsules that we have investigated are designed to immunoprotect islets of Langerhans (i.e. clusters of insulin-secreting cells), with the goal of treating insulin-dependent diabetes. With the aid of techniques for physicochemical analysis, this research focused on understanding which properties of the microcapsule are the most important for determining its biocompatibility. The objective of this work was to elucidate correlations between the chemical make-up, physicochemical properties, and in vivo biocompatibility of alginate-based microcapsules. Our approach was based on the hypothesis that the immune response to the microcapsules is governed by, and can therefore be controlled by, specific physicochemical properties of the microcapsule and its material components. The experimental work was divided into five phases, each associated with a specific aim : (1) To prove that immunoglobulins adsorb to the surface of alginate-polycation microcapsules, and to correlate this adsorption with the microcapsule chemistry. (2) To test interlaboratory reproducibility in making biocompatible microcapsules, and evaluate the suitability of our materials and fabrication protocols for subsequent studies. (3) To determine which physicochemical properties of alginates affect the in vivo biocompatibility of their gels. (4) To determine which physiochemical properties of alginate-polycation microcapsules are most important for determining their in vivo biocompatibility (5) To determine whether a modestly immunogenic membrane hinders or helps the ability of the microcapsule to immunoprotect islet xenografts in

  7. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro

    PubMed Central

    Li, Yu-Hua; Wang, Zhen-Dong; Wang, Wei; Ding, Chang-Wei; Zhang, Hao-Xuan

    2015-01-01

    The composite of poly-lactic-co-glycolic acid (PLGA) and calcium phosphate cements (CPC) are currently widely used in bone tissue engineering. However, the properties and biocompatibility of the alendronate-loaded PLGA/CPC (APC) porous scaffolds have not been characterized. APC scaffolds were prepared by a solid/oil/water emulsion solvent evaporation method. The morphology, porosity, and mechanical strength of the scaffolds were characterized. Bone marrow mesenchymal stem cells (BMSCs) from rabbit were cultured, expanded and seeded on the scaffolds, and the cell morphology, adhesion, proliferation, cell cycle and osteogenic differentiation of BMSCs were determined. The results showed that the APC scaffolds had a porosity of 67.43 ± 4.2% and pore size of 213 ± 95 µm. The compressive strength for APC was 5.79 ± 1.21 MPa, which was close to human cancellous bone. The scanning electron microscopy, cell counting kit-8 assay, flow cytometry and ALP activity revealed that the APC scaffolds had osteogenic potential on the BMSCs in vitro and exhibited excellent biocompatibility with engineered bone tissue. APC scaffolds exhibited excellent biocompatibility and osteogenesis potential and can potentially be used for bone tissue engineering. PMID:25877763

  8. Synthesis of microbial elastomers based on soybean oily acids. Biocompatibility studies.

    PubMed

    Hazer, Derya Burcu; Hazer, Baki; Kaymaz, Figen

    2009-06-01

    Biocompatibility studies of the autoxidized and unoxidized unsaturated medium-long chain length (m-lcl) co-poly-3-hydroxyalkanoates (m-lclPHAs) derived from soya oily acids have been reported. Pseudomonas oleovorans was grown on a series of mixtures of octanoic acid (OA) and soya oily acids (Sy) with weight ratios of 20:80, 28:72 and 50:50 in order to obtain unsaturated m-lcl copolyesters coded PHO-Sy-2080, PHO-Sy-2872 and PHO-Sy-5050, respectively. The PHA films were obtained by solvent cast from CHCl(3). They were all originally sticky and waxy except PHO-Sy-5050. Autoxidation of the unsaturated copolyester films was carried out on exposure to air at room temperature in order to obtain crosslinked polymers. They became a highly flexible elastomer after being autoxidized (about 40 days of autoxidation). The in vivo tissue reactions of the autoxidized PHAs were evaluated by subcutaneous implantation in rats. The rats appeared to be healthy throughout the implantation period. No symptom such as necrosis, abscess or tumorigenesis was observed in the vicinity of the implants. Retrieved materials varied in their physical appearance after 6 weeks of implantation. In vivo biocompatibility studies of the medical applications indicated that the microbial copolyesters obtained were all biocompatible and especially the PHOSy series of copolyesters had the highest biocompatibility among them. PMID:19498224

  9. The Biocompatibility of Porous vs Non-Porous Bone Cements: A New Methodological Approach

    PubMed Central

    Dall’Oca, C.; Maluta, T.; Cavani, F.; Morbioli, G.P.; Bernardi, P.; Sbarbati, A.; Degl’Innocenti, D.; Magnan, B.

    2014-01-01

    Composite cements have been shown to be biocompatible, bioactive, with good mechanical properties and capability to bind to the bone. Despite these interesting characteristic, in vivo studies on animal models are still incomplete and ultrastructural data are lacking. The acquisition of new ultrastructural data is hampered by uncertainties in the methods of preparation of histological samples due to the use of resins that melt methacrylate present in bone cement composition. A new porous acrylic cement composed of polymethyl-metacrylate (PMMA) and β-tricalcium-phosphate (p-TCP) was developed and tested on an animal model. The cement was implanted in femurs of 8 New Zealand White rabbits, which were observed for 8 weeks before their sacrifice. Histological samples were prepared with an infiltration process of LR white resin and then the specimens were studied by X-rays, histology and scanning electron microscopy (SEM). As a control, an acrylic standard cement, commonly used in clinical procedures, was chosen. Radiographic ultrastructural and histological exams have allowed finding an excellent biocompatibility of the new porous cement. The high degree of osteointegration was demonstrated by growth of neo-created bone tissue inside the cement sample. Local or systemic toxicity signs were not detected. The present work shows that the proposed procedure for the evaluation of biocompatibility, based on the use of LR white resin allows to make a thorough and objective assessment of the biocompatibility of porous and non-porous bone cements. PMID:24998920

  10. Readability and histological biocompatibility of microchip transponders in horses.

    PubMed

    Wulf, M; Wohlsein, P; Aurich, J E; Nees, M; Baumgärtner, W; Aurich, C

    2013-10-01

    Identification of horses by microchip transponder is mandatory within the European Union with only a few exceptions. In this study, the readability of such microchips in 428 horses with three different scanners (A, B and C) and the histological changes at the implantation site in 16 animals were assessed. Identification of microchips differed between scanners (P<0.001), and with 'side of neck' (P<0.001). Scanners A, B and C identified 93.5%, 89.7% and 100% of microchips, respectively, on the 'chip-bearing' side of the neck. From the contralateral side, scanners A, B and C identified 21.5%, 26.9% and 89.5% of transponders, respectively. Microchip readability was affected by age (P<0.001), but not by breed of horse. At necropsy, transponders were found in the subcutaneous fat (n=3), inter- or peri-muscular connective tissue (n=8), or musculature (n=5), where they were surrounded by a fibrous capsule ranging in thickness from 12.7 to 289.5 μm in 15 animals. In two animals, immature granulation tissue with attendant granulomatous inflammation, and a granulomatous myositis, surrounding the microchip were identified, respectively. Severe (n=1), moderate (n=1), and mild (n=3) lymphohistiocytic inflammation was noted within the fibrous capsule. Microchip transponders were found to be a highly reliable and biocompatible method of horse identification. PMID:23769456

  11. Biocompatibility of Intracanal Medications Based on Calcium Hydroxide

    PubMed Central

    Andolfatto, Carolina; da Silva, Guilherme Ferreira; Cornélio, Ana Livia Gomes; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario; Faria, Gisele; Bonetti-Filho, Idomeo; Cerri, Paulo Sérgio

    2012-01-01

    Objective. The aim of this study was to evaluate the rat subcutaneous tissue reaction to calcium hydroxide-based intracanal medicaments, UltraCal XS (calcium hydroxide, barium sulphate, aqueous matrix), Hydropast (calcium hydroxide, barium sulphate, and propyleneglycol), and Calen (Calcium hydroxide, zinc oxide, colophony, and polyethyleneglycol), used as a control. Methods. Forty-eight rats (Rattus Norvegicus Holtzman) were distributed in three groups: Calen, UltraCal XS, and Hydropast. Polyethylene tubes filled with one of the medicaments were implanted in the dorsal subcutaneous. After 7 and 30 days, the implants were removed and the specimens were fixed and embedded in paraffin. Morphological and quantitative analyses were carried out in the HE-stained sections. The numerical density of inflammatory cells in the capsule was evaluated and statistical analyses were performed (P ≤ 0.05). Results. At 7 days, all materials induced an inflammatory reaction in the subcutaneous tissue adjacent to the implants. In all groups, a significant reduction in the number of inflammatory cells and giant cells was verified in the period of 30 days. Conclusion. These results indicate that the calcium hydroxide-based medicaments evaluated present biocompatibility similar to Calen. PMID:23320187

  12. In vivo biocompatibility of the PLGA microparticles in parotid gland

    PubMed Central

    Cantín, Mario; Miranda, Patricio; Suazo Galdames, Iván; Zavando, Daniela; Arenas, Patricia; Velásquez, Luis; Vilos, Cristian

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microparticles are used in various disorders for the controlled or sustained release of drugs, with the management of salivary gland pathologies possible using this technology. There is no record of the response to such microparticles in the glandular parenchyma. The purpose of this study was to assess the morphological changes in the parotid gland when injected with a single dose of PLGA microparticles. We used 12 adult female Sprague Dawley rats (Rattus norvegicus) that were injected into their right parotid gland with sterile vehicle solution (G1, n=4), 0.5 mg PLGA microparticles (G2, n=4), and 0.75 mg PLGA microparticles (G3, n=4); the microparticles were dissolved in a sterile vehicle solution. The intercalar and striated ducts lumen, the thickness of the acini and the histology aspect in terms of the parenchyma organization, cell morphology of acini and duct system, the presence of polymeric residues, and inflammatory response were determined at 14 days post-injection. The administration of the compound in a single dose modified some of the morphometric parameters of parenchyma (intercalar duct lumen and thickness of the glandular acini) but did not induce tissue inflammatory response, despite the visible presence of polymer waste. This suggests that PLGA microparticles are biocompatible with the parotid tissue, making it possible to use intraglandular controlled drug administration. PMID:24228103

  13. Multifunctional biocompatible coatings on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bychkova, A. V.; Sorokina, O. N.; Rosenfeld, M. A.; Kovarski, A. L.

    2012-11-01

    Methods for coating formation on magnetic nanoparticles used in biology and medicine are considered. Key requirements to the coatings are formulated, namely, biocompatibility, stability, the possibility of attachment of pharmaceutical agents, and the absence of toxicity. The behaviour of nanoparticle/coating nanosystems in the body including penetration through cellular membranes and the excretion rates and routes is analyzed. Parameters characterizing the magnetic properties of these systems and their magnetic controllability are described. Factors limiting the applications of magnetically controlled nanosystems for targeted drug delivery are discussed. The bibliography includes 405 references.

  14. To evaluate the biocompatibility of the Indian Portland cement with potential for use in dentistry: An animal study

    PubMed Central

    Mangala, M G; Chandra, S M Sharath; Bhavle, Radhika M.

    2015-01-01

    Aims: This study evaluated the biocompatibility of the Indian Portland cement with potential for use in dentistry. Materials and Methods: This study was performed in Swiss albino mice, by implanting the Indian Portland cement pellets subcutaneously. After 1, 3, and 6 weeks the tissue specimens were prepared for histological examination. Results: The histological analysis showed moderate to severe inflammation at 1 week. The inflammation gradually decreased by 6 weeks, with most of the specimens showing the absence of inflammatory reaction. Conclusions: According to these experimental conditions, the tested Indian Portland cement was biocompatible. PMID:26752835

  15. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin.

    PubMed

    Deng, Yi; Sun, Yuhua; Chen, Xiaofang; Zhu, Peizhi; Wei, Shicheng

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering.

  16. Assessment of degradation and biocompatibility of electrodeposited chitosan and chitosan-carbon nanotube tubular implants.

    PubMed

    Nawrotek, Katarzyna; Tylman, Michał; Decherchi, Patrick; Marqueste, Tanguy; Rudnicka, Karolina; Gatkowska, Justyna; Wieczorek, Marek

    2016-11-01

    Designing three-dimensional tubular materials made of chitosan is still a challenging task. Availability of such forms is highly desired by tissue engineering, especially peripheral nerve tissue engineering. Aiming at this problem, we use an electrodeposition phenomenon in order to obtain chitosan and chitosan-carbon nanotube hydrogel tubular implants. The in vitro biocompatibility of the fabricated structures is assessed using a mouse hippocampal cell line (mHippoE-18). As both implants do not induce significant cytotoxicity, they are next subjected to in vitro degradation studies in the environment simulating in vivo conditions for specified periods of time: 7, 14, and 28 days. The mass loss of implants indicates their stability at the tested time period; therefore, the materials are subcutaneously implanted in Sprague Dawley rats. The explants are collected after 7, 14, and 28 days. The assessment of composition and changes in tissues surrounding the implanted materials is made in respect to surrounding tissue thickness as well as the number of blood vessels, macrophages, lymphocytes, and neutrophils. No symptoms of acute inflammation are noticed at any point in time. The observed regular healing process allows concluding that both chitosan and chitosan-carbon hydrogel tubular implants are biocompatible with high application potential in tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2701-2711, 2016.

  17. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    PubMed

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  18. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    PubMed

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity. PMID:27567779

  19. Comparative cell culture effects of shape memory metal (Nitinol), nickel and titanium: a biocompatibility estimation.

    PubMed

    Putters, J L; Kaulesar Sukul, D M; de Zeeuw, G R; Bijma, A; Besselink, P A

    1992-01-01

    Nitinol is an equiatomic alloy of nickel and titanium which has been attracting increasing interest in the field of biomedical engineering. To quantify toxicity as a preliminary evaluation of biocompatibility, inhibition of mitosis in human fibroblasts in tissue cultures exposed to test materials is an accepted screening method, although a dose-effect relationship had never been investigated. In this experiment, the effect of an increasing dose exposure to Nitinol, nickel or titanium on human fibroblasts in cell cultures was tested in subgroups in comparison with a control group. The results showed that nickel induces a significant (p < or = 0.05) inhibition of mitosis in human fibroblasts, whereas no significant effects of this kind were found for titanium or Nitinol. According to the results of these studies, Nitinol is to be considered in this respect biocompatible and comparable to titanium, which would seem to justify application as a surgical implant.

  20. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation

    PubMed Central

    Alcaide, María; Taylor, Andrew; Fjorback, Morten; Zachar, Vladimir; Pennisi, Cristian P.

    2016-01-01

    Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time. PMID:27013949

  1. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation.

    PubMed

    Alcaide, María; Taylor, Andrew; Fjorback, Morten; Zachar, Vladimir; Pennisi, Cristian P

    2016-01-01

    Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time. PMID:27013949

  2. Biocompatibility evaluation of a thermoplastic rubber for wireless telemetric intracranial pressure sensor coating.

    PubMed

    Yang, Jun; Charif, Andrea C; Puskas, Judit E; Phillips, Hannah; Shanahan, Kaitlyn J; Garsed, Jessica; Fleischman, Aaron; Goldman, Ken; Roy, Shuvo; Luebbers, Matthew T; Dombrowski, Stephen M; Luciano, Mark G

    2015-05-01

    This study investigated the biocompatibility of the experimental thermoplastic rubber Arbomatrix(™) that will be used as the protective coating on a novel intracranial pressure (ICP) sensor silicon chip. Arbomatrix(™) was benchmarked against biocompatible commercial silicone rubber shunt tubing in the brain via a rat model with 60-day implant duration. A bare silicon chip was also implanted. The results showed similar cellular distribution in the brain-implant boundary and surrounding tissues. Quantitative analysis of neuron and glia density did not show significant difference between implants. Through histological and immunohistochemical evaluation we conclude that Arbomatrix(™) is well tolerated by the brain. Due to its exceptional barrier properties Arbomatrix(™) has already been shown to be an excellent protective coating for new ICP monitoring chip.

  3. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    NASA Astrophysics Data System (ADS)

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.

    2016-04-01

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  4. Biocompatible thin film coatings fabricated using the electrostatic self-assembly process

    NASA Astrophysics Data System (ADS)

    Wang, Youxiong; Du, Weiwei; Spillman, William B., Jr.; Claus, Richard O.

    2001-05-01

    Biomaterials are substances that are produced synthetically or biologically for use in the medical and the other fields. The use of biomaterials to interface with living systems, such as fluids, cells, and tissues of the body, has played an increasingly important role in medicine and pharmaceutics. In particular, the design of biocompatible synthetic surfaces to control the interaction between a living system and an implanted material remains the major theme for biomaterial applications in medicine. The novel and low-cost electrostatic self-assembly (ESA) technique provides an effective approach to incorporate various biomaterials on substrate surfaces, and gives greater opportunity to develop unique biocompatible materials with well-controlled interfaces between the living system and the implanted materia. This paper presents the design, synthesis, and characterization of multilayer thin films fabricated layer-by-layer by the ESA process using ceramics, polymers and functionalized fullerenes as candidate biomaterials.

  5. Development of a hydrophobic polymer composition with improved biocompatibility for making foldable intraocular lenses

    NASA Astrophysics Data System (ADS)

    Haldar, R. S.; Chauhan, R.; Kapoor, K.; Niyogi, U. K.

    2014-05-01

    A hydrophobic composition for foldable intraocular lenses was developed by copolymerizing phenyl ethyl acrylate, phenyl ethyl methacrylate and butanediol diacrylate by gamma irradiation. Aqueous solution of heparin, a biocompatibilizer absorbed in hydroxyethyl methacrylate was added to the monomer mixture before irradiation to impart desired level of hydrophilicity and improved biocompatibility to the hydrophobic composition. Ketorolac tromethamine, an anti-inflammatory agent and L-glutathione, an antioxidant were added to the composition as functional additive for exhibiting improved performance while in use. Concentrations of monomers, biocompatibilizer and functional additives were optimized to develop an advanced material for foldable intraocular lenses. Transmittance, refractive index, Abbe number, hardness, tensile strength, flexibility and foldability were studied on the final composition. Scanning electron microscopic study, differential scanning calorimetric analysis, leachability and viscometry confirmed the permanent incorporation of additives into the polymer. Results of haemocompatibility, tissue implantation and cytotoxicity confirm that the biocompatibility of the base polymer was improved by incorporation of heparin.

  6. Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite.

    PubMed

    Da Silva, Gisele Rodrigues; Ayres, Eliane; Orefice, Rodrigo Lambert; Moura, Sandra Aparecida L; Cara, Denise Carmona; Cunha, Armando Da Silva

    2009-06-01

    Polyurethanes and polyurethane nanocomposites can be applied to control the release of drugs previously incorporated into these materials. In this study, dexamethasone acetate (ACT) was incorporated into biodegradable and biocompatible polyurethane and polyurethane containing montmorillonite nanoparticles. Fourier transform infrared spectroscopic technique showed no strong interactions between drug and polymers. Data obtained from X-ray diffraction and small angle X-ray scattering indicated that the incorporation of ACT did not disturb the polymer morphology, but montmorillonite led to a less defined phase separation between hard and soft segments of polyurethane. The in vitro release studies demonstrated that nanoparticles increased the rate of ACT release possibly because these particles have a hydrophilic surface that increases the absorption of water and accelerates the hydrolysis of the polymer. The in vivo short-term biocompatibility studies demonstrated adequate interfacial interaction between polyurethane and subcutaneous tissue and a discreet inflammatory response which was completely resolved in 14 days.

  7. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo.

    PubMed

    Zhang, Cai; Fu, Yan-Yan; Zhang, Xuejun; Yu, Chunshui; Zhao, Yan; Sun, Shao-Kai

    2015-08-01

    Photothermal therapy as a physical therapeutic approach has greatly attracted research interest due to its negligible systemic effects. Among the various photothermal agents, CuS nanoparticles have been widely used due to their easy preparation, low cost, high stability and strong absorption in the NIR region. However, the ambiguous biotoxicity of CuS nanoparticles limited their bio-application. So it is highly desirable to develop biocompatible CuS photothermal agents with the potential of clinical translation. Herein, we report a novel method to synthesize biocompatible CuS nanoparticles for photothermal therapy using bovine serum albumin (BSA) as a template via mimicking biomaterialization processes. Owing to the inherent biocompatibility of BSA, the toxicity assays in vitro and in vivo showed that BSA-CuS nanoparticles possessed good biocompatibility. In vitro and in vivo photothermal therapies were performed and good results were obtained. The bulk of the HeLa cells treated with BSA-CuS nanoparticles under laser irradiation (808 nm) were killed, and the tumor tissues of mice were also successfully eliminated without causing any obvious systemic damage. In summary, a novel strategy for the synthesis of CuS nanoparticles was developed using BSA as the template, and the excellent biocompatibility and efficient photothermal therapy effects of BSA-CuS nanoparticles show great potential as an ideal photothermal agent for cancer treatment.

  8. Titanium nanostructural surface processing for improved biocompatibility

    SciTech Connect

    Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L.

    2006-10-23

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

  9. Jet blown PTFE for control of biocompatibility

    NASA Astrophysics Data System (ADS)

    Leibner, Evan Scott

    The development of fully hemocompatible cardiovascular biomaterials will have a major impact on the practice of modern medicine. Current artificial surfaces, unlike native vascular surfaces, are not able to control clot and thrombus formation. Protein interactions are an important component in hemocompatibility and can result in decreased patency due to thrombus formation or surface passivation which can improve endothelization. It is believed that controlling these properties, specifically the nanometer sizes of the fibers on the material's surface, will allow for better control of biological responses. The biocompatibility of Teflon, a widely used polymer for vascular grafts, would be improved with nanostructured control of surface features. Due to the difficultly in processing polytetrafluoroethylene (PTFE), it has not been possible to create nanofibrous PTFE surfaces. The novel technique of Jet Blowing allows for the formation of nanostructured PTFE (nPTFE). A systematic investigation into controlling polymer properties by varying the processing conditions of temperature, pressure, and gas used in the Jet Blowing allows for an increased understanding of the effects of plasticization on the material's properties. This fundamental understanding of the material science behind the Jet Blowing process has enabled control of the micro and nanoscale structure of nPTFE. While protein adsorption, a key component of biocompatibility, has been widely studied, it is not fully understood. Major problems in the field of biomaterials include a lack of standard protocols to measure biocompatibility, and inconstant literature on protein adsorption. A reproducible protocol for measuring protein adsorption onto superhydrophobic surfaces (ePTFE and nPTFE) has been developed. Both degassing of PBS buffer solutions and evacuation of the air around the expanded PTFE (ePTFE) prior to contact with protein solutions are essential. Protein adsorption experiments show a four

  10. Si-based Nanoparticles: a biocompatibility study

    NASA Astrophysics Data System (ADS)

    Rivolta, I.; Lettiero, B.; Panariti, A.; D'Amato, R.; Maurice, V.; Falconieri, M.; Herlein, N.; Borsella, E.; Miserocchi, G.

    2010-10-01

    Exposure to silicon nanoparticles (Si-NPs) may occur in professional working conditions or for people undergoing a diagnostic screening test. Despite the fact that silicon is known as a non-toxic material, in the first case the risk is mostly related to the inhalation of nanoparticles, thus the most likely route of entry is across the lung alveolar epithelium. In the case of diagnostic imaging, nanoparticles are usually injected intravenously and Si-NPs could impact on the endothelial wall. In our study we investigated the interaction between selected Si-based NPs and an epithelial lung cell line. Our data showed that, despite the overall silicon biocompatibility, however accurate studies of the potential toxicity induced by the nanostructure and engineered surface characteristics need to be accurately investigated before Si nanoparticles can be safely used for in vivo applications as bio-imaging, cell staining and drug delivery.

  11. Polyethylene glycol-coated biocompatible surfaces.

    PubMed

    Alcantar, N A; Aydil, E S; Israelachvili, J N

    2000-09-01

    Surfaces covered with polyethylene glycol (PEG; HO-(CH(2)-CH(2)-O)(n)-H) have been shown to be biocompatible because PEG's properties yield nonimmunogenicity, nonantigenicity, and protein rejection. To produce a biocompatible surface coating, we have developed a method for grafting PEG onto activated silica films. We first deposited an amorphous silica film by plasma-enhanced chemical vapor deposition from SiH(4) and O(2) gases, which provided the flexibility to coat diverse materials with different chemistries and shapes. The silica films were activated by exposure to water plasma, increasing the number of silanol groups (Si-OH) on their surface. The surface silanol groups were then chemically reacted with the hydroxyl end of PEG to form an ester bond, Si-O-C, and to cover the surface with PEG. The surface reactions were monitored using attenuated total reflection Fourier transform infrared spectroscopy. The vibrational absorption bands of the C-O and -CH(2) bonds increased with time and saturated, indicating that PEG was adsorbed to saturation coverage on the surface. Simultaneously, the Si-OH absorption band decreased, showing that the surface silanols reacted with PEG and were depleted. The PEG-covered surfaces were physically characterized by atomic force microscopy, Auger electron spectroscopy, ellipsometry, and contact angle measurements. These characterization techniques provided additional evidence for the existence of chemically bonded PEG on the surfaces. Efficacy of protein rejection on PEG-covered surfaces was studied through measurements of the fluorescence intensity of Texas red-labeled bovine serum albumin brought in contact with such surfaces in solution. Significantly less protein adsorption was observed on surfaces covered with PEG compared to uncovered surfaces. PMID:10880075

  12. Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals.

    PubMed

    Shakya, Akhilesh Kumar; Holmdahl, Rikard; Nandakumar, Kutty Selva; Kumar, Ashok

    2014-10-01

    Biocompatibility and in vivo degradation are two important characteristics of cell scaffolds. We evaluated these properties for four different polymeric macroporous cryogels, polyvinylcaprolactam, polyvinyl alcohol-alginate-bioactive glass composite, polyhydroxyethylmethacrylate-gelatin (pHEMA-gelatin), and chitosan-agarose-gelatin in mice. All the cryogels were synthesized at subzero temperature and were implanted subcutaneously in C57Bl/10.Q inbred mice. Both local and systemic toxicities were negligible as determined by serum tumor necrosis factor α analysis and histology of surrounding tissues nearby the implants. Complete integration of cryogels into the surrounding tissues with neovascular formation was evident in all the mice. At the implantation site, massive infiltration of macrophages and few dendritic cells were observed but neutrophils and mast cells were clearly absent. Macrophage infiltrations were observed even inside the pores of cryogel implants. To ascertain whether oxidative radicals are involved in the cryogel degradation, we implanted these gels in mice deficient for reactive oxygen species (ROS) production. Rapid gel degradation was observed in the absence of ROS, and there was no significant difference in the biodegradation of these cryogels between ROS sufficient and deficient mice thereby excluding any major role for ROS in this process. Thus, we demonstrate the biocompatibility and ROS-independent biodegradable properties of cryogels that could be useful for tissue-specific tissue engineering applications.

  13. Solution behavior of PEO : the ultimate biocompatible polymer.

    SciTech Connect

    Curro, John G.; Frischknecht, Amalie Lucile

    2004-11-01

    Poly(ethylene oxide) (PEO) is the quintessential biocompatible polymer. Due to its ability to form hydrogen bonds, it is soluble in water, and yet is uncharged and relatively inert. It is being investigated for use in a wide range of biomedical and biotechnical applications, including the prevention of protein adhesion (biofouling), controlled drug delivery, and tissue scaffolds. PEO has also been proposed for use in novel polymer hydrogel nanocomposites with superior mechanical properties. However, the phase behavior of PEO in water is highly anomalous and is not addressed by current theories of polymer solutions. The effective interactions between PEO and water are very concentration dependent, unlike other polymer/solvent systems, due to water-water and water-PEO hydrogen bonds. An understanding of this anomalous behavior requires a careful examination of PEO liquids and solutions on the molecular level. We performed massively parallel molecular dynamics simulations and self-consistent Polymer Reference Interaction Site Model (PRISM) calculations on PEO liquids. We also initiated MD studies on PEO/water solutions with and without an applied electric field. This work is summarized in three parts devoted to: (1) A comparison of MD simulations, theory and experiment on PEO liquids; (2) The implementation of water potentials into the LAMMPS MD code; and (3) A theoretical analysis of the effect of an applied electric field on the phase diagram of polymer solutions.

  14. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants.

    PubMed

    Vecchio, Kenneth S; Zhang, Xing; Massie, Jennifer B; Wang, Mark; Kim, Choll W

    2007-11-01

    Strombus gigas (conch) shells and Tridacna gigas (Giant clam) shells have dense, tailored structures that impart excellent mechanical properties to these shells. In this investigation, conch and clam seashells were converted to hydroxyapatite (HAP) by a hydrothermal method at different temperatures and for different conversion durations. Dense HAP structures were created from these shells throughout the majority of the samples at the relative low temperature of approximately 200 degrees C. The average fracture stress was found to be approximately 137-218MPa for partially converted conch shell samples and approximately 70-150MPa for original and converted clamshell samples, which is close to the mechanical strength of compact human bone. This indicates that the converted shell samples can be used as implants in load-bearing cases. In vivo tests of converted shell samples were performed in rat femoral defects for 6 weeks. The microtomography images at 6 weeks show that the implants did not move, and untreated control defects remain empty with no evidence of a spontaneous fusion. Histological study reveals that there is newly formed bone growing up to and around the implants. There is no evidence of a fibrosis tissue ring around the implants, also indicating that there is no loosening of the implants. In contrast, the untreated controls remain empty with some evidence of a fibrosis ring around the defect hole. These results indicate good biocompatibility and bioactivity of the converted shell implants.

  15. Controlled evacuation using the biocompatible and energy efficient microfluidic ejector.

    PubMed

    Lad, V N; Ralekar, Swati

    2016-10-01

    Development of controlled vacuum is having many applications in the realm of biotechnology, cell transfer, gene therapy, biomedical engineering and other engineering activities involving separation or chemical reactions. Here we show the controlled vacuum generation through a biocompatible, energy efficient, low-cost and flexible miniature device. We have designed and fabricated microfluidic devices from polydimethylsiloxane which are capable of producing vacuum at a highly controlled rate by using water as a motive fluid. Scrupulous removal of infected fluid/body fluid from the internal hemorrhage affected parts during surgical operations, gene manipulation, cell sorting, and other biomedical activities require complete isolation of the delicate cells or tissues adjacent to the targeted location. We demonstrate the potential of the miniature device to obtain controlled evacuation without the use of highly pressurized motive fluids. Water has been used as a motive liquid to eject vapor and liquid at ambient conditions through the microfluidic devices prepared using a low-cost fabrication method. The proposed miniature device may find applications in vacuum generation especially where the controlled rate of evacuation, and limited vacuum generation are of utmost importance in order to precisely protect the cells in the nearby region of the targeted evacuated area. PMID:27647149

  16. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants.

    PubMed

    Vecchio, Kenneth S; Zhang, Xing; Massie, Jennifer B; Wang, Mark; Kim, Choll W

    2007-11-01

    Strombus gigas (conch) shells and Tridacna gigas (Giant clam) shells have dense, tailored structures that impart excellent mechanical properties to these shells. In this investigation, conch and clam seashells were converted to hydroxyapatite (HAP) by a hydrothermal method at different temperatures and for different conversion durations. Dense HAP structures were created from these shells throughout the majority of the samples at the relative low temperature of approximately 200 degrees C. The average fracture stress was found to be approximately 137-218MPa for partially converted conch shell samples and approximately 70-150MPa for original and converted clamshell samples, which is close to the mechanical strength of compact human bone. This indicates that the converted shell samples can be used as implants in load-bearing cases. In vivo tests of converted shell samples were performed in rat femoral defects for 6 weeks. The microtomography images at 6 weeks show that the implants did not move, and untreated control defects remain empty with no evidence of a spontaneous fusion. Histological study reveals that there is newly formed bone growing up to and around the implants. There is no evidence of a fibrosis tissue ring around the implants, also indicating that there is no loosening of the implants. In contrast, the untreated controls remain empty with some evidence of a fibrosis ring around the defect hole. These results indicate good biocompatibility and bioactivity of the converted shell implants. PMID:17684000

  17. In Vivo Skeletal Muscle Biocompatibility of Composite, Coaxial Electrospun, and Microfibrous Scaffolds

    PubMed Central

    McKeon-Fischer, Kristin D.; Rossmeisl, John H.; Whittington, Abby R.

    2014-01-01

    One weakness with currently researched skeletal muscle tissue replacement is the lack of contraction and relaxation during the regenerative process. A biocompatible scaffold that can act similar to the muscle would be a pivotal innovation. Coaxial electrospun scaffolds, capable of movement with electrical stimulation, were created using poly(ɛ-caprolactone) (PCL), multiwalled carbon nanotubes (MWCNT), and a (83/17 or 40/60) poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel. The two scaffolds were implanted into Sprague-Dawley rat vastus lateralis muscle and compared with a phosphate-buffered saline injection sham surgery and an unoperated control. No complications or adverse effects were observed. Rats were sacrificed on days 7, 14, 21, and 28 postimplantation and biocompatibility assessed using enzymatic activity, fibrosis formation, inflammation, scaffold cellular infiltration, and neovascularization. Serum creatine kinase and lactate dehydrogenase levels were significantly higher in scaffold-implanted rats compared with the control on day 7, but returned to baseline by day 14. Day 7 scaffolds showed significant inflammation and fibrosis that decreased over time. Fibroblasts infiltrated the scaffolds early, but decreased with time, while myogenic cell numbers increased. Neovascularization of both scaffolds occurred as early as day 7. We conclude that the PCL-MWCNT-PAA/PVA scaffolds are biocompatible and suitable for muscle regeneration as myogenic cell growth was supported. PMID:24471815

  18. In vivo skeletal muscle biocompatibility of composite, coaxial electrospun, and microfibrous scaffolds.

    PubMed

    McKeon-Fischer, Kristin D; Rossmeisl, John H; Whittington, Abby R; Freeman, Joseph W

    2014-07-01

    One weakness with currently researched skeletal muscle tissue replacement is the lack of contraction and relaxation during the regenerative process. A biocompatible scaffold that can act similar to the muscle would be a pivotal innovation. Coaxial electrospun scaffolds, capable of movement with electrical stimulation, were created using poly(ɛ-caprolactone) (PCL), multiwalled carbon nanotubes (MWCNT), and a (83/17 or 40/60) poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel. The two scaffolds were implanted into Sprague-Dawley rat vastus lateralis muscle and compared with a phosphate-buffered saline injection sham surgery and an unoperated control. No complications or adverse effects were observed. Rats were sacrificed on days 7, 14, 21, and 28 postimplantation and biocompatibility assessed using enzymatic activity, fibrosis formation, inflammation, scaffold cellular infiltration, and neovascularization. Serum creatine kinase and lactate dehydrogenase levels were significantly higher in scaffold-implanted rats compared with the control on day 7, but returned to baseline by day 14. Day 7 scaffolds showed significant inflammation and fibrosis that decreased over time. Fibroblasts infiltrated the scaffolds early, but decreased with time, while myogenic cell numbers increased. Neovascularization of both scaffolds occurred as early as day 7. We conclude that the PCL-MWCNT-PAA/PVA scaffolds are biocompatible and suitable for muscle regeneration as myogenic cell growth was supported. PMID:24471815

  19. Biocompatible Mesoporous Nanotubular Structured Surface to Control Cell Behaviors and Deliver Bioactive Molecules.

    PubMed

    Patel, Kapil D; Mahapatra, Chinmaya; Jin, Guang-Zhen; Singh, Rajendra K; Kim, Hae-Won

    2015-12-01

    Biocompatible nanostructured surfaces control the cell behaviors and tissue integration process of medical devices and implants. Here we develop a novel biocompatible nanostructured surface based on mesoporous silica nanotube (MSNT) by means of an electrodeposition. MSNTs, replicated from carbon nanotubes of 25 nm × 1200 nm size, were interfaced in combination with fugitive biopolymers (chitosan or collagen) onto a Ti metallic substrate. The MSNT-biopolymer deposits uniformly covered the substrate with weight gains controllable by the electrodeposition conditions. Random nanotubular networks were generated successfully, which alongside the high mesoporosity provided unique nanotopological properties for the cell responses and the loading/delivery of biomolecules. Of note, the adhesion and spreading behaviors of mesenchymal stem cells (MSCs) were significantly altered, revealing more rapid cell anchorage and extensive nanofilopodia development along the nanotubular networks. Furthermore, the nanotubular surface improved the loading capacity of biomolecules (dexamethasone and bovine serum albumin) up to 5-7 times. The release of the biomolecules was highly sustained, exhibiting a diffusion-controlled pattern over 15 days. The therapeutic efficacy of the delivered biomolecules was also confirmed in the osteogenic differentiation of MSCs. While in vivo performance and applicability studies are needed further, the current biocompatible nanostructured surface may be considered as a novel biointerfacing platform to control cellular behaviors and biomolecular delivery.

  20. Influence of surface modification on corrosion and biocompatibility of titanium alloys

    NASA Astrophysics Data System (ADS)

    Rahman, Zia Ur

    Titanium alloys are playing a vital role in the field of biomaterials due to their excellent corrosion resistance and biocompatibility. These alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, as these materials are in constant contact with the aggressive body fluids, corrosion leads to metal ions dissolution. These ions leach to the adjacent tissues and causes adverse reactions. Surface modifications are used to improve corrosion resistance and biological activity without changing their bulk properties. In this investigation, electropolishing, magnetoelectropolishing, titanium coating and hydroxiapatitecoating were carried out on commercially pure titanium (CPTi), Ti6Al4V and Ti6Al4V-ELI (Extra Low Interstitials). These surface modifications are known to effect surface charge, chemistry, morphology; wettability, corrosion resistance and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted in phosphate buffer saline in compliance with ASTM standard. The surface morphology, roughness and wettability of these alloys were studied using scanning electron microscope, atomic force microscope and contact angle meter, respectively. Moreover, biocompatibility of titanium alloys was assessed by growing MC3T3 pre-osteoblast cells on their surfaces

  1. Influence of Electropolishing and Magnetoelectropolishing on Corrosion and Biocompatibility of Titanium Implants

    NASA Astrophysics Data System (ADS)

    Rahman, Zia ur; Pompa, Luis; Haider, Waseem

    2014-11-01

    Titanium alloys are playing a vital role in the field of biomaterials due to their excellent corrosion resistance and biocompatibility. These alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, as these materials are in constant contact with the aggressive body fluids, corrosion of these alloys leads to metal ions release. These ions leach to the adjacent tissues and result in adverse biological reactions and mechanical failure of implant. Surface modifications are used to improve corrosion resistance and biological activity without changing their bulk properties. In this investigation, electropolishing and magnetoelectropolishing were carried out on commercially pure titanium, Ti6Al4V, and Ti6Al4V-ELI. These surface modifications are known to effect surface charge, chemistry, morphology; wettability, corrosion resistance, and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted in phosphate buffer saline in compliance with ASTM standard F-2129-12. The surface morphology, roughness, and wettability of these alloys were studied using scanning electron microscope, atomic force microscope, and contact angle meter, respectively. Moreover, biocompatibility of titanium alloys was assessed by growing MC3T3 pre-osteoblast cells on them.

  2. Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity.

    PubMed

    Almeida, Luciane Madureira; Floriano, Juliana Ferreira; Ribeiro, Thuanne Pires; Magno, Lais Nogueira; da Mota, Lígia Souza Lima Silveira; Peixoto, Nei; Mrué, Fátima; Melo-Reis, Paulo; Lino Junior, Ruy de Souza; Graeff, Carlos Frederico de Oliveira; Gonçalves, Pablo José

    2014-09-01

    The latex obtained from Hancornia speciosa is used in folk medicine for treatment of several diseases, such as acne, warts, diabetes, gastritis and inflammation. In this work, we describe the biocompatibility assessment and angiogenic properties of H. speciosa latex and its potential application in medicine. The physical-chemical characterization was carried out following different methodologies (CHN elemental analyses; thermogravimetric analyses and Fourier transform infrared spectroscopy). The biocompatibility was evaluated through cytotoxicity and genotoxicity tests in fibroblast mouse cells and the angiogenic properties were evaluated using the chick chorioallantoic membrane (CAM) assay model. The physical-chemical results showed that the structure of Hancornia speciosa latex biomembrane is very similar to that of Hevea brasiliensis (commercially available product). Moreover, the cytotoxicity and genotoxicity assays showed that H. speciosa latex is biocompatible with life systems and can be a good biomaterial for medical applications. The CAM test showed the efficient ability of H. speciosa latex in neovascularization of tissues. The histological analysis was in accordance with the results obtained in the CAM assay. Our data indicate that the latex obtained from H. speciosa and eluted in water showed significant angiogenic activity without any cytotoxic or genotoxic effects on life systems. The same did not occur with H. speciosa latex stabilized with ammonia. Addition of ammonia does not have significant effects on the structure of biomembranes, but showed a smaller cell survival and a significant genotoxicity effect. This study contributes to the understanding of the potentialities of H. speciosa latex as a source of new phytomedicines.

  3. An in vivo study of the biocompatibility of classic and novel device materials on the central nervous system

    NASA Astrophysics Data System (ADS)

    Jaboro, Claudine

    2007-12-01

    Investigation of novel biomaterials is an essential part of the development of electrical stimulation and chemical drug delivery for biomedical applications. In evaluating biocompatibility, the material's surface and the tissue should both be analyzed to determine their interaction during neural exposure. This includes a material investigation of bulk sapphire substrate, platinum (Pt) deposited on sapphire substrate using magnetron sputtering and aluminum nitride (AlN) which was deposited on sapphire substrate using plasma source molecular beam epitaxy (PSMBE). Zinc titania coverslip glass and borosilicate glass were used as control materials. The materials were implanted for periods of 10, 28 and 90 days on the cortical surface of the brain in a rat animal model. The chronic implants were analyzed both pre- and post- implantation for device structure/tissue interactions down to the atomic level. The characterization techniques used to explore structural and chemical changes on or within the material included optical microscopy, atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). Magnetic Resonance Imaging (MRI) and histology were used to determine the effects of the implants in vivo. Biocompatibility is the ability of a material or device to be exposed to the dynamic environment of the body and elicit little or no adverse effects. The data suggests that the biocompatibility of a material may be directly associated with structure and topology. The sapphire, zinc titania coverslip glass and platinum all had signs of bio-incompatibility. The aluminum nitride and borosilicate glass materials were both biocompatible based on our studies. The borosilicate glass elicited no response from the tissue while the aluminum nitride had a positive affect on the tissue encouraging the attachment of proteins and tissue without glial scars instigation. The material characterization, MR imaging and histological data show that surface features such as roughness

  4. Carbon nanotube biocompatibility with cardiac muscle cells

    NASA Astrophysics Data System (ADS)

    Garibaldi, Silvano; Brunelli, Claudio; Bavastrello, Valter; Ghigliotti, Giorgio; Nicolini, Claudio

    2006-01-01

    Purified carbon nanotubes are new carbon allotropes, sharing similarities with graphite, that have recently been proposed for their potential use with biological systems as probes for in vitro research and for diagnostic and clinical purposes. However the biocompatibility of carbon nanotubes with cells represents an important problem that, so far, remains largely uninvestigated. The objective of this in vitro study is to explore the cytocompatibility properties of purified carbon nanofibres with cardiomyocytes. Cardiac muscle cells from a rat heart cell line H9c2 (2-1) have been used. Highly purified single-walled nanotubes (SWNTs) were suspended at the concentration of 0.2 mg ml-1 by ultrasound in complete Dulbecco's modified Eagle's medium, and administered to cells to evaluate cell proliferation and shape changes by light microscopy, cell viability by trypan blue exclusion, and apoptosis, determined flow cytometrically by annexin/PI staining. Microscopic observation evidenced that carbon nanotubes bind to the cell membrane, causing a slight modification in cell shape and in cell count only after three days of treatment. Cell viability was not affected by carbon nanotubes in the first three days of culture, while after this time, cell death was slightly higher in nanotube-treated cells (p = ns). Accordingly, nanotube treatment induced little and non-significant change in the apoptotic cell number at day 1 and 3. The effect of nanotubes bound to cells was tested by reseeding treated cardiomyocytes. Cells from a trypsinized nanotube-treated sample showed a limited ability to proliferate, and a definite difference in shape, with a high degree of cell death: compared to reseeded untreated ones, in SWNT-treated samples the annexin-positive/PI-negative cells increased from 2.9% to 9.3% in SWNT (p<0.05, where p<0.05 defines a statistically significant difference with a probability above 95%), and the annexin-positive/PI-positive cells increased from 5.2% to 18.7% (p<0

  5. A new strategy for the decellularisation of large equine tendons as biocompatible tendon substitutes.

    PubMed

    Bottagisio, M; Pellegata, A F; Boschetti, F; Ferroni, M; Moretti, M; Lovati, A B

    2016-07-08

    Tendon ruptures and/or large losses remain to be a great clinical challenge and often require full replacement of the damaged tissue. The use of auto- and allografts or engineered scaffolds is an established approach to restore severe tendon injuries. However, these grafts are commonly related to scarce biocompatibility, site morbidity, chronic inflammation and poor biomechanical properties. Recently, the decellularisation techniques of allo- or xenografts using specific detergents have been studied and have been found to generate biocompatible substitutes that resemble the native tissue. This study aims to identify a novel decellularisation protocol for large equine tendons that would produce an extracellular matrix scaffold suitable for the regeneration of injured tendons in humans. Specifically, equine tendons were treated either with tri (n-butyl) phosphate alone, or associated to multiple concentrations of peracetic acid (1, 3 and 5 %), which has never before been tested in vitro.Samples were then analysed by histology and with biochemical, biomechanical, and cytotoxicity tests. The best decellularisation protocol, resulting from these examinations, was selected and the chosen scaffold was re-seeded with murine fibroblasts. Resulting grafts were tested for cell viability, histologic analysis, DNA and collagen content. The results identified 1 % tri (n-butyl) phosphate combined with 3 % peracetic acid as the most suitable decellularised matrix in terms of biochemical and biomechanical properties. Moreover, the non-cytotoxic nature of the decellularised matrix allowed for good fibroblast reseeding, thus demonstrating a biocompatible matrix that will be suitable for tendon tissue engineering and hopefully as substitutes in severe tendon damages.

  6. A new strategy for the decellularisation of large equine tendons as biocompatible tendon substitutes.

    PubMed

    Bottagisio, M; Pellegata, A F; Boschetti, F; Ferroni, M; Moretti, M; Lovati, A B

    2016-01-01

    Tendon ruptures and/or large losses remain to be a great clinical challenge and often require full replacement of the damaged tissue. The use of auto- and allografts or engineered scaffolds is an established approach to restore severe tendon injuries. However, these grafts are commonly related to scarce biocompatibility, site morbidity, chronic inflammation and poor biomechanical properties. Recently, the decellularisation techniques of allo- or xenografts using specific detergents have been studied and have been found to generate biocompatible substitutes that resemble the native tissue. This study aims to identify a novel decellularisation protocol for large equine tendons that would produce an extracellular matrix scaffold suitable for the regeneration of injured tendons in humans. Specifically, equine tendons were treated either with tri (n-butyl) phosphate alone, or associated to multiple concentrations of peracetic acid (1, 3 and 5 %), which has never before been tested in vitro.Samples were then analysed by histology and with biochemical, biomechanical, and cytotoxicity tests. The best decellularisation protocol, resulting from these examinations, was selected and the chosen scaffold was re-seeded with murine fibroblasts. Resulting grafts were tested for cell viability, histologic analysis, DNA and collagen content. The results identified 1 % tri (n-butyl) phosphate combined with 3 % peracetic acid as the most suitable decellularised matrix in terms of biochemical and biomechanical properties. Moreover, the non-cytotoxic nature of the decellularised matrix allowed for good fibroblast reseeding, thus demonstrating a biocompatible matrix that will be suitable for tendon tissue engineering and hopefully as substitutes in severe tendon damages. PMID:27386840

  7. Biocompatibility of single-walled carbon nanotube composites for bone regeneration

    PubMed Central

    Gupta, A.; Liberati, T. A.; Verhulst, S. J.; Main, B. J.; Roberts, M. H.; Potty, A. G. R.; Pylawka, T. K.; El-Amin III, S. F.

    2015-01-01

    Objectives The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. Methods A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. Results No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Conclusions Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015

  8. In Vitro Study of Biocompatibility and Toxicity of Magnesium Nanomaterials for Biodegradable Implants

    NASA Astrophysics Data System (ADS)

    Pallavi, Manishi

    Biodegradable magnesium (Mg) has a great potential to be used as a next generation implant material for orthopedic applications due to its mechanical and osseointegration properties. However, surface characteristics, biocompatibility and toxicity of the released corrosion products, in the form of magnesium oxide (MgO) and magnesium hydroxide (Mg (OH)2) nanoparticles (NPs), at the junction of implants, and their surrounding tissues is not completely understood. Therefore, our goal was to identify in vitro biocompatibility, and toxicity of magnesium nanomaterials in osteoblast cells to mimic the in vivo environment for biodegradable implants. We hypothesized that the release of hydroxide ion (OH-) from MgO/ Mg(OH) 2 NPs will increase the corrosion behavior of these particles in osteoblast cells, and will introduce cytotoxicity. Therefore, the objective of this study was to characterize MgO/ Mg(OH)2 NPs in osteoblast cells, and to develop an electric cell-substrate impedance sensing (ECIS) system to measure the biocompatibility and toxicity of these particles in osteoblast cells. The corrosion behavior of the samples was analyzed through immersion test. The morphological characterization and element distribution of the surface corrosion products of the samples was performed using scanning electron microscopy (SEM) and electron dispersive X-ray spectroscopy (EDX), respectively. Cell viability and cytotoxicity of the samples was studied by live-dead assay. With ECIS system, biocompatibility and cytotoxicity of the samples was analyzed. Results shows that less than or equal to 1 mM concentrations of MgO/ Mg(OH) 2 NPs has negligible toxic effects on osteoblast cells. Therefore, this study provides a foundational knowledge for an acceptable range of these corrosion products that might release from the magnesium-based implants in the physiological environment, in order to understand the implant degradation for future in vivo study.

  9. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    PubMed Central

    Zhang, Yanjie; Clapp, Aaron

    2011-01-01

    Luminescent colloidal quantum dots (QDs) possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands. PMID:22247651

  10. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    PubMed

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed. PMID:26484553

  11. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    PubMed

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.

  12. Boronate Affinity-Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring.

    PubMed

    Chen, Guosheng; Qiu, Junlang; Fang, Xu'an; Xu, Jianqiao; Cai, Siying; Chen, Qing; Liu, Yan; Zhu, Fang; Ouyang, Gangfeng

    2016-08-19

    A biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity-molecular imprinted polymers (BA-MIPs). The unique pre-self-assembly between glucose and boronic acids creates glucose-specific memory cavities in the BA-MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude. The BA-MIPs probe was applied to glucose determination in serum and urine and implanted into plant tissues for low-destructive and long-term in vivo continuous glucose monitoring. PMID:27411946

  13. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    NASA Astrophysics Data System (ADS)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  14. Tuning the Friction Characteristics of Gecko-Inspired Polydimethylsiloxane Micropillar Arrays by Embedding Fe₃O₄ and SiO₂ Particles.

    PubMed

    Tian, Ye; Zhao, Zizhou; Zaghi, Gina; Kim, Yongkwan; Zhang, Dongxing; Maboudian, Roya

    2015-06-24

    In order to improve stiffness of polydimethylsiloxane (PDMS) pillars while maintaining high friction, the effects of embedding Fe3O4 and SiO2 particles on the friction behavior of PDMS micropillars are studied. Both types of added particles increase the stiffness of the PDMS composite, but affect the friction behavior differently. The frictional force of the fibrillar array fabricated with Fe3O4/PDMS composite decreases initially, then increases as the particle content increases. For silica/PDMS composite pillars, the frictional force is independent of the particle density. Characterization by scanning electron microscopy shows that Fe3O4 particles are distributed uniformly in the PDMS matrix at low concentration, but heterogeneous distribution is observed at high particle loading, with particles being hindered from penetrating into the pillars. For silica/PDMS composite pillars, the particles distribute homogeneously inside the pillars, which is attributed to the formation of hydrogen bonding between silica particles and PDMS. The difference in particle distribution behavior is used to explain the observed difference in the friction response of these two composite systems.

  15. Tuning the Friction Characteristics of Gecko-Inspired Polydimethylsiloxane Micropillar Arrays by Embedding Fe₃O₄ and SiO₂ Particles.

    PubMed

    Tian, Ye; Zhao, Zizhou; Zaghi, Gina; Kim, Yongkwan; Zhang, Dongxing; Maboudian, Roya

    2015-06-24

    In order to improve stiffness of polydimethylsiloxane (PDMS) pillars while maintaining high friction, the effects of embedding Fe3O4 and SiO2 particles on the friction behavior of PDMS micropillars are studied. Both types of added particles increase the stiffness of the PDMS composite, but affect the friction behavior differently. The frictional force of the fibrillar array fabricated with Fe3O4/PDMS composite decreases initially, then increases as the particle content increases. For silica/PDMS composite pillars, the frictional force is independent of the particle density. Characterization by scanning electron microscopy shows that Fe3O4 particles are distributed uniformly in the PDMS matrix at low concentration, but heterogeneous distribution is observed at high particle loading, with particles being hindered from penetrating into the pillars. For silica/PDMS composite pillars, the particles distribute homogeneously inside the pillars, which is attributed to the formation of hydrogen bonding between silica particles and PDMS. The difference in particle distribution behavior is used to explain the observed difference in the friction response of these two composite systems. PMID:26042962

  16. Eicosanoid release as laboratory indicator of biocompatibility.

    PubMed

    Mahiout, A; Jörres, A; Schultze, G; Meinhold, H; Kessel, M

    1989-06-01

    Biocompatibility evaluation of extracorporeal devices requires the establishment of sensitive indicators of blood cells/surface interactions. Among others, arachidonic acid derivatives, such as prostaglandins and thromboxanes, play an important role in the cell control systems. Hence, the release of eicosanoids during blood exposure to dialyzer membranes was investigated. Experiments included in vitro incubation of human blood with flat membranes (FM), as well as ex vivo perfusion of hollow fiber membranes (HFM) with blood from healthy volunteers in single-pass fashion. In both models, a significant release of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) was detected. In addition, the amount of eicosanoid release depended on the type of membrane tested. After a 10-min FM incubation with fresh blood, plasma concentrations of TXB2 and PGE2 were pronounced by polycarbonate when compared to Cuprophan and polyacrylonitrile. During 10 min of open loop perfusion of HFM, polymethylmethacrylate was the most active biomaterial, whereas the reactivity of Cuprophan was significantly lower. Among HFM, Hemophan was by far the less active. These results indicate that the release of eicosanoids represents a sensitive parameter of blood cells/membrane reactivity. Thus, the question arises as to whether or not the extracorporeal process of cyclooxygenase activity could contribute to the clinical side effects of chronical hemodialysis.

  17. Biocompatibility of a Coacervate-Based Controlled Release System for Protein Delivery to the Injured Spinal Cord

    PubMed Central

    Rauck, Britta M.; Novosat, Tabitha L.; Oudega, Martin; Wang, Yadong

    2014-01-01

    The efficacy of protein-based therapies for treating injured nervous tissue is limited by the short half-life of free proteins in the body. Affinity-based biomaterial delivery systems provide sustained release of proteins, thereby extending the efficacy of such therapies. Here, we investigated the biocompatibility of a novel coacervate delivery system based on poly(ethylene argininylaspartate diglyceride) (PEAD) and heparin in the damaged spinal cord. We found that the presence of the [PEAD:heparin] coacervate did not affect the macrophage response, glial scarring, or nervous tissue loss, which are hallmarks of spinal cord injury. Moreover, the density of axons, including serotonergic axons, at the injury site and the recovery of motor and sensorimotor function were comparable in rats with and without the coacervate. These results revealed the biocompatibility of our delivery system and supported its potential to deliver therapeutic proteins to the injured nervous system. PMID:25266504

  18. Biocompatibility of a coacervate-based controlled release system for protein delivery to the injured spinal cord.

    PubMed

    Rauck, Britta M; Novosat, Tabitha L; Oudega, Martin; Wang, Yadong

    2015-01-01

    The efficacy of protein-based therapies for treating injured nervous tissue is limited by the short half-life of free proteins in the body. Affinity-based biomaterial delivery systems provide sustained release of proteins, thereby extending the efficacy of such therapies. Here, we investigated the biocompatibility of a novel coacervate delivery system based on poly(ethylene argininylaspartate diglyceride) (PEAD) and heparin in the damaged spinal cord. We found that the presence of the [PEAD:heparin] coacervate did not affect the macrophage response, glial scarring or nervous tissue loss, which are hallmarks of spinal cord injury. Moreover, the density of axons, including serotonergic axons, at the injury site and the recovery of motor and sensorimotor function were comparable in rats with and without the coacervate. These results revealed the biocompatibility of our delivery system and supported its potential to deliver therapeutic proteins to the injured nervous system.

  19. [Biocompatibility of precious metal dental alloys].

    PubMed

    Reuling, N; Pohl-Reuling, B; Keil, M

    1991-03-01

    The local toxicity of three dental gold alloys was examined by help of intramuscular implantation tests in rabbits. For each alloy implantation periods of 1, 2, 4, 8, and 12 weeks were used. The local tissue reactions (foreign body reactions) were judged and graded by use of quantitative histomorphometry. Furthermore specific cellular parameters were examined with semiquantitative histopathologic methods to get an toxicity index for each material. The local tissue reactions caused by the implanted dental alloys were judged in relation to those, caused by biological inert materials (titanium, aluminum-oxide-ceramics) respectively materials with well-known toxic potential (polyvinyl-chloride with toxic aids), after intramuscular implantation in the same animals. Significant differences were found in the tissue reactions caused by the dental gold alloys; an gold alloy with lower noble metal content elicited stronger tissue reactions than both gold alloys with high noble metal content did. PMID:1872036

  20. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering

    PubMed Central

    Chang, H.M.; Wang, Z.H.; Luo, H.N.; Xu, M.; Ren, X.Y.; Zheng, G.X.; Wu, B.J.; Zhang, X.H.; Lu, X.Y.; Chen, F.; Jing, X.H.; Wang, L.

    2014-01-01

    Development and selection of an ideal scaffold is of importance for tissue engineering. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a biocompatible bioresorbable copolymer that belongs to the polyhydroxyalkanoate family. Because of its good biocompatibility, PHBHHx has been widely used as a cell scaffold for tissue engineering. This review focuses on the utilization of PHBHHx-based scaffolds in tissue engineering. Advances in the preparation, modification, and application of PHBHHx scaffolds are discussed. PMID:25003631

  1. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting--In vitro and in vivo studies.

    PubMed

    Alexandre, Nuno; Ribeiro, Jorge; Gärtner, Andrea; Pereira, Tiago; Amorim, Irina; Fragoso, João; Lopes, Ascensão; Fernandes, João; Costa, Elísio; Santos-Silva, Alice; Rodrigues, Miguel; Santos, José Domingos; Maurício, Ana Colette; Luís, Ana Lúcia

    2014-12-01

    Polyvinyl alcohol hydrogel (PVA) is a synthetic polymer with an increasing application in the biomedical field that can potentially be used for vascular grafting. However, the tissue and blood-material interactions of such gels and membranes are unknown in detail. The objectives of this study were to: (a) assess the biocompatibility and (b) hemocompatibility of PVA-based membranes in order to get some insight into its potential use as a vascular graft. PVA was evaluated isolated or in copolymerization with dextran (DX), a biopolymer with known effects in blood coagulation homeostasis. The effects of the mesenchymal stem cells (MSCs) isolated from the umbilical cord Wharton's jelly in the improvement of PVA biocompatibility and in the vascular regeneration were also assessed. The biocompatibility of PVA was evaluated by the implantation of membranes in subcutaneous tissue using an animal model (sheep). Histological samples were assessed and the biological response parameters such as polymorphonuclear neutrophilic leucocytes and macrophage scoring evaluated in the implant/tissue interface by International Standards Office (ISO) Standard 10993-6 (annex E). According to the scoring system based on those parameters, a total value was obtained for each animal and for each experimental group. The in vitro hemocompatibility studies included the classic hemolysis assay and both human and sheep bloods were used. Relatively to biocompatibility results, PVA was slightly irritant to the surrounding tissues; PVA-DX or PVA plus MSCs groups presented the lowest score according to ISO Standard 10993-6. Also, PVA was considered a nonhemolytic biomaterial, presenting the lowest values for hemolysis when associated to DX.

  2. Synthesis, Biodegradability, and Biocompatibility of Lysine Diisocyanate–Glucose Polymers

    PubMed Central

    ZHANG, JIAN-YING; BECKMAN, ERIC J.; HU, JING; YANG, GUO-GUANG; AGARWAL, SUDHA; HOLLINGER, JEFFREY O.

    2016-01-01

    The success of a tissue-engineering application depends on the use of suitable biomaterials that degrade in a timely manner and induce the least immunogenicity in the host. With this purpose in mind, we have attempted to synthesize a novel nontoxic biodegradable lysine diisocyanate (LDI)-and glucose-based polymer via polymerization of highly purified LDI with glucose and its subsequent hydration to form a spongy matrix. The LDI–glucose polymer was degradable in aqueous solutions at 37, 22, and 4°C, and yielded lysine and glucose as breakdown products. The degradation products of the LDI–glucose polymer did not significantly affect the pH of the solution. The physical properties of the polymer were found to be adequate for supporting cell growth in vitro, as evidenced by the fact that rabbit bone marrow stromal cells (BMSCs) attached to the polymer matrix, remained viable on its surface, and formed multilayered confluent cultures with retention of their phenotype over a period of 2 to 4 weeks. These observations suggest that the LDI–glucose polymer and its degradation products were nontoxic in vitro. Further examination in vivo over 8 weeks revealed that subcutaneous implantation of hydrated matrix degraded in vivo three times faster than in vitro. The implanted polymer was not immunogenic and did not induce antibody responses in the host. Histological analysis of the implanted polymer showed that LDI–glucose polymer induced a minimal foreign body reaction, with formation of a capsule around the degrading polymer. The results suggest that biodegradable peptide-based polymers can be synthesized, and may potentially find their way into biomedical applications because of their biodegradability and biocompatibility. PMID:12459056

  3. Size-engineered biocompatible polymeric nanophotosensitizer for locoregional photodynamic therapy of cancer.

    PubMed

    Jeong, Keunsoo; Park, Solji; Lee, Yong-Deok; Kang, Chi Soo; Kim, Hyun Jun; Park, Hyeonjong; Kwon, Ick Chan; Kim, Jungahn; Park, Chong Rae; Kim, Sehoon

    2016-08-01

    Current approaches in use of water-insoluble photosensitizers for photodynamic therapy (PDT) of cancer often demand a nano-delivery system. Here, we report a photosensitizer-loaded biocompatible nano-delivery formulation (PPaN-20) whose size was engineered to ca. 20nm to offer improved cell/tissue penetration and efficient generation of cytotoxic singlet oxygen. PPaN-20 was fabricated through the physical assembly of all biocompatible constituents: pyropheophorbide-a (PPa, water-insoluble photosensitizer), polycaprolactone (PCL, hydrophobic/biodegradable polymer), and Pluronic F-68 (clinically approved polymeric surfactant). Repeated microemulsification/evaporation method resulted in a fine colloidal dispersion of PPaN-20 in water, where the particulate PCL matrix containing well-dispersed PPa molecules inside was stabilized by the Pluronic corona. Compared to a control sample of large-sized nanoparticles (PPaN-200) prepared by a conventional solvent displacement method, PPaN-20 revealed optimal singlet oxygen generation and efficient cellular uptake by virtue of the suitably engineered size and constitution, leading to high in vitro phototoxicity against cancer cells. Upon administration to tumor-bearing mice by peritumoral route, PPaN-20 showed efficient tumor accumulation by the enhanced cell/tissue penetration evidenced by in vivo near-infrared fluorescence imaging. The in vivo PDT treatment with peritumorally administrated PPaN-20 showed significantly enhanced suppression of tumor growth compared to the control group, demonstrating great potential as a biocompatible photosensitizing agent for locoregional PDT treatment of cancer. PMID:27107384

  4. A novel method to in vitro evaluate biocompatibility of nanoscaled scaffolds.

    PubMed

    Li, Xiaoming; Wang, Zheng; Zhao, Tianxiao; Yu, Bo; Fan, Yubo; Feng, Qingling; Cui, Fu-Zhai; Watari, Fumio

    2016-09-01

    This study provided a new method to in vitro evaluate the biocompatibility of nanoscaled scaffolds for tissue engineering with neutrophils other than ordinary cell culture. The neutrophils were separated from human peripheral blood of healthy subjects. In vitro degradation product of nanohydroxyapatite/collagen (nHAC), nanohydroxyapatite/collagen/poly (L-lactic acid) (nHACP), and nHACP reinforced by chitin fibers (nHACP/CF) in the D-Hank's Balanced Salt Solution (D-HBSS) was used as the testing solution, which was thereafter mixed with the neutrophils. It was shown that the cell survival rate in the testing solutions had no significant difference from that in the D-HBSS (control). However, from both gene and protein expression levels, the lactate dehydrogenase and tumor necrosis factor-alpha of the neutrophils in the nHACP/CF testing solution were found lowest during the whole testing period; the main reasons of which might be that the calcium release rate of the scaffold was slowest and that the pH value of its degradation solution was nearest to that of human body. Moreover, in vivo experiments showed that most inflammation reactions happened for nHAC and poly (L-lactic acid) groups, while the least inflammation reactions happened for nHACP/CF group in the subcutaneous dorsum of mice at 2 weeks after the surgery, which confirmed the in vitro findings. These results indicated that the pH value and the certain metal iron concentration of the nanoscaled scaffold degradation solution should be two important factors that significantly affect its biocompatibility. This study provides a simple and effective biocompatibility test method for biodegradable nanoscaled tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2117-2125, 2016. PMID:27087116

  5. Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers.

    PubMed

    Bueno, Carlos Roberto Emerenciano; Valentim, Diego; Marques, Vanessa Abreu Sanches; Gomes-Filho, João Eduardo; Cintra, Luciano Tavares Angelo; Jacinto, Rogério Castilho; Dezan-Junior, Eloi

    2016-06-14

    Obturation of the root canal system aims to fill empty spaces, promoting hermetic sealing and preventing bacterial activity in periapical tissues. This should provide optimal conditions for repair, stimulating the process of biomineralization. An endodontic sealer should be biocompatible once it is in direct contact with periapical tissues. The aim of this study was to evaluate the rat subcutaneous tissue response to implanted polyethylene tubes filled with Smartpaste Bio, Acroseal, and Sealapex and investigate mineralization ability of these endodontic sealers. Forty Wistar rats were assigned to the three sealers groups and control group, (n = 10 animals/group) and received subcutaneous implants containing the test sealers, and the control group were implanted with empty tubes. After days 7, 15, 30, and 60, animals were euthanized and polyethylene tubes were removed with the surrounding tissues. Inflammatory infiltrate and thickness of the fibrous capsule were histologically evaluated. Mineralization was analyzed by Von Kossa staining and polarized light. Data were tabulated and analyzed via Kruskal-Wallis and Dunn's test. All tested materials induced a moderate inflammatory reaction in the initial periods. Smartpaste Bio induced the mildest inflammatory reactions after day 15. No difference was observed among groups after days 30 or 60. Von Kossa-positive staining and birefringent structures observed under polarized light revealed a larger mineralization area in Sealapex-treated animals followed by Smartpaste Bio-treated animals. At the end of the experiment, all tested sealers were found to be biocompatible. All sealers induced biomineralization, except Acroseal, which induced a mild tissue reaction. PMID:27305513

  6. Enhancement of biocompatibility of nickel-titanium by laser surface modification technology

    NASA Astrophysics Data System (ADS)

    Ng, Ka Wai

    Nickel Titanium is a relatively new biomaterial that has attracted research interest for biomedical application. The good biocompatibility with specific functional properties of shape memory effect and superelasticity creates a smart material for medical applications. However, there are still concerns on nickel ion release of this alloy if it is going to be implanted for a long time. Nickel ion is carcinogenic and also causes allergic response and degeneration of muscle tissue. The subsequent release of Ni+ ions into the body system is fatal for the long term application of this alloy in the human body. To improve the long term biocompatibility and corrosion properties of NiTi, different surface treatment techniques have been investigated but no optimum technique has been established yet. This project will investigate the feasibility of applying laser surface alloying technique to improve the corrosion resistance and biocompatibility of NiTi in simulated body fluid condition. This thesis summarizes the result of laser surface modification of NiTi with Mo, Nb and Co using CO2 laser. The modified layer, which is free of microcracks and pores, acts as physical barrier to reduce nickel release and enhance the surface properties. The hardness values of the Mo-alloyed NiTi, Nb-alloyed NiTi and Co-alloyed NiTi surface were found to be three to four times harder than the NiTi substrate. Corrosion polarization tests also showed that the alloyed NiTi are significantly more resistant than the NiTi alloy. The release of Ni ions can be greatly reduced after laser surface alloying NiTi with Mo, Nb and Co. The improvement in wettability characteristics, the growth of the apatite on the specimen's surface and the adhesion of cell confirm the good biocompatibility after laser surface alloying. It is concluded that laser surface alloying is one of the potential technique not only to improve the corrosion resistance with low nickel release rate, but also retain the good

  7. Tissue-engineered oral mucosa.

    PubMed

    Moharamzadeh, K; Colley, H; Murdoch, C; Hearnden, V; Chai, W L; Brook, I M; Thornhill, M H; Macneil, S

    2012-07-01

    Advances in tissue engineering have permitted the three-dimensional (3D) reconstruction of human oral mucosa for various in vivo and in vitro applications. Tissue-engineered oral mucosa have been further optimized in recent years for clinical applications as a suitable graft material for intra-oral and extra-oral repair and treatment of soft-tissue defects. Novel 3D in vitro models of oral diseases such as cancer, Candida, and bacterial invasion have been developed as alternatives to animal models for investigation of disease phenomena, their progression, and treatment, including evaluation of drug delivery systems. The introduction of 3D oral mucosal reconstructs has had a significant impact on the approaches to biocompatibility evaluation of dental materials and oral healthcare products as well as the study of implant-soft tissue interfaces. This review article discusses the recent advances in tissue engineering and applications of tissue-engineered human oral mucosa.

  8. Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Multimodal Imaging of Living Cells.

    PubMed

    Fior, Raffaella; Kwok, Jeanie; Malfatti, Francesca; Sbaizero, Orfeo; Lal, Ratnesh

    2015-08-01

    Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response.

  9. Evaluation of the biocompatibility of experimentally manufactured portland cement: An animal study

    PubMed Central

    Erten, Hülya; Baris, Emre; Türk, Serkan; Alaçam, Tayfun

    2014-01-01

    Objectives: The purpose of this study was to evaluate the biocompatibility of MTA and the experimentally manufactured portland cement (EMPC). Study design: Twenty one Sprague Dawley (SD) rats were allocated to testing of three groups. Group I and Group II included ProRoot MTA and the EMPC. The materials were mixed with distilled water and placed in polyethylene tubes. The tubes were implanted subcutaneously in the dorsal region of the animals. Group III served as control; the implanted polyethylene tubes remained empty. At 7, 14, and 28 days after the implantation, the animals were sacrificed and the implants were removed with the surrounding tissues. The specimens were prepared for histological examination to evaluate the inflammatory response. Results: No significant difference was found between tissue reactions against the tested materials (p>0.05). Also, control group showed similar results (p>0.05). Conclusions: Results suggest that the EMPC has the potential to be used in clinical conditions in which ProRoot MTA is indicated. MTA and the EMPC show comparable biocompatibility when evaluated in vivo. Although the results are supportive for the EMPC, more studies are required before the safe clinical use of the EMPC. Key words:Mineral trioxide aggregate, portland cement, subcutanous implantation. PMID:24596630

  10. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers.

    PubMed

    Athanasiou, K A; Niederauer, G G; Agrawal, C M

    1996-01-01

    This is a review of salient studies of sterilization, toxicity, biocompatibility, clinical applications and current work in the field of orthopaedics, using implants made of polylactic acid (PLA), polyglycolic acid (PGA) and their copolymers. The intrinsic nature of these biomaterials renders them suitable for applications where temporally slow releases of bioactive agents in situ may be required. They are also desirable as fixation devices of bone, because they can virtually eliminate osteopenia associated with stress shielding or additional surgery. The majority of currently available sterilization techniques are not suitable for these thermoplastic materials and it may be desirable to develop new sterilization standards, which can account for the special character of PLA-PGA materials. Biocompatibility and toxicity studies suggest that, overall, PLA-PGA biomaterials may be suitable for orthopaedic applications, although certain problems, especially pertaining to reduction in cell proliferation, have been reported. Clinical applications are also promising, albeit not without problems usually associated with transient tissue inflammation. The future of these materials appears bright, especially in soft tissues. They may be used to address the exceedingly complex problem of osteochondral repair, but also as a means to enhance fixation and repair processes in tendons and ligaments. PMID:8624401

  11. In vivo biocompatibility versus degree of conversion of resin-reinforced cements in different time periods.

    PubMed

    Lacerda-Santos, Rogério; De Farias, Maria Isabel Serpa Simões; De Carvalho, Fabiola Galbiatti; Pithon, Matheus Melo; Alves, Pollianna Muniz; Tanaka, Orlando Motohiro; Guênes, Gymenna Maria Tenório

    2014-05-01

    This study focused on test the null hypothesis that there is no difference between the degree of conversion and biocompatibility of different resin reinforced glass ionomer cements (RRGICs). Forty-eight male Wistar rats were used, distributed into four groups (n = 12), as follows: Group C (Control, polyethylene), Group FOB (Fuji Ortho Band), Group UBL (Ultra band Lok), and Group MCG (Multicure Glass), in subcutaneous tissue. The events of edema, necrosis, granulation tissue, multinuclear giant cells, young fibroblasts, and collagen formation were analyzed at 7, 15, and 30 days. The degree of conversion was evaluated by the Fourier method. Biocompatibility and degree of conversion were assessed using the Kruskal-Wallis and Dunn tests, and ANOVA and Tukey's test, respectively (P < 0.05). It was observed that, there was significant difference between Groups FOB and UBL for the presence of young fibroblasts at 15 days (P = 0.034) and between the Control and MCG Groups for the presence of multinucleated giant cells at 30 days (P = 0.009). Monomer conversion increased progressively until day 30, with significant difference between Group FOB and Groups UBL and MCG (P = 0.013) at 15 days. The null hypothesis was partially accepted, Fuji Ortho Band showed a less monomer conversion and a smaller number of young fibroblasts in the time of 15 days. PMID:24615757

  12. Nanospearing - Biomolecule Delivery and Its Biocompatibility

    NASA Astrophysics Data System (ADS)

    Cai, Dong; Kempa, Krzysztof; Ren, Zhifeng; Carnahan, David; Chiles, Thomas C.

    stimulation in as robust a manner as cells left untreated. Our study suggests the biocompatibility of the nanospearing procedure and PECVD nanotubes under the proposed spearing conditions with regard to the humoral component of the immune system, therefore, reducing concerns that surround in vivo applications of CNTs.

  13. An estimate of the prevalence of biocompatible and habitable planets.

    PubMed

    Fogg, M J

    1992-01-01

    A Monte Carlo computer model of extra-solar planetary formation and evolution, which includes the planetary geochemical carbon cycle, is presented. The results of a run of one million galactic disc stars are shown where the aim was to assess the possible abundance of both biocompatible and habitable planets. (Biocompatible planets are defined as worlds where the long-term presence of surface liquid water provides environmental conditions suitable for the origin and evolution of life. Habitable planets are those worlds with more specifically Earthlike conditions). The model gives an estimate of 1 biocompatible planet per 39 stars, with the subset of habitable planets being much rarer at 1 such planet per 413 stars. The nearest biocompatible planet may thus lie approximately 14 LY distant and the nearest habitable planet approximately 31 LY away. If planets form in multiple star systems then the above planet/star ratios may be more than doubled. By applying the results to stars in the solar neighbourhood, it is possible to identify 28 stars at distances of < 22 LY with a non-zero probability of possessing a biocompatible planet.

  14. An estimate of the prevalence of biocompatible and habitable planets.

    PubMed

    Fogg, M J

    1992-01-01

    A Monte Carlo computer model of extra-solar planetary formation and evolution, which includes the planetary geochemical carbon cycle, is presented. The results of a run of one million galactic disc stars are shown where the aim was to assess the possible abundance of both biocompatible and habitable planets. (Biocompatible planets are defined as worlds where the long-term presence of surface liquid water provides environmental conditions suitable for the origin and evolution of life. Habitable planets are those worlds with more specifically Earthlike conditions). The model gives an estimate of 1 biocompatible planet per 39 stars, with the subset of habitable planets being much rarer at 1 such planet per 413 stars. The nearest biocompatible planet may thus lie approximately 14 LY distant and the nearest habitable planet approximately 31 LY away. If planets form in multiple star systems then the above planet/star ratios may be more than doubled. By applying the results to stars in the solar neighbourhood, it is possible to identify 28 stars at distances of < 22 LY with a non-zero probability of possessing a biocompatible planet. PMID:11539465

  15. Biocompatible multilayer capsules engineered with a graphene oxide derivative: synthesis, characterization and cellular uptake

    NASA Astrophysics Data System (ADS)

    Del Mercato, Loretta L.; Guerra, Flora; Lazzari, Gianpiero; Nobile, Concetta; Bucci, Cecilia; Rinaldi, Rosaria

    2016-03-01

    Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives both for fundamental tests of graphene mechanics and for novel (bio)technological applications. However, the assembly of 3D complexes from graphene or its derivatives is challenging because of its poor stability under biological conditions. In this work, we attempted to integrate a layer of graphene oxide derivative into the shell of biodegradable capsules by exploiting a facile layer-by-layer (LbL) protocol. As a first step we optimized the LbL protocol to obtain colloidal suspensions of isolated capsules embedding the graphene oxide derivative. As a following step, we investigated in detail the morphological properties of the hybrid capsules, and how the graphene oxide derivative layer influences the porosity and the robustness of the multilayer composite shells. Finally, we verified the uptake of the capsules modified with the GO derivative by two cell lines and studied their intracellular localization and biocompatibility. As compared to pristine capsules, the graphene-modified capsules possess reduced porosity, reduced shell thickness and a higher stability against osmotic pressure. They show remarkable biocompatibility towards the tested cells and long-term colloidal stability and dispersion. By combining the excellent mechanical properties of a graphene oxide derivative with the high versatility of the LbL method, robust and flexible biocompatible polymeric capsules with novel characteristics have been fabricated.Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives

  16. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy.

    PubMed

    Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira; El-Rifai, Mahmoud; Lee, Hyungseok; Zhang, Yuanwei; Wang, Chao; Liu, Zhuang; Chan, Emory M; Duan, Chunying; Han, Gang

    2014-10-28

    A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal β-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP-PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major step forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors. It also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.

  17. Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy

    DOE PAGESBeta

    Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira; El-Rifai, Mahmoud; Lee, Hyungseok; Zhang, Yuanwei; Wang, Chao; Liu, Zhuang; Chan, Emory M.; Duan, Chunying; et al

    2014-09-25

    A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal β-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP–PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major stepmore » forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors.Lastly, it also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.« less

  18. Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy

    SciTech Connect

    Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira; El-Rifai, Mahmoud; Lee, Hyungseok; Zhang, Yuanwei; Wang, Chao; Liu, Zhuang; Chan, Emory M.; Duan, Chunying; Han, Gang

    2014-09-25

    A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal β-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP–PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major step forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors.Lastly, it also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.

  19. Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films

    PubMed Central

    Li, Rui-Yun; Liu, Zhi-Gang; Liu, Huan-Qiu; Chen, Lei; Liu, Jian-Feng; Pan, Yue-Hai

    2015-01-01

    Regeneration and functional recovery of nerves after peripheral nerve injury is the key to peripheral nerve repair. One of the putative therapeutic strategies is to use anti-adhesion polymer films, made of polymeric biomaterials. Recently, a novel biodegradable poly (DL-lactic acid) (PDLLA) film has been prepared using a method of phase transformation with biodegradable polylactic acid polymer as the substrate. This novel, anti-adhesion film has a porous structure, which provides better mechanical properties, better flexibility, more complete diffusion through the polymer of tissue biologic factors like growth factors, and more controllable degradation compared to traditional non-porous films. Little is known, however, about the in vitro and in vivo biocompatibility and cytotoxicity of this type of PDLLA film. Therefore, our aim was to evaluate the biocompatibility and cytotoxicity of this novel PDLLA film using various experimental methods, including a skin irritation test, MTT analysis, and the mouse bone marrow cell micronucleus test, as well as hematology or clinical chemistry measurements in rats after receiving sciatic nerve transection and anastomosis with wrapping of the anastomosis with DLLA films. We demonstrated that exposure to PDLLA film extracts did not generate apparent erythema or edema in rabbit skin and had no effect on the proliferation of Vero cells. Additionally, treatment with PDLLA film extracts did not alter the incidence of micronucleated polychromatic erythrocytes as compared with saline Treated group. Furthermore, implantation of PDLLA film did not alter liver or renal function as measured by serum levels of ALT, AST, TP, A/G, Cr, and BUN, and pathologic examinations showed that implantation of PDLLA film did not cause pathologic changes to the rat liver, kidney, pancreas, or spleen. Taken together, these results suggest that PDLLA films have excellent biocompatibility and no obvious toxicity in vivo, and may be used to prevent nerve

  20. Biocompatible multilayer capsules engineered with a graphene oxide derivative: synthesis, characterization and cellular uptake.

    PubMed

    del Mercato, Loretta L; Guerra, Flora; Lazzari, Gianpiero; Nobile, Concetta; Bucci, Cecilia; Rinaldi, Rosaria

    2016-04-14

    Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives both for fundamental tests of graphene mechanics and for novel (bio)technological applications. However, the assembly of 3D complexes from graphene or its derivatives is challenging because of its poor stability under biological conditions. In this work, we attempted to integrate a layer of graphene oxide derivative into the shell of biodegradable capsules by exploiting a facile layer-by-layer (LbL) protocol. As a first step we optimized the LbL protocol to obtain colloidal suspensions of isolated capsules embedding the graphene oxide derivative. As a following step, we investigated in detail the morphological properties of the hybrid capsules, and how the graphene oxide derivative layer influences the porosity and the robustness of the multilayer composite shells. Finally, we verified the uptake of the capsules modified with the GO derivative by two cell lines and studied their intracellular localization and biocompatibility. As compared to pristine capsules, the graphene-modified capsules possess reduced porosity, reduced shell thickness and a higher stability against osmotic pressure. They show remarkable biocompatibility towards the tested cells and long-term colloidal stability and dispersion. By combining the excellent mechanical properties of a graphene oxide derivative with the high versatility of the LbL method, robust and flexible biocompatible polymeric capsules with novel characteristics have been fabricated. PMID:26892453

  1. Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films.

    PubMed

    Li, Rui-Yun; Liu, Zhi-Gang; Liu, Huan-Qiu; Chen, Lei; Liu, Jian-Feng; Pan, Yue-Hai

    2015-01-01

    Regeneration and functional recovery of nerves after peripheral nerve injury is the key to peripheral nerve repair. One of the putative therapeutic strategies is to use anti-adhesion polymer films, made of polymeric biomaterials. Recently, a novel biodegradable poly (DL-lactic acid) (PDLLA) film has been prepared using a method of phase transformation with biodegradable polylactic acid polymer as the substrate. This novel, anti-adhesion film has a porous structure, which provides better mechanical properties, better flexibility, more complete diffusion through the polymer of tissue biologic factors like growth factors, and more controllable degradation compared to traditional non-porous films. Little is known, however, about the in vitro and in vivo biocompatibility and cytotoxicity of this type of PDLLA film. Therefore, our aim was to evaluate the biocompatibility and cytotoxicity of this novel PDLLA film using various experimental methods, including a skin irritation test, MTT analysis, and the mouse bone marrow cell micronucleus test, as well as hematology or clinical chemistry measurements in rats after receiving sciatic nerve transection and anastomosis with wrapping of the anastomosis with DLLA films. We demonstrated that exposure to PDLLA film extracts did not generate apparent erythema or edema in rabbit skin and had no effect on the proliferation of Vero cells. Additionally, treatment with PDLLA film extracts did not alter the incidence of micronucleated polychromatic erythrocytes as compared with saline Treated group. Furthermore, implantation of PDLLA film did not alter liver or renal function as measured by serum levels of ALT, AST, TP, A/G, Cr, and BUN, and pathologic examinations showed that implantation of PDLLA film did not cause pathologic changes to the rat liver, kidney, pancreas, or spleen. Taken together, these results suggest that PDLLA films have excellent biocompatibility and no obvious toxicity in vivo, and may be used to prevent nerve

  2. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.

    PubMed

    Bell, Alex; Kofron, Matthew; Nistor, Vasile

    2015-09-01

    Multiphoton fabrication is a powerful technique for three-dimensional (3D) printing of structures at the microscale. Many polymers and proteins have been successfully structured and patterned using this method. Type I collagen comprises a large part of the extracellular matrix for most tissue types and is a widely used cellular scaffold material for tissue engineering. Current methods for creating collagen tissue scaffolds do not allow control of local geometry on a cellular scale. This means the environment experienced by cells may be made up of the native material but unrelated to native cellular-scale structure. In this study, we present a novel method to allow multiphoton crosslinking of type I collagen with flavin mononucleotide photosensitizer. The method detailed allows full 3D printing of crosslinked structures made from unmodified type I collagen and uses only demonstrated biocompatible materials. Resolution of 1 μm for both standing lines and high-aspect ratio gaps between structures is demonstrated and complex 3D structures are fabricated. This study demonstrates a means for 3D printing with one of the most widely used tissue scaffold materials. High-resolution, 3D control of the fabrication of collagen scaffolds will facilitate higher fidelity recreation of the native extracellular environment for engineered tissues.

  3. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

    PubMed

    Ye, Lei; Zhang, Yabin; Wang, Qiangsong; Zhou, Xin; Yang, Boguang; Ji, Feng; Dong, Dianyu; Gao, Lina; Cui, Yuanlu; Yao, Fanglian

    2016-06-22

    In this work, a novel starch-based zwitterionic copolymer, starch-graft-poly(sulfobetaine methacrylate) (ST-g-PSBMA), was synthesized via Atom Transfer Radical Polymerization. Starch, which formed the main chain, can be degraded completely in vivo, and the pendent segments of PSBMA endowed the copolymer with excellent protein resistance properties. This ST-g-PSBMA copolymer could self-assemble into a physical hydrogel in normal saline, and studies of the formation mechanism indicated that the generation of the physical hydrogel was driven by electrostatic interactions between PSBMA segments. The obtained hydrogels were subjected to detailed analysis by scanning electron microscopy, swelling ratio, protein resistance, and rheology tests. Toxicity and hemolysis analysis demonstrated that the ST-g-PSBMA hydrogels possess excellent biocompatibility and hemocompatibility. Moreover, the cytokine secretion assays (IL-6, TNF-α, and NO) confirmed that ST-g-PSBMA hydrogels had low potential to trigger the activation of macrophages and were suitable for in vivo biomedical applications. On the basis of these in vitro results, the ST-g-PSBMA hydrogels were implanted in SD rats. The tissue responses to hydrogel implantation and the hydrogel degradation in vivo were determined by histological analysis (Hematoxylin and eosin, Van Gieson, and Masson's Trichrome stains). The results presented in this study demonstrate that the physical cross-linking, starch-based zwitterionic hydrogels possess excellent protein resistance, low macrophage-activation properties, and good biocompatibility, and they are a promising candidate for an in vivo biomedical application platform.

  4. Biocompatibility of Portland Cement Modified with Titanium Oxide and Calcium Chloride in a Rat Model

    PubMed Central

    Hoshyari, Narjes; Labbaf, Hossein; Jalayer Naderi, Nooshin; Kazemi, Ali; Bastami, Farshid; Koopaei, Maryam

    2016-01-01

    Introduction: The aim of the present study was to evaluate the biocompatibility of two modified formulations of Portland cement (PC) mixed with either titanium oxide or both titanium oxide and calcium chloride. Methods and Materials: Polyethylene tubes were filled with modified PCs or Angelus MTA as the control; the tubes were then implanted in 28 Wistar rats subcutaneously. One tube was left empty as a negative control in each rat. Histologic samples were taken after 7, 15, 30 and 60 days. Sections were assessed histologically for inflammatory responses and presence of fibrous capsule and granulation tissue formation. Data were analyzed using the Fisher’s exact and Kruskal-Wallis tests. Result: PC mixed with titanium oxide showed the highest mean scores of inflammation compared with others. There was no statistically significant difference in the mean inflammatory grades between all groups in each of the understudy time intervals. Conclusion: The results showed favorable biocompatibility of these modified PC mixed with calcium chloride and titanium oxide. PMID:27141221

  5. Controlling the mechanics and nanotopography of biocompatible scaffolds through dielectrophoresis with carbon nanotubes.

    PubMed

    Lu, Yu-Lun; Cheng, Chao-Min; LeDuc, Philip R; Ho, Mon-Shu

    2008-08-01

    Creating a biocompatible carbon-nanotube polymer scaffold is an area that has a number of potential applications. Herein, a dielectrophoretic approach was pursued to integrate carbon nanotubes into a polymeric material for fabricating a nanoscale composite scaffold with increased and controllable mechanical strength. The adhesion force, which combines the surface energy of the sample and the interfacial energy between the tip and sample, was estimated to be 55.39 +/- 6.72 nN away from the center of the protrusions at a distance of 0.5 microm while being 24.01 +/- 4.45 nN at the center. The adhesion force for the center of the cavities was 42.47 +/- 6.91 and 88.21 +/- 15.05 nN at 0.5 microm away from the center. NIH 3T3 fibroblast cells were then utilized to test the cellular biocompatibility of this multiwalled carbon nanotubes (MWCNTs) film. Cells were cultured on the surface and then their attachment, spreading, and proliferation behaviors were observed. This nanotube-polymer scaffolding approach has a wide range of potential applications including in complex device fabrication as well as in developing biomimetic and tissue engineering scaffolds, and artificial organs.

  6. Preparation and biocompatibility of grafted functional β-cyclodextrin copolymers from the surface of PET films.

    PubMed

    Jiang, Yan; Liang, Yuan; Zhang, Hongwen; Zhang, Weiwei; Tu, Shanshan

    2014-08-01

    The hydrophobic inert surface of poly(ethylene terephthalate) (PET) film has limited its practical bioapplications, in which case, better biocompatibility should be achieved by surface modification. In this work, the copolymer of functional β-cyclodextrin derivatives and styrene grafted surfaces was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) on initiator-immobilized PET. The structures, composition, properties, and surface morphology of the modified PET films were characterized by fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by a thick targeted copolymer layer, and the hydrophobic surface of PET was changed into an amphiphilic surface. The copolymer-grafted surfaces were also shown good biocompatibility on which SGC-7901 A549 and A549/DDP cells readily attached and proliferated, demonstrating that the functional copolymer-grafted PET films could be a promising alternative to biomaterials especially for tissue engineering. PMID:24907730

  7. Biostability and biocompatibility of poly(ester urethane)-gold nanocomposites.

    PubMed

    Hsu, Shan-hui; Tang, Cheng-Ming; Tseng, Hsiang-Jung

    2008-11-01

    Nanocomposites from a polyester-type water-borne polyurethane (PU) containing different amounts (17.4-174 ppm) of gold (Au) nanoparticles (approximately 5 nm) were prepared. A previous study has shown that the Au nanoparticles could induce surface morphological transformations in the PU (e.g. the mesophase transition from hard lamellae to soft micelles), which modify the physicochemical properties of the PU as well as the fibroblast response to the PU. The current study focused on the biostability and biocompatibility of the nanocomposites. The nanocomposites were characterized by transmission electron microscopy and X-ray photoelectron spectroscopy, and their oxidative stability and free radical scavenging ability were tested. The inflammatory response was evaluated by monocyte activation in vitro and rat subcutaneous implantation in vivo. It was found that the nanocomposites containing 43.5-65 ppm of Au had the least monocyte activation and tissue reactions. PU and the nanocomposites were rather resistant to oxidative degradation in vitro and biodegradation in vivo. The nanocomposites exhibited greater free radical scavenging abilities than the original PU. Based on the above results, the significantly enhanced biocompatibility of the PU-Au nanocomposites with 43.5-65 ppm of gold over the original PU appeared to be a result of the extensively modified surface morphology and greater free radical scavenging ability, instead of due to the difference in biostability. PMID:18657493

  8. Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.

    PubMed

    López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S

    2014-06-01

    A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc). PMID:24667693

  9. Overcoming foreign-body reaction through nanotopography: Biocompatibility and immunoisolation properties of a nanofibrous membrane.

    PubMed

    Wang, Kai; Hou, Wen-Da; Wang, Xi; Han, Chengsheng; Vuletic, Ivan; Su, Ni; Zhang, Wen-Xi; Ren, Qiu-Shi; Chen, Liangyi; Luo, Ying

    2016-09-01

    Implantable immunoisolation membranes need to possess superior biocompatibility to prohibit the fibrotic deposition that would reduce the nutrient supply and impair the viability/function of the encapsulated cells. Here, electrospun membranes based on thermoplastic polyurethane (TPU) were fabricated to contain microfibers (PU-micro) or nanofibers (PU-nano). The two types of membranes were compared in terms of their interaction with macrophage cells and the host tissues. It was found that the fibrous membranes of different topographies possess distinct material properties: PU-nano caused minimal macrophage responses in vitro and in vivo and induced only mild foreign body reactions compared to PU-micro membranes. A flat macroencapsulation device was fabricated using PU-nano membranes and its immunoisolation function investigated in subcutaneous transplantation models. The nanofibrous device demonstrated the capability to effectively shield the allografts from the immune attack of the host. Nanotopography may confer biocompatibility to materials and nanofibrous materials warrant further study for development of "invisible" immunoisolation devices for cell transplantation. PMID:27344368

  10. Materials composed of the Drosophila Hox protein Ultrabithorax are biocompatible and nonimmunogenic.

    PubMed

    Patterson, Jan L; Arenas-Gamboa, Angela M; Wang, Ting-Yi; Hsiao, Hao-Ching; Howell, David W; Pellois, Jean-Philippe; Rice-Ficht, Allison; Bondos, Sarah E

    2015-04-01

    Although the in vivo function of the Drosophila melanogaster Hox protein Ultrabithorax (Ubx) is to regulate transcription, in vitro Ubx hierarchically self-assembles to form nanoscale to macroscale materials. The morphology, mechanical properties, and functionality (via protein chimeras) of Ubx materials are all easily engineered. Ubx materials are also compatible with cells in culture. These properties make Ubx attractive as a potential tissue engineering scaffold, but to be used as such they must be biocompatible and nonimmunogenic. In this study, we assess whether Ubx materials are suitable for in vivo applications. When implanted into mice, Ubx fibers attracted few immune cells to the implant area. Sera from mice implanted with Ubx contain little to no antibodies capable of recognizing Ubx. Furthermore, Ubx fibers cultured with macrophages in vitro did not lyse or activate the macrophages, as measured by TNF-α and NO secretion. Finally, Ubx fibers do not cause hemolysis when incubated with human red blood cells. The minimal effects observed are comparable with those induced by biomaterials used successfully in vivo. We conclude Ubx materials are biocompatible and nonimmunogenic.

  11. Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants.

    PubMed

    Penkov, Oleksiy V; Pukha, Vladimir E; Starikova, Svetlana L; Khadem, Mahdi; Starikov, Vadym V; Maleev, Maxim V; Kim, Dae-Eun

    2016-09-01

    Diamond-like carbon coatings are increasingly used as wear-protective coatings for dental implants, artificial joints, etc. Despite their advantages, they may have several weak points such as high internal stress, poor adhesive properties or high sensitivity to ambient conditions. These weak points could be overcome in the case of a new carbon nanocomposite coating (CNC) deposited by using a C60 ion beam on a Co/Cr alloy. The structure of the coatings was investigated by Raman and XPS spectroscopy. The wear resistance was assessed by using a reciprocating tribotester under the loads up to 0.4 N in both dry and wet sliding conditions. Biocompatibility of the dental implants was tested in vivo on rabbits. Biocompatibility, bioactivity and mechanical durability of the CNC deposited on a Co/Cr alloy were investigated and compared with those of bulk Co/Cr and Ti alloys. The wear resistance of the CNC was found to be 250-650 fold higher compared to the Co/Cr and Ti alloys. Also, the CNC demonstrated much better biological properties with respect to formation of new tissues and absence of negative morphological parameters such as necrosis and demineralization. Development of the CNC is expected to aid in significant improvement of lifetime and quality of implants for dental applications.

  12. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart.

    PubMed

    Tölli, Marja A; Ferreira, Mónica P A; Kinnunen, Sini M; Rysä, Jaana; Mäkilä, Ermei M; Szabó, Zoltán; Serpi, Raisa E; Ohukainen, Pauli J; Välimäki, Mika J; Correia, Alexandra M R; Salonen, Jarno J; Hirvonen, Jouni T; Ruskoaho, Heikki J; Santos, Hélder A

    2014-09-01

    Myocardial infarction (MI), commonly known as a heart attack, is the irreversible necrosis of heart muscle secondary to prolonged ischemia, which is an increasing problem in terms of morbidity, mortality and healthcare costs worldwide. Along with the idea to develop nanocarriers that efficiently deliver therapeutic agents to target the heart, in this study, we aimed to test the in vivo biocompatibility of different sizes of thermally hydrocarbonized porous silicon (THCPSi) microparticles and thermally oxidized porous silicon (TOPSi) micro and nanoparticles in the heart tissue. Despite the absence or low cytotoxicity, both particle types showed good in vivo biocompatibility, with no influence on hematological parameters and no considerable changes in cardiac function before and after MI. The local injection of THCPSi microparticles into the myocardium led to significant higher activation of inflammatory cytokine and fibrosis promoting genes compared to TOPSi micro and nanoparticles; however, both particles showed no significant effect on myocardial fibrosis at one week post-injection. Our results suggest that THCPSi and TOPSi micro and nanoparticles could be applied for cardiac delivery of therapeutic agents in the future, and the PSi biomaterials might serve as a promising platform for the specific treatment of heart diseases.

  13. Biocompatible polyhydroxyalkanoates/bacterial cellulose composites: Preparation, characterization, and in vitro evaluation.

    PubMed

    Chiulan, Ioana; Mihaela Panaitescu, Denis; Nicoleta Frone, Adriana; Teodorescu, Mircea; Andi Nicolae, Cristian; Căşărică, Angela; Tofan, Vlad; Sălăgeanu, Aurora

    2016-10-01

    Biocompatible composites play a critical role as scaffolds in tissue engineering. Novel biocomposites made from poly(3-hydroxybutyrate) (PHB), polyhydroxyalkanoate (PHA) and bacterial cellulose (BC) in different concentrations were prepared by solution casting and their thermal and mechanical behavior as well as biocompatibility was characterized. BC addition increased the thermal stability of the polymer matrix as evidenced by thermogravimetric analysis. The crystallinity of PHB and the crystallization temperature decreased with the addition of BC and PHA, thus increasing the processing window. BC in small concentration determined an increase in the mechanical properties due to a concerted action of PHA and filler. Good cells attachment and proliferation were observed for all the biocomposites. By the addition of PHA (more hydrophobic than the matrix) and various amounts of BC (highly hydrophilic), surface properties and cell attachment can be controlled. Cytocompatibility studies using L929 cell line revealed that this material is suitable for biomedical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2576-2584, 2016. PMID:27242044

  14. Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.

    PubMed

    López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S

    2014-06-01

    A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc).

  15. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants.

    PubMed

    Motulsky, Aude; Lafleur, Michel; Couffin-Hoarau, Anne-Claude; Hoarau, Didier; Boury, Frank; Benoit, Jean-Pierre; Leroux, Jean-Christophe

    2005-11-01

    The development of simple and efficient drug delivery systems for the sustained release of peptides/proteins and low molecular weight hydrophilic molecules is an ongoing challenge. The purpose of this work was to prepare and characterize novel biodegradable in situ-forming implants obtained via the self-assembly of L-alanine derivatives in pharmaceutical oils. Six different amphiphilic organogelators based on L-alanine were synthesized. These derivatives could successfully gel various vegetable and synthetic oils approved for parenteral administration. Gelation was thermoreversible, and phase transition temperatures depended on gelator structure, concentration and solvent. Hydrogen bonds and van der Waals interactions were shown to be the main forces implicated in network formation. Selected formulations were then injected subcutaneously in rats for preliminary assessment of biocompatibility. Histopathological analysis of the surrounding tissues revealed mild, chronic inflammation and an overall good biocompatibility profile of the implants over the 8 wk evaluation period. This study demonstrates that in situ-forming organogels represent a potentially promising platform for sustained drug delivery.

  16. Synthesis and biocompatibility of a biodegradable and functionalizable thermo-sensitive hydrogel

    PubMed Central

    Sinha, Mantosh K.; Gao, Jin; Stowell, Chelsea E. T.; Wang, Yadong

    2015-01-01

    Injectable thermal gels are a useful tool for drug delivery and tissue engineering. However, most thermal gels do not solidify rapidly at body temperature (37°C). We addressed this by synthesizing a thermo-sensitive, rapidly biodegrading hydrogel. Our hydrogel, poly(ethylene glycol)-co-poly(propanol serinate hexamethylene urethane) (EPSHU), is an ABA block copolymer comprising A, methoxy poly ethylene glycol group and B, poly (propanol L-serinate hexamethylene urethane). EPSHU was characterized by gel permeation chromatography for molecular weight and 1H NMR and Fourier transformed infrared for structure. Rheological studies measured the phase transition temperature. In vitro degradation in cholesterol esterase and in Dulbecco's phosphate buffered saline (DPBS) was tracked using the average molecular weight measured by gel permeation chromatography. LIVE/DEAD and resazurin reduction assays performed on NIH 3T3 fibroblasts exposed to EPSHU extracts demonstrated no cytotoxicity. Subcutaneous implantation into BALB/cJ mice indicated good biocompatibility in vivo. The biodegradability and biocompatibility of EPSHU together make it a promising candidate for drug delivery applications that demand carrier gel degradation within months. PMID:26814023

  17. Adjustable degradation properties and biocompatibility of amorphous and functional poly(ester-acrylate)-based materials.

    PubMed

    Undin, Jenny; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2014-07-14

    Tuning the properties of materials toward a special application is crucial in the area of tissue engineering. The design of materials with predetermined degradation rates and controlled release of degradation products is therefore vital. Providing a material with various functional groups is one of the best ways to address this issue because alterations and modifications of the polymer backbone can be performed easily. Two different 2-methylene-1,3-dioxepane/glycidyl methacrylate-based (MDO/GMA) copolymers were synthesized with different feed ratios and immersed into a phosphate buffer solution at pH 7.4 and in deionized water at 37 °C for up to 133 days. After different time intervals, the molecular weight changes, mass loss, pH, and degradation products were determined. By increasing the amount of GMA functional groups in the material, the degradation rate and the amount of acidic degradation products released from the material were decreased. As a result, the composition of the copolymers greatly affected the degradation rate. A rapid release of acidic degradation products during the degradation process could be an important issue for biomedical applications because it might affect the biocompatibility of the material. The cytotoxicity of the materials was evaluated using a MTT assay. These tests indicated that none of the materials demonstrated any obvious cytotoxicity, and the materials could therefore be considered biocompatible.

  18. L-cysteine: a biocompatible, breathable and beneficial coating for graphene oxide.

    PubMed

    Mu, Li; Gao, Yue; Hu, Xiangang

    2015-06-01

    Graphene oxide (GO) has been employed in various fields, and its ecological and health risks have attracted much attention. A small and inexpensive biomolecule, L-cysteine, was covalently immobilized onto GO to form L-cysteine-GO (CysGO) as a thio-functionalized nanosheet of 1.4 nm in thickness. Both the d-spacing and crystallinity of CysGO were observed to be lower than those of GO, whereas the D and G peaks remained similar to those of GO. CysGO exhibited remarkable uptake in vivo: no tissue defects, malformation, death or significant hatching delay were observed in zebrafish embryos. Significant DNA damage, decreased Na+/K+-ATPase activity and decreased mitochondrial membrane potential were not observed for CysGO. As a nonspecific activity linked to nanotoxicology, the unpaired electron spinning intensity of CysGO was approximately two orders of magnitude lower than that of GO. Oxygen microsensor analysis showed that the hypoxic and normoxic environments resulting from the presence of GO and CysGO envelopment, respectively, contributed to the difference in biocompatibility. CysGO also protected embryos from arsenic poisoning. Thus, CysGO has the advantageous properties of GO, exhibits excellent biocompatibility, acts as a breathable coating and antidote, and is suitable for various applications. PMID:25818436

  19. Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants.

    PubMed

    Penkov, Oleksiy V; Pukha, Vladimir E; Starikova, Svetlana L; Khadem, Mahdi; Starikov, Vadym V; Maleev, Maxim V; Kim, Dae-Eun

    2016-09-01

    Diamond-like carbon coatings are increasingly used as wear-protective coatings for dental implants, artificial joints, etc. Despite their advantages, they may have several weak points such as high internal stress, poor adhesive properties or high sensitivity to ambient conditions. These weak points could be overcome in the case of a new carbon nanocomposite coating (CNC) deposited by using a C60 ion beam on a Co/Cr alloy. The structure of the coatings was investigated by Raman and XPS spectroscopy. The wear resistance was assessed by using a reciprocating tribotester under the loads up to 0.4 N in both dry and wet sliding conditions. Biocompatibility of the dental implants was tested in vivo on rabbits. Biocompatibility, bioactivity and mechanical durability of the CNC deposited on a Co/Cr alloy were investigated and compared with those of bulk Co/Cr and Ti alloys. The wear resistance of the CNC was found to be 250-650 fold higher compared to the Co/Cr and Ti alloys. Also, the CNC demonstrated much better biological properties with respect to formation of new tissues and absence of negative morphological parameters such as necrosis and demineralization. Development of the CNC is expected to aid in significant improvement of lifetime and quality of implants for dental applications. PMID:27336185

  20. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications.

    PubMed

    Kaneti, Yusuf Valentino; Chen, Chuyang; Liu, Minsu; Wang, Xiaochun; Yang, Jia Lin; Taylor, Robert Allen; Jiang, Xuchuan; Yu, Aibing

    2015-11-25

    Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon

  1. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications.

    PubMed

    Kaneti, Yusuf Valentino; Chen, Chuyang; Liu, Minsu; Wang, Xiaochun; Yang, Jia Lin; Taylor, Robert Allen; Jiang, Xuchuan; Yu, Aibing

    2015-11-25

    Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon

  2. [Biocompatibility of dental materials: Part 2. Materials with mucosal contact].

    PubMed

    Klötzer, W T; Reuling, N

    1990-08-01

    Dental materials which are supposed to contact the oral, mucous membranes during their intended dental use may affect our patients health in different ways. Their local and systemic toxicity, and their allergenic and tumorigenic potential are reviewed and methods of biocompatibility testing discussed. Special emphasis is placed on impression materials, denture base resins and dental alloys. PMID:2269166

  3. Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels.

    PubMed

    Zhao, Yu; Nakajima, Tasuku; Yang, Jing Jing; Kurokawa, Takayuki; Liu, Jian; Lu, Jishun; Mizumoto, Shuji; Sugahara, Kazuyuki; Kitamura, Nobuto; Yasuda, Kazunori; Daniels, A U D; Gong, Jian Ping

    2014-01-22

    Based on the molecular stent concept, a series of tough double-network hydrogels (St-DN gels) made from the components of proteoglycan aggregates - chondroitin sulfate proteoglycans (1), chondroitin sulfate (2), and sodium hyaluronate (3) - are successfully developed in combination with a neutral biocompatible polymer. This work demonstrates a promising method to create biopolymer-based tough hydrogels for biomedical applications. PMID:24431128

  4. Chemical design of biocompatible iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Hyeon, Taeghwan

    2013-05-27

    Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.

  5. Biocompatibility of Bletilla striata Microspheres as a Novel Embolic Agent

    PubMed Central

    Luo, ShiHua; Song, SongLin; Zheng, ChuanSheng; Wang, Yong; Xia, XiangWen; Liang, Bin; Feng, GanSheng

    2015-01-01

    We have prepared Chinese traditional herb Bletilla striata into microspheres as a novel embolic agent for decades. The aim of this study was to evaluate the biocompatibility of Bletilla striata microspheres (BSMs). After a thermal test of BSMs in vitro, the cell biocompatibility of BSMs was investigated in mouse fibroblasts and human umbilical vein endothelial cells using the methyl tetrazolium (MTT) assay. In addition, blood biocompatibility was evaluated. In vivo intramuscular implantation and renal artery embolization in rabbits with BSMs were used to examine the inflammatory response. The experimental rabbits did not develop any fever symptoms after injection of BSMs, and BSMs exhibited no cytotoxicity in cultured mouse fibroblasts and human umbilical vein endothelial cells. Additionally, BSMs exhibited high compatibility with red blood cells and no hemolysis activity. Intramuscular implantation with BSMs resulted in a gradually lessened mild inflammatory reaction that disappeared after eight weeks. The occlusion of small renal vessels was associated with a mild perivascular inflammatory reaction without significant renal and liver function damage. In conclusion, we believe that BSMs exhibit high biocompatibility and are a promising embolic agent. PMID:26472985

  6. Biocompatibility of Delrin 150: a creep-resistant polymer for total joint prostheses.

    PubMed

    Fister, J S; Memoli, V A; Galante, J O; Rostoker, W; Urban, R M

    1985-01-01

    A thermoplastic polymer, Delrin 150 (polyoxymethylene homopolymer), with creep resistance ten times that of ultrahigh-molecular-weight polyethylene, is used as a material for total joint prostheses. A study was made of the local and systemic host response to this polymer when implanted in three different mammalian species. 316 LC stainless steel was used as a control. The materials were implanted into muscle and bone as solid cylinders. A total of 446 samples were implanted into 74 animals. The duration of implantation ranged from 2 weeks to 2 years. A semi-quantitative evaluation of local tissue reaction was performed. For each implant, 16 histological criteria were graded for severity of host tissue reaction. The liver, spleen, kidneys, pancreas, and lungs from each animal were also studied for evidence of systemic toxicity. The polymer implants exhibited a mild tissue reaction with the same characteristics as the control. Local tumor formation, bone osteolysis, and surrounding muscle necrosis were not seen. No pathological changes compatible with systemic toxicity by Delrin 150 were observed in the study of the organs. Delrin 150 in solid form did not exhibit local or systemic toxicity and is therefore biocompatible by this study. Powder implantation studies should be performed to simulate tissue response to wear particles. PMID:4066726

  7. Fine grained osseointegrative coating improves biocompatibility of PEEK in heterotopic sheep model

    PubMed Central

    Verleye, Gino B.M.; Smeets, Dirk; Van Hauwermeiren, Hadewych Y.R.; Loeckx, Dirk; Willems, Karel; Siau, Vincent G.M.G.G.B.; Lauweryns, Philippe J.M.E.

    2015-01-01

    Background and aim Polyetheretherketone (PEEK) materials already have been used successfully in orthopedic and especially spine surgery. PEEK is radiolucent and comparable with bone regarding elasticity. However, PEEK is inert and the adhesion of PEEK implants to bone tissue proceeds slowly because of their relatively low biocompatibility. The aim of the study is to evaluate the effect of titanium and CaP coating on the adhesion of bone tissue. Material and Methods Six adult sheep (body weight 57.6 ± 3.9 kg) were included in this study. Three different types of cylindrical dowels (12 mm length x 8 mm diameter) were implanted in long bones (tibia and femur): PEEK dowels without coating (the control group), and PEEK dowels with a nanocoating of calcium phosphate (CaP group) or titanium (titanium group). Animals were sacrificed after 6, 12 and 26 weeks. Dowels were explanted for micro CT and histology. Results Bone implant contact (BIC) ratio was significantly higher in the titanium versus control groups in the 6 to 12 weeks period (p = 0.03). The ratio between bone volume and tissue volume (BV/TV) was significantly higher in titanium versus control in the 6 to 12 weeks period (p = 0.02). A significant correlation between BIC and BV/TV was seen (r = 0.85, p < 0.05). Conclusion Coating of PEEK dowels with a nanocoating of titanium has beneficial effects on adhesion of bone tissue. PMID:26273553

  8. Simple replica micromolding of biocompatible styrenic elastomers.

    PubMed

    Borysiak, Mark D; Bielawski, Kevin S; Sniadecki, Nathan J; Jenkel, Colin F; Vogt, Bryan D; Posner, Jonathan D

    2013-07-21

    In this work, we introduce a simple solvent-assisted micromolding technique for the fabrication of high-fidelity styrene-ethylene/butylene-styrene (SEBS) microfluidic devices with high polystyrene (PS) content (42 wt% PS, SEBS42). SEBS triblock copolymers are styrenic thermoplastic elastomers that exhibit both glassy thermoplastic and elastomeric properties resulting from their respective hard PS and rubbery ethylene/butylene segments. The PS fraction gives SEBS microdevices many of the appealing properties of pure PS devices, while the elastomeric properties simplify fabrication of the devices, similar to PDMS. SEBS42 devices have wettable, stable surfaces (both contact angle and zeta potential) that support cell attachment and proliferation consistent with tissue culture dish substrates, do not adsorb hydrophobic molecules, and have high bond strength to wide range of substrates (glass, PS, SEBS). Furthermore, SEBS42 devices are mechanically robust, thermally stable, as well as exhibit low auto-fluorescence and high transmissivity. We characterize SEBS42 surface properties by contact angle measurements, cell culture studies, zeta potential measurements, and the adsorption of hydrophobic molecules. The PS surface composition of SEBS microdevices cast on different substrates is determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The attractive SEBS42 material properties, coupled with the simple fabrication method, make SEBS42 a quality substrate for microfluidic applications where the properties of PS are desired but the ease of PDMS micromolding is favoured.

  9. Simple replica micromolding of biocompatible styrenic elastomers.

    PubMed

    Borysiak, Mark D; Bielawski, Kevin S; Sniadecki, Nathan J; Jenkel, Colin F; Vogt, Bryan D; Posner, Jonathan D

    2013-07-21

    In this work, we introduce a simple solvent-assisted micromolding technique for the fabrication of high-fidelity styrene-ethylene/butylene-styrene (SEBS) microfluidic devices with high polystyrene (PS) content (42 wt% PS, SEBS42). SEBS triblock copolymers are styrenic thermoplastic elastomers that exhibit both glassy thermoplastic and elastomeric properties resulting from their respective hard PS and rubbery ethylene/butylene segments. The PS fraction gives SEBS microdevices many of the appealing properties of pure PS devices, while the elastomeric properties simplify fabrication of the devices, similar to PDMS. SEBS42 devices have wettable, stable surfaces (both contact angle and zeta potential) that support cell attachment and proliferation consistent with tissue culture dish substrates, do not adsorb hydrophobic molecules, and have high bond strength to wide range of substrates (glass, PS, SEBS). Furthermore, SEBS42 devices are mechanically robust, thermally stable, as well as exhibit low auto-fluorescence and high transmissivity. We characterize SEBS42 surface properties by contact angle measurements, cell culture studies, zeta potential measurements, and the adsorption of hydrophobic molecules. The PS surface composition of SEBS microdevices cast on different substrates is determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The attractive SEBS42 material properties, coupled with the simple fabrication method, make SEBS42 a quality substrate for microfluidic applications where the properties of PS are desired but the ease of PDMS micromolding is favoured. PMID:23670166

  10. Optimizing and evaluating the biocompatibility of fiber composites with calcium phosphate additives.

    PubMed

    Suchý, Tomáš; Balík, Karel; Sucharda, Zbyněk; Sochor, Miroslav; Lapčíková, Monika; Sedláček, Radek

    2011-10-01

    Composite materials based on a polyamide fabric (aramid) and a polydymethylsiloxane (PDMS) matrix were designed for application in bone surgery. In order to increase the bioactivity, 2, 5, 10, 15, 20, and 25 vol.% of nano/micro hydroxyapatite (HA) and tricalcium phosphate (TCP) were added. We studied the effect of the additives on the biocompatibility of the composite. It appears that nano additives have a more favorable effect on mechanical properties than microparticles. 15 vol.% of nano hydroxyapatite additive is an optimum amount for final application of the composites as substitutes for bone tissue: in this case both the mechanical properties and the biological properties are optimized without distinct changes in the inner structure of the composite.

  11. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    PubMed

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  12. Buckling Instability of Dielectric Elastomeric Plates for Soft, Bio-Compatible Microfluidic Pumps

    NASA Astrophysics Data System (ADS)

    Tavakol, Behrouz; Bozlar, Michael; Froehlicher, Guillaume; Punckt, Christian; Stone, Howard A.; Aksay, Ilhan; Holmes, Douglas

    2013-03-01

    Dielectric elastomers are well-known for their superior stretchability and permittivity. A fully-clamped thin elastomer will buckle when it is compressed by applying sufficient electric potentials to its sides. When embedded within soft, silicone rubbers, these advanced materials can provide a means for a bio-compatible pumping mechanism that can be used to inject bio-fluids with desired flow rates into microfluidic devices, tissues, and organs of interest. We have incorporated a dielectric film that is sandwiched between two thin, flexible, solid electrodes into a microfluidic device and utilized a voltage-induced out-of-plane buckling instability for pumping of fluids. We experimentally quantify the voltage-induced plate buckling and measure the fluid flow rate when the structure is embedded in a microchannel. Additionally, we offer an analytical prediction that uses plate buckling theory to estimate the flow rate as a function of applied voltage.

  13. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber.

    PubMed

    Cenis, Jose Luis; Aznar-Cervantes, Salvador D; Lozano-Pérez, Antonio Abel; Rojo, Marta; Muñoz, Juan; Meseguer-Olmo, Luis; Arenas, Aurelio

    2016-07-16

    This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs) of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF) mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm) as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells.

  14. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber

    PubMed Central

    Cenis, Jose Luis; Aznar-Cervantes, Salvador D.; Lozano-Pérez, Antonio Abel; Rojo, Marta; Muñoz, Juan; Meseguer-Olmo, Luis; Arenas, Aurelio

    2016-01-01

    This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs) of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF) mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm) as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells. PMID:27438824

  15. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber.

    PubMed

    Cenis, Jose Luis; Aznar-Cervantes, Salvador D; Lozano-Pérez, Antonio Abel; Rojo, Marta; Muñoz, Juan; Meseguer-Olmo, Luis; Arenas, Aurelio

    2016-01-01

    This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs) of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF) mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm) as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells. PMID:27438824

  16. Preparation and biocompatibility evaluation of bioactive glass-forsterite nanocomposite powder for oral bone defects treatment applications.

    PubMed

    Saqaei, Mahboobe; Fathi, Mohammadhossein; Edris, Hossein; Mortazavi, Vajihesadat

    2015-11-01

    Bone defects which emerge around dental implants are often seen when implants are placed in areas with insufficient alveolar bone, in extraction sockets, or around failing implants. Bone regeneration in above-mentioned defects using of bone grafts or bone substitutes may cure the long-term prognoses of dental implants. Biocompatibility, bioactivity and osteogenic properties are key factors affecting the applications of a bone substitute. This study was aimed at preparation, characterization, biocompatibility and bioactivity evaluation of the bioactive glass-forsterite nanocomposite powder as a desired candidate for oral bone defect treatments. Nanocomposite powders containing 58S bioactive glass and different amounts of forsterite nanopowder were synthesized in situ by sol-gel technique. Characterization of the prepared nanocomposite powders and their cytotoxicity assessment was performed via MTT test. Bioactivity assessment was done by immersing the prepared powder in the simulated body fluid (SBF). Results showed that nanocomposite powders containing forsterite with crystallite size of 20-50nm were successfully fabricated by calcination at 600°C. The prepared bioactive glass-forsterite nanocomposite powders revealed high in vitro biocompatibility; besides, the nanocomposite containing 20wt.% forsterite showed a substantial increase in the cell viability compared with control groups. During immersion in SBF, the formation of apatite layer confirmed the bioactivity of bioactive glass-forsterite nanocomposite powders. According to the results, the fabricated nanocomposite powders can be introduced as a promising candidate for oral bone imperfection treatments and hard tissue mend.

  17. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging.

    PubMed

    Liu, Zhi-jun; Song, Xiao-xia; Xu, Xian-zhu; Tang, Qun

    2014-04-18

    Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent.

  18. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-jun; Song, Xiao-xia; Xu, Xian-zhu; Tang, Qun

    2014-04-01

    Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent.

  19. Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers.

    PubMed

    Suslu, A; Albayrak, A Z; Urkmez, A S; Bayir, E; Cocen, U

    2014-12-01

    Bone tissue engineering literature conveys investigations regarding biodegradable polymers where bioactive inorganic materials are added either before or after electrospinning process. The goal is to mimic the composition of bone and enhance the biocompatibility of the materials. Yet, most polymeric materials are hydrophobic in nature; therefore, their surfaces are not favorable for human cellular adhesion. In this sense, modifications of the hydrophobic surface of electrospun polymer fibers with hydrophilic and bioactive nanoparticles are beneficial. In this work, dispersion of hydroxyapatite (HAp), which is similar to the mineral component of natural bone, within biodegradable and biocompatible polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with the aid of a surfactant has been investigated. Non-ionic TWEEN20 and 12-hydroxysteric acid (HSA), cationic dodecyl trimethyl ammonium bromide (DTAB) and anionic sodium deoxycholate and sodium dodecyl sulfate (SDS) surfactants were used for comparison in order to prepare stable and homogenous nanocomposite suspensions of HAp/PHBV for the electrospinning process. Continuous and uniform composite nanofibers were generated successfully within a diameter range of 400-1,000 nm by the mediation of all surfactant types. Results showed that incorporation of HAp and any of the surfactant types strongly activates the precipitation rate of the apatite-like particles and decreases percent crystallinity of the HAp/PHBV mats. Mineralization was greatly enhanced on the fibers produced by using DTAB, HSA, and especially SDS on where also osteoblastic metabolic activity was similarly increased. The produced HAp/PHBV nanofibrous composite scaffolds would be a promising candidate as an osteoconductive bioceramic/polymer composite material for tissue engineering applications.

  20. Biocompatibility and other properties of acrylic bone cements prepared with antiseptic activators.

    PubMed

    de la Torre, B; Fernández, M; Vázquez, B; Collía, F; de Pedro, J A; López-Bravo, A; San Román, J

    2003-08-15

    Acrylic bone cements prepared with activators of reduced toxicity have been formulated with the aim of improving the biocompatibility of the final material. The activators used were N,N-dimethylaminobenzyl alcohol (DMOH) and 4,4'-dimethylamino benzydrol (BZN). The toxicity, cytotoxicity, and antiseptic action of these activators were first studied. DMOH and BZN presented LD50 values 3-4 times higher than DMT, were less cytotoxic against polymorphonuclear leucocytes, and possessed an antimicrobial character, with a high activity against the most representative microorganisms involved in postoperative infections. The properties of the acrylic bone cements formulated with DMOH and BZN were evaluated to determine the influence of these activators on the curing process and the physicochemical characteristics of the cements. A decrease of the peak temperature was observed for the curing with DMOH or BZN with respect to that of one commercially available formulation (CMW 3). However, residual monomer content and mechanical properties in tension and compression were comparable to those of CMW 3. The biocompatibility of acrylic bone cements containing DMOH or BZN was studied and compared with CMW 3. To that end, intramuscular and intraosseous implantation procedures were carried out and the results were obtained from the histological analysis of the surrounding tissues at different periods of time. Implantation of rods of cement into the dorsal muscle of rats showed the presence of a membrane of connective tissue, which increased in collagen fibers with time of implantation, for all formulations. The intraosseous implantation of the cements in the dough state in the femur of rabbits, revealed a higher and early osseous neoformation, with the presence of osteoid material surrounding the rest of the cured material, for the cement prepared with the activator BZN in comparison with that obtained following the implantation of the cement cured with DMOH or DMT (CMW 3).

  1. A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility.

    PubMed

    Zhao, Leilei; Li, Xian; Zhao, Jiaqi; Ma, Saijian; Ma, Xiaoxuan; Fan, Daidi; Zhu, Chenhui; Liu, Yannan

    2016-11-01

    Various tissue scaffold materials are increasingly used to repair skin defects by cross-linking because of the ability to fill and implant in any form via operation. However, crosslinker residues cannot be easily removed from scaffold materials prepared by chemical crosslinking methods, limiting their use for skin tissue engineering. Here, microbial transglutaminase (MTGase), a nontoxic crosslinker with high specific activity and reaction rate under mild conditions, was employed crosslinks in human-like collagen (HLC) to yield novel smart MTGase crosslinked with human-like collagen (MTGH) hydrogels, which are sensitive to temperature and/or enzymes. Various ratios of MTGase/HLC were performed, and their physicochemical properties were characterized, including the swelling ratio, the elastic modulus, the morphology and the porosity. The degradation behavior and mechanism of MTGase in concentration-dependent manner involved in formation hydrogels were identifying in vitro. The cell attachment in vitro and biocompatibility in vivo were also investigated. The results demonstrated that the use of different concentrations of MTGase to crosslink HLC produced products with different degradation times and biocompatibilities. The 50U/g MTGase-prepared MTGH hydrogels had a higher density of crosslinks, which made them more resistant to degradation by collagenase I and collagenase II. However, 40U/g MTGase-prepared MTGH hydrogels were more suitable for cell attachment. In addition, compared with the Collagen Implant I® (SUM) used in animal experiments, the 40U/g MTGase-prepared MTGH hydrogels had a lower toxicity and better biocompatibility. Therefore, 40U/g MTGase crosslinked with HLC should be used to prepare MTGH hydrogels for potential application as soft materials for skin tissue engineering. PMID:27524026

  2. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  3. Generation of biocompatible droplets for in vivo and in vitro measurement of cell-generated mechanical stresses.

    PubMed

    Lucio, Adam A; Ingber, Donald E; Campàs, Otger

    2015-01-01

    Here we describe a detailed protocol to produce biocompatible droplets that permit the measurement of mechanical stresses at cell and tissue scales. The droplets can be used as force transducers in vivo, ex vivo, and in vitro, to measure mechanical stresses in situ, in three dimensions and time. Versatile and modular droplet coatings using biotinylated molecules, such as ligands for specific adhesion receptors, enable the targeting of specific tissues or cells. Droplet sizes can be varied to measure forces at different scales (tissue and cell scales) and the range of measurable mechanical stresses ranges within approximately 0.3-100 kPa. The protocol described in this chapter is divided in three sections. First, we describe the generation and stabilization of biocompatible droplets. Next, we explain the steps necessary to functionalize the droplet surface. Finally, we describe how to characterize the mechanical properties of the droplets, so that they can be used as calibrated mechanical probes. The procedure to generate, stabilize, and functionalize the droplets is straightforward and can be completed in about 3h with basic laboratory resources. The calibration of the droplet's mechanical properties to perform quantitative stress measurements is also straightforward, but requires the proper equipment to measure interfacial tension (such as a tensiometer). Calibrated droplets can be used to quantify cell-generated mechanical stresses by analyzing the tridimensional shape of the droplet. PMID:25640439

  4. Titanium and zirconium based alloys modified by intensive plastic deformation and nitrogen ion implantation for biocompatible implants.

    PubMed

    Byeli, A V; Kukareko, V A; Kononov, A G

    2012-02-01

    Titanium and zirconium alloys are considered to be promising materials for orthopaedics because of their biocompatibility with tissues. Their main drawbacks for application as implants have generally been considered to be insufficient levels of mechanical and tribological properties. In this research the influence of equal channel angular pressing and nitrogen ion implantation on the structure and properties of Ti and Zr alloys has been investigated to ensure the optimum combination of the bulk material and surface layer properties. The data obtained showed that equal channel angular pressing and nitrogen ion implantation can be efficiently used to improve bulk and surface properties of Ti and Zr based implants.

  5. Development of meniscus substitutes using a mixture of biocompatible polymers and extra cellular matrix components by electrospinning.

    PubMed

    López-Calzada, G; Hernandez-Martínez, A R; Cruz-Soto, M; Ramírez-Cardona, M; Rangel, D; Molina, G A; Luna-Barcenas, G; Estevez, M

    2016-04-01

    Despite the significant advances in the meniscus tissue engineering field, it is difficult to recreate the complex structure and organization of the collagenous matrix of the meniscus. In this work, we developed a meniscus prototype to be used as substitute or scaffold for the regeneration of the meniscal matrix, recreating the differential morphology of the meniscus by electrospinning. Synthetic biocompatible polymers were combined with the extracellular matrix component, collagen and used to replicate the meniscus. We studied the correlation between mechanical and structural properties of the polymer blend as a function of collagen concentration. Fibers were collected on a surface of a rapidly rotating precast mold, to accurately replicate each sectional morphology of the meniscus; different electro-tissues were produced. Detailed XRD analyses exhibited structural changes developed by electrospinning. We achieved to integrate all these electro-tissues to form a complete synthetic meniscus. Vascularization tests were performed to assess the potential use of our novel polymeric blend for promising meniscus regeneration.

  6. Biocompatibility of Intracortical Microelectrodes: Current Status and Future Prospects

    PubMed Central

    Marin, Cristina; Fernández, Eduardo

    2010-01-01

    Rehabilitation of sensory and/or motor functions in patients with neurological diseases is more and more dealing with artificial electrical stimulation and recording from populations of neurons using biocompatible chronic implants. As more and more patients have benefited from these approaches, the interest in neural interfaces has grown significantly. However an important problem reported with all available microelectrodes to date is long-term viability and biocompatibility. Therefore it is essential to understand the signals that lead to neuroglial activation and create a targeted intervention to control the response, reduce the adverse nature of the reactions and maintain an ideal environment for the brain-electrode interface. We discuss some of the exciting opportunities and challenges that lie in this intersection of neuroscience research, bioengineering, neurology and biomaterials. PMID:20577634

  7. Biodegradable/biocompatible coated metal implants for orthopedic applications.

    PubMed

    Saleh, Mohamed M; Touny, A H; Al-Omair, Mohammed A; Saleh, M M

    2016-05-12

    Biocompatible metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Although metals and their alloys are widely and successfully used in producing biomedical implants due to their good mechanical properties and corrosion resistance, they have a lack in bioactivity. Therefore coating of the metal surface with calcium phosphates (CaP) is a benign way to achieve well bioactivity and get controlled corrosion properties. The biocompatibility and bioactivity calcium phosphates (CaP) in bone growth were guided them to biomedical treatment of bone defects and fractures. Many techniques have been used for fabrication of CaP coatings on metal substrates such as magnesium and titanium. The present review will focus on the synthesis of CaP and their relative forms using different techniques especially electrochemical techniques. The latter has always been known of its unique way of optimizing the process parameters that led to a control in the structure and characteristics of the produced materials.

  8. Biodegradation and biocompatibility of mechanically active magnetoelastic materials

    NASA Astrophysics Data System (ADS)

    Holmes, Hal R.; DeRouin, Andrew; Wright, Samantha; Riedemann, Travor M.; Lograsso, Thomas A.; Rajachar, Rupak M.; Ghee Ong, Keat

    2014-09-01

    Magnetoelastic (ME) materials have many advantages for use as sensors and actuators due to their wireless, passive nature. This paper describes the application of ME materials as biodegradable implants with controllable degradation rates. Experiments have been conducted to show that degradation rates of ME materials are dependent on the material compositions. In addition, it was shown that the degradation rates of the ME materials can be controlled remotely by applying a magnetic field, which causes the ME materials to generate low-magnitude vibrations that hasten their degradation rates. Another concern of ME materials for medical applications is biocompatibility. Indirect cytotoxicity analyses were performed on two types of ME materials: Metglas™ 2826 MB (FeNiMoB) and iron-gallium alloy. While results indicate Metglas is not biocompatible, the degradation products of iron-gallium materials have shown no adverse effects on cell viability. Overall, these results present the possibility of using ME materials as biodegradable, magnetically-controlled active implants.

  9. Magnesium-based composites with improved in vitro surface biocompatibility

    PubMed Central

    Huan, Zhiguang; Duszczyk, Jurek

    2010-01-01

    In this study, bioactive glass (BG, 45S5) particles were added to a biodegradable magnesium alloy (ZK30) through a semi-solid high-pressure casting process in order to improve the surface biocompatibility of the biomaterial and potentially its bioactivity. The observation of the as-cast microstructures of ZK30-BG composites indicated homogeneous dispersion of BG particles in the matrix. SEM, EDX and EPMA showed the retention of the morphological characteristics and composition of BG particles in the as-cast composite materials. In vitro tests in a cell culture medium confirmed that the composites indeed possessed an enhanced ability to induce the deposition of a bone-like apatite layer on the surface, indicating an improved surface biocompatibility as compared with the matrix alloy. PMID:20922559

  10. Magnesium-based composites with improved in vitro surface biocompatibility.

    PubMed

    Huan, Zhiguang; Leeflang, Sander; Zhou, Jie; Duszczyk, Jurek

    2010-12-01

    In this study, bioactive glass (BG, 45S5) particles were added to a biodegradable magnesium alloy (ZK30) through a semi-solid high-pressure casting process in order to improve the surface biocompatibility of the biomaterial and potentially its bioactivity. The observation of the as-cast microstructures of ZK30-BG composites indicated homogeneous dispersion of BG particles in the matrix. SEM, EDX and EPMA showed the retention of the morphological characteristics and composition of BG particles in the as-cast composite materials. In vitro tests in a cell culture medium confirmed that the composites indeed possessed an enhanced ability to induce the deposition of a bone-like apatite layer on the surface, indicating an improved surface biocompatibility as compared with the matrix alloy. PMID:20922559

  11. High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E

    2015-05-20

    Honey nanofibers represent an attractive formulation with unique medicinal and wound healing advantages. Nanofibers with honey concentrations of <10% were prepared, however, there is a need to prepare nanofibers with higher honey concentrations to increase the antibacterial and wound healing effects. In this work, chitosan and honey (H) were cospun with polyvinyl alcohol (P) allowing the fabrication of nanofibers with high honey concentrations up to 40% and high chitosan concentrations up to 5.5% of the total weight of the fibers using biocompatible solvents (1% acetic acid). The fabricated nanofibers were further chemically crosslinked, by exposure to glutaraldehyde vapor, and physically crosslinked by heating and freezing/thawing. The new HP-chitosan nanofibers showed pronounced antibacterial activity against Staphylococcus aureus but weak antibacterial activity against Escherichia coli. The developed HP-chitosan nanofibers revealed no cytotoxicity effects on cultured fibroblasts. In conclusion, biocompatible, antimicrobial crosslinked honey/polyvinyl alcohol/chitosan nanofibers were developed which hold potential as effective wound dressing.

  12. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide.

    PubMed

    Senthilkumar, S; Rajesh, S; Jayalakshmi, A; Mohan, D

    2013-10-01

    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. PMID:23910257

  13. Method for making a bio-compatible scaffold

    DOEpatents

    Cesarano, III, Joseph; Stuecker, John N.; Dellinger, Jennifer G.; Jamison, Russell D.

    2006-01-31

    A method for forming a three-dimensional, biocompatible, porous scaffold structure using a solid freeform fabrication technique (referred to herein as robocasting) that can be used as a medical implant into a living organism, such as a human or other mammal. Imaging technology and analysis is first used to determine the three-dimensional design required for the medical implant, such as a bone implant or graft, fashioned as a three-dimensional, biocompatible scaffold structure. The robocasting technique is used to either directly produce the three-dimensional, porous scaffold structure or to produce an over-sized three-dimensional, porous scaffold lattice which can be machined to produce the designed three-dimensional, porous scaffold structure for implantation.

  14. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  15. Physical and technological principles of creating biocompatible superparamagnetic particles.

    PubMed

    Levitin, Yevgen; Koval, Alla; Vedernikova, Irina; Ol'khovik, Larissa; Tkachenko, Mykola

    2011-01-01

    Nanodisperse powder of zinc-substituted magnetite has been developed. Functional characteristics (biocompatibility, dispersion, magnetic state) allow to recommend it for approbation in medical and biologic technologies. The character of the temperature dependences of magnetization investigated in the magnetic fields lower than the anisotropy field indicates that transfer from the magnetically stable state into the superparamagnetic state was realized for particles of 3-13 nm in the temperature range of 4.2-150 K. It reflects specificity of small particles magnetism.

  16. Biocompatibility of HEMA copolymers designed for treatment of CNS diseases with polymer-encapsulated cells.

    PubMed

    Mokrý, J; Karbanová, J; Lukás, J; Palecková, V; Dvoránková, B

    2000-01-01

    Surrounding the cells with a semipermeable polymeric membrane allows transplanting unmatched xenogeneic cells without a risk of their rejection. We prepared and tested several 2-hydroxyethyl methacrylate (HEMA) copolymers with alkyl methacrylates or acrylates to find out which was the most valuable for cell encapsulation. On the basis of optimum physical properties and good results of cytotoxicity tests, HEMA-EMA copolymer was chosen as a suitable candidate for encapsulation and immunoprotection of xenogeneic cells before their grafting into the central nervous system (CNS). To characterize the biocompatibility of p(HEMA-co-EMA) copolymer in the CNS, we implanted microcapsules made of this hydrogel into the brains of adult rats that were allowed to survive for 0.5, 1, 3, 6, and 9 months. Analysis of histological sections containing the implantation site was aimed at assessment of the cellular density at the implant-brain interface and identification of cell types participating in a tissue reaction. Our results indicated that the tissue reaction that was observed was caused largely by the implantation procedure because HLA-DR- and GSI-B4-positive macrophages/microglia infiltrated mainly the implantation channel. The number of these cells declined with time, which was true also for GFAP-positive reactive astrocytes, as well as for foreign body giant cells. The amount of connective tissue components surrounding the implanted microcapsules increased only slightly. These findings indicated that p(HEMA-co-EMA) hydrogel was well tolerated after implantation in the brain.

  17. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study

    PubMed Central

    Tang, Jia; Saito, Takashi

    2015-01-01

    Type I collagen (COL-1) is the prevailing component of the extracellular matrix in a number of tissues including skin, ligament, cartilage, bone, and dentin. It is the most widely used tissue-derived natural polymer. Currently, mammalian animals, including pig, cow, and rat, are the three major sources for purification of COL-1. To reduce the risk of zoonotic infectious diseases transmission, minimize the possibility of immunogenic reaction, and avoid problems related to religious issues, exploration of new sources (other than mammalian animals) for the purification of type I collagen is highly desirable. Hence, the purpose of the current study was to investigate the in vitro responses of MDPC-23 to type I collagen isolated from tilapia scale in terms of cellular proliferation, differentiation, and mineralization. The results suggested that tilapia scale collagen exhibited comparable biocompatibility to porcine skin collagen, indicating it might be a potential alternative to type I collagen from mammals in the application for tissue regeneration in oral-maxillofacial area. PMID:26491653

  18. New Soft Tissue Implants Using Organic Elastomers

    NASA Astrophysics Data System (ADS)

    Ku, David N.

    Typical biomaterials are stiff, difficult to manufacture, and not initially developed for medical implants. A new biomaterial is proposed that is similar to human soft tissue. The biomaterial provides mechanical properties similar to soft tissue in its mechanical and physical properties. Characterization is performed for modulus of elasticity, ultimate strength and wear resistance. The material further exhibits excellent biocompatibility with little toxicity and low inflammation. The material can be molded into a variety of anatomic shapes for use as a cartilage replacement, heart valve, and reconstructive implant for trauma victims. The biomaterial may be suitable for several biodevices of the future aimed at soft-tissue replacements.

  19. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria.

  20. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria. PMID:27434155

  1. Biocompatibility of two experimental scaffolds for regenerative endodontics

    PubMed Central

    Setzer, Frank C.; Trope, Martin; Karabucak, Bekir

    2016-01-01

    Objectives The biocompatibility of two experimental scaffolds for potential use in revascularization or pulp regeneration was evaluated. Materials and Methods One resilient lyophilized collagen scaffold (COLL), releasing metronidazole and clindamycin, was compared to an experimental injectable poly(lactic-co-glycolic) acid scaffold (PLGA), releasing clindamycin. Human dental pulp stem cells (hDPSCs) were seeded at densities of 1.0 × 104, 2.5 × 104, and 5.0 × 104. The cells were investigated by light microscopy (cell morphology), MTT assay (cell proliferation) and a cytokine (IL-8) ELISA test (biocompatibility). Results Under microscope, the morphology of cells coincubated for 7 days with the scaffolds appeared healthy with COLL. Cells in contact with PLGA showed signs of degeneration and apoptosis. MTT assay showed that at 5.0 × 104 hDPSCs, COLL demonstrated significantly higher cell proliferation rates than cells in media only (control, p < 0.01) or cells co-incubated with PLGA (p < 0.01). In ELISA test, no significant differences were observed between cells with media only and COLL at 1, 3, and 6 days. Cells incubated with PLGA expressed significantly higher IL-8 than the control at all time points (p < 0.01) and compared to COLL after 1 and 3 days (p < 0.01). Conclusions The COLL showed superior biocompatibility and thus may be suitable for endodontic regeneration purposes. PMID:27200277

  2. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    NASA Astrophysics Data System (ADS)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were

  3. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  4. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  5. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  6. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    PubMed Central

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  7. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine

    NASA Astrophysics Data System (ADS)

    Nizamoglu, Sedat; Gather, Malte C.; Humar, Matjaž; Choi, Myunghwan; Kim, Seonghoon; Kim, Ki Su; Hahn, Sei Kwang; Scarcelli, Giuliano; Randolph, Mark; Redmond, Robert W.; Yun, Seok Hyun

    2016-01-01

    Advances in photonics have stimulated significant progress in medicine, with many techniques now in routine clinical use. However, the finite depth of light penetration in tissue is a serious constraint to clinical utility. Here we show implantable light-delivery devices made of bio-derived or biocompatible, and biodegradable polymers. In contrast to conventional optical fibres, which must be removed from the body soon after use, the biodegradable and biocompatible waveguides may be used for long-term light delivery and need not be removed as they are gradually resorbed by the tissue. As proof of concept, we demonstrate this paradigm-shifting approach for photochemical tissue bonding (PTB). Using comb-shaped planar waveguides, we achieve a full thickness (>10 mm) wound closure of porcine skin, which represents ~10-fold extension of the tissue area achieved with conventional PTB. The results point to a new direction in photomedicine for using light in deep tissues.

  8. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine

    PubMed Central

    Nizamoglu, Sedat; Gather, Malte C.; Humar, Matjaž; Choi, Myunghwan; Kim, Seonghoon; Kim, Ki Su; Hahn, Sei Kwang; Scarcelli, Giuliano; Randolph, Mark; Redmond, Robert W.; Yun, Seok Hyun

    2016-01-01

    Advances in photonics have stimulated significant progress in medicine, with many techniques now in routine clinical use. However, the finite depth of light penetration in tissue is a serious constraint to clinical utility. Here we show implantable light-delivery devices made of bio-derived or biocompatible, and biodegradable polymers. In contrast to conventional optical fibres, which must be removed from the body soon after use, the biodegradable and biocompatible waveguides may be used for long-term light delivery and need not be removed as they are gradually resorbed by the tissue. As proof of concept, we demonstrate this paradigm-shifting approach for photochemical tissue bonding (PTB). Using comb-shaped planar waveguides, we achieve a full thickness (>10 mm) wound closure of porcine skin, which represents ∼10-fold extension of the tissue area achieved with conventional PTB. The results point to a new direction in photomedicine for using light in deep tissues. PMID:26783091

  9. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells

    PubMed Central

    MESTIERI, Leticia Boldrin; GOMES-CORNÉLIO, Ana Lívia; RODRIGUES, Elisandra Márcia; SALLES, Loise Pedrosa; BOSSO-MARTELO, Roberta; GUERREIRO-TANOMARU, Juliane Maria; TANOMARU, Mário

    2015-01-01

    Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus. Objective The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs). Material and Methods The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%). Results MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure. Conclusions The hDPCs were suitable for the evaluation of new endodontic materials in vitro. MTAP may be considered a promising material for endodontic treatments. PMID:26537716

  10. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal.

    PubMed

    Willbold, Elmar; Kalla, Katharina; Bartsch, Ivonne; Bobe, Katharina; Brauneis, Maria; Remennik, Sergei; Shechtman, Dan; Nellesen, Jens; Tillmann, Wolfgang; Vogt, Carla; Witte, Frank

    2013-11-01

    Biodegradable magnesium-based alloys are very promising materials for temporary implants. However, the clinical use of magnesium-based alloys is often limited by rapid corrosion and by insufficient mechanical stability. Here we investigated RS66, a magnesium-based alloy with extraordinary physicochemical properties of high tensile strength combined with a high ductility and a homogeneous grain size of ~1 μm which was obtained by rapid solidification processing and reciprocal extrusion. Using a series of in vitro and in vivo experiments, we analyzed the biodegradation behavior and the biocompatibility of this alloy. In vitro, RS66 had no cytotoxic effects in physiological concentrations on the viability and the proliferation of primary human osteoblasts. In vivo, RS66 cylinders were implanted into femur condyles, under the skin and in the muscle of adult rabbits and were monitored for 1, 2, 3, 4 and 8 weeks. After explantation, the RS66 cylinders were first analyzed by microtomography to determine the remaining RS66 alloy and calculate the corrosion rates. Then, the implantation sites were examined histologically for healing processes and foreign body reactions. We found that RS66 was corroded fastest subcutaneously followed by intramuscular and bony implantation of the samples. No clinical harm with transient gas cavities during the first 6 weeks in subcutaneous and intramuscular implantation sites was observed. No gas cavities were formed around the implantation site in bone. The corrosion rates in the different anatomical locations correlated well with the local blood flow prior to implantation. A normal foreign body reaction occurred in all tissues. Interestingly, no enhanced bone formation could be observed around the corroding samples in the condyles. These data show that RS66 is biocompatible, and due to its interesting physicochemical properties, this magnesium alloy is a promising material for biodegradable implants.

  11. Polydimethylsiloxane Core-Polycaprolactone Shell Nanofibers as Biocompatible, Real-Time Oxygen Sensors

    PubMed Central

    Xue, Ruipeng; Behera, Prajna; Xu, Joshua; Viapiano, Mariano S.; Lannutti, John J.

    2014-01-01

    Real-time, continuous monitoring of local oxygen contents at the cellular level is desirable both for the study of cancer cell biology and in tissue engineering. In this paper, we report the successful fabrication of polydimethylsiloxane (PDMS) nanofibers containing oxygen-sensitive probes by electrospinning and the applications of these fibers as optical oxygen sensors for both gaseous and dissolved oxygen. A protective ‘shell’ layer of polycaprolactone (PCL) not only maintains the fiber morphology of PDMS during the slow curing process but also provides more biocompatible surfaces. Once this strategy was perfected, tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) (Ru(dpp)) and platinum octaethylporphyrin (PtOEP) were dissolved in the PDMS core and the resulting sensing performance established. These new core-shell sensors containing different sensitivity probes showed slight variations in oxygen response but all exhibited excellent Stern-Volmer linearity. Due in part to the porous nature of the fibers and the excellent oxygen permeability of PDMS, the new sensors show faster response (<0.5 s) −4–10 times faster than previous reports – than conventional 2D film-based oxygen sensors. Such core-shell fibers are readily integrated into standard cell culture plates or bioreactors. The photostability of these nanofiber-based sensors was also assessed. Culture of glioma cell lines (CNS1, U251) and glioma-derived primary cells (GBM34) revealed negligible differences in biological behavior suggesting that the presence of the porphyrin dyes within the core carries with it no strong cytotoxic effects. The unique combination of demonstrated biocompatibility due to the PCL ‘shell’ and the excellent oxygen transparency of the PDMS core makes this particular sensing platform promising for sensing in the context of biological environments. PMID:25006274

  12. Use of cortical neuronal networks for in vitro material biocompatibility testing.

    PubMed

    Charkhkar, Hamid; Frewin, Christopher; Nezafati, Maysam; Knaack, Gretchen L; Peixoto, Nathalia; Saddow, Stephen E; Pancrazio, Joseph J

    2014-03-15

    Neural interfaces aim to restore neurological function lost during disease or injury. Novel implantable neural interfaces increasingly capitalize on novel materials to achieve microscale coupling with the nervous system. Like any biomedical device, neural interfaces should consist of materials that exhibit biocompatibility in accordance with the international standard ISO10993-5, which describes in vitro testing involving fibroblasts where cytotoxicity serves as the main endpoint. In the present study, we examine the utility of living neuronal networks as functional assays for in vitro material biocompatibility, particularly for materials that comprise implantable neural interfaces. Embryonic mouse cortical tissue was cultured to form functional networks where spontaneous action potentials, or spikes, can be monitored non-invasively using a substrate-integrated microelectrode array. Taking advantage of such a platform, we exposed established positive and negative control materials to the neuronal networks in a consistent method with ISO 10993-5 guidance. Exposure to the negative controls, gold and polyethylene, did not significantly change the neuronal activity whereas the positive controls, copper and polyvinyl chloride (PVC), resulted in reduction of network spike rate. We also compared the functional assay with an established cytotoxicity measure using L929 fibroblast cells. Our findings indicate that neuronal networks exhibit enhanced sensitivity to positive control materials. In addition, we assessed functional neurotoxicity of tungsten, a common microelectrode material, and two conducting polymer formulations that have been used to modify microelectrode properties for in vivo recording and stimulation. These data suggest that cultured neuronal networks are a useful platform for evaluating the functional toxicity of materials intended for implantation in the nervous system.

  13. Biocompatibility of a restorative resin-modified glass ionomer cement applied in very deep cavities prepared in human teeth.

    PubMed

    Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Scheffel, Débora Lopes Sales; Giro, Elisa Maria Aparecida; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-01-01

    This study evaluated whether a restorative resin-modified glass ionomer cement, Vitremer (VM), would be biocompatible with pulp tissue when used as a liner in very deep cavities prepared in young human permanent teeth. Two dental cements in current use as liner materials, Vitrebond (VB) and Dycal (DY), were compared to VM. Class V cavities were prepared in 36 sound premolars that were scheduled for extraction, and the cavity floor was lined with the restorative cement (VM) or a liner/base control cement (VB or DY). For VM specimens, the cavity floor was pretreated with a primer (polyacrylic acid plus 2-hydroxyethyl methacrylate). Teeth were extracted after 7 or 30 days and processed for microscopic evaluation. In the VM group, inward diffusion of dental material components through dentinal tubules, associated with disruption of the odontoblastic layer, moderate to intense inflammatory response, and resorption of inner dentin, was observed in 2 teeth at 7 days. These histologic features were observed in 1 tooth at 30 days. In the VB group, mild inflammatory reactions and tissue disorganization observed at 7 days were resolved at 30 days. No pulpal damage occurred in the DY specimens. Of the materials tested, only Vitremer was not considered biocompatible, because it caused persistent pulpal damage when applied in very deep cavities (remaining dentin thickness less than 0.3 mm). PMID:27367631

  14. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.

    PubMed

    Cui, Ning; Qian, Junmin; Xu, Weijun; Xu, Minghui; Zhao, Na; Liu, Ting; Wang, Hongjie

    2016-01-20

    In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.

  15. A capillary viscometer designed for the characterization of biocompatible ferrofluids

    NASA Astrophysics Data System (ADS)

    Nowak, J.; Odenbach, S.

    2016-08-01

    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application.

  16. Green chemistry approach for the synthesis of biocompatible graphene

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Jin-Hoi

    2013-01-01

    Background Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. One of the most common methods for preparation of graphene is chemical exfoliation of graphite using powerful oxidizing agents. Generally, graphene is synthesized through deoxygenation of graphene oxide (GO) by using hydrazine, which is one of the most widespread and strongest reducing agents. Due to the high toxicity of hydrazine, it is not a promising reducing agent in large-scale production of graphene; therefore, this study focused on a green or sustainable synthesis of graphene and the biocompatibility of graphene in primary mouse embryonic fibroblast cells (PMEFs). Methods Here, we demonstrated a simple, rapid, and green chemistry approach for the synthesis of reduced GO (rGO) from GO using triethylamine (TEA) as a reducing agent and stabilizing agent. The obtained TEA reduced GO (TEA-rGO) was characterized by ultraviolet (UV)–visible absorption spectroscopy, X-ray diffraction (XRD), particle size dynamic light scattering (DLS), scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). Results The transition of graphene oxide to graphene was confirmed by UV–visible spectroscopy. XRD and SEM were used to investigate the crystallinity of graphene and the surface morphologies of prepared graphene respectively. The formation of defects further supports the functionalization of graphene as indicated in the Raman spectrum of TEA-rGO. Surface morphology and the thickness of the GO and TEA-rGO were analyzed using AFM. The presented results suggest that TEA-rGO shows significantly more biocompatibility with PMEFs cells than GO. Conclusion This is the first report about using TEA as a reducing as well as a stabilizing agent for the preparation of biocompatible graphene. The proposed safe and green method offers substitute routes for large-scale production of graphene

  17. Development, Characterizations and Biocompatibility Evaluations of Intravitreal Lipid Implants

    PubMed Central

    Tamaddon, Lana; Mostafavi, Abolfazl; Riazi-esfahani, Mohammad; Karkhane, Reza; Aghazadeh, Sara; Rafiee-Tehrani, Morteza; Abedin Dorkoosh, Farid; Asadi Amoli, Fahimeh

    2014-01-01

    Background: The treatment of posterior eye diseases is always challenging mainly due to inaccessibility of the region. Many drugs are currently delivered by repeated intraocular injections. Objectives: The purpose of this study was to investigate the potential applications of natural triglycerides as alternative carriers to synthetic polymers in terms of drug release profile and also biocompatibility for intraocular use. Materials and Methods: In vitro/in vivo evaluations of intravitreal implants fabricated from the physiological lipid, glyceride tripalmitate containing clindamycin phosphate as a model drug was performed. The micro-implants with average diameter of 0.4 mm were fabricated via a hot melt extrusion method. The extrudates were analyzed using scanning electron microscopy, differential scanning calorimetry, and in vitro drug dissolution studies. For biocompatibility, the implants were implanted into rabbit eyes. Clinical investigations including fundus observations, electroretinography as well as histological evaluations were performed. Results: In vitro tests guaranteed usefulness of the production method for preparing the homogenous mixture of the drug and lipid without affecting thermal and crystalinity characteristics of the components. In vitro releases indicated a bi-phasic pattern for lower lipid ratios, which were completed by the end of day three. With higher lipid ratios, more controlled release profiles were achieved until about ten days for a lipid ratio of 95%. Clinical observations did not show any abnormalities up to two months after implantation into the rabbit eye. Conclusions: These results suggest that although the implant could not adequately retard release of the present drug model yet, due to good physical characteristics and in vivo biocompatibility, it can represent a suitable device for loading wide ranges of therapeutics in treatment of many kinds of retinochoroidal disorders. PMID:24872944

  18. Biocompatibility and Pharmacokinetic Analysis of an Intracameral Polycaprolactone Drug Delivery Implant for Glaucoma

    PubMed Central

    Kim, Jean; Kudisch, Max; Mudumba, Sri; Asada, Hiroyuki; Aya-Shibuya, Eri; Bhisitkul, Robert B.; Desai, Tejal A.

    2016-01-01

    Purpose We developed polycaprolactone (PCL) implants that achieve zero-order release of a proprietary ocular hypotensive agent (DE-117) over 6 months. Methods The release rates of DE-117–loaded PCL devices were tuned based on an established predictive model and confirmed by in vitro release studies. Devices containing DE-117 and empty devices were implanted intracamerally in normotensive rabbits for up to 8 weeks' duration. Devices were retrieved after rabbits were euthanized and evaluated for tissue adherence. The drug remaining in each device was analyzed by high performance liquid chromatography. Drug distribution in ocular tissues was measured by liquid chromatography coupled with a tandem mass spectrometry (LC/MS/MS). Results In vitro release of DE-117 showed zero-order release with a release rate of 0.5 μg/day over 6 months. Implantation in rabbit eyes demonstrated that the devices were well tolerated in the intracameral space. Quantification of DE-117 and hDE-117 (the hydrolyzed active form of DE-117) in ocular tissues (cornea, iris-ciliary body, aqueous humor, and vitreous humor) indicated sustained release of DE-117 and its conversion to hDE-117 when released from the device. Analysis of drug remaining in the device found that concentration of hDE-117 was below the limit of detection, indicating the encapsulated drug was protected from hydrolysis in the device. Conclusions Proof-of-concept PCL drug delivery devices containing DE-117 show promise as a long-term glaucoma treatment based on their zero-order drug release profile in vitro, biocompatibility in vivo, and effective distribution of released drug in relevant ocular tissues. PMID:27556217

  19. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation

    PubMed Central

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-01-01

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type–III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications. PMID:27480483

  20. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation.

    PubMed

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-01-01

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type-III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications. PMID:27480483

  1. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells.

    PubMed

    Inthanon, Kewalin; Daranarong, Donraporn; Techaikool, Pimwalan; Punyodom, Winita; Khaniyao, Vorathep; Bernstein, Audrey M; Wongkham, Weerah

    2016-01-01

    Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35-40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N-H, and C-N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications. PMID:26839562

  2. Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers.

    PubMed

    Jin, Lin; Wu, Dingcai; Kuddannaya, Shreyas; Zhang, Yilei; Wang, Zhenling

    2016-03-01

    Graphene nanofibers have shown a promising potential across a wide spectrum of areas, including biology, energy, and the environment. However, fabrication of graphene nanofibers remains a challenging issue due to the broad size distribution and extremely poor solubility of graphene. Herein, we report a facile yet efficient approach for fabricating a novel class of polymer core-reduced graphene oxide shell nanofiber mat (RGO-CSNFM) by direct heat-driven self-assembly of graphene oxide sheets onto the surface of electrospun polymeric nanofibers without any requirement of surface treatment. Thus-prepared RGO-CSNFM demonstrated excellent mechanical, electrical, and biocompatible properties. RGO-CSNFM also promoted a higher cell anchorage and proliferation of human bone marrow mesenchymal stem cells (hMSCs) compared to the free-standing RGO film without the nanoscale fibrous structure. Further, cell viability of hMSCs was comparable to that on the tissue culture plates (TCPs) with a distinctive healthy morphology, indicating that the nanoscale fibrous architecture plays a critically constructive role in supporting cellular activities. In addition, the RGO-CSNFM exhibited excellent electrical conductivity, making them an ideal candidate for conductive cell culture, biosensing, and tissue engineering applications. These findings could provide a new benchmark for preparing well-defined graphene-based nanomaterial configurations and interfaces for biomedical applications. PMID:26836319

  3. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells.

    PubMed

    Inthanon, Kewalin; Daranarong, Donraporn; Techaikool, Pimwalan; Punyodom, Winita; Khaniyao, Vorathep; Bernstein, Audrey M; Wongkham, Weerah

    2016-01-01

    Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35-40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N-H, and C-N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.

  4. BIOCOMPATIBILITY OF A SYNTHETIC EXTRACELLULAR MATRIX ON IMMORTALIZED VOCAL FOLD FIBROBLASTS IN 3D CULTURE

    PubMed Central

    Chen, Xia

    2010-01-01

    In order to promote wound repair and induce tissue regeneration, an engineered hyaluronan (HA) hydrogel – Carbylan GSX, which contains di(thiopropionyl) bishydrazide-modified hyaluronic acid (HA-DTPH), di(thiopropionyl) bishydrazide-modified gelatin (Gtn-DTPH) and polyethylene glycol diacrylate (PEGDA), has been developed for extracellular matrix (ECM) defects of the superficial and middle layers of the lamina propria. The purpose of this study was to evaluate the biocompatibility of Carbylan GSX in a previously established immortalized human vocal fold fibroblast (hVFF) cell line prior to human clinical trials. Immortalized hVFF proliferation, viability, apoptosis and transcript analysis for both ECM constituents and inflammatory markers were measured for two-dimensional and three-dimensional culture conditions. There were no significant differences in morphology, cell marker protein expression, proliferation, viability and apoptosis of hVFF cultured with Carbylan GSX compared to Matrigel, a commercial 3D control, after one week. Gene expression levels for fibromodulin, TGF-β1, and TNF-α were similar between Carbylan GSX and Matrigel. Fibronectin, hyaluronidase 1 and COX2 expression levels were induced by Carbylan GSX; whereas IL6, IL8. COL1 and hyaluronic acid synthase 3 expression levels were decreased by Carbylan GSX. This investigation demonstrates that Carbylan GSX may serve as a natural biomaterial for tissue engineering of human vocal folds. PMID:20109588

  5. Three-Dimensional Graphene: A Biocompatible and Biodegradable Scaffold with Enhanced Oxygenation.

    PubMed

    Loeblein, Manuela; Perry, Guillaume; Tsang, Siu Hon; Xiao, Wenjin; Collard, Dominique; Coquet, Philippe; Sakai, Yasuyuki; Teo, Edwin Hang Tong

    2016-05-01

    Owing to its high porosity, specific surface area and three-dimensional structure, three-dimensional graphene (3D-C) is a promising scaffold material for tissue engineering, regenerative medicine as well as providing a more biologically relevant platform for living organisms in vivo studies. Recently, its differentiation effects on cells growth and anti-inflammation properties have also been demonstrated. Here, we report a complete study of 3D-C as a fully adequate scaffold for tissue engineering and systematically analyze its biocompatibility and biodegradation mechanism. The metabolic activities of liver cells (HepG2 hepatocarcinoma cells) on 3D-C are studied and our findings show that cell growth on 3D-C has high cell viability (> 90%), low lactate production (reduced by 300%) and its porous structure also provides an excellent oxygenation platform. 3D-C is also biodegradable via a 2-step oxidative biodegradation process by first, disruption of domains and lift off of smaller graphitic particles from the surface of the 3D-C and subsequently, the decomposition of these graphitic flakes. In addition, the speed of the biodegradation can be tuned with pretreatment of O2 plasma. PMID:26946189

  6. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells

    PubMed Central

    Inthanon, Kewalin; Techaikool, Pimwalan; Khaniyao, Vorathep; Bernstein, Audrey M.; Wongkham, Weerah

    2016-01-01

    Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35–40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N–H, and C–N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications. PMID:26839562

  7. Osteoblast biocompatibility of pre-mineralized, hexamethylene-1,6-diaminocarboxysulphonate crosslinked chitosan fibers

    PubMed Central

    Kiechel, Marjorie A.; Beringer, Laura T.; Donius, Amalie E.; Komiya, Yuko; Habas, Raymond; Wegst, Ulrike G. K.; Schauer, Caroline L.

    2015-01-01

    Biopolymer-ceramic composites are thought to be particularly promising materials for bone tissue engineering as they more closely mimic natural bone. Here, we demonstrate the fabrication by electrospinning of fibrous chitosan-hydroxyapatite composite scaffolds with low (1 wt%) and high (10 wt%) mineral contents. Scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and unidirectional tensile testing were performed to determine fiber surface morphology, elemental composition, and tensile Young’s modulus (E) and ultimate tensile strength (σUTS), respectively. EDS scans of the scaffolds indicated that the fibers, crosslinked with either hexamethylene-1,6-diaminocarboxysulfonate (HDACS) or genipin, have a crystalline hydroxyapatite mineral content at 10 wt% additive. Moreover, FESEM micrographs showed that all electrospun fibers have diameters (122 – 249 nm), which fall within the range of those of fibrous collagen found in the extracellular matrix of bone. Young’s modulus and ultimate tensile strength of the various crosslinked composite compositions were in the range of 116 – 329 MPa and 2 – 15 MPa, respectively. Osteocytes seeded onto the mineralized fibers were able to demonstrate good biocompatibility enhancing the potential use for this material in future bone tissue engineering applications. PMID:25771925

  8. Physical and technological principles of creating biocompatible superparamagnetic particles.

    PubMed

    Levitin, Yevgen; Koval, Alla; Vedernikova, Irina; Ol'khovik, Larissa; Tkachenko, Mykola

    2011-01-01

    Nanodisperse powder of zinc-substituted magnetite has been developed. Functional characteristics (biocompatibility, dispersion, magnetic state) allow to recommend it for approbation in medical and biologic technologies. The character of the temperature dependences of magnetization investigated in the magnetic fields lower than the anisotropy field indicates that transfer from the magnetically stable state into the superparamagnetic state was realized for particles of 3-13 nm in the temperature range of 4.2-150 K. It reflects specificity of small particles magnetism. PMID:21796937

  9. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    PubMed

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds. PMID:26608377

  10. Biocompatibility tests on the intraocular vision aid IOVA.

    PubMed

    Alteheld, N; Vobig, M A; Marzella, G; Berk, H; Shojaei, R; Heimann, U; Held, S; Walter, P; Bartz-Schmidt, K U

    2002-01-01

    Intraocular miniaturized image transmission systems are developed to restore vision in patients with irreversible destruction of the anterior ocular segment (i.e. chemical burns, explosion trauma, trachoma) and high risk for corneal transplantation, provided that the posterior ocular segment is intact. To ensure safety of such a device biocompatibility tests were conducted. In the present study the effects of light and temperature in various intensities and the toxicity of the implanted materials on neural function in the rabbit retina in-vivo was investigated. All tests give encouraging results concerning the feasibility of intraocular miniaturized image transmission systems.

  11. Dendritic polyglycerol: a new versatile biocompatible-material.

    PubMed

    Frey, Holger; Haag, Rainer

    2002-05-01

    Polyglycerol represents the first hyperbranched polymer that can be prepared in a controlled synthesis. It is characterized by the combination of a stable, biocompatible polyether scaffold, high-end group functionality and a compact, well-defined dendrimer-like architecture. These characteristics can be used to generate new materials properties and for biomedical applications to molecularly amplify or multiply effects or to create extremely high local concentrations of drugs, molecular labels, or probe moieties. Therefore, dendritic polyglycerols are expected to lead to new strategies for 'molecular medicine'. In this brief summary, the current state of the art in polyglycerol research is given, focusing on applications in life sciences.

  12. Biodegradable Xylitol-Based Elastomers: In Vivo Behavior and Biocompatibility

    PubMed Central

    Bruggeman, Joost P.; Bettinger, Christopher J.; Langer, Robert

    2010-01-01

    Biodegradable elastomers based on polycondensation reactions of xylitol with sebacic acid, referred to as poly(xylitol sebacate) (PXS) elastomers have recently been developed. Herein, we describe the in vivo behavior of PXS elastomers. Four PXS elastomers were synthesized, characterized and compared to poly(L-lactic-co-glycolic acid) (PLGA). PXS elastomers displayed a high level of structural integrity and form stability during degradation. The in vivo half-life ranged from approximately 3 to 52 weeks. PXS elastomers exhibited increased biocompatibility compared to PLGA implants. PMID:20540093

  13. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.

    PubMed

    Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P

    2014-07-21

    Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small-molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported herein is a method for alkene hydrogenation which utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe, and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering.

  14. A Biocompatible Alkene Hydrogenation Merges Organic Synthesis with Microbial Metabolism**

    PubMed Central

    Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to construct essential small molecules like pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Here we report a method for alkene hydrogenation that utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering. PMID:24916924

  15. Biocompatibility and applications of carbon nanotubes in medical nanorobots.

    PubMed

    Popov, Andrei M; Lozovik, Yurii E; Fiorito, Silvana; Yahia, L'Hocine

    2007-01-01

    The set of nanoelectromechanical systems (NEMS) based on relative motion of carbon nanotubes walls is proposed for use in medical nanorobots. This set includes electromechanical nanothermometer, jet nanoengine, nanosyringe (the last can be used simultaneously as nanoprobe for individual biological molecules and drug nanodeliver). Principal schemes of these NEMS are considered. Operational characteristics of nanothermometer are analyzed. The possible methods of these NEMS actuation are considered. The present-day progress in nanotechnology techniques which are necessary for assembling of NEMS under consideration is discussed. Biocompatibility of carbon nanotubes is analyzed in connection with perspectives of their application in nanomedicine.

  16. Chitin scaffolds in tissue engineering.

    PubMed

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine.

  17. Chitin Scaffolds in Tissue Engineering

    PubMed Central

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  18. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering

    NASA Astrophysics Data System (ADS)

    Venugopal, J.; Zhang, Y. Z.; Ramakrishna, S.

    2005-10-01

    Electrospun polymer nanofibres were originally developed for their durability and resistance to all forms of degradation and biodegradation. Some polymer nanofibres are biocompatible and biodegradable and therefore suitable for replacement of structurally or physiologically deficient tissues and organs in humans. Here, biocompatible polycaprolactone (PCL) nanofibre scaffolds modified with collagen types I and III were used for vascular tissue engineering. Coronary artery smooth muscle cells (SMCs) were grown on PCL nanofibres, modified PCL/collagen biocomposite nanofibres and collagen nanofibres. The results show that the modified PCL/collagen biocomposite nanofibre scaffolds provide required mechanical properties for regulation of normal cell function in vascular tissue engineering.

  19. Science and technology of biocompatible thin films for implantable biomedical devices.

    SciTech Connect

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  20. Tailoring the stealth properties of biocompatible polysaccharide nanocontainers.

    PubMed

    Kang, Biao; Okwieka, Patricia; Schöttler, Susanne; Seifert, Oliver; Kontermann, Roland E; Pfizenmaier, Klaus; Musyanovych, Anna; Meyer, Ralf; Diken, Mustafa; Sahin, Ugur; Mailänder, Volker; Wurm, Frederik R; Landfester, Katharina

    2015-05-01

    Fundamental development of a biocompatible and degradable nanocarrier platform based on hydroxyethyl starch (HES) is reported. HES is a derivative of starch and possesses both high biocompatibility and improved stability against enzymatic degradation; it is used to prepare nanocapsules via the polyaddition reaction at the interface of water nanodroplets dispersed in an organic miniemulsion. The synthesized hollow nanocapsules can be loaded with hydrophilic guests in its aqueous core, tuned in size, chemically functionalized in various pathways, and show high shelf life stability. The surface of the HES nanocapsules is further functionalized with poly(ethylene glycol) via different chemistries, which substantially enhanced blood half-life time. Importantly, methods for precise and reliable quantification of the degree of functionalization are also introduced, which enable the precise control of the chemistry on the capsules' surface. The stealth properties of these capsules is studied both in-vitro and in-vivo. The functionalized nanocapsules serve as a modular platform for specific cell targeting, as they show no unspecific up-taken by different cell types and show very long circulating time in blood (up to 72 h).

  1. High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E

    2015-05-20

    Honey nanofibers represent an attractive formulation with unique medicinal and wound healing advantages. Nanofibers with honey concentrations of <10% were prepared, however, there is a need to prepare nanofibers with higher honey concentrations to increase the antibacterial and wound healing effects. In this work, chitosan and honey (H) were cospun with polyvinyl alcohol (P) allowing the fabrication of nanofibers with high honey concentrations up to 40% and high chitosan concentrations up to 5.5% of the total weight of the fibers using biocompatible solvents (1% acetic acid). The fabricated nanofibers were further chemically crosslinked, by exposure to glutaraldehyde vapor, and physically crosslinked by heating and freezing/thawing. The new HP-chitosan nanofibers showed pronounced antibacterial activity against Staphylococcus aureus but weak antibacterial activity against Escherichia coli. The developed HP-chitosan nanofibers revealed no cytotoxicity effects on cultured fibroblasts. In conclusion, biocompatible, antimicrobial crosslinked honey/polyvinyl alcohol/chitosan nanofibers were developed which hold potential as effective wound dressing. PMID:25817652

  2. Biocompatible Coating of Encapsulated Cells Using Ionotropic Gelation

    PubMed Central

    Ehrhart, Friederike; Mettler, Esther; Böse, Thomas; Weber, Matthias Max; Vásquez, Julio Alberto; Zimmermann, Heiko

    2013-01-01

    The technique of immunoisolated transplantation has seen in the last twenty years improvements in biocompatibility, long term stability and methods for avoidance of fibrosis in alginate capsules. However, two major problems are not yet solved: living cellular material that is not centered in the capsule is not properly protected from the hosts’ immune system and the total transplant volume needs to be reduced. To solve these problems, we present a method for applying fully biocompatible alginate multilayers to a barium-alginate core without the use of polycations. We report on the factors that influence layer formation and stability and can therefore provide data for full adjustability of the additional layer. Although known for yeast and plant cells, this technique has not previously been demonstrated with mammalian cells or ultra-high viscous alginates. Viability of murine insulinoma cells was investigated by live-dead staining and live cell imaging, for murine Langerhans’ islets viability and insulin secretion have been measured. No hampering effects of the second alginate layer were found. This multi-layer technique therefore has great potential for clinical and in vitro use and is likely to be central in alginate matrix based immunoisolated cell therapy. PMID:24039964

  3. Biocompatible and target specific hydrophobically modified glycol chitosan nanoparticles.

    PubMed

    Yin, Wei; Li, Weiyi; Rubenstein, David A; Meng, Yizhi

    2016-01-01

    Cardiovascular disease is the leading cause of death in the United States. Atherosclerosis is a major cause for cardiovascular diseases. Drugs that treat atherosclerosis usually act nonspecifically. To enhance drug delivery specificity, the authors developed a hydrophobically modified glycol chitosan (HGC) nanoparticle that can specifically target activated endothelial cells. The biocompatibility of these nanoparticles toward red blood cells and platelets was evaluated through hemolysis, platelet activation, platelet thrombogenicity, and platelet aggregation assays. The biocompatibility of these nanoparticles toward vascular endothelial cells was evaluated by their effects on endothelial cell growth, metabolic activity, and activation. The results demonstrated that HGC nanoparticles did not cause hemolysis, or affect platelet activation, thrombogenicity, and aggregation capability in vitro. The nanoparticles did not impair vascular endothelial cell growth or metabolic activities in vitro, and did not cause cell activation either. When conjugated with intercellular adhesion molecular 1 antibodies, HGC nanoparticles showed a significantly increased targeting specificity toward activated endothelial cells. These results suggested that HGC nanoparticles are likely compatible toward red blood cells, platelets, and endothelial cells, and they can be potentially used to identify activated endothelial cells at atherosclerotic lesion areas within the vasculature, and deliver therapeutic drugs.

  4. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    PubMed

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  5. Three-dimensional biocompatible matrix for reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Reshetov, I. V.; Starceva, O. I.; Istranov, A. L.; Vorona, B. N.; Lyundup, A. V.; Gulyaev, I. V.; Melnikov, D. V.; Shtansky, D. V.; Sheveyko, A. N.; Andreev, V. A.

    2016-08-01

    A study into the development of an original bioengineered structure for reconstruction of hollow organs is presented. The basis for the structure was the creation of a mesh matrix made from titanium nickelide (NiTi), which has sufficient elasticity and shape memory for the reconstruction of hollow tubular orgrans. In order to increase the cell adhesion on the surface of the matrix, the grid needed to be cleaned of impurities, for which we used an ionic cleaning method. Additional advantages also may enable the application of the bioactive component to grid surface. These features of the matrix may improve the biocompatibility properties of the composite material. In the first stage, a mesh structure was made from NiTi fibers. The properties of the resulting mesh matrix were studied. In the second stage, the degrees of adhesion and cell growth rates in the untreated matrix, the matrix after ionic cleaning and the matrix after ionic cleaning and the application of the bioactive component were compared. The results showed more significant biocompatibility of the titanium nickelide matrix after its ionic cleaning. The ionic cleaning ensures the removal of toxic contaminants, which are a consequence of the technological production process of the material and provide optimal adhesion properties for the fiber surface. The NiTi net matrix with TiCaPCON coating may be the optimal basis for making the hollow elastic organs.

  6. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    PubMed

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  7. Hybrid polyglycerols with long blood circulation: synthesis, biocompatibility, and biodistribution.

    PubMed

    Imran ul-haq, Muhammad; Lai, Benjamin F L; Kizhakkedathu, Jayachandran N

    2014-10-01

    Multifunctional polymers with defined structure and biocompatibility are critical to the development of drug delivery systems and bioconjugates. In this article, the synthesis, in vitro blood compatibility, cell viability, in vivo circulation, biodistribution, and clearance of hybrid copolymers based on linear and branched polyglycerol are reported. Hybrid polyglycerols (M(n) ≈ 100 kDa) are synthesized with different compositions (15-80 mol% linear polyglycerol). Relatively small hydrodynamic size and radius of gyration of the hybrid polyglycerols suggest that they are highly compact functional nanostructures. The hybrid polyglycerols show excellent blood compatibility as determined by measuring their effects on blood coagulation, red blood cell aggregation, hemolysis, platelet, and complement activation. The cell viability in presence of hybrid polyglycerols is excellent up to 10 mg mL(-1) concentration and is similar to both dextran and polyvinyl alcohol. Furthermore, tritium labeled hybrid polyglycerol shows long blood circulation (t(1/2β)= 34 h) with minimal organ accumulation in mice. Multifunctionality, compact nature, biocompatibility, and the long blood circulation make these polymers attractive for the development of bioconjugates and drug delivery systems.

  8. Biocompatible fluorescent nanoparticles for in vivo stem cell tracking

    NASA Astrophysics Data System (ADS)

    Cova, Lidia; Bigini, Paolo; Diana, Valentina; Sitia, Leopoldo; Ferrari, Raffaele; Pesce, Ruggiero Maria; Khalaf, Rushd; Bossolasco, Patrizia; Ubezio, Paolo; Lupi, Monica; Tortarolo, Massimo; Colombo, Laura; Giardino, Daniela; Silani, Vincenzo; Morbidelli, Massimo; Salmona, Mario; Moscatelli, Davide

    2013-06-01

    Efficient application of stem cells to the treatment of neurodegenerative diseases requires safe cell tracking to follow stem cell fate over time in the host environment after transplantation. In this work, for the first time, fluorescent and biocompatible methyl methacrylate (MMA)-based nanoparticles (fluoNPs) were synthesized through a free-radical co-polymerization process with a fluorescent macromonomer obtained by linking Rhodamine B and hydroxyethyl methacrylate. We demonstrate that the fluoNPs produced by polymerization of MMA-Rhodamine complexes (1) were efficient for the labeling and tracking of multipotent human amniotic fluid cells (hAFCs); (2) did not alter the main biological features of hAFCs (such as viability, cell growth and metabolic activity); (3) enabled us to determine the longitudinal bio-distribution of hAFCs in different brain areas after graft in the brain ventricles of healthy mice by a direct fluorescence-based technique. The reliability of our approach was furthermore confirmed by magnetic resonance imaging analyses, carried out by incubating hAFCs with both superparamagnetic iron oxide nanoparticles and fluoNPs. Our data suggest that these finely tunable and biocompatible fluoNPs can be exploited for the longitudinal tracking of stem cells.

  9. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  10. Platelet-neutrophil interactions during hemodialysis: a proposed biocompatibility approach.

    PubMed

    Stuard, S; Bonomini, M; Settefrati, N; Albertazzi, A

    1998-02-01

    Platelet interaction with neutrophils may occur to a significant degree during hemodialysis (HD). We have recently shown that the enhanced neutrophil reactive oxygen species (ROS) production during the early phase of HD with cuprophan (CUP) is sustained by neutrophils which have bound platelets through P-selectin (CD62P). The evaluation of platelet-neutrophil interactions during dialysis offers the novel aspect of cell-cell interactions as a new parameter for studying the biocompatibility of dialyzer membranes. By the use of flow cytometry techniques, the present study was set up to analyze intradialytic platelet-neutrophil coaggregate formation and neutrophil ROS (hydrogen peroxide) production from 6 HD patients each dialysed with CUP, cellulose diacetate (CDA), polymethylmethacrylate (PMMA), and polyacrylonitrile (PAN) in a cross-over clinical trial. Platelet-neutrophil coaggregate formation (percentage of neutrophil cells positive for CD62P) and ROS production by neutrophils (total population; CD62P+ cells; CD62P- cells) were determined before HD and after 10', 20'and 40'. CD62P+ neutrophils significantly increased during HD with CUP (10', 20', 40'), PMMA (20') and CDA (20), while no change was observed with PAN. The difference between CUP and the other membranes was significant at 10', 20' and 40'; at 20', PMMA vs PAN p<0.005. ROS production by total neutrophil population significantly increased with CUP (10', 20), PMMA (20) and CDA (20'). The increase with CUP was higher at 10' when compared to CDA (p<0.020) or PAN (p<0.005), and at 20' versus the other three membranes; at 20' PMMA vs PAN p<0.005. Only neutrophils gated in neutrophil-platelet coaggregate areas (CD26P+ neutrophils) produced hydrogen peroxide. ROS production by CD62P+ neutrophils significantly increased with CUP (10', 20), PMMA (20') and CDA (20'). The increase with CUP was significantly (p<0.0002) higher than the other three membranes at 10' and 20'; at 20', PMMA vs PAN p<0.02. With each

  11. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep.

    PubMed

    Palmquist, A; Snis, A; Emanuelsson, L; Browne, M; Thomsen, P

    2013-05-01

    The purpose of the present study was to evaluate the long-term osseointegration and biocompatibility of electron beam melted (EBM) free-form-fabricated (FFF titanium grade 5 (Ti6Al4V) implants. Porous and solid machined cylindrical and disk-shaped implants were prepared by EBM and implanted bilaterally in the femur and subcutaneously in the dorsum of the sheep. After 26 weeks, the implants and surrounding tissue were retrieved. The tissue response was examined qualitatively and quantitatively using histology and light microscopic (LM) morphometry. Selected bone implants specimens were evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-computed tomography (mCT). The results showed that both porous and solid implants were osseointegrated and high bone-implant contact was observed throughout the porous implant. In the soft tissue, the porous implants showed thinner fibrous encapsulation while no signs of intolerance were observed for either implant type. Taken together, the present experimental results show that FFF Ti6Al4V with and without porous structures demonstrate excellent long-term soft tissue biocompatibility and a high degree of osseointegration. The present findings extend earlier, short-term experimental observations in bone and suggest that EBM, FFF Ti6Al4V implants possess valuable properties in bone and soft tissue applications.

  12. Novel biopolymers as implant matrix for the delivery of ciprofloxacin: biocompatibility, degradation, and in vitro antibiotic release.

    PubMed

    Fulzele, Suniket V; Satturwar, Prashant M; Dorle, Avinash K

    2007-01-01

    The purpose of this study was to investigate the in vitro-in vivo degradation and tissue compatibility of three novel biopolymers viz. polymerized rosin (PR), glycerol ester of polymerized rosin (GPR) and pentaerythritol ester of polymerized rosin (PPR) and study their potential as implant matrix for the delivery of ciprofloxacin hydrochloride. Free films of polymers were used for in vitro degradation in PBS (pH 7.4) and in vivo in rat subcutaneous model. Sample weight loss, molecular weight decline, and morphological changes were analyzed after periodic intervals (30, 60, and 90 days) to monitor the degradation profile. Biocompatibility was evaluated by examination of the inflammatory tissue response to the implanted films on postoperative days 7, 14, 21, and 28. Furthermore, direct compression of dry blends of various polymer matrices with 20%, 30%, and 40% w/w drug loading was performed to investigate their potential for implant systems. The implants were characterized in terms of porosity and ciprofloxacin release. Biopolymer films showed slow rate of degradation, in vivo rate being faster on comparative basis. Heterogeneous bulk degradation was evident with the esterified products showing faster rates than PR. Morphologically all the films were stiff and intact with no significant difference in their appearance. The percent weight remaining in vivo was 90.70 +/- 6.2, 85.59 +/- 5.8, and 75.56 +/- 4.8 for PR, GPR, and PPR films respectively. Initial rapid drop in Mw was demonstrated with nearly 20.0% and 30.0% decline within 30 days followed by a steady decline to nearly 40.0% and 50.0% within 90 days following in vitro and in vivo degradation respectively. Biocompatibility demonstrated by acute and subacute tissue reactions showed minimal inflammatory reactions with prominent fibrous encapsulation and absence of necrosis demonstrating good tissue compatibility to the extent evaluated. All implants showed erosion and increase in porosity that affected the drug

  13. Silk Fibroin Scaffolds for Urologic Tissue Engineering.

    PubMed

    Sack, Bryan S; Mauney, Joshua R; Estrada, Carlos R

    2016-02-01

    Urologic tissue engineering efforts have been largely focused on bladder and urethral defect repair. The current surgical gold standard for treatment of poorly compliant pathological bladders and severe urethral stricture disease is enterocystoplasty and onlay urethroplasty with autologous tissue, respectively. The complications associated with autologous tissue use and harvesting have led to efforts to develop tissue-engineered alternatives. Natural and synthetic materials have been used with varying degrees of success, but none has proved consistently reliable for urologic tissue defect repair in humans. Silk fibroin (SF) scaffolds have been tested in bladder and urethral repair because of their favorable biomechanical properties including structural strength, elasticity, biodegradability, and biocompatibility. SF scaffolds have been used in multiple animal models and have demonstrated robust regeneration of smooth muscle and urothelium. The pre-clinical data involving SF scaffolds in urologic defect repair are encouraging and suggest that they hold potential for future clinical use.

  14. Intraluminal tissue welding for anastomosis

    DOEpatents

    Glinsky, M.; London, R.; Zimmerman, G.; Jacques, S.

    1998-10-27

    A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or ``welded`` using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage. 8 figs.

  15. Intraluminal tissue welding for anastomosis

    DOEpatents

    Glinsky, Michael; London, Richard; Zimmerman, George; Jacques, Steven

    1998-10-27

    A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or "welded" using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage.

  16. Potential Use of Porous Titanium–Niobium Alloy in Orthopedic Implants: Preparation and Experimental Study of Its Biocompatibility In Vitro

    PubMed Central

    Wang, Xu; Huang, Jia-Zhang; Zhang, Chao; Muhammad, Hassan; Ma, Xin; Liao, Qian-De

    2013-01-01

    Background The improvement of bone ingrowth into prosthesis and enhancement of the combination of the range between the bone and prosthesis are important for long-term stability of artificial joints. They are the focus of research on uncemented artificial joints. Porous materials can be of potential use to solve these problems. Objectives/Purposes This research aims to observe the characteristics of the new porous Ti-25Nb alloy and its biocompatibility in vitro, and to provide basic experimental evidence for the development of new porous prostheses or bone implants for bone tissue regeneration. Methods The Ti-25Nb alloys with different porosities were fabricated using powder metallurgy. The alloys were then evaluated based on several characteristics, such as mechanical properties, purity, pore size, and porosity. To evaluate biocompatibility, the specimens were subjected to methylthiazol tetrazolium (MTT) colorimetric assay, cell adhesion and proliferation assay using acridine staining, scanning electron microscopy, and detection of inflammation factor interleukin-6 (IL-6). Results The porous Ti-25Nb alloy with interconnected pores had a pore size of 200 µm to 500 µm, which was favorable for bone ingrowth. The compressive strength of the alloy was similar to that of cortical bone, while with the elastic modulus closer to cancellous bone. MTT assay showed that the alloy had no adverse reaction to rabbit bone marrow mesenchymal stem cells, with a toxicity level of 0 to 1. Cell adhesion and proliferation experiments showed excellent cell growth on the surface and inside the pores of the alloy. According to the IL-6 levels, the alloy did not cause any obvious inflammatory response. Conclusion All porous Ti-25Nb alloys showed good biocompatibility regardless of the percentage of porosity. The basic requirement of clinical orthopedic implants was satisfied, which made the alloy a good prospect for biomedical application. The alloy with 70% porosity had the optimum

  17. Translational Applications of Nanodiamonds: From Biocompatibility to Theranostics

    NASA Astrophysics Data System (ADS)

    Moore, Laura Kent

    Nanotechnology marks the next phase of development for drug delivery, contrast agents and gene therapy. For these novel systems to achieve success in clinical translation we must see that they are both effective and safe. Diamond nanoparticles, also known as nanodiamonds (NDs), have been gaining popularity as molecular delivery vehicles over the last decade. The uniquely faceted, carbon nanoparticles possess a number of beneficial properties that are being harnessed for applications ranging from small-molecule drug delivery to biomedical imaging and gene therapy. In addition to improving the effectiveness of a variety of therapeutics and contrast agents, initial studies indicate that NDs are biocompatible. In this work we evaluate the translational potential of NDs by demonstrating efficacy in molecular delivery and scrutinizing particle tolerance. Previous work has demonstrated that NDs are effective vehicles for the delivery of anthracycline chemotherapeutics and gadolinium(III) based contrast agents. We have sought to enhance the gains made in both areas through the addition of active targeting. We find that ND-mediated targeted delivery of epirubicin to triple negative breast cancers induces tumor regression and virtually eliminates drug toxicities. Additionally, ND-mediated delivery of the MRI contrast agent ProGlo boosts the per gadolinium relaxivity four fold, eliminates water solubility issues and effectively labels progesterone receptor expressing breast cancer cells. Both strategies open the door to the development of targeted, theranostic constructs based on NDs, capable of treating and labeling breast cancers at the same time. Although we have seen that NDs are effective vehicles for molecular delivery, for any nanoparticle to achieve clinical utility it must be biocompatible. Preliminary research has shown that NDs are non-toxic, however only a fraction of the ND-subtypes have been evaluated. Here we present an in depth analysis of the cellular

  18. Tailored carbon nanotubes for tissue engineering applications.

    PubMed

    Veetil, Jithesh V; Ye, Kaiming

    2009-01-01

    A decade of aggressive researches on carbon nanotubes (CNTs) has paved way for extending these unique nanomaterials into a wide range of applications. In the relatively new arena of nanobiotechnology, a vast majority of applications are based on CNTs, ranging from miniaturized biosensors to organ regeneration. Nevertheless, the complexity of biological systems poses a significant challenge in developing CNT-based tissue engineering applications. This review focuses on the recent developments of CNT-based tissue engineering, where the interaction between living cells/tissues and the nanotubes have been transformed into a variety of novel techniques. This integration has already resulted in a revaluation of tissue engineering and organ regeneration techniques. Some of the new treatments that were not possible previously become reachable now. Because of the advent of surface chemistry, the CNT's biocompatibility has been significantly improved, making it possible to serve as tissue scaffolding materials to enhance the organ regeneration. The superior mechanic strength and chemical inert also makes it ideal for blood compatible applications, especially for cardiopulmonary bypass surgery. The applications of CNTs in these cardiovascular surgeries led to a remarkable improvement in mechanical strength of implanted catheters and reduced thrombogenicity after surgery. Moreover, the functionalized CNTs have been extensively explored for in vivo targeted drug or gene delivery, which could potentially improve the efficiency of many cancer treatments. However, just like other nanomaterials, the cytotoxicity of CNTs has not been well established. Hence, more extensive cytotoxic studies are warranted while converting the hydrophobic CNTs into biocompatible nanomaterials.

  19. 75 FR 13556 - Biocompatibles UK Ltd.; Filing of Color Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... HUMAN SERVICES Food and Drug Administration Biocompatibles UK Ltd.; Filing of Color Additive Petition...) is announcing that Biocompatibles UK Ltd., has filed a petition proposing that the color additive...] (CAS Reg. No. 4499-01-8) reacted with polyvinyl alcohol as a color additive in vascular...

  20. Analysis of the biocompatibility of ALCAP ceramics in rat femurs.

    PubMed

    Mattie, D R; Bajpai, P K

    1988-12-01

    Ceramics composed of aluminum, calcium, and phosphorus oxides (ALCAP) were tested for compatibility as bone replacement biomaterials. Implantation of ALCAP ceramics in rat femurs had no deleterious effect on body weights, organ/body weight ratios, muscle, bone, blood, and kidney function. Aluminum resorbed from ALCAP ceramic bone implants was excreted in the urine and was not deposited in adjacent muscle. Plasma levels of aluminum were not elevated in rats implanted with ALCAP ceramics. Alkaline phosphatase activity of excised implant sites indicated greater bone formation in ALCAP ceramic implants than in bone autografts. Radiographs and implant histology demonstrated excellent bone association with implants and ingrowth of new bone into ALCAP ceramic implants. ALCAP ceramics are biocompatible and suitable for reconstruction of bone.

  1. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.

    PubMed

    Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel

    2016-03-22

    The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem. PMID:26863183

  2. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.

    PubMed

    Hung, Lung-Hsin; Lin, Robert; Lee, Abraham Phillip

    2008-06-01

    This paper presents a rapid, simple, and low-cost fabrication method to prepare solvent resistant and biocompatible microfluidic devices with three-dimensional geometries. The devices were fabricated in thiolene and replicated from PDMS master with high molding fidelity. Good chemical compatibility for organic solvents allows volatile chemicals in synthesis and analysis applications. The surface can be processed to be hydrophobic or hydrophilic for water-in-oil and oil-in-water emulsions. Monodisperse organic solvent droplet generation is demonstrated to be reproducible in thiolene microchannels without swelling. The thiolene surface prevents cell adhesion but normal cell growth and adhesion on glass substrates is not affected by the adjacent thiolene patterns. PMID:18497921

  3. Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia.

    SciTech Connect

    Liu, X.; Novosad, V.; Rozhkova, E. A.; Chen, H.; Yefremenko, V.; Pearson, J.; Torno, M.; Bader, S. D.; Rosengart, A. J.; Univ. Chicago Pritzker School of Medicine

    2007-06-01

    We report a simplified single emulsion (oil-in-water) solvent evaporation protocol to synthesize surface functionalized biocompatible magnetic nanospheres by using highly concentrated hydrophobic magnetite (gel) and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol-maleimide) (PLA-PEG-maleimide) (10:1 by mass) polymers. The as-synthesized particles are approximately spherical with an average diameter of 360-370 nm with polydispersity index of 0.12-0.18, are surface-functionalized with maleimide groups, and have saturation magnetization values of 25-40 emu/g. The efficiency of the heating induced by 400-kHz oscillating magnetic fields is compared for two samples with different magnetite loadings. Results show that these nanospheres have the potential to provide an efficient cancer-targeted hyperthermia.

  4. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    PubMed

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  5. Biocompatible hydrodispersible magnetite nanoparticles used as antibiotic drug carriers.

    PubMed

    Bolocan, Alexandra; Mihaiescu, Dan Eduard; Andronescu, Ecaterina; Voicu, Georgeta; Grumezescu, Alexandru Mihai; Ficai, Anton; Vasile, Bogdan Ştefan; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Pop, Corina Silvia

    2015-01-01

    Here we report a newly synthesized vectorizing nanosystem, based on hydrodispersible magnetite nanoparticles (HMNPs) with an average size less than 10 nm, obtained by precipitation of Fe(II) and Fe(III) in basic solution of p-aminobenzoic acid (PABA), characterized by high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), differential thermal analysis coupled with thermogravimetric analysis (DTA-TGA) and bioevaluated for cytotoxicity and antibiotic delivery in active forms. The obtained data demonstrate that HMNPs can be used as an efficient drug delivery system, for clinically relevant antimicrobial drugs. HMNPs antimicrobial activity depended on the loaded drug structure and the tested microbial strain, being more efficient against Pseudomonas aeruginosa, comparing with the Escherichia coli strain. The novel HMNPs demonstrated an acceptable biocompatibility level, being thus a very good candidate for biomedical applications, such as drug delivery or targeting.

  6. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    PubMed

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure. PMID:26766139

  7. Interfacing Microbial Styrene Production with a Biocompatible Cyclopropanation Reaction**

    PubMed Central

    Wallace, Stephen; Balskus, Emily P.

    2015-01-01

    Introducing new reactivity into living organisms is a major challenge in synthetic biology. Despite an increasing interest in both developing aqueous-compatible small molecule catalysts and engineering enzymes to perform new chemistry in vitro, the integration of non-native reactivity into metabolic pathways for small molecule production has been underexplored. Herein we report a biocompatible iron(III) phthalocyanine catalyst capable of efficient olefin cyclopropanation in the presence of a living microorganism. By interfacing this catalyst with E. coli engineered to produce styrene, we synthesize non-natural phenyl cyclopropanes directly from D-glucose in single-vessel fermentations. This process represents the first combination of non-biological carbene-transfer reactivity with cellular metabolism for small molecule production. PMID:25925138

  8. [Neon-colored plastics for orthodontic appliances. Biocompatibility studies].

    PubMed

    Schendel, K U; Erdinger, L; Komposch, G; Sonntag, H G

    1995-01-01

    Public concern and issues of liability have made product safety a major concern throughout the medical field including orthodontics. The purpose of this study was to test the biocompatibility of the new neon colored plastic materials to be used for removable orthodontic appliances before they reach the market and are used in patient treatment. In addition, eight modifications of this synthetic material, which has been used in appliances for many years, were examined without neon color. The procedures established tested for: 1. mutagenicity, 2. toxicity, and 3. irritation of the mucous membrane. As alternatives to using animals the Ames Test, the Agar Overlay Assay, and the HET-CAM Test were employed to test for these properties. The tests revealed that, when the manufacturer's instructions are followed, neither the polymerized materials as used in patient appliances nor the shavings resulting from the orthodontist or the technician grinding the appliance exhibit mutagenic, toxic, or irritating properties.

  9. Structural properties of silver doped hydroxyapatite and their biocompatibility.

    PubMed

    Ciobanu, C S; Iconaru, S L; Pasuk, I; Vasile, B S; Lupu, A R; Hermenean, A; Dinischiotu, A; Predoi, D

    2013-04-01

    The aim of this study was to obtain a novel hydroxyapatite-based material with high biocompatibility. The structural properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The X-ray diffraction studies revealed the characteristic peaks of hydroxyapatite in each sample. Other phases or impurities were not observed. The scanning electron microscopy observations suggest that the doping components have no influence on the surface morphology of the samples, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O) and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) and X-ray Photoelectron Spectroscopy analyses. Nanocrystalline silver doped HAp stimulated viability and potentiated the activation of murine macrophages.

  10. Interfacing microbial styrene production with a biocompatible cyclopropanation reaction.

    PubMed

    Wallace, Stephen; Balskus, Emily P

    2015-06-01

    The introduction of new reactivity into living organisms is a major challenge in synthetic biology. Despite an increasing interest in both the development of small-molecule catalysts that are compatible with aqueous media and the engineering of enzymes to perform new chemistry in vitro, the integration of non-native reactivity into metabolic pathways for small-molecule production has been underexplored. Herein we report a biocompatible iron(III) phthalocyanine catalyst capable of efficient olefin cyclopropanation in the presence of a living microorganism. By interfacing this catalyst with E. coli engineered to produce styrene, we synthesized non-natural phenyl cyclopropanes directly from D-glucose in single-vessel fermentations. This process is the first example of the combination of nonbiological carbene-transfer reactivity with cellular metabolism for small-molecule production. PMID:25925138

  11. Properties of silver nanostructure-coated PTFE and its biocompatibility

    NASA Astrophysics Data System (ADS)

    Siegel, Jakub; Polívková, Markéta; Kasálková, Nikola Slepičková; Kolská, Zdeňka; Švorčík, Václav

    2013-09-01

    Silver nanolayers were sputtered on polytetrafluoroethylene (PTFE) and subsequently transformed into discrete nanoislands by thermal annealing. The Ag/PTFE composites prepared under different conditions were characterized by several complementary methods (goniometry, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy), and new data on the mechanism of Ag layer growth and Ag atom clustering under annealing were obtained. Biocompatibility of selected Ag/PTFE composites was studied in vitro using vascular smooth muscle cell (VSMC) cultures. Despite of the well-known inhibitory properties of silver nanostructures towards broad spectrum of bacterial strains and cells, it was found that very thin silver coating stimulates both adhesion and proliferation of VSMCs.

  12. Metallic biomaterials TiN-coated: corrosion analysis and biocompatibility.

    PubMed

    Paschoal, André Luís; Vanâncio, Everaldo Carlos; Canale, Lauralice de Campos Franceschini; da Silva, Orivaldo Lopes; Huerta-Vilca, Domingos; Motheo, Artur de Jesus

    2003-05-01

    Corrosion processes due to contact with the physiological environment should be avoided or minimized in orthopedic implants. Four metallic substrates frequently used as biomaterials: pure Ti, Ti-6Al-4V alloy, ASTM F138 stainless steel, and Co-Cr-Mo alloy, were coated with TiN using the physical vapor deposition (PVD) technique. These coatings have been screened by polarization curves in physiological solutions. TiN prepared by PVD is efficient as coating for stainless steel. On titanium and alloy there are no benefits concerning the corrosion resistance compared to the bare Ti-materials. TiN coatings have been screened according to ISO 10993 standard tests for biocompatibility and exhibited no cytotoxicity, dermal irritation, or acute systemic toxicity response.

  13. In-plane biocompatible microfluidic interconnects for implantable microsystems.

    PubMed

    Johnson, Dean G; Frisina, Robert D; Borkholder, David A

    2011-04-01

    Small mammals, particularly mice, are very useful animal models for biomedical research. Extremely small anatomical dimensions, however, make design of implantable microsystems quite challenging. A method for coupling external fluidic systems to microfluidic channels via in-plane interconnects is presented. Capillary tubing is inserted into channels etched in the surface of a Si wafer with a seal created by Parylene-C deposition. Prediction of Parylene-C deposition into tapered channels based on Knudsen diffusion and deposition characterizations allows for design optimization. Low-volume interconnects using biocompatible, chemical resistant materials have been demonstrated and shown to withstand pressure as high as 827 kPa (120 psi) with an average pull test strength of 2.9 N. Each interconnect consumes less than 0.018 mm3 (18 nL) of volume. The low added volume makes this an ideal interconnect technology for medical applications where implant volume is critical.

  14. In-Plane Biocompatible Microfluidic Interconnects for Implantable Microsystems

    PubMed Central

    Johnson, Dean G.; Frisina, Robert D.; Borkholder, David A.

    2011-01-01

    Small mammals, particularly mice, are very useful animal models for biomedical research. Extremely small anatomical dimensions, however, make design of implantable microsystems quite challenging. A method for coupling external fluidic systems to microfluidic channels via in-plane interconnects is presented. Capillary tubing is inserted into channels etched in the surface of a Si wafer with a seal created by Parylene-C deposition. Prediction of Parylene-C deposition into tapered channels based on Knudsen diffusion and deposition characterizations allows for design optimization. Low-volume interconnects using biocompatible, chemical resistant materials have been demonstrated and shown to withstand pressure as high as 827 kPa (120 psi) with an average pull test strength of 2.9 N. Each interconnect consumes less than 0.018 mm3 (18 nL) of volume. The low added volume makes this an ideal interconnect technology for medical applications where implant volume is critical. PMID:21147591

  15. Chitosan–cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility

    PubMed Central

    Harkins, April L.; Duri, Simon; Kloth, Luther C.; Tran, Chieu D.

    2014-01-01

    Chitosan (CS), a polysaccharide derived from chitin, the second most abundant polysaccharide, is widely used in the medical world because of its natural and nontoxic properties and its innate ability for antibacterial and hemostasis effects. In this study, the novel composites containing CS and cellulose (CEL) (i.e., [CEL + CS]), which we have previously synthesized using a green and totally recyclable method, were investigated for their antimicrobial activity, absorption of anticoagulated whole blood, anti-inflammatory activity through the reduction of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the biocompatibility with human fibroblasts. The [CEL + CS] composites were found to inhibit the growth of both Gram positive and negative microorganisms. For examples, the regenerated 100% lyophilized chitosan material was found to reduce growth of Escherichia coli (ATCC 8739 and vancomycin resistant Enterococcus faecalis (ATCC 51299) by 78, 36, and 64%, respectively. The composites are nontoxic to fibroblasts; that is, fibroblasts, which are critical to the formation of connective tissue matrix were found to grow and proliferate in the presence of the composites. They effectively absorb blood, and at the same rate and volume as commercially available wound dressings. The composites, in both air-dried and lyophilized forms, significantly inhibit the production of TNF-α and IL-6 by stimulated macrophages. These results clearly indicate that the biodegradable, biocompatible and nontoxic [CEL + CS] composites, particularly those dried by lyophilizing, can be effectively used as a material in wound dressings. PMID:24407857

  16. Preparation and evaluation of biocompatible long-term radiopaque microspheres based on polyvinyl alcohol and lipiodol for embolization.

    PubMed

    Meng, Wen-Jing; Lu, Xiao-Jing; Wang, Huan; Fan, Tian-Yuan; Cui, Dai-Chao; Zhang, Shui-Sheng; Zheng, Zhuo-Zhao; Guan, Hai-Tao; Song, Li; Zou, Ying-Hua

    2015-08-01

    The aim of this work was to develop long-term radiopaque microspheres (LRMs) by entrapping lipiodol in biocompatible polyvinyl alcohol with multiple emulsions chemical crosslinking method. The high content of lipiodol (0.366 g/mL) was hardly released from LRMs in vitro and the radiopacity could maintain at least 3 months after subcutaneous injection in mice without weakening. A series of tests was performed to evaluate the feasibility of LRMs for embolization. LRMs were proved to be smooth, spherical, and well dispersed with diameter range of 100-1200 μm. Young's modulus of LRMs was 55.39 ± 9.10 kPa and LRMs could be easily delivered through catheter without aggregating or clogging. No toxicity of LRMs was found to mouse L929 fibroblasts cells and only moderate inflammatory in surrounding tissue of mice was found after subcutaneous injection of LRMs. After LRMs were embolized in renal artery of a rabbit, the distribution and radiopacity of LRMs in vivo were easily detectable by X-ray fluoroscopy and computed tomography (CT) imaging, respectively. More accurate distribution of LRMs in embolized kidney and vessels could be detected by high-revolution visualization of micro-CT ex vivo. In conclusion, the LRMs were proved to be biocompatible and provide long-term radiopacity with good physical and mechanical properties for embolization.

  17. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties

    PubMed Central

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C

    2014-01-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and 1H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was −47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress–strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4–9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. PMID:24812276

  18. Functionalized Poly(lactic-co-glycolic acid) Enhances Drug Delivery and Provides Chemical Moieties for Surface Engineering while Preserving Biocompatibility

    PubMed Central

    Bertram, James P.; Jay, Steven M.; Hynes, Sara R.; Robinson, Rebecca; Criscione, Jason M.; Lavik, Erin B.

    2009-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is one of the more widely used polymers for biomedical applications. Nonetheless, PLGA lacks chemical moieties that facilitate cellular interactions and surface chemistries. Furthermore, incorporation of hydrophilic molecules is often problematic. The integration of polymer functionalities would afford the opportunity to alter device characteristics, thereby enabling control over drug interactions, conjugations, and cellular phenomena. In an effort to introduce amine functionalities and improve polymer versatility, we synthesized two block copolymers (PLGA-PLL 502H and PLGA-PLL 503H) comprised of PLGA and Poly(ε-carbobenzoxy-L-lysine) utilizing dicyclohexyl carbodiimide (DCC) coupling. PLGA-PLL micropsheres encapsulated approximately six-fold (502H) and three-fold (503H) more vascular endothelial growth factor (VEGF), and 41% (503H) more ciliary neurotrophic factor (CNTF) than their PLGA counterparts. While the amine functionalities were amenable to the delivery of large molecules and surface conjugations, they did not comprise polymer biocompatibility. With the versatile combination of properties, biocompatibility, and ease of synthesis, these block copolymers have the potential for diverse utility in the fields of drug delivery and tissue engineering. PMID:19433141

  19. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    PubMed

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2014-09-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. PMID:24812276

  20. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    PubMed

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2014-09-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration.

  1. Development and characterization of a family of shape memory, biocompatible, degradable, porous (co)-polyurethanes via sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Lippincott, Hugh Walker

    In support of the goal of a tissue engineering scaffold that is moldable, biodegradable and has shape-memory, this work explored the space of polyurethane sol-gel formulations and solvents to create a biocompatible, porous xerogel with potential to be such a porous scaffold. The work has resulted in both a process and a sol-gel formulation to effectively create a family of degradable, biocompatible, shape memory, porous, block copolyurethane xerogels from polycaprolactone and castor oil. Formulations of the sol-gel family of potential scaffolds were characterized for their biocompatibility, hydrolytic degradability, porosity, and shape memory. Of the scaffolds tested in this fashion, the most successful supported the attachment and growth of 3T3 fibroblast cells at 72% of the rate of attachment and growth in the standard tissue culture plastic Petri dishes. A method was developed and explained that selects the solvent for creation of a porous xerogel by controlling the phase separation of the polymerizing polyurethane from the reaction solution. This method uses standard polymer solvent swelling and extraction test data. Solvent solutions plotted in the 3-D space of Hansen solubility parameters were used to select solvents that produced porous xerogels from two different polyurethane sol-gel formulations. The process effectively combines a set of methods that search the sol-gel formulation spaces for both shape-memory and porosity. Easily produced dense xerogels from trial sol-gel formulations are sufficient for DSC and initial DMA shape-memory test data, as well as standard solvent swelling and extraction test data to support the search for shape memory and the computation of rankings to select solvent(s) that is most likely to produce a porous xerogel. Accelerated degradation tests on the dense xerogels also produced results useful to guide further testing of the sol-gel formulations. Standard shape-memory research testing only characterizes the free return to

  2. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  3. In vivo biocompatibility of custom-fabricated apatite-wollastonite-mesenchymal stromal cell constructs.

    PubMed

    Lee, Jennifer A; Knight, Charlotte A; Kun, Xiao; Yang, Xuebin B; Wood, David J; Dalgarno, Kenneth W; Genever, Paul G

    2015-10-01

    We have used the additive manufacturing technology of selective laser sintering (SLS), together with post SLS heat treatment, to produce porous three dimensional scaffolds from the glass-ceramic apatite-wollastonite (A-W). The A-W scaffolds were custom-designed to incorporate a cylindrical central channel to increase cell penetration and medium flow to the center of the scaffolds under dynamic culture conditions during in vitro testing and subsequent in vivo implantation. The scaffolds were seeded with human bone marrow mesenchymal stromal cells (MSCs) and cultured in spinner flasks. Using confocal and scanning electron microscopy, we demonstrated that MSCs formed and maintained a confluent layer of viable cells on all surfaces of the A-W scaffolds during dynamic culture. MSC-seeded, with and without osteogenic pre-differentiation, and unseeded A-W scaffolds were implanted subcutaneously in MF1 nude mice where osteoid formation and tissue in-growth were observed following histological assessment. The results demonstrate that the in vivo biocompatibility and osteo-supportive capacity of A-W scaffolds can be enhanced by SLS-custom design, without the requirement for osteogenic pre-induction, to advance their potential as patient-specific bone replacement materials.

  4. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction.

    PubMed

    Feng, Chao; Xu, Yue-Min; Fu, Qiang; Zhu, Wei-Dong; Cui, Lei; Chen, Jie

    2010-07-01

    The aim of this study was to evaluate the mechanical properties and biocompatibility of biomaterials, including bladder submucosa (BAMG), small intestinal submucosa (SIS), acellular corpus spongiosum matrix (ACSM), and polyglycolic acid (PGA), to identify the optimal scaffold for urethral tissue engineering. Tensile mechanical testing was conducted to evaluate mechanical properties of each scaffold. Rabbit corporal smooth muscle cells were cultured with the extracts of biomaterials and mitochondrial metabolic activity assay was used to determine the cytotoxicity of scaffold. The pore sizes of each scaffold were measured. Additionally, smooth muscle cells were seeded on biomaterials. Cell infiltration was evaluated. Mechanical evaluation showed that Young modulus, stress at break in ACSM were prior to those in other biomaterials (p < 0.05). MTT assay confirmed that all scaffolds supported normal cellular mitochondrial metabolic without inducing cytotoxic events. SEM demonstrated that PGA has the largest pore size (>200 microm). The ACSM has different pore sizes in urethral (<5 microm) and cavernosal surfaces (>10 microm). Widespread distribution of cells could be observed in PGA 14 days after seeding. Multilayer cellular coverage developed in BAMG and urethral surface of ACSM without any sign of cellular invasion. Moderated cellular penetration could be found in SIS and cavernosal surface of ACSM. Although each scaffold demonstrated suitable mechanical properties, which is similar to normal urethra, ACSM showed better response in some parameters than those in other biomaterials. It suggested that this scaffold may be an alternative for urethral reconstruction in the future. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  5. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets.

    PubMed

    Guzman, Rodrigo; Fernandez-García, Elisa; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Lopez-Lacomba, Jose Luis; Lopez-Esteban, Sonia

    2016-01-01

    Alumina-titanium materials (cermets) of enhanced mechanical properties have been lately developed. In this work, physical properties such as electrical conductivity and the crystalline phases in the bulk material are evaluated. As these new cermets manufactured by spark plasma sintering may have potential application for hard tissue replacements, their biocompatibility needs to be evaluated. Thus, this research aims to study the cytocompatibility of a novel alumina-titanium (25 vol. % Ti) cermet compared to its pure counterpart, the spark plasma sintered alumina. The influence of the particular surface properties (chemical composition, roughness and wettability) on the pre-osteoblastic cell response is also analyzed. The material electrical resistance revealed that this cermet may be machined to any shape by electroerosion. The investigated specimens had a slightly undulated topography, with a roughness pattern that had similar morphology in all orientations (isotropic roughness) and a sub-micrometric average roughness. Differences in skewness that implied valley-like structures in the cermet and predominance of peaks in alumina were found. The cermet presented a higher surface hydrophilicity than alumina. Any cytotoxicity risk associated with the new materials or with the innovative manufacturing methodology was rejected. Proliferation and early-differentiation stages of osteoblasts were statistically improved on the composite. Thus, our results suggest that this new multifunctional cermet could improve current alumina-based biomedical devices for applications such as hip joint replacements. PMID:25956565

  6. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    PubMed

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering. PMID:24460239

  7. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating.

    PubMed

    Chen, X B; Nisbet, D R; Li, R W; Smith, P N; Abbott, T B; Easton, M A; Zhang, D-H; Birbilis, N

    2014-03-01

    A simple strontium phosphate (SrP) conversion coating process was developed to protect magnesium (Mg) from the initial degradation post-implantation. The coating morphology, deposition rate and resultant phases are all dependent on the processing temperature, which determines the protective ability for Mg in minimum essential medium (MEM). Coatings produced at 80 °C are primarily made up of strontium apatite (SrAp) with a granular surface, a high degree of crystallinity and the highest protective ability, which arises from retarding anodic dissolution of Mg in MEM. Following 14 days' immersion in MEM, the SrAp coating maintained its integrity with only a small fraction of the surface corroded. The post-degradation effect of uncoated Mg and Mg coated at 40 and 80 °C on the proliferation and differentiation of human mesenchymal stem cells was also studied, revealing that the SrP coatings are biocompatible and permit proliferation to a level similar to that of pure Mg. The present study suggests that the SrP conversion coating is a promising option for controlling the early rapid degradation rate, and hence hydrogen gas evolution, of Mg implants without adverse effects on surrounding cells and tissues.

  8. The Biocompatibility of Degradable Magnesium Interference Screws: An Experimental Study with Sheep

    PubMed Central

    Thormann, Ulrich; Alt, Volker; Heimann, Lydia; Gasquere, Cyrille; Heiss, Christian; Szalay, Gabor; Franke, Jörg; Schnettler, Reinhard; Lips, Katrin Susanne

    2015-01-01

    Screws for ligament reconstruction are nowadays mostly made of poly-L-lactide (PLLA). However, magnesium-based biomaterials are gathering increased interest in this research field because of their good mechanical property and osteoanabolic influence on bone metabolism. The aim of this pilot study was to evaluate the biocompatibility of an interference screw for ligament reconstruction made of magnesium alloy W4 by diecasting and milling and using different PEO-coatings with calcium phosphates. PLLA and titanium screws were used as control samples. The screws were implanted in the femur condyle of the hind leg of a merino sheep. The observation period was six and twelve weeks and one year. Histomorphometric, immunohistochemical, immunofluorescence, and molecular biological evaluation were conducted. Further TEM analysis was done. In all magnesium screws a clinically relevant gas formation in the vicinity of the biomaterial was observed. Except for the PLLA and titanium control samples, no screw was fully integrated in the surrounding bone tissue. Regarding the fabrication process, milling seems to produce less gas liberation and has a better influence on bone metabolism than diecasting. Coating by PEO with calcium phosphates could not reduce the initial gas liberation but rather reduced the bone metabolism in the vicinity of the biomaterial. PMID:25717474

  9. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.

    PubMed

    Occhetta, Paola; Visone, Roberta; Russo, Laura; Cipolla, Laura; Moretti, Matteo; Rasponi, Marco

    2015-06-01

    The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications.

  10. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals.

    PubMed

    Li, Chuan; Zhang, Jia; Zu, Yu-Jiao; Nie, Shu-Fang; Cao, Jun; Wang, Qian; Nie, Shao-Ping; Deng, Ze-Yuan; Xie, Ming-Yong; Wang, Shu

    2015-09-01

    Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer. PMID:26412423

  11. Biocompatibility and characteristics of chitosan/cellulose acetate microspheres for drug delivery

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Zhou, Dong-Ju; Zhang, Wei-Fen; Jiang, Ling-Juan; Li, Jun-Bo; Chen, Xi-Guang

    2011-12-01

    In this work, chitosan/cellulose acetate microspheres (CCAM) were prepared by the method of W/O/W emulsion with no toxic reagents. The microspheres were spherical, free flowing, and non-aggregated, which had a narrow size distribution. More than 90% of the microspheres had the diameter ranging from 200 to 280 μm. The hemolytic analysis indicated that CCAM was safe and had no hemolytic effect. The implanted CCAM did not produce any significant changes in the hematology of Sprague-Dawley (SD) rats, such as white blood cell, red blood cell, platelet, and the volume of hemoglobin. In addition, the levels of serum alanine aminotransferase, blood urea nitrogen, and creatinine had no obvious changes in SD rats implanted with CCAM, surger thread, or normal SD rats without any implantation. Thus, the CCAM had good blood compatibility and had no hepatotoxicity or renal toxicity to SD rats. Furthermore, CCAM with or without the model drug had good tissue compatibility with respect to the inflammatory reaction in SD rats and showed no significant difference from that of SD rats implanted with surgery thread. CCAM shows promise as a long-acting delivery system, which had good biocompatibility and biodegradability.

  12. Isocyanate-functional adhesives for biomedical applications. Biocompatibility and feasibility study for vascular closure applications.

    PubMed

    Hadba, Ahmad R; Belcheva, Nadya; Jones, Fatima; Abuzaina, Ferass; Calabrese, Allison; Kapiamba, Mbiya; Skalla, Walter; Taylor, Jack L; Rodeheaver, George; Kennedy, John

    2011-10-01

    Biodegradable isocyanate-functional adhesives based on poly(ethylene glycol)-adipic acid esters were synthesized, characterized, and evaluated in vitro and in vivo. Two types of formulations, P2TT and P2MT, were developed by functionalization with 2,4-tolylene diisocyanate (TDI) or 4,4'-methylene-bis(phenyl isocyanate) (MDI), respectively, and branching with 1,1,1-trimethylolpropane (TMP). The biocompatibility of the synthesized adhesive formulations was evaluated as per ISO 10993. Cytotoxicity, systemic toxicity, pyrogenicity, genotoxicity (reverse mutation of Salmonella typhimurium and Escherichia coli), hemolysis, intracutaneous reactivity, and delayed-type hypersensitivity were evaluated. All formulations met the requirements of the conducted standard tests. The biological behavior and ability of the adhesive formulations to close an arteriotomy and withstand arterial pressure following partial approximation with a single suture were evaluated in a rat abdominal aorta model. Animals were evaluated at 1, 2, 3, and 4 weeks after surgery. Macroscopic and histopathologic evaluation of explanted arteries suggested that the P2TT formulation had better in vivo performance than the P2MT formulation. Additionally, the P2TT formulation resulted in less tissue reaction than P2MT formulation. To our knowledge, this is the first study demonstrating the potential of this new class of isocyanate-functional degradable adhesives for vascular applications.

  13. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.

    PubMed

    Lee, Keekeun; He, Jiping; Clement, Ryan; Massia, Stephen; Kim, Bruce

    2004-09-15

    Poly-benzocyclobutene (BCB)-based intracortical neural implant was fabricated, in which micro-fluidic channel was embedded to deliver drug solutions. BCB presents several attractive features for chronic applications: flexibility, biocompatibility, desirable chemical and electrical properties, and can be easily manufactured using existing batch micro-fabrication technology. The fabricated implants have single shank with three recording sites (20 microm x 20 microm) and two reserviors (inlet and outlet). The channel had large volume (40 microm width and 10 microm height), and hydrophobic surface to provide a high degree of chemical inertness. All the recording sites were positioned near the end of the shank in order to increase the probability of recording neural signals from a target volume of tissue. In vitro cytotoxicity tests of prototype implants revealed no adverse toxic effects on cultured cells. The implant with a silicon backbone layer of 5-10 microm was robust enough to penetrate rat's pia without buckling, a major drawback of polymer alone. The averaged impedance value at 1 KHz was approximately 1.2 MOmega. Simultaneous recordings of neural signals from barrel cortex of a rat were successfully demonstrated.

  14. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  15. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    PubMed Central

    Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2016-01-01

    Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. PMID:27226713

  16. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals.

    PubMed

    Li, Chuan; Zhang, Jia; Zu, Yu-Jiao; Nie, Shu-Fang; Cao, Jun; Wang, Qian; Nie, Shao-Ping; Deng, Ze-Yuan; Xie, Ming-Yong; Wang, Shu

    2015-09-01

    Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer.

  17. In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements.

    PubMed

    Hesaraki, Saeed; Nezafati, Nader

    2014-08-01

    The need for bone repair has increased as the population ages. In this research, calcium phosphate cements, with and without chitosan (CS) and hyaluronic acid (HA), were synthesized. The composition and morphological properties of cements were evaluated by X-ray diffraction and scanning electron microscopy. The acellular in vitro bioactivity revealed that different apatite morphologies were formed on the surfaces of cements after soaking in simulated body fluid. The in vitro osteoblastic cell biocompatibility of in situ forming cements was evaluated and compared with those of conventional calcium phosphate cements (CPCs). The viability and growth rate of the cells were similar for all CPCs, but better alkaline phosphatase activity was observed for CPC with CS and HA. Calcium phosphate cements supported attachment of osteoblastic cells on their surfaces. Spindle-shaped osteoblasts with developed cytoplasmic membrane were found on the surfaces of cement samples after 7 days of culture. These results reveal the potential of the CPC-CS/HA composites to be used in bone tissue engineering. PMID:24399509

  18. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets.

    PubMed

    Guzman, Rodrigo; Fernandez-García, Elisa; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Lopez-Lacomba, Jose Luis; Lopez-Esteban, Sonia

    2016-01-01

    Alumina-titanium materials (cermets) of enhanced mechanical properties have been lately developed. In this work, physical properties such as electrical conductivity and the crystalline phases in the bulk material are evaluated. As these new cermets manufactured by spark plasma sintering may have potential application for hard tissue replacements, their biocompatibility needs to be evaluated. Thus, this research aims to study the cytocompatibility of a novel alumina-titanium (25 vol. % Ti) cermet compared to its pure counterpart, the spark plasma sintered alumina. The influence of the particular surface properties (chemical composition, roughness and wettability) on the pre-osteoblastic cell response is also analyzed. The material electrical resistance revealed that this cermet may be machined to any shape by electroerosion. The investigated specimens had a slightly undulated topography, with a roughness pattern that had similar morphology in all orientations (isotropic roughness) and a sub-micrometric average roughness. Differences in skewness that implied valley-like structures in the cermet and predominance of peaks in alumina were found. The cermet presented a higher surface hydrophilicity than alumina. Any cytotoxicity risk associated with the new materials or with the innovative manufacturing methodology was rejected. Proliferation and early-differentiation stages of osteoblasts were statistically improved on the composite. Thus, our results suggest that this new multifunctional cermet could improve current alumina-based biomedical devices for applications such as hip joint replacements.

  19. A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer.

    PubMed

    Huang, Xian; Li, Siqi; Schultz, Jerome S; Wang, Qian; Lin, Qiao

    2009-07-16

    We present a MEMS affinity sensor that can potentially allow long-term continuous monitoring of glucose in subcutaneous tissue for diabetes management. The sensing principle is based on detection of viscosity changes due to affinity binding between glucose and poly(acrylamide-ran-3-acrylamidophenylboronic acid) (PAA-ran-PAAPBA), a biocompatible, glucose-specific polymer. The device uses a magnetically driven vibrating microcantilever as a sensing element, which is fabricated from Parylene and situated in a microchamber. A solution of PAA-ran-PAAPBA fills the microchamber, which is separated from the surroundings by a semi-permeable membrane. Glucose permeates through the membrane and binds reversibly to the phenylboronic acid moiety of the polymer. This results in a viscosity change of the sensing solution, which is obtained by measuring the damped cantilever vibration using an optical lever setup, allowing determination of the glucose concentration. Experimental results demonstrate that the device is capable of detecting glucose at physiologically relevant concentrations from 27 mg/dL to 324 mg/dL. The glucose response time constant of the sensor is approximately 3 min, which can be further improved with device design optimization. Excellent reversibility and stability are observed in sensor responses, as highly desired for long-term, stable continuous glucose monitoring. PMID:24511207

  20. Cellular Interactions and Biocompatibility of Self-Assembling Diblock Polypeptide Hydrogels

    NASA Astrophysics Data System (ADS)

    Pakstis, Lisa; Ozbas, Bulent; Pochan, Darrin; Robinson, Clifford; Nowak, Andrew; Deming, Timothy

    2002-03-01

    Self-assembling peptide based hydrogels having a unique nano- and microscopic morphology are being studied for potential use as tissue engineering scaffolds. Low molecular weight ( ~20 kg/mol), amphiphilic, diblock polypeptides of hydrophilic lysine (K) or glutamic acid (E) and hydrophobic leucine (L) or valine (V) form hydrogels in aqueous solution at neutral pH and at very low volume fraction of polymer (vol. fraction polypeptide >=0.5 wt%). The morphology of these hydrogels has been characterized using laser confocal microscopy (LCM), small angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryoTEM) imaging. Studies of the interactions of the hydrogels with bacterial and mammalian cells reveal that these materials are non-cytotoxic and biocompatible. Hence, the chemistry of the assembled diblock polypeptides allows for cellular proliferation whereas the same chemistry in the homopolyeric form is cytotoxic. Current research is directed at the design and incorporation of binding sites within the polypeptide to specifically target interactions of the hydrogel with desired cells types.

  1. Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane.

    PubMed

    Qu, Yili; Wang, Ping; Man, Yi; Li, Yubao; Zuo, Yi; Li, Jidong

    2010-08-09

    Nano-hydroxyapatite/polyamide 66 (nHA/PA66) composite with good bioactivity and osteoconductivity was employed to develop a novel porous membrane with asymmetric structure for guided bone regeneration (GBR). In order to test material cytotoxicity and to investigate surface-dependent responses of bone-forming cells, the morphology, proliferation, and cell cycle of bone marrow stromal cells (BMSCs) of rats cultured on the prepared membrane were determined. The polygonal and fusiform shape of BMSCs was observed by scanning electronic microscopy (SEM). The proliferation of BMSCs cultured on nHA/PA66 membrane tested by the MTT method (MTT: [3-{4,5-dimethylthiazol-2yl}-2,5-diphenyl-2H-tetrazoliumbromide]) was higher than that of negative control groups for 1 and 4 days' incubation and had no significant difference for 7 and 11 days' culture. The results of cell cycle also suggested that the membrane has no negative influence on cell division. The nHA/PA66 membranes were then implanted into subcutaneous sites of nine Sprague Dawley rats. The wounds and implant sites were free from suppuration and necrosis in all periods. All nHA/PA66 membranes were surrounded by a fibrous capsule with decreasing thickness 1 to 8 weeks postoperatively. In conclusion, the results of the in vitro and in vivo studies reveal that nHA/PA66 membrane has excellent biocompatibility and indicate its use in guided tissue regeneration (GTR) or GBR.

  2. Tissue types (image)

    MedlinePlus

    There are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports other tissues and binds them together (bone, blood, and lymph tissues). Epithelial tissue ...

  3. Development and testing of new biologically-based polymers as advanced biocompatible contact lenses

    SciTech Connect

    Bertozzi, Carolyn R.

    2000-06-01

    Nature has evolved complex and elegant materials well suited to fulfill a myriad of functions. Lubricants, structural scaffolds and protective sheaths can all be found in nature, and these provide a rich source of inspiration for the rational design of materials for biomedical applications. Many biological materials are based in some fashion on hydrogels, the crosslinked polymers that absorb and hold water. Biological hydrogels contribute to processes as diverse as mineral nucleation during bone growth and protection and hydration of the cell surface. The carbohydrate layer that coats all living cells, often referred to as the glycocalyx, has hydrogel-like properties that keep cell surfaces well hydrated, segregated from neighboring cells, and resistant to non-specific protein deposition. With the molecular details of cell surface carbohydrates now in hand, adaptation of these structural motifs to synthetic materials is an appealing strategy for improving biocompatibility. The goal of this collaborative project between Prof. Bertozzi's research group, the Center for Advanced Materials at Lawrence Berkeley National Laboratory and Sunsoft Corporation was the design, synthesis and characterization of novel hydrogel polymers for improved soft contact lens materials. Our efforts were motivated by the urgent need for improved materials that allow extended wear, and essential feature for those whose occupation requires the use of contact lenses rather than traditional spectacles. Our strategy was to transplant the chemical features of cell surface molecules into contact lens materials so that they more closely resemble the tissue in which they reside. Specifically, we integrated carbohydrate molecules similar to those found on cell surfaces, and sulfoxide materials inspired by the properties of the carbohydrates, into hydrogels composed of biocompatible and manufacturable substrates. The new materials were characterized with respect to surface and bulk hydrophilicity, and

  4. Myocardial tissue engineering using electrospun nanofiber composites

    PubMed Central

    Kim, Pyung-Hwan; Cho, Je-Yoel

    2016-01-01

    Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36] PMID:26497579

  5. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys.

    PubMed

    da Silva, Luciano Monteiro; Claro, Ana Paula Rosifini Alves; Donato, Tatiani Ayako Goto; Arana-Chavez, Victor E; Moraes, João Carlos Silos; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto

    2011-05-01

    The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys. This article presents the effect of heat treatment and oxygen doping in some mechanical properties and the biocompatibility of three alloys of the Ti-Nb system, characterized by density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, in vitro cytotoxicity, and mechanical spectroscopy.

  6. Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility

    PubMed Central

    Anderson, James M.

    2016-01-01

    As the science and engineering of biomaterials continues to expand with increased emphasis on the development of nanomaterials and tissue engineering scaffolds, emphasis also must be placed on appropriate and adequate approaches to the in vivo and in vitro evaluation of biomaterial biocompatibility/biological response evaluation. This article presents six topic areas that should be addressed by investigators as they move forward in the development of new systems for regenerative medicine. Most certainly, there are other areas that require attention to detail and a more complete understanding of the strengths and weaknesses of various experimental approaches to biomaterial/biological response evaluation. The small number of issues addressed in this article is only meant to bring to the attention of prospective investigators and authors, the importance of the development of adequate and appropriate evaluation techniques that address the unique features of biomaterials utilized in the development of new medical devices. PMID:27047672

  7. Biocompatibility analysis of an electrically-activated silver-based antibacterial surface system for medical device applications.

    PubMed

    Samberg, Meghan E; Tan, Zhuo; Monteiro-Riviere, Nancy A; Orndorff, Paul E; Shirwaiker, Rohan A

    2013-03-01

    The costs associated with the treatment of medical device and surgical site infections are a major cause of concern in the global healthcare system. To prevent transmission of such infections, a prophylactic surface system that provides protracted release of antibacterial silver ions using low intensity direct electric current (LIDC; 28 μA system current at 6 V) activation has been recently developed. To ensure the safety for future in vivo studies and potential clinical applications, this study assessed the biocompatibility of the LIDC-activated interdigitated silver electrodes-based surface system; in vitro toxicity to human epidermal keratinocytes, human dermal fibroblasts, and normal human osteoblasts, and antibacterial efficacy against Staphylococcus aureus and Escherichia coli was evaluated. The study concluded that the technological applications of the surface system for medical devices and surgical tools, which contact human tissues for less than 1.5 h, are expected to be self-sterilizing without causing toxicity in vivo.

  8. Biocompatible Green and Red Fluorescent Organic Dots with Remarkably Large Two-Photon Action Cross Sections for Targeted Cellular Imaging and Real-Time Intravital Blood Vascular Visualization.

    PubMed

    Xiang, Jiayun; Cai, Xiaolei; Lou, Xiaoding; Feng, Guangxue; Min, Xuehong; Luo, Wenwen; He, Bairong; Goh, Chi Ching; Ng, Lai Guan; Zhou, Jian; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong

    2015-07-15

    Fluorescent organic dots are emerging as promising bioimaging reagents because of their high brightness, good photostability, excellent biocompatibility, and facile surface functionalization. Organic dots with large two-photon absorption (TPA) cross sections are highly desired for two-photon fluorescence microscopy. In this work, we report two biocompatible and photostable organic dots fabricated by encapsulating tetraphenylethene derivatives within DSPE-PEG matrix. The two organic dots show absorption maxima at 425 and 483 nm and emit green and red fluorescence at 560 and 645 nm, with high fluorescence quantum yields of 64% and 22%, respectively. Both organic dots exhibit excellent TPA property in the range of 800-960 nm, affording upon excitation at 820 nm remarkably large TPA cross sections of 1.2×10(6) and 2.5×10(6) GM on the basis of dot concentration. The bare fluorophores and their organic dots are biocompatible and have been used to stain living cells for one- and two-photon fluorescence bioimagings. The cRGD-modified organic dots can selectively target integrin αvβ3 overexpressing breast cancer cells for targeted imaging. The organic dots are also applied for real-time two-photon fluorescence in vivo visualization of the blood vasculature of mouse ear, providing the spatiotemporal information about the whole blood vascular network. These results demonstrate that the present fluorescent organic dots are promising candidates for living cell and tissue imaging.

  9. Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model.

    PubMed

    Sun, Kwang-Hsiao; Liu, Zhao; Liu, Changjian; Yu, Tong; Shang, Tao; Huang, Chen; Zhou, Min; Liu, Cheng; Ran, Feng; Li, Yun; Shi, Yi; Pan, Lijia

    2016-01-01

    Recent advances in understanding the interaction between electricity and cells/biomolecules have generated great interest in developing biocompatible electrically conductive materials. In this study, we investigated the biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel using in vitro and in vivo experiments in a rat model. The polyaniline hydrogel was used to coat a polycaprolactone scaffold and was cultured with rat endothelial progenitor cells differentiated from rat adipose-derived stem cells. Compared with the control sample on a pristine polycaprolactone scaffold, the treated polyaniline hydrogel had the same non-poisonous/cytotoxicity grade, enhanced cell adhesion, and a higher cell proliferation/growth rate. In implant studies, the polyaniline hydrogel sample induced milder inflammatory responses than did the control at the same time points. Combining the advantages of a biocompatible hydrogel and an organic conductor, the inositol phosphate-gelated polyaniline hydrogel could be used in bioelectronics applications such as biosensors, neural probes, cell stimulators, medical electrodes, tissue engineering, and electro-controlled drug delivery. PMID:27073144

  10. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.

    PubMed

    Xie, Lu; Yu, Haiyang; Yang, Weizhong; Zhu, Zhuoli; Yue, Li

    2016-01-01

    Biodegradable and bioactive scaffolds with interconnected macroporous structures, suitable biodegradability, adequate mechanical property, and excellent biocompatibility have drawn increasing attention in bone tissue engineering. Hence, in this work, porous hydroxyapatite whisker-reinforced poly(L-lactide) (HA-w/PLLA) composite scaffolds with different ratios of HA and PLLA were successfully developed through compression molding and particle leaching. The microstructure, in vitro mineralization, cytocompatibility, hemocompatibility, and in vivo biocompatibility of the porous HA-w/PLLA were investigated for the first time. The SEM results revealed that these HA-w/PLLA scaffolds possessed interconnected pore structures. Compared with porous HA powder-reinforced PLLA (HA-p/PLLA) scaffolds, HA-w/PLLA scaffolds exhibited better mechanical property and in vitro bioactivity, as more formation of bone-like apatite layers were induced on these scaffolds after mineralization in SBF. Importantly, in vitro cytotoxicity displayed that porous HA-w/PLLA scaffold with HA/PLLA ratio of 1:1 (HA-w1/PLLA1) produced no deleterious effect on human mesenchymal stem cells (hMSCs), and cells performed elevated cell proliferation, indicating a good cytocompatibility. Simultaneously, well-behaved hemocompatibility and favorable in vivo biocompatibility determined from acute toxicity test and histological evaluation were also found in the porous HA-w1/PLLA1 scaffold. These findings may provide new prospects for utilizing the porous HA whisker-based biodegradable scaffolds in bone repair, replacement, and augmentation applications.

  11. Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model

    PubMed Central

    Sun, Kwang-Hsiao; Liu, Zhao; Liu, Changjian; Yu, Tong; Shang, Tao; Huang, Chen; Zhou, Min; Liu, Cheng; Ran, Feng; Li, Yun; Shi, Yi; Pan, Lijia

    2016-01-01

    Recent advances in understanding the interaction between electricity and cells/biomolecules have generated great interest in developing biocompatible electrically conductive materials. In this study, we investigated the biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel using in vitro and in vivo experiments in a rat model. The polyaniline hydrogel was used to coat a polycaprolactone scaffold and was cultured with rat endothelial progenitor cells differentiated from rat adipose-derived stem cells. Compared with the control sample on a pristine polycaprolactone scaffold, the treated polyaniline hydrogel had the same non-poisonous/cytotoxicity grade, enhanced cell adhesion, and a higher cell proliferation/growth rate. In implant studies, the polyaniline hydrogel sample induced milder inflammatory responses than did the control at the same time points. Combining the advantages of a biocompatible hydrogel and an organic conductor, the inositol phosphate-gelated polyaniline hydrogel could be used in bioelectronics applications such as biosensors, neural probes, cell stimulators, medical electrodes, tissue engineering, and electro-controlled drug delivery. PMID:27073144

  12. Evaluation of biomechanical strength, stability, bioactivity, and in vivo biocompatibility of a novel calcium deficient hydroxyapatite/poly(amino acid) composite cervical vertebra cage.

    PubMed

    Xiong, Yi; Li, Hong; Zhou, Chunguang; Yang, Xi; Song, Yueming; Qing, Yan; Yan, Yonggang

    2014-01-01

    A new type of cervical vertebra cage was prepared using a novel composite, calcium deficient hydroxyapatite/poly(amino acid) (HA/PAA), and its mechanical properties, in vitro stability and bioactivity, and in vivo biocompatibility were characterized. The results showed that the axial compressive loads of the HA/PAA cage were in the range of 10058-10612 N and the lateral compressive loads were in the range of 1180-2363 N, and varied with the height of the cervical vertebra cages. After immersion in simulated body fluid (SBF) for 16 weeks, the axial compressive loads of the cage decreased from 10058 to 7131 N and the lateral compressive loads decreased from 1180 to 479 N. In addition, the weight loss decreased 6.01%, showing that HA/PAA composites had good stability during the incubation period. The pH value of SBF was also monitored during the whole soaking period; it fluctuated in the range of 6.9-7.4. Scanning electron microscope and energy dispersive spectrometer results showed the cage was bioactive with a new apatite layer attached on the surface. The histological evaluation revealed that new bone tissue bonded tightly with the surfaces of the implants, showing excellent biocompatibility. In conclusion, the HA/PAA cage showed sufficient strength, good stability, bioactivity, and biocompatibility, and has potential applications for clinical cervical vertebrae repair.

  13. Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model

    NASA Astrophysics Data System (ADS)

    Sun, Kwang-Hsiao; Liu, Zhao; Liu, Changjian; Yu, Tong; Shang, Tao; Huang, Chen; Zhou, Min; Liu, Cheng; Ran, Feng; Li, Yun; Shi, Yi; Pan, Lijia

    2016-04-01

    Recent advances in understanding the interaction between electricity and cells/biomolecules have generated great interest in developing biocompatible electrically conductive materials. In this study, we investigated the biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel using in vitro and in vivo experiments in a rat model. The polyaniline hydrogel was used to coat a polycaprolactone scaffold and was cultured with rat endothelial progenitor cells differentiated from rat adipose-derived stem cells. Compared with the control sample on a pristine polycaprolactone scaffold, the treated polyaniline hydrogel had the same non-poisonous/cytotoxicity grade, enhanced cell adhesion, and a higher cell proliferation/growth rate. In implant studies, the polyaniline hydrogel sample induced milder inflammatory responses than did the control at the same time points. Combining the advantages of a biocompatible hydrogel and an organic conductor, the inositol phosphate-gelated polyaniline hydrogel could be used in bioelectronics applications such as biosensors, neural probes, cell stimulators, medical electrodes, tissue engineering, and electro-controlled drug delivery.

  14. Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model.

    PubMed

    Sun, Kwang-Hsiao; Liu, Zhao; Liu, Changjian; Yu, Tong; Shang, Tao; Huang, Chen; Zhou, Min; Liu, Cheng; Ran, Feng; Li, Yun; Shi, Yi; Pan, Lijia

    2016-04-13

    Recent advances in understanding the interaction between electricity and cells/biomolecules have generated great interest in developing biocompatible electrically conductive materials. In this study, we investigated the biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel using in vitro and in vivo experiments in a rat model. The polyaniline hydrogel was used to coat a polycaprolactone scaffold and was cultured with rat endothelial progenitor cells differentiated from rat adipose-derived stem cells. Compared with the control sample on a pristine polycaprolactone scaffold, the treated polyaniline hydrogel had the same non-poisonous/cytotoxicity grade, enhanced cell adhesion, and a higher cell proliferation/growth rate. In implant studies, the polyaniline hydrogel sample induced milder inflammatory responses than did the control at the same time points. Combining the advantages of a biocompatible hydrogel and an organic conductor, the inositol phosphate-gelated polyaniline hydrogel could be used in bioelectronics applications such as biosensors, neural probes, cell stimulators, medical electrodes, tissue engineering, and electro-controlled drug delivery.

  15. In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings

    PubMed Central

    Vladescu, Alina; Titorencu, Irina; Dekhtyar, Yuri; Jinga, Victor; Pruna, Vasile; Balaceanu, Mihai; Dinu, Mihaela; Pana, Iulian; Vendina, Viktorija

    2016-01-01

    In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings’ surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating. PMID:27571361

  16. In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings.

    PubMed

    Vladescu, Alina; Titorencu, Irina; Dekhtyar, Yuri; Jinga, Victor; Pruna, Vasile; Balaceanu, Mihai; Dinu, Mihaela; Pana, Iulian; Vendina, Viktorija; Braic, Mariana

    2016-01-01

    In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings' surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating. PMID:27571361

  17. Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation.

    PubMed

    Purnama, Agung; Hermawan, Hendra; Couet, Jacques; Mantovani, Diego

    2010-05-01

    For decades, the design, development and use of metallic biomaterials has focused on the corrosion resistance of these materials once implanted in the human body. Recently, degradable metallic biomaterials (DMMs) have been proposed for some specific applications, including paediatric, orthopaedic and cardiovascular applications. DMMs are expected to disappear via corrosion after providing structural support for a certain period of time depending on the application site. Over the past decades, a wide-ranging and comprehensive set of in vitro, in vivo and for some cases also ex vivo tests have been proposed and exhaustively investigated for conventional corrosion-resistant metallic biomaterials. Standardization and regulatory bodies in the United States, Japan and Europe have therefore developed tests to license corrosion-resistant metals for use as "biomaterials". This is not the case for DMMs. Once implanted, this new class of biomaterials is expected to support the healing process of a diseased tissue or organ while degrading at a potentially adjustable degradation rate. The tests developed for corrosion-resistant metals cannot simply be transposed to DMMs. These tests can in some cases be adapted, but the expected unique properties of DMMs should also inspire and lead to the design and the development of new specific tests. The current challenge is how to assess the tolerance of surrounding tissues and organs to the presence of degradation products. This work precisely focuses on this topic. The tests usually used to assess the biocompatibility of conventional corrosion-resistant metals are briefly reviewed. Then, genetic regulation is proposed as an original and novel approach to assess the biocompatibility of DMMs. This method appears to predict cell behaviour in the presence of degradation products that are closely related to DNA damage. Various genes have been related to the toxicity and inflammatory responses, indicating their role as biomarkers to assess

  18. Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films

    SciTech Connect

    Coll Ferrer, M. Carme; Eckmann, Uriel N.; Composto, Russell J.; Eckmann, David M.

    2013-11-01

    In previous work, we developed novel antibacterial hybrid coatings based on dextran containing dispersed Ag NPs (∼ 5 nm, DEX-Ag) aimed to offer dual protection against two of the most common complications associated with implant surgery, infections and rejection of the implant. However, their blood-material interactions are unknown. In this study, we assess the hemocompatibility and biocompatibility of DEX-Ag using fresh blood and two cell lines of the immune system, monocytes (THP-1 cells) and macrophages (PMA-stimulated THP-1 cells). Glass, polyurethane (PU) and bare dextran (DEX) were used as reference surfaces. PU, DEX and DEX-Ag exhibited non-hemolytic properties. Relative to glass (100%), platelet attachment on PU, DEX and DEX-Ag was 15%, 10% and 34%, respectively. Further, we assessed cell morphology and viability, pro-inflammatory cytokines expression (TNF-α and IL-1β), pro-inflammatory eicosanoid expression (Prostaglandin E{sub 2}, PGE{sub 2}) and release of reactive oxygen species (ROS, superoxide and H{sub 2}O{sub 2}) following incubation of the cells with the surfaces. The morphology and cell viability of THP-1 cells were not affected by DEX-Ag whereas DEX-Ag minimized spreading of PMA-stimulated THP-1 cells and caused a reduction in cell viability (16% relative to other surfaces). Although DEX-Ag slightly enhanced release of ROS, the expression of pro-inflammatory cytokines remained minimal with similar levels of PGE{sub 2}, as compared to the other surfaces studied. These results highlight low toxicity of DEX-Ag and hold promise for future applications in vivo. - Highlights: • We examined specific blood-contact reactions of dextran doped with Ag NPs coatings. • Biocompatibility was assessed with THP-1 cells and PMA-stimulated THP-1 cells. • Glass, polyurethane and dextran were used as reference surfaces. • Hybrid coatings exhibited non-hemolytic properties. • Low toxicity, inflammatory response and ROS suggest potential for in vivo use.

  19. Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review.

    PubMed

    Qazi, Taimoor H; Rai, Ranjana; Boccaccini, Aldo R

    2014-11-01

    Conducting polymers have found numerous applications as biomaterial components serving to effectively deliver electrical signals from an external source to the seeded cells. Several cell types including cardiomyocytes, neurons, and osteoblasts respond to electrical signals by improving their functional outcomes. Although a wide variety of conducting polymers are available, polyaniline (PANI) has emerged as a popular choice due to its attractive properties such as ease of synthesis, tunable conductivity, environmental stability, and biocompatibility. PANI in its pure form has exhibited biocompatibility both in vitro and in vivo, and has been combined with a host of biodegradable polymers to form composites having a range of mechanical, electrical, and surface properties. Moreover, recent studies in literature report on the functionalization of polyaniline oligomers with end segments that make it biodegradable and improve its biocompatibility, two properties which make these materials highly desirable for applications in tissue engineering. This review will discuss the features and properties of PANI based composites that make them effective biomaterials, and it provides a comprehensive summary of studies where the use of PANI as a biomaterial component has enhanced cellular function and behavior. We also discuss recent studies utilizing functionalized PANI oligomers, and conclude that electroactive PANI and its derivatives show great promise in eliciting favorable responses from various cell lines that respond to electrical stimuli, and are therefore effective biomaterials for the engineering of electrically responsive biological tissues and organs.

  20. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    NASA Astrophysics Data System (ADS)

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-06-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.

  1. A new biocompatible and antibacterial phosphate free glass-ceramic for medical applications.

    PubMed

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S

    2014-06-25

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.

  2. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    PubMed Central

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility. PMID:24961911

  3. A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration

    NASA Astrophysics Data System (ADS)

    Raspa, A.; Marchini, A.; Pugliese, R.; Mauri, M.; Maleki, M.; Vasita, R.; Gelain, F.

    2015-12-01

    The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an effective therapy will require contribution of different disciplines such as materials science, cell biology, drug delivery and nanotechnology. One of the biggest challenges in SCI regeneration is to create an artificial scaffold that could mimic the extracellular matrix (ECM) and support nervous system regeneration. Electrospun constructs and hydrogels based on self-assembling peptides (SAPs) have been recently preferred. In this work SAPs and polymers were assembled by using a coaxial electrospinning setup. We tested the biocompatibility of two types of coaxially electrospun microchannels: the first one made by a core of poly(ε-caprolactone) and poly(d,l-lactide-co-glycolide) (PCL-PLGA) and a shell of an emulsion of PCL-PLGA and a functionalized self-assembling peptide Ac-FAQ and the second one made by a core of Ac-FAQ and a shell of PCL-PLGA. Moreover, we tested an annealed scaffold by PCL-PLGA microchannel heat-treatment. The properties of coaxial scaffolds were analyzed using scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), contact angle measurements and differential scanning calorimetry (DSC). In vitro cytotoxicity was assessed via viability and differentiation assays with neural stem cells (NSCs); whereas in vivo inflammatory response was evaluated following scaffold implantation in rodent spinal cords. Emulsification of the outer shell turned out to be the best choice in terms of cell viability and tissue response: thus suggesting the potential of using functionalized SAPs in coaxial electrospinning for applications in regenerative medicine.The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an

  4. Electrospun poly(L-lactide)/poly(ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells.

    PubMed

    Chen, Liang; Bai, Yi; Liao, Guiying; Peng, Ejun; Wu, Bolin; Wang, Yuxi; Zeng, Xiaoyong; Xie, Xiaolin

    2013-01-01

    The essence of tissue engineering is the fabrication of autologous cells or induced stem cells in naturally derived or synthetic scaffolds to form specific tissues. Polymer is thought as an appealing source of cell-seeded scaffold owing to the diversity of its physicochemical property and can be electrospun into nano-size to mimic natural structure. Poly (L-lactic acid) (PLLA) and poly (ε-caprolactone) (PCL) are both excellent aliphatic polyester with almost "opposite" characteristics. The controlling combination of PLLA and PCL provides varying properties and makes diverse applications. Compared with the copolymers of the same components, PLLA/PCL blend demonstrates its potential in regenerative medicine as a simple, efficient and scalable alternative. In this study, we electrospun PLLA/PCL blends of different weight ratios into nanofibrous scaffolds (NFS) and their properties were detected including morphology, porosity, degradation, ATR-FTIR analysis, stress-stain assay, and inflammatory reaction. To explore the biocompatibility of the NFS we synthesized, human adipose-derived stem cells (hASCs) were used to evaluate proliferation, attachment, viability and multi-lineage differentiation. In conclusion, the electrospun PLLA/PCL blend nanofibrous scaffold with the indicated weight ratios all supported hASCs well. However, the NFS of 1/1 weight ratio showed better properties and cellular responses in all assessments, implying it a biocompatible scaffold for tissue engineering. PMID:23990941

  5. Photo-crosslinked fabrication of novel biocompatible and elastomeric star-shaped inositol-based polymer with highly tunable mechanical behavior and degradation.

    PubMed

    Xie, Meihua; Ge, Juan; Xue, Yumeng; Du, Yuzhang; Lei, Bo; Ma, Peter X

    2015-11-01

    Biodegradable and star-shaped polymers with highly tunable structure and properties have attracted much attention in recent years for potential biomedical applications, due to their special structure. Here, inositol-based star-shaped poly-L-lactide-poly(ethylene glycol) (INO-PLLA-PEG) biomedical polymer implants were for the first time synthesized by a facile photo-crosslinking method. This biomaterials show controlled elastomeric mechanical properties (~18 MPa in tensile strength, ~200 MPa in modulus, ~200% in elongation), biodegradability and osteoblasts biocompatibility. These results make INO-PLLA-PEG implants highly promising for bone tissue regeneration and drug delivery applications. PMID:26253207

  6. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering

    PubMed Central

    Annabi, Nasim; Nichol, Jason W.; Zhong, Xia; Ji, Chengdong; Koshy, Sandeep; Khademhosseini, Ali

    2010-01-01

    Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques. PMID:20121414

  7. A comparative study of interaction of ibuprofen with biocompatible polymers.

    PubMed

    Khan, Iqrar A; Anjum, Kahkashan; Ali, Mohd Sajid; Kabir-ud Din

    2011-11-01

    In this paper we are reporting the interaction of a non-steroidal anti-inflammatory drug ibuprofen (IBF) with various biocompatible polymers. Being amphiphilic, the drug interacts with the polymers similar to the interaction of surfactants and polymers. Therefore, we have considered the polymer-amphiphile interaction approach using conductimetry. The polymers of different charges (cationic, anionic, and nonionic) have been taken for the study. It was found that the critical aggregation concentration (cac) decreases on increasing the polymer concentrations of cationic as well as nonionic polymers whereas it increases for anionic polymers. The results imply that anionic IBF interacts with cationic and nonionic polymers more strongly as compared to the anionic polymers. A possible anionic-anionic repulsion is responsible for the weak interaction of IBF with anionic polymers. On the other side, the critical micelle concentration (cmc) increases for all polymers which is a usual indication of the interaction between amphiphiles and polymers. Free energies of aggregation (ΔG(agg)) and micellization (ΔG(mic)) were also computed with the help of degrees of micelle ionization obtained from the specific conductivity - [IBF] isotherms.

  8. Engineered Biocompatible Nanoparticles for in Vivo Imaging Applications

    PubMed Central

    2010-01-01

    Iron−platinum alloy nanoparticles (FePt NPs) are extremely promising candidates for the next generation of contrast agents for magnetic resonance (MR) diagnostic imaging and MR-guided interventions, including hyperthermic ablation of solid cancers. FePt has high Curie temperature, saturation magnetic moment, magneto-crystalline anisotropy, and chemical stability. We describe the synthesis and characterization of a family of biocompatible FePt NPs suitable for biomedical applications, showing and discussing that FePt NPs can exhibit low cytotoxicity. The importance of engineering the interface of strongly magnetic NPs using a coating allowing free aqueous permeation is demonstrated to be an essential parameter in the design of new generations of diagnostic and therapeutic MRI contrast agents. We report effective cell internalization of FePt NPs and demonstrate that they can be used for cellular imaging and in vivo MRI applications. This opens the way for several future applications of FePt NPs, including regenerative medicine and stem cell therapy in addition to enhanced MR diagnostic imaging. PMID:20919679

  9. Reinforcement of bacterial cellulose aerogels with biocompatible polymers.

    PubMed

    Pircher, N; Veigel, S; Aigner, N; Nedelec, J M; Rosenau, T; Liebner, F

    2014-10-13

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels.

  10. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    NASA Astrophysics Data System (ADS)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S. V.; Ganesan, V.; Kulkarni, Anjali

    2013-12-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle-RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml-1) as compared to neat RIF (125 μg ml-1). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle-RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml-1, respectively. Further studies are underway to determine the efficacy of NPs-RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates.

  11. Plasma polymerized carvone as an antibacterial and biocompatible coating.

    PubMed

    Chan, Yuen Wah; Siow, Kim Shyong; Ng, Pei Yuen; Gires, Usup; Yeop Majlis, Burhanuddin

    2016-11-01

    Antibacterial coating is important to prevent the colonization of medical devices by biofilm forming bacteria that would cause infection and sepsis in patients. Current coating techniques such as immobilization of antimicrobial compounds, time-releasing antibiotic agents and silver nanoparticles, require multiple processing steps, and they have low efficacy and low stability. We proposed a single-step plasma polymerization of an essential oil known as carvone to produce a moderately hydrophobic antibacterial coating (ppCar) with an average roughness of <1nm. ppCar had a static water contact angle of 78°, even after 10days of air aging and it maintained its stability throughout 24h of LB broth immersion. ppCar showed promising results in the live-dead fluorescence assay and crystal violet assay. The biofilm assay showed an effective reduction of E. coli and S. aureus bacteria by 86% and 84% respectively. ppCar is also shown to rupture the bacteria membrane for its bactericidal effects. The cytotoxicity test indicated that the coating is not cytotoxic to the human cell line. This study would be of interest to researcher keen on producing a bacteria-resistance and biocompatible coating on different substrates in a cost-effective manner. PMID:27524089

  12. In vitro biocompatibility evaluation of surface-modified titanium alloys.

    PubMed

    Treves, Cristina; Martinesi, Maria; Stio, Maria; Gutiérrez, Alejandro; Jiménez, José Antonio; López, María Francisca

    2010-03-15

    The present work is aimed to evaluate the effects of a surface modification process on the biocompatibility of three vanadium-free titanium alloys with biomedical applications interest. Chemical composition of alloys investigated, in weight %, were Ti-7Nb-6Al, Ti-13Nb-13Zr, and Ti-15Zr-4Nb. An easy and economic method intended to improve the biocompatibiblity of these materials consists in a simple thermal treatment at high temperature, 750 degrees C, in air for different times. The significance of modification of the surface properties to the biological response was studied putting in contact both untreated and thermally treated alloys with human cells in culture, Human Umbilical Vein Endothelial Cells (HUVEC) and Human Peripheral Blood Mononuclear Cells (PBMC). The TNF-alpha release data indicate that thermal treatment improves the biological response of the alloys. The notable enhancement of the surface roughness upon oxidation could be related with the observed reduction of the TNF-alpha levels for treated alloys. A different behavior of the two cell lines may be observed, when adhesion molecules (ICAM-1 and VCAM-1 in HUVEC, ICAM-1, and LFA-1 in PBMC) were determined, PBMC being more sensitive than HUVEC to the contact with the samples. The data also distinguish surface composition and corrosion resistance as significant parameters for the biological response.

  13. Large-scale production and characterization of biocompatible colloidal nanoalumina.

    PubMed

    Razali, W A W; Sreenivasan, V K A; Goldys, E M; Zvyagin, A V

    2014-12-23

    The rapid uptake of nanomaterials in life sciences calls for the development of universal, high-yield techniques for their production and interfacing with biomolecules. Top-down methods take advantage of the existing variety of bulk and thin-film solid-state materials for improved prediction and control of the resultant nanomaterial properties. We demonstrate the power of this approach using high-energy ball milling (HEBM) of alumina (Al2O3). Nanoalumina particles with a mean size of 25 nm in their most stable α-crystallographic phase were produced in gram quantities, suitable for biological and biomedical applications. Nanomaterial contamination from zirconia balls used in HEBM was reduced from 19 to 2% using a selective acid etching procedure. The biocompatibility of the milled nanomaterial was demonstrated by forming stable colloids in water and physiological buffers, corroborated by zeta potentials of +40 mV and -40 mV and characterized by in vitro cytotoxicity assays. Finally, the feasibility of a milled nanoalumina surface in anchoring a host of functional groups and biomolecules was demonstrated by the functionalization of their surface using facile silane chemistry, resulting in the decoration of the nanoparticle surface with amino groups suitable for further conjugation of biomolecules. PMID:25434921

  14. A new biocompatible nanocomposite as a promising constituent of sunscreens.

    PubMed

    Amin, Rehab M; Elfeky, Souad A; Verwanger, Thomas; Krammer, Barbara

    2016-06-01

    Skin naturally uses antioxidants to protect itself from the damaging effects of sunlight. If this is not sufficient, other measures have to be taken. Like this, hydroxyapatite has the potential to be applied as an active constituent of sunscreens since calcium phosphate absorbs in the ultraviolet region (UV). The objective of the present work was to synthesize a hydroxyapatite-ascorbic acid nanocomposite (HAp/AA-NC) as a new biocompatible constituent of sunscreens and to test its efficiency with skin cell models. The synthesized HAp/AA-NC was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, absorption spectrophotometry and X-ray diffraction analysis. The protective effect of the construct was tested with respect to viability and intracellular reactive oxygen species (ROS) generation of primary human dermal fibroblasts (SKIN) and human epidermal keratinocytes (HaCaT). Both cell lines were irradiated with UV light, λmax=254 nm with a fluence of 25 mJ cm(-2) to mimic the effect of UV radiation of sunlight on the skin. Results showed that HAp/AA-NC had a stimulating effect on the cell viability of both, HaCaT and SKIN cells, relative to the irradiated control. Intracellular ROS significantly decreased in UV irradiated cells when treated with HAp/AA-NC. We conclude that the synthesized HAp/AA-NC have been validated in vitro as a skin protector against the harmful effect of UV-induced ROS. PMID:27040194

  15. Biocompatible lipid-based liquid crystals and emulsions.

    PubMed

    Mosca, Monica; Murgia, Sergio; Ceglie, Andrea; Monduzzi, Maura; Ambrosone, Luigi

    2006-12-28

    Due to its potential relevance as a fully biocompatible formulation useful in cosmetic, food, and pharmaceutical applications, the glycerol trioleate/sodium oleate/water ternary system was investigated via optical microscopy and NMR methods. The ternary diagram is dominated by monophasic and biphasic regions where a lamellar phase coexists with different isotropic phases. A broad emulsion region, characterized by small oil droplets dispersed within the lamellar phase, extends from the center toward the water corner of the diagram. Information on the inner structure of these emulsion-like samples is supplied by modeling water and oil NMR self-diffusion data. Sizing of oil droplets was provided at different storage times. A highly polydisperse log-normal distribution was observed. The presence of the liquid crystalline phase is called into play for the negligible differences found in the droplets size distribution upon samples aging. Indeed, samples within this region stored at 25 degrees C did not show phase separation after several months from their preparation.

  16. Biocompatibility Evaluation of Nanosecond Laser Treated Titanium Surfaces

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Mizutani, Masayoshi; Ohmori, Hitoshi; Komotori, Jun

    We developed surface modification technologies for dental implants in this study. The study contributes to shortening the time required for adhesion between alveolar bone and fixtures which consist of dental implants. A Nd:YVO4 nanosecond laser was used to modify the surfaces of commercially pure titanium (CP Ti) disks, and their biocompatibility was evaluated cytocompatibility and bioactivity. First, rows of 200 µm spaced rectilinear laser treatments were performed on surfaces of CP Ti disks. Osteoblasts derived from rat mesenchymal stem cells were then cultured on the treated surfaces. Cytocompatibility on the laser treated area was evaluated by observing adhesion behavior of cells on these surfaces. The results indicated that the micro-order structure formed by the laser treatment promoted adhesion of osteoblasts and that traces of laser treatment without microstucture didn't affect the adhesion. Second, surfaces of CP Ti disks were completely covered by traces of laser treatment, which created complex microstructures of titania whose crystal structure is rutile and anatase. This phenomenon allowed the creation of hydroxyapatite on the surface of the disks in 1.5-times simulated body fluid (1.5SBF) while no hydroxyapatite was observed on conventional polished surfaces in the same conditions. This result indicates that bioactivity was enabled on CP Ti by the laser treatment. From these two results, laser treatment for CP Ti surfaces is an effective method for enhancing adhesion of osteoblasts and promoting bioactivity, which are highly appreciated properties for dental implants.

  17. Mimicking Neural Stem Cell Niche by Biocompatible Substrates

    PubMed Central

    Regalado-Santiago, Citlalli; Juárez-Aguilar, Enrique; Olivares-Hernández, Juan David; Tamariz, Elisa

    2016-01-01

    Neural stem cells (NSCs) participate in the maintenance, repair, and regeneration of the central nervous system. During development, the primary NSCs are distributed along the ventricular zone of the neural tube, while, in adults, NSCs are mainly restricted to the subependymal layer of the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus. The circumscribed areas where the NSCs are located contain the secreted proteins and extracellular matrix components that conform their niche. The interplay among the niche elements and NSCs determines the balance between stemness and differentiation, quiescence, and proliferation. The understanding of niche characteristics and how they regulate NSCs activity is critical to building in vitro models that include the relevant components of the in vivo niche and to developing neuroregenerative approaches that consider the extracellular environment of NSCs. This review aims to examine both the current knowledge on neurogenic niche and how it is being used to develop biocompatible substrates for the in vitro and in vivo mimicking of extracellular NSCs conditions. PMID:26880934

  18. Impact of trace elements on biocompatibility of titanium scaffolds.

    PubMed

    Sabetrasekh, R; Tiainen, H; Reseland, J E; Will, J; Ellingsen, J E; Lyngstadaas, S P; Haugen, H J

    2010-02-01

    A titanium oxide scaffold has recently been reported with high compressive strength (>2 MPa) which may allow its use in bone. However, would it be possible to enhance the scaffolds' performance by selecting a titanium oxide raw material without elemental contamination? Elements in implant surfaces have been reported to provoke implant failure. Thus, this study aims to compare different commercial titanium dioxide powders in order to choose the appropriate powder for scaffold making. The x-ray photoelectron spectroscopy (XPS) analysis identified the trace elements, mainly Al, Si, C, Ca and P. Cellular response was measured by cytotoxic effect, cell growth and cytokine secretion from murine preosteoblasts (MC3T3-E1) in vitro. The XPS data showed that traces of carbon-based molecules, silicon, nitrogen and aluminium in the powder were greatly reduced after cleaning in 1 M NaOH. As a result, reduction in cytotoxicity and inflammatory response was observed. Carbon contamination seemed to have a minor effect on the cellular response. Strong correlations were found between Al and Si contamination levels and the inflammatory response and cytotoxic effect. Thus, it is suggested that the concentration of these elements should be reduced in order to enhance the scaffolds' biocompatibility.

  19. Reinforcement of bacterial cellulose aerogels with biocompatible polymers

    PubMed Central

    Pircher, N.; Veigel, S.; Aigner, N.; Nedelec, J.M.; Rosenau, T.; Liebner, F.

    2014-01-01

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77 K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. PMID:25037381

  20. Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahamed, Maqusood; Majeed Khan, M. A.; Siddiqui, M. K. J.; AlSalhi, Mohamad S.; Alrokayan, Salman A.

    2011-04-01

    Although green synthesis of silver nanoparticles (Ag NPs) by various plants and microorganisms has been reported, the potential of plants as biological materials for the synthesis of nanoparticles and their compatibility to biological systems is yet to be fully explored. In this study, we report a simple green method for the synthesis of Ag NPs using garlic clove extract as a reducing and stabilizing agent. In addition to green synthesis, biological response of Ag NPs in human lung epithelial A549 cells was also assessed. Ag NPs were rapidly synthesized using garlic clove extract and the formation of nanoparticles was observed within 30 min. The green synthesized Ag NPs were characterized using UV-vis spectrum, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray energy-dispersive spectroscopy (EDX) and dynamic light scattering (DLS). Characterization data demonstrated that the particles were crystalline in nature and spherical shaped with an average diameter of 12 nm. Measurements of cell viability, cell membrane integrity and intracellular production of reactive oxygen species have shown that the green synthesized Ag NPs were nontoxic to human lung epithelial A549 cells. This study demonstrated a simple, cost-effective and environmentally benign synthesis of Ag NPs with excellent biocompatibility to human lung epithelial A549 cells. This preliminary in vitro investigation needs to be followed up by future studies with various biological systems.

  1. Biocompatibility of candidate materials for the realization of medical microdevices.

    PubMed

    Pouponneau, Pierre; Yahia, L'Hocine; Merhi, Yahye; Epure, Laura Mery; Martel, Sylvain

    2006-01-01

    The propulsion of ferromagnetic micro-carriers in the blood vessels by magnetic gradients generated from a Magnetic Resonance Imaging (MRI) system is of special interest for targeted interventions such as chemotherapy or chemo-embolization. As such, Fe-Co alloys for its highest magnetization saturation, and single crystal Ni-Mn-Ga powder and Terfenol-D for their deformation in magnetic field are evaluated for their biocompatibility. The toxicity of these materials is evaluated with MTT cell viability tests. The tests show that Fe-Co (Permendur and Vacoflux 17) alloys are toxic within 24 hours while the single crystal Ni-Mn-Ga powder becomes toxic after 48 hours. The Terfenol-D, despite its high degradation, has 90% cell viability after 72 hours. These results indicate that such candidate materials to be considered in untethered micro-carriers or devices in the blood vessels would require, depending upon the time spent in the blood vessels, further processes to be viable for such applications.

  2. Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes

    PubMed Central

    Guo, Chuan Fei; Liu, Qihan; Wang, Guohui; Wang, Yecheng; Shi, Zhengzheng; Suo, Zhigang; Chu, Ching-Wu; Ren, Zhifeng

    2015-01-01

    Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics. PMID:26392537

  3. Ocular biocompatibility of polyquaternium 10 gel: functional and morphological results.

    PubMed

    Alasino, Roxana Valeria; Garcia, Luciana Guadalupe; Gramajo, Ana Laura; Pusterla, Juan Pablo; Beltramo, Dante Miguel; Luna, José Domingo

    2015-02-01

    This paper deals with the characterization study of topical and intraocular biocompatibility and toxicity of cationic hydroxyethylcellulose Polyquaternium 10 (PQ10). It also evaluates the rheological properties of gels. The cytotoxicity assays were done in two cell lines: HEp-2 and VERO (human larynx epidermoid carcinoma cell and African green monkey kidney cells respectively). For the in vivo study, New Zealand albino rabbits were used. The in vitro cytotoxic activity of PQ10 shows no statistically significant differences in relation to the control of hydroxypropylmethylcellulose (HPMC) in any of the cell lines used in this study. Similarly, the signs of inflammation observed after treatment showed no significant difference between the groups of animals treated with the polymer compared to the control group. Normal histological characteristics were seen in both groups with no histological inflammatory reaction. After 1 month of the intracameral application of 2% PQ10 (treatment group) or 0.3% HPMC (control group), electroretinograms showed similar levels of a- and b-waves latencies and amplitude. In summary, PQ10 gel was well tolerated in these experiments, with proper monitoring, it could stand as a new alternative in the development of ophthalmic viscosurgical devices.

  4. Biocompatibility of new Ti-Nb-Ta base alloys.

    PubMed

    Hussein, Abdelrahman H; Gepreel, Mohamed A-H; Gouda, Mohamed K; Hefnawy, Ahmad M; Kandil, Sherif H

    2016-04-01

    β-type titanium alloys are promising materials in the field of medical implants. The effect of β-phase stability on the mechanical properties, corrosion resistance and cytotoxicity of a newly designed β-type (Ti77Nb17Ta6) biocompatible alloys are studied. The β-phase stability was controlled by the addition of small quantities of Fe and O. X-ray diffraction and microstructural analysis showed that the addition of O and Fe stabilized the β-phase in the treated solution condition. The strength and hardness have increased with the increase in β-phase stability while ductility and Young's modulus have decreased. The potentio-dynamic polarization tests showed that the corrosion resistance of the new alloys is better than Ti-6Al-4V alloy by at least ten times. Neutral red uptake assay cytotoxicity test showed cell viability of at least 95%. The new alloys are promising candidates for biomedical applications due to their high mechanical properties, corrosion resistance, and reduced cytotoxicity.

  5. Ocular biocompatibility of polyquaternium 10 gel: functional and morphological results.

    PubMed

    Alasino, Roxana Valeria; Garcia, Luciana Guadalupe; Gramajo, Ana Laura; Pusterla, Juan Pablo; Beltramo, Dante Miguel; Luna, José Domingo

    2015-02-01

    This paper deals with the characterization study of topical and intraocular biocompatibility and toxicity of cationic hydroxyethylcellulose Polyquaternium 10 (PQ10). It also evaluates the rheological properties of gels. The cytotoxicity assays were done in two cell lines: HEp-2 and VERO (human larynx epidermoid carcinoma cell and African green monkey kidney cells respectively). For the in vivo study, New Zealand albino rabbits were used. The in vitro cytotoxic activity of PQ10 shows no statistically significant differences in relation to the control of hydroxypropylmethylcellulose (HPMC) in any of the cell lines used in this study. Similarly, the signs of inflammation observed after treatment showed no significant difference between the groups of animals treated with the polymer compared to the control group. Normal histological characteristics were seen in both groups with no histological inflammatory reaction. After 1 month of the intracameral application of 2% PQ10 (treatment group) or 0.3% HPMC (control group), electroretinograms showed similar levels of a- and b-waves latencies and amplitude. In summary, PQ10 gel was well tolerated in these experiments, with proper monitoring, it could stand as a new alternative in the development of ophthalmic viscosurgical devices. PMID:25631258

  6. Plasma polymerized carvone as an antibacterial and biocompatible coating.

    PubMed

    Chan, Yuen Wah; Siow, Kim Shyong; Ng, Pei Yuen; Gires, Usup; Yeop Majlis, Burhanuddin

    2016-11-01

    Antibacterial coating is important to prevent the colonization of medical devices by biofilm forming bacteria that would cause infection and sepsis in patients. Current coating techniques such as immobilization of antimicrobial compounds, time-releasing antibiotic agents and silver nanoparticles, require multiple processing steps, and they have low efficacy and low stability. We proposed a single-step plasma polymerization of an essential oil known as carvone to produce a moderately hydrophobic antibacterial coating (ppCar) with an average roughness of <1nm. ppCar had a static water contact angle of 78°, even after 10days of air aging and it maintained its stability throughout 24h of LB broth immersion. ppCar showed promising results in the live-dead fluorescence assay and crystal violet assay. The biofilm assay showed an effective reduction of E. coli and S. aureus bacteria by 86% and 84% respectively. ppCar is also shown to rupture the bacteria membrane for its bactericidal effects. The cytotoxicity test indicated that the coating is not cytotoxic to the human cell line. This study would be of interest to researcher keen on producing a bacteria-resistance and biocompatible coating on different substrates in a cost-effective manner.

  7. The biocompatibility evaluation of mPEG-PLGA-PLL copolymer and different LA/GA ratio effects for biocompatibility.

    PubMed

    He, Zelai; Wang, Qi; Sun, Ying; Shen, Ming; Zhu, Mingjie; Gu, Malin; Wang, Yi; Duan, Yourong

    2014-01-01

    Biomaterial poly(lactic-co-glycolic acid) (PLGA), a FDA-approved material for clinical application, showed broad prospects in the past, but gradually can no longer meet present clinical developments and requirements, which we synthesized monomethoxy(polyethylene glycol)-poly(D,L-lactic-co-glycolic acid)-poly(L-lysine) (mPEG-PLGA-PLL) (PEAL) and have had some relevant reports. But studies on biocompatibility and the impacts of LA and GA ratio (LA/GA=60/40, 70/30, and 80/20) in main material have not yet been reported. Hemolysis experiment indicates that the hemolysis rate of PEAL extraction medium is less than 5%. Whole blood clotting time (CT), plasma recalcification time, activated partial thromboplastin time, prothrombin time evaluations, and dynamic CT assay show that the anticoagulant time of PEAL copolymer for blood is longer than that under negative and positive control. Protein adsorption assay indicates that PEAL films adsorb less protein than PLGA films (p<0.01); but comparing with expanded polytetrafluoroethylene, the aforementioned difference is not significant (p>0.05). Complement activation test shows that PEAL surface does not induce complement activation. CCK8 measurement shows that the relative growth rates of Huh7, L02, and L929 cells co-incubated with PEAL nanoparticles (NPs) are more than 90%. PEAL NPs co-incubated with 5% foetal bovine serum or 2% bovine serum albumin, through dynamic light scattering assay, remain stable. Different concentrations of PEAL NPs co-incubated with zebrafish embryos at 6-72 h post fertilization show that comparing with negative control, 10, 100, or 500 μM of NPs for embryos development has no significant effects (p>0.05), only 1000 or 2000 μM of NPs has some effects (p<0.05). It is concluded that the PEAL copolymer, with excellent biocompatibility, proves to be a high-safety dose as drug carrier and implant candidate in vivo.

  8. Tissue response to titanium implant using scanning electron microscope

    PubMed Central

    Nautiyal, Vijay P.; Mittal, Ankur; Agarwal, Amit; Pandey, Anupam

    2013-01-01

    Most of the surgeons now use titanium miniplates because of its biocompatibility and corrosion resistant properties; studies have shown that these titanium particles are released in the surrounding tissues causing tissue necrosis and if these implants are placed for a long period, the adverse effect of these implants are more severe. It therefore necessitates a study to find out whether these titanium particles are released into surrounding tissues from titanium miniplates used for maxillofacial fractures so that we could use these implants, that is, bone plates and screws with more confidence. PMID:24163546

  9. Evaluation of Biocompatibility of an Etch-and-Rinse Adhesive System Based in Tertiary Butanol Applied in Deep Cavity

    PubMed Central

    Alves, Gilvanely Cardoso; Sobral, Ana Paula Veras

    2015-01-01

    The aim of this study was to evaluate biocompatibility of an etch-and-rinse adhesive system based in tertiary butanol applied in deep cavity human teeth with approximately 1 mm of remaining dentin by observing histological changes of the pulp tissue of humans at intervals of 01, 07, 14 and 21 days. Twenty third molars with indication for xtraction from patients of both sexes, presenting no systemic alterations were used. Class I cavity was made deeper and then, XP BOND adhesive system and resin Filtek Z250 were applied. The sample was divided into four groups according to the time intervals between the application of adhesive system and extraction. Morphologic criteria analysed considered the presence of hyperemia, type of inflammatory cell response, organization of odontoblast cells layer, organization of pulp tissue and the presence or absence of bacteria. Data were submitted to Fisher Exact Test p> 0.05. We observed mild inflammatory infiltrate, preserved pulp tissue morphology, disorganization of the odontoblast layer in most specimens, as well as absence of bacteria at the intervals of 01, 07, 14 and 21 days. In some cases there was pulp hyperemia. The etchand- rinse adhesive system based in tertiary butanol showed satisfactory behavior in the conditions studied. PMID:26140062

  10. Development of meniscus substitutes using a mixture of biocompatible polymers and extra cellular matrix components by electrospinning.

    PubMed

    López-Calzada, G; Hernandez-Martínez, A R; Cruz-Soto, M; Ramírez-Cardona, M; Rangel, D; Molina, G A; Luna-Barcenas, G; Estevez, M

    2016-04-01

    Despite the significant advances in the meniscus tissue engineering field, it is difficult to recreate the complex structure and organization of the collagenous matrix of the meniscus. In this work, we developed a meniscus prototype to be used as substitute or scaffold for the regeneration of the meniscal matrix, recreating the differential morphology of the meniscus by electrospinning. Synthetic biocompatible polymers were combined with the extracellular matrix component, collagen and used to replicate the meniscus. We studied the correlation between mechanical and structural properties of the polymer blend as a function of collagen concentration. Fibers were collected on a surface of a rapidly rotating precast mold, to accurately replicate each sectional morphology of the meniscus; different electro-tissues were produced. Detailed XRD analyses exhibited structural changes developed by electrospinning. We achieved to integrate all these electro-tissues to form a complete synthetic meniscus. Vascularization tests were performed to assess the potential use of our novel polymeric blend for promising meniscus regeneration. PMID:26838921

  11. Evaluation of Biocompatibility of an Etch-and-Rinse Adhesive System Based in Tertiary Butanol Applied in Deep Cavity.

    PubMed

    Alves, Gilvanely Cardoso; Sobral, Ana Paula Veras

    2015-01-01

    The aim of this study was to evaluate biocompatibility of an etch-and-rinse adhesive system based in tertiary butanol applied in deep cavity human teeth with approximately 1 mm of remaining dentin by observing histological changes of the pulp tissue of humans at intervals of 01, 07, 14 and 21 days. Twenty third molars with indication for xtraction from patients of both sexes, presenting no systemic alterations were used. Class I cavity was made deeper and then, XP BOND adhesive system and resin Filtek Z250 were applied. The sample was divided into four groups according to the time intervals between the application of adhesive system and extraction. Morphologic criteria analysed considered the presence of hyperemia, type of inflammatory cell response, organization of odontoblast cells layer, organization of pulp tissue and the presence or absence of bacteria. Data were submitted to Fisher Exact Test p> 0.05. We observed mild inflammatory infiltrate, preserved pulp tissue morphology, disorganization of the odontoblast layer in most specimens, as well as absence of bacteria at the intervals of 01, 07, 14 and 21 days. In some cases there was pulp hyperemia. The etchand- rinse adhesive system based in tertiary butanol showed satisfactory behavior in the conditions studied. PMID:26140062

  12. Polyvinyl alcohol as a biocompatible alternative for the passivation of gold nanorods.

    PubMed

    Kinnear, Calum; Burnand, David; Clift, Martin J D; Kilbinger, Andreas F M; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2014-11-10

    The functionalization of gold nanorods (GNRs) with polymers is essential for both their colloidal stability and biocompatibility. However, a bilayer of the toxic cationic surfactant cetyl trimethylammonium bromide (CTAB) adsorbed on the nanorods complicates this process. Herein, we report on a strategy for the biocompatible functionalization of GNRs with a hydrophobic polymeric precursor, polyvinyl acetate, which is then transformed into its hydrophilic analogue, polyvinyl alcohol. This polymer was chosen due to its well-established biocompatibility, tunable "stealth" properties, tunable hydrophobicity, and high degree of functionality. The biocompatibility of the functionalized GNRs was tested by exposing them to primary human blood monocyte derived macrophages; the advantages of tunable hydrophobicity were demonstrated with the long-term stable encapsulation of a model hydrophobic drug molecule.

  13. Science and technology of biocompatible thin films for implantable biomedical devices.

    PubMed

    Li, Wei; Kabius, Bernd; Auciello, Orlando

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: 1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye)-the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and 2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human bodynovel Al2O3/TiO2 nanolaminates exhibit abnormally high dielectric constant to enable super-capacitors with very high-capacitance.

  14. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications.

    PubMed

    Madhumathi, K; Shalumon, K T; Rani, V V Divya; Tamura, H; Furuike, T; Selvamurugan, N; Nair, S V; Jayakumar, R

    2009-07-01

    Chitosan, a deacetylated derivative of chitin is a commonly studied biomaterial for tissue-engineering applications due to its biocompatibility, biodegradability, low toxicity, antibacterial activity, wound healing ability and haemostatic properties. However, chitosan has poor mechanical strength due to which its applications in orthopedics are limited. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has mechanical strength and osteoconductive property. In this work, HAp was deposited on the surface of chitosan hydrogel membranes by a wet chemical synthesis method by alternatively soaking the membranes in CaCl(2) (pH 7.4) and Na(2)HPO(4) solutions for different time intervals. These chitosan hydrogel-HAp membranes were characterized using SEM, AFM, EDS, FT-IR and XRD analyses. MTT assay was done to evaluate the biocompatibility of these membranes using MG-63 osteosarcoma cells. The biocompatibility studies suggest that chitosan hydrogel-HAp composite membranes can be useful for tissue-engineering applications.

  15. Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells

    NASA Astrophysics Data System (ADS)

    Taylor, Alice C.; Vagaska, Barbora; Edgington, Robert; Hébert, Clément; Ferretti, Patrizia; Bergonzo, Philippe; Jackman, Richard B.

    2015-12-01

    Objective. We quantitatively investigate the biocompatibility of chemical vapour deposited (CVD) nanocrystalline diamond (NCD) after the inclusion of boron, with and without nanostructuring. The nanostructuring method involves a novel approach of growing NCD over carbon nanotubes (CNTs) that act as a 3D scaffold. This nanostructuring of BNCD leads to a material with increased capacitance, and this along with wide electrochemical window makes BNCD an ideal material for neural interface applications, and thus it is essential that their biocompatibility is investigated. Approach. Biocompatibility was assessed by observing the interaction of human neural stem cells (hNSCs) with a variety of NCD substrates including un-doped ones, and NCD doped with boron, which are both planar, and nanostructured. hNSCs were chosen due to their sensitivity, and various methods including cell population and confluency were used to quantify biocompatibility. Main results. Boron inclusion into NCD film was shown to have no observable effect on hNSC attachment, proliferation and viability. Furthermore, the biocompatibility of nanostructured boron-doped NCD is increased upon nanostructuring, potentially due to the increased surface area. Significance. Diamond is an attractive material for supporting the attachment and development of cells as it can show exceptional biocompatibility. When boron is used as a dopant within diamond it becomes a p-type semiconductor, and at high concentrations the diamond becomes quasi-metallic, offering the prospect of a direct electrical device-cell interfacing system.

  16. Tissue Microarrays.

    PubMed

    Dancau, Ana-Maria; Simon, Ronald; Mirlacher, Martina; Sauter, Guido

    2016-01-01

    Modern next-generation sequencing and microarray technologies allow for the simultaneous analysis of all human genes on the DNA, RNA, miRNA, and methylation RNA level. Studies using such techniques have lead to the identification of hundreds of genes with a potential role in cancer or other diseases. The validation of all of these candidate genes requires in situ analysis of high numbers of clinical tissues samples. The tissue microarray technology greatly facilitates such analysis. In this method minute tissue samples (typically 0.6 mm in diameter) from up to 1000 different tissues can be analyzed on one microscope glass slide. All in situ methods suitable for histological studies can be applied to TMAs without major changes of protocols, including immunohistochemistry, fluorescence in situ hybridization, or RNA in situ hybridization. Because all tissues are analyzed simultaneously with the same batch of reagents, TMA studies provide an unprecedented degree of standardization, speed, and cost efficiency.

  17. Tissue Tregs.

    PubMed

    Panduro, Marisella; Benoist, Christophe; Mathis, Diane

    2016-05-20

    The immune system is responsible for defending an organism against the myriad of microbial invaders it constantly confronts. It has become increasingly clear that the immune system has a second major function: the maintenance of organismal homeostasis. Foxp3(+)CD4(+) regulatory T cells (Tregs) are important contributors to both of these critical activities, defense being the primary purview of Tregs circulating through lymphoid organs, and homeostasis ensured mainly by their counterparts residing in parenchymal tissues. This review focuses on so-called tissue Tregs. We first survey existing information on the phenotype, function, sustaining factors, and human equivalents of the three best-characterized tissue-Treg populations-those operating in visceral adipose tissue, skeletal muscle, and the colonic lamina propria. We then attempt to distill general principles from this body of work-as concerns the provenance, local adaptation, molecular sustenance, and targets of action of tissue Tregs, in particular.

  18. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  19. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  20. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies.

    PubMed

    Mercuri, Jeremy J; Patnaik, Sourav; Dion, Grace; Gill, Sanjitpal S; Liao, Jun; Simionescu, Dan T

    2013-04-01

    Nucleus pulposus (NP) tissue regeneration has been proposed as an early stage interventional therapy to combat intervertebral disc degeneration. We have previously reported on the development and characterization of a novel biomimetic acellular porcine NP (APNP) hydrogel. Herein, we aimed to evaluate this material for use as a suitable scaffold for NP tissue regeneration. Human-adipose-derived stem cells (hADSCs) were cultured for 14 days on APNP hydrogels in chemically defined differentiation media and were analyzed for an NP-cell-like mRNA expression profile, evidence of hydrogel remodeling including hydrogel contraction measurements, extracellular matrix production, and compressive dynamic mechanical properties. The innate capacity of the hydrogel itself to induce stem cell differentiation was also examined via culture in media lacking soluble differentiation factors. Additionally, the in vivo biocompatibility of non-crosslinked and ethyldimethylaminopropyl carbodiimide/N-hydroxysuccinimide and pentagalloyl glucose crosslinked hydrogels was evaluated in a rat subdermal model. Results indicated that hADSCs expressed putative NP-cell-positive gene transcript markers when cultured on APNP hydrogels. Additionally, glycosaminoglycan and collagen content of hADSC-seeded hydrogels was significantly greater than nonseeded controls and cell-seeded hydrogels exhibited evidence of contraction and tissue inhibitors of metalloproteinase-1 production. The dynamic mechanical properties of the hADSC-seeded hydrogels increased with time in culture in comparison to noncell-seeded controls and approached values reported for native NP tissue. Immunohistochemical analysis of explants illustrated the presence of mononuclear cells, including macrophages and fibroblasts, as well as blood vessel infiltration and collagen deposition within the implant interstices after 4 weeks of implantation. Taken together, these results suggest that APNP hydrogels, in concert with autologous ADSCs