Science.gov

Sample records for biocompatible gecko-inspired tissue

  1. Gecko inspired carbon nanotube based thermal gap pads

    NASA Astrophysics Data System (ADS)

    Sethi, Sunny; Dhinojwala, Ali

    2012-02-01

    Thermal management has become a critical factor in designing the next generation of microprocessors. The bottleneck in design of material for efficient heat transfer from electronic units to heat sinks is to enhance heat flow across interface between two dissimilar, rough surfaces. Carbon nanotubes (CNT) have been shown to be promising candidates for thermal transport. However, the heat transport across the interface continues to be a challenging hurdle. In the current work we designed free standing thermal pads based on gecko-inspired carbon nanotube adhesives. The pads were made of metallic carbon nanotubes and the structure was designed such that it would allow large area of intimate contact. We showed that these adhesive pads can be used as electrical and thermal interconnects.

  2. Strong, reversible underwater adhesion via gecko-inspired hydrophobic fibers.

    PubMed

    Soltannia, Babak; Sameoto, Dan

    2014-12-24

    Strong, reversible underwater adhesion using gecko-inspired surfaces is achievable through the use of a hydrophobic structural material and does not require surface modification or suction cup effects for this adhesion to be effective. Increased surface energy can aid in dry adhesion in an air environment but strongly degrades wet adhesion via reduction of interfacial energy underwater. A direct comparison of structurally identical but chemically different mushroom shaped fibers shows that strong, reversible adhesion, even in a fully wetted, stable state, is feasible underwater if the structural material of the fibers is hydrophobic and the mating surface is not strongly hydrophilic. The exact adhesion strength will be a function of the underwater interfacial energy between surfaces and the specific failure modes of individual fibers. This underwater adhesion has been calculated to be potentially greater than the dry adhesion for specific combinations of hydrophobic surfaces.

  3. Gecko-Inspired, Controlled Adhesion and Its Applications

    NASA Astrophysics Data System (ADS)

    Menguc, Yigit

    This thesis work is primarily concerned with taking inspiration from the principles of gecko-adhesion in order to control the attachment of synthetic structured adhesives. We present gecko-inspired angled elastomer micropillars with flat or round tip endings as compliant pick-and-place micromanipulators. The pillars are 35 mum in diameter, 90 mum tall, and angled at an inclination of 20°. By gently pressing the tip of a pillar to a part, the pillar adheres to it through intermolecular forces. Next, by retracting quickly, the part is picked from a given donor substrate. During transferring, the adhesion between the pillar and the part is high enough to withstand disturbances due to external forces or the weight of the part. During release of the part onto a receiver substrate, the contact area of the pillar to the part is drastically reduced by controlled vertical or shear displacement, which results in reduced adhesive forces. The maximum repeatable ratio of pick-to-release adhesive forces was measured as 39 to 1. We find that a flat tip shape and shear displacement control provide a higher pick-to-release adhesion ratio than a round tip and vertical displacement control, respectively. We present a model of forces to serve as a framework for the operation of this micromanipulator. Finally, demonstrations of pick-and-place manipulation of mum-scale silicon microplatelets and a cm-scale glass cover slip serve as proofs of concept. The compliant polymer micropillars are safe for use with fragile parts, and, due to exploiting intermolecular forces, could be effective on most materials and in air, vacuum, and liquid environments. We present a study of the self-cleaning and contamination resistance phenomena of synthetic gecko-inspired adhesives made from elastomeric polyurethane. The phenomenon of self-cleaning makes the adhesive foot of the gecko robust against dirt, and makes it effectively sticky throughout the lifetime of the material (within the molting cycles

  4. Gecko-inspired bidirectional double-sided adhesives.

    PubMed

    Wang, Zhengzhi; Gu, Ping; Wu, Xiaoping

    2014-05-14

    A new concept of gecko-inspired double-sided adhesives (DSAs) is presented. The DSAs, constructed by dual-angled (i.e. angled base and angled tip) micro-pillars on both sides of the backplane substrate, are fabricated by combinations of angled etching, mould replication, tip modification, and curing bonding. Two types of DSA, symmetric and antisymmetric (i.e. pillars are patterned symmetrically or antisymmetrically relative to the backplane), are fabricated and studied in comparison with the single-sided adhesive (SSA) counterparts through both non-conformal and conformal tests. Results indicate that the DSAs show controllable and bidirectional adhesion. Combination of the two pillar-layers can either amplify (for the antisymmetric DSA, providing a remarkable and durable adhesion capacity of 25.8 ± 2.8 N cm⁻² and a high anisotropy ratio of ∼8) or counteract (for the symmetric DSA, generating almost isotropic adhesion) the adhesion capacity and anisotropic level of one SSA (capacity of 16.2 ± 1.7 N cm⁻² and anisotropy ratio of ∼6). We demonstrate that these two DSAs can be utilized as a facile fastener for two individual objects and a small-scale delivery setup, respectively, complementing the functionality of the commonly studied SSA. As such, the double-sided patterning is believed to be a new branch in the further development of biomimetic dry adhesives.

  5. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    PubMed

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-06

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

  6. A microfabricated gecko-inspired controllable and reusable dry adhesive

    NASA Astrophysics Data System (ADS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  7. Fabrication and Characterization of Gecko-inspired Fibrillar Adhesive

    NASA Astrophysics Data System (ADS)

    Kim, Yongkwan

    Over the last decade, geckos' remarkable ability to stick to and climb surfaces found in nature has motivated a wide range of scientific interest in engineering gecko-mimetic surface for various adhesive and high friction applications. The high adhesion and friction of its pads have been attributed to a complex array of hairy structures, which maximize surface area for van der Waals interaction between the toes and the counter-surface. While advances in micro- and nanolithography technique have allowed fabrication of increasingly sophisticated gecko mimetic surfaces, it remains a challenge to produce an adhesive as robust as that of the natural gecko pads. In order to rationally design gecko adhesives, understanding the contact behavior of fibrillar interface is critical. The first chapter of the dissertation introduces gecko adhesion and its potential applications, followed by a brief survey of gecko-inspired adhesives. Challenges that limit the performance of the current adhesives are presented. In particular, it is pointed out that almost all testing of gecko adhesives have been on clean, smooth glass, which is ideal for adhesion due to high surface energy and low roughness. Surfaces in application are more difficult to stick to, so the understanding of failure modes in low energy and rough surfaces is important. The second chapter presents a fabrication method for thermoplastic gecko adhesive to be used for a detailed study of fibrillar interfaces. Low-density polyethylene nanofibers are replicated from a silicon nanowire array fabricated by colloidal lithography and metal-catalyzed chemical etching. This process yields a highly ordered array of nanofibers over a large area with control over fiber diameter, length, and number density. The high yield and consistency of the process make it ideal for a systematic study on factors that affect adhesion and friction of gecko adhesives. The following three chapters examine parameters that affect macroscale friction of

  8. Staying sticky: contact self-cleaning of gecko-inspired adhesives

    PubMed Central

    Mengüç, Yiğit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-01-01

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load–drag–unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible. PMID:24554579

  9. Staying sticky: contact self-cleaning of gecko-inspired adhesives.

    PubMed

    Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-05-06

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.

  10. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    PubMed

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  11. Importance of loading and unloading procedures for gecko-inspired controllable adhesives.

    PubMed

    Tamelier, John; Chary, Sathya; Turner, Kimberly L

    2013-08-27

    The importance of loading and unloading procedures has been shown in a variety of different methods for biological dry adhesives, such as the fibers on the feet of the Tokay gecko, but biomimetic dry adhesives have yet to be explored in a similar manner. To date, little work has systematically varied multiple parameters to discern the influence of the testing procedure, and the effect of the approach angle remains uncertain. In this study, a synthetic adhesive is moved in 13 individual approach and retraction angles relative to a flat substrate as well as 9 different shear lengths to discern how loading and unloading procedures influence the preload, adhesion, and shear/friction forces supported. The synthetic adhesive, composed of vertical 10 μm diameter semicircular poly(dimethylsiloxane) fibers, is tested against a 4 mm diameter flat glass puck on a home-built microtribometer using both vertical approach and retraction tests and angled approach and retraction tests. The results show that near maximum adhesion and friction can be obtained for most approach and retraction angles, provided that a sufficient shear length is performed. The results also show that the reaction forces during adhesive placement can be significantly reduced by using specific approach angles, resulting for the vertical fibers in a 38-fold increase in the ratio of adhesion force to preload force, μ', when compared to that when using a vertical approach. These results can be of use to those currently researching gecko-inspired adhesives when designing their testing procedures and control algorithms for climbing and perching robots.

  12. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  13. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system

    NASA Astrophysics Data System (ADS)

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-11-01

    climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm-2) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment. Electronic supplementary information (ESI) available: Photograph of a custom-built adhesion measurement system, video snapshots showing the switchable adhesion via gecko-inspired detachment mechanism, schematic of fabricating a master mould, and a SEM image showing the thickness of the nanomembrane. See DOI: 10.1039/c3nr02008h

  14. Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord

    PubMed Central

    Aurand, Emily R.; Wagner, Jennifer; Lanning, Craig; Bjugstad, Kimberly B.

    2012-01-01

    Tissue engineering strategies employing biomaterials have made great progress in the last few decades. However, the tissues of the brain and spinal cord pose unique challenges due to a separate immune system and their nature as soft tissue. Because of this, neural tissue engineering for the brain and spinal cord may require re-establishing biocompatibility and functionality of biomaterials that have previously been successful for tissue engineering in the body. The goal of this review is to briefly describe the distinctive properties of the central nervous system, specifically the neuroimmune response, and to describe the factors which contribute to building polymer hydrogels compatible with this tissue. These factors include polymer chemistry, polymerization and degradation, and the physical and mechanical properties of the hydrogel. By understanding the necessities in making hydrogels biocompatible with tissue of the brain and spinal cord, tissue engineers can then functionalize these materials for repairing and replacing tissue in the central nervous system. PMID:24955749

  15. Biodegradable and biocompatible polymers for tissue engineering application: a review.

    PubMed

    Asghari, Fatemeh; Samiei, Mohammad; Adibkia, Khosro; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-03-01

    Since so many years ago, tissue damages that are caused owing to various reasons attract scientists' attention to find a practical way to treat. In this regard, many studies were conducted. Nano scientists also suggested some ways and the newest one is called tissue engineering. They use biodegradable polymers in order to replace damaged structures in tissues to make it practical. Biodegradable polymers are dominant scaffolding materials in tissue engineering field. In this review, we explained about biodegradable polymers and their application as scaffolds.

  16. Biocompatible microemulsion modifies the tissue distribution of doxorubicin.

    PubMed

    Candido, Caroline Damico; Campos, Michel Leandro; Correa Vidigal Assumpção, Juliana Uruguay; Pestana, Kelly Chrystina; Padilha, Elias Carvalho; Carlos, Iracilda Zeppone; Peccinini, Rosângela Gonçalves

    2014-10-01

    The incorporation of doxorubicin (DOX) in a microemulsion (DOX-ME) has shown beneficial consequences by reducing the cardiotoxic effects of DOX. The aim of this study was to determine the distribution of DOX-ME in Ehrlich solid tumor (EST) and the heart, and compare it with that of free DOX. The distribution study was conducted with female Swiss mice with EST (n = 7 per group; 20-25 g). Animals received a single dose (10 mg/kg, i.p.) of DOX or DOX-ME 7 days after tumor inoculation. Fifteen minutes after administration, the animals were sacrificed, and the tumor and heart tissues were taken for immediate analysis by ultra-performance liquid chromatography. No difference was observed in DOX concentration in tumor tissue between DOX and DOX-ME administration. However, the most remarkable result in this study was the statistically significant reduction in DOX concentration in heart tissue of animals given DOX-ME. Mean DOX concentration in heart tissue was 0.92 ± 0.54 ng mg(-1) for DOX-ME and 1.85 ± 0.34 ng mg(-1) for free DOX. In conclusion, DOX-ME provides a better tissue distribution profile, with a lower drug concentration in heart tissue but still comparable tumor drug concentration, which indicates that antitumor activity would not be compromised.

  17. Biocompatibility evaluation of porous ceria foams for orthopedic tissue engineering.

    PubMed

    Ball, Jordan P; Mound, Brittnee A; Monsalve, Adam G; Nino, Juan C; Allen, Josephine B

    2015-01-01

    Ceria ceramics have the unique ability to protect cells from free radical-induced damage, making them materials of interest for biomedical applications. To expand upon the understanding of the potential of ceria as a biomaterial, porous ceria, fabricated via direct foaming, was investigated to assess its biocompatibility and its ability to scavenge free radicals. A mouse osteoblast (7F2) cell line was cultured with the ceria foams to determine the extent of the foams' toxicity. Toxicity assessments indicate that mouse osteoblasts cultured directly on the ceria scaffold for 72 h did not show a significant (p > 0.05) increase in toxicity, but rather show comparable toxicity to cells cultured on porous 45S5 Bioglass. The in vitro inflammatory response elicited from porous ceria foams was measured as a function of tumor necrosis factor alpha (TNF-α) secreted from a human monocytic leukemia cell line. Results indicate that the ceria foams do not cause a significant inflammatory response, eliciting a response of 27.1 ± 7.1 pg mL(-1) of TNF-α compared to 36.3 ± 5.8 pg mL(-1) from cells on Bioglass, and 20.1 ± 2.9 pg mL(-1) from untreated cells. Finally, we report cellular toxicity in response to free radicals from tert-butyl hydroperoxide with and without foamed ceria. Our preliminary results show that the foamed ceria is able to decrease the toxic effect of induced oxidative stress. Collectively, this study demonstrates that foamed ceria scaffolds do not activate an inflammatory response, and show potential free radical scavenging ability, thus they have promise as an orthopedic biomaterial.

  18. Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering.

    PubMed

    Boland, Eugene D; Telemeco, Todd A; Simpson, David G; Wnek, Gary E; Bowlin, Gary L

    2004-10-15

    Poly(glycolic acid) (PGA) has a long history as a bioresorbable polymer. Its biocompatibility is widely accepted, yet PGA is often rejected as a soft-tissue scaffold because of fibrous encapsulation. The goal of this study was to improve the soft-tissue biocompatibility of PGA by producing scaffolds composed of small-diameter fibers through electrospinning and subjecting these scaffolds to a concentrated hydrochloric acid (HCL) pretreatment. The theory is that small-diameter fibers will elicit a reduced immune response and HCl treatment will improve cellular interactions. Scaffolds were characterized in terms of fiber diameter and pore area via image-analysis software. Biocompatibility was assessed through a WST-1 cell-proliferation assay (in vitro) with the use of rat cardiac fibroblasts and rat intramuscular implantations (in vivo). Fibers produced ranged in diameter from 0.22 to 0.88 microm with pore areas from 1.84 to 13.22 microm(2). The untreated scaffold composed of 0.88-microm fibers was encapsulated in vivo and supported the lowest rates of cell proliferation. On the contrary, the acid pretreated scaffold with 0.22-microm fibers was incorporated into the surrounding tissue and exhibited proliferation rates that exceeded the control populations on tissue-culture plastic. In conclusion, this study has shown the ability to improve the biocompatibility of PGA through acid pretreatment of scaffolds comprised of submicron fiber diameters.

  19. Light-guided localization within tissue using biocompatible surgical suture fiber as an optical waveguide.

    PubMed

    Choi, Woo June; Park, Kwan Seob; Lee, Byeong Ha

    2014-09-01

    In breast-conserving surgery, an optical wire is a useful surgical guiding tool to optically locate small lesions within the breast tissue. However, the use of a long silica glass fiber as the optical wire can be burdensome to patients because of its stiffness and nonbiocompatibility. We investigate the use of a biocompatible fiber for light localization in tissue. A surgical suture with a diameter of 400 μm and a few centimeters long is employed as the biocompatible optical waveguide to transport the visible laser light to the inner tissue site. Optical location is confirmed with glow ball-like red laser illumination at the tip of the suture embedded within a fresh chicken breast tissue. Effective optical power coupling to the suture is made by using a double-cladding fiber coupler. From this preliminary result, we realize practical light localization with biopolymer waveguides.

  20. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.

    PubMed

    Kim, Su Hee; Jung, Youngmee; Kim, Soo Hyun

    2013-03-01

    Supercritical fluids are used in various industrial fields, such as the food and medical industries, because they have beneficial physical and chemical properties and are also nonflammable and inexpensive. In particular, supercritical carbon dioxide (ScCO(2)) is attractive due to its mild critical temperature, pressure values, and nontoxicity. Poly(L-lactide-co-ɛ-caprolactone) (PLCL), which is a biocompatible, biodegradable, and very elastic polymer, has been used in cartilage tissue engineering. However, organic solvents, such as chloroform or dichloromethane, are usually used for the fabrication of a PLCL scaffold through conventional methods. This leads to a cytotoxic effect and long processing time for removing solvents. To alleviate these problems, supercritical fluid processing is introduced here. In this study, we fabricated a mechano-active PLCL scaffold by supercritical fluid processing for cartilage tissue engineering, and we compared it with a scaffold made by a conventional solvent-casting method in terms of physical and biological performance. Also, to examine the optimum condition for preparing scaffolds with ScCO(2), we investigated the effects of pressure, temperature, and the depressurization rate on PLCL foaming. The PLCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Also, there was no cytotoxicity of the scaffolds made with ScCO(2) compared to the scaffolds made by the solvent-pressing method. The scaffolds were seeded with chondrocytes, and they were subcutaneously implanted into nude mice for up to 4 weeks. In vivo accumulation of extracellular matrix of cell-scaffold constructs demonstrated that the PLCL scaffold made with ScCO(2) formed a mature and well-developed cartilaginous tissue compared to the PLCL scaffold formed by solvent pressing. Consequently, these results indicated that the PLCL scaffolds made by supercritical fluid

  1. Silk fibroin and polyethylene glycol-based biocompatible tissue adhesives

    PubMed Central

    Serban, Monica A.; Panilaitis, Bruce; Kaplan, David L.

    2012-01-01

    Tissue sealants have emerged in recent years as strong candidates for hemostasis. A variety of formulations are currently commercially available and though they satisfy many of the markets’ needs there are still key aspects of each that need improvement. Here we present a new class of blends, based on silk fibroin and chemically active polyethylene glycols (PEGs) with strong adhesive properties. These materials are cytocompatible, crosslink within seconds via chemical reaction between thiols and maleimides present on the constituent PEGs and have the potential to further stabilize through β-sheet formation by silk. Based on the silk concentration in the final formulation, the adhesive properties of these materials are comparable or better than the current leading PEG-based sealant. In addition, the silk-PEG based materials show decreased swelling and longer degradation times. Such properties would make them suitable for applications for which the current sealants are contraindicated. PMID:21681949

  2. Biocompatibility of different intracanal medications in rat bucal submucosa tissue.

    PubMed

    Semenoff, Tereza Aparecida Delle Vedove; Semenoff Segundo, Alex; de Figueiredo, José Antonio Poli

    2008-01-01

    The aim of this study was to analyze the buccal tissue responses of Wistar rats to 2% chlorhexidine solution, calcium hydroxide and the association of both products. For this purpose, 30 specimens were randomly implanted in the filtrum of the four upper and lower hemiarches with a polyethylene tube containing one of the following substances: 2% chlorhexidine solution, calcium hydroxide and 2% chlorhexidine solution (test groups); calcium hydroxide and distilled water and distilled water (control groups). Ten rats each were distributed according to time interval of evaluation at 7, 15 and 30 days. The histological sections were stained with Harris hematoxylin and eosin. Analysis was performed with an optical microscope at x100, x200 and x400 magnifications by an expert examiner blinded to the materials. The sections were classified by scores attributed to inflammatory events and by a ranking determined according to the severity of the inflammation. The results of the inflammatory events and severity ranking were submitted to the Kruskal-Wallis test at a 0.05 level of significance. No statistically significant difference occurred among the tested materials; however, all materials showed a decreased of severity with respect to longer time intervals.

  3. Human tissue allograft processing: impact on in vitro and in vivo biocompatibility.

    PubMed

    Fawzi-Grancher, S; Goebbels, R M; Bigare, E; Cornu, O; Gianello, P; Delloye, C; Dufrane, D

    2009-08-01

    This work investigates the impact of chemical and physical treatments on biocompatibility for human bone/tendon tissues. Nontreated and treated tissues were compared. In vitro testing assessed indirect and direct cytotoxicity. Tissues were subcutaneously implanted in rats to assess the immunological, recolonization, and revascularization processes at 2-4 weeks postimplantation. No significant cytotoxicity was found for freeze-dried treated bones and tendons in comparison to control. The cellular adhesion was significantly reduced for cells seeded on these treated tissues after 24 h of direct contact. A significant cytotoxicity was found for frozen treated bones in comparison to freeze-dried treated bones. Tissue remodeling with graft stability, no harmful inflammation, and neo-vascularization was observed for freeze-dried chemically treated bones and tendons. Frozen-treated bones were characterized by a lack of matrix recolonization at 4 weeks postimplantation. In conclusion, chemical processing with freeze-drying of human tissues maintains in vitro biocompatibility and in vivo tissue remodeling for clinical application.

  4. Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics.

    PubMed

    Park, Gayoung; Chung, Hyun-Joong; Kim, Kwanghee; Lim, Seon Ah; Kim, Jiyoung; Kim, Yun-Soung; Liu, Yuhao; Yeo, Woon-Hong; Kim, Rak-Hwan; Kim, Stanley S; Kim, Jong-Seon; Jung, Yei Hwan; Kim, Tae-Il; Yee, Cassian; Rogers, John A; Lee, Kyung-Mi

    2014-04-01

    Recent development of flexible/stretchable integrated electronic sensors and stimulation systems has the potential to establish an important paradigm for implantable electronic devices, where shapes and mechanical properties are matched to those of biological tissues and organs. Demonstrations of tissue and immune biocompatibility are fundamental requirements for application of such kinds of electronics for long-term use in the body. Here, a comprehensive set of experiments studies biocompatibility on four representative flexible/stretchable device platforms, selected on the basis of their versatility and relevance in clinical usage. The devices include flexible silicon field effect transistors (FETs) on polyimide and stretchable silicon FETs, InGaN light-emitting diodes (LEDs), and AlInGaPAs LEDs, each on low modulus silicone substrates. Direct cytotoxicity measured by exposure of a surrogate fibroblast line and leachable toxicity by minimum essential medium extraction testing reveal that all of these devices are non-cytotoxic. In vivo immunologic and tissue biocompatibility testing in mice indicate no local inflammation or systemic immunologic responses after four weeks of subcutaneous implantation. The results show that these new classes of flexible implantable devices are suitable for introduction into clinical studies as long-term implantable electronics.

  5. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering.

    PubMed

    Wang, Huanan; Li, Yubao; Zuo, Yi; Li, Jihua; Ma, Sansi; Cheng, Lin

    2007-08-01

    In this study, we prepared nano-hydroxyapatite/polyamide (n-HA/PA) composite scaffolds utilizing thermally induced phase inversion processing technique. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized. Mesenchymal stem cells (MSCs) derived from bone marrow of neonatal rabbits were cultured, expanded and seeded on n-HA/PA scaffolds. The MSC/scaffold constructs were cultured for up to 7 days and the adhesion, proliferation and differentiation of MSCs into osteoblastic phenotype were determined using MTT assay, alkaline phosphatase (ALP) activity and collagen type I (COL I) immunohistochemical staining and scanning electronic microscopy (SEM). The results confirm that n-HA/PA scaffolds are biocompatible and have no negative effects on the MSCs in vitro. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both pure n-HA/PA scaffolds and MSC/scaffold constructs were implanted in rabbit mandibles and studied histologically and microradiographically. The results show that n-HA/PA composite scaffolds exhibit good biocompatibility and extensive osteoconductivity with host bone. Moreover, the introduction of MSCs to the scaffolds dramatically enhanced the efficiency of new bone formation, especially at the initial stage after implantation. In long term (more than 12 weeks implantation), however, the pure scaffolds show as good biocompatibility and osteogenesis as the hybrid ones. All these results indicate that the scaffolds fulfill the basic requirements of bone tissue engineering scaffold, and have the potential to be applied in orthopedic, reconstructive and maxillofacial surgery.

  6. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace

    2016-10-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of

  7. Tissue biocompatibility of kevlar aramid fibers and polymethylmethacrylate, composites in rabbits.

    PubMed

    Henderson, J D; Mullarky, R H; Ryan, D E

    1987-01-01

    Two groups of female NZW rabbits were implanted in the paravertebral muscles with aramid (du Pont Kevlar aramid 49) fibers and aramid-polymethylmethacrylate (PMMA) composites for 14 and 28 days. Rabbits were killed at these times periods, necropsies performed, sites scored for gross tissue response, and tissue specimens containing the implants removed for histopathological evaluation. A mild fibrous tissue reaction was observed around all implants containing aramid fiber similar to that observed around the silicone control implant. Some foreign body giant cells were also present adjacent to the fibers. An intense necrotic inflammatory reaction was present around the positive control material (PVC Y-78). The tissue response to implantation of aramid fiber and fiber-PMMA composites indicates that aramid is a biocompatible material.

  8. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study

    PubMed Central

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold. PMID:26380018

  9. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    PubMed

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  10. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.

    PubMed

    Elango, Jeevithan; Zhang, Jingyi; Bao, Bin; Palaniyandi, Krishnamoorthy; Wang, Shujun; Wenhui, Wu; Robinson, Jeya Shakila

    2016-10-01

    In the present investigation, an attempt was made to find an alternative to mammalian collagen with better osteogenesis ability. Three types of collagen scaffolds - collagen, collagen-chitosan (CCH), and collagen-hydroxyapatite (CHA) - were prepared from the cartilage of Blue shark and investigated for their physico-functional and mechanical properties in relation to biocompatibility and osteogenesis. CCH scaffold was superior with pH 4.5-4.9 and viscosity 9.7-10.9cP. Notably, addition of chitosan and HA (hydroxyapatite) improved the stiffness (11-23MPa) and degradation rate but lowered the water binding capacity and porosity of the scaffold. Interestingly, CCH scaffolds remained for 3days before complete in-vitro biodegradation. The decreased amount of viable T-cells and higher level of FAS/APO-1 were substantiated the biocompatibility properties of prepared collagen scaffolds. Osteogenesis study revealed that the addition of CH and HA in both fish and mammalian collagen scaffolds could efficiently promote osteoblast cell formation. The ALP activity was significantly high in CHA scaffold-treated osteoblast cells, which suggests an enhanced bone-healing process. Therefore, the present study concludes that the composite scaffolds prepared from fish collagen with higher stiffness, lower biodegradation rate, better biocompatible, and osteogenesis properties were suitable biomaterial for a bone tissue engineering application as an alternative to mammalian collagen scaffolds.

  11. Selective laser sintering of biocompatible polymers for applications in tissue engineering.

    PubMed

    Tan, K H; Chua, C K; Leong, K F; Cheah, C M; Gui, W S; Tan, W S; Wiria, F E

    2005-01-01

    The ability to use biological substitutes to repair or replace damaged tissues lead to the development of Tissue Engineering (TE), a field that is growing in scope and importance within biomedical engineering. Anchorage dependent cell types often rely on the use of temporary three-dimensional scaffolds to guide cell proliferation. Computer-controlled fabrication techniques such as Rapid Prototyping (RP) processes have been recognised to have an edge over conventional manual-based scaffold fabrication techniques due to their ability to create structures with complex macro- and micro-architectures. Despite the immense capabilities of RP fabrication for scaffold production, commercial available RP modelling materials are not biocompatible and are not suitable for direct use in the fabrication of scaffolds. Work is carried out with several biocompatible polymers such as Polyetheretherketone (PEEK), Poly(vinyl alcohol) (PVA), Polycaprolactone (PCL) and Poly(L-lactic acid) (PLLA) and a bioceramic namely, Hydroxyapatite (HA). The parameters of the selective laser sintering (SLS) process are optimised to cater to the processing of these materials. SLS-fabricated scaffold specimens are examined using a Scanning Electron Microscope (SEM). Results observed from the micrographs indicate the viability of them being used for building TE scaffolds and ascertain the capabilities of the SLS process for creating highly porous scaffolds for Tissue Engineering applications.

  12. Evaluation of Biocompatibility of Alloplastic Materials: Development of a Tissue Culture In Vitro Test System.

    PubMed

    Gerullis, Holger; Georgas, Evangelos; Eimer, Christoph; Goretzki, Peter E; Lammers, Bernhard J; Klosterhalfen, Bernd; Boros, Mihaly; Wishahi, Mohamed; Heusch, Gerd; Otto, Thomas

    2011-12-01

    Optimized biocompatibility is a major requirement for alloplastic materials currently applied in surgical approaches for hernia, incontinence, and prolapse situations. Tissue ingrowth/adherence and formation of connective tissue seem to have important influence in mesh incorporation at the implant site. In an in vitro approach we randomly investigated 7 different mesh types currently used in surgeries with various indications with regard to their adherence performance. Using a tissue culture approach, meshes were incubated with tissue representative of fibroblasts, muscle cells, and endothelial cells originating from 10 different patients. After 6 weeks, the meshes were assessed microscopically and a ranking of their adherence performance was established. Tissue culture was successful in 100% of the probes. We did not remark on interindividual differences concerning the growth and adherence performance after incubation with the different meshes in the investigated 10 patients. The ranking was consistent in all patients. In this test system, PVDF Dynamesh® (FEG Textiltechnik, Aachen, Germany) was the mesh with the best growth-in score. The test system was feasible and reproducible. Pore size seems to be a predictor of adherence performance. The test system may be a helpful tool for further investigations, and the predictive value should be assessed in further in vitro and in vivo experiments.

  13. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Pistone, Alessandro; Iannazzo, Daniela; Panseri, Silvia; Montesi, Monica; Tampieri, Anna; Galvagno, Signorino

    2014-10-01

    New magnetic hydroxyapatite-based nanomaterials as bone-specific systems for controlled drug delivery have been synthesized. The synthesized hydroxyapatite, HA, decorated with magnetite nanoparticles by a deposition method (HA/Fe3O4) and the nanocomposite system obtained using magnetic multi-walled carbon nanotubes (HA/MWCNT/Fe3O4) as a filler for HA have been characterized by chemical and morphological analyses, and their biological behavior was investigated. The systems have also been doped with clodronate in order to combine the effect of bone biomineralization induced by hydroxyapatite-based composites with the decrease of osteoclast formation induced by the drug. An analysis of the preosteoclastic RAW264.7 cell proliferation by MTT assay confirmed the high biocompatibility of the three systems. TRAP staining of RAW 264.7 conditioned with sRAKL to induce osteoclastogenesis, cultured in the presence of the systems doped and undoped with clodronate, showed the inhibitory effect of clodronate after we counted the MNC TRAP+cells but only in the osteoclast formation; in particular, the system HA/Fe3O4-Clo exerted a high inhibitory effect compared to the drug alone. These results demonstrate that the synthesized nanocomposites are a biocompatible magnetic drug delivery system and can represent a useful multimodal platform for applications in bone tissue engineering.

  14. Tissue Reaction and Biocompatibility of Implanted Mineral Trioxide Aggregate with Silver Nanoparticles in a Rat Model

    PubMed Central

    Zand, Vahid; Lotfi, Mehrdad; Aghbali, Amirala; Mesgariabbasi, Mehran; Janani, Maryam; Mokhtari, Hadi; Tehranchi, Pardis; Pakdel, Seyyed Mahdi Vahid

    2016-01-01

    Introduction: Biocompatibility and antimicrobial activity of endodontic materials are of utmost importance. Considering the extensive applications of mineral trioxide aggregate (MTA) in dentistry and antimicrobial properties of silver nanoparticles, this study aimed to evaluate the subcutaneous inflammatory reaction of rat connective tissues to white MTA with and without nanosilver (NS) particles. Methods and Materials: Polyethylene tubes (1.1×8 mm) containing experimental materials (MTA and MTA+NS and empty control tubes) were implanted in subcutaneous tissues of seventy-five male rats. Animals were divided into five groups (n=15) according to the time of evaluation: group 1; after 7 days, group 2; after 15 days, group 3; after 30 days, group 4; after 60 days and group 5; after 90 days. The inflammatory reaction was graded and data was analyzed using the Kruskal-Wallis and Mann-Whitney U tests. Statistical significance was defined at 0.05. Results: Comparison of cumulative inflammatory reaction at all intervals revealed that the mean grade of inflammatory reaction to MTA, MTA+NS and control samples were 3, 2 and 2, respectively. According to the Mann-Whitney analysis there were no significant differences between MTA+NS and MTA (P=0.42). Conclusion: Incorporation of 1% nanosilver to MTA does not affect the inflammatory reaction of subcutaneous tissue in rat models. PMID:26843871

  15. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity.

    PubMed

    Lastra, M Laura; Molinuevo, M Silvina; Giussi, Juan M; Allegretti, Patricia E; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Cortizo, M Susana

    2015-06-01

    β-Ketonitrile tautomeric copolymers have demonstrated tunable hydrophilicity/hydrophobicity properties according to surrounding environment, and mechanical properties similar to those of human bone tissue. Both characteristic properties make them promising candidates as biomaterials for bone tissue engineering. Based on this knowledge we have designed two scaffolds based on β-ketonitrile tautomeric copolymers which differ in chemical composition and surface morphology. Two of them were nanostructured, using an anodized aluminum oxide (AAO) template, and the other two obtained by solvent casting methodology. They were used to evaluate the effect of the composition and their structural modifications on the biocompatibility, cytotoxicity and degradation properties. Our results showed that the nanostructured scaffolds exhibited higher degradation rate by macrophages than casted scaffolds (6 and 2.5% of degradation for nanostructured and casted scaffolds, respectively), a degradation rate compatible with bone regeneration times. We also demonstrated that the β-ketonitrile tautomeric based scaffolds supported osteoblastic cell proliferation and differentiation without cytotoxic effects, suggesting that these biomaterials could be useful in the bone tissue engineering field.

  16. A biocompatible polysaccharide hydrogel-embedded polypropylene mesh for enhanced tissue integration in rats.

    PubMed

    Abed, Aicha; Deval, Bruno; Assoul, Nabila; Bataille, Isabelle; Portes, Patrick; Louedec, Liliane; Henin, Dominique; Letourneur, Didier; Meddahi-Pellé, Anne

    2008-04-01

    Prosthetic materials are largely used in surgery and tissue engineering. However, many postoperative complications are due to poor integration of the materials, which delays the healing process. The objective of our study was to develop a synthetic scaffold that, according to histopathological and biomechanical criteria, would achieve both tolerance and efficiency. In this study, we evaluated the effect of intramuscular and subcutaneous implantation of a new hybrid mesh (HM) in rats. This HM was composed of clinical grade polypropylene mesh embedded in a polysaccharide hydrogel. Histological and biomechanical studies on the polysaccharide gel alone and on HM were performed 15 and 30 days after implantation, and then compared with two clinically used materials, porcine decellularized small intestinal submucosa and a polypropylene mesh. Results showed that the incorporation of a polypropylene mesh within the polysaccharide hydrogel led to the absence of adverse effects and better tissue organization. Thus, this new synthetic biocompatible HM with suitable properties for tissue repair appears to be a promising material for clinical applications.

  17. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  18. Biocompatibility of sealers used in apical surgery: a histological study in rat subcutaneous tissue.

    PubMed

    Cunha, Suely Aparecida; Rached, Fuad Jacob Abi; Alfredo, Edson; León, Jorge Esquiche; Perez, Danyel Elias da Cruz

    2011-01-01

    The aim of this study was to evaluate the biocompatibility of sealers used in apical surgery in rat subcutaneous tissue. Sterile polyethylene tubes were filled with the following sealers: Sealapex, Sealapex with addition of zinc oxide, Sealer 26, Sealer 26 with thicker consistency (greater powder-to-resin ratio) and White MTA. The tubes were implanted in the dorsum of male rats and after 7, 21 and 42 days, the animals were killed, obtaining 5 specimens for each sealer in each evaluation period. The lateral surface of the tube was used as negative control. The inflammatory reaction to contact with the sealers was classified as absent, mild, moderate and severe. At 7 days, all sealers caused similar inflammatory reactions in the connective tissue of the animals, with most specimens presenting a moderate to intense chronic inflammatory reaction, with presence of multinucleated giant cells. At 21 days, Sealer 26 and Sealer 26 with thicker consistency presented more intense inflammatory reaction (p=0.004), whereas after 42 days, the inflammatory reaction ranged from absent to mild with statistically similar results for both materials (p=0.08). Except for MTA, all sealers presented foreign-body granulomatous reaction at 42 days. All sealers but Sealapex presented a statistically significant decrease of the inflammatory reaction over time. In conclusion, all sealers caused moderate to severe inflammation in the earlier evaluation period. However, Sealer 26 and Sealer 26 with thicker consistency caused more intense inflammatory reactions after 21 days of contact with the tissues and no granulomatous reaction was observed for MTA at the final period of analysis.

  19. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers for skin tissue engineering.

    PubMed

    Sundaramurthi, Dhakshinamoorthy; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2013-08-01

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) a biodegradable polymer, was electrospun to obtain defect-free nanofibers. The structural similarity of PHBV nanofibers and the extracellular matrix in skin may present well for fibroblast cell adhesion and proliferation. The average fiber diameter of the electrospun fibers was 583 +/- 90 nm. The potential of PHBV scaffolds for human keratinocytes (HaCaT) adhesion, proliferation and gene expression were evaluated. Our results demonstrated that PHBV nanofibers favor HaCaT adhesion and proliferation. After 14 days of culture, loricrin and keratin-1 gene expression were significantly higher when compared to 3 and 7 days (p < 0.05). The expression of genes associated with T lymphocyte activation (HLA-DRB, thymosin beta 10 (h-Tim)) and IL-2 mediated lymphocyte activation genes (h-Tim, Tumour Rejection Antigen (TRA 1), nRap 2) were investigated in human lymphocyte cultured on PHBV nanofibers. T Lymphocyte activation and IL-2 mediated lymphocyte activation genes were down-regulated after 48 and 72 hours of culture. After 24, 48 and 72 hours of culture there was no inflammatory cytokines production by the cultured lymphocytes. Thus, our results confirm the biocompatibility of PHBV nanofibers and suggest that consideration can be given to the use of PHBV nanofibers for skin tissue engineering applications.

  20. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Zha, Zhengbao; Deng, Zijian; Li, Yanyan; Li, Changhui; Wang, Jinrui; Wang, Shumin; Qu, Enze; Dai, Zhifei

    2013-05-01

    Photoacoustic tomography (PAT) has emerged as a hybrid, nonionizing imaging modality because of its satisfactory spatial resolution and high soft tissue contrast. Here, we demonstrate the application of a novel organic PAT contrast agent based on polypyrrole nanoparticles (PPy NPs). Monodisperse PPy NPs are ~46 nm in diameter with strong absorption in the near-infrared (NIR) range, which allowed visualization of PPy NP-containing agar gel embedded in chicken breast muscle at a depth of ~4.3 cm. Compared with PAT images based on the intrinsic optical contrast in mice, the PAT images acquired within 1 h after intravenous administration of PPy NPs showed the brain vasculature with greater clarity than hemoglobin in blood. Preliminary results showed no acute toxicity to the vital organs (heart, liver, spleen, lungs and kidneys) in mice following a single imaging dose of PPy NPs. Our results indicate that PPy NPs are promising contrast agents for PAT with good biocompatibility, high spatial resolution and enhanced sensitivity.

  1. A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair.

    PubMed

    Almeida, J Carlos; Wacha, András; Gomes, Pedro S; Alves, Luís C; Fernandes, M Helena Vaz; Salvado, Isabel M Miranda; Fernandes, M Helena R

    2016-05-01

    The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS-SiO2 have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS-SiO2-CaO-SrO, was prepared with the incorporation of 0.05 mol of titanium per mol of SiO2. Calcium and strontium were added using the respective acetates as sources, following a sol-gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity.

  2. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery.

  3. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  4. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering

    PubMed Central

    Chan, Wing P.; Kung, Fu-Chen; Kuo, Yu-Lin; Yang, Ming-Chen; Lai, Wen-Fu Thomas

    2015-01-01

    A technique for synthesizing biocompatible hydrogels by cross-linking calcium-form poly(γ-glutamic acid), alginate sodium, and Pluronic F-127 was created, in which alginate can be cross-linked by Ca2+ from Ca–γ-PGA directly and γ-PGA molecules introduced into the alginate matrix to provide pH sensitivity and hemostasis. Mechanical properties, swelling behavior, and blood compatibility were investigated for each hydrogel compared with alginate and for γ-PGA hydrogel with the sodium form only. Adding F-127 improves mechanical properties efficiently and influences the temperature-sensitive swelling of the hydrogels but also has a minor effect on pH-sensitive swelling and promotes anticoagulation. MG-63 cells were used to test biocompatibility. Gelation occurred gradually through change in the elastic modulus as the release of calcium ions increased over time and caused ionic cross-linking, which promotes the elasticity of gel. In addition, the growth of MG-63 cells in the gel reflected nontoxicity. These results showed that this biocompatible scaffold has potential for application in bone materials. PMID:26504784

  5. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering.

    PubMed

    Sitharaman, Balaji; Shi, Xinfeng; Walboomers, X Frank; Liao, Hongbing; Cuijpers, Vincent; Wilson, Lon J; Mikos, Antonios G; Jansen, John A

    2008-08-01

    Scaffolds play a pivotal role in the tissue engineering paradigm by providing temporary structural support, guiding cells to grow, assisting the transport of essential nutrients and waste products, and facilitating the formation of functional tissues and organs. Single-walled carbon nanotubes (SWNTs), especially ultra-short SWNTs (US-tubes), have proven useful for reinforcing synthetic polymeric scaffold materials. In this article, we report on the in vivo biocompatibility of US-tube reinforced porous biodegradable scaffolds in a rabbit model. US-tube nanocomposite scaffolds and control polymer scaffolds were implanted in rabbit femoral condyles and in subcutaneous pockets. The hard and soft tissue response was analyzed with micro-computed tomography (micro CT), histology, and histomorphometry at 4 and 12 weeks after implantation. The porous US-tube nanocomposite scaffolds exhibited favorable hard and soft tissue responses at both time points. At 12 weeks, a three-fold greater bone tissue ingrowth was seen in defects containing US-tube nanocomposite scaffolds compared to control polymer scaffolds. Additionally, the 12 week samples showed reduced inflammatory cell density and increased connective tissue organization. No significant quantitative difference in polymer degradation was observed among the various groups; qualitative differences between the two time points were consistent with expected degradation due to the progression of time. Although no conclusions can be drawn from the present study concerning the osteoinductivity of US-tube nanocomposite scaffolds, the results suggest that the presence of US-tubes may render nanocomposite scaffolds bioactive assisting osteogenesis.

  6. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    NASA Technical Reports Server (NTRS)

    Laurencin, Cato T. (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor); Botchwey, Edward (Inventor); Lu, Helen H. (Inventor); Khan, Mohammed Yusuf (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  7. Preparation and Reinforcement of Dual‐Porous Biocompatible Cellulose Scaffolds for Tissue Engineering

    PubMed Central

    Pircher, Nicole; Fischhuber, David; Carbajal, Leticia; Strauß, Christine; Nedelec, Jean‐Marie; Kasper, Cornelia; Rosenau, Thomas

    2015-01-01

    1 Biocompatible cellulose‐based aerogels composed of nanoporous struts, which embed interconnected voids of controlled micron‐size, have been prepared employing temporary templates of fused porogens, reinforcement by interpenetrating PMMA networks and supercritical carbon dioxide drying. Different combinations of cellulose solvent (Ca(SCN)2/H2O/LiCl or [EMIm][OAc]/DMSO) and anti‐solvent (EtOH), porogen type (paraffin wax or PMMA spheres) and porogen size (various fractions in the range of 100–500 μm) as well as intensity of PMMA reinforcement have been investigated to tailor the materials for cell scaffolding applications. All aerogels exhibited an open and dual porosity (micronporosity >100 μm and nanoporosity extending to the low micrometer range). Mechanical properties of the dual‐porous aerogels under compressive stress were considerably improved by introduction of interpenetrating PMMA networks. The effect of the reinforcing polymer on attachment, spreading, and proliferation of NIH 3T3 fibroblast cells, cultivated on selected dual‐porous aerogels to pre‐evaluate their biocompatibility was similarly positive. PMID:26941565

  8. Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering.

    PubMed

    Pircher, Nicole; Fischhuber, David; Carbajal, Leticia; Strauß, Christine; Nedelec, Jean-Marie; Kasper, Cornelia; Rosenau, Thomas; Liebner, Falk

    2015-09-01

    1Biocompatible cellulose-based aerogels composed of nanoporous struts, which embed interconnected voids of controlled micron-size, have been prepared employing temporary templates of fused porogens, reinforcement by interpenetrating PMMA networks and supercritical carbon dioxide drying. Different combinations of cellulose solvent (Ca(SCN)2/H2O/LiCl or [EMIm][OAc]/DMSO) and anti-solvent (EtOH), porogen type (paraffin wax or PMMA spheres) and porogen size (various fractions in the range of 100-500 μm) as well as intensity of PMMA reinforcement have been investigated to tailor the materials for cell scaffolding applications. All aerogels exhibited an open and dual porosity (micronporosity >100 μm and nanoporosity extending to the low micrometer range). Mechanical properties of the dual-porous aerogels under compressive stress were considerably improved by introduction of interpenetrating PMMA networks. The effect of the reinforcing polymer on attachment, spreading, and proliferation of NIH 3T3 fibroblast cells, cultivated on selected dual-porous aerogels to pre-evaluate their biocompatibility was similarly positive.

  9. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds.

    PubMed

    Applegate, Matthew B; Coburn, Jeannine; Partlow, Benjamin P; Moreau, Jodie E; Mondia, Jessica P; Marelli, Benedetto; Kaplan, David L; Omenetto, Fiorenzo G

    2015-09-29

    Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light-matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach.

  10. A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials.

    PubMed

    Tam, Hobey; Zhang, Will; Feaver, Kristen R; Parchment, Nathaniel; Sacks, Michael S; Vyavahare, Naren

    2015-10-01

    Over 300,000 heart valve replacements are performed annually to replace stenotic and regurgitant heart valves. Bioprosthetic heart valves (BHVs), derived from glutaraldehyde crosslinked (GLUT) porcine aortic valve leaflets or bovine pericardium are often used. However, valve failure can occur within 12-15 years due to calcification and/or progressive degeneration. In this study, we have developed a novel fabrication method that utilizes carbodiimide, neomycin trisulfate, and pentagalloyl glucose crosslinking chemistry (TRI) to better stabilize the extracellular matrix of porcine aortic valve leaflets. We demonstrate that TRI treated leaflets show similar biomechanics to GLUT crosslinked leaflets. TRI treated leaflets had better resistance to enzymatic degradation in vitro and demonstrated better tearing toughness after challenged with enzymatic degradation. When implanted subcutaneously in rats for up to 90 days, GLUT control leaflets calcified heavily while TRI treated leaflets resisted calcification, retained more ECM components, and showed better biocompatibility.

  11. Mineralization and biocompatibility of Antheraea pernyi (A. pernyi) silk sericin film for potential bone tissue engineering.

    PubMed

    Yang, Mingying; Mandal, Namita; Shuai, Yajun; Zhou, Guanshan; Min, Sijia; Zhu, Liangjun

    2014-01-01

    This study aimed to investigate the mineralization of Antheraea pernyi (A. pernyi) silk sericin. Mineralization of A. pernyi sericin was performed by alternative soaking in calcium and phosphate. The inhibition of precipitation of calcium carbonate and von Kossa staining on A. pernyi sericin were tested, and the corresponding results prove that A. pernyi sericin has Ca binding activity. Scanning electron microscope (SEM) observation shows that spherical crystals could be nucleated on the A. pernyi sericin film. These crystals were confirmed to be hydroxyapatite according to FT-IR and XRD spectra, indicating that A. pernyi sericin is capable of mineralization. In addition, cell adhesion and growth activity assay demonstrate that A. pernyi sericin shows excellent biocompatibility for the growth of MG-63 cells.

  12. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds

    PubMed Central

    Applegate, Matthew B.; Coburn, Jeannine; Partlow, Benjamin P.; Moreau, Jodie E.; Mondia, Jessica P.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light–matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach. PMID:26374842

  13. A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterial

    PubMed Central

    Tam, Hobey; Zhang, Will; Feaver, Kristen R.; Parchment, Nathaniel; Sacks, Michael S.; Vyavahare, Naren

    2015-01-01

    Over 300,000 heart valve replacements are performed annually to replace stenotic and regurgitant heart valves. Bioprosthetic heart valves (BHVs), derived from glutaraldehyde crosslinked (GLUT) porcine aortic valve leaflets or bovine pericardium are often used. However, valve failure can occur within 12–15 years due to calcification and/or progressive degeneration. In this study, we have developed a novel fabrication method that utilizes carbodiimide, neomycin trisulfate, and pentagalloyl glucose crosslinking chemistry (TRI) to better stabilize the extracellular matrix of porcine aortic valve leaflets. We demonstrate that TRI treated leaflets show similar biomechanics to GLUT crosslinked leaflets. TRI treated leaflets had better resistance to enzymatic degradation in vitro and demonstrated better tearing toughness after challenged with enzymatic degradation. When implanted subcutaneously in rats for up to 90 days, GLUT control leaflets calcified heavily while TRI treated leaflets resisted calcification, retained more ECM components, and showed better biocompatibility. PMID:26196535

  14. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering.

    PubMed

    Qian, Junmin; Xu, Weijun; Yong, Xueqing; Jin, Xinxia; Zhang, Wei

    2014-03-01

    In this study, biomorphic poly(dl-lactic-co-glycolic acid)/nano-hydroxyapatite (PLGA/nHA) composite scaffolds were successfully prepared using cane as a template. The porous morphology, phase, compression characteristics and in vitro biocompatibility of the PLGA/nHA composite scaffolds and biomorphic PLGA scaffolds as control were investigated. The results showed that the biomorphic scaffolds preserved the original honeycomb-like architecture of cane and exhibited a bimodal porous structure. The average channel diameter and micropore size of the PLGA/nHA composite scaffolds were 164 ± 52 μm and 13 ± 8 μm, respectively, with a porosity of 89.3 ± 1.4%. The incorporation of nHA into PLGA decreased the degree of crystallinity of PLGA, and significantly improved the compressive modulus of biomorphic scaffolds. The in vitro biocompatibility evaluation with MC3T3-E1 cells demonstrated that the biomorphic PLGA/nHA composite scaffolds could better support cell attachment, proliferation and differentiation than the biomorphic PLGA scaffolds. The localization depth of MC3T3-E1 cells within the channels of the biomorphic PLGA/nHA composite scaffolds could reach approximately 400 μm. The results suggested that the biomorphic PLGA/nHA composite scaffolds were promising candidates for bone tissue engineering.

  15. Diels-Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability

    NASA Astrophysics Data System (ADS)

    Mata, D.; Amaral, M.; Fernandes, A. J. S.; Colaço, B.; Gama, A.; Paiva, M. C.; Gomes, P. S.; Silva, R. F.; Fernandes, M. H.

    2015-05-01

    The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT membranes (p,f-CNTs). The in vivo subcutaneously implanted materials showed a higher biological reactivity, thus inducing a slighter intense inflammatory response compared to non-functionalized CNT membranes (p-CNTs), but still showing a reduced cytotoxicity profile. Moreover, the in vivo biodegradation of CNTs was superior for p,f-CNT membranes, likely mediated by the oxidation-induced myeloperoxidase (MPO) in neutrophil and macrophage inflammatory milieus. This proves the biodegradability faculty of functionalized CNTs, which potentially avoids long-term tissue accumulation and triggering of acute toxicity. On the whole, the proposed Diels-Alder functionalization accounts for the improved CNT biological response in terms of the biocompatibility and biodegradability profiles. Therefore, CNTs can be considered for use in bone tissue engineering without notable toxicological threats.The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT

  16. Histological Features and Biocompatibility of Bone and Soft Tissue Substitutes in the Atrophic Alveolar Ridge Reconstruction

    PubMed Central

    Rancitelli, Davide; Grossi, Giovanni Battista; Herford, Alan Scott

    2016-01-01

    The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489

  17. Polyanionic collagen membranes for guided tissue regeneration: Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation.

    PubMed

    Veríssimo, D M; Leitão, R F C; Ribeiro, R A; Figueiró, S D; Sombra, A S B; Góes, J C; Brito, G A C

    2010-10-01

    The ultimate goal of periodontal therapy is to control periodontal tissue inflammation and to produce predictable regeneration of that part of the periodontium which has been lost as a result of periodontal disease. In guided tissue regeneration membranes function as mechanical barriers, excluding the epithelium and gingival corium from the root surface and allowing regeneration by periodontal ligament cells. This report aims to study the effect of glutaraldehyde (GA) cross-linking on mineralized polyanionic collagen (PAC) membranes by conducting a histological evaluation of the tissue response (biocompatibility) and by assessing the biodegradation of subcutaneous membrane implants in rats. We studied six different samples: a PAC, a PAC mineralized by alternate soaking processes for either 25 or 75 cycles (PAC 25 and PAC 75, respectively) and these films cross-linked by GA. Inflammatory infiltrate, cytokine dosage, fibrosis capsule thickness, metalloproteinase immunohistochemistry and membrane biodegradation after 1, 7, 15 and 30 days were measured. The inflammatory response was found to be more intense in membranes without cross-linking, while the fibrosis capsules became thicker in cross-linked membranes after 30 days. The membranes without cross-linking suffered intense biodegradation, while the membranes with cross-linking remained intact after 30 days. The cross-linking with GA reduced the inflammatory response and prevented degradation of the membranes over the entire course of the observation period. These membranes are thus an attractive option when the production of new bone depends on the prolonged presence of a mechanical barrier.

  18. Tissue-Integratable and Biocompatible Photogelation by the Imine Crosslinking Reaction.

    PubMed

    Yang, Yunlong; Zhang, Jieyuan; Liu, Zhenzhen; Lin, Qiuning; Liu, Xiaolin; Bao, Chunyan; Wang, Yang; Zhu, Linyong

    2016-04-13

    A novel photogelling mechanism by the phototriggered-imine-crosslinking (PIC) reaction is demonstrated. Hyaluronic acid grafted with o-nitrobenzene, a photogenerated aldehyde group, can quickly photo-crosslink with amino-bearing polymers or proteins. Once the in situ photogelling on a wound occurs, the PIC gelling process can well integrate a hydrogel with surrounding tissue by covalent bonding, thus making it a powerful tool for tissue engineering and regenerative medicine.

  19. Moisture-cured silicone-urethanes-candidate materials for tissue engineering: a biocompatibility study in vitro.

    PubMed

    Mrówka, P; Kozakiewicz, J; Jurkowska, A; Sienkiewicz, E; Przybylski, J; Lewandowski, Z; Przybylski, J; Lewandowska-Szumieł, M

    2010-07-01

    This study was performed to verify the response of human bone-derived cells (HBDCs) to moisture-cured silicone-urethanes (mcSUUs) in vitro, as the first step toward using them as scaffolds for bone tissue engineering. Good surgical handling, tissue cavity filling, stable mechanical properties, and potentially improved oxygen supply to cells after implantation justify the investigation of these nondegradable elastomers. A set of various mcSUUs were obtained by moisture-curing NCO-terminated prepolymers, synthesized from oligomeric siloxane diols of two different oligosiloxane chain lengths, and two different diisocyanates (MDI and IPDI), using two different NCO/OH molar ratios. Dibutyltindilaurate (DBTL) or N-dimethylethanolamine (N-met) served as catalysts. After 7 days of culture, cell number, viability, and alkaline phosphatase (ALP) activity were determined, and after 21 days, cell viability and collagen production were determined. Material characteristics significantly influenced the cell response. The mcSUUs prepared with DBTL (widely used in the syntheses of biomaterials) were cytotoxic. The MDI-based mcSUUs were significantly more favored by HBDCs than the IPDI-based ones in all performed tests. MDI-based material with low 2/1 NCO/OH and short chain length was the best support for cells, comparable with tissue-culture polystyrene (with ALP activity even higher). HBDCs cultured on porous scaffolds from this mcSUU produced a tissue-like structure in culture. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  20. Biodegradable, Elastomeric, and Intrinsically Photoluminescent Poly(Silicon-Citrates) with high Photostability and Biocompatibility for Tissue Regeneration and Bioimaging.

    PubMed

    Du, Yuzhang; Xue, Yumeng; Ma, Peter X; Chen, Xiaofeng; Lei, Bo

    2016-02-04

    Biodegradable polymer biomaterials with intrinsical photoluminescent properties have attracted much interest, due to their potential advantages for tissue regeneration and noninvasive bioimaging. However, few of current biodegradable polymers possess tunable intrinsically fluorescent properties, such as high photostability, fluorescent lifetime, and quantum field, and strong mechanical properties for meeting the requirements of biomedical applications. Here, by a facile one-step thermal polymerization, elastomeric poly(silicone-citrate) (PSC) hybrid polymers are developed with controlled biodegradability and mechanical properties, tunable inherent fluorescent emission (up to 600 nm), high photostability (beyond 180 min for UV and six months for natural light), fluorescent lifetime (near 10 ns) and quantum yield (16%-35%), high cellular biocompatibility, and minimal inflammatory response in vivo, which provide advantages over conventional fluorescent dyes, quantum dots, and current fluorescent polymers. The promising applications of PSC hybrids for cell and implants imaging in vitro and in vivo are successfully demonstrated. The development of elastomeric PSC polymer may provide a new strategy in synthesizing new inorganic-organic hybrid photo-luminescent materials for tissue regeneration and bioimaging applications.

  1. Effect of surface texture by ion beam sputtering on implant biocompatibility and soft tissue attachment

    NASA Technical Reports Server (NTRS)

    Gibbons, D. F.

    1977-01-01

    The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.

  2. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.

    PubMed

    Chen, Jing; Dong, Ruonan; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-12-30

    It remains a challenge to develop electroactive and elastic biomaterials to mimic the elasticity of soft tissue and to regulate the cell behavior during tissue regeneration. We designed and synthesized a series of novel electroactive and biodegradable polyurethane-urea (PUU) copolymers with elastomeric property by combining the properties of polyurethanes and conducting polymers. The electroactive PUU copolymers were synthesized from amine capped aniline trimer (ACAT), dimethylol propionic acid (DMPA), polylactide, and hexamethylene diisocyanate. The electroactivity of the PUU copolymers were studied by UV-vis spectroscopy and cyclic voltammetry. Elasticity and Young's modulus were tailored by the polylactide segment length and ACAT content. Hydrophilicity of the copolymer films was tuned by changing DMPA content and doping of the copolymer. Cytotoxicity of the PUU copolymers was evaluated by mouse C2C12 myoblast cells. The myogenic differentiation of C2C12 myoblasts on copolymer films was also studied by analyzing the morphology of myotubes and relative gene expression during myogenic differentiation. The chemical structure, thermal properties, surface morphology, and processability of the PUU copolymers were characterized by NMR, FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and solubility testing, respectively. Those biodegradable electroactive elastic PUU copolymers are promising materials for repair of soft tissues such as skeletal muscle, cardiac muscle, and nerve.

  3. Cytotoxicity of Cyanoacrylate-Based Tissue Adhesives and Short-Term Preclinical In Vivo Biocompatibility in Abdominal Hernia Repair

    PubMed Central

    Rodríguez, Marta; Pérez-Köhler, Bárbara; Kühnhardt, Andreé; Fernández-Gutiérrez, Mar; San Román, Julio; Bellón, Juan Manuel

    2016-01-01

    Background Cyanoacrylate(CA)-based tissue adhesives, although not widely used, are a feasible option to fix a mesh during abdominal hernia repair, due to its fast action and great bond strength. Their main disadvantage, toxicity, can be mitigated by increasing the length of their alkyl chain. The objective was to assess the in vitro cytotoxicity and in vivo biocompatibility in hernia repair of CAs currently used in clinical practice (Glubran(n-butyl) and Ifabond(n-hexyl)) and a longer-chain CA (OCA(n-octyl)), that has never been used in the medical field. Methods Formaldehyde release and cytotoxicity of unpolymerized(UCAs) and polymerized CAs(PCAs) were evaluated by macroscopic visual assessment, flow cytometry and Alamar Blue assays. In the preclinical evaluation, partial defects were created in the rabbit abdominal wall and repaired by fixing polypropylene prostheses using the CAs. At 14 days post-surgery, animals were euthanized for morphology, macrophage response and cell damage analyses. Results Formaldehyde release was lower as the molecular weight of the monomer increased. The longest side-chain CA(OCA) showed the highest cytotoxicity in the UCA condition. However, after polymerization, was the one that showed better behavior on most occasions. In vivo, all CAs promoted optimal mesh fixation without displacements or detachments. Seroma was evident with the use of Glubran, (four of six animals: 4/6) and Ifabond (2/6), but it was reduced with the use of OCA (1/6). Significantly greater macrophage responses were observed in groups where Glubran and Ifabond were used vs. sutures and OCA. TUNEL-positive cells were significantly higher in the Glubran and OCA groups vs. the suture group. Conclusions Although mild formaldehyde release occurred, OCA was the most cytotoxic during polymerization but the least once cured. The CAs promoted proper mesh fixation and have potential to replace traditional suturing techniques in hernia repair; the CAs exhibited good tissue

  4. Fabrication of biocompatible electro-conductive silk films with natural compounds for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Dimitrakakis, Nikolaos

    In the present study electro conductive natural compounds are incorporated in silk based films, and the effects on film conductivity and dissolution are studied. Natural conducting compounds melanin and riboflavin were blended with silk to increase conductivity. Other compounds such as Fe(0) powder ferrofluid and NaCl solution also improved conductivity. Film properties and dissolution were studied for the different blends, and tuned using addition of glycerol and horseradish peroxidase cross-linking. Techniques such as electrospinning, doctor blade, spin coating, and paper-like film fabrication techniques were also explored to generate films with controlled dimensions and properties. The findings suggest that the incorporation of riboflavin along with NaCl and glycerol in silk films, along with water vapor annealing results in semiconductor films. More specifically, the two compositions of the films that exhibited highest conductivity contain 2 % w/v silk, 20 % w/v glycerol, 2 % w/v polyethylene oxide (PEO), 30 % v/v phosphate buffered saline (PBS) and 5 % w/v silk, 20 % w/v glycerol, 10 % w/v NaCl with conductivities of 5.72*10-2 S/m and 5.96*10-2 S/m at 20 °C. When silk is doped with riboflavin, NaCl, and glycerol, semiconducting behavior similar to drinking water conductivity is observed. Mass loss studies of the films included the immersion of the films for 7 days in 37° C in PBS. Film processing included samples that were heated for 2 hours in 60 °C immediately after casting, as well as those cured at room temperature. The results indicated that the heated samples provided the lowest mass loss of approximately 27 %. In conclusion, the present study demonstrates the correlation between composition and processing of silk films with their conductivity. These semiconductive films have the potential to be applied in tissue engineering applications such as nerve conduits, where conductivity plays an instrumental role in tissue restoration.

  5. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Dong, Zhihong; Li, Yubao; Zou, Qin

    2009-04-01

    Porous scaffold containing 30 wt% nano-hydroxyapatite (n-HA) and 70 wt% polyurethane (PU) from castor oil was prepared by a foaming method and investigated by X-ray diffraction (XRD), Fourier transform infrared absorption (FTIR), scanning electron microscopy (SEM) techniques. The results show that n-HA particles disperse homogeneously in the PU matrix. The porous scaffold has not only macropores of 100-800 μm in size but also a lot of micropores on the walls of macropores. The porosity and compressive strength of scaffold are 80% and 271 kPa, respectively. After soaking in simulated body fluid (SBF), hydrolysis and deposition partly occur on the scaffold. The biological evaluation in vitro and in vivo shows that the n-HA/PU scaffold is non-cytotoxic and degradable. The porous structure provides a good microenvironment for cell adherence, growth and proliferation. The n-HA/PU composite scaffold can be satisfied with the basic requirement for tissue engineering, and has the potential to be applied in repair and substitute of human menisci of the knee-joint and articular cartilage.

  6. Micro- and Nanostructured Biomaterials for Sutureless Tissue Repair.

    PubMed

    Frost, Samuel J; Mawad, D; Hook, J; Lauto, Antonio

    2016-02-18

    Sutureless procedures for wound repair and closure have recently integrated nanostructured devices to improve their effectiveness and clinical outcome. This review highlights the major advances in gecko-inspired bioadhesives that relies mostly on van der Waals bonding forces. These are challenged by the moist environment of surgical settings that weaken adherence to tissue. The incorporation of nanoparticles in biomatrices and their role in tissue repair and drug delivery is also reviewed with an emphasis on procedures involving adhesives that are laser-activated. Nanostructured adhesive devices have the advantage of being minimally invasive to tissue, can seal wounds, and deliver drugs in situ. All these tasks are very difficult to accomplish by sutures or staples that are invasive to host organs and often cause scarring.

  7. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo.

    PubMed

    Wang, Peng; Liu, Pengzheng; Peng, Haitao; Luo, Xiaoman; Yuan, Huipin; Zhang, Juncai; Yan, Yonggang

    2016-08-01

    In vitro cytocompatibility of ternary biocomposite of dicalcium phosphate (DCP) and calcium sulfate (CS) containing 40 wt% poly (amino acid) (PAA) was evaluated using L929 fibroblasts and MG-63 osteoblast-like cells. Thereafter, the biocompatibility of biocomposite in vivo was investigated using an implantation in muscle and bone model. In vitro L929 and MG-63 cell culture experiments showed that the composite and PAA polymer were noncytotoxic and allowed cells to adhere and proliferate. The scanning electron microscope (SEM) confirmed that two kinds of cells maintained their phenotype on all of samples surfaces. Moreover, the DCP/CS/PAA composite showed higher cellular viability than that of PAA; meanwhile, the cell proliferation and ALP activity were much higher when DCP/CS had added into PAA. After implanted in muscle of rabbits for 12 weeks, the histological evaluation indicated that the composite exhibited excellent biocompatibility and no inflammatory responses were found. When implanted into bone defects of femoral condyle of rabbits, the composite was combined directly with the host bone tissue without fibrous capsule tissue, which shown good biocompatibility and osteoconductivity. Thus, this novel composite may have potential application in the clinical setting.

  8. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging.

    PubMed

    Liu, Qian; Guo, Beidou; Rao, Ziyu; Zhang, Baohong; Gong, Jian Ru

    2013-06-12

    Bright two-photon fluorescent probes are highly desirable to be able to optically probe biological activities deep inside living organisms with larger imaging depth, minor autofluorescence background, and less photodamage. In this study, we report the biocompatible nitrogen-doped graphene quantum dots (N-GQDs) as efficient two-photon fluorescent probes for cellular and deep-tissue imaging. The N-GQD was prepared by a facile solvothermal method using dimethylformamide as a solvent and nitrogen source. The two-photon absorption cross-section of N-GQD reaches 48,000 Göppert-Mayer units, which far surpasses that of the organic dyes and is comparable to that of the high performance semiconductor QDs, achieving the highest value ever reported for carbon-based nanomaterials. More importantly, a study of penetration depth in tissue phantom demonstrates that the N-GQD can achieve a large imaging depth of 1800 μm, significantly extending the fundamental two-photon imaging depth limit. In addition, the N-GQD is nontoxic to living cells and exhibits super photostability under repeated laser irradiation. The high two-photon absorption cross-section, large imaging depth, good biocompatibility, and extraordinary photostability render the N-GQD an attractive alternative probe for efficient two-photon imaging in biological and biomedical applications.

  9. Long-term biocompatibility, imaging appearance and tissue effects associated with delivery of a novel radiopaque embolization bead for image-guided therapy.

    PubMed

    Sharma, Karun V; Bascal, Zainab; Kilpatrick, Hugh; Ashrafi, Koorosh; Willis, Sean L; Dreher, Matthew R; Lewis, Andrew L

    2016-10-01

    The objective of this study was to undertake a comprehensive long-term biocompatibility and imaging assessment of a new intrinsically radiopaque bead (LC Bead LUMI™) for use in transarterial embolization. The sterilized device and its extracts were subjected to the raft of ISO10993 biocompatibility tests that demonstrated safety with respect to cytotoxicity, mutagenicity, blood contact, irritation, sensitization, systemic toxicity and tissue reaction. Intra-arterial administration was performed in a swine model of hepatic arterial embolization in which 0.22-1 mL of sedimented bead volume was administered to the targeted lobe(s) of the liver. The beads could be visualized during the embolization procedure with fluoroscopy, DSA and single X-ray snapshot imaging modalities. CT imaging was performed before and 1 h after embolization and then again at 7, 14, 30 and 90 days. LC Bead LUMI™ could be clearly visualized in the hepatic arteries with or without administration of IV contrast and appeared more dense than soluble contrast agent. The CT density of the beads did not deteriorate during the 90 day evaluation period. The beads embolized predictably and effectively, resulting in areas devoid of contrast enhancement on CT imaging suggesting ischaemia-induced necrosis nearby the sites of occlusion. Instances of off target embolization were easily detected on imaging and confirmed pathologically. Histopathology revealed a classic foreign body response at 14 days, which resolved over time leading to fibrosis and eventual integration of the beads into the tissue, demonstrating excellent long-term tissue compatibility.

  10. Vertical anisotropic microfibers for a gecko-inspired adhesive.

    PubMed

    Tamelier, John; Chary, Sathya; Turner, Kimberly L

    2012-06-12

    Geckos are able to adhere strongly and release easily from surfaces because the structurally anisotropic fibers on their toes naturally exhibit force anisotropy based on the direction of articulation. Here, semicircular fibers, with varying amounts of contact area on the two faces, are investigated to ascertain whether fiber shape can be used to gain anisotropy in shear and shear adhesion forces. Testing of 10-μm-diameter polydimethylsiloxane (PDMS) fibers against a 4-mm-diameter flat glass puck show that shear and shear adhesion forces were two to five times greater when in-plane movement caused the flat face, rather than the curved face, of the fiber to come in contact with the glass puck. The directional adhesion and shear force anisotropy results are close to theoretical approximations using the Kendall peel model and clearly demonstrate how fiber shape may be used to influence the properties of the adhesive. This result has broad applicability, and by combining the results shown here with other current vertical and angled designs, synthetic adhesives can be further improved to behave more like their natural counterparts.

  11. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives.

    PubMed

    Murphy, Michael P; Kim, Seok; Sitti, Metin

    2009-04-01

    The complex structures that allow geckos to repeatably adhere to surfaces consist of multilevel branching fibers with specialized tips. We present a novel technique for fabricating similar multilevel structures from polymer materials and demonstrate the fabrication of arrays of two- and three-level structures, wherein each level terminates in flat mushroom-type tips. Adhesion experiments are conducted on two-level fiber arrays on a 12-mm-diameter glass hemisphere, which exhibit both increased adhesion and interface toughness over one-level fiber samples and unstructured control samples. These adhesion enhancements are the result of increased surface conformation as well as increased extension during detachment.

  12. Carbon nanotube based gecko inspired self-cleaning adhesives

    NASA Astrophysics Data System (ADS)

    Sethi, Sunny; Ge, Liehui; Ajayan, Pulickel; Ali, Dhinojwala

    2008-03-01

    Wall climbing organisms like geckos have unique ability to attach to different surfaces without use of any viscoelastic material. The hairy structure found in gecko feet allows them to obtain intimate contact over a large area thus allowing then to adhere using van der Waals interactions. Not only high adhesion, the geometry of the hairs makes gecko feet self cleaning, thus allowing them to walk continuously without worrying about loosing adhesive strength. Such properties if mimicked synthetically could form basis of a new class of materials, which, unlike conventional adhesives would show two contradictory properties, self cleaning and high adhesion. Such materials would form essential component of applications like wall climbing robot. We tried to synthesize such material using micropatterened vertically aligned carbon nanotubes. When dealing with large areas, probability of defects in the structure increase, forming patterns instead of using uniform film of carbon nanotubes helps to inhibit crack propagation, thus gives much higher adhesive strength than a uniform film. When carbon nanotube patterns with optimized aspect ratio are used, both high adhesion and self cleaning properties are observed.

  13. Design and fabrication of gecko-inspired adhesives.

    PubMed

    Jin, Kejia; Tian, Yu; Erickson, Jeffrey S; Puthoff, Jonathan; Autumn, Kellar; Pesika, Noshir S

    2012-04-03

    Recently, there has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure-sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties; the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this study, we present an easy, scalable method, relying on conventional and unconventional techniques, to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provides anisotropic adhesion properties. We measured the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function. Consistent with the peel zone model, samples with lower tilt angles yielded larger adhesion forces. The tribological properties of the synthetic arrays were highly anisotropic, reminiscent of the frictional adhesion behavior of gecko setal arrays. When a 60° tilt sample was actuated in the gripping direction, a static adhesion strength of ~1.4 N/cm(2) and a static friction strength of ~5.4 N/cm(2) were obtained. In contrast, when the dry adhesive was actuated in the releasing direction, we measured an initial repulsive normal force and negligible friction.

  14. Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering.

    PubMed

    Zhao, Yanteng; He, Meng; Zhao, Lei; Wang, Shiqun; Li, Yinping; Gan, Li; Li, Mingming; Xu, Li; Chang, Peter R; Anderson, Debbie P; Chen, Yun

    2016-02-03

    A series of epichlorohydrin-cross-linked hydroxyethyl cellulose/soy protein isolate composite films (EHSF) was fabricated from hydroxyethyl cellulose (HEC) and soy protein isolate (SPI) using a process involving blending, cross-linking, solution casting, and evaporation. The films were characterized with FTIR, solid-state (13)C NMR, UV-vis spectroscopy, and mechanical testing. The results indicated that cross-linking interactions occurred in the inter- and intramolecules of HEC and SPI during the fabrication process. The EHSF films exhibited homogeneous structure and relative high light transmittance, indicating there was a certain degree of miscibility between HEC and SPI. The EHSF films exhibited a relative high mechanical strength in humid state and an adjustable water uptake ratio and moisture absorption ratio. Cytocompatibility, hemocompatibility and biodegradability were evaluated by a series of in vitro and in vivo experiments. These results showed that the EHSF films had good biocompatibility, hemocompatibility, and anticoagulant effect. Furthermore, EHSF films could be degraded in vitro and in vivo, and the degradation rate could be controlled by adjusting the SPI content. Hence, EHSF films might have a great potential for use in the biomedical field.

  15. Biocompatible Silk Noil-Based Three-Dimensional Carded-Needled Nonwoven Scaffolds Guide the Engineering of Novel Skin Connective Tissue.

    PubMed

    Chiarini, Anna; Freddi, Giuliano; Liu, Daisong; Armato, Ubaldo; Dal Prà, Ilaria

    2016-08-01

    Retracting hypertrophic scars resulting from healed burn wounds heavily impact on the patients' life quality. Biomaterial scaffolds guiding burned-out skin regeneration could suppress or lessen scar retraction. Here we report a novel silk noil-based three-dimensional (3D) nonwoven scaffold produced by carding and needling with no formic acid exposure, which might improve burn healing. Once wetted, it displays human skin-like physical features and a high biocompatibility. Human keratinocyte-like cervical carcinoma C4-I cells seeded onto the carded-needled nonwovens in vitro quickly adhered to them, grew, and actively metabolized glutamine releasing lactate. As on plastic, they released no proinflammatory IL-1β, although secreting tumor necrosis factor-alpha, an inducer of the autocrine mitogen amphiregulin in such cells. Once grafted into interscapular subcutaneous tissue of mice, carded-needled nonwovens guided the afresh assembly of a connective tissue enveloping the fibroin microfibers and filling the interposed voids within 3 months. Fibroblasts and a few poly- or mononucleated macrophages populated the engineered tissue. Besides, its extracellular matrix contained thin sparse collagen fibrils and a newly formed vascular network whose endothelin-1-expressing endothelial cells grew first on the fibroin microfibrils and later expanded into the intervening matrix. Remarkably, no infiltrates of inflammatory leukocytes and no packed collagen fibers bundles among fibroin microfibers, no fibrous capsules at the grafts periphery, and hence no foreign body response was obtained at the end of 3 months of observation. Therefore, we posit that silk noil-based 3D carded-needled nonwoven scaffolds are tools for translational medicine studies as they could guide connective tissue regeneration at deep burn wounds averting scar retraction with good functional results.

  16. Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells.

    PubMed

    Haslauer, Carla M; Avery, Matthew R; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2015-07-01

    Polymeric scaffolds have emerged as a means of generating three-dimensional tissues, such as for the treatment of bone injuries and nonunions. In this study, a fibrous scaffold was designed using the biocompatible, degradable polymer poly-lactic acid in combination with a water dispersible sacrificial polymer, EastONE. Fibers were generated via industry relevant, facile scale-up melt-spinning techniques with an islands-in-the-sea geometry. Following removal of EastONE, a highly porous fiber remained possessing 12 longitudinal channels and pores throughout all internal and external fiber walls. Weight loss and surface area characterization confirmed the generation of highly porous fibers as observed via focused ion beam/scanning electron microscopy. Porous fibers were then knit into a three-dimensional scaffold and seeded with human adipose-derived stem cells (hASC). Confocal microscopy images confirmed hASC attachment to the fiber walls and proliferation throughout the knit structure. Quantification of cell-mediated calcium accretion following culture in osteogenic differentiation medium confirmed hASC differentiation throughout the porous constructs. These results suggest incorporation of a sacrificial polymer within islands-in-the-sea fibers generates a highly porous scaffold capable of supporting stem cell viability and differentiation with the potential to generate large three-dimensional constructs for bone regeneration and/or other tissue engineering applications.

  17. Biocompatibility of RealSeal, its primer and AH Plus implanted in subcutaneous connective tissue of rats

    PubMed Central

    GRECCA, Fabiana Soares; KOPPER, Patrícia Maria Poli; dos SANTOS, Régis Burmeister; FOSSATI, Anna Christina; CARRARD, Vinicius Coelho; ACASIGUA, Gerson Arison Xavier; de FIGUEIREDO, José Antônio Poli

    2011-01-01

    Objective This study tested rat connective tissue response to RealSeal, RealSeal primer or AH Plus after 7, 15, 30, 60 and 90 days of implantation. Material and methods Thirty Wistar rats had subcutaneous sockets created on their back and received four implants each of polyethylene tubes containing one of the materials tested according to the groups: AH (AH Plus Sealer); RS (RealSeal Sealer); RP (RealSeal Primer); CG (control group – empty tube). After histological processing, sections were analyzed to identify the presence of neutrophils, lymphocytes and plasma cells, eosinophils, macrophages and giant cells, as well as fibrous capsule and abscesses, by an examiner using light microscope. Kruskal- Wallis and multiple-comparisons test were used for statistical analysis. Significance level was set at 5%. Results Lymphoplasmacytic infiltrate scores significantly higher than those of the control group were observed at 14 and 60 days in AH group, and at 90 days in RS group (p<0.05). There were no differences in terms of presence of macrophages, giant cells, eosinophils, neutrophils or fibrosis. AH Plus group scored higher for abscesses at 7 days than after any other period (p=0.031). RP group scored higher for lymphoplasmacytic infiltrate at 14 days than at 90 days (p=0.04). Conclusion The main contribution of this study was to demonstrate that issues involved with tissue tolerance of a Resilon-containing sealer, RealSeal Sealer, cannot be attributed to its primer content. PMID:21437470

  18. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering.

    PubMed

    Stewart, Elise; Kobayashi, Nao R; Higgins, Michael J; Quigley, Anita F; Jamali, Sina; Moulton, Simon E; Kapsa, Robert M I; Wallace, Gordon G; Crook, Jeremy M

    2015-04-01

    Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.

  19. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  20. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.

    PubMed

    Menaa, Farid; Abdelghani, Adnane; Menaa, Bouzid

    2015-12-01

    The discovery of the interesting intrinsic properties of graphene, a two-dimensional nanomaterial, has boosted further research and development for various types of applications from electronics to biomedicine. During the last decade, graphene and several graphene-derived materials, such as graphene oxide, carbon nanotubes, activated charcoal composite, fluorinated graphenes and three-dimensional graphene foams, have been extensively explored as components of biosensors or theranostics, or to remotely control cell-substrate interfaces, because of their remarkable electro-conductivity. To date, despite the intensive progress in human stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. Interestingly, most of the recent in vitro studies indicate that graphene-based nanomaterials (i.e. mainly graphene, graphene oxide and carbon nanotubes) promote stem cell adhesion, growth, expansion and differentiation. Although cell viability in vitro is not affected, their potential nanocytoxicity (i.e. nanocompatibility and consequences of uncontrolled nanobiodegradability) in a clinical setting using humans remains unknown. Therefore, rigorous internationally standardized clinical studies in humans that would aim to assess their nanotoxicology are requested. In this paper we report and discuss the recent and pertinent findings about graphene and derivatives as valuable nanomaterials for stem cell research (i.e. culture, maintenance and differentiation) and tissue engineering, as well as for regenerative, translational and personalized medicine (e.g. bone reconstruction, neural regeneration). Also, from scarce nanotoxicological data, we also highlight the importance of functionalizing graphene-based nanomaterials to minimize the cytotoxic effects, as well as other critical safety parameters that remain important to take into consideration when developing nanobionanomaterials.

  1. Method of making biocompatible electrodes

    DOEpatents

    Wollam, John S.

    1992-01-01

    A process of improving the sensing function of biocompatible electrodes and the product so made are disclosed. The process is designed to alter the surfaces of the electrodes at their tips to provide increased surface area and therefore decreased contact resistance at the electrode-tissue interface for increased sensitivity and essentially includes rendering the tips atomically clean by exposing them to bombardment by ions of an inert gas, depositing an adhesion layer on the cleaned tips, forming a hillocked layer on the adhesion layer by increasing the temperature of the tips, and applying a biocompatible coating on the hillocked layer. The resultant biocompatible electrode is characterized by improved sensitivity, minimum voltage requirement for organ stimulation and a longer battery life for the device in which it is employed.

  2. Electrospinning of Biocompatible Nanofibers

    NASA Astrophysics Data System (ADS)

    Coughlin, Andrew J.; Queen, Hailey A.; McCullen, Seth D.; Krause, Wendy E.

    2006-03-01

    Artificial scaffolds for growing cells can have a wide range of applications including wound coverings, supports in tissue cultures, drug delivery, and organ and tissue transplantation. Tissue engineering is a promising field which may resolve current problems with transplantation, such as rejection by the immune system and scarcity of donors. One approach to tissue engineering utilizes a biodegradable scaffold onto which cells are seeded and cultured, and ideally develop into functional tissue. The scaffold acts as an artificial extracellular matrix (ECM). Because a typical ECM contains collagen fibers with diameters of 50-500 nm, electrostatic spinning (electrospinning) was used to mimic the size and structure of these fibers. Electrospinning is a novel way of spinning a nonwoven web of fibers on the order of 100 nm, much like the web of collagen in an ECM. We are investigating the ability of several biocompatible polymers (e.g., chitosan and polyvinyl alcohol) to form defect-free nanofiber webs and are studying the influence of the zero shear rate viscosity, molecular weight, entanglement concentration, relaxation time, and solvent on the resulting fiber size and morphology.

  3. Biocompatibility of surgical implants

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1979-01-01

    Method of selecting biocompatible materials for surgical implants uses fracture mechanic relationships and surface energies of candidate materials in presence of blood plasma. Technique has been used to characterize 190 materials by parameters that reflect their biocompatibility.

  4. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  5. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine

    PubMed Central

    Vielreicher, M.; Schürmann, S.; Detsch, R.; Schmidt, M. A.; Buttgereit, A.; Boccaccini, A.; Friedrich, O.

    2013-01-01

    This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging. PMID:23864499

  6. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine.

    PubMed

    Vielreicher, M; Schürmann, S; Detsch, R; Schmidt, M A; Buttgereit, A; Boccaccini, A; Friedrich, O

    2013-09-06

    This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging.

  7. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility.

    PubMed

    Li, Chang-Qing; Huang, Bo; Luo, Gang; Zhang, Chuan-Zhi; Zhuang, Ying; Zhou, Yue

    2010-02-01

    To construct a novel scaffold for nucleus pulposus (NP) tissue engineering, The porous type II collagen (CII)/hyaluronate (HyA)-chondroitin-6-sulfate (6-CS) scaffold was prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking system. The physico-chemical properties and biocompatibility of CII/HyA-CS scaffolds were evaluated. The results suggested CII/HyA-CS scaffolds have a highly porous structure (porosity: 94.8 +/- 1.5%), high water-binding capacity (79.2 +/- 2.8%) and significantly improved mechanical stability by EDC/NHS crosslinking (denaturation temperature: 74.6 +/- 1.8 and 58.1 +/- 2.6 degrees C, respectively, for the crosslinked scaffolds and the non-crosslinked; collagenase degradation rate: 39.5 +/- 3.4 and 63.5 +/- 2.0%, respectively, for the crosslinked scaffolds and the non-crosslinked). The CII/HyA-CS scaffolds also showed satisfactory cytocompatibility and histocompatibility as well as low immunogenicity. These results indicate CII/HyA-CS scaffolds may be an alternative material for NP tissue engineering due to the similarity of its composition and physico-chemical properties to those of the extracellular matrices (ECM) of native NP.

  8. Biocompatibility of plasma nanostructured biopolymers

    NASA Astrophysics Data System (ADS)

    Slepičková Kasálková, N.; Slepička, P.; Bačáková, L.; Sajdl, P.; Švorčík, V.

    2013-07-01

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell's adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  9. Bioglass: A novel biocompatible innovation

    PubMed Central

    Krishnan, Vidya; Lakshmi, T.

    2013-01-01

    Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass) as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as “bioactive glass-bioglass.” It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as “bioactive ceramics.” The aim of this article is to give a bird's-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone. PMID:23833747

  10. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.

    PubMed

    Nga, Nguyen Kim; Hoai, Tran Thanh; Viet, Pham Hung

    2015-04-01

    This study presents a facile synthesis of biomimetic hydroxyapatite nanorod/poly(D,L) lactic acid (HAp/PDLLA) scaffolds with the use of solvent casting combined with a salt-leaching technique for bone-tissue engineering. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were used to observe the morphologies, pore structures of synthesized scaffolds, interactions between hydroxyapatite nanorods and poly(D,L) lactic acid, as well as the compositions of the scaffolds, respectively. Porosity of the scaffolds was determined using the liquid substitution method. Moreover, the apatite-forming capability of the scaffolds was evaluated through simulated body fluid (SBF) incubation tests, whereas the viability, attachment, and distribution of human osteoblast cells (MG 63 cell line) on the scaffolds were determined through alamarBlue assay and confocal laser microscopy after nuclear staining with 4',6-diamidino-2-phenylindole and actin filaments of a cytoskeleton with Oregon Green 488 phalloidin. Results showed that hydroxyapatite nanorod/poly(D,L) lactic acid scaffolds that mimic the structure of natural bone were successfully produced. These scaffolds possessed macropore networks with high porosity (80-84%) and mean pore sizes ranging 117-183 μm. These scaffolds demonstrated excellent apatite-forming capabilities. The rapid formation of bone-like apatites with flower-like morphology was observed after 7 days of incubation in SBFs. The scaffolds that had a high percentage (30 wt.%) of hydroxyapatite demonstrated better cell adhesion, proliferation, and distribution than those with low percentages of hydroxyapatite as the days of culture increased. This work presented an efficient route for developing biomimetic composite scaffolds, which have potential applications in bone-tissue engineering.

  11. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.

    PubMed

    Nie, Lei; Chen, Dong; Suo, Jinping; Zou, Peng; Feng, Shuibin; Yang, Qi; Yang, Shuhua; Ye, Shunan

    2012-12-01

    In this study, a well developed porous biphasic calcium phosphate (BCP)/polyvinyl alcohol (PVA) scaffold was prepared by emulsion foam freeze-drying method possessed moderate inter-connected pores and porosity. The SEM analysis showed that BCP nano-particles could disperse uniformly in the scaffolds, and the pore size, porosity, and compressive strength could be controlled by the weight ratio of BCP/PVA. The in vitro degradation and cytocompatibility of scaffolds were examined in this study. The degradation analysis showed the prepared scaffolds have a low variation of pH values (approximately 7.18-7.36) in SBF solution, and have the biodegradation rate of BCP/PVA scaffolds decreased with the increase of PVA concentration. Moreover, MTT assay indicated that the BCP/PVA porous scaffold has no negative effects on cells growth and proliferation, and the hBMSCs possessed a favorable spreading morphology on the BCP/PVA scaffold surface. The inter-connected pore structure, mechanical strength, biodegradation rate and cytocompatibility of the prepared BCP/PVA scaffold can meet essential requirements for blame bearing bone tissue engineering and regeneration.

  12. Biocompatible implant surface treatments.

    PubMed

    Pattanaik, Bikash; Pawar, Sudhir; Pattanaik, Seema

    2012-01-01

    Surface plays a crucial role in biological interactions. Surface treatments have been applied to metallic biomaterials in order to improve their wear properties, corrosion resistance, and biocompatibility. A systematic review was performed on studies investigating the effects of implant surface treatments on biocompatibility. We searched the literature using PubMed, electronic databases from 1990 to 2009. Key words such as implant surface topography, surface roughness, surface treatment, surface characteristics, and surface coatings were used. The search was restricted to English language articles published from 1990 to December 2009. Additionally, a manual search in the major dental implant journals was performed. When considering studies, clinical studies were preferred followed by histological human studies, animal studies, and in vitro studies. A total of 115 articles were selected after elimination: clinical studies, 24; human histomorphometric studies, 11; animal histomorphometric studies, 46; in vitro studies, 34. The following observations were made in this review: · The focus has shifted from surface roughness to surface chemistry and a combination of chemical manipulations on the porous structure. More investigations are done regarding surface coatings. · Bone response to almost all the surface treatments was favorable. · Future trend is focused on the development of osteogenic implant surfaces. Limitation of this study is that we tried to give a broader overview related to implant surface treatments. It does not give any conclusion regarding the best biocompatible implant surface treatment investigated till date. Unfortunately, the eventually selected studies were too heterogeneous for inference of data.

  13. [Biocompatibility of composites--literature review].

    PubMed

    Lederman, M; Sharon, E; Lipovezky-Adler, M; Smidt, A

    2015-01-01

    Composites are a large family of materials composed of polymer matrices imbedded with different types of fillers. The specific properties achievable with diverse chemical combinations provide for a wide range of implications in many industrial fields. Materials designed for medical use must not only efficiently serve the purpose of their use, but also be biocompatible to the tissues they contact and the body as a whole. Dental composites and their components have been studied intensely to assess their potential local and systemic side effects, to establish biocompatibility, in order to receive the proper conformation allowing their safe clinical use. The purpose of the following paper is to summarize several aspects of research focused on determining cytotoxicity, genotoxicity, carcinogenicity, hypersensitivity, and microbial effects of composite components, in order to ascertain in fact how biocompatible dental composite materials are. Research shows that several chemical components may be released from different types of composites, and are able to cause toxic, allergic, mutagenic and other biological effects. However, because of the small amounts applied and the unique conditions in the oral cavity, the clinical relevance of these findings is questionable. Nevertheless, caution should be taken when using these materials, to avoid possible negative outcomes. Future studies should focus on targeting most toxic components and finding biocompatible alternatives and development of materials with high polymerization efficiency in order to reduce the amount of leachable components.

  14. SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY

    PubMed Central

    Thevenot, Paul; Hu, Wenjing; Tang, Liping

    2011-01-01

    Implantable medical devices are increasingly important in the practice of modern medicine. Unfortunately, almost all medical devices suffer to a different extent from adverse reactions, including inflammation, fibrosis, thrombosis and infection. To improve the safety and function of many types of medical implants, a major need exists for development of materials that evoked desired tissue responses. Because implant-associated protein adsorption and conformational changes thereafter have been shown to promote immune reactions, rigorous research efforts have been emphasized on the engineering of surface property (physical and chemical characteristics) to reduce protein adsorption and cell interactions and subsequently improve implant biocompatibility. This brief review is aimed to summarize the past efforts and our recent knowledge about the influence of surface functionality on protein:cell:biomaterial interactions. It is our belief that detailed understandings of bioactivity of surface functionality provide an easy, economic, and specific approach for the future rational design of implantable medical devices with desired tissue reactivity and, hopefully, wound healing capability. PMID:18393890

  15. Sticking to the story: outstanding challenges in gecko-inspired adhesives.

    PubMed

    Niewiarowski, Peter H; Stark, Alyssa Y; Dhinojwala, Ali

    2016-04-01

    The natural clinging ability of geckos has inspired hundreds of studies seeking design principles that could be applied to creating synthetic adhesives with the same performance capabilities as the gecko: adhesives that use no glue, are self-cleaning and reusable, and are insensitive to a wide range of surface chemistries and roughness. Important progress has been made, and the basic mechanics of how 'hairy' adhesives work have been faithfully reproduced, advancing theory in surface science and portending diverse practical applications. However, after 15 years, no synthetic mimic can yet perform as well as a gecko and simultaneously meet of all the criteria listed above. Moreover, processes for the production of inexpensive and scalable products are still not clearly in view. Here, we discuss our perspective on some of the gaps in understanding that still remain; these gaps in our knowledge should stimulate us to turn to deeper study of the way in which free-ranging geckos stick to the variety of surfaces found in their natural environments and to a more complete analysis of the materials composing the gecko toe pads.

  16. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  17. There is no such thing as a biocompatible material.

    PubMed

    Williams, David F

    2014-12-01

    This Leading Opinion Paper discusses a very important matter concerning the use of a single word in biomaterials science. This might be considered as being solely concerned with semantics, but it has implications for the scientific rationale for biomaterials selection and the understanding of their performance. That word is the adjective 'biocompatible', which is often used to characterize a material property. It is argued here that biocompatibility is a perfectly acceptable term, but that it subsumes a variety of mechanisms of interaction between biomaterials and tissues or tissue components and can only be considered in the context of the characteristics of both the material and the biological host within which it placed. De facto it is a property of a system and not of a material. It follows that there can be no such thing as a biocompatible material. It is further argued that in those situations where it is considered important, or necessary, to use a descriptor of biocompatibility, as in a scientific paper, a regulatory submission or in a legal argument, the phrase 'intrinsically biocompatible system' would be the most appropriate. The rationale for this linguistic restraint is that far too often it has been assumed that some materials are 'universally biocompatible' on the basis of acceptable clinical performance in one situation, only for entirely unacceptable performance to ensue in quite different clinical circumstances.

  18. Biocompatibility of Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Ruan, Jing; Song, Hua; Zhang, Jiali; Wo, Yan; Guo, Shouwu; Cui, Daxiang

    2011-12-01

    Herein, we report the effects of graphene oxides on human fibroblast cells and mice with the aim of investigating graphene oxides' biocompatibility. The graphene oxides were prepared by the modified Hummers method and characterized by high-resolution transmission electron microscope and atomic force microscopy. The human fibroblast cells were cultured with different doses of graphene oxides for day 1 to day 5. Thirty mice divided into three test groups (low, middle, high dose) and one control group were injected with 0.1, 0.25, and 0.4 mg graphene oxides, respectively, and were raised for 1 day, 7 days, and 30 days, respectively. Results showed that the water-soluble graphene oxides were successfully prepared; graphene oxides with dose less than 20 μg/mL did not exhibit toxicity to human fibroblast cells, and the dose of more than 50 μg/mL exhibits obvious cytotoxicity such as decreasing cell adhesion, inducing cell apoptosis, entering into lysosomes, mitochondrion, endoplasm, and cell nucleus. Graphene oxides under low dose (0.1 mg) and middle dose (0.25 mg) did not exhibit obvious toxicity to mice and under high dose (0.4 mg) exhibited chronic toxicity, such as 4/9 mice death and lung granuloma formation, mainly located in lung, liver, spleen, and kidney, almost could not be cleaned by kidney. In conclusion, graphene oxides exhibit dose-dependent toxicity to cells and animals, such as inducing cell apoptosis and lung granuloma formation, and cannot be cleaned by kidney. When graphene oxides are explored for in vivo applications in animal or human body, its biocompatibility must be considered.

  19. Synthetic cornea: biocompatibility and optics

    NASA Astrophysics Data System (ADS)

    Parel, Jean-Marie A.; Kaminski, Stefan; Fernandez, Viviana; Alfonso, E.; Lamar, Peggy; Lacombe, Emmanuel; Duchesne, Bernard; Dubovy, Sander; Manns, Fabrice; Rol, Pascal O.

    2002-06-01

    Purpose. Experimentally find a method to provide a safe surgical technique and an inexpensive and long lasting mesoplant for the restoration of vision in patients with bilateral corneal blindness due to ocular surface and stromal diseases. Methods. Identify the least invasive and the safest surgical technique for synthetic cornea implantation. Identify the most compatible biomaterials and the optimal shape a synthetic cornea must have to last a long time when implanted in vivo. Results. Penetrating procedures were deemed too invasive, time consuming, difficult and prone to long term complications. Therefore a non-penetrating delamination technique with central trephination was developed to preserve the integrity of Descemet's membrane and the anterior segment. Even though this approach limits the number of indications, it is acceptable since the majority of patients only have opacities in the stroma. The prosthesis was designed to fit in the removed tissue plane with its skirt fitted under the delaminated stroma. To improve retention, the trephination wall was made conical with the smallest opening on the anterior surface and a hat-shaped mesoplant was made to fit. The skirt was perforated in its perimeter to allow passage of nutrients and tissues ingrowths. To simplify the fabrication procedure, the haptic and optic were made of the same polymer. The intrastromal biocompatibility of several hydrogels was found superior to current clinically used PMMA and PTFE materials. Monobloc mesoplants made of 4 different materials were implanted in rabbits and followed weekly until extrusion occurred. Some remained optically clear allowing for fundus photography. Conclusions. Hydrogel synthetic corneas can be made to survive for periods longer than 1 year. ArF excimer laser photoablation studies are needed to determine the refractive correction potential of these mesoplants. A pilot FDA clinical trial is needed to assess the mesoplant efficacy and very long-term stability.

  20. Biocompatible nanoparticles and biopolyelectrolytes

    NASA Astrophysics Data System (ADS)

    Zribi, Olena

    The research presented in this manuscript encompasses a merger of two research directions: a study of aqueous nanoparticle colloids and a study of biological polyelectrolytes. The majority of biomedical applications of nanoparticles require stable aqueous colloids of nanoparticles as a starting point. A new one-step method of preparation of aqueous solutions of ultra-fine ferroelectric barium titanate nanoparticles was developed and generalized to the preparation of stable aqueous colloids of semiconductor nanoparticles. This high-energy ball milling technique is low cost, environmentally friendly, and allows for control of nanoparticle size by changing milling time. Aqueous colloids of BaTiO3 nanoparticles are stable over time, maintain ferroelectricity and can be used as second harmonic generating nanoprobes for biomedical imaging. Biopolyelectrolytes exhibit a variety of novel liquid-crystalline phases in aqueous solutions where their electrolytic nature is a driving force behind phase formation. We study medically relevant mixtures of F-actin, DNA and oppositely charged ions (such as multivalent salts and antibiotic drugs) and map out phase diagrams and laws that govern phase transitions. We combine these research directions in studies of the condensation behavior in aqueous solutions of biocompatible nanoparticles and biopolyelectrolytes.

  1. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers.

    PubMed

    Ghanaati, Shahram; Webber, Matthew J; Unger, Ronald E; Orth, Carina; Hulvat, James F; Kiehna, Sarah E; Barbeck, Mike; Rasic, Angela; Stupp, Samuel I; Kirkpatrick, C James

    2009-10-01

    Biomaterials that promote angiogenesis have great potential in regenerative medicine for rapid revascularization of damaged tissue, survival of transplanted cells, and healing of chronic wounds. Supramolecular nanofibers formed by self-assembly of a heparin-binding peptide amphiphile and heparan sulfate-like glycosaminoglycans were evaluated here using a dorsal skinfold chamber model to dynamically monitor the interaction between the nanofiber gel and the microcirculation, representing a novel application of this model. We paired this model with a conventional subcutaneous implantation model for static histological assessment of the interactions between the gel and host tissue. In the static analysis, the heparan sulfate-containing nanofiber gels were found to persist in the tissue for up to 30 days and revealed excellent biocompatibility. Strikingly, as the nanofiber gel biodegraded, we observed the formation of a de novo vascularized connective tissue. In the dynamic experiments using the dorsal skinfold chamber, the material again demonstrated good biocompatibility, with minimal dilation of the microcirculation and only a few adherent leukocytes, monitored through intravital fluorescence microscopy. The new application of the dorsal skinfold model corroborated our findings from the traditional static histology, demonstrating the potential use of this technique to dynamically evaluate the biocompatibility of materials. The observed biocompatibility and development of new vascularized tissue using both techniques demonstrates the potential of these angiogenesis-promoting materials for a host of regenerative strategies.

  2. Carbon Fiber Biocompatibility for Implants

    PubMed Central

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  3. Carbon Fiber Biocompatibility for Implants.

    PubMed

    Petersen, Richard

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10(-8)) and 0.8 mm at 41.6% vs. 19.5% (p < 10(-4)), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  4. Biocompatibility of Bacterial Cellulose Based Biomaterials

    PubMed Central

    Torres, Fernando G.; Commeaux, Solene; Troncoso, Omar P.

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed. PMID:24955750

  5. Ultraflexible organic amplifier with biocompatible gel electrodes

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm-2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ~200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  6. Ultraflexible organic amplifier with biocompatible gel electrodes.

    PubMed

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-29

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  7. Biocompatibility of root-end filling materials: recent update

    PubMed Central

    Gupta, Saurabh Kumar; Newaskar, Vilas

    2013-01-01

    The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials. PMID:24010077

  8. [IN VIVO EVALUATION OF POLYCAPROLACTONE-HYDROXYAPATITE SCAFFOLD BIOCOMPATIBILITY].

    PubMed

    Ivanov, A N; Kozadaev, M N; Bogomolova, N V; Matveeva, O V; Puchinyan, D M; Norkin, I A; Sal'kovskii, Yu E; Lyubun, G P

    2015-01-01

    Biocompatibility is one of the main and very important properties for scaffolds. The aim of the present study was to investigate cells population dynamics in vivo in the process of original polycaprolactone-hydroxyapatite scaffold colonization, as well as tissue reactions to the implantation to assess the biocompatibility of the matrix. It has been found that tissue reactive changes in white rats subside completely up to the 21st day after subcutaneous polycaprolactone-hydroxyapatite scaffold implantation. Matrix was actively colonized by connective tissue cells in the period from the 7th to the 21st day of the experiment. However, intensive scaffold vascularization started from the 14th day after implantation. These findings suggest a high degree of the polycaprolactone-hydroxyapatite scaffold biocompatiblilitye.

  9. Biocompatibility of implantable biomedical devices

    NASA Astrophysics Data System (ADS)

    Lyu, Suping

    2008-03-01

    Biomedical devices have been broadly used to treat human disease, especially chronic diseases where pharmaceuticals are less effective. Heart valve and artificial joint are examples. Biomedical devices perform by delivering therapies such as electric stimulations, mechanical supports and biological actions. While the uses of biomedical devices are highly successful they can trigger adverse biological reactions as well. The property that medical devices perform with intended functions but not causing unacceptable adverse effects was called biocompatibility in the early time. As our understanding of biomaterial-biological interactions getting broader, biocompatibility has more meanings. In this talk, I will present some adverse biological reactions observed with implantable biomedical devices. Among them are surface fouling of implantable sensors, calcification with vascular devices, restenosis with stents, foreign particle migration and mechanical fractures of devices due to inflammation reactions. While these effects are repeatable, there are very few quantitative data and theories to define them. The purpose of this presentation is to introduce this biocompatibility concept to biophysicists to stimulate research interests at different angles. An open question is how to quantitatively understand the biocompatibility that, like many other biological processes, has not been quantified experimentally.

  10. Polymerized supramolecular assemblies and biocompatibility

    NASA Astrophysics Data System (ADS)

    O'Brien, David F.

    2001-03-01

    The creation of durable, biomembrane-mimetic coatings for inorganic and polymeric surfaces that are biocompatible, i.e. resistant to nonspecific protein adsorption, remains an important goal that is expected to impact numerous fields. It has already been shown that the physical stability of lipid bilayer vesicles can be dramatically enhanced by cross-linking polymerization of reactive lipids, such as phosphatidylcholines. Bilayers of these same lipids on clean silicon dioxide surfaces can be formed by fusion of small bilayer vesicles with the surface. Radical initiated polymerization of these supported bilayers yields a stable poly(lipid) film that is not perturbed upon exposure to surfactant. Moreover, the cross-linked bilayer film can be removed from water into air with retention of the poly(lipid) bilayer structure. These polymerized bilayer films could be repeatedly transferred from water to air to water with no obvious change in their biocompatibility. The supported bilayer films were equally resistant to non-specific protein adsorption before and after polymerization. This indicates that biocompatible nature of the phosphorylcholine head group of the lipids was not compromised by polymerization of the lipids. The ability to maintain surface biocompatibility of membranes while substantially increasing their stability would appear to extend the technological uses of supramolecular assemblies of lipids.

  11. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    PubMed

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  12. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-20

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering.

  13. Biocompatibility of Ti-alloys for long-term implantation.

    PubMed

    Abdel-Hady Gepreel, Mohamed; Niinomi, Mitsuo

    2013-04-01

    The design of new low-cost Ti-alloys with high biocompatibility for implant applications, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals, is a challenge. To meet the demands of longer human life and implantation in younger patients, the development of novel metallic alloys for biomedical applications is aiming at providing structural materials with excellent chemical, mechanical and biological biocompatibility. It is, therefore, likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect. Among the other mechanical properties, the low Young's modulus alloys have been given a special attention recently, in order to avoid the occurrence of stress shielding after implantation. Therefore, many Ti-alloys were developed consisting of biocompatible elements such as Ti, Zr, Nb, Mo, and Ta, and showed excellent mechanical properties including low Young's modulus. However, a recent attention was directed towards the development of low cost-alloys that have a minimum amount of the high melting point and high cost rare-earth elements such as Ta, Nb, Mo, and W. This comes with substituting these metals with the common low cost, low melting point and biocompatible metals such as Fe, Mn, Sn, and Si, while keeping excellent mechanical properties without deterioration. Therefore, the investigation of mechanical and biological biocompatibility of those low-cost Ti-alloys is highly recommended now lead towards commercial alloys with excellent biocompatibility for long-term implantation.

  14. CYTOTOXICITY AND BIOCOMPATIBILITY OF DIRECT AND INDIRECT PULP CAPPING MATERIALS

    PubMed Central

    Modena, Karin Cristina da Silva; Casas-Apayco, Leslie Caroll; Atta, Maria Teresa; Costa, Carlos Alberto de Souza; Hebling, Josimeri; Sipert, Carla Renata; Navarro, Maria Fidela de Lima; Santos, Carlos Ferreira

    2009-01-01

    There are several studies about the cytotoxic effects of dental materials in contact with the pulp tissue, such as calcium hydroxide (CH), adhesive systems, resin composite and glass ionomer cements. The aim of this review article was to summarize and discuss the cytotoxicity and biocompatibility of materials used for protection of the dentin-pulp complex, some components of resin composites and adhesive systems when placed in direct or indirect contact with the pulp tissue. A large number of dental materials present cytotoxic effects when applied close or directly to the pulp, and the only material that seems to stimulate early pulp repair and dentin hard tissue barrier formation is CH. PMID:20027424

  15. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    PubMed Central

    Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo

    2011-01-01

    Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869

  16. The impact of contact angle on the biocompatibility of biomaterials.

    PubMed

    Menzies, Kara L; Jones, Lyndon

    2010-06-01

    Biomaterials may be defined as artificial materials that can mimic, store, or come into close contact with living biological cells or fluids and are becoming increasingly popular in the medical, biomedical, optometric, dental, and pharmaceutical industries. Within the ophthalmic industry, the best example of a biomaterial is a contact lens, which is worn by approximately 125 million people worldwide. For biomaterials to be biocompatible, they cannot illicit any type of unfavorable response when exposed to the tissue they contact. A characteristic that significantly influences this response is that related to surface wettability, which is often determined by measuring the contact angle of the material. This article reviews the impact of contact angle on the biocompatibility of tissue engineering substrates, blood-contacting devices, dental implants, intraocular lenses, and contact lens materials.

  17. Cysteine modified polyaniline films improve biocompatibility for two cell lines.

    PubMed

    Yslas, Edith I; Cavallo, Pablo; Acevedo, Diego F; Barbero, César A; Rivarola, Viviana A

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using l-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV-visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86°±1 to 90°±1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering.

  18. Synthesis, characterization and in vivo evaluation of biocompatible ferrogels

    NASA Astrophysics Data System (ADS)

    Lopez-Lopez, M. T.; Rodriguez, I. A.; Rodriguez-Arco, L.; Carriel, V.; Bonhome-Espinosa, A. B.; Campos, F.; Zubarev, A.; Duran, J. D. G.

    2017-06-01

    A hydrogel is a 3-D network of polymer chains in which water is the dispersion medium. Hydrogels have found extensive applications in the biomedical field due to their resemblance to living tissues. Furthermore, hydrogels can be endowed with exceptional properties by addition of synthetic materials. For example, magnetic field-sensitive gels, called ferrogels, are obtained by embedding magnetic particles in the polymer network. Novel living tissues with unique magnetic field-sensitive properties were recently prepared by 3-D cell culture in biocompatible ferrogels. This paper critically reviews the most recent progress and perspectives in their synthesis, characterization and biocompatibility evaluation. Optimization of ferrogels for this novel application requires low-density, strongly magnetic, multi-domain particles. Interestingly, the rheological properties of the resulting ferrogels in the absence of field were largely enhanced with respect to nonmagnetic hydrogels, which can only be explained by the additional cross-linking imparted by the embedded magnetic particles. Remarkably, rheological measurements under an applied magnetic field demonstrated that ferrogels presented reversibly tunable mechanical properties, which constitutes a unique advantage with respect to nonmagnetic hydrogels. In vivo evaluation of ferrogels showed good biocompatibility, with only some local inflammatory response, and no particle migration or damage to distant organs.

  19. Curcumin/xanthan-galactomannan hydrogels: rheological analysis and biocompatibility.

    PubMed

    Da-Lozzo, Eneida Janiscki; Moledo, Ricardo Cambaúva Andrukaisti; Faraco, Cloris Ditzel; Ortolani-Machado, Claudia Feijó; Bresolin, Tania Mari Bellé; Silveira, Joana Léa Meira

    2013-03-01

    Curcumin, a lipophilic compound found in the plant Curcuma longa L., exhibits a wide range of pharmacological activity; however, its therapeutic use has been limited because of its low bioavailability following oral administration. The aim of this study was to evaluate the viscoelastic characteristics and biocompatibility of a curcumin/xanthan:galactomannan hydrogel (X:G) system after topical application on chick embryo chorioallantoic membrane (CAM), a system established with a view toward curcumin nasal or topical pharmaceutical applications or possible administration in cosmetics or foods. A rheological analysis indicated that incorporation of curcumin did not alter the viscoelastic characteristics of the X:G hydrogel, suggesting that there was no change in the structure of the gel network. X:G hydrogels did not induce CAM tissue injury and the curcumin/X:G hydrogel system was also highly biocompatible. We conclude that the X:G hydrogel represents a potential matrix for curcumin formulations.

  20. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system.

    PubMed

    Stark, Alyssa Y; Klittich, Mena R; Sitti, Metin; Niewiarowski, Peter H; Dhinojwala, Ali

    2016-08-02

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system's performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both.

  1. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system

    PubMed Central

    Stark, Alyssa Y.; Klittich, Mena R.; Sitti, Metin; Niewiarowski, Peter H.; Dhinojwala, Ali

    2016-01-01

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system’s performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both. PMID:27480603

  2. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system.

    PubMed

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-12-07

    Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm(-2)) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment.

  3. Nanostructure of biocompatible titania/hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Steinhauer, Aleksey B.; Fomina, Marina A.; Petrova, Natalia V.; Zakharevich, Andrey M.; Skaptsov, Aleksandr A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2014-01-01

    The article describes prospective composite biocompatible titania coatings modified with hydroxyapatite nanoparticles and obtained on intraosseous implants fabricated from commercially pure titanium VT1-00. Consistency changes of morphological characteristics, crystalline structure, physical and mechanical properties and biocompatibility of experimental titanium implant coatings obtained by the combination of oxidation and surface modification with hydroxyapatite during induction heat treatment are defined.

  4. In vitro and in vivo ocular biocompatibility of electrospun poly(ɛ-caprolactone) nanofibers.

    PubMed

    Da Silva, Gisele Rodrigues; Lima, Tadeu Henrique; Oréfice, Rodrigo Lambert; Fernandes-Cunha, Gabriella Maria; Silva-Cunha, Armando; Zhao, Min; Behar-Cohen, Francine

    2015-06-20

    Biocompatibility is a requirement for the development of nanofibers for ophthalmic applications. In this study, nanofibers were elaborated using poly(ε-caprolactone) via electrospinning. The ocular biocompatibility of this material was investigated. MIO-M1 and ARPE-19 cell cultures were incubated with nanofibers and cellular responses were monitored by viability and morphology. The in vitro biocompatibility revealed that the nanofibers were not cytotoxic to the ocular cells. These cells exposed to the nanofibers proliferated and formed an organized monolayer. ARPE-19 and MIO-M1 cells were capable of expressing GFAP, respectively, demonstrating their functionality. Nanofibers were inserted into the vitreous cavity of the rat's eye for 10days and the in vivo biocompatibility was investigated using Optical Coherence Tomography (OCT), histology and measuring the expression of pro-inflammatory genes (IL-1β, TNF-α, VEGF and iNOS) (real-time PCR). The OCT and the histological analyzes exhibited the preserved architecture of the tissues of the eye. The biomaterial did not elicit an inflammatory reaction and pro-inflammatory cytokines were not expressed by the retinal cells, and the other posterior tissues of the eye. Results from the biocompatibility studies indicated that the nanofibers exhibited a high degree of cellular biocompatibility and short-term intraocular tolerance, indicating that they might be applied as drug carrier for ophthalmic use.

  5. Polycrystalline Silicon: a Biocompatibility Assay

    SciTech Connect

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-21

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  6. Enhanced Biocompatibility of Porous Nitinol

    PubMed Central

    Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem

    2009-01-01

    Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08. PMID:19956797

  7. Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation.

    PubMed

    Zhu, Changlai; Li, Feng; Zhou, Xinyang; Lin, Lin; Zhang, Tianyi

    2014-05-01

    Bacterial cellulose (BC) is a natural biomaterial with unique properties suitable for tissue engineering applications, but it has not yet been used for preparing nerve conduits to repair peripheral nerve injuries. The objectives of this study were to prepare and characterize the Kampuchea-synthesized bacterial cellulose (KBC) and further evaluate the biocompatibility of KBC with peripheral nerve cells and tissues in vitro and in vivo. KBC membranes were composed of interwoven ribbons of about 20-100 nm in width, and had a high purity and the same crystallinity as that of cellulose Iα. The results from light and scanning electron microscopy, MTT assay, flow cytometry, and RT-PCR indicated that no significant differences in the morphology and cell function were observed between Schwann cells (SCs) cultured on KBC membranes and glass slips. We also fabricated a nerve conduit using KBC, which was implanted into the spatium intermusculare of rats. At 1, 3, and 6 weeks post-implantation, clinical chemistry and histochemistry showed that there were no significant differences in blood counts, serum biochemical parameters, and tissue reactions between implanted rats and sham-operated rats. Collectively, our data indicated that KBC possessed good biocompatibility with primary cultured SCs and KBC did not exert hematological and histological toxic effects on nerve tissues in vivo.

  8. Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds.

    PubMed

    Ajalloueian, Fatemeh; Lim, Mei Ling; Lemon, Greg; Haag, Johannes C; Gustafsson, Ylva; Sjöqvist, Sebastian; Beltrán-Rodríguez, Antonio; Del Gaudio, Costantino; Baiguera, Silvia; Bianco, Alessandra; Jungebluth, Philipp; Macchiarini, Paolo

    2014-07-01

    The development of tracheal scaffolds fabricated based on electrospinning technique by applying different ratios of polyethylene terephthalate (PET) and polyurethane (PU) is introduced here. Prior to clinical implantation, evaluations of biomechanical and morphological properties, as well as biocompatibility and cell adhesion verifications are required and extensively performed on each scaffold type. However, the need for bioreactors and large cell numbers may delay the verification process during the early assessment phase. Hence, we investigated the feasibility of performing biocompatibility verification using static instead of dynamic culture. We performed bioreactor seeding on 3-dimensional (3-D) tracheal scaffolds (PET/PU and PET) and correlated the quantitative and qualitative results with 2-dimensional (2-D) sheets seeded under static conditions. We found that an 8-fold reduction for 2-D static seeding density can essentially provide validation on the qualitative and quantitative evaluations for 3-D scaffolds. In vitro studies revealed that there was notably better cell attachment on PET sheets/scaffolds than with the polyblend. However, the in vivo outcomes of cell seeded PET/PU and PET scaffolds in an orthotopic transplantation model in rodents were similar. They showed that both the scaffold types satisfied biocompatibility requirements and integrated well with the adjacent tissue without any observation of necrosis within 30 days of implantation.

  9. Biocompatibility of polysebacic anhydride microparticles with chondrocytes in engineered cartilage

    PubMed Central

    Ponnurangam, Sathish; O'Connell, Grace D.; Hung, Clark T.; Somasundaran, Ponisseril

    2015-01-01

    One of main challenges in developing clinically relevant engineered cartilage is overcoming limited nutrient diffusion due to progressive elaboration of extracellular matrix at the periphery of the construct. Macro-channels have been used to decrease the nutrient path-length; however, the channels become occluded with matrix within weeks in culture, reducing nutrient diffusion. Alternatively, microparticles can be imbedded throughout the scaffold to provide localized nutrient delivery. In this study, we evaluated biocompatibility of polysebacic anhydride (PSA) polymers and the effectiveness of PSA-based microparticles for short-term delivery of nutrients in engineered cartilage. PSA-based microparticles were biocompatible with juvenile bovine chondrocytes for concentrations up to 2mg/mL; however, cytotoxicity was observed at 20mg/mL. Cytotoxicity at high concentrations is likely due to intracellular accumulation of PSA degradation products and resulting lipotoxicity. Cytotoxicity of PSA was partially reversed in the presence of bovine serum albumin. In conclusion, the findings from this study demonstrate concentration-dependent biocompatibility of PSA-based microparticles and potential application as a nutrient delivery vehicle that can be imbedded in scaffolds for tissue engineering. PMID:26398146

  10. Tissue response: biomaterials, dental implants, and compromised osseous tissue.

    PubMed

    Babu RS, Arvind; Ogle, Orrett

    2015-04-01

    Tissue response represents an important feature in biocompatibility in implant procedures. This review article highlights the fundamental characteristics of tissue response after the implant procedure. This article also highlights the tissue response in compromised osseous conditions. Understanding the histologic events after dental implants in normal and abnormal bone reinforces the concept of case selection in dental implants.

  11. Biocompatibility of crystalline opal nanoparticles

    PubMed Central

    2012-01-01

    Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2′-deoxyuridine (BrdU). Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells. PMID:23088559

  12. In vitro biocompatibility assessment of PHBV/Wollastonite composites.

    PubMed

    Li, Haiyan; Zhai, Wanying; Chang, Jiang

    2008-01-01

    Biodegradable and biocompatible materials are the basis for tissue engineering. As an initial step for developing bone tissue engineering scaffolds, the in vitro biocompatibility of degradable and bioactive composites consisting of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) and wollastonite (W) was studied by culturing osteoblasts on the PHBV/W substrates, and the cell adhesion, morphology, proliferation, and alkaline phosphatase (ALP) activity were evaluated. The results showed that the incorporation of wollastonite benefited osteoblasts adhesion and the osteoblasts cultured on the PHBV/W composite substrates spread better as compared to those on the pure PHBV after culturing for 3 h. In the prolonged incubation time, the osteoblasts cultured on the PHBV/W composite substrates revealed a higher proliferation and differentiation rate than those on the pure PHBV substrates. In addition, an increase of proliferation and differentiation rate was observed when the wollastonite content in the PHBV/W composites increased from 10 to 20 wt%. All of the results showed that the addition of wollastonite into PHBV could stimulate osteoblasts to proliferate and differentiate and the PHBV/W composites with wollastonite up to 20 wt% were more compatible than the pure PHBV materials for bone repair and bone tissue engineering.

  13. Biocompatible implants and methods of making and attaching the same

    SciTech Connect

    Rowley, Adrian P; Laude, Lucien D; Humayun, Mark S; Weiland, James D; Lotfi, Atoosa; Markland, Jr., Francis S

    2014-10-07

    The invention provides a biocompatible silicone implant that can be securely affixed to living tissue through interaction with integral membrane proteins (integrins). A silicone article containing a laser-activated surface is utilized to make the implant. One example is an implantable prosthesis to treat blindness caused by outer retinal degenerative diseases. The device bypasses damaged photoreceptors and electrically stimulates the undamaged neurons of the retina. Electrical stimulation is achieved using a silicone microelectrode array (MEA). A safe, protein adhesive is used in attaching the MEA to the retinal surface and assist in alleviating focal pressure effects. Methods of making and attaching such implants are also provided.

  14. In Vitro Models in Biocompatibility Assessment for Biomedical-Grade Chitosan Derivatives in Wound Management

    PubMed Central

    Keong, Lim Chin; Halim, Ahmad Sukari

    2009-01-01

    One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (β-1,4-D-glucosamine) has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing. PMID:19399250

  15. Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold.

    PubMed

    Grant, Sheila A; Spradling, Claire S; Grant, Daniel N; Fox, Derek B; Jimenez, Luis; Grant, David A; Rone, Rebecca J

    2014-02-01

    Collagen has been utilized as a scaffold for tissue engineering applications due to its many advantageous properties. However, collagen in its purified state is mechanically weak and prone to rapid degradation. To mitigate these effects, collagen can be crosslinked. Although enhanced mechanical properties and stability can be achieved by crosslinking, collagen can be rendered less biocompatible either due to changes in the overall microstructure or due to the cytotoxicity of the crosslinkers. We have investigated crosslinking collagen using gold nanoparticles (AuNPs) to enhance mechanical properties and resistance to degradation while also maintaining its natural microstructure and biocompatibility. Rat tail type I collagen was crosslinked with AuNPs using a zero-length crosslinker, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Several characterization studies were performed including electron microscopy, collagenase assays, ROS assays, and biocompatibility assays. The results demonstrated that AuNP-collagen scaffolds had increased resistance to degradation as compared to non-AuNP-collagen while still maintaining an open microstructure. Although the biocompatibility assays showed that the collagen and AuNP-collagen scaffolds are biocompatible, the AuNP-collagen demonstrated enhanced cellularity and glycoaminoglycans (GAG) production over the collagen scaffolds. Additionally, the Reactive Oxygen Species (ROS) assays indicated the ability of the AuNP-collagen to reduce oxidation. Overall, the AuNP-collagen scaffolds demonstrated enhanced biocompatibility and stability over non-AuNP scaffolds.

  16. Biocompatibility testing of branched and linear polyglycidol.

    PubMed

    Kainthan, Rajesh Kumar; Janzen, Johan; Levin, Elena; Devine, Dana V; Brooks, Donald E

    2006-03-01

    Polyglycidols are flexible hydrophilic polyethers that are potentially biocompatible polymers based on their similarities to the well-studied poly(ethyleneglycol). Polyglycidols can be prepared as branched or linear polymers by suitable synthetic methods. Biocompatibility testing of these polymers conducted in vitro as well as in vivo are reported here. The in vitro studies included hemocompatibility testing for effects on coagulation (PT and APTT), complement activation, red blood cell aggregation, and whole blood viscosity measurements. In vitro cytotoxicity experiments were also conducted. The results were compared with some of the common biocompatible polymers already in human use. Results from these studies show that polyglycidols are highly biocompatible. Hyperbranched polyglycidols were found to be well tolerated by mice even when injected in high doses.

  17. Biocompatibility of mannuronic acid-rich alginates.

    PubMed

    Klöck, G; Pfeffermann, A; Ryser, C; Gröhn, P; Kuttler, B; Hahn, H J; Zimmermann, U

    1997-05-01

    Highly purified algin preparations free of adverse contaminants with endotoxins and other mitogens recently became available by a new purification process (Klöck et al., Appl. Microbiol. Biotechnol., 1994, 40, 638-643). An advantage of this purification protocol is that it can be applied to alginates with various ratios of mannuronic acid to guluronic acid. High mannuronic acid alginate capsules are of particular practical interest for cell transplantation and for biohybrid organs, because mannuronate-rich alginates are usually less viscous, allowing one to make gels with a higher alginate content. This will increase their stability and reduce the diffusion permeability and could therefore protect immobilized cells more efficiently against the host immune system. Here we report the biocompatibility of purified, mannuronic acid-rich alginate (68% mannuronate residues) in a series of in vitro, as well as in vivo, assays. In contrast to raw alginate extracts, the purified product showed no mitogenic activity towards murine lymphocytes in vitro. Its endotoxin content was reduced to the level of the solvent. Animal studies with these new, purified algin formulations revealed the absence of a mitogen-induced foreign body reaction, even when the purified material (after cross-linking with Ba2+ ions) is implanted into animal models with elevated macrophage activity (diabetes-prone BB/OK rat). Thus, alginate capsules with high mannuronic acid content become available for applications such as implantation. In addition to the utilization as implantable cell reactors in therapy and biotechnology, these purified algins have broad application potential as ocular fillings, tissue replacements, microencapsulated growth factors and/or interleukins or slow-release dosage forms of antibodies, surface coatings of sensors and other invasive medical devices, and in encapsulation of genetically engineered cells for gene therapy.

  18. In Vivo Biocompatibility of PLGA-Polyhexylthiophene Nanofiber Scaffolds in a Rat Model

    PubMed Central

    Subramanian, Anuradha; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2013-01-01

    Electroactive polymers have applications in tissue engineering as a physical template for cell adhesion and carry electrical signals to improve tissue regeneration. Present study demonstrated the biocompatibility and biodegradability of poly(lactide-co-glycolide)-poly(3-hexylthiophene) (PLGA-PHT) blend electrospun scaffolds in a subcutaneous rat model. The biocompatibility of PLGA-undoped PHT, PLGA-doped PHT, and aligned PLGA-doped PHT nanofibers was evaluated and compared with random PLGA fibers. The animals were sacrificed at 2, 4, and 8 weeks; the surrounding tissue along with the implant was removed to evaluate biocompatibility and biodegradability by histologic analysis and GPC, respectively. Histology results demonstrated that all scaffolds except PLGA-undoped PHT showed decrease in inflammation over time. It was observed that the aligned PLGA-doped PHT fibers elicited moderate response at 2 weeks, which further reduced to a mild response over time with well-organized tissue structure and collagen deposition. The degradation of aligned nanofibers was found to be very slow when compared to random fibers. Further, there was no reduction in the molecular weight of undoped form of PHT throughout the study. These experiments revealed the biocompatibility and biodegradability of PLGA-PHT nanofibers that potentiate it to be used as a biomaterial for various applications. PMID:23971031

  19. In vivo biocompatibility of radiation crosslinked acrylamide copolymers

    NASA Astrophysics Data System (ADS)

    Saraydın, Dursun; Ünver-Saraydın, Serpil; Karadağ, Erdener; Koptagel, Emel; Güven, Olgun

    2004-04-01

    In vitro swelling and in vivo biocompatibility of radiation crosslinked acrylamide copolymers such as acrylamide/crotonic acid (AAm/CA) and acrylamide/itaconic acid (AAm/IA) were studied. The swelling kinetics of acrylamide copolymers were performed in distilled water, human serum and some simulated physiological fluids such as phosphate buffer, pH 7.4, glycine-HCl buffer, pH 1.1, physiological saline solution, and some swelling and diffusion parameters have been calculated. AAm/CA and AAm/IA hydrogels were subcutaneously implanted in rats for up to 10 weeks and the immediate short- and long-term tissue response to these implants were investigated. Histological analysis indicated that tissue reaction at the implant site progressed from an initial acute inflammatory response. No necrosis, tumorigenesis or infection was observed at the implant site up to 10 weeks. The radiation crosslinked AAm/CA and AAm/IA copolymers were found well tolerated, non-toxic and highly biocompatible. However, AAm/IA copolymer was not found to be compatible biomaterials, because one of the AAm/IA samples was disintegrated into small pieces in the rat.

  20. Biodegradability and biocompatibility study of poly(chitosan-g-lactic acid) scaffolds.

    PubMed

    Zhang, Zhe; Cui, Huifei

    2012-03-14

    A biodegradable, biocompatible poly(chitosan-g-lactic acid) (PCLA) scaffold was prepared and evaluated in vitro and in vivo. The PCLA scaffold was obtained by grafting lactic acid (LA) onto the amino groups on chitosan (CS) without a catalyst. The PCLA scaffolds were characterized by Fourier Transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The biodegradabilty was determined by mass loss in vitro, and degradation in vivo as a function of feed ratio of LA/CS. Bone marrow mesenchymal stem cell (BMSC) culture experiments and histological examination were performed to evaluate the PCLA scaffolds' biocompatibility. The results indicated that PCLA was promising for tissue engineering application.

  1. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials

    PubMed Central

    Pelling, Andrew E.

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6–9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson’s Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial. PMID:27328066

  2. Evaluation of biocompatibility of polypyrrole in vitro and in vivo.

    PubMed

    Wang, Xioadong; Gu, Xioasong; Yuan, Chunwai; Chen, Shujian; Zhang, Peiyun; Zhang, Tianyi; Yao, Jian; Chen, Fen; Chen, Gang

    2004-03-01

    In this study, the biocompatibility of the electrically conductive polymer polypyrrole (PPy) with nerve tissue was evaluated in vitro and in vivo. The extraction solution of PPy powder, which was synthesized chemically, was tested for acute toxicity, subacute toxicity, pyretogen, quantitative measure of cell viability, hemolysis, allergen, and micronuclei. The PPy membrane was synthesized electrochemically on the indium tin oxide conductive borosilicate glass. The dorsal root ganglia from 1-3-day-old Sprague-Dawley rats were cultured above PPy membrane and observed by light or scanning electron microscopy. The PPy-silicone tube (PPy membrane on the inner surface of the silicone tube) also synthesized electrochemically was used to bridge across 10-mm sciatic nerve gap in rats. Twenty-four weeks after the operation to rats, the regenerated tissues were observed by electrophysiological and histological techniques. PPy extraction solution showed no evidence of acute and subacute toxicity, pyretogen, hemolysis, allergen, and mutagenesis, and the Schwann cells from the PPy extraction solution group showed better survival rate and proliferation rate as compared with the saline solution control group. The migration of the Schwann cells and the neurite extension from dorsal root ganglia on the surface of PPy membrane-coated glass was better than those of bare glass. There was only lightly inflammation during 6 months of the postoperation, when the PPy-silicone tube bridged across the gap of the transected sciatic nerve. The regeneration of nerve tissue in the PPy-silicone tube was slightly better than that in the plain silicone tube by means of electrophysiological and histological examination. The results of this study indicate that PPy has a good biocompatibility with rat peripheral nerve tissue and that PPy might be a candidate material for bridging the peripheral nerve gap.

  3. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats

    PubMed Central

    Palejwala, Ali H.; Fridley, Jared S.; Mata, Javier A.; Samuel, Errol L. G.; Luerssen, Thomas G.; Perlaky, Laszlo; Kent, Thomas A.; Tour, James M.; Jea, Andrew

    2016-01-01

    Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury. PMID:27625885

  4. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  5. Biocompatibility of supercritical CO2-treated titanium implants in a rat model.

    PubMed

    Hill, C M; Kang, Q K; Wahl, C; Jimenez, A; Laberge, M; Drews, M; Matthews, M A; An, Y H

    2006-04-01

    Supercritical phase CO2 is a promising method for sterilizing implantable devices and tissue grafts. The goal of this study is to evaluate the biocompatibility of titanium implants sterilized by supercritical phase CO2 in a rat subcutaneous implantation model. At 5 weeks post implantation titanium implants sterilized by supercritical phase CO2 produce a soft tissue reaction that is comparable to other methods of sterilization (steam autoclave, ultraviolet light radiation, ethylene oxide gas, and radio-frequency glow-discharge), as indicated by the thickness and density of the foreign body capsule, although there were some differences on the capillary density. Overall the soft tissue response to the implants was similar among all methods of sterilization, indicating supercritical phase CO2 treatment did not compromise the biocompatibility of the titanium implant.

  6. Preparation of small bio-compatible microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1979-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  7. Biofabrication of a novel biomolecule-assisted reduced graphene oxide: an excellent biocompatible nanomaterial

    PubMed Central

    Zhang, Xi-Feng; Gurunathan, Sangiliyandi

    2016-01-01

    Graphene has been shown much interest, both in academics and industry due to its extraordinary physical, chemical, and biological proprieties. It shows great promises in biotechnological and biomedical applications as an antibacterial and anticancer agent, nanocarrier, sensor, etc. However, many studies demonstrated the toxicity of graphene in several cell lines, which is an obstacle to its use in biomedical applications. In this study, to improve the biocompatibility of graphene, we used nicotinamide (NAM) as a reducing and stabilizing agent to catalyze the reduction of graphene oxide (GO) to reduced graphene oxide (rGO). The resulted smaller-sized GO (NAM-rGO) showed excellent biocompatibility with mouse embryonic fibroblast cells, evidenced by various cellular assays. Furthermore, NAM-rGO had no effect on mitochondrial membrane permeability and caspase-3 activity compared to GO. Reverse transcription polymerase chain reaction analysis allowed us to identify the molecular mechanisms responsible for NAM-rGO-induced biocompatibility. NAM-rGO significantly induced the expression of genes encoding tight junction proteins (TJPs) such as zona occludens-1 (Tjp1) and claudins (Cldn3) without any effect on the expression of cytoskeleton proteins. Furthermore, NAM-rGO enhances the expression of alkaline phosphatase (ALP) gene, and it does this in a time-dependent manner. Overall, our study depicted the molecular mechanisms underlying NAM-rGO biocompatibility depending on upregulation of TJPs and ALP. This potential quality of graphene could be used in diverse applications including tissue regeneration and tissue engineering. PMID:27994461

  8. Biofabrication of a novel biomolecule-assisted reduced graphene oxide: an excellent biocompatible nanomaterial.

    PubMed

    Zhang, Xi-Feng; Gurunathan, Sangiliyandi

    Graphene has been shown much interest, both in academics and industry due to its extraordinary physical, chemical, and biological proprieties. It shows great promises in biotechnological and biomedical applications as an antibacterial and anticancer agent, nanocarrier, sensor, etc. However, many studies demonstrated the toxicity of graphene in several cell lines, which is an obstacle to its use in biomedical applications. In this study, to improve the biocompatibility of graphene, we used nicotinamide (NAM) as a reducing and stabilizing agent to catalyze the reduction of graphene oxide (GO) to reduced graphene oxide (rGO). The resulted smaller-sized GO (NAM-rGO) showed excellent biocompatibility with mouse embryonic fibroblast cells, evidenced by various cellular assays. Furthermore, NAM-rGO had no effect on mitochondrial membrane permeability and caspase-3 activity compared to GO. Reverse transcription polymerase chain reaction analysis allowed us to identify the molecular mechanisms responsible for NAM-rGO-induced biocompatibility. NAM-rGO significantly induced the expression of genes encoding tight junction proteins (TJPs) such as zona occludens-1 (Tjp1) and claudins (Cldn3) without any effect on the expression of cytoskeleton proteins. Furthermore, NAM-rGO enhances the expression of alkaline phosphatase (ALP) gene, and it does this in a time-dependent manner. Overall, our study depicted the molecular mechanisms underlying NAM-rGO biocompatibility depending on upregulation of TJPs and ALP. This potential quality of graphene could be used in diverse applications including tissue regeneration and tissue engineering.

  9. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells

    NASA Astrophysics Data System (ADS)

    Ion, Raluca; Vizireanu, Sorin; Luculescu, Catalin; Cimpean, Anisoara; Dinescu, Gheorghe

    2016-07-01

    The response of MC3T3-E1 pre-osteoblasts to vertically aligned, interconnected carbon nanowalls prepared by plasma enhanced chemical vapor deposition on silicon substrate has been evaluated in terms of cell adhesion, viability and cell proliferation. The behavior of osteoblasts seeded on carbon nanowalls was analyzed in parallel and compared with the behavior of the cells maintained in contact with tissue culture polystyrene (TCPS). The results demonstrate that osteoblasts adhere and remain viable in the long term on carbon nanowalls. Moreover, on the investigated scaffold cell proliferation was significantly promoted, although to a lower extent than on TCPS. Overall, the successful culture of osteoblasts on carbon nanowalls coated substrate confirms the biocompatibility of this scaffold, which could have potential applications in the development of orthopedic biomaterials.

  10. Physicochemical characterization and biocompatibility of alginate-polycation microcapsules designed for islet transplantation

    NASA Astrophysics Data System (ADS)

    Tam, Susan Kimberly

    Microencapsulation represents a method for immunoprotecting transplanted therapeutic cells or tissues from graft rejection using a physical barrier. This approach is advantageous in that it eliminates the need to induce long-term immunosuppression and allows the option of transplanting non-cadaveric cell sources, such as animal cells and stem cell-derived tissues. The microcapsules that we have investigated are designed to immunoprotect islets of Langerhans (i.e. clusters of insulin-secreting cells), with the goal of treating insulin-dependent diabetes. With the aid of techniques for physicochemical analysis, this research focused on understanding which properties of the microcapsule are the most important for determining its biocompatibility. The objective of this work was to elucidate correlations between the chemical make-up, physicochemical properties, and in vivo biocompatibility of alginate-based microcapsules. Our approach was based on the hypothesis that the immune response to the microcapsules is governed by, and can therefore be controlled by, specific physicochemical properties of the microcapsule and its material components. The experimental work was divided into five phases, each associated with a specific aim : (1) To prove that immunoglobulins adsorb to the surface of alginate-polycation microcapsules, and to correlate this adsorption with the microcapsule chemistry. (2) To test interlaboratory reproducibility in making biocompatible microcapsules, and evaluate the suitability of our materials and fabrication protocols for subsequent studies. (3) To determine which physicochemical properties of alginates affect the in vivo biocompatibility of their gels. (4) To determine which physiochemical properties of alginate-polycation microcapsules are most important for determining their in vivo biocompatibility (5) To determine whether a modestly immunogenic membrane hinders or helps the ability of the microcapsule to immunoprotect islet xenografts in

  11. Biocompatibility of a new pulp capping cement

    PubMed Central

    Poggio, Claudio; Ceci, Matteo; Beltrami, Riccardo; Dagna, Alberto; Colombo, Marco; Chiesa, Marco

    2014-01-01

    Summary Aim The aim of the present study was to evaluate the biocompatibility of a new pulp capping material (Biodentine, Septodont) compared with reference pulp capping materials: Dycal (Dentsply), ProRoot MTA (Dentsply) and MTA-Angelus (Angelus) by using murine odontoblast cell line and Alamar blue and MTT cytotoxicity tests. Methods The citocompatibility of murine odontoblasts cells (MDPC-23) were evaluated at different times using a 24 Transwell culture plate by Alamar blue test and MTT assay. Results The results were significantly different among the pulp capping materials tested. Biocompatibility was significant different among materials with different composition. Conclusions Biodentine and MTA-based products show lower cytotoxicity varying from calcium hydroxide-based material which present higher citotoxicity. PMID:25002921

  12. Biocompatible Ferromagnetic Cr-Trihalide Monolayers

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    Cr with an electronic configuration of 3d54s1 possesses the largest atomic magnetic moment (6µB) of all elements in the 3d transition metal series. Furthermore, the trivalent chromium (Cr3+) is biocompatible and is widely found in food and supplements. Here using first principles calculations combined with Monte Carlo simulations based on Ising model, we systematically study a class of 2D ferromagnetic monolayers CrX3 (X = Cl, Br, I). The feasibility of exfoliation from their layered bulk phase is confirmed by the small cleavage energy and high in-plane stiffness. Spin-polarized calculations, combined with self consistently determined Hubbard U that accounts for strong correlation energy, demonstrate that CrX3 (X =Cl, Br, I) monolayers are ferromagnetic and Cr is trivalent and carries a magnetic moment of 3µB, the resulting Cr3+ ions are biocompatible. The corresponding Curie temperatures for CrCl3 CrBr3 CrI3 are are found to 66, 86, and 107 K, respectively, which can be increased to 323, 314, 293 K by hole doping. The biocompatibility and ferromagnetism render these Cr-containing trichalcogenide monolayers unique for applications.

  13. New injectable elastomeric biomaterials for hernia repair and their biocompatibility.

    PubMed

    Skrobot, J; Zair, L; Ostrowski, M; El Fray, M

    2016-01-01

    Complications associated with implantation of polymeric hernia meshes remain a difficult surgical challenge. We report here on our work, developing for the first time, an injectable viscous material that can be converted to a solid and elastic implant in vivo, thus successfully closing herniated tissue. In this study, long-chain fatty acids were used for the preparation of telechelic macromonomers end-capped with methacrylic functionalities to provide UV curable systems possessing high biocompatibility, good mechanical strength and flexibility. Two different systems, comprising urethane and ester bonds, were synthesized from non-toxic raw materials and then subjected to UV curing after injection of viscous material into the cavity at the abdominal wall during hernioplasty in a rabbit hernia model. No additional fixation or sutures were required. The control group of animals was treated with commercially available polypropylene hernia mesh. The observation period lasted for 28 days. We show here that artificially fabricated defect was healed and no reherniation was observed in the case of the fatty acid derived materials. Importantly, the number of inflammatory cells found in the surrounding tissue was comparable to these found around the standard polypropylene mesh. No inflammatory cells were detected in connective tissues and no sign of necrosis has been observed. Collectively, our results demonstrated that new injectable and photocurable systems can be used for minimally invasive surgical protocols in repair of small hernia defects.

  14. Biocompatibility and degradation of tendon-derived scaffolds

    PubMed Central

    Alberti, Kyle A.; Xu, Qiaobing

    2016-01-01

    Decellularized extracellular matrix has often been used as a biomaterial for tissue engineering applications. Its function, once implanted can be crucial to determining whether a tissue engineered construct will be successful, both in terms of how the material breaks down, and how the body reacts to the material’s presence in the first place. Collagen is one of the primary components of extracellular matrix and has been used for a number of biomedical applications. Scaffolds comprised of highly aligned collagen fibrils can be fabricated directly from decellularized tendon using a slicing, stacking, and rolling technique, to create two- and three-dimensional constructs. Here, the degradation characteristics of the material are evaluated in vitro, showing that chemical crosslinking can reduce degradation while maintaining fiber structure. In vivo, non-crosslinked and crosslinked samples are implanted, and their biological response and degradation evaluated through histological sectioning, trichrome staining, and immunohistochemical staining for macrophages. Non-crosslinked samples are rapidly degraded and lose fiber morphology while crosslinked samples retain both macroscopic structure as well as fiber orientation. The cellular response of both materials is also investigated. The in vivo response demonstrates that the decellularized tendon material is biocompatible, biodegradable and can be crosslinked to maintain surface features for extended periods of time in vivo. This study provides material characteristics for the use of decellularized tendon as biomaterial for tissue engineering. PMID:26816651

  15. An effective and biocompatible antibiofilm coating for central venous catheter.

    PubMed

    Silva Paes Leme, Annelisa Farah; Ferreira, Aline Siqueira; Alves, Fernanda Aparecida Oliveira; de Azevedo, Bruna Martinho; de Bretas, Liza Porcaro; Farias, Rogerio Estevam; Oliveira, Murilo Gomes; Raposo, Nádia Rezende Barbosa

    2015-05-01

    The aim of this study was to investigate the in vitro and in vivo efficacy and the tissue reaction of an antibiofilm coating composed of xylitol, triclosan, and polyhexamethylene biguanide. The antimicrobial activity was analyzed by a turbidimetric method. Scanning electron microscopy was used to evaluate the antiadherent property of central venous catheter (CVC) fragments impregnated with an antibiofilm coating (I-CVC) in comparison with noncoated CVC (NC-CVC) fragments. Two in vivo assays using subcutaneous implantation of NC-CVC and I-CVC fragments in the dorsal area of rats were performed. The first assay comprised hematological and microbiological analysis. The second assay evaluated tissue response by examining the inflammatory reactions after 7 and 21 days. The formulation displayed antimicrobial activity against all tested strains. A biofilm disaggregation with significant reduction of microorganism's adherence in I-CVC fragments was observed. In vivo antiadherence results demonstrated a reduction of early biofilm formation of Staphylococcus aureus ATCC 25923, mainly in an external surface of the I-CVC, in comparison with the NC-CVC. All animals displayed negative hemoculture. No significant tissue reaction was observed, indicating that the antibiofilm formulation could be considered biocompatible. The use of I-CVC could decrease the probability of development of localized or systemic infections.

  16. Biocompatibility of Portland cement combined with different radiopacifying agents.

    PubMed

    Lourenço Neto, Natalino; Marques, Nádia C T; Fernandes, Ana Paula; Rodini, Camila O; Duarte, Marco A H; Lima, Marta C; Machado, Maria A A M; Abdo, Ruy C C; Oliveira, Thais M

    2014-03-01

    The aim of this study was to evaluate the response of rat subcutaneous tissue to Portland cement combined with two different radiopacifying agents, iodoform (CHI3) and zirconium oxide (ZrO2). These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were then stained with hematoxylin and eosin, and inflammatory reaction parameters were evaluated by light microscopy. The intensity of the inflammatory response to the sealants was analyzed by two blind calibrated observers throughout the experimental period. Histological analysis showed that all the materials caused a moderated inflammatory reaction at 7 days, which then diminished with time. At 15 days, the inflammatory reaction was almost absent, and fibroblasts and collagen fibers were observed indicating normal tissue healing. The degrees of the inflammatory reaction on different days throughout the experimental period were compared using the non-parametric Kruskal-Wallis test. Statistical analysis demonstrated no significant differences amongst the groups, and Portland cement associated with radiopacifying agents gave satisfactory results. Therefore, Portland cement used in combination with radiopacifying agents can be considered a biocompatible material. Although our results are very encouraging, further studies are needed in order to establish safe clinical indications for Portland cement combined with radiopacifying agents.

  17. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro

    PubMed Central

    Li, Yu-Hua; Wang, Zhen-Dong; Wang, Wei; Ding, Chang-Wei; Zhang, Hao-Xuan

    2015-01-01

    The composite of poly-lactic-co-glycolic acid (PLGA) and calcium phosphate cements (CPC) are currently widely used in bone tissue engineering. However, the properties and biocompatibility of the alendronate-loaded PLGA/CPC (APC) porous scaffolds have not been characterized. APC scaffolds were prepared by a solid/oil/water emulsion solvent evaporation method. The morphology, porosity, and mechanical strength of the scaffolds were characterized. Bone marrow mesenchymal stem cells (BMSCs) from rabbit were cultured, expanded and seeded on the scaffolds, and the cell morphology, adhesion, proliferation, cell cycle and osteogenic differentiation of BMSCs were determined. The results showed that the APC scaffolds had a porosity of 67.43 ± 4.2% and pore size of 213 ± 95 µm. The compressive strength for APC was 5.79 ± 1.21 MPa, which was close to human cancellous bone. The scanning electron microscopy, cell counting kit-8 assay, flow cytometry and ALP activity revealed that the APC scaffolds had osteogenic potential on the BMSCs in vitro and exhibited excellent biocompatibility with engineered bone tissue. APC scaffolds exhibited excellent biocompatibility and osteogenesis potential and can potentially be used for bone tissue engineering. PMID:25877763

  18. In vitro biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a candidate for nanomedicine applications.

    PubMed

    Zarrabi, Ali; Shokrgozar, Mohammad Ali; Vossoughi, Manouchehr; Farokhi, Mehdi

    2014-02-01

    In the present study, a detailed biocompatibility testing of a novel class of hybrid nanostructure based on hyperbranched polyglycerol and β-cyclodextrin is conducted. This highly water soluble nanostructure with size of less than 10 nm, polydispersity of less than 1.3, chemical tenability and highly branched architecture with the control over branching structure could be potentially used as a carrier in drug delivery systems. To this end, extensive studies in vitro and in vivo conditions have to be demonstrated. The in vitro studies include in vitro cytotoxicity tests; MTT and Neutral Red assay as an indicator of mitochondrial and lysosomal function, and blood biocompatibility tests such as effects on coagulation cascade, and complement activation. The results show that these hybrid nanostructures, which can be prepared in a simple reaction, are considerably biocompatible. The in vivo studies showed that the hybrid nanostructure is well tolerated by rats even in high doses of 10 mg ml(-1). After autopsy, the normal structure of liver tissue was observed; which divulges high biocompatibility and their potential applications as drug delivery and nanomedicine.

  19. The Biocompatibility of Porous vs Non-Porous Bone Cements: A New Methodological Approach

    PubMed Central

    Dall’Oca, C.; Maluta, T.; Cavani, F.; Morbioli, G.P.; Bernardi, P.; Sbarbati, A.; Degl’Innocenti, D.; Magnan, B.

    2014-01-01

    Composite cements have been shown to be biocompatible, bioactive, with good mechanical properties and capability to bind to the bone. Despite these interesting characteristic, in vivo studies on animal models are still incomplete and ultrastructural data are lacking. The acquisition of new ultrastructural data is hampered by uncertainties in the methods of preparation of histological samples due to the use of resins that melt methacrylate present in bone cement composition. A new porous acrylic cement composed of polymethyl-metacrylate (PMMA) and β-tricalcium-phosphate (p-TCP) was developed and tested on an animal model. The cement was implanted in femurs of 8 New Zealand White rabbits, which were observed for 8 weeks before their sacrifice. Histological samples were prepared with an infiltration process of LR white resin and then the specimens were studied by X-rays, histology and scanning electron microscopy (SEM). As a control, an acrylic standard cement, commonly used in clinical procedures, was chosen. Radiographic ultrastructural and histological exams have allowed finding an excellent biocompatibility of the new porous cement. The high degree of osteointegration was demonstrated by growth of neo-created bone tissue inside the cement sample. Local or systemic toxicity signs were not detected. The present work shows that the proposed procedure for the evaluation of biocompatibility, based on the use of LR white resin allows to make a thorough and objective assessment of the biocompatibility of porous and non-porous bone cements. PMID:24998920

  20. Enhanced vascular biocompatibility of decellularized xeno-/allogeneic matrices in a rodent model.

    PubMed

    van Steenberghe, M; Schubert, T; Guiot, Y; Bouzin, C; Bollen, X; Gianello, P

    2017-02-25

    Glutaraldehyde preservation is the gold standard for cardiovascular biological prosthesis. However, secondary calcifications and the absence of tissue growth remain major limitations. Our study assessed in vitro and in vivo the biocompatibility of human (fascia lata, pericardium) and porcine tissues (pericardium, peritoneum) treated with a physicochemical procedure for decellularization and non-conventional pathogens inactivation. Biopsies were performed before and after treatment to assess decellularization (HE/Dapi staining/DNA quantification/MHC I/alpha gal immunostaining) and mechanical integrity. Forty-five rats received an abdominal aortic patch of native cryopreserved tissues (n = 20), treated tissues (n = 20) or glutaraldehyde-preserved bovine pericardium (GBP, control, n = 5). Grafts were explanted at 4 weeks and processed for HE/von Kossa staining and immunohistochemistries for lymphocytes (CD3)/macrophages (CD68) histomorphometry. 95% of decellularization was obtained for all tissues except for fascia lata (75%). Mechanical properties were slightly altered. In the in vivo model, a significant increase of CD3 and CD68 infiltrations was found in native and control implants in comparison with decellularized tissues (p < 0.05). Calcifications were found in 3 controls. Decellularized tissues were recolonized. GBP showed the most inflammatory response. This physicochemical treatment improves the biocompatibility of selected xeno/allogeneic tissues in comparison with their respective native cryopreserved tissues and with GBP. Incomplete decellularization is associated with a significantly higher inflammatory response. Our treatment is a promising tool in the field of tissue decellularization and tissue banking.

  1. Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels.

    PubMed

    Salgado, Christiane L; Sanchez, Elisabete M S; Zavaglia, Cecília A C; Granja, Pedro L

    2012-01-01

    Tissue engineering aims at creating biological body parts as an alternative for transplanting tissues and organs. A current new approach for such materials consists in injectable biodegradable polymers. Their major advantages are the ability to fill-in defects, easy incorporation of therapeutic agents or cells, and the possibility of minimal invasive surgical procedures. Polycaprolactone (PCL) is a promising biodegradable and elastic biomaterial, with the drawback of low-degradation kinetics in vivo. In this work a biodegradable injectable gel of PCL blended with sebacic acid (SA) was prepared, to improve the degradation rate of the biomaterial. SA is known for its high degradation rate, although in high concentrations it could originate a pH decrease and thus disturb the biocompatibility of PCL. Degradation tests on phosphate buffered saline were carried out using 5% of SA on the blend and the biomaterial stability was evaluated after degradation using differential scanning calorimetry, dynamical mechanical analysis, and scanning electronic microscopy. After degradation the elastic properties of the blend decreased and the material became more crystalline and stiffer, although at a lower extent when compared with pure PCL. The blend also degraded faster with a loss of the crystalline phase on the beginning (30 days), although its thermal and mechanical properties remained comparable with those of the pure material, thus showing that it achieved the intended objectives. After cell assays the PCL-SA gel was shown to be cytocompatible and capable of maintaining high cell viability (over 90%).

  2. In vivo biocompatibility of the PLGA microparticles in parotid gland

    PubMed Central

    Cantín, Mario; Miranda, Patricio; Suazo Galdames, Iván; Zavando, Daniela; Arenas, Patricia; Velásquez, Luis; Vilos, Cristian

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microparticles are used in various disorders for the controlled or sustained release of drugs, with the management of salivary gland pathologies possible using this technology. There is no record of the response to such microparticles in the glandular parenchyma. The purpose of this study was to assess the morphological changes in the parotid gland when injected with a single dose of PLGA microparticles. We used 12 adult female Sprague Dawley rats (Rattus norvegicus) that were injected into their right parotid gland with sterile vehicle solution (G1, n=4), 0.5 mg PLGA microparticles (G2, n=4), and 0.75 mg PLGA microparticles (G3, n=4); the microparticles were dissolved in a sterile vehicle solution. The intercalar and striated ducts lumen, the thickness of the acini and the histology aspect in terms of the parenchyma organization, cell morphology of acini and duct system, the presence of polymeric residues, and inflammatory response were determined at 14 days post-injection. The administration of the compound in a single dose modified some of the morphometric parameters of parenchyma (intercalar duct lumen and thickness of the glandular acini) but did not induce tissue inflammatory response, despite the visible presence of polymer waste. This suggests that PLGA microparticles are biocompatible with the parotid tissue, making it possible to use intraglandular controlled drug administration. PMID:24228103

  3. Biocompatibility of Intracanal Medications Based on Calcium Hydroxide

    PubMed Central

    Andolfatto, Carolina; da Silva, Guilherme Ferreira; Cornélio, Ana Livia Gomes; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario; Faria, Gisele; Bonetti-Filho, Idomeo; Cerri, Paulo Sérgio

    2012-01-01

    Objective. The aim of this study was to evaluate the rat subcutaneous tissue reaction to calcium hydroxide-based intracanal medicaments, UltraCal XS (calcium hydroxide, barium sulphate, aqueous matrix), Hydropast (calcium hydroxide, barium sulphate, and propyleneglycol), and Calen (Calcium hydroxide, zinc oxide, colophony, and polyethyleneglycol), used as a control. Methods. Forty-eight rats (Rattus Norvegicus Holtzman) were distributed in three groups: Calen, UltraCal XS, and Hydropast. Polyethylene tubes filled with one of the medicaments were implanted in the dorsal subcutaneous. After 7 and 30 days, the implants were removed and the specimens were fixed and embedded in paraffin. Morphological and quantitative analyses were carried out in the HE-stained sections. The numerical density of inflammatory cells in the capsule was evaluated and statistical analyses were performed (P ≤ 0.05). Results. At 7 days, all materials induced an inflammatory reaction in the subcutaneous tissue adjacent to the implants. In all groups, a significant reduction in the number of inflammatory cells and giant cells was verified in the period of 30 days. Conclusion. These results indicate that the calcium hydroxide-based medicaments evaluated present biocompatibility similar to Calen. PMID:23320187

  4. To evaluate the biocompatibility of the Indian Portland cement with potential for use in dentistry: An animal study

    PubMed Central

    Mangala, M G; Chandra, S M Sharath; Bhavle, Radhika M.

    2015-01-01

    Aims: This study evaluated the biocompatibility of the Indian Portland cement with potential for use in dentistry. Materials and Methods: This study was performed in Swiss albino mice, by implanting the Indian Portland cement pellets subcutaneously. After 1, 3, and 6 weeks the tissue specimens were prepared for histological examination. Results: The histological analysis showed moderate to severe inflammation at 1 week. The inflammation gradually decreased by 6 weeks, with most of the specimens showing the absence of inflammatory reaction. Conclusions: According to these experimental conditions, the tested Indian Portland cement was biocompatible. PMID:26752835

  5. Biocompatible, hyaluronic acid modified silicone elastomers.

    PubMed

    Alauzun, Johan G; Young, Stuart; D'Souza, Renita; Liu, Lina; Brook, Michael A; Sheardown, Heather D

    2010-05-01

    Although silicones possess many useful properties as biomaterials, their hydrophobicity can be problematic. To a degree, this issue can be addressed by surface modification with hydrophilic polymers such as poly(ethylene glycol), but the resulting structures are usually not conducive to cell growth. In the present work, we describe the synthesis and characterization of covalently linked hyaluronic acid (HA) (35 kDa) to poly(dimethylsiloxane) (PDMS) elastomer surfaces. HA is of interest because of its known biological properties; its presence on a surface was expected to improve the biocompatibility of silicone materials for a wide range of bioapplications. HA was introduced with a coupling agent in two steps from high-density, tosyl-modified, poly(ethylene glycol) tethered silicone surfaces. All materials synthesized were characterized by water contact angle, ATR-FTIR, XPS and (13)C solid state NMR spectroscopy. Biological interactions with these modified silicone surfaces were assessed by examining interactions with fibrinogen as a model protein as well as determining the in vitro response of fibroblast (3T3) and human corneal epithelial cells relative to unmodified poly(dimethylsiloxane) controls. The results suggest that HA modification significantly enhances cell interactions while decreasing protein adsorption and may therefore be effective for improving biocompatibility of PDMS and other materials.

  6. Polyurethane biocompatible silver bionanocomposites for biomedical applications

    NASA Astrophysics Data System (ADS)

    Filip, D.; Macocinschi, D.; Paslaru, E.; Munteanu, B. S.; Dumitriu, R. P.; Lungu, M.; Vasile, C.

    2014-11-01

    Bionanocomposite membranes based on polyurethane (PU), extracellular matrix (EM), and silver nanoparticles (AgNPs) were prepared by applying both solvent casting method and electrospinning/electrospraying method. PU-EM-Ag compositions were electrospun/electrosprayed onto PU membrane to realize improved biocompatible biomaterials. Surface morphological characteristics and wettability properties were investigated by SEM and AFM techniques and water contact angle measurements. Water contact angle depends on surface chemistry and the two methods employed for preparation of biomembranes as well as roughness of the membrane surfaces. Rheological study brings information on electrospinability of the polymer solutions/dispersions. Silver nanoparticles greatly influence the electrospinability of the polymer dispersions because of the increase in dynamic viscosity with the increasing silver content. Native PU and PU incorporated with low contents of AgNPs less than 0.3 % show high cell proliferation and good biocompatibility. The electrospun PU-EM-Ag nanobiocomposite membranes bring the advantage of using of low amounts of bioactive and biocidal components. The obtained silver nanobiocomposite membranes possess good bioactivity and non-cytotoxicity necessary for biomedical device applications. The obtained nanobiocomposite membranes are expected to find application for medical devices such as urinary catheters, wound dressings, etc.

  7. Antimicrobial and biocompatible properties of nanomaterials.

    PubMed

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  8. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin.

    PubMed

    Deng, Yi; Sun, Yuhua; Chen, Xiaofang; Zhu, Peizhi; Wei, Shicheng

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering.

  9. Size-engineered biocompatible polymeric nanophotosensitizer for locoregional photodynamic therapy of cancer.

    PubMed

    Jeong, Keunsoo; Park, Solji; Lee, Yong-Deok; Kang, Chi Soo; Kim, Hyun Jun; Park, Hyeonjong; Kwon, Ick Chan; Kim, Jungahn; Park, Chong Rae; Kim, Sehoon

    2016-08-01

    Current approaches in use of water-insoluble photosensitizers for photodynamic therapy (PDT) of cancer often demand a nano-delivery system. Here, we report a photosensitizer-loaded biocompatible nano-delivery formulation (PPaN-20) whose size was engineered to ca. 20nm to offer improved cell/tissue penetration and efficient generation of cytotoxic singlet oxygen. PPaN-20 was fabricated through the physical assembly of all biocompatible constituents: pyropheophorbide-a (PPa, water-insoluble photosensitizer), polycaprolactone (PCL, hydrophobic/biodegradable polymer), and Pluronic F-68 (clinically approved polymeric surfactant). Repeated microemulsification/evaporation method resulted in a fine colloidal dispersion of PPaN-20 in water, where the particulate PCL matrix containing well-dispersed PPa molecules inside was stabilized by the Pluronic corona. Compared to a control sample of large-sized nanoparticles (PPaN-200) prepared by a conventional solvent displacement method, PPaN-20 revealed optimal singlet oxygen generation and efficient cellular uptake by virtue of the suitably engineered size and constitution, leading to high in vitro phototoxicity against cancer cells. Upon administration to tumor-bearing mice by peritumoral route, PPaN-20 showed efficient tumor accumulation by the enhanced cell/tissue penetration evidenced by in vivo near-infrared fluorescence imaging. The in vivo PDT treatment with peritumorally administrated PPaN-20 showed significantly enhanced suppression of tumor growth compared to the control group, demonstrating great potential as a biocompatible photosensitizing agent for locoregional PDT treatment of cancer.

  10. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    PubMed

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  11. Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers.

    PubMed

    Bueno, Carlos Roberto Emerenciano; Valentim, Diego; Marques, Vanessa Abreu Sanches; Gomes-Filho, João Eduardo; Cintra, Luciano Tavares Angelo; Jacinto, Rogério Castilho; Dezan-Junior, Eloi

    2016-06-14

    Obturation of the root canal system aims to fill empty spaces, promoting hermetic sealing and preventing bacterial activity in periapical tissues. This should provide optimal conditions for repair, stimulating the process of biomineralization. An endodontic sealer should be biocompatible once it is in direct contact with periapical tissues. The aim of this study was to evaluate the rat subcutaneous tissue response to implanted polyethylene tubes filled with Smartpaste Bio, Acroseal, and Sealapex and investigate mineralization ability of these endodontic sealers. Forty Wistar rats were assigned to the three sealers groups and control group, (n = 10 animals/group) and received subcutaneous implants containing the test sealers, and the control group were implanted with empty tubes. After days 7, 15, 30, and 60, animals were euthanized and polyethylene tubes were removed with the surrounding tissues. Inflammatory infiltrate and thickness of the fibrous capsule were histologically evaluated. Mineralization was analyzed by Von Kossa staining and polarized light. Data were tabulated and analyzed via Kruskal-Wallis and Dunn's test. All tested materials induced a moderate inflammatory reaction in the initial periods. Smartpaste Bio induced the mildest inflammatory reactions after day 15. No difference was observed among groups after days 30 or 60. Von Kossa-positive staining and birefringent structures observed under polarized light revealed a larger mineralization area in Sealapex-treated animals followed by Smartpaste Bio-treated animals. At the end of the experiment, all tested sealers were found to be biocompatible. All sealers induced biomineralization, except Acroseal, which induced a mild tissue reaction.

  12. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine

    NASA Astrophysics Data System (ADS)

    Khoa Nguyen, Cuu; Quyen Tran, Ngoc; Phuong Nguyen, Thi; Hai Nguyen, Dai

    2017-03-01

    Over the past decades, biopolymer-based nanomaterials have been developed to overcome the limitations of other macro- and micro- synthetic materials as well as the ever increasing demand for the new materials in nanotechnology, biotechnology, biomedicine and others. Owning to their high stability, biodegradability, low toxicity, and biocompatibility, biopolymer-based nanomaterials hold great promise for various biomedical applications. The pursuit of this review is to briefly describe our recent studies regarding biocompatible biopolymer-based nanomaterials, particularly in the form of dendrimers, hydrogels, and hydrogel composites along with the synthetic and modification approaches for the utilization in drug delivery, tissue engineering, and biomedical implants. Moreover, in vitro and in vivo studies for the toxicity evaluation are also discussed.

  13. A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response

    PubMed Central

    Onuki, Yoshinori; Bhardwaj, Upkar; Papadimitrakopoulos, Fotios; Burgess, Diane J.

    2008-01-01

    In recent years, a variety of devices (drug-eluting stents, artificial organs, biosensors, catheters, scaffolds for tissue engineering, heart valves, etc.) have been developed for implantation into patients. However, when such devices are implanted into the body, the body can react to these in a number of different ways. These reactions can result in an unexpected risk for patients. Therefore, it is important to assess and optimize the biocompatibility of implantable devices. To date, numerous strategies have been investigated to overcome body reactions induced by the implantation of devices. This review focuses on the foreign body response and the approaches that have been taken to overcome this. The biological response following device implantation and the methods for biocompatibility evaluation are summarized. Then the risks of implantable devices and the challenges to overcome these problems are introduced. Specifically, the challenges used to overcome the functional loss of glucose sensors, restenosis after stent implantation, and calcification induced by implantable devices are discussed. PMID:19885290

  14. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties.

    PubMed

    Chen, Qiyi; Mangadlao, Joey Dacula; Wallat, Jaqueline; De Leon, Al; Pokorski, Jonathan K; Advincula, Rigoberto C

    2017-02-01

    Blending thermoplastic polyurethane (TPU) with poly(lactic acid) (PLA) is a proven method to achieve a much more mechanically robust material, whereas the addition of graphene oxide (GO) is increasingly applied in polymer nanocomposites to tailor further their properties. On the other hand, additive manufacturing has high flexibility of structure design which can significantly expand the application of materials in many fields. This study demonstrates the fused deposition modeling (FDM) 3D printing of TPU/PLA/GO nanocomposites and its potential application as biocompatible materials. Nanocomposites are prepared by solvent-based mixing process and extruded into filaments for FDM printing. The addition of GO largely enhanced the mechanical property and thermal stability of the nanocomposites. Interestingly, we found that the mechanical response is highly dependent on printing orientation. Furthermore, the 3D printed nanocomposites exhibit good biocompatibility with NIH3T3 cells, indicating promise as biomaterials scaffold for tissue engineering applications.

  15. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    NASA Astrophysics Data System (ADS)

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.

    2016-04-01

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  16. Effect of biocompatible polymers on the structural integrity of lipid bilayers under external stimuli

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Yu; Kausik, Ravinath; Chen, Chi-Yuan; Han, Song-I.; Marks, Jeremy; Lee, Ka Yee

    2010-03-01

    Cell membrane dysfunction due to loss of structural integrity is the pathology of tissue death in trauma and common diseases. It is now established that certain biocompatible polymers, such as Poloxamer 188, Poloxamine 1107 and polyethylene glycol (PEG), are effective in sealing of injured cell membranes, and able to prevent acute necrosis. Despite these broad applications of these polymers for human health, the fundamental mechanisms by which these polymers interact with cell membranes are still under debate. Here, the effects of a group of biocompatible polymers on phospholipid membrane integrity under osmotic and oxidative stress were explored using giant unilamellar vesicles as model cell membranes. Our results suggest that the adsorption of the polymers on the membrane surface is responsible for the cell membrane resealing process due to its capability of slowing down the surface hydration dynamics.

  17. Biocompatibility evaluation of a thermoplastic rubber for wireless telemetric intracranial pressure sensor coating.

    PubMed

    Yang, Jun; Charif, Andrea C; Puskas, Judit E; Phillips, Hannah; Shanahan, Kaitlyn J; Garsed, Jessica; Fleischman, Aaron; Goldman, Ken; Roy, Shuvo; Luebbers, Matthew T; Dombrowski, Stephen M; Luciano, Mark G

    2015-05-01

    This study investigated the biocompatibility of the experimental thermoplastic rubber Arbomatrix(™) that will be used as the protective coating on a novel intracranial pressure (ICP) sensor silicon chip. Arbomatrix(™) was benchmarked against biocompatible commercial silicone rubber shunt tubing in the brain via a rat model with 60-day implant duration. A bare silicon chip was also implanted. The results showed similar cellular distribution in the brain-implant boundary and surrounding tissues. Quantitative analysis of neuron and glia density did not show significant difference between implants. Through histological and immunohistochemical evaluation we conclude that Arbomatrix(™) is well tolerated by the brain. Due to its exceptional barrier properties Arbomatrix(™) has already been shown to be an excellent protective coating for new ICP monitoring chip.

  18. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation

    PubMed Central

    Alcaide, María; Taylor, Andrew; Fjorback, Morten; Zachar, Vladimir; Pennisi, Cristian P.

    2016-01-01

    Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time. PMID:27013949

  19. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation.

    PubMed

    Alcaide, María; Taylor, Andrew; Fjorback, Morten; Zachar, Vladimir; Pennisi, Cristian P

    2016-01-01

    Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time.

  20. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth.

    PubMed

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K; Hallam, Keith R; Janas, Dawid; Patil, Avinash J; Strachan, Ally; G Hanley, Jonathan; Rahatekar, Sameer S

    2016-04-21

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  1. Development of a hydrophobic polymer composition with improved biocompatibility for making foldable intraocular lenses

    NASA Astrophysics Data System (ADS)

    Haldar, R. S.; Chauhan, R.; Kapoor, K.; Niyogi, U. K.

    2014-05-01

    A hydrophobic composition for foldable intraocular lenses was developed by copolymerizing phenyl ethyl acrylate, phenyl ethyl methacrylate and butanediol diacrylate by gamma irradiation. Aqueous solution of heparin, a biocompatibilizer absorbed in hydroxyethyl methacrylate was added to the monomer mixture before irradiation to impart desired level of hydrophilicity and improved biocompatibility to the hydrophobic composition. Ketorolac tromethamine, an anti-inflammatory agent and L-glutathione, an antioxidant were added to the composition as functional additive for exhibiting improved performance while in use. Concentrations of monomers, biocompatibilizer and functional additives were optimized to develop an advanced material for foldable intraocular lenses. Transmittance, refractive index, Abbe number, hardness, tensile strength, flexibility and foldability were studied on the final composition. Scanning electron microscopic study, differential scanning calorimetric analysis, leachability and viscometry confirmed the permanent incorporation of additives into the polymer. Results of haemocompatibility, tissue implantation and cytotoxicity confirm that the biocompatibility of the base polymer was improved by incorporation of heparin.

  2. In vitro calcification and in vivo biocompatibility of the cross-linked polypentapeptide of elastin

    SciTech Connect

    Wood, S.A.; Lemons, J.E.; Prasad, K.U.; Urry, D.W.

    1986-03-01

    The in vitro calcifiability and molecular weight dependence of calcification of the polypentapeptide, (L X Val1-L X Pro2-Gly3-L X Val4-Gly5)n, which had been gamma-irradiation cross-linked have been determined when exposed to dialyzates of normal, nonaugmented fetal bovine serum. The material was found to calcify: calcifiability was found to be highly molecular weight dependent and to be most favored when the highest molecular weight polymers (n approximately equal to 240) had been used for cross-linking. The in vivo biocompatibility, biodegradability, and calcifiability of the gamma-irradiation cross-linked polypentapeptide were examined in rabbits in both soft and hard tissue sites. The material was found to be biocompatible irrespective of its physical form and to be biodegradable but with n of 200 or less it was not shown to calcify or ossify in the rabbit tibial nonunion model.

  3. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo.

    PubMed

    Zhang, Cai; Fu, Yan-Yan; Zhang, Xuejun; Yu, Chunshui; Zhao, Yan; Sun, Shao-Kai

    2015-08-07

    Photothermal therapy as a physical therapeutic approach has greatly attracted research interest due to its negligible systemic effects. Among the various photothermal agents, CuS nanoparticles have been widely used due to their easy preparation, low cost, high stability and strong absorption in the NIR region. However, the ambiguous biotoxicity of CuS nanoparticles limited their bio-application. So it is highly desirable to develop biocompatible CuS photothermal agents with the potential of clinical translation. Herein, we report a novel method to synthesize biocompatible CuS nanoparticles for photothermal therapy using bovine serum albumin (BSA) as a template via mimicking biomaterialization processes. Owing to the inherent biocompatibility of BSA, the toxicity assays in vitro and in vivo showed that BSA-CuS nanoparticles possessed good biocompatibility. In vitro and in vivo photothermal therapies were performed and good results were obtained. The bulk of the HeLa cells treated with BSA-CuS nanoparticles under laser irradiation (808 nm) were killed, and the tumor tissues of mice were also successfully eliminated without causing any obvious systemic damage. In summary, a novel strategy for the synthesis of CuS nanoparticles was developed using BSA as the template, and the excellent biocompatibility and efficient photothermal therapy effects of BSA-CuS nanoparticles show great potential as an ideal photothermal agent for cancer treatment.

  4. Titanium nanostructural surface processing for improved biocompatibility

    SciTech Connect

    Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L.

    2006-10-23

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

  5. Jet blown PTFE for control of biocompatibility

    NASA Astrophysics Data System (ADS)

    Leibner, Evan Scott

    The development of fully hemocompatible cardiovascular biomaterials will have a major impact on the practice of modern medicine. Current artificial surfaces, unlike native vascular surfaces, are not able to control clot and thrombus formation. Protein interactions are an important component in hemocompatibility and can result in decreased patency due to thrombus formation or surface passivation which can improve endothelization. It is believed that controlling these properties, specifically the nanometer sizes of the fibers on the material's surface, will allow for better control of biological responses. The biocompatibility of Teflon, a widely used polymer for vascular grafts, would be improved with nanostructured control of surface features. Due to the difficultly in processing polytetrafluoroethylene (PTFE), it has not been possible to create nanofibrous PTFE surfaces. The novel technique of Jet Blowing allows for the formation of nanostructured PTFE (nPTFE). A systematic investigation into controlling polymer properties by varying the processing conditions of temperature, pressure, and gas used in the Jet Blowing allows for an increased understanding of the effects of plasticization on the material's properties. This fundamental understanding of the material science behind the Jet Blowing process has enabled control of the micro and nanoscale structure of nPTFE. While protein adsorption, a key component of biocompatibility, has been widely studied, it is not fully understood. Major problems in the field of biomaterials include a lack of standard protocols to measure biocompatibility, and inconstant literature on protein adsorption. A reproducible protocol for measuring protein adsorption onto superhydrophobic surfaces (ePTFE and nPTFE) has been developed. Both degassing of PBS buffer solutions and evacuation of the air around the expanded PTFE (ePTFE) prior to contact with protein solutions are essential. Protein adsorption experiments show a four

  6. Si-based Nanoparticles: a biocompatibility study

    NASA Astrophysics Data System (ADS)

    Rivolta, I.; Lettiero, B.; Panariti, A.; D'Amato, R.; Maurice, V.; Falconieri, M.; Herlein, N.; Borsella, E.; Miserocchi, G.

    2010-10-01

    Exposure to silicon nanoparticles (Si-NPs) may occur in professional working conditions or for people undergoing a diagnostic screening test. Despite the fact that silicon is known as a non-toxic material, in the first case the risk is mostly related to the inhalation of nanoparticles, thus the most likely route of entry is across the lung alveolar epithelium. In the case of diagnostic imaging, nanoparticles are usually injected intravenously and Si-NPs could impact on the endothelial wall. In our study we investigated the interaction between selected Si-based NPs and an epithelial lung cell line. Our data showed that, despite the overall silicon biocompatibility, however accurate studies of the potential toxicity induced by the nanostructure and engineered surface characteristics need to be accurately investigated before Si nanoparticles can be safely used for in vivo applications as bio-imaging, cell staining and drug delivery.

  7. Phosphorylcholine-Based Zwitterionic Biocompatible Thermogel.

    PubMed

    Ko, Du Young; Patel, Madhumita; Jung, Bo Kyoeng; Park, Jin Hye; Jeong, Byeongmoon

    2015-12-14

    Zwitterionic polymers have been investigated as surface-coating materials due to their low protein adsorption properties, which reduce immunogenicity, biofouling, and bacterial adsorption of coated materials. Most zwitterionic polymers, reported so far, are based on (meth)acrylate polymers which can induce toxicity by residual monomers or amines produced by degradation. Here, we report a new zwitterionic polymer consisting of phosphorylcholine (PC) and biocompatible poly(propylene glycol) (PPG) as a new thermogelling material. The PC-PPG-PC polymer aqueous solution undergoes unique multiple sol-gel transitions as the temperature increases. A heat-induced unimer-to-micelle transition, changes in ionic interactions, and dehydration of PPG are involved in the sol-gel transitions. Based on the broad gel window and low protein adsorption properties, the PC-PPG-PC thermogel is proved for sustained delivery of protein drugs and stem cells over 1 week.

  8. Performance and Biocompatibility of Extremely Tough Alginate/Polyacrylamide Hydrogels

    PubMed Central

    Darnell, Max; Sun, Jeong-Yun; Mehta, Manav; Johnson, Chris; Arany, Praveen; Suo, Zhigang

    2013-01-01

    Although hydrogels now see widespread use in a host of applications, low fracture toughness and brittleness have limited their more broad use. As a recently described interpenetrating network (IPN) of alginate and polyacrylamide demonstrated a fracture toughness of ∼9000 J/m2, we sought to explore the biocompatibility and maintenance of mechanical properties of these hydrogels in cell culture and in vivo conditions. These hydrogels can sustain a compressive strain of over 90% with minimal loss of Young's Modulus as well as minimal swelling for up to 50 days of soaking in culture conditions. Mouse mesenchymal stem cells exposed to the IPN gel-conditioned media maintain high viability, and although cells exposed to conditioned media demonstrate slight reductions in proliferation and metabolic activity (WST assay), these effects are abrogated in a dose-dependent manner. Implantation of these IPN hydrogels into subcutaneous tissue of rats for 8 weeks led to mild fibrotic encapsulation and minimal inflammatory response. These results suggest the further exploration of extremely tough alginate/PAAM IPN hydrogels as biomaterials. PMID:23896005

  9. Biocompatibility of natural latex implanted into dental alveolus of rats.

    PubMed

    Balabanian, Cláudia A C A; Coutinho-Netto, Joaquim; Lamano-Carvalho, Teresa L; Lacerda, Suzie A; Brentegani, Luiz G

    2006-12-01

    The present study investigated the biocompatibility of a biopolymer based on vegetable latex extracted from the Hevea brasiliensis rubber tree, implanted into the bony alveolar cavity after dental extraction in rats. A granule of latex (area = 0.25 +/- 0.04 mm(2)) was implanted inside the alveolus immediately after extraction of the upper right incisor, and the animals were sacrificed 7, 21 and 42 days after the procedure. The hemi-maxillas were decalcified and processed for embedding in paraffin to obtain semi-serial longitudinal sections 5 mum thick, and then stained with hematoxylin-eosin. The latex granule was observed in the cervical third of the alveolus without any foreign body reaction, or persistence of the initial acute inflammatory reaction. Bone repair in the areas adjacent to the material was quantified, and a decrease was noted in the thickness of the fibrous capsule surrounding the implants from 92.8 +/- 9.3 microm on day 7 to 9.4 +/- 1.8 microm on day 42 (ANOVA, P = 0.01). The quantitative data confirmed acceleration of bone formation (statistically significant at 5%) in parallel with a decrease of connective tissue in the areas around the implants. These results show that the tested material is biologically compatible, and progressively integrated into the alveolar bone, simultaneously accelerating bone formation and playing an important role in the healing process.

  10. Controlled evacuation using the biocompatible and energy efficient microfluidic ejector.

    PubMed

    Lad, V N; Ralekar, Swati

    2016-10-01

    Development of controlled vacuum is having many applications in the realm of biotechnology, cell transfer, gene therapy, biomedical engineering and other engineering activities involving separation or chemical reactions. Here we show the controlled vacuum generation through a biocompatible, energy efficient, low-cost and flexible miniature device. We have designed and fabricated microfluidic devices from polydimethylsiloxane which are capable of producing vacuum at a highly controlled rate by using water as a motive fluid. Scrupulous removal of infected fluid/body fluid from the internal hemorrhage affected parts during surgical operations, gene manipulation, cell sorting, and other biomedical activities require complete isolation of the delicate cells or tissues adjacent to the targeted location. We demonstrate the potential of the miniature device to obtain controlled evacuation without the use of highly pressurized motive fluids. Water has been used as a motive liquid to eject vapor and liquid at ambient conditions through the microfluidic devices prepared using a low-cost fabrication method. The proposed miniature device may find applications in vacuum generation especially where the controlled rate of evacuation, and limited vacuum generation are of utmost importance in order to precisely protect the cells in the nearby region of the targeted evacuated area.

  11. Solution behavior of PEO : the ultimate biocompatible polymer.

    SciTech Connect

    Curro, John G.; Frischknecht, Amalie Lucile

    2004-11-01

    Poly(ethylene oxide) (PEO) is the quintessential biocompatible polymer. Due to its ability to form hydrogen bonds, it is soluble in water, and yet is uncharged and relatively inert. It is being investigated for use in a wide range of biomedical and biotechnical applications, including the prevention of protein adhesion (biofouling), controlled drug delivery, and tissue scaffolds. PEO has also been proposed for use in novel polymer hydrogel nanocomposites with superior mechanical properties. However, the phase behavior of PEO in water is highly anomalous and is not addressed by current theories of polymer solutions. The effective interactions between PEO and water are very concentration dependent, unlike other polymer/solvent systems, due to water-water and water-PEO hydrogen bonds. An understanding of this anomalous behavior requires a careful examination of PEO liquids and solutions on the molecular level. We performed massively parallel molecular dynamics simulations and self-consistent Polymer Reference Interaction Site Model (PRISM) calculations on PEO liquids. We also initiated MD studies on PEO/water solutions with and without an applied electric field. This work is summarized in three parts devoted to: (1) A comparison of MD simulations, theory and experiment on PEO liquids; (2) The implementation of water potentials into the LAMMPS MD code; and (3) A theoretical analysis of the effect of an applied electric field on the phase diagram of polymer solutions.

  12. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    PubMed

    Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John

    2015-02-18

    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.

  13. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds.

    PubMed

    Sangsanoh, Pakakrong; Waleetorncheepsawat, Suchada; Suwantong, Orawan; Wutticharoenmongkol, Patcharaporn; Weeranantanapan, Oratai; Chuenjitbuntaworn, Boontharika; Cheepsunthorn, Poonlarp; Pavasant, Prasit; Supaphol, Pitt

    2007-05-01

    The in vitro responses of Schwann cells (RT4-D6P2T, a schwannoma cell line derived from a chemically induced rat peripheral neurotumor) on various types of electrospun fibrous scaffolds of some commercially available biocompatible and biodegradable polymers, i.e., poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and chitosan (CS), were reported in comparison with those of the cells on corresponding solution-cast film scaffolds as well as on a tissue-culture polystyrene plate (TCPS), used as the positive control. At 24 h after cell seeding, the viability of the attached cells on the various substrates could be ranked as follows: PCL film > TCPS > PCL fibrous > PLLA fibrous > PHBV film > CS fibrous approximately CS film approximately PLLA film > PHB film > PHBV fibrous > PHB fibrous. At day 3 of cell culture, the viability of the proliferated cells on the various substrates could be ranked as follows: TCPS > PHBV film > PLLA film > PCL film > PLLA fibrous > PHB film approximately PCL fibrous > CS fibrous > CS film > PHB fibrous > PHBV fibrous. At approximately 8 h after cell seeding, the cells on the flat surfaces of all of the film scaffolds and that of the PCL nanofibrous scaffold appeared in their characteristic spindle shape, while those on the surfaces of the PHB, PHBV, and PLLA macrofibrous scaffolds also appeared in their characteristic spindle shape, but with the cells being able to penetrate to the inner side of the scaffolds.

  14. Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep.

    PubMed

    Uebersax, Lorenz; Apfel, Tanja; Nuss, Katja M R; Vogt, Rainer; Kim, Hyoen Yoo; Meinel, Lorenz; Kaplan, David L; Auer, Joerg A; Merkle, Hans P; von Rechenberg, Brigitte

    2013-09-01

    The goal of the presented study was to compare the biocompatibility and cellular responses to porous silk fibroin (SF) scaffolds produced in a water-based (UPW) or a solvent based process (HFIP) using two different SF sources. For that reason, four different SF scaffolds were implanted (n=6) into drill hole defects in the cancellous bone of the sheep tibia and humerus. The scaffolds were evaluated histologically for biocompatibility, cell-material interaction, and cellular ingrowth. New bone formation was observed macroscopically and histologically at 8 weeks after implantation. For semiquantitative evaluation, the investigated parameters were scored and statistically analyzed (factorial ANOVA). All implants showed good biocompatibility as evident by low infiltration of inflammatory cells and the absent encapsulation of the scaffolds in connective tissue. Multinuclear foreign body giant cells (MFGCs) and macrophages were present in all parts of the scaffold at the material surface and actively degrading the SF material. Cell ingrowth and vascularization were uniform across the scaffold. However, in HFIP scaffolds, local regions of void pores were present throughout the scaffold, probably due to the low pore interconnectivity in this scaffold type in contrast to UPW scaffolds. The amount of newly formed bone was very low in both scaffold types but was more abundant in the periphery than in the center of the scaffolds and for HFIP scaffolds mainly restricted to single pores.

  15. Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity.

    PubMed

    Almeida, Luciane Madureira; Floriano, Juliana Ferreira; Ribeiro, Thuanne Pires; Magno, Lais Nogueira; da Mota, Lígia Souza Lima Silveira; Peixoto, Nei; Mrué, Fátima; Melo-Reis, Paulo; Lino Junior, Ruy de Souza; Graeff, Carlos Frederico de Oliveira; Gonçalves, Pablo José

    2014-09-01

    The latex obtained from Hancornia speciosa is used in folk medicine for treatment of several diseases, such as acne, warts, diabetes, gastritis and inflammation. In this work, we describe the biocompatibility assessment and angiogenic properties of H. speciosa latex and its potential application in medicine. The physical-chemical characterization was carried out following different methodologies (CHN elemental analyses; thermogravimetric analyses and Fourier transform infrared spectroscopy). The biocompatibility was evaluated through cytotoxicity and genotoxicity tests in fibroblast mouse cells and the angiogenic properties were evaluated using the chick chorioallantoic membrane (CAM) assay model. The physical-chemical results showed that the structure of Hancornia speciosa latex biomembrane is very similar to that of Hevea brasiliensis (commercially available product). Moreover, the cytotoxicity and genotoxicity assays showed that H. speciosa latex is biocompatible with life systems and can be a good biomaterial for medical applications. The CAM test showed the efficient ability of H. speciosa latex in neovascularization of tissues. The histological analysis was in accordance with the results obtained in the CAM assay. Our data indicate that the latex obtained from H. speciosa and eluted in water showed significant angiogenic activity without any cytotoxic or genotoxic effects on life systems. The same did not occur with H. speciosa latex stabilized with ammonia. Addition of ammonia does not have significant effects on the structure of biomembranes, but showed a smaller cell survival and a significant genotoxicity effect. This study contributes to the understanding of the potentialities of H. speciosa latex as a source of new phytomedicines.

  16. In vivo biocompatibility and biodegradation of a novel thin and mechanically stable collagen scaffold.

    PubMed

    Rahmanian-Schwarz, Afshin; Held, Manuel; Knoeller, Tabea; Stachon, Susanne; Schmidt, Timo; Schaller, Hans-Eberhard; Just, Lothar

    2014-04-01

    The demand for scaffolds comprised of natural materials such as collagen has increased in recent years. However, many scaffolds rely on chemical or physical modifications in order to comply with the necessary requirements for biomedical engineering. We evaluated the in vivo biocompatibility and biodegradation of a novel, thin, mechanically stable, and chemically non-crosslinked collagen cell carrier (CCC). CCC was implanted subcutaneously into 25 adult Lewis rats and biopsies were taken on days 7, 14, 21, 42, and 84 after surgery. For histological analysis, paraffin sections of implanted skin were immunolabeled for CD68 and stained by hematoxylin-eosin and Masson-Goldner's trichrome method. Macroscopic analysis of skin surface during wound healing process showed a normal physiological reaction. Biodegradation of CCC was completed 42 days after subcutaneous implantation. Histological evaluation revealed no evidence of encapsulation, scar formation, or long-term vascularization and inflammation. The collagen type I based biomaterial demonstrated a high in vivo biocompatibility, low irritability, complete resorption, and replacement by autologous tissue. The in vivo biocompatibility and degradation behavior encourage for further evaluation of CCC in surgical applications and regenerative medicine.

  17. Influence of Electropolishing and Magnetoelectropolishing on Corrosion and Biocompatibility of Titanium Implants

    NASA Astrophysics Data System (ADS)

    Rahman, Zia ur; Pompa, Luis; Haider, Waseem

    2014-11-01

    Titanium alloys are playing a vital role in the field of biomaterials due to their excellent corrosion resistance and biocompatibility. These alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, as these materials are in constant contact with the aggressive body fluids, corrosion of these alloys leads to metal ions release. These ions leach to the adjacent tissues and result in adverse biological reactions and mechanical failure of implant. Surface modifications are used to improve corrosion resistance and biological activity without changing their bulk properties. In this investigation, electropolishing and magnetoelectropolishing were carried out on commercially pure titanium, Ti6Al4V, and Ti6Al4V-ELI. These surface modifications are known to effect surface charge, chemistry, morphology; wettability, corrosion resistance, and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted in phosphate buffer saline in compliance with ASTM standard F-2129-12. The surface morphology, roughness, and wettability of these alloys were studied using scanning electron microscope, atomic force microscope, and contact angle meter, respectively. Moreover, biocompatibility of titanium alloys was assessed by growing MC3T3 pre-osteoblast cells on them.

  18. Influence of surface modification on corrosion and biocompatibility of titanium alloys

    NASA Astrophysics Data System (ADS)

    Rahman, Zia Ur

    Titanium alloys are playing a vital role in the field of biomaterials due to their excellent corrosion resistance and biocompatibility. These alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, as these materials are in constant contact with the aggressive body fluids, corrosion leads to metal ions dissolution. These ions leach to the adjacent tissues and causes adverse reactions. Surface modifications are used to improve corrosion resistance and biological activity without changing their bulk properties. In this investigation, electropolishing, magnetoelectropolishing, titanium coating and hydroxiapatitecoating were carried out on commercially pure titanium (CPTi), Ti6Al4V and Ti6Al4V-ELI (Extra Low Interstitials). These surface modifications are known to effect surface charge, chemistry, morphology; wettability, corrosion resistance and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted in phosphate buffer saline in compliance with ASTM standard. The surface morphology, roughness and wettability of these alloys were studied using scanning electron microscope, atomic force microscope and contact angle meter, respectively. Moreover, biocompatibility of titanium alloys was assessed by growing MC3T3 pre-osteoblast cells on their surfaces

  19. Enhanced biocompatibility and adhesive properties of modified allyl 2-cyanoacrylate-based elastic bio-glues.

    PubMed

    Lim, Jin Ik; Kim, Ji Hye

    2015-09-01

    Despite cyanoacrylate's numerous advantages such as good cosmetic results and fast application for first aid, drawbacks such as brittleness and local tissue toxicity have limited their applicability. In this study, to improve both the biocompatibility and mechanical properties of cyanoacrylate, allyl 2-cyanoacrylate (AC) was pre-polymerized and mixed with poly(L-lactide-co-ɛ-caprolactone) (PLCL, 50:50) as biodegradable elastomer. For various properties of pre-polymerized AC (PAC)/PLCL mixtures, bond strength, elasticity of flexure test as bending recovery, cell viability, and in vivo test using rat were conducted and enhanced mechanical properties and biocompatibility were confirmed. Especially, optimal condition for pre-polymerization of AC was determined to 150°C for 40min through cytotoxicity test. Bond strength of PAC/PLCL mixture was decreased (over 10 times) with increasing of PLCL. On the other hand, biocompatibility and flexibility were improved than commercial bio-glue. Optimal PAC/PLCL composition (4g/20mg) was determined through these tests. Furthermore, harmful side effects and infection were not observed by in vivo wound healing test. These results indicate that PAC/PLCL materials can be used widely as advanced bio-glues in various fields.

  20. Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation.

    PubMed

    Wang, Ju; Hao, Shilei; Luo, Tiantian; Cheng, Zhongjun; Li, Wenfeng; Gao, Feiyan; Guo, Tingwang; Gong, Yuhua; Wang, Bochu

    2017-01-01

    Keratins are highly attractive for wound healing due to their inherent bioactivity, biocompatibility and physical properties. However, nearly all wound healing studies have focused on human hair keratins, and the wound-repair effects and in vivo biocompatibilities of feather keratins are not clear. Feather keratins are derived from chicken feathers, which are considered to be the major waste in the poultry industry, and the quality of feather keratin is easier to control than that of human hair keratin due to human hair perming and colouring-dyeing. Thus, we extracted keratins from chicken feathers, and a feather keratin hydrogel was then prepared and used to test the in vivo wound-healing properties and biocompatibility. The results indicated that feather keratins displayed wound-healing and biodegradation properties similar to those of human hair keratins and were also highly compatible with those of the tissue and devoid of immunogenicity and systematic toxicity. Collectively, these results suggested that feather keratin hydrogel could be used for biomedical applications, particularly effective wound healing.

  1. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.

    PubMed

    Martínez Ávila, Héctor; Schwarz, Silke; Feldmann, Eva-Maria; Mantas, Athanasios; von Bomhard, Achim; Gatenholm, Paul; Rotter, Nicole

    2014-09-01

    Bacterial nanocellulose (BNC), synthesized by the bacterium Gluconacetobacter xylinus, is composed of highly hydrated fibrils (99 % water) with high mechanical strength. These exceptional material properties make BNC a novel biomaterial for many potential medical and tissue engineering applications. Recently, BNC with cellulose content of 15 % has been proposed as an implant material for auricular cartilage replacement, since it matches the mechanical requirements of human auricular cartilage. This study investigates the biocompatibility of BNC with increased cellulose content (17 %) to evaluate its response in vitro and in vivo. Cylindrical BNC structures (Ø48 × 20 mm) were produced, purified in a built-in house perfusion system, and compressed to increase the cellulose content in BNC hydrogels. The reduction of endotoxicity of the material was quantified by bacterial endotoxin analysis throughout the purification process. Afterward, the biocompatibility of the purified BNC hydrogels with cellulose content of 17 % was assessed in vitro and in vivo, according to standards set forth in ISO 10993. The endotoxin content in non-purified BNC (2,390 endotoxin units (EU)/ml) was reduced to 0.10 EU/ml after the purification process, level well below the endotoxin threshold set for medical devices. Furthermore, the biocompatibility tests demonstrated that densified BNC hydrogels are non-cytotoxic and cause a minimal foreign body response. In support with our previous findings, this study concludes that BNC with increased cellulose content of 17 % is a promising non-resorbable biomaterial for auricular cartilage tissue engineering, due to its similarity with auricular cartilage in terms of mechanical strength and host tissue response.

  2. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations.

    PubMed

    Warnke, Patrick H; Seitz, Hermann; Warnke, Frauke; Becker, Stephan T; Sivananthan, Sureshan; Sherry, Eugene; Liu, Qin; Wiltfang, Jörg; Douglas, Timothy

    2010-04-01

    Hydroxyapatite (HAP) and tricalcium phosphate (TCP) are two very common ceramic materials for bone replacement. However, in general HAP and TCP scaffolds are not tailored to the exact dimensions of the defect site and are mainly used as granules or beads. Some scaffolds are available as ordinary blocks, but cannot be customized for individual perfect fit. Using computer-assisted 3D printing, an emerging rapid prototyping technique, individual three-dimensional ceramic scaffolds can be built up from TCP or HAP powder layer by layer with subsequent sintering. These scaffolds have precise dimensions and highly defined and regular internal characteristics such as pore size. External shape and internal characteristics such as pore size can be fabricated using Computer Assisted Design (CAD) based on individual patient data. Thus, these scaffolds could be designed as perfect fit replacements to reconstruct the patient's skeleton. Before their use as bone replacement materials in vivo, in vitro testing of these scaffolds is necessary. In this study, the behavior of human osteoblasts on HAP and TCP scaffolds was investigated. The commonly used bone replacement material BioOss(R) served as control. Biocompatibility was assessed by scanning electron microscopy (SEM), fluorescence microscopy after staining for cell vitality with fluorescin diacetate (FDA) and propidium iodide (PI) and the MTT, LDH, and WST biocompatibility tests. Both versions were colonised by human osteoblasts, however more cells were seen on HAP scaffolds than TCP scaffolds. Cell vitality staining and MTT, LDH, and WST tests showed superior biocompatibility of HAP scaffolds to BioOss, while BioOss was more compatible than TCP. Further experiments are necessary to determine biocompatibility in vivo. Future modifications of 3D printed scaffolds offer advantageous features for Tissue Engineering. The integration of channels could allow for vascular and nerve ingrowth into the scaffold. Also the complex shapes

  3. In vivo biocompatibility of Resilon compared with gutta-percha in a pre-clinical model

    PubMed Central

    Cardoso, Miguel; Marques, Rodrigo F; Lopes, Maria Francelina; Cabrita, António S; Santos, João Miguel

    2013-01-01

    Background: The aim of this study was to investigate in vivo biocompatibility of Resilon, compared with gutta-percha, at short and long-term following implantation in a rat subcutaneous implantation model. Materials and Methods: Male Wistar rats were implanted subcutaneously with either Resilon or gutta-percha or were sham controls. Tissues were harvested at 8 days or 60 days after implantation and were evaluated histologically for inflammation and fibrous encapsulation. The severity of histologic injury, scored on a scale of 0-4 and quantitative analysis of the capsule wall thickness were determined for statistical analysis. Data were analyzed by Student t-test, one-way analysis of variance, Kruskal-Wallis or Mann-Whitney's tests as appropriate. A value of P ≤ 0.05 was considered statistically significant. Results: No behavioral changes or visible signs of physical impairment were observed at 8 days or 60 days post-implantation. Histopathologic observation of the implanted sites at each time-point showed that both Resilon and gutta-percha implants induced foreign body reaction, showing minimal to mild inflammatory reactions in most cases, which diminished significantly with time. Compared with gutta-percha, the capsule wall was thinner (P < 0.05) after Resilon implantation at day 8 and significantly (P = 0.01) thicker at day 60. In addition, capsule wall thickness showed a trend to increase with time after implantation in the Resilon groups (P < 0.05), opposed to the significant decrease (P = 0.016) observed after implantation in the gutta-percha groups, suggesting lesser long-term biocompatibility of Resilon. Conclusion: Our findings validate Resilon as an in vivo biocompatible material. However, our data suggest that long-term biocompatibility of Resilon, despite validated, is inferior to that of gutta-percha control. PMID:24348625

  4. In Vitro Study of Biocompatibility and Toxicity of Magnesium Nanomaterials for Biodegradable Implants

    NASA Astrophysics Data System (ADS)

    Pallavi, Manishi

    Biodegradable magnesium (Mg) has a great potential to be used as a next generation implant material for orthopedic applications due to its mechanical and osseointegration properties. However, surface characteristics, biocompatibility and toxicity of the released corrosion products, in the form of magnesium oxide (MgO) and magnesium hydroxide (Mg (OH)2) nanoparticles (NPs), at the junction of implants, and their surrounding tissues is not completely understood. Therefore, our goal was to identify in vitro biocompatibility, and toxicity of magnesium nanomaterials in osteoblast cells to mimic the in vivo environment for biodegradable implants. We hypothesized that the release of hydroxide ion (OH-) from MgO/ Mg(OH) 2 NPs will increase the corrosion behavior of these particles in osteoblast cells, and will introduce cytotoxicity. Therefore, the objective of this study was to characterize MgO/ Mg(OH)2 NPs in osteoblast cells, and to develop an electric cell-substrate impedance sensing (ECIS) system to measure the biocompatibility and toxicity of these particles in osteoblast cells. The corrosion behavior of the samples was analyzed through immersion test. The morphological characterization and element distribution of the surface corrosion products of the samples was performed using scanning electron microscopy (SEM) and electron dispersive X-ray spectroscopy (EDX), respectively. Cell viability and cytotoxicity of the samples was studied by live-dead assay. With ECIS system, biocompatibility and cytotoxicity of the samples was analyzed. Results shows that less than or equal to 1 mM concentrations of MgO/ Mg(OH) 2 NPs has negligible toxic effects on osteoblast cells. Therefore, this study provides a foundational knowledge for an acceptable range of these corrosion products that might release from the magnesium-based implants in the physiological environment, in order to understand the implant degradation for future in vivo study.

  5. [Evaluation of biocompatibility of Ti-6Al-4V scaffolds fabricated by electron beam melting].

    PubMed

    Wang, H; Zhao, B J; Yan, R Z; Wang, C; Luo, C C; Hu, M

    2016-11-09

    Objective: To investigate the biocompatibility of Ti-6Al-4V scaffolds fabricated by electron beam melting(EBM). Methods: Bone marrow mesenchymal stem cells(BMSC) co-cultured with Ti-6Al-4V specimens fabricated with EBM was prepared as experimental group and the regular cells culture was employed as control. The biocompatibility was detected using CCK-8 and cytoskeleton staining. The osteogenic differentiation ability was assessed using mineralization nodule formation. A 24 mm defect was created on the right mandibular body in 12 beagles. The mandibular defects were repaired with Ti-6Al-4V scaffolds mesh fabricated by EBM. General observation, CT and histology examination was carried out to evaluated the biocompatibility of Ti-6Al-4V scaffolds in vivo. Results: CCK-8 result showed the A values of the two groups had no significant difference(P >0.05). There was no significant difference between the two groups (P>0.05). Cytoskeletal staining showed that cells were fully stretched out and grew well on T-i6Al-4V specimen. The actin fibers were arranged in parallel and stained uniformly with fluorescent. After osteogenic culture, the quantity of the nodule formation of the experimental group and control group were 5.7±0.7 and 5.1 ± 0.6, respectively(P>0.05). All animals had tolerated the surgery and healed well. CT examination showed that Ti-6Al-4V scaffolds mesh had good retention with surrounding bone and the continuity of mandible was restored. Histological examination showed that no inflammation reaction or toxity was caused in the soft tissue surrounding the scaffolds and in the liver and kidney after implantation. Ti-6Al-4V scaffolds had good retention with surrounding bone. Conclusions: Ti-6Al-4V fabricated with electron beam melting has good biocompatibility.

  6. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use.

    PubMed

    Lai, Jui-Yang

    2010-06-01

    Biocompatibility is a major requirement for the development of functional biomaterials for ophthalmic applications. In this study, we investigated the effect of cross-linker functionality on ocular biocompatibility of chemically modified gelatin hydrogels. The test materials were cross-linked with glutaraldehyde (GTA) or 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC), and were analyzed using in vitro and in vivo assays. Primary rat iris pigment epithelial cultures were incubated with various gelatin discs for 2 days, and the cellular responses were monitored by cell proliferation, viability, and pro-inflammatory gene and cytokine expression. The results demonstrated that the cells exposed to EDC cross-linked gelatins had relatively lower lactate dehydrogenase activity, cytotoxicity, and interleukin-1beta and tumor necrosis factor-alpha levels than did those to GTA treated samples. In addition, the gelatin implants were inserted in the anterior chamber of rabbit eyes for 12 weeks and characterized by clinical observations and scanning electron microscopy studies. The EDC cross-linked gelatin hydrogels exhibited good biocompatibility and were well tolerated without causing toxicity and adverse effects. However, a significant inflammatory reaction was elicited by the presence of GTA treated materials. It was noted that, despite its biocompatibility, the potential application of non-cross-linked gelatin for local delivery of cell and drug therapeutics would be limited due to rapid dissolution in aqueous environments. In conclusion, these findings suggest ocular cell/tissue response to changes in cross-linker properties. In comparison to GTA treatment, the EDC cross-linking is more suitable for preparation of chemically modified gelatin hydrogels for ophthalmic use.

  7. Evaluation of iron oxide nanoparticle biocompatibility.

    PubMed

    Hanini, Amel; Schmitt, Alain; Kacem, Kamel; Chau, François; Ammar, Souad; Gavard, Julie

    2011-01-01

    Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite γ-Fe(2)O(3) nanoparticles showed high structural quality. The particles showed a homogeneous spherical size around 10 nm and could form aggregates depending on the dispersion conditions. Such nanoparticles were efficiently taken up in vitro by human endothelial cells, which represent the first biological barrier to nanoparticles in vivo. However, γ-Fe(2)O(3) can cause cell death within 24 hours of exposure, most likely through oxidative stress. Further in vivo exploration suggests that although γ-Fe(2)O(3) nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected. In conclusion, γ-Fe(2)O(3) could exhibit harmful properties and therefore surface coating, cellular targeting, and local exposure should be considered before developing clinical applications.

  8. Ocular Biocompatibility of Nitinol Intraocular Clips

    PubMed Central

    Velez-Montoya, Raul; Erlanger, Michael

    2012-01-01

    Purpose. To evaluate the tolerance and biocompatibility of a preformed nitinol intraocular clip in an animal model after anterior segment surgery. Methods. Yucatan mini-pigs were used. A 30-gauge prototype injector was used to attach a shape memory nitinol clip to the iris of five pigs. Another five eyes received conventional polypropylene suture with a modified Seipser slip knot. The authors compared the surgical time of each technique. All eyes underwent standard full-field electroretinogram at baseline and 8 weeks after surgery. The animals were euthanized and eyes collected for histologic analysis after 70 days (10 weeks) postsurgery. The corneal thickness, corneal endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram parameters were compared between the groups. A two sample t-test for means and a P value of 0.05 were use for assessing statistical differences between measurements. Results. The injection of the nitinol clip was 15 times faster than conventional suturing. There were no statistical differences between the groups for corneal thickness, endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram measurements. Conclusions. The nitinol clip prototype is well tolerated and showed no evidence of toxicity in the short-term. The injectable delivery system was faster and technically less challenging than conventional suture techniques. PMID:22064995

  9. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    PubMed

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.

  10. Mechanical properties and biocompatibility of two polyepoxy matrices: DGEBA-DDM and DGEBA-IPD.

    PubMed

    Berruet, R; Vinard, E; Calle, A; Tighzert, H L; Chabert, B; Magloire, H; Eloy, R

    1987-05-01

    The aim of this paper was to study the biocompatibility and mechanical properties of materials for orthopaedic and odontologic surgical use. The products used were obtained by polycondensation of a diepoxy resin (DGEBA) with two curing agents (DDM or IPD). The materials present a slight swelling in liquid medium and their thermomechanical properties are hardly affected after 12 month implantation. The absence of molecular desorption in isotonic liquid and human serum confirms their hydrolytic stability and thus their inertia. These materials do not give rise to an intolerance reaction by neighbouring tissues during implantation time (1 d to 12 month).

  11. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Courant, T.; Roullin, V. G.; Cadiou, C.; Delavoie, F.; Molinari, M.; Andry, M. C.; Gafa, V.; Chuburu, F.

    2010-04-01

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  12. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.

    PubMed

    Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  13. Biocompatibility of silk-tropoelastin protein polymers.

    PubMed

    Liu, Hongjuan; Wise, Steven G; Rnjak-Kovacina, Jelena; Kaplan, David L; Bilek, Marcela M M; Weiss, Anthony S; Fei, Jian; Bao, Shisan

    2014-06-01

    Blended polymers are used extensively in many critical medical conditions as components of permanently implanted devices. Hybrid protein polymers containing recombinant human tropoelastin and silk fibroin have favorable characteristics as implantable scaffolds in terms of mechanical and biological properties. A firefly luciferase transgenic mouse model was used to monitor real-time IL-1β production localized to the site of biomaterial implantation, to observe the acute immune response (up to 5 days) to these materials. Significantly reduced levels of IL-1β were observed in silk/tropoelastin implants compared to control silk only implants at 1, 2 and 3 days post-surgery. Subsequently, mice (n = 9) were euthanized at 10 days (10D) and 3 weeks (3W) post-surgery to assess inflammatory cell infiltration and collagen deposition, using histopathology and immunohistochemistry. Compared to control silk only implants, fewer total inflammatory cells were found in silk/tropoelastin (∼29% at 10D and ∼47% at 3W). Also fewer ingrowth cells (∼42% at 10D and ∼63% at 3W) were observed within the silk/tropoelastin implants compared to silk only. Lower IL-6 (∼52%) and MMP-2 (∼84%) (pro-inflammatory) were also detected for silk/tropoelastin at 10 days. After 3 weeks implantation, reduced neovascularization (vWF ∼43%), fewer proliferating cells (Ki67 ∼58% and PCNA ∼41%), macrophages (F4/80 ∼64%), lower IL-10 (∼47%) and MMP-9 (∼55%) were also observed in silk/tropoelastin materials compared to silk only. Together, these results suggest that incorporation of tropoelastin improves on the established biocompatibility of silk fibroin, uniquely measured here as a reduced foreign body inflammatory response.

  14. Sculpting with light: Light/matter interactions in biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.

    When light interacts with matter either the light or the material can be changed. This dissertation focuses on light/matter interaction in silk fibroin and its utility for biomedical applications. Silk, a natural biocompatible, biodegradable polymer, has a large 3-photon absorption cross-section which allows modest peak intensity light to cause significant multiphoton absorption. This absorption allows voids to be formed with three dimensional control within soft, transparent silk hydrogels. A theoretical model of the void formation process is developed to allow the size of the voids to be predicted for a range of laser and sample parameters. Arbitrary 3D patterns are created in silk gels that allow cells to penetrate into the bulk of the gel both in vitro and in vivo. To explore how silk can be used to alter light, the creation of step-index optical waveguides, formed by encapsulating a silk film within a silk hydrogel, is described. These waveguides allow light to be delivered to targets through several centimeters of highly scattering biological tissue. Finally, the interaction of light with riboflavin is used to photocrosslink silk to form solid structures, rather than voids. The mechanism of crosslinking to be driven by radicalized tyrosine residues resulting in the formation of dityrosine bonds which lead to the gelation of a liquid silk solution. Riboflavin is a versatile photoinitiator and can be used to crosslink collagen as well as silk, which allows silk to be crosslinked directly to corneal collagen. When applied to the eye, an artificial corneal layer is formed which has the potential to treat various corneal diseases and allow for risk-free laser vision correction. These studies show the versatility of light-based processing of silk for a wide variety of medical applications.

  15. Evaluation of stability and biocompatibility of PHEMA-PMMA keratoprosthesis by penetrating keratoplasty in rabbits

    PubMed Central

    Hwang, Yawon

    2016-01-01

    Artificial corneas have been developed as an alternative to natural donor tissue to replace damaged or diseased corneas. This study was conducted to evaluate the stability and biocompatibility of PHEMA-PMMA [poly (2-hydroxyl methacrylate)-poly (methyl methacrylate)] keratoprostheses in rabbits following penetrating keratoplasty. Sixteen male New Zealand White rabbits aged 16 weeks were divided into three groups. Group I and group II contained six rabbits each, while the control group had four rabbits. Experimental surgery was conducted under general anesthesia. The cornea was penetrated using an 8 mm diameter biopsy punch. In group I (core 5 mm & skirt 3 mm) and group II (core 6 mm & skirt 2 mm), the keratoprosthesis was placed into the recipient full thickness bed and sutured into position with double-layer continuous. In the control group, corneal transplantation using normal allogenic corneal tissue was performed with the same suture method. After four and eight weeks, keratoprosthesis devices were evaluated by histopathological analysis of gross lesions. Post-operative complications were observed, such as extrusion and infection in experimental groups. Most corneas were maintained in the defect site by double-layer continuous suture materials for 4 weeks and kept good light transmission. However, most artificial cornea were extruded before 8 weeks. Overall, combined PHEMA and PMMA appears to have sufficient advantages for production of artificial corneas because of its optical transparency, flexibility and other mechanical features. However, the stability and biocompatibility were not sufficient to enable application in humans and animals at the present time using penetrating keratoplasty. Further studies are essential to improve the stability and biocompatibility with or without other types of keratoplasty. PMID:28053610

  16. Nanospearing - Biomolecule Delivery and Its Biocompatibility

    NASA Astrophysics Data System (ADS)

    Cai, Dong; Kempa, Krzysztof; Ren, Zhifeng; Carnahan, David; Chiles, Thomas C.

    stimulation in as robust a manner as cells left untreated. Our study suggests the biocompatibility of the nanospearing procedure and PECVD nanotubes under the proposed spearing conditions with regard to the humoral component of the immune system, therefore, reducing concerns that surround in vivo applications of CNTs.

  17. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility.

    PubMed

    Zitter, H; Plenk, H

    1987-07-01

    This study introduces a simple in vitro arrangement to measure current densities of implant metals. The in vivo condition of a metallic implant lying in tissues exhibiting different redox potentials is simulated in so-called straddle tests by applying a constant potential difference of 250 mV in saline containing the stable, fast-reacting redox system K4Fe(CN)6/K3Fe(CN)6. From a variety of corrosion-resistant implant metals and alloys, gold showed the highest current densities, followed by the stainless steel, the cobalt-based alloy, and the TiAIV-alloy. The pure metals titanium, niobium, and tantalum showed the lowest values. This can be explained by the stable oxide layer on these base metals, preventing an exchange of electrons and thus any redox reaction. This rating of metallic implant materials based on in vitro measurements of current densities is in good accordance with their biocompatibility rating reported from in vivo experiences. It seems that simple and cheap electrochemical tests allow an even more precise differentiation of the suitability of metallic materials for implant purposes than most of the conventional implantation tests, considering that biocompatibility is not only determined by corrosion products, but also by exchange currents and reaction products of redox processes involving tissue compounds.

  18. Manufacture of a weakly denatured collagen fiber scaffold with excellent biocompatibility and space maintenance ability.

    PubMed

    Nakada, A; Shigeno, K; Sato, T; Kobayashi, T; Wakatsuki, M; Uji, M; Nakamura, T

    2013-08-01

    Although collagen scaffolds have been used for regenerative medicine, they have insufficient mechanical strength. We made a weakly denatured collagen fiber scaffold from a collagen fiber suspension (physiological pH 7.4) through a process of freeze drying and denaturation with heat under low pressure (1 × 10(-1) Pa). Heat treatment formed cross-links between the collagen fibers, providing the scaffold with sufficient mechanical strength to maintain the space for tissue regeneration in vivo. The scaffold was embedded under the back skin of a rat, and biocompatibility and space maintenance ability were examined after 2 weeks. These were evaluated by using the ratio of foreign body giant cells and thickness of the residual scaffold. A weakly denatured collagen fiber scaffold with moderate biocompatibility and space maintenance ability was made by freezing at -10 °C, followed by denaturation at 140 °C for 6 h. In addition, the direction of the collagen fibers in the scaffold was adjusted by cooling the suspension only from the bottom of the container. This process increased the ratio of cells that infiltrated into the scaffold. A weakly denatured collagen fiber scaffold thus made can be used for tissue regeneration or delivery of cells or proteins to a target site.

  19. Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Multimodal Imaging of Living Cells.

    PubMed

    Fior, Raffaella; Kwok, Jeanie; Malfatti, Francesca; Sbaizero, Orfeo; Lal, Ratnesh

    2015-08-01

    Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response.

  20. Biocompatible optically transparent MEMS for micromechanical stimulation and multimodal imaging of living cells

    PubMed Central

    Fior, Raffaella; Kwok, Jeanie; Malfatti, Francesca; Sbaizero, Orfeo; Lal, Ratnesh

    2015-01-01

    Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response. PMID:25549773

  1. Biocompatibility studies of natural rubber latex from different tree clones and collection methods.

    PubMed

    Floriano, Juliana Ferreira; da Mota, Lígia Souza Lima Silveira; Furtado, Edson Luiz; Rossetto, Victor José Vieira; Graeff, Carlos F O

    2014-02-01

    Natural rubber latex (NRL) has several features that make it an excellent biomaterial to promote the growth and repair of tissues, skin and bones. Most of the research with NRL membranes uses a mixture of different clones and chemical preservatives in the collection process. In this study, we compared five clones that produce NRL, seeking to identify their differences in biocompatibility. The clones studied were RRIM 600, PB 235, GT1, PR 255 and IAN 873 commonly found in plantations in Brazil. We did also study the effect of ammonia used during latex collection. NRL membranes were prepared aseptically and sterilized. In the in vitro tests, the membranes remained in direct contact with mouse fibroblasts cells for three periods, 24, 48 and 72 h. In the in vivo tests, the membranes were implanted subcutaneously in rabbits. The results indicated the biocompatibility of the membranes obtained from all clones. Membranes from the clones RRIM 600 and IAN 873 induced greater cell proliferation, suggesting greater bioactivity. It was found that the membranes made from latex that was in contact with ammonia during collection, showed cytotoxic and genotoxic effects in cultures, as well as necrosis, and increased inflammatory cells in the rabbit's tissues close to the implant.

  2. Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants.

    PubMed

    Bedi, Rajwant S; Beving, Derek E; Zanello, Laura P; Yan, Yushan

    2009-10-01

    Titanium alloy, Ti6Al4V, is widely used in dental and orthopedic implants. Despite its excellent biocompatibility, Ti6Al4V releases toxic Al and V ions into the surrounding tissue after implantation. In addition, the elastic modulus of Ti6Al4V ( approximately 110GPa) is significantly higher than that of bone (10-40GPa), leading to a modulus mismatch and consequently implant loosening and deosteointegration. Zeolite coatings are proposed to prevent the release of the toxic ions into human tissue and enhance osteointegration by matching the mechanical properties of bone. Zeolite MFI coatings are successfully synthesized on commercially pure titanium and Ti6Al4V for the first time. The coating shows excellent adhesion by incorporating titanium from the substrate within the zeolite framework. Higher corrosion resistance than the bare titanium alloy is observed in 0.856M NaCl solution at pHs of 7.0 and 1.0. Zeolite coatings eliminate the release of cytotoxic Al and V ions over a 7 day period. Pluripotent mouse embryonic stem cells show higher adhesion and cell proliferation on the three-dimensional zeolite microstructure surface compared with a two-dimensional glass surface, indicating that the zeolite coatings are highly biocompatible.

  3. Developmental biology and tissue engineering.

    PubMed

    Marga, Francoise; Neagu, Adrian; Kosztin, Ioan; Forgacs, Gabor

    2007-12-01

    Morphogenesis implies the controlled spatial organization of cells that gives rise to tissues and organs in early embryonic development. While morphogenesis is under strict genetic control, the formation of specialized biological structures of specific shape hinges on physical processes. Tissue engineering (TE) aims at reproducing morphogenesis in the laboratory, i.e., in vitro, to fabricate replacement organs for regenerative medicine. The classical approach to generate tissues/organs is by seeding and expanding cells in appropriately shaped biocompatible scaffolds, in the hope that the maturation process will result in the desired structure. To accomplish this goal more naturally and efficiently, we set up and implemented a novel TE method that is based on principles of developmental biology and employs bioprinting, the automated delivery of cellular composites into a three-dimensional (3D) biocompatible environment. The novel technology relies on the concept of tissue liquidity according to which multicellular aggregates composed of adhesive and motile cells behave in analogy with liquids: in particular, they fuse. We emphasize the major role played by tissue fusion in the embryo and explain how the parameters (surface tension, viscosity) that govern tissue fusion can be used both experimentally and theoretically to control and simulate the self-assembly of cellular spheroids into 3D living structures. The experimentally observed postprinting shape evolution of tube- and sheet-like constructs is presented. Computer simulations, based on a liquid model, support the idea that tissue liquidity may provide a mechanism for in vitro organ building.

  4. Biocompatibility of a functionally graded bioceramic coating made by wide-band laser cladding.

    PubMed

    Weidong, Zhu; Qibin, Liu; Min, Zheng; Xudong, Wang

    2008-11-01

    The application of plasma spray is the most popular method by which a metal-bioceramic surface composite can be prepared for the repair of biological hard-tissue, but this method has disadvantages. These disadvantages include poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In the investigation described in this article, a gradient bioceramic coating was prepared on a Ti-6Al-4V titanium alloy surface using a gradient composite design and wide-band laser cladding techniques. Using a trilayer-structure composed of a substratum, an alloy and bioceramics, the coating was chemically and metallurgically bonded with the substratum. The coating, which contains beta-tricalcium phosphate and hydroxyapatite, showed favorable biocompatibility with the bone tissue and promoted in vivo osteogenesis.

  5. Flexible and Highly Biocompatible Nanofiber-Based Electrodes for Neural Surface Interfacing.

    PubMed

    Heo, Dong Nyoung; Kim, Han-Jun; Lee, Yi Jae; Heo, Min; Lee, Sang Jin; Lee, Donghyun; Do, Sun Hee; Lee, Soo Hyun; Kwon, Il Keun

    2017-03-28

    Polyimide (PI)-based electrodes have been widely used as flexible biosensors in implantable device applications for recording biological signals. However, the long-term quality of neural signals obtained from PI-based nerve electrodes tends to decrease due to nerve damage by neural tissue compression, mechanical mismatch, and insufficient fluid exchange between the neural tissue and electrodes. Here, we resolve these problems with a developed PI nanofiber (NF)-based nerve electrode for stable neural signal recording, which can be fabricated via electrospinning and inkjet printing. We demonstrate an NF-based nerve electrode that can be simply fabricated and easily applied due to its high permeability, flexibility, and biocompatibility. Furthermore, the electrode can record stable neural signals for extended periods of time, resulting in decreased mechanical mismatch, neural compression, and contact area. NF-based electrodes with highly flexible and body-fluid-permeable properties could enable future neural interfacing applications.

  6. The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane.

    PubMed

    Zhuang, Yan; Zhang, Qian; Feng, Jinqi; Wang, Na; Xu, Weilin; Yang, Hongjun

    2017-04-01

    Naturally derived fibers such as silk fibroin can potentially enhance the biocompatibility of currently used biomaterials. This study investigated the physical properties of native silk fibroin powder and its effect on the biocompatibility of biomedical polyurethane. Native silk fibroin powder with an average diameter of 3 µm was prepared on a purpose-built machine. A simple method of phase inversion was used to produce biomedical polyurethane/native silk fibroin powder hybrid membranes at different blend ratios by immersing a biomedical polyurethane/native silk fibroin powder solution in deionized water at room temperature. The physical properties of the membranes including morphology, hydrophilicity, roughness, porosity, and compressive modulus were characterized, and in vitro biocompatibility was evaluated by seeding the human umbilical vein endothelial cells on the top surface. Native silk fibroin powder had a concentration-dependent effect on the number and morphology of human umbilical vein endothelial cells growing on the membranes; cell number increased as native silk fibroin powder content in the biomedical polyurethane/native silk fibroin powder hybrid membrane was increased from 0% to 50%, and cell morphology changed from spindle-shaped to cobblestone-like as the native silk fibroin powder content was increased from 0% to 70%. The latter change was related to the physical characteristics of the membrane, including hydrophilicity, roughness, and mechanical properties. The in vivo biocompatibility of the native silk fibroin powder-modified biomedical polyurethane membrane was evaluated in a rat model; the histological analysis revealed no systemic toxicity. These results indicate that the biomedical polyurethane/native silk fibroin powder hybrid membrane has superior in vitro and in vivo biocompatibility relative to 100% biomedical polyurethane membranes and thus has potential applications in the fabrication of small-diameter vascular grafts and in

  7. Biocompatibility and anti-microbiological activity characterization of novel coatings for dental implants: A primer for non-biologists

    NASA Astrophysics Data System (ADS)

    Monsees, Thomas

    2016-08-01

    With regard to biocompatibility, the cardinal requirement for dental implants and other medical devices that are in long-term contact with tissue is that the material does not cause any adverse effect to the patient. To warrant stability and function of the implant, proper osseointegration is a further prerequisite. Cells interact with the implant surface as the interface between bulk material and biological tissue. Whereas structuring, deposition of a thin film or other modifications of the surface are crucial parameters in determining favorable adhesion of cells, corrosion of metal surfaces and release of ions can affect cell viability. Both parameters are usually tested using in vitro cytotoxicity and adhesion assays with bone or fibroblasts cells. For bioactive surface modifications, further tests should be considered for biocompatibility evaluation. Depending on the type of modification, this may include analysis of specific cell functions or the determination of antimicrobial activities. The latter is of special importance as bacteria and yeast present in the oral cavity can be introduced during the implantation process and this may lead to chronic infections and implant failure. An antimicrobial coating of the implant is a way to avoid that. This review describes the essential biocompatibility assays for evaluation of new implant materials required by ISO 10993 and also gives an overview on recent test methods for specific coatings of dental implants.

  8. Biocompatible multilayer capsules engineered with a graphene oxide derivative: synthesis, characterization and cellular uptake

    NASA Astrophysics Data System (ADS)

    Del Mercato, Loretta L.; Guerra, Flora; Lazzari, Gianpiero; Nobile, Concetta; Bucci, Cecilia; Rinaldi, Rosaria

    2016-03-01

    Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives both for fundamental tests of graphene mechanics and for novel (bio)technological applications. However, the assembly of 3D complexes from graphene or its derivatives is challenging because of its poor stability under biological conditions. In this work, we attempted to integrate a layer of graphene oxide derivative into the shell of biodegradable capsules by exploiting a facile layer-by-layer (LbL) protocol. As a first step we optimized the LbL protocol to obtain colloidal suspensions of isolated capsules embedding the graphene oxide derivative. As a following step, we investigated in detail the morphological properties of the hybrid capsules, and how the graphene oxide derivative layer influences the porosity and the robustness of the multilayer composite shells. Finally, we verified the uptake of the capsules modified with the GO derivative by two cell lines and studied their intracellular localization and biocompatibility. As compared to pristine capsules, the graphene-modified capsules possess reduced porosity, reduced shell thickness and a higher stability against osmotic pressure. They show remarkable biocompatibility towards the tested cells and long-term colloidal stability and dispersion. By combining the excellent mechanical properties of a graphene oxide derivative with the high versatility of the LbL method, robust and flexible biocompatible polymeric capsules with novel characteristics have been fabricated.Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives

  9. Myocardial tissue engineering using electrospun nanofiber composites.

    PubMed

    Kim, Pyung-Hwan; Cho, Je-Yoel

    2016-01-01

    Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed.

  10. Biocompatible, Biodegradable Polymers for Use in Bone Repair,

    DTIC Science & Technology

    1987-01-01

    BIOCOMPATIBLE , BIODEGRADABLE POLYMERS FOR USE IN BONE REPAIR 12. PERSONAL AUTHOR(S) Jeffrey 0. Hollinger, D.D.S., Ph.D.; Augusto C. Ibay, Ph.D.; Deiren E...CLASSIFICATION OF THIS PAGE All other editions are obsolete Hollinger fbav Mark page 2 BIOCOMPATIBLE , i’UbEfRADABLE POLYMERS FOR USE IN BONE REPAIR ...POLYESTERS GENERAL FORMULA. p 0 H Loc H-(CHi) -OH POLYMERS n R HO NO -POLYMER S 1. Polv(glvcoliic acid ) lb.Z, 0 H 2. Poly ( lactic acid ) 1 9 .2 1 . 2 4 0

  11. [Study on biocompatibility of MIM 316L stainless steel].

    PubMed

    Wang, Guohui; Zhu, Shaihong; Li, Yiming; Zhao, Yanzhong; Zhou, Kechao; Huang, Boyun

    2007-04-01

    This study was aimed to evaluate the biocompatibility of metal powder injection molding (MIM) 316L stainless steel. The percentage of S-period cells was detected by flow cytometry after L929 cells being incubated with extraction of MIM 316L stainless steel, and titanium implant materials for clinical application were used as control. In addition, both materials were implanted in animals and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between the two groups (P > 0.05), which demonstrate that MIM 316L stainless steel has good biocompatibility.

  12. Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy

    DOE PAGES

    Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira; ...

    2014-09-25

    A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal β-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP–PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major stepmore » forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors.Lastly, it also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.« less

  13. Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy

    SciTech Connect

    Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira; El-Rifai, Mahmoud; Lee, Hyungseok; Zhang, Yuanwei; Wang, Chao; Liu, Zhuang; Chan, Emory M.; Duan, Chunying; Han, Gang

    2014-09-25

    A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal β-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP–PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major step forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors.Lastly, it also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.

  14. Biocompatibility of subretinal parylene-based Ti/Pt microelectrode array in rabbit for further artificial vision studies.

    PubMed

    Yu, Weihong; Wang, Xuqian; Zhao, Chan; Yang, Zhikun; Dai, Rongping; Dong, Fangtian

    2009-03-27

    To evaluate the biocompatibility of subretinal implanted parylene-based Ti/Pt microelectrode arrays (MEA). Eyes were enucleated 3 months after MEAs were implanted into the subretinal space of rabbits. Morphological changes of the retinas were investigated by H&E staining. Immunohistochemical staining for glial fibrillary acidic protein and opsin were performed to evaluate changes in Muller cells and photoreceptors in the retinas. Retina tissue around the array remained intact. Photoreceptor degeneration and glial cell activation were observed in the retina overlaying the MEA implant. However, the cells in the inner retinal layers were preserved. Photoreceptor degeneration and glial cell activation at the MEA-retina interface are expected to be a normal reaction to implantation. Material used in this experiment has good biocompatibility within the subretinal environment and is expected to be promising in the further retinal prosthesis studies.

  15. In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate.

    PubMed

    Beloti, Márcio M; de Oliveira, Paulo T; Gimenes, Rossano; Zaghete, Maria A; Bertolini, Márcio J; Rosa, Adalberto L

    2006-11-01

    This study was aimed at investigating the in vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT). Osteoblastic cells were obtained from human alveolar bone fragments and cultured under standard osteogenic condition until subconfluence. First passaged cells were cultured on P(VDF-TrFE)/BT and expanded polytetrafluoroethylene (e-PTFE--control) membranes in 24-well plates. Cell adhesion and spreading were evaluated at 30 min, and 4 and 24 h. For proliferation assay, cells were cultured for 1, 7, and 10 days. Cell viability was detected by trypan blue at 7 and 10 days. Total protein content and alkaline phosphatase (ALP) activity were measured at 7, 14, and 21 days. Cultures were stained with Alizarin red at 21 days, for detection of mineralized matrix. Data were compared by ANOVA and Student t test. Cell attachment (p = 0.001), cell number (p = 0.001), and ALP activity (p = 0.0001) were greater on P(VDF-TrFE)/BT. Additionally, doubling time was greater on P(VDF-TrFE)/BT (p = 0.03), indicating a decreased proliferation rate. Bone-like nodule formation took place only on P(VDF-TrFE)/BT. The present results showed that both membranes are biocompatible. However, P(VDF-TrFE)/BT presented a better in vitro biocompatibility and allowed bone-like nodule formation. Therefore, P(VDF-TrFE)/BT could be an alternative membrane to be used in guided tissue regeneration.

  16. Synthesis, physiochemical characterization, and biocompatibility of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention.

    PubMed

    Cabral, Jaydee D; Roxburgh, Marina; Shi, Zheng; Liu, Liqi; McConnell, Michelle; Williams, Gail; Evans, Natasha; Hanton, Lyall R; Simpson, Jim; Moratti, Stephen C; Robinson, Brian H; Wormald, Peter J; Robinson, Simon

    2014-12-01

    An amine-functionalized succinyl chitosan and an oxidized dextran were synthesized and mixed in aqueous solution to form an in situ chitosan/dextran injectable, surgical hydrogel for adhesion prevention. Rheological characterization showed that the rate of gelation and moduli were tunable based on amine and aldehyde levels, as well as polymer concentrations. The CD hydrogels have been shown to be effective post-operative aids in prevention of adhesions in ear, nose, and throat surgeries and abdominal surgeries in vivo. In vitro biocompatibility testing was performed on CD hydrogels containing one of two oxidized dextrans, an 80 % oxidized (CD-100) or 25 % (CD-25) oxidized dextran. However, the CD-100 hydrogel showed moderate cytotoxicity in vitro to Vero cells. SC component of the CD hydrogel, however, showed no cytotoxic effect. In order to increase the biocompatibility of the hydrogel, a lower aldehyde level hydrogel was developed. CD-25 was found to be non-cytotoxic to L929 fibroblasts. The in vivo pro-inflammatory response of the CD-25 hydrogel, after intraperitoneal injection in BALB/c mice, was also determined by measuring serum TNF-α levels and by histological analysis of tissues. TNF-α levels were similar in mice injected with CD-25 hydrogel as compared to the negative saline injected control; and were significantly different (P < 0.05) as compared to the positive, lipopolysaccharide, injected control. Histological examination revealed no inflammation seen in CD hydrogel injected mice. The results of these in vitro and in vivo studies demonstrate the biocompatibility of the CD hydrogel as a post-operative aid for adhesion prevention.

  17. Biocompatible multilayer capsules engineered with a graphene oxide derivative: synthesis, characterization and cellular uptake.

    PubMed

    del Mercato, Loretta L; Guerra, Flora; Lazzari, Gianpiero; Nobile, Concetta; Bucci, Cecilia; Rinaldi, Rosaria

    2016-04-14

    Graphene-based capsules have strong potential for a number of applications, including drug/gene delivery, tissue engineering, sensors, catalysis and reactors. The ability to integrate graphene into carrier systems with three-dimensional (3D) geometry may open new perspectives both for fundamental tests of graphene mechanics and for novel (bio)technological applications. However, the assembly of 3D complexes from graphene or its derivatives is challenging because of its poor stability under biological conditions. In this work, we attempted to integrate a layer of graphene oxide derivative into the shell of biodegradable capsules by exploiting a facile layer-by-layer (LbL) protocol. As a first step we optimized the LbL protocol to obtain colloidal suspensions of isolated capsules embedding the graphene oxide derivative. As a following step, we investigated in detail the morphological properties of the hybrid capsules, and how the graphene oxide derivative layer influences the porosity and the robustness of the multilayer composite shells. Finally, we verified the uptake of the capsules modified with the GO derivative by two cell lines and studied their intracellular localization and biocompatibility. As compared to pristine capsules, the graphene-modified capsules possess reduced porosity, reduced shell thickness and a higher stability against osmotic pressure. They show remarkable biocompatibility towards the tested cells and long-term colloidal stability and dispersion. By combining the excellent mechanical properties of a graphene oxide derivative with the high versatility of the LbL method, robust and flexible biocompatible polymeric capsules with novel characteristics have been fabricated.

  18. Biocompatibility of mineral trioxide aggregate and three new endodontic cements: An animal study

    PubMed Central

    Aminozarbian, Mohammad-Ghasem; Barati, Masoud; Salehi, Iman; Mousavi, Seyed Behrouz

    2012-01-01

    Background: Introducing new endodontic cements should await comprehensive investigations and new formulations have to be tested in vivo before applying in human beings. So, the purpose of this study was to compare the biocompatibility of new endodontic cements, calcium aluminate α-aluminate cement (CAAC), calcium aluminate α-aluminate plus cement (CAAC plus), and a mixture of wollastonite and CAAC cement (WOLCA) and mineral trioxide aggregate (MTA), in subcutaneous connective tissue of rats. Materials and Methods: Twenty-seven Wistar rats were divided into three groups of 7, 14, and 30 experimental days. Sterile polyethylene tubes were filled with MTA, CAAC, CAAC Plus, and WOLCA cement and implanted subcutaneously. Empty tubes were implanted as negative control. After the experimental periods, animals were sacrificed by anesthetic overdosing. The occurrence of inflammatory responses was scored according to the previously established scores. Data were statistically analyzed using Friedman, Wilcoxon, Kruskal-Wallis, and Mann-Whitney tests. The level of significance was 5% (P<0.05). Results: There was a statistically significant difference between experimental and negative control sites in each group (P<0.05). CAAC Plus showed the highest mean scores of inflammation, compared with MTA, CAAC, and WOLCA cement sits at the end of all periods (P<0.05). There were no statistically significant differences between inflammatory scores of each site in different experimental groups, except CAAC plus sites, in which inflammation increased significantly with time (P<0.05). Conclusion: According to the results of the current study, biocompatibility of CAAC and WOLCA cement were comparable with that of MTA, but CAAC Plus induced an inflammatory response higher than MTA, therefore is not biocompatible. PMID:22363364

  19. Injectable biodegradable materials for orthopedic tissue engineering.

    PubMed

    Temenoff, J S; Mikos, A G

    2000-12-01

    The large number of orthopedic procedures performed each year, including many performed arthroscopically, have led to great interest in injectable biodegradable materials for regeneration of bone and cartilage. A variety of materials have been developed for these applications, including ceramics, naturally derived substances and synthetic polymers. These materials demonstrate overall biocompatibility and appropriate mechanical properties, as well as promote tissue formation, thus providing an important step towards minimally invasive orthopedic procedures. This review provides a comparison of these materials based on mechanical properties, biocompatibility and regeneration efficacy. Advantages and disadvantages of each material are explained and design criteria for injectable biodegradable systems are provided.

  20. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.

    PubMed

    Bell, Alex; Kofron, Matthew; Nistor, Vasile

    2015-09-03

    Multiphoton fabrication is a powerful technique for three-dimensional (3D) printing of structures at the microscale. Many polymers and proteins have been successfully structured and patterned using this method. Type I collagen comprises a large part of the extracellular matrix for most tissue types and is a widely used cellular scaffold material for tissue engineering. Current methods for creating collagen tissue scaffolds do not allow control of local geometry on a cellular scale. This means the environment experienced by cells may be made up of the native material but unrelated to native cellular-scale structure. In this study, we present a novel method to allow multiphoton crosslinking of type I collagen with flavin mononucleotide photosensitizer. The method detailed allows full 3D printing of crosslinked structures made from unmodified type I collagen and uses only demonstrated biocompatible materials. Resolution of 1 μm for both standing lines and high-aspect ratio gaps between structures is demonstrated and complex 3D structures are fabricated. This study demonstrates a means for 3D printing with one of the most widely used tissue scaffold materials. High-resolution, 3D control of the fabrication of collagen scaffolds will facilitate higher fidelity recreation of the native extracellular environment for engineered tissues.

  1. Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels.

    PubMed

    Song, Kedong; Qiao, Mo; Liu, Tianqing; Jiang, Bo; Macedo, Hugo M; Ma, Xuehu; Cui, Zhanfeng

    2010-10-01

    This paper introduces a novel type of injectable temperature-sensitive chitosan/glycerophosphate/collagen (C/GP/Co) hydrogel that possesses great biocompatibility for the culture of adipose tissue-derived stem cells. The C/GP/Co hydrogel is prepared by mixing 2.2% (v/v) chitosan with 50% (w/w) β-glycerophosphate at different proportions and afterwards adding 2 mg/ml of collagen. The gelation time of the prepared solution at 37°C was found to be of around 12 min. The inner structure of the hydrogel presented a porous spongy structure, as observed by scanning electron microscopy. Moreover, the osmolality of the medium in contact with the hydrogel was in the range of 310-330 mmol kg(-1). These analyses have shown that the C/GP/Co hydrogels are structurally feasible for cell culture, while their biocompatibility was further examined. Human adipose tissue-derived stem cells (ADSCs) were seeded into the developed C/GP and C/GP/Co hydrogels (The ratios of C/GP and C/GP/Co were 5:1 and 5:1:6, respectively), and the cellular growth was periodically observed under an inverted microscope. The proliferation of ADSCs was detected using cck-8 kits, while cell apoptosis was determined by a Live/Dead Viability/Cytotoxicity kit. After 7 days of culture, cells within the C/GP/Co hydrogels displayed a typical adherent cell morphology and good proliferation with very high cellular viability. It was thus demonstrated that the novel C/GP/Co hydrogel herein described possess excellent cellular compatibility, representing a new alternative as a scaffold for tissue engineering, with the added advantage of being a gel at the body's temperature that turns liquid at room temperature.

  2. Dendronized polyaniline nanotubes for cardiac tissue engineering.

    PubMed

    Moura, Renata Mendes; de Queiroz, Alvaro Antonio Alencar

    2011-05-01

    Today, nanobiomaterials represent a very important class of biomaterials because they differ dramatically in their bulk precursors. The properties of these materials are determined by the size and morphology, thus creating a fascinating line in their physicochemical properties. Polyaniline nanotubes (PANINTs) are one of the most promising nanobiomaterials for cardiac tissue engineering applications due to their electroactive properties. The biocompatibility and low hydrophilic properties of PANINTs can be improved by their functionalization with the highly hydrophilic polyglycerol dendrimers (PGLDs). Hydrophilicity plays a fundamental role in tissue regeneration and fundamental forces that govern the process of cell adhesion and proliferation. In this work, the biocompatible properties and cardiomyocyte proliferation onto PANINTs modified by PGLD are described. PGLDs were immobilized onto PANINTs via surface-initiated anionic ring-opening polymerization of glycidol. The microstructure and morphology of PGLD-PANINTs was determined by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The cardiac cell growth on the PGLD-PANINTs was investigated. The PGLD-coated PANINTs showed noncytotoxic effects to Chinese hamster ovary cells. It was observed that the application of microcurrent stimulates the differentiation of cardiac cells cultured on PGLD-PANINTs scaffolds. The electroactive and biocompatible results of PGLD-PANINTs observed in this work demonstrate the potential of this nanobiomaterial for the culture of cardiac cells and open the possibility of using this material as a biocompatible electroactive three-dimensional matrix in cardiac tissue engineering.

  3. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart.

    PubMed

    Tölli, Marja A; Ferreira, Mónica P A; Kinnunen, Sini M; Rysä, Jaana; Mäkilä, Ermei M; Szabó, Zoltán; Serpi, Raisa E; Ohukainen, Pauli J; Välimäki, Mika J; Correia, Alexandra M R; Salonen, Jarno J; Hirvonen, Jouni T; Ruskoaho, Heikki J; Santos, Hélder A

    2014-09-01

    Myocardial infarction (MI), commonly known as a heart attack, is the irreversible necrosis of heart muscle secondary to prolonged ischemia, which is an increasing problem in terms of morbidity, mortality and healthcare costs worldwide. Along with the idea to develop nanocarriers that efficiently deliver therapeutic agents to target the heart, in this study, we aimed to test the in vivo biocompatibility of different sizes of thermally hydrocarbonized porous silicon (THCPSi) microparticles and thermally oxidized porous silicon (TOPSi) micro and nanoparticles in the heart tissue. Despite the absence or low cytotoxicity, both particle types showed good in vivo biocompatibility, with no influence on hematological parameters and no considerable changes in cardiac function before and after MI. The local injection of THCPSi microparticles into the myocardium led to significant higher activation of inflammatory cytokine and fibrosis promoting genes compared to TOPSi micro and nanoparticles; however, both particles showed no significant effect on myocardial fibrosis at one week post-injection. Our results suggest that THCPSi and TOPSi micro and nanoparticles could be applied for cardiac delivery of therapeutic agents in the future, and the PSi biomaterials might serve as a promising platform for the specific treatment of heart diseases.

  4. Materials composed of the Drosophila Hox protein Ultrabithorax are biocompatible and nonimmunogenic.

    PubMed

    Patterson, Jan L; Arenas-Gamboa, Angela M; Wang, Ting-Yi; Hsiao, Hao-Ching; Howell, David W; Pellois, Jean-Philippe; Rice-Ficht, Allison; Bondos, Sarah E

    2015-04-01

    Although the in vivo function of the Drosophila melanogaster Hox protein Ultrabithorax (Ubx) is to regulate transcription, in vitro Ubx hierarchically self-assembles to form nanoscale to macroscale materials. The morphology, mechanical properties, and functionality (via protein chimeras) of Ubx materials are all easily engineered. Ubx materials are also compatible with cells in culture. These properties make Ubx attractive as a potential tissue engineering scaffold, but to be used as such they must be biocompatible and nonimmunogenic. In this study, we assess whether Ubx materials are suitable for in vivo applications. When implanted into mice, Ubx fibers attracted few immune cells to the implant area. Sera from mice implanted with Ubx contain little to no antibodies capable of recognizing Ubx. Furthermore, Ubx fibers cultured with macrophages in vitro did not lyse or activate the macrophages, as measured by TNF-α and NO secretion. Finally, Ubx fibers do not cause hemolysis when incubated with human red blood cells. The minimal effects observed are comparable with those induced by biomaterials used successfully in vivo. We conclude Ubx materials are biocompatible and nonimmunogenic.

  5. L-cysteine: a biocompatible, breathable and beneficial coating for graphene oxide.

    PubMed

    Mu, Li; Gao, Yue; Hu, Xiangang

    2015-06-01

    Graphene oxide (GO) has been employed in various fields, and its ecological and health risks have attracted much attention. A small and inexpensive biomolecule, L-cysteine, was covalently immobilized onto GO to form L-cysteine-GO (CysGO) as a thio-functionalized nanosheet of 1.4 nm in thickness. Both the d-spacing and crystallinity of CysGO were observed to be lower than those of GO, whereas the D and G peaks remained similar to those of GO. CysGO exhibited remarkable uptake in vivo: no tissue defects, malformation, death or significant hatching delay were observed in zebrafish embryos. Significant DNA damage, decreased Na+/K+-ATPase activity and decreased mitochondrial membrane potential were not observed for CysGO. As a nonspecific activity linked to nanotoxicology, the unpaired electron spinning intensity of CysGO was approximately two orders of magnitude lower than that of GO. Oxygen microsensor analysis showed that the hypoxic and normoxic environments resulting from the presence of GO and CysGO envelopment, respectively, contributed to the difference in biocompatibility. CysGO also protected embryos from arsenic poisoning. Thus, CysGO has the advantageous properties of GO, exhibits excellent biocompatibility, acts as a breathable coating and antidote, and is suitable for various applications.

  6. Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.

    PubMed

    López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S

    2014-06-01

    A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc).

  7. Preparation of immunogen-reduced and biocompatible extracellular matrices from porcine liver.

    PubMed

    Park, Kyung-Mee; Park, Sung-Min; Yang, Se-Ran; Hong, Seok-Ho; Woo, Heung-Myong

    2013-02-01

    Decellularized biologic matrices are plausible biomedical materials for the bioengineering in liver transplantation. However, one of the concerns for safe medical application is the lack of objective assessment of the immunogen within the materials and the in vivo immune responses to the matrices. The purpose of this study was the production of immunogen-reduced and biocompatible matrices from porcine liver. In the present study, 0.1% SDS solution was effective for removing DNA fragments and sequences encoding possible immunogenic and viral antigens within the matrices. The PCR analysis showed that galactose-α-1,3 galactose β-1,4-N-acetylglucosamine (1,3 gal), swine leukocyte antigen (SLA), and porcine endogenous retrovirus (PERV) were completely removed in the matrices. Collagen and glycosaminoglycans (GAGs) were preserved over 63%-71%, respectively, compared to those of native liver. The implanted decellularized tissues showed minimal host responses and naturally degraded within 10 weeks. In this study, we produced immunogen-reduced and biocompatible extracellular matrices from porcine liver. Although future investigations would be required to determine the mechanism of the host reaction, this study could provide useful information of porcine liver-derived biologic matrices for liver researches.

  8. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material.

    PubMed

    Shabalovskaya, Svetlana A

    2002-01-01

    The present review surveys studies on physical-chemical properties and biological response of living tissues to NiTi (Nitinol) carried out recently, aiming at an understanding of the place of this material among the implant alloys in use. Advantages of shape memory and superelasticity are analyzed in respect to functionality of implants in the body. Various approaches to surface treatment, sterilization procedures, and resulting surface conditions are analyzed. A review of corrosion studies conducted both on wrought and as-cast alloys using potentiodynamic and potentiostatic techniques in various corrosive media and in actual body fluids is also given. The parameters of localized and galvanic corrosion are presented. The corrosion behavior is analyzed with respect to alloy composition, phase state, surface treatment, and strain and compared to that of conventional implant alloys. Biocompatibility of porous Nitinol, Ni release and its effect on living cells are analyzed based on understanding of the surface conditions and corrosion behavior. Additionally, the paper offers a brief overview of the comparative toxicity of metals, components of commonly used medical alloys, indicating that the biocompatibility profile of Nitinol is conducive to present in vivo applications.

  9. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

    PubMed

    Ye, Lei; Zhang, Yabin; Wang, Qiangsong; Zhou, Xin; Yang, Boguang; Ji, Feng; Dong, Dianyu; Gao, Lina; Cui, Yuanlu; Yao, Fanglian

    2016-06-22

    In this work, a novel starch-based zwitterionic copolymer, starch-graft-poly(sulfobetaine methacrylate) (ST-g-PSBMA), was synthesized via Atom Transfer Radical Polymerization. Starch, which formed the main chain, can be degraded completely in vivo, and the pendent segments of PSBMA endowed the copolymer with excellent protein resistance properties. This ST-g-PSBMA copolymer could self-assemble into a physical hydrogel in normal saline, and studies of the formation mechanism indicated that the generation of the physical hydrogel was driven by electrostatic interactions between PSBMA segments. The obtained hydrogels were subjected to detailed analysis by scanning electron microscopy, swelling ratio, protein resistance, and rheology tests. Toxicity and hemolysis analysis demonstrated that the ST-g-PSBMA hydrogels possess excellent biocompatibility and hemocompatibility. Moreover, the cytokine secretion assays (IL-6, TNF-α, and NO) confirmed that ST-g-PSBMA hydrogels had low potential to trigger the activation of macrophages and were suitable for in vivo biomedical applications. On the basis of these in vitro results, the ST-g-PSBMA hydrogels were implanted in SD rats. The tissue responses to hydrogel implantation and the hydrogel degradation in vivo were determined by histological analysis (Hematoxylin and eosin, Van Gieson, and Masson's Trichrome stains). The results presented in this study demonstrate that the physical cross-linking, starch-based zwitterionic hydrogels possess excellent protein resistance, low macrophage-activation properties, and good biocompatibility, and they are a promising candidate for an in vivo biomedical application platform.

  10. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo.

    PubMed

    Peng, Shuwen; He, Yuanyuan; Er, Murat; Sheng, Yuanzhi; Gu, Yueqing; Chen, Haiyan

    2017-02-28

    Near-infrared (NIR) photothermal therapy (PTT) is a new approach to ablate cancer without affecting normal tissues. A pivotal concern of PPT is to develop photo-responsive agents with high biocompatibility as well as effective photothermal conversion efficiency. Copper sulfide (CuS) nanoparticles prepared are characterized by their low synthesis cost, wide NIR absorption range, good biocompatibility and favorable NIR photothermal conversion efficiency. CuS nanoparticles were then coated with mesoporous silicon dioxide (SiO2) by the Stober method, and further loaded with anticancer drug doxorubicin (DOX). The nanocomposites obtained were named CuS@MSN-DOX. The infrared thermal imaging of CuS@MSN-DOX demonstrated its favorable photothermal efficacy. The potential of CuS@MSN-DOX utilized as a multifunctional platform for combined PPT and chemotherapy was exploited both at the cell level and in a mice model. The result demonstrated that CuS@MSN-DOX was endowed with the synergistic effect of chemo-photothermal therapy, which confirmed that it is a promising candidate for combined therapy of cancer.

  11. Biocompatibility of Portland Cement Modified with Titanium Oxide and Calcium Chloride in a Rat Model

    PubMed Central

    Hoshyari, Narjes; Labbaf, Hossein; Jalayer Naderi, Nooshin; Kazemi, Ali; Bastami, Farshid; Koopaei, Maryam

    2016-01-01

    Introduction: The aim of the present study was to evaluate the biocompatibility of two modified formulations of Portland cement (PC) mixed with either titanium oxide or both titanium oxide and calcium chloride. Methods and Materials: Polyethylene tubes were filled with modified PCs or Angelus MTA as the control; the tubes were then implanted in 28 Wistar rats subcutaneously. One tube was left empty as a negative control in each rat. Histologic samples were taken after 7, 15, 30 and 60 days. Sections were assessed histologically for inflammatory responses and presence of fibrous capsule and granulation tissue formation. Data were analyzed using the Fisher’s exact and Kruskal-Wallis tests. Result: PC mixed with titanium oxide showed the highest mean scores of inflammation compared with others. There was no statistically significant difference in the mean inflammatory grades between all groups in each of the understudy time intervals. Conclusion: The results showed favorable biocompatibility of these modified PC mixed with calcium chloride and titanium oxide. PMID:27141221

  12. Preparation and biocompatibility of grafted functional β-cyclodextrin copolymers from the surface of PET films.

    PubMed

    Jiang, Yan; Liang, Yuan; Zhang, Hongwen; Zhang, Weiwei; Tu, Shanshan

    2014-08-01

    The hydrophobic inert surface of poly(ethylene terephthalate) (PET) film has limited its practical bioapplications, in which case, better biocompatibility should be achieved by surface modification. In this work, the copolymer of functional β-cyclodextrin derivatives and styrene grafted surfaces was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) on initiator-immobilized PET. The structures, composition, properties, and surface morphology of the modified PET films were characterized by fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by a thick targeted copolymer layer, and the hydrophobic surface of PET was changed into an amphiphilic surface. The copolymer-grafted surfaces were also shown good biocompatibility on which SGC-7901 A549 and A549/DDP cells readily attached and proliferated, demonstrating that the functional copolymer-grafted PET films could be a promising alternative to biomaterials especially for tissue engineering.

  13. Biocompatibility of collagen membranes crosslinked with glutaraldehyde or diphenylphosphoryl azide: an in vitro study.

    PubMed

    Marinucci, Lorella; Lilli, Cinzia; Guerra, Mario; Belcastro, Salvatore; Becchetti, Ennio; Stabellini, Giordano; Calvi, Edoardo M; Locci, Paola

    2003-11-01

    Crosslinking of collagen biomaterials increases their resistance to degradation in vivo. Glutaraldehyde (GA) is normally used to crosslink collagen biomaterial, but is often cytotoxic. Diphenylphosphoryl azide (DPPA) has recently been proposed as reagent, but little is known about its effects on cell behavior. In this study, we determined which collagen membrane was the most biocompatible: Paroguide which is crosslinked with DPPA and contains chondroitin sulfate; Opocrin which is crosslinked with DPPA; Biomed Extend which is crosslinked with GA; and Bio-Gide which is left untreated. Cell proliferation and extracellular matrix macromolecule deposition were evaluated in human fibroblasts cultured on the membranes. The GA-crosslinked Biomed Extend membrane and the not-crosslinked Bio-Gide membrane reduced cell growth and collagen secretion compared with DPPA-crosslinked biomembranes. When Paroguide and Opocrin were compared, better results were obtained with Paroguide. The greatest amount of transforming growth factor beta1, a growth factor involved in extracellular matrix macromolecule accumulation and in tissue regeneration, was produced by cells cultured on Paroguide, with Opocrin second. Our data suggest that the DPPA method is more biocompatible than the GA for crosslinking collagen biomaterials and that membranes made of collagen plus chondroitin sulfate are better than membranes made of pure collagen.

  14. Synthesis and biocompatibility of a biodegradable and functionalizable thermo-sensitive hydrogel

    PubMed Central

    Sinha, Mantosh K.; Gao, Jin; Stowell, Chelsea E. T.; Wang, Yadong

    2015-01-01

    Injectable thermal gels are a useful tool for drug delivery and tissue engineering. However, most thermal gels do not solidify rapidly at body temperature (37°C). We addressed this by synthesizing a thermo-sensitive, rapidly biodegrading hydrogel. Our hydrogel, poly(ethylene glycol)-co-poly(propanol serinate hexamethylene urethane) (EPSHU), is an ABA block copolymer comprising A, methoxy poly ethylene glycol group and B, poly (propanol L-serinate hexamethylene urethane). EPSHU was characterized by gel permeation chromatography for molecular weight and 1H NMR and Fourier transformed infrared for structure. Rheological studies measured the phase transition temperature. In vitro degradation in cholesterol esterase and in Dulbecco's phosphate buffered saline (DPBS) was tracked using the average molecular weight measured by gel permeation chromatography. LIVE/DEAD and resazurin reduction assays performed on NIH 3T3 fibroblasts exposed to EPSHU extracts demonstrated no cytotoxicity. Subcutaneous implantation into BALB/cJ mice indicated good biocompatibility in vivo. The biodegradability and biocompatibility of EPSHU together make it a promising candidate for drug delivery applications that demand carrier gel degradation within months. PMID:26814023

  15. Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical application.

    PubMed

    Konovalova, Mariya V; Markov, Pavel A; Durnev, Eugene A; Kurek, Denis V; Popov, Sergey V; Varlamov, Valery P

    2017-02-01

    Today, there is a need for the development of biomaterials with novel properties for biomedical purposes. The biocompatibility of materials is a key factor in determining its possible use in biomedicine. In this study, composite cryogels were obtained based on pectin and chitosan using ionic cryotropic gelation. For cryogel preparation, apple pectin (AP), Heracleum L. pectin (HP), and chitosan samples with different physical and chemical characteristics were used. The properties of pectin-chitosan cryogels were found to depend on the structural features and physicochemical characteristics of the pectin and chitosan within them. The addition of chitosan to cryogels can increase their mechanical strength, cause change in surface morphology, increase the degradation time, and enhance adhesion to biological tissues. Cryogels based on AP were less immunogenic when compared with cryogels from HP. Cryogels based on AP and HP were hemocompatible and the percentage of red blood cells hemolysis was less than 5%. Unlike cryogels based on HP, which exhibited moderate cytotoxicity, cryogels based on AP exhibited light cytotoxicity. Based on the results of low immunogenicity, light cytotoxicity data as well as a low level of hemolysis of composite cryogels based on AP and chitosan are biocompatible and can potentially be used in biomedicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 547-556, 2017.

  16. Biocompatibility of Bletilla striata Microspheres as a Novel Embolic Agent

    PubMed Central

    Luo, ShiHua; Song, SongLin; Zheng, ChuanSheng; Wang, Yong; Xia, XiangWen; Liang, Bin; Feng, GanSheng

    2015-01-01

    We have prepared Chinese traditional herb Bletilla striata into microspheres as a novel embolic agent for decades. The aim of this study was to evaluate the biocompatibility of Bletilla striata microspheres (BSMs). After a thermal test of BSMs in vitro, the cell biocompatibility of BSMs was investigated in mouse fibroblasts and human umbilical vein endothelial cells using the methyl tetrazolium (MTT) assay. In addition, blood biocompatibility was evaluated. In vivo intramuscular implantation and renal artery embolization in rabbits with BSMs were used to examine the inflammatory response. The experimental rabbits did not develop any fever symptoms after injection of BSMs, and BSMs exhibited no cytotoxicity in cultured mouse fibroblasts and human umbilical vein endothelial cells. Additionally, BSMs exhibited high compatibility with red blood cells and no hemolysis activity. Intramuscular implantation with BSMs resulted in a gradually lessened mild inflammatory reaction that disappeared after eight weeks. The occlusion of small renal vessels was associated with a mild perivascular inflammatory reaction without significant renal and liver function damage. In conclusion, we believe that BSMs exhibit high biocompatibility and are a promising embolic agent. PMID:26472985

  17. Glucose-responsive hydrogel electrode for biocompatible glucose transistor.

    PubMed

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  18. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    PubMed Central

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    Abstract In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin. PMID:28179956

  19. Chemical design of biocompatible iron oxide nanoparticles for medical applications.

    PubMed

    Ling, Daishun; Hyeon, Taeghwan

    2013-05-27

    Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.

  20. Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier.

    PubMed

    Pooja, Deep; Panyaram, Sravani; Kulhari, Hitesh; Reddy, Bharathi; Rachamalla, Shyam S; Sistla, Ramakrishna

    2015-09-01

    Biocompatibility is one of the major concerns with inorganic nanoparticles for their applications as drug delivery system. Natural compounds such as sugars, hydrocolloids and plant extracts have shown potential for the green synthesis of biocompatible gold nanoparticles. In this study, we report the synthesis of gum karaya (GK) stabilized gold nanoparticles (GKNP) and the application of prepared nanoparticles in the delivery of anticancer drugs. GKNP were characterized using different analytical techniques. GKNP exhibited high biocompatibility during cell survival study against CHO normal ovary cells and A549 human non-small cell lung cancer cells and during hemolytic toxicity studies. Gemcitabine hydrochloride (GEM), an anticancer drug, was loaded on the surface of nanoparticles with 19.2% drug loading efficiency. GEM loaded nanoparticles (GEM-GNP) showed better inhibition of growth of cancer cells in anti-proliferation and clonogenic assays than native GEM. This effect was correlated with higher reactive oxygen species generation by GEM-GNP in A549 cells than native GEM. In summary, GK has significant potential in the synthesis of biocompatible gold nanoparticles that could be used as prospective drug delivery carrier for anticancer drugs.

  1. Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide.

    PubMed

    Rajagopalan, Mahendran; Oh, Il-Kwon

    2011-03-22

    Two essential functional requirements for electroactive artificial muscles, which can be used for biomedical active devices, are biocompatibility and sufficient range of motion. Fullerenol nanoparticles and their derivatives have been validated as potential candidates to be used for nanobiomaterials and biomedical applications because of their excellent proton conductivity, hydrophilicity, and biocompatibility. We developed fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide. By using a solvent recasting method, present ionic networking membranes have been successfully synthesized with homogeneous dispersion of polyhydroxylated fullerene (PHF) nanoparticles into a sulfonated polyetherimide (SPEI) matrix. In comparison with pure SPEI membranes, the PHF-SPEI nanocomposite membranes show much higher water uptake and proton conductivity, which are both essential characteristics for high-performance ionic polymer actuators. The developed PHF-SPEI actuator shows over three times larger motion ranges and two times higher blocking forces than the pure SPEI actuator. The excellent biocompatibility of PHF and SPEI makes these actuators promising candidate materials for biomedical devices such as active stents and catheters.

  2. Biocompatibility of atomic layer-deposited alumina thin films.

    PubMed

    Finch, Dudley S; Oreskovic, Tammy; Ramadurai, Krishna; Herrmann, Cari F; George, Steven M; Mahajan, Roop L

    2008-10-01

    Presented in this paper is a study of the biocompatibility of an atomic layer-deposited (ALD) alumina (Al2O3) thin film and an ALD hydrophobic coating on standard glass cover slips. The pure ALD alumina coating exhibited a water contact angle of 55 degrees +/- 5 degrees attributed, in part, to a high concentration of -OH groups on the surface. In contrast, the hydrophobic coating (tridecafluoro-1,1,2,2-tetrahydro-octyl-methyl-bis(dimethylamino)silane) had a water contact angle of 108 degrees +/- 2 degrees. Observations using differential interference contrast microscopy on human coronary artery smooth muscle cells showed normal cell proliferation on both the ALD alumina and hydrophobic coatings when compared to cells grown on control substrates. These observations suggested good biocompatibility over a period of 7 days in vitro. Using a colorimetric assay technique to assess cell viability, the cellular response between the three substrates can be differentiated to show that the ALD alumina coating is more biocompatible and that the hydrophobic coating is less biocompatible when compared to the control. These results suggest that patterning a substrate with hydrophilic and hydrophobic groups can control cell growth. This patterning can further enhance the known advantages of ALD alumina, such as conformality and excellent dielectric properties for bio-micro electro mechanical systems (Bio-MEMS) in sensors, actuators, and microfluidics devices.

  3. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications.

    PubMed

    Kaneti, Yusuf Valentino; Chen, Chuyang; Liu, Minsu; Wang, Xiaochun; Yang, Jia Lin; Taylor, Robert Allen; Jiang, Xuchuan; Yu, Aibing

    2015-11-25

    Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon

  4. Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Kim, Eric; Meggo, Anika; Gandhi, Sachin; Luo, Hao; Kallakuri, Srinivas; Xu, Yong; Zhang, Jinsheng

    2017-04-01

    Objective. Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. Approach. We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. Main results. The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. Significance. The new design will help enhance the long-term stability of the implantable devices.

  5. Effects of peritoneal dialysis fluid biocompatibility on baroreflex sensitivity.

    PubMed

    John, S G; Selby, N M; McIntyre, C W

    2008-04-01

    Conventional low biocompatibility peritoneal dialysis (PD) fluid composition has been driven by manufacturing expediency and cost limitations. PD is associated with significant acute changes in cardiovascular functional parameters, at least in part influenced by fluid composition. Short-term control of blood pressure (BP) is under control of the baroreflex arc. The aim of this study was to investigate the effects of PD fluid biocompatibility on baroreflex sensitivity (BRS). We studied 10 non-diabetic established continuous ambulatory PD patients, in a randomized crossover trial comparing conventional and biocompatible PD fluids. Systemic hemodynamics were continuously monitored using digital pulse-wave analysis. Plasma glucose and insulin were assessed during treatment with both 1.36% and 3.86% glucose-containing fluids. BRS was calculated offline from continuous BP and interbeat interval data. BRS was significantly higher with conventional PD fluid during both 1.36% (P<0.001) and 3.86% (P<0.001) dwells. Systolic BP was higher; heart rate, stroke volume, and cardiac output were lower; and total peripheral resistance increased during exposure to either fluid. There were significant differences between fluids with respect to the magnitude of these responses. Plasma glucose and insulin concentrations, and ultrafiltration volumes were significantly higher during the 3.86% dwell than the 1.36% dwell, but there were no differences between standard and biocompatible fluids. We have demonstrated for the first time that PD fluid biocompatibility rapidly affects BRS. These changes occur against a background of cardiovascular variability, hyperinsulinemia, and hyperglycemia. Further research is needed to explore the mechanism and, more importantly, the consequences of these findings.

  6. Simple Replica Micromolding of Biocompatible Styrenic Elastomers†

    PubMed Central

    Bielawski, Kevin S.; Sniadecki, Nathan J.; Jenkel, Colin F.; Vogt, Bryan D.; Posner, Jonathan D.

    2013-01-01

    In this work, we introduce a simple solvent-assisted micromolding technique for the fabrication of high-fidelity styrene-ethylene/butylene-styrene (SEBS) microfluidic devices with high polystyrene (PS) content (42 wt% PS). SEBS triblock copolymers are styrenic thermoplastic elastomers that exhibit both glassy thermoplastic and elastomeric properties resulting from their respective hard PS and rubbery ethylene/butylene fractions. The PS fraction gives SEBS microdevices many of the appealing properties of pure PS devices, while the elastomeric fraction simplifies fabrication of the devices, similar to PDMS. SEBS42 devices have wettable, stable surfaces (both contact angle and zeta potential) that support cell attachment and proliferation consistent with tissue culture dish substrates, do not adsorb hydrophobic molecules, and have high bond strength to wide range of substrates (glass, PS, SEBS). Furthermore, SEBS42 devices are mechanically robust, thermally stable, as well as exhibit low auto-fluorescence and high transmissivity. We characterize SEBS42 surface properties by contact angle measurements, cell culture studies, zeta potential measurements, and the adsorption of hydrophobic molecules. The PS surface composition of SEBS microdevices cast on different substrates is determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The attractive SEBS42 material properties, coupled with the simple fabrication method, make SEBS42 a quality substrate for microfluidic applications where the properties of PS are desired but the ease of PDMS micromolding is favoured. PMID:23670166

  7. Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels.

    PubMed

    Abed, Aicha; Assoul, Nabila; Ba, Maguette; Derkaoui, Sidi Mohamed; Portes, Patrick; Louedec, Liliane; Flaud, Patrice; Bataille, Isabelle; Letourneur, Didier; Meddahi-Pellé, Anne

    2011-03-01

    The implantation of a biomaterial for tissue engineering requires the presence of a suitable scaffold on which the tissue repair and regeneration will take place. Polymers have been frequently used for that purpose because they show similar properties to that of the natural extracellular matrix. Scaffold properties and biocompatibility are modulated by the composition of the polymers used. In this work four polysaccharide-based hydrogels (PSH) made of dextran and pullulan were synthesized. Their in vitro properties were determined and then tested in vivo in a rat model. As pullulan concentration increased in dextran hydrogels, the glass transition temperature and the maximum modulus decreased. In vitro degradation studies for 30 days demonstrated no significant degradation of PSH except for 100% pullulan hydrogel. In vivo tissue response evaluated 30 days after PSH subcutaneous implantation in rats indicated that all PSH were surrounded by a fibrous capsule. Adding pullulan to dextran induced an increased inflammatory reaction compared to PSH-D(100% dextran) or PSH-D(75)P(25)(75% dextran). This in vitro and in vivo data can be used in the design of hydrogels appropriate for tissue engineering applications.

  8. Polymeric electrospun scaffolds: neuregulin encapsulation and biocompatibility studies in a model of myocardial ischemia.

    PubMed

    Simón-Yarza, Teresa; Rossi, Angela; Heffels, Karl-Heinz; Prósper, Felipe; Groll, Jürgen; Blanco-Prieto, Maria J

    2015-05-01

    Cardiovascular disease represents one of the major health challenges in modern times and is the number one cause of death globally. Thus, numerous studies are under way to identify effective cell- and/or growth factor (GF)-based therapies for repairing damaged cardiac tissue. In this regard, improving the engraftment or survival of regenerative cells and prolonging GF exposure have become fundamental goals in advancing these therapeutic approaches. Biomaterials have emerged as innovative scaffolds for the delivery of both cells and proteins in tissue engineering applications. In the present study, electrospinning was used to generate smooth homogenous polymeric fibers, which consisted of a poly(lactic-co-glycolic acid) (PLGA)/NCO-sP(EO-stat-PO) polymer blend encapsulating the cardioactive GF, Neuregulin-1 (Nrg). We evaluated the biocompatibility and degradation of this Nrg-containing biomaterial in a rat model of myocardial ischemia. Histological analysis revealed the presence of an initial acute inflammatory response after implantation, which was followed by a chronic inflammatory phase, characterized by the presence of giant cells. Notably, the scaffold remained in the heart after 3 months. Furthermore, an increase in the M2:M1 macrophage ratio following implantation suggested the induction of constructive tissue remodeling. Taken together, the combination of Nrg-encapsulating scaffolds with cells capable of inducing cardiac regeneration could represent an ambitious and promising therapeutic strategy for repairing diseased or damaged myocardial tissue.

  9. Fine grained osseointegrative coating improves biocompatibility of PEEK in heterotopic sheep model

    PubMed Central

    Verleye, Gino B.M.; Smeets, Dirk; Van Hauwermeiren, Hadewych Y.R.; Loeckx, Dirk; Willems, Karel; Siau, Vincent G.M.G.G.B.; Lauweryns, Philippe J.M.E.

    2015-01-01

    Background and aim Polyetheretherketone (PEEK) materials already have been used successfully in orthopedic and especially spine surgery. PEEK is radiolucent and comparable with bone regarding elasticity. However, PEEK is inert and the adhesion of PEEK implants to bone tissue proceeds slowly because of their relatively low biocompatibility. The aim of the study is to evaluate the effect of titanium and CaP coating on the adhesion of bone tissue. Material and Methods Six adult sheep (body weight 57.6 ± 3.9 kg) were included in this study. Three different types of cylindrical dowels (12 mm length x 8 mm diameter) were implanted in long bones (tibia and femur): PEEK dowels without coating (the control group), and PEEK dowels with a nanocoating of calcium phosphate (CaP group) or titanium (titanium group). Animals were sacrificed after 6, 12 and 26 weeks. Dowels were explanted for micro CT and histology. Results Bone implant contact (BIC) ratio was significantly higher in the titanium versus control groups in the 6 to 12 weeks period (p = 0.03). The ratio between bone volume and tissue volume (BV/TV) was significantly higher in titanium versus control in the 6 to 12 weeks period (p = 0.02). A significant correlation between BIC and BV/TV was seen (r = 0.85, p < 0.05). Conclusion Coating of PEEK dowels with a nanocoating of titanium has beneficial effects on adhesion of bone tissue. PMID:26273553

  10. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications.

    PubMed

    Valence, Sarra de; Tille, Jean-Christophe; Chaabane, Chiraz; Gurny, Robert; Bochaton-Piallat, Marie-Luce; Walpoth, Beat H; Möller, Michael

    2013-09-01

    Biodegradable synthetic scaffolds are being evaluated by many groups for the application of vascular tissue engineering. In addition to the choice of the material and the structure of the scaffold, tailoring the surface properties can have an important effect on promoting adequate tissue regeneration. The objective of this study was to evaluate the effect of an increased hydrophilicity of a polycaprolactone vascular graft by treatment with a cold air plasma. To this end, treated and untreated scaffolds were characterized, evaluated in vitro with smooth muscle cells, and implanted in vivo in the rat model for 3 weeks, both in the subcutaneous location and as an aortic replacement. The plasma treatment significantly increased the hydrophilicity of the scaffold, with complete wetting after a treatment of 60 sec, but did not change fiber morphology or mechanical properties. Smooth muscle cells cultured on plasma treated patches adopt a spread out morphology compared to a small, rounded morphology on untreated patches. Subcutaneous implantation revealed a low foreign body reaction for both types of scaffolds and a more extended and dense cellular infiltrate in the plasma treated scaffolds. In the vascular position, the plasma treatment induced a better cellularization of the graft wall, while it did not affect endothelialization rate or intimal hyperplasia. Plasma treatment is therefore an accessible tool to easily increase the biocompatibility of a scaffold and accelerate tissue regeneration without compromising mechanical strength, which are valuable advantages for vascular tissue engineering.

  11. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber

    PubMed Central

    Cenis, Jose Luis; Aznar-Cervantes, Salvador D.; Lozano-Pérez, Antonio Abel; Rojo, Marta; Muñoz, Juan; Meseguer-Olmo, Luis; Arenas, Aurelio

    2016-01-01

    This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs) of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF) mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm) as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells. PMID:27438824

  12. Blends of Thermoplastic Polyurethane and Polydimethylsiloxane Rubber: Assessment of Biocompatibility and Suture Holding Strength of Membranes

    PubMed Central

    Al-Ghamdi, Ahmed; Parameswar, Ramesh; Nando, G. B.

    2013-01-01

    In the present investigation, a compatibilized blend of thermoplastic polyurethane (TPU) and polydimethylsiloxane (PDMS) is prepared by using copolymer of ethylene and methyl acrylate (EMA) as a reactive compatibilizer. Detailed in vitro biocompatibility studies were carried out for this compatibilized blend and the material was found noncytotoxic towards L929 mouse fibroblast subcutaneous connective tissue cell line. Microporosity was created on the surface of membranes prepared from the blend material by adopting the crazing mechanism. Cell proliferation and growth studies on the membranes surface showed that the microporous surface favoured ingrowth of the cells compared with a nonmicroporous surface. Suture holding strength studies indicate that the microporous membranes have enough strength to withstand the cutting and tearing forces through the suture hole. This blend material could be evaluated further to find its suitability in various implant applications. PMID:24454376

  13. Simple and biocompatible micropatterning of multiple cell types on a polymer substrate by using ion implantation.

    PubMed

    Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak; Nho, Young-Chang

    2010-12-07

    A noncytotoxic procedure for the spatial organization of multiple cell types remains as a major challenge in tissue engineering. In this study, a simple and biocompatible micropatterning method of multiple cell types on a polymer surface is developed by using ion implantation. The cell-resistant Pluronic surface can be converted into a cell-adhesive one by ion implantation. In addition, cells show different behaviors on the ion-implanted Pluronic surface. Thus this process enables the micropatterning of two different cell types on a polymer substrate. The micropatterns of the Pluronic were formed on a polystyrene surface. Primary cells adhered to the spaces of the bare polystyrene regions separated by the implanted Pluronic patterns. Secondary cells then adhered onto the implanted Pluronic patterns, resulting in micropatterns of two different cells on the polystyrene surface.

  14. Optimizing and evaluating the biocompatibility of fiber composites with calcium phosphate additives.

    PubMed

    Suchý, Tomáš; Balík, Karel; Sucharda, Zbyněk; Sochor, Miroslav; Lapčíková, Monika; Sedláček, Radek

    2011-10-01

    Composite materials based on a polyamide fabric (aramid) and a polydymethylsiloxane (PDMS) matrix were designed for application in bone surgery. In order to increase the bioactivity, 2, 5, 10, 15, 20, and 25 vol.% of nano/micro hydroxyapatite (HA) and tricalcium phosphate (TCP) were added. We studied the effect of the additives on the biocompatibility of the composite. It appears that nano additives have a more favorable effect on mechanical properties than microparticles. 15 vol.% of nano hydroxyapatite additive is an optimum amount for final application of the composites as substitutes for bone tissue: in this case both the mechanical properties and the biological properties are optimized without distinct changes in the inner structure of the composite.

  15. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber.

    PubMed

    Cenis, Jose Luis; Aznar-Cervantes, Salvador D; Lozano-Pérez, Antonio Abel; Rojo, Marta; Muñoz, Juan; Meseguer-Olmo, Luis; Arenas, Aurelio

    2016-07-16

    This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs) of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF) mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm) as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells.

  16. Blends of thermoplastic polyurethane and polydimethylsiloxane rubber: assessment of biocompatibility and suture holding strength of membranes.

    PubMed

    Rajan, Krishna Prasad; Al-Ghamdi, Ahmed; Parameswar, Ramesh; Nando, G B

    2013-01-01

    In the present investigation, a compatibilized blend of thermoplastic polyurethane (TPU) and polydimethylsiloxane (PDMS) is prepared by using copolymer of ethylene and methyl acrylate (EMA) as a reactive compatibilizer. Detailed in vitro biocompatibility studies were carried out for this compatibilized blend and the material was found noncytotoxic towards L929 mouse fibroblast subcutaneous connective tissue cell line. Microporosity was created on the surface of membranes prepared from the blend material by adopting the crazing mechanism. Cell proliferation and growth studies on the membranes surface showed that the microporous surface favoured ingrowth of the cells compared with a nonmicroporous surface. Suture holding strength studies indicate that the microporous membranes have enough strength to withstand the cutting and tearing forces through the suture hole. This blend material could be evaluated further to find its suitability in various implant applications.

  17. Biocompatibility of surface treated pure titanium and titanium alloy by in vivo and in vitro test

    NASA Astrophysics Data System (ADS)

    Lee, Min-Ho; Yoon, Dong-Joo; Won, Dae-Hee; Bae, Tae-Sung; Watari, Fumio

    2003-02-01

    In the present study, commercial pure Ti and Ti-6Al-4V alloy specimens with and without alkali and heat treatments were implanted in the abdominal connective tissue of mice. Conventional stainless steel 316L was also implanted for comparison. After three months, their biocompatibility was evaluated by in vitro and in vivo experiments. Surface structural changes of specimens due to the alkali treatment and soaking in Hank's solution were analyzed by XRD, SEM, XPS and AES. An apatite layer, which accelerates the connection with bone, was formed more easily on the alkali treated specimens than the non-treated specimens. The number of macrophages, which is known to increase as the inflammatory reaction proceeds, was much lower for the alkali and heat treated specimens than for the others. The average thickness of the fibrous capsule formed around the implant was much thinner for the alkali and heat treated specimens than for the others.

  18. Biocompatible and freestanding anatase TiO2 nanomembrane with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Menglin; Huang, Gaoshan; Qiao, Yuqin; Wang, Jiao; Liu, Zhaoqian; Liu, Xuanyong; Mei, Yongfeng

    2013-08-01

    Biocompatible and freestanding TiO2 nanotube membranes with improved photocatalytic activity were fabricated through a water-vapour-assisted annealing treatment at relatively low temperatures. Photoluminescence results and structure characterization prove that the obtained TiO2 nanotube membranes not only possess an enhanced anatase crystallinity from water molecule-intermediated dissolution-precipitation reactions, but are also covered with abundant hydroxyl groups which are hardly influenced by external disturbances. The anatase crystallinity, the superficial hydroxyl groups and the nanotubular morphology of the membrane treated with water vapour thus lead to enhancement in photocatalytic activity. This new approach is simple and time-saving, opening up new opportunities in various areas, including tissue-engineering, watersplitting, dye-sensitized solar cells and photocatalysis.

  19. Biocompatibility and biofilm inhibition of N,N-hexyl,methyl-polyethylenimine bonded to Boston Keratoprosthesis materials

    PubMed Central

    Behlau, Irmgard; Mukherjee, Koushik; Todani, Amit; Tisdale, Ann S.; Cade, Fabiano; Wang, Liqiang; Leonard, Elizabeth M.; Zakka, Fouad R.; Gilmore, Michael S.; Jakobiec, Frederick A.; Dohlman, Claes H.; Klibanov, Alexander M.

    2011-01-01

    The biocompatibility and antibacterial properties of N,N-hexyl,methyl-polyethylenimine (HMPEI) covalently attached to the Boston Keratoprosthesis (B-KPro) materials was evaluated. By means of confocal and electron microscopies, we observed that HMPEI-derivatized materials exert an inhibitory effect on biofilm formation by Staphylococcus aureus clinical isolates, as compared to the parent poly(methyl methacrylate) (PMMA) and titanium. There was no additional corneal epithelial cell cytotoxicity of HMPEI-coated PMMA compared to that of control PMMA in tissue cultures in vitro. Likewise, no toxicity or adverse reactivity was detected with HMPEI-derivatized PMMA or titanium compared to those of the control materials after intrastromal or anterior chamber implantation in rabbits in vivo. PMID:21903257

  20. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    PubMed

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  1. Synthesis and physicochemical characterization of chitin dihexanoate--A new biocompatible chitin derivative--In comparison to chitin dibutyrate.

    PubMed

    Skołucka-Szary, Karolina; Ramięga, Aleksandra; Piaskowska, Wanda; Janicki, Bartosz; Grala, Magdalena; Rieske, Piotr; Bartczak, Zbigniew; Piaskowski, Sylwester

    2016-03-01

    Chitin dihexanoate (DHCH) is the novel biocompatible and technologically friendly highly substituted chitin diester. Here we described optimization of DHCH and chitin dibutyrate (dibutyryl chitin, DBC) synthesis conditions (temperature and reaction time) to obtain desired polymers with high reaction yield, high substitution degree (close to 2) and appropriately high molecular weights. A two-step procedure, employing acidic anhydrides (hexanoic or butyric anhydride) as the acylation agent and methanesulfonic acid both as the catalyst and the reaction medium, was applied. Chemical structures of DBC and DHCH were confirmed by NMR ((1)H and (13)C) and IR investigations. Mechanical properties, thermogravimetric analysis, differential scanning calorimetry and biocompatibility (Neutral red uptake assay, Skin Sensitization and Irritation Tests) were assessed. Both polymers proved highly biocompatible (non-cytotoxic in vitro, non-irritating and non-allergic to skin) and soluble in several organic solvents (dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, acetone, ethanol and others). It is worth emphasizing that DHCH and DBC can be easily processed by solvent casting method and the salt-leaching method, what gives the opportunity to prepare highly porous structures, which can be further successfully applied as the material for wound dressings and scaffolds for tissue engineering.

  2. Preparation and biocompatibility evaluation of bioactive glass-forsterite nanocomposite powder for oral bone defects treatment applications.

    PubMed

    Saqaei, Mahboobe; Fathi, Mohammadhossein; Edris, Hossein; Mortazavi, Vajihesadat

    2015-11-01

    Bone defects which emerge around dental implants are often seen when implants are placed in areas with insufficient alveolar bone, in extraction sockets, or around failing implants. Bone regeneration in above-mentioned defects using of bone grafts or bone substitutes may cure the long-term prognoses of dental implants. Biocompatibility, bioactivity and osteogenic properties are key factors affecting the applications of a bone substitute. This study was aimed at preparation, characterization, biocompatibility and bioactivity evaluation of the bioactive glass-forsterite nanocomposite powder as a desired candidate for oral bone defect treatments. Nanocomposite powders containing 58S bioactive glass and different amounts of forsterite nanopowder were synthesized in situ by sol-gel technique. Characterization of the prepared nanocomposite powders and their cytotoxicity assessment was performed via MTT test. Bioactivity assessment was done by immersing the prepared powder in the simulated body fluid (SBF). Results showed that nanocomposite powders containing forsterite with crystallite size of 20-50nm were successfully fabricated by calcination at 600°C. The prepared bioactive glass-forsterite nanocomposite powders revealed high in vitro biocompatibility; besides, the nanocomposite containing 20wt.% forsterite showed a substantial increase in the cell viability compared with control groups. During immersion in SBF, the formation of apatite layer confirmed the bioactivity of bioactive glass-forsterite nanocomposite powders. According to the results, the fabricated nanocomposite powders can be introduced as a promising candidate for oral bone imperfection treatments and hard tissue mend.

  3. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-jun; Song, Xiao-xia; Xu, Xian-zhu; Tang, Qun

    2014-04-01

    Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent.

  4. Preparation, physicochemical properties and biocompatibility of PBLG/PLGA/bioglass composite scaffolds.

    PubMed

    Cui, Ning; Qian, Junmin; Wang, Jinlei; Ji, Chuanlei; Xu, Weijun; Wang, Hongjie

    2017-02-01

    In this study, novel poly(γ-benzyl l-glutamate)/poly(lactic-co-glycolic acid)/bioglass (PBLG/PLGA/BG) composite scaffolds with different weight ratios were fabricated using a negative NaCl-templating method. The morphology, compression modulus and degradation kinetics of the scaffolds were characterized. The results showed that the PBLG/PLGA/BG composite scaffolds with a weight ratio of 5:5:1, namely PBLG5PLGA5BG composite scaffolds, displayed a pore size range of 50-500μm, high compressive modulus (566.6±8.8kPa), suitable glass transition temperature (46.8±0.2°C) and low degradation rate (>8weeks). The in vitro biocompatibility of the scaffolds was evaluated with MC3T3-E1 cells by live-dead staining, MTT and ALP activity assays. The obtained results indicated that the PBLG5PLGA5BG composite scaffolds were more conducive to the adhesion, proliferation and osteoblastic differentiation of MC3T3-E1 cells than PBLG and PBLG/PLGA composite scaffolds. The in vivo biocompatibility of the scaffolds was evaluated in both SD rat subcutaneous model and rabbit tibia defect model. The results of H&E, Masson's trichrome and CD34 staining assays demonstrated that the PBLG5PLGA5BG composite scaffolds allowed the ingrowth of tissue and microvessels more effectively than PBLG/PLGA composite scaffolds. The results of digital radiography confirmed that the PBLG5PLGA5BG composite scaffolds significantly improved in vivo osteogenesis. Collectively, the PBLG5PLGA5BG composite scaffolds could be a promising candidate for tissue engineering applications.

  5. Evaluation of the Biocompatibility of Silicone Gel Implants – Histomorphometric Study

    PubMed Central

    França, Diurianne Caroline Campos; de Castro, Alvimar Lima; Soubhia, Ana Maria Pires; de Aguiar, Sandra Maria Herondina Coelho Ávila

    2013-01-01

    CONFLICT OF INTEREST: NONE DECLARED Breast implants are medical devices that are used to augment breast size or to reconstruct the breast following mastectomy or to correct a congenital abnormality. Breast implants consist of a silicone outer shell and a filler (most commonly silicone gel or saline). Approximately 5 to 10 million women worldwide have breast implants. Histomorphometric study to evaluate the biological tissue compatibility of silicone implants suitable for plastic surgery and the adverse effects and risks of this material. Thirty Wistar white rats received subcutaneous implants and the revestiment of silicone gel Silimed ®®, and randomized into six groups of five animals each, according to the type of implanted material and the time of sacrifice. Eight areas of 60.11mm2 corresponding to the obtained surgical pieces were analyzed, counting mesenchymal cells, eosinophils, and foreign body giant cells, observing an acceptable biocompatibility in all implants, for subsequent statistical analysis by Tukey test. Silicone gel showed inflammation slightly greater than for other groups, with tissue reactions varying from light to moderate, whose result was the formation of a fibrous capsule around the material, recognized by the organism as a foreign body. Despite frequent local complications and adverse outcomes, this research showed that the silicone and top layer presented an acceptable chronic inflammatory reaction, which did not significantly differ from the control group. In general, it is possible to affirm that silicone gel had acceptable levels of biocompatibility, confirmed the rare presence of foreign body giant cells, and when of the rupture, formed a fibrous capsule around the material, separating the material of the organism. PMID:24039333

  6. Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers.

    PubMed

    Qi, Ruiling; Cao, Xueyan; Shen, Mingwu; Guo, Rui; Yu, Jianyong; Shi, Xiangyang

    2012-01-01

    Organic/inorganic hybrid nanofiber systems have generated great interest in the area of tissue engineering and drug delivery. In this study, halloysite nanotube (HNT)-doped poly(lactic-co-glycolic acid) (PLGA) composite nanofibers were fabricated via electrospinning and the influence of the incorporation of HNTs within PLGA nanofibers on their in vitro biocompatibility was investigated. The morphology, mechanical and thermal properties of the composite nanofibers were characterized by scanning electron microscopy (SEM), tensile test, differential scanning calorimetry and thermogravimetric analysis. The adhesion and proliferation of mouse fibroblast cells cultured on both PLGA and HNT-doped PLGA fibrous scaffolds were compared through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay of cell viability and SEM observation of cell morphology. We show that the morphology of the PLGA nanofibers does not appreciably change with the incorporation of HNTs, except that the mean diameter of the fibers increased with the increase of HNT incorporation in the composite. More importantly, the mechanical properties of the nanofibers were greatly improved. Similar to electrospun PLGA nanofibers, HNT-doped PLGA nanofibers were able to promote cell attachment and proliferation, suggesting that the incorporation of HNTs within PLGA nanofibers does not compromise the biocompatibility of the PLGA nanofibers. In addition, we show that HNT-doped PLGA scaffolds allow more protein adsorption than those without HNTs, which may provide sufficient nutrition for cell growth and proliferation. The developed electrospun HNT-doped composite fibrous scaffold may find applications in tissue engineering and pharmaceutical sciences.

  7. Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers.

    PubMed

    Suslu, A; Albayrak, A Z; Urkmez, A S; Bayir, E; Cocen, U

    2014-12-01

    Bone tissue engineering literature conveys investigations regarding biodegradable polymers where bioactive inorganic materials are added either before or after electrospinning process. The goal is to mimic the composition of bone and enhance the biocompatibility of the materials. Yet, most polymeric materials are hydrophobic in nature; therefore, their surfaces are not favorable for human cellular adhesion. In this sense, modifications of the hydrophobic surface of electrospun polymer fibers with hydrophilic and bioactive nanoparticles are beneficial. In this work, dispersion of hydroxyapatite (HAp), which is similar to the mineral component of natural bone, within biodegradable and biocompatible polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with the aid of a surfactant has been investigated. Non-ionic TWEEN20 and 12-hydroxysteric acid (HSA), cationic dodecyl trimethyl ammonium bromide (DTAB) and anionic sodium deoxycholate and sodium dodecyl sulfate (SDS) surfactants were used for comparison in order to prepare stable and homogenous nanocomposite suspensions of HAp/PHBV for the electrospinning process. Continuous and uniform composite nanofibers were generated successfully within a diameter range of 400-1,000 nm by the mediation of all surfactant types. Results showed that incorporation of HAp and any of the surfactant types strongly activates the precipitation rate of the apatite-like particles and decreases percent crystallinity of the HAp/PHBV mats. Mineralization was greatly enhanced on the fibers produced by using DTAB, HSA, and especially SDS on where also osteoblastic metabolic activity was similarly increased. The produced HAp/PHBV nanofibrous composite scaffolds would be a promising candidate as an osteoconductive bioceramic/polymer composite material for tissue engineering applications.

  8. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites.

    PubMed

    Liang, Shu-Ling; Cook, Wayne D; Thouas, George A; Chen, Qi-Zhi

    2010-11-01

    Biodegradable elastomeric materials have gained much recent attention in the field of soft tissue engineering. Poly(glycerol sebacate) (PGS) is one of a new family of elastomers which are promising candidates used for soft tissue engineering. However, PGS has a limited range of mechanical properties and has drawbacks, such as cytotoxicity caused by the acidic degradation products of very soft PGS and degradation kinetics that are too fast in vivo to provide sufficient mechanical support to the tissue. However, the development of PGS/based elastomeric composites containing alkaline bioactive fillers could be a method for addressing these drawbacks and thus may pave the way towards wide clinical applications. In this study, we synthesized a new PGS composite system consisting of a micron-sized Bioglass filler. In addition to much improved cytocompatibility, the PGS/Bioglass composites demonstrated three remarkable mechanical properties. First, contrary to previous reports, the addition of microsized Bioglass increases the elongation at break from 160 to 550%, while enhancing the Young's modulus of the composites by up to a factor of four. Second, the modulus of the PGS/Bioglass composites drops abruptly in a physiological environment (culture medium), and the level of drop can be tuned such that the addition of Bioglass does not harden the composite in vivo and thus the desired compliance required for soft tissue engineering are maintained. Third, after the abrupt drop in modulus, the composites exhibited mechanical stability over an extended period. This latter observation is an important feature of the new composites, because they can provide reliable mechanical support to damaged tissues during the lag phase of the healing process. These mechanical properties, together with improved biocompatibility, make this family of composites better candidates than plastic and related composite biomaterials for the applications of tissue engineering.

  9. Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Tharajak, Jirasak; Li, Yuncang; Berndt, Christopher C.; Wen, Cuie; Wang, James

    2014-07-01

    Transition metals of copper, zinc, manganese, and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental compositions of the nanoparticles were characterized using scanning electron microscopy combined with energy dispersive X-ray spectroscopy. The particle size of the nanoparticles was investigated using particle size analyzer, and the zeta potentials were measured using zeta potential analyzer. The phase components of the synthesized transition metal-substituted cobalt ferrite nanoparticles were studied using Raman spectroscopy. The biocompatibility of the nanoparticles was assessed using osteoblast-like cells. Results indicated that the substitution of transition metals strongly influences the physical, chemical properties, and biocompatibility of the cobalt ferrite nanoparticles.

  10. Magnesium-based composites with improved in vitro surface biocompatibility

    PubMed Central

    Huan, Zhiguang; Duszczyk, Jurek

    2010-01-01

    In this study, bioactive glass (BG, 45S5) particles were added to a biodegradable magnesium alloy (ZK30) through a semi-solid high-pressure casting process in order to improve the surface biocompatibility of the biomaterial and potentially its bioactivity. The observation of the as-cast microstructures of ZK30-BG composites indicated homogeneous dispersion of BG particles in the matrix. SEM, EDX and EPMA showed the retention of the morphological characteristics and composition of BG particles in the as-cast composite materials. In vitro tests in a cell culture medium confirmed that the composites indeed possessed an enhanced ability to induce the deposition of a bone-like apatite layer on the surface, indicating an improved surface biocompatibility as compared with the matrix alloy. PMID:20922559

  11. High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E

    2015-05-20

    Honey nanofibers represent an attractive formulation with unique medicinal and wound healing advantages. Nanofibers with honey concentrations of <10% were prepared, however, there is a need to prepare nanofibers with higher honey concentrations to increase the antibacterial and wound healing effects. In this work, chitosan and honey (H) were cospun with polyvinyl alcohol (P) allowing the fabrication of nanofibers with high honey concentrations up to 40% and high chitosan concentrations up to 5.5% of the total weight of the fibers using biocompatible solvents (1% acetic acid). The fabricated nanofibers were further chemically crosslinked, by exposure to glutaraldehyde vapor, and physically crosslinked by heating and freezing/thawing. The new HP-chitosan nanofibers showed pronounced antibacterial activity against Staphylococcus aureus but weak antibacterial activity against Escherichia coli. The developed HP-chitosan nanofibers revealed no cytotoxicity effects on cultured fibroblasts. In conclusion, biocompatible, antimicrobial crosslinked honey/polyvinyl alcohol/chitosan nanofibers were developed which hold potential as effective wound dressing.

  12. Method for making a bio-compatible scaffold

    DOEpatents

    Cesarano, III, Joseph; Stuecker, John N.; Dellinger, Jennifer G.; Jamison, Russell D.

    2006-01-31

    A method for forming a three-dimensional, biocompatible, porous scaffold structure using a solid freeform fabrication technique (referred to herein as robocasting) that can be used as a medical implant into a living organism, such as a human or other mammal. Imaging technology and analysis is first used to determine the three-dimensional design required for the medical implant, such as a bone implant or graft, fashioned as a three-dimensional, biocompatible scaffold structure. The robocasting technique is used to either directly produce the three-dimensional, porous scaffold structure or to produce an over-sized three-dimensional, porous scaffold lattice which can be machined to produce the designed three-dimensional, porous scaffold structure for implantation.

  13. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.

    PubMed

    Solanki, Archana; Mehta, Jayen; Thakore, Sonal

    2014-09-22

    Biocompatible and biodegradable polyurethanes (PUs) based on castor oil and polypropylene glycols (PPGs) were prepared using various carbohydrate crosslinkers: monosaccharide (glucose), disaccharide (sucrose) and polysaccharides (starch and cellulose). The mechanical and thermal properties were investigated and interpreted on the basis of SEM study. The advantage of incorporating various carbohydrates is to have tunable mechanical properties and biodegradability due to variety in their structure. The glass transition temperature and sorption behavior were dominated by the type of polyol than by the type of crosslinker. All the PUs were observed to be biodegradable as well as non-cytotoxic as revealed by MTT assay in normal lung cell line L132. The study supports the suitability of carbohydrates as important components of biocompatible PUs for development of biomedical devices.

  14. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  15. Development of meniscus substitutes using a mixture of biocompatible polymers and extra cellular matrix components by electrospinning.

    PubMed

    López-Calzada, G; Hernandez-Martínez, A R; Cruz-Soto, M; Ramírez-Cardona, M; Rangel, D; Molina, G A; Luna-Barcenas, G; Estevez, M

    2016-04-01

    Despite the significant advances in the meniscus tissue engineering field, it is difficult to recreate the complex structure and organization of the collagenous matrix of the meniscus. In this work, we developed a meniscus prototype to be used as substitute or scaffold for the regeneration of the meniscal matrix, recreating the differential morphology of the meniscus by electrospinning. Synthetic biocompatible polymers were combined with the extracellular matrix component, collagen and used to replicate the meniscus. We studied the correlation between mechanical and structural properties of the polymer blend as a function of collagen concentration. Fibers were collected on a surface of a rapidly rotating precast mold, to accurately replicate each sectional morphology of the meniscus; different electro-tissues were produced. Detailed XRD analyses exhibited structural changes developed by electrospinning. We achieved to integrate all these electro-tissues to form a complete synthetic meniscus. Vascularization tests were performed to assess the potential use of our novel polymeric blend for promising meniscus regeneration.

  16. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  17. Acoustic properties of some biocompatible polymers at body temperature.

    PubMed

    Guess, J F; Campbell, J S

    1995-01-01

    In response to the many invasive applications of ultrasound which are developing, the acoustic properties of several aliphatic and aromatic polyurethanes and Polyether block amide (PEBA) copolymers are presented. These polymers were reported by their manufacturers as being biocompatible and are possibly suitable for short-term implantation in humans. Speed and attenuation of sound are measured at 37 degrees C as a function of frequency by use of a Fourier-transform method. These properties are reported in tabular and graphic form.

  18. Biocompatibility of two experimental scaffolds for regenerative endodontics

    PubMed Central

    Setzer, Frank C.; Trope, Martin; Karabucak, Bekir

    2016-01-01

    Objectives The biocompatibility of two experimental scaffolds for potential use in revascularization or pulp regeneration was evaluated. Materials and Methods One resilient lyophilized collagen scaffold (COLL), releasing metronidazole and clindamycin, was compared to an experimental injectable poly(lactic-co-glycolic) acid scaffold (PLGA), releasing clindamycin. Human dental pulp stem cells (hDPSCs) were seeded at densities of 1.0 × 104, 2.5 × 104, and 5.0 × 104. The cells were investigated by light microscopy (cell morphology), MTT assay (cell proliferation) and a cytokine (IL-8) ELISA test (biocompatibility). Results Under microscope, the morphology of cells coincubated for 7 days with the scaffolds appeared healthy with COLL. Cells in contact with PLGA showed signs of degeneration and apoptosis. MTT assay showed that at 5.0 × 104 hDPSCs, COLL demonstrated significantly higher cell proliferation rates than cells in media only (control, p < 0.01) or cells co-incubated with PLGA (p < 0.01). In ELISA test, no significant differences were observed between cells with media only and COLL at 1, 3, and 6 days. Cells incubated with PLGA expressed significantly higher IL-8 than the control at all time points (p < 0.01) and compared to COLL after 1 and 3 days (p < 0.01). Conclusions The COLL showed superior biocompatibility and thus may be suitable for endodontic regeneration purposes. PMID:27200277

  19. Biocompatible Pressure Sensing Skins for Minimally Invasive Surgical Instruments

    PubMed Central

    Arabagi, Veaceslav; Felfoul, Ouajdi; Gosline, Andrew H.; Wood, Robert J.; Dupont, Pierre E.

    2016-01-01

    This paper presents 800-μm thick, biocompatible sensing skins composed of arrays of pressure sensors. The arrays can be configured to conform to the surface of medical instruments so as to act as disposable sensing skins. In particular, the fabrication of cylindrical geometries is considered here for use on endoscopes. The sensing technology is based on polydimethylsiloxane synthetic silicone encapsulated microchannels filled with a biocompatible salt-saturated glycerol solution, functioning as the conductive medium. A multi-layer manufacturing approach is introduced that enables stacking sensing microchannels, mechanical stress concentration features, and electrical routing via flexcircuits in a thickness of less than 1 mm. The proposed approach is inexpensive and does not require clean room tools or techniques. The mechanical stress concentration features are implemented using a patterned copper layer that serves to improve sensing range and sensitivity. Sensor performance is demonstrated experimentally using a sensing skin mounted on a neuroendoscope insertion cannula and is shown to outperform previously developed non-biocompatible sensors. PMID:27642266

  20. A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys

    PubMed Central

    Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K.; Amruthaluri, Sushma

    2009-01-01

    Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy. PMID:19956791

  1. Biocompatibility of Chitosan Carriers with Application in Drug Delivery

    PubMed Central

    Rodrigues, Susana; Dionísio, Marita; Remuñán López, Carmen; Grenha, Ana

    2012-01-01

    Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures. PMID:24955636

  2. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study

    PubMed Central

    Tang, Jia; Saito, Takashi

    2015-01-01

    Type I collagen (COL-1) is the prevailing component of the extracellular matrix in a number of tissues including skin, ligament, cartilage, bone, and dentin. It is the most widely used tissue-derived natural polymer. Currently, mammalian animals, including pig, cow, and rat, are the three major sources for purification of COL-1. To reduce the risk of zoonotic infectious diseases transmission, minimize the possibility of immunogenic reaction, and avoid problems related to religious issues, exploration of new sources (other than mammalian animals) for the purification of type I collagen is highly desirable. Hence, the purpose of the current study was to investigate the in vitro responses of MDPC-23 to type I collagen isolated from tilapia scale in terms of cellular proliferation, differentiation, and mineralization. The results suggested that tilapia scale collagen exhibited comparable biocompatibility to porcine skin collagen, indicating it might be a potential alternative to type I collagen from mammals in the application for tissue regeneration in oral-maxillofacial area. PMID:26491653

  3. On the biocompatibility between TiO2 nanotubes layer and human osteoblasts.

    PubMed

    Portan, Diana V; Kroustalli, Anthi A; Deligianni, Despina D; Papanicolaou, George C

    2012-10-01

    Titanium and its alloys are the most popular biomaterials replacing hard tissues in implant surgeries. Clinicians are generally pleased by titanium mechanical properties and non-toxicity performances; on the other hand, there have been reported several cases of titanium implantation failure, phenomenon explained sometimes as "non adherence of human tissue to the metallic surface." Yet, researchers reported that titanium surfaces are favorable for osteoblasts adhesion. Therefore, titanium integration into the human body remains an unsolved problem. In the present study, biocompatibility tests were performed on titanium and TiO(2) nanotubes substrates, involving human bone marrow cells. The combination of a newly developed analytical model based on the hybrid interphase concept, applicable to systems consisting of inert materials when in contact with living tissues, together with experimental results, confirmed previous research studies and lead to the conclusion that osteoblasts adhere efficiently to titanium surfaces. However, the present results suggest that osteoblasts strong anchorage at the very first moment of their contact with the metallic material leads to their apoptosis. It is most probable that in several cases this is the reason of failed implantation surgeries involving titanium.

  4. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    NASA Astrophysics Data System (ADS)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were

  5. New Soft Tissue Implants Using Organic Elastomers

    NASA Astrophysics Data System (ADS)

    Ku, David N.

    Typical biomaterials are stiff, difficult to manufacture, and not initially developed for medical implants. A new biomaterial is proposed that is similar to human soft tissue. The biomaterial provides mechanical properties similar to soft tissue in its mechanical and physical properties. Characterization is performed for modulus of elasticity, ultimate strength and wear resistance. The material further exhibits excellent biocompatibility with little toxicity and low inflammation. The material can be molded into a variety of anatomic shapes for use as a cartilage replacement, heart valve, and reconstructive implant for trauma victims. The biomaterial may be suitable for several biodevices of the future aimed at soft-tissue replacements.

  6. Guiding Neuronal Growth in Tissues with Light

    DTIC Science & Technology

    2010-02-27

    Report 3. DATES COVERED (From - To) 1/12/2008-30/11,2009 4. TITLE AND SUBTITLE GUIDING NEURONAL GROWTH IN TISSUES WITH LIGHT 5a. CONTRACT NUMBER N/A...687-6594 Standard Form 298 (Rev. 8/98) Prescnbed by ANSI Std. Z39.18 Adobe Professional 7.0 Guiding Neuronal Growth in Tissues with Light PI...and provide bio-compatible scaffolds for tissue growth and organ regeneration. Unleashing the full potential of these applications requires an

  7. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    PubMed Central

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  8. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  9. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  10. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine

    PubMed Central

    Nizamoglu, Sedat; Gather, Malte C.; Humar, Matjaž; Choi, Myunghwan; Kim, Seonghoon; Kim, Ki Su; Hahn, Sei Kwang; Scarcelli, Giuliano; Randolph, Mark; Redmond, Robert W.; Yun, Seok Hyun

    2016-01-01

    Advances in photonics have stimulated significant progress in medicine, with many techniques now in routine clinical use. However, the finite depth of light penetration in tissue is a serious constraint to clinical utility. Here we show implantable light-delivery devices made of bio-derived or biocompatible, and biodegradable polymers. In contrast to conventional optical fibres, which must be removed from the body soon after use, the biodegradable and biocompatible waveguides may be used for long-term light delivery and need not be removed as they are gradually resorbed by the tissue. As proof of concept, we demonstrate this paradigm-shifting approach for photochemical tissue bonding (PTB). Using comb-shaped planar waveguides, we achieve a full thickness (>10 mm) wound closure of porcine skin, which represents ∼10-fold extension of the tissue area achieved with conventional PTB. The results point to a new direction in photomedicine for using light in deep tissues. PMID:26783091

  11. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine

    NASA Astrophysics Data System (ADS)

    Nizamoglu, Sedat; Gather, Malte C.; Humar, Matjaž; Choi, Myunghwan; Kim, Seonghoon; Kim, Ki Su; Hahn, Sei Kwang; Scarcelli, Giuliano; Randolph, Mark; Redmond, Robert W.; Yun, Seok Hyun

    2016-01-01

    Advances in photonics have stimulated significant progress in medicine, with many techniques now in routine clinical use. However, the finite depth of light penetration in tissue is a serious constraint to clinical utility. Here we show implantable light-delivery devices made of bio-derived or biocompatible, and biodegradable polymers. In contrast to conventional optical fibres, which must be removed from the body soon after use, the biodegradable and biocompatible waveguides may be used for long-term light delivery and need not be removed as they are gradually resorbed by the tissue. As proof of concept, we demonstrate this paradigm-shifting approach for photochemical tissue bonding (PTB). Using comb-shaped planar waveguides, we achieve a full thickness (>10 mm) wound closure of porcine skin, which represents ~10-fold extension of the tissue area achieved with conventional PTB. The results point to a new direction in photomedicine for using light in deep tissues.

  12. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells

    PubMed Central

    MESTIERI, Leticia Boldrin; GOMES-CORNÉLIO, Ana Lívia; RODRIGUES, Elisandra Márcia; SALLES, Loise Pedrosa; BOSSO-MARTELO, Roberta; GUERREIRO-TANOMARU, Juliane Maria; TANOMARU, Mário

    2015-01-01

    Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus. Objective The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs). Material and Methods The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%). Results MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure. Conclusions The hDPCs were suitable for the evaluation of new endodontic materials in vitro. MTAP may be considered a promising material for endodontic treatments. PMID:26537716

  13. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal.

    PubMed

    Willbold, Elmar; Kalla, Katharina; Bartsch, Ivonne; Bobe, Katharina; Brauneis, Maria; Remennik, Sergei; Shechtman, Dan; Nellesen, Jens; Tillmann, Wolfgang; Vogt, Carla; Witte, Frank

    2013-11-01

    Biodegradable magnesium-based alloys are very promising materials for temporary implants. However, the clinical use of magnesium-based alloys is often limited by rapid corrosion and by insufficient mechanical stability. Here we investigated RS66, a magnesium-based alloy with extraordinary physicochemical properties of high tensile strength combined with a high ductility and a homogeneous grain size of ~1 μm which was obtained by rapid solidification processing and reciprocal extrusion. Using a series of in vitro and in vivo experiments, we analyzed the biodegradation behavior and the biocompatibility of this alloy. In vitro, RS66 had no cytotoxic effects in physiological concentrations on the viability and the proliferation of primary human osteoblasts. In vivo, RS66 cylinders were implanted into femur condyles, under the skin and in the muscle of adult rabbits and were monitored for 1, 2, 3, 4 and 8 weeks. After explantation, the RS66 cylinders were first analyzed by microtomography to determine the remaining RS66 alloy and calculate the corrosion rates. Then, the implantation sites were examined histologically for healing processes and foreign body reactions. We found that RS66 was corroded fastest subcutaneously followed by intramuscular and bony implantation of the samples. No clinical harm with transient gas cavities during the first 6 weeks in subcutaneous and intramuscular implantation sites was observed. No gas cavities were formed around the implantation site in bone. The corrosion rates in the different anatomical locations correlated well with the local blood flow prior to implantation. A normal foreign body reaction occurred in all tissues. Interestingly, no enhanced bone formation could be observed around the corroding samples in the condyles. These data show that RS66 is biocompatible, and due to its interesting physicochemical properties, this magnesium alloy is a promising material for biodegradable implants.

  14. Polydimethylsiloxane Core-Polycaprolactone Shell Nanofibers as Biocompatible, Real-Time Oxygen Sensors.

    PubMed

    Xue, Ruipeng; Behera, Prajna; Xu, Joshua; Viapiano, Mariano S; Lannutti, John J

    2014-03-01

    Real-time, continuous monitoring of local oxygen contents at the cellular level is desirable both for the study of cancer cell biology and in tissue engineering. In this paper, we report the successful fabrication of polydimethylsiloxane (PDMS) nanofibers containing oxygen-sensitive probes by electrospinning and the applications of these fibers as optical oxygen sensors for both gaseous and dissolved oxygen. A protective 'shell' layer of polycaprolactone (PCL) not only maintains the fiber morphology of PDMS during the slow curing process but also provides more biocompatible surfaces. Once this strategy was perfected, tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) (Ru(dpp)) and platinum octaethylporphyrin (PtOEP) were dissolved in the PDMS core and the resulting sensing performance established. These new core-shell sensors containing different sensitivity probes showed slight variations in oxygen response but all exhibited excellent Stern-Volmer linearity. Due in part to the porous nature of the fibers and the excellent oxygen permeability of PDMS, the new sensors show faster response (<0.5 s) -4-10 times faster than previous reports - than conventional 2D film-based oxygen sensors. Such core-shell fibers are readily integrated into standard cell culture plates or bioreactors. The photostability of these nanofiber-based sensors was also assessed. Culture of glioma cell lines (CNS1, U251) and glioma-derived primary cells (GBM34) revealed negligible differences in biological behavior suggesting that the presence of the porphyrin dyes within the core carries with it no strong cytotoxic effects. The unique combination of demonstrated biocompatibility due to the PCL 'shell' and the excellent oxygen transparency of the PDMS core makes this particular sensing platform promising for sensing in the context of biological environments.

  15. Use of cortical neuronal networks for in vitro material biocompatibility testing.

    PubMed

    Charkhkar, Hamid; Frewin, Christopher; Nezafati, Maysam; Knaack, Gretchen L; Peixoto, Nathalia; Saddow, Stephen E; Pancrazio, Joseph J

    2014-03-15

    Neural interfaces aim to restore neurological function lost during disease or injury. Novel implantable neural interfaces increasingly capitalize on novel materials to achieve microscale coupling with the nervous system. Like any biomedical device, neural interfaces should consist of materials that exhibit biocompatibility in accordance with the international standard ISO10993-5, which describes in vitro testing involving fibroblasts where cytotoxicity serves as the main endpoint. In the present study, we examine the utility of living neuronal networks as functional assays for in vitro material biocompatibility, particularly for materials that comprise implantable neural interfaces. Embryonic mouse cortical tissue was cultured to form functional networks where spontaneous action potentials, or spikes, can be monitored non-invasively using a substrate-integrated microelectrode array. Taking advantage of such a platform, we exposed established positive and negative control materials to the neuronal networks in a consistent method with ISO 10993-5 guidance. Exposure to the negative controls, gold and polyethylene, did not significantly change the neuronal activity whereas the positive controls, copper and polyvinyl chloride (PVC), resulted in reduction of network spike rate. We also compared the functional assay with an established cytotoxicity measure using L929 fibroblast cells. Our findings indicate that neuronal networks exhibit enhanced sensitivity to positive control materials. In addition, we assessed functional neurotoxicity of tungsten, a common microelectrode material, and two conducting polymer formulations that have been used to modify microelectrode properties for in vivo recording and stimulation. These data suggest that cultured neuronal networks are a useful platform for evaluating the functional toxicity of materials intended for implantation in the nervous system.

  16. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.

    PubMed

    Cui, Ning; Qian, Junmin; Xu, Weijun; Xu, Minghui; Zhao, Na; Liu, Ting; Wang, Hongjie

    2016-01-20

    In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.

  17. Biocompatibility and Biomechanical Effect of Single Wall Carbon Nanotubes Implanted in the Corneal Stroma: A Proof of Concept Investigation

    PubMed Central

    Rodriguez, Alejandra E.; Rodriguez-Reinoso, Francisco; Gomez-Tejedor, Jose A.; Antolinos-Turpin, Carmen M.; Bataille, Laurent; Alio, Jorge L.

    2016-01-01

    Corneal ectatic disorders are characterized by a progressive weakening of the tissue due to biomechanical alterations of the corneal collagen fibers. Carbon nanostructures, mainly carbon nanotubes (CNTs) and graphene, are nanomaterials that offer extraordinary mechanical properties and are used to increase the rigidity of different materials and biomolecules such as collagen fibers. We conducted an experimental investigation where New Zealand rabbits were treated with a composition of CNTs suspended in balanced saline solution which was applied in the corneal tissue. Biocompatibility of the composition was assessed by means of histopathology analysis and mechanical properties by stress-strain measurements. Histopathology samples stained with blue Alcian showed that there were no fibrous scaring and no alterations in the mucopolysaccharides of the stroma. It also showed that there were no signs of active inflammation. These were confirmed when Masson trichrome staining was performed. Biomechanical evaluation assessed by means of tensile test showed that there is a trend to obtain higher levels of rigidity in those corneas implanted with CNTs, although these changes are not statistically significant (p > 0.05). Implanting CNTs is biocompatible and safe procedure for the corneal stroma which can lead to an increase in the rigidity of the collagen fibers. PMID:28116139

  18. Green chemistry approach for the synthesis of biocompatible graphene

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Jin-Hoi

    2013-01-01

    Background Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. One of the most common methods for preparation of graphene is chemical exfoliation of graphite using powerful oxidizing agents. Generally, graphene is synthesized through deoxygenation of graphene oxide (GO) by using hydrazine, which is one of the most widespread and strongest reducing agents. Due to the high toxicity of hydrazine, it is not a promising reducing agent in large-scale production of graphene; therefore, this study focused on a green or sustainable synthesis of graphene and the biocompatibility of graphene in primary mouse embryonic fibroblast cells (PMEFs). Methods Here, we demonstrated a simple, rapid, and green chemistry approach for the synthesis of reduced GO (rGO) from GO using triethylamine (TEA) as a reducing agent and stabilizing agent. The obtained TEA reduced GO (TEA-rGO) was characterized by ultraviolet (UV)–visible absorption spectroscopy, X-ray diffraction (XRD), particle size dynamic light scattering (DLS), scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). Results The transition of graphene oxide to graphene was confirmed by UV–visible spectroscopy. XRD and SEM were used to investigate the crystallinity of graphene and the surface morphologies of prepared graphene respectively. The formation of defects further supports the functionalization of graphene as indicated in the Raman spectrum of TEA-rGO. Surface morphology and the thickness of the GO and TEA-rGO were analyzed using AFM. The presented results suggest that TEA-rGO shows significantly more biocompatibility with PMEFs cells than GO. Conclusion This is the first report about using TEA as a reducing as well as a stabilizing agent for the preparation of biocompatible graphene. The proposed safe and green method offers substitute routes for large-scale production of graphene

  19. A capillary viscometer designed for the characterization of biocompatible ferrofluids

    NASA Astrophysics Data System (ADS)

    Nowak, J.; Odenbach, S.

    2016-08-01

    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application.

  20. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision.

    PubMed

    Espandar, Ladan; Sikder, Shameema; Moshirfar, Majid

    2011-01-10

    Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD(™) lens is an aspheric, hydrophilic acrylic intraocular lens (IOL). The hydrophilic design of the lens is optimized to address dysphotopsia while maintaining biocompatibility, optical clarity, resistance to damage, and resistance to biocontamination. Aspheric lenses decrease postoperative spherical aberration. The addition of the Softec lens provides clinicians with another option for IOL placement; however, randomized comparative studies of this lens to others already on the market remain to be completed.

  1. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    PubMed Central

    Espandar, Ladan; Sikder, Shameema; Moshirfar, Majid

    2011-01-01

    Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular lens (IOL). The hydrophilic design of the lens is optimized to address dysphotopsia while maintaining biocompatibility, optical clarity, resistance to damage, and resistance to biocontamination. Aspheric lenses decrease postoperative spherical aberration. The addition of the Softec lens provides clinicians with another option for IOL placement; however, randomized comparative studies of this lens to others already on the market remain to be completed. PMID:21311658

  2. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    PubMed

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds.

  3. Label-free cellular manipulation and sorting via biocompatible ferrofluids.

    PubMed

    Kose, Ayse R; Fischer, Birgit; Mao, Leidong; Koser, Hur

    2009-12-22

    We present a simple microfluidic platform that uses biocompatible ferrofluids for the controlled manipulation and rapid separation of both microparticles and live cells. This low-cost platform exploits differences in particle size, shape, and elasticity to achieve rapid and efficient separation. Using microspheres, we demonstrate size-based separation with 99% separation efficiency and sub-10-microm resolution in <45 s. We also show continuous manipulation and shape-based separation of live red blood cells from sickle cells and bacteria. These initial demonstrations reveal the potential of ferromicrofluidics in significantly reducing incubation times and increasing diagnostic sensitivity in cellular assays through rapid separation and delivery of target cells to sensor arrays.

  4. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.

    PubMed

    Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P

    2014-07-21

    Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small-molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported herein is a method for alkene hydrogenation which utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe, and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering.

  5. Biocompatibility and Pharmacokinetic Analysis of an Intracameral Polycaprolactone Drug Delivery Implant for Glaucoma

    PubMed Central

    Kim, Jean; Kudisch, Max; Mudumba, Sri; Asada, Hiroyuki; Aya-Shibuya, Eri; Bhisitkul, Robert B.; Desai, Tejal A.

    2016-01-01

    Purpose We developed polycaprolactone (PCL) implants that achieve zero-order release of a proprietary ocular hypotensive agent (DE-117) over 6 months. Methods The release rates of DE-117–loaded PCL devices were tuned based on an established predictive model and confirmed by in vitro release studies. Devices containing DE-117 and empty devices were implanted intracamerally in normotensive rabbits for up to 8 weeks' duration. Devices were retrieved after rabbits were euthanized and evaluated for tissue adherence. The drug remaining in each device was analyzed by high performance liquid chromatography. Drug distribution in ocular tissues was measured by liquid chromatography coupled with a tandem mass spectrometry (LC/MS/MS). Results In vitro release of DE-117 showed zero-order release with a release rate of 0.5 μg/day over 6 months. Implantation in rabbit eyes demonstrated that the devices were well tolerated in the intracameral space. Quantification of DE-117 and hDE-117 (the hydrolyzed active form of DE-117) in ocular tissues (cornea, iris-ciliary body, aqueous humor, and vitreous humor) indicated sustained release of DE-117 and its conversion to hDE-117 when released from the device. Analysis of drug remaining in the device found that concentration of hDE-117 was below the limit of detection, indicating the encapsulated drug was protected from hydrolysis in the device. Conclusions Proof-of-concept PCL drug delivery devices containing DE-117 show promise as a long-term glaucoma treatment based on their zero-order drug release profile in vitro, biocompatibility in vivo, and effective distribution of released drug in relevant ocular tissues. PMID:27556217

  6. Enhancement of Biocompatibility on Bioactive Titanium Surface by Low-Temperature Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Cheng; Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Che-Tong; Lee, Sheng-Yang; Chen, Chin-Sung; Ou, Keng-Liang

    2005-12-01

    The surface of implantable biomaterials directly contacts the host tissue and is critical in determining biocompatibility. To improve implant integration, interfacial reactions must be controlled to minimize nonspecific adsorption of proteins, and tissue-healing phenomena can be controlled. The purpose of this study was to develop a new method of functionalizing titanium surfaces by plasma treatment. The covalent immobilization of bioactive organic molecules and the bioactivities in vitro were assessed by transmission electron microscopy (TEM), atomic force spectroscopy (AFM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as indices of cellular cytotoxicity. Argon plasma removed all of the adsorbed contaminants and impurities. Plasma-cleaned titanium surfaces showed better bioactive performances than untreated titanium surfaces. The analytical results reveal that plasma-cleaned titanium surfaces provide a clean and reproducible starting condition for further plasma treatments to create well-controlled surface layers. Allylamine was ionized by plasma treatment, and acted as a medium to link albumin. Cells demonstrated a good spread, and a wide attachment was attained on the Albu-Ti plate. Cell attachment and growth were shown to be influenced by the surface properties. The plasma treatment process plays an important role in facilitating tissue healing. This process not only provides a clean titanium surface, but also leads to surface amination on plasma-treated titanium surfaces. Surface cleaning by ion bombardment and surface modification by plasma polymerization are believed to remove contamination on titanium surfaces and thus promote tissue healing.

  7. Osteoblast biocompatibility of premineralized, hexamethylene-1,6-diaminocarboxysulfonate crosslinked chitosan fibers.

    PubMed

    Kiechel, Marjorie A; Beringer, Laura T; Donius, Amalie E; Komiya, Yuko; Habas, Raymond; Wegst, Ulrike G K; Schauer, Caroline L

    2015-10-01

    Biopolymer-ceramic composites are thought to be particularly promising materials for bone tissue engineering as they more closely mimic natural bone. Here, we demonstrate the fabrication by electrospinning of fibrous chitosan-hydroxyapatite composite scaffolds with low (1 wt %) and high (10 wt %) mineral contents. Scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and unidirectional tensile testing were performed to determine fiber surface morphology, elemental composition, and tensile Young's modulus (E) and ultimate tensile strength (σUTS ), respectively. EDS scans of the scaffolds indicated that the fibers, crosslinked with either hexamethylene-1,6-diaminocarboxysulfonate (HDACS) or genipin, have a crystalline hydroxyapatite mineral content at 10 wt % additive. Moreover, FESEM micrographs showed that all electrospun fibers have diameters (122-249 nm), which fall within the range of those of fibrous collagen found in the extracellular matrix of bone. Young's modulus and ultimate tensile strength of the various crosslinked composite compositions were in the range of 116-329 MPa and 2-15 MPa, respectively. Osteocytes seeded onto the mineralized fibers were able to demonstrate good biocompatibility enhancing the potential use for this material in future bone tissue engineering applications.

  8. Osteoblast biocompatibility of pre-mineralized, hexamethylene-1,6-diaminocarboxysulphonate crosslinked chitosan fibers

    PubMed Central

    Kiechel, Marjorie A.; Beringer, Laura T.; Donius, Amalie E.; Komiya, Yuko; Habas, Raymond; Wegst, Ulrike G. K.; Schauer, Caroline L.

    2015-01-01

    Biopolymer-ceramic composites are thought to be particularly promising materials for bone tissue engineering as they more closely mimic natural bone. Here, we demonstrate the fabrication by electrospinning of fibrous chitosan-hydroxyapatite composite scaffolds with low (1 wt%) and high (10 wt%) mineral contents. Scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and unidirectional tensile testing were performed to determine fiber surface morphology, elemental composition, and tensile Young’s modulus (E) and ultimate tensile strength (σUTS), respectively. EDS scans of the scaffolds indicated that the fibers, crosslinked with either hexamethylene-1,6-diaminocarboxysulfonate (HDACS) or genipin, have a crystalline hydroxyapatite mineral content at 10 wt% additive. Moreover, FESEM micrographs showed that all electrospun fibers have diameters (122 – 249 nm), which fall within the range of those of fibrous collagen found in the extracellular matrix of bone. Young’s modulus and ultimate tensile strength of the various crosslinked composite compositions were in the range of 116 – 329 MPa and 2 – 15 MPa, respectively. Osteocytes seeded onto the mineralized fibers were able to demonstrate good biocompatibility enhancing the potential use for this material in future bone tissue engineering applications. PMID:25771925

  9. BIOCOMPATIBILITY OF A SYNTHETIC EXTRACELLULAR MATRIX ON IMMORTALIZED VOCAL FOLD FIBROBLASTS IN 3D CULTURE

    PubMed Central

    Chen, Xia

    2010-01-01

    In order to promote wound repair and induce tissue regeneration, an engineered hyaluronan (HA) hydrogel – Carbylan GSX, which contains di(thiopropionyl) bishydrazide-modified hyaluronic acid (HA-DTPH), di(thiopropionyl) bishydrazide-modified gelatin (Gtn-DTPH) and polyethylene glycol diacrylate (PEGDA), has been developed for extracellular matrix (ECM) defects of the superficial and middle layers of the lamina propria. The purpose of this study was to evaluate the biocompatibility of Carbylan GSX in a previously established immortalized human vocal fold fibroblast (hVFF) cell line prior to human clinical trials. Immortalized hVFF proliferation, viability, apoptosis and transcript analysis for both ECM constituents and inflammatory markers were measured for two-dimensional and three-dimensional culture conditions. There were no significant differences in morphology, cell marker protein expression, proliferation, viability and apoptosis of hVFF cultured with Carbylan GSX compared to Matrigel, a commercial 3D control, after one week. Gene expression levels for fibromodulin, TGF-β1, and TNF-α were similar between Carbylan GSX and Matrigel. Fibronectin, hyaluronidase 1 and COX2 expression levels were induced by Carbylan GSX; whereas IL6, IL8. COL1 and hyaluronic acid synthase 3 expression levels were decreased by Carbylan GSX. This investigation demonstrates that Carbylan GSX may serve as a natural biomaterial for tissue engineering of human vocal folds. PMID:20109588

  10. Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers.

    PubMed

    Jin, Lin; Wu, Dingcai; Kuddannaya, Shreyas; Zhang, Yilei; Wang, Zhenling

    2016-03-02

    Graphene nanofibers have shown a promising potential across a wide spectrum of areas, including biology, energy, and the environment. However, fabrication of graphene nanofibers remains a challenging issue due to the broad size distribution and extremely poor solubility of graphene. Herein, we report a facile yet efficient approach for fabricating a novel class of polymer core-reduced graphene oxide shell nanofiber mat (RGO-CSNFM) by direct heat-driven self-assembly of graphene oxide sheets onto the surface of electrospun polymeric nanofibers without any requirement of surface treatment. Thus-prepared RGO-CSNFM demonstrated excellent mechanical, electrical, and biocompatible properties. RGO-CSNFM also promoted a higher cell anchorage and proliferation of human bone marrow mesenchymal stem cells (hMSCs) compared to the free-standing RGO film without the nanoscale fibrous structure. Further, cell viability of hMSCs was comparable to that on the tissue culture plates (TCPs) with a distinctive healthy morphology, indicating that the nanoscale fibrous architecture plays a critically constructive role in supporting cellular activities. In addition, the RGO-CSNFM exhibited excellent electrical conductivity, making them an ideal candidate for conductive cell culture, biosensing, and tissue engineering applications. These findings could provide a new benchmark for preparing well-defined graphene-based nanomaterial configurations and interfaces for biomedical applications.

  11. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers.

    PubMed

    Kai, Dan; Tan, Mein Jin; Prabhakaran, Molamma P; Chan, Benjamin Qi Yu; Liow, Sing Shy; Ramakrishna, Seeram; Loh, Xian Jun

    2016-12-01

    A porous shape memory scaffold with both biomimetic structures and electrical conductivity properties is highly promising for nerve tissue engineering applications. In this study, a new shape memory polyurethane polymer which consists of inorganic polydimethylsiloxane (PDMS) segments with organic poly(ε-caprolactone) (PCL) segments was synthesized. Based on this poly(PCL/PDMS urethane), a series of electrically conductive nanofibers were electrospun by incorporating different amounts of carbon-black. Our results showed that after adding carbon black into nanofibers, the fiber diameters increased from 399±76 to 619±138nm, the crystallinity decreased from 33 to 25% and the resistivity reduced from 3.6 GΩ/mm to 1.8 kΩ/mm. Carbon black did not significantly influence the shape memory properties of the resulting nanofibers, and all the composite nanofibers exhibited decent shape recovery ratios of >90% and shape fixity ratios of >82% even after 5 thermo-mechanical cycles. PC12 cells were cultured on the shape memory nanofibers and the composite scaffolds showed good biocompatibility by promoting cell-cell interactions. Our study demonstrated that the poly(PCL/PDMS urethane)/carbon-black nanofibers with shape memory properties could be potentially used as smart 4-dimensional (4D) scaffolds for nerve tissue regeneration.

  12. Dyes for Eyes™: hydrodynamics, biocompatibility and efficacy of 'heavy' (dual) dyes for chromovitrectomy.

    PubMed

    Mohr, Andreas; Bruinsma, Marieke; Oellerich, Silke; Frank, Hans; Gabel, Detlef; Melles, Gerrit R J

    2013-01-01

    As epiretinal membranes (ERMs), the internal limiting membrane (ILM) and the vitreous cortex are essentially transparent tissues, or translucent structures, nontraumatic removal may be challenging in various types of macular surgery. Vital dyes stain these thin tissues, thus allowing for better visualization of these structures during vitrectomy and selective 'membrane peeling' from the underlying retina. To avoid swirling of the dye within the fluid-filled vitreous cavity, and to better target the dye onto the macula, a fluid-air exchange is commonly performed. However, this may jeopardize visualization of the macula during peeling due to clouding of the posterior lens capsule, and may lead to postoperative visual field defects. Recently, a new dye solution for staining the ERM and ILM simultaneously has been developed that circumvents the need for fluid-air exchange, i.e. MembraneBlue-Dual™. This paper will focus on the hydrodynamics and biocompatibility of this 'heavy' dual dye and its efficacy for staining of the ILM and/or ERMs during posterior segment surgery in a multicenter clinical setting.

  13. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells

    PubMed Central

    Inthanon, Kewalin; Techaikool, Pimwalan; Khaniyao, Vorathep; Bernstein, Audrey M.; Wongkham, Weerah

    2016-01-01

    Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35–40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N–H, and C–N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications. PMID:26839562

  14. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation

    PubMed Central

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-01-01

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type–III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications. PMID:27480483

  15. The Role of Bioreactors in Tissue Engineering for Musculoskeletal Applications

    PubMed Central

    Oragui, Emeka; Nannaparaju, Madhusudhan; Khan, Wasim S

    2011-01-01

    Tissue engineering involves using the principles of biology, chemistry and engineering to design a ‘neotissue’ that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a biocompatible scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. We discuss the role of bioreactors in tissue engineering and evaluate the principles of bioreactor design. We evaluate the methods of cell stimulation and review the bioreactors in common use today. PMID:21886691

  16. Science and technology of biocompatible thin films for implantable biomedical devices.

    SciTech Connect

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  17. Three-dimensional biocompatible matrix for reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Reshetov, I. V.; Starceva, O. I.; Istranov, A. L.; Vorona, B. N.; Lyundup, A. V.; Gulyaev, I. V.; Melnikov, D. V.; Shtansky, D. V.; Sheveyko, A. N.; Andreev, V. A.

    2016-08-01

    A study into the development of an original bioengineered structure for reconstruction of hollow organs is presented. The basis for the structure was the creation of a mesh matrix made from titanium nickelide (NiTi), which has sufficient elasticity and shape memory for the reconstruction of hollow tubular orgrans. In order to increase the cell adhesion on the surface of the matrix, the grid needed to be cleaned of impurities, for which we used an ionic cleaning method. Additional advantages also may enable the application of the bioactive component to grid surface. These features of the matrix may improve the biocompatibility properties of the composite material. In the first stage, a mesh structure was made from NiTi fibers. The properties of the resulting mesh matrix were studied. In the second stage, the degrees of adhesion and cell growth rates in the untreated matrix, the matrix after ionic cleaning and the matrix after ionic cleaning and the application of the bioactive component were compared. The results showed more significant biocompatibility of the titanium nickelide matrix after its ionic cleaning. The ionic cleaning ensures the removal of toxic contaminants, which are a consequence of the technological production process of the material and provide optimal adhesion properties for the fiber surface. The NiTi net matrix with TiCaPCON coating may be the optimal basis for making the hollow elastic organs.

  18. Biocompatibility of implantable materials: An oxidative stress viewpoint.

    PubMed

    Mouthuy, Pierre-Alexis; Snelling, Sarah J B; Dakin, Stephanie G; Milković, Lidija; Gašparović, Ana Čipak; Carr, Andrew J; Žarković, Neven

    2016-12-01

    Oxidative stress occurs when the production of oxidants surpasses the antioxidant capacity in living cells. Oxidative stress is implicated in a number of pathological conditions such as cardiovascular and neurodegenerative diseases but it also has crucial roles in the regulation of cellular activities. Over the last few decades, many studies have identified significant connections between oxidative stress, inflammation and healing. In particular, increasing evidence indicates that the production of oxidants and the cellular response to oxidative stress are intricately connected to the fate of implanted biomaterials. This review article provides an overview of the major mechanisms underlying the link between oxidative stress and the biocompatibility of biomaterials. ROS, RNS and lipid peroxidation products act as chemo-attractants, signalling molecules and agents of degradation during the inflammation and healing phases. As chemo-attractants and signalling molecules, they contribute to the recruitment and activation of inflammatory and healing cells, which in turn produce more oxidants. As agents of degradation, they contribute to the maturation of the extracellular matrix at the healing site and to the degradation of the implanted material. Oxidative stress is itself influenced by the material properties, such as by their composition, their surface properties and their degradation products. Because both cells and materials produce and react with oxidants, oxidative stress may be the most direct route mediating the communication between cells and materials. Improved understanding of the oxidative stress mechanisms following biomaterial implantation may therefore help the development of new biomaterials with enhanced biocompatibility.

  19. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    NASA Astrophysics Data System (ADS)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-03-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  20. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    PubMed

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  1. Twelve Hours In Vitro Biocompatibility Testing of Membrane Oxygenators.

    PubMed

    Bleilevens, Christian; Grottke, Oliver; Tillmann, Sabine; Honickel, Markus; Kopp, Rüedger; Arens, Jutta; Rossaint, Rolf

    2015-01-01

    In vitro test systems for extracorporeal membrane oxygenation (mock loop) represent an interesting alternative to complex and expensive in vivo test systems to analyze the pathomechanisms leading to insufficient biocompatibility. Data on mock loop systems are limited, and operation times are constricted to a maximum duration of 6 hr. This study aims at a 12 hr operation time and frequent monitoring of markers for insufficient biocompatibility in two experimental settings. Porcine blood circulated in a mock loop without any modifications, or the circuit was operated with a CO2-enhanced gas (5% CO2/21% O2/74% N2) in combination with a nutrient solution (phosphate-adenine-glucose-guanosine-saline-mannitol). Coagulation parameters changed over time without differences between the two groups. In the unmodified test setting, a pH increase was detected after 1 hr, followed by significantly increased levels of free hemoglobin as a marker for hemolysis and elevated numbers of activated platelets, which correlate with detected von Willebrand factor, microparticles, and interleukin-β. Proinflammatory cytokine levels were significantly increased after 12 hr. In contrast, these parameters remained constant in the modified test setting providing proof of a stable operating in vitro mock loop system with an extended/prolonged operation time.

  2. A highly tunable and fully biocompatible silk nanoplasmonic optical sensor.

    PubMed

    Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan

    2015-05-13

    Novel concepts for manipulating plasmonic resonances and the biocompatibility of plasmonic devices offer great potential in versatile applications involving real-time and in vivo monitoring of analytes with high sensitivity in biomedical and biological research. Here we report a biocompatible and highly tunable plasmonic bio/chemical sensor consisting of a natural silk protein and a gold nanostructure. Our silk plasmonic absorber sensor (SPAS) takes advantage of the strong local field enhancement in the metal-insulator-metal resonator in which silk protein is used as an insulating spacer and substrate. The silk insulating spacer has hydrogel properties and therefore exhibits a controllable swelling when exposed to water-alcohol mixtures. We experimentally and numerically show that drastic spectral shifts in reflectance minima arise from the changing physical volume and refractive index of the silk spacer during swelling. Furthermore, we apply this SPAS device as a glucose sensor with a very high sensitivity of 1200 nm/RIU (refractive index units) and high relative intensity change.

  3. Biocompatible Coating of Encapsulated Cells Using Ionotropic Gelation

    PubMed Central

    Ehrhart, Friederike; Mettler, Esther; Böse, Thomas; Weber, Matthias Max; Vásquez, Julio Alberto; Zimmermann, Heiko

    2013-01-01

    The technique of immunoisolated transplantation has seen in the last twenty years improvements in biocompatibility, long term stability and methods for avoidance of fibrosis in alginate capsules. However, two major problems are not yet solved: living cellular material that is not centered in the capsule is not properly protected from the hosts’ immune system and the total transplant volume needs to be reduced. To solve these problems, we present a method for applying fully biocompatible alginate multilayers to a barium-alginate core without the use of polycations. We report on the factors that influence layer formation and stability and can therefore provide data for full adjustability of the additional layer. Although known for yeast and plant cells, this technique has not previously been demonstrated with mammalian cells or ultra-high viscous alginates. Viability of murine insulinoma cells was investigated by live-dead staining and live cell imaging, for murine Langerhans’ islets viability and insulin secretion have been measured. No hampering effects of the second alginate layer were found. This multi-layer technique therefore has great potential for clinical and in vitro use and is likely to be central in alginate matrix based immunoisolated cell therapy. PMID:24039964

  4. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  5. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    PubMed

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  6. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots.

    PubMed

    Mareeswari, P; Brijitta, J; Harikrishna Etti, S; Meganathan, C; Kaliaraj, Gobi Saravanan

    2016-12-01

    We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3×10(5) cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines.

  7. In vitro biocompatibility of an ultrafine grained zirconium.

    PubMed

    Saldaña, Laura; Méndez-Vilas, Antonio; Jiang, Ling; Multigner, Marta; González-Carrasco, Jose L; Pérez-Prado, María T; González-Martín, María L; Munuera, Luis; Vilaboa, Nuria

    2007-10-01

    We have investigated a novel ultrafine grained (UFG) Zr obtained by severe plastic deformation (SPD) which resulted in a refinement of the grain size by several orders of magnitude. Compared to conventional Zr, higher hardness values were measured on UFG Zr. Polished surfaces having similar topographical features from both materials were prepared, as assessed by atomic force microscopy (AFM). Surface hydrophobicity of Zr, evaluated by measuring water contact angles, was unaffected by grain size reduction. In vitro biocompatibility was addressed on conventional and UFG Zr surfaces and, for comparative purposes, a polished Ti6Al4V alloy was also investigated. Cell attachment and spreading, actin and beta-tubulin cytoskeleton reorganisation, fibronectin secretion and cellular distribution as well as cell viability were evaluated by culturing human osteoblastic Saos-2 cells on the surfaces. The osteoblastic response to conventional Zr was found to be essentially identical to Ti6Al4V and was not affected by grain size reduction. In order to evaluate the ability of the surfaces to promote osteogenic maturation and bone matrix mineralisation, human mesenchymal cells from bone marrow were switched to the osteoblastic phenotype by incubation in osteogenic induction media. Compared to undifferentiated mesenchymal cells, alkaline phosphatase activity and formation of mineralisation nodules were enhanced to the same extent on both Zr surfaces and Ti6Al4V alloy after induction of osteoblastic differentiation. In summary, improved mechanical properties together with excellent in vitro biocompatibility make UFG Zr a promising biomaterial for surgical implants.

  8. Biocompatibility of a self-assembled glycol chitosan nanogel.

    PubMed

    Pereira, Paula; Pedrosa, Sílvia S; Correia, Alexandra; Lima, Cristovao F; Olmedo, Mercedes Peleteiro; González-Fernández, África; Vilanova, Manuel; Gama, Francisco M

    2015-04-01

    The research of chitosan-based nanogel for biomedical applications has grown exponentially in the last years; however, its biocompatibility is still insufficiently reported. Hence, the present work provides a thorough study of the biocompatibility of a glycol chitosan (GC) nanogel. The obtained results showed that GC nanogel induced slight decrease on metabolic activity of RAW, 3T3 and HMEC cell cultures, although no effect on cell membrane integrity was verified. The nanogel does not promote cell death by apoptosis and/or necrosis, exception made for the HMEC cell line challenged with the higher GC nanogel concentration. Cell cycle arrest on G1 phase was observed only in the case of RAW cells. Remarkably, the nanogel is poorly internalized by bone marrow derived macrophages and does not trigger the activation of the complement system. GC nanogel blood compatibility was confirmed through haemolysis and whole blood clotting time assays. Overall, the results demonstrated the safety of the use of the GC nanogel as drug delivery system.

  9. Biocompatible shaped particles from dried multilayer polymer capsules.

    PubMed

    Chen, Jun; Kozlovskaya, Veronika; Goins, Allison; Campos-Gomez, Javier; Saeed, Mohammad; Kharlampieva, Eugenia

    2013-11-11

    We demonstrated a simple and facile approach to fabricate biocompatible monodisperse hollow microparticles of controlled geometry. The hemispherical, spherical, and cubical microparticles are obtained by drying multilayer capsules of hydrogen-bonded poly(N-vinylpyrrolidone)/tannic acid (PVPON/TA)n. Drying spherical capsules results in hemispherical particles if 15 < n < 20. This shape transformation is controlled by capsule stiffness, which is regulated by the layer number, capsule diameter, and PVPON molecular weight. Cubical and spherical hollow particles maintaining their three-dimensional shapes in the dry state are obtained if n ≥ 25.5. A 17-fold stiffness increase is required to lead from totally collapsed (PVPON/TA)5.5 to dried self-supporting (PVPON/TA)25.5 particles of 2 μm in dimensions. All hollow particles could be further resuspended in aqueous solutions while retaining their shapes upon rehydration. The cell growth and viability studies using human cancer cells revealed noncytotoxic properties of the (PVPON/TA) multilayer particles. Both spherical and hemispherical capsules were internalized by macrophages with the uptake of the hemispherical particles per cell two times more efficient. The method presented here allows for a robust preparation of biocompatible shaped particles whose shape and dimensions can be easily tuned by controlling capsule size and wall thickness. The reported structures can be potentially useful for biomedical applications such as shape-controlled cellular uptake and flow dynamics.

  10. Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles.

    PubMed

    Eiras, F; Amaral, M H; Silva, R; Martins, E; Lobo, J M Sousa; Silva, A C

    2017-03-15

    Nanostructured lipid carriers (NLC) are well-known systems that show effectiveness to improve skin hydration, being suggested for cosmetic and dermatological use. Nonetheless, NLC dispersions present low viscosity, which is non-attractive for cutaneous application. To circumvent this drawback, the dispersions can be gelled or incorporated in semisolid systems, increasing the final formulation consistency. In this study, we prepared a hydrogel based on NLC containing vitamin E (HG-NLCVE) and evaluated its suitability for cutaneous application. The experiments started with the HG-NLCVE characterization (organoleptic analysis, accelerated stability, particle size, morphology, pH, texture and rheology). Afterwards, in vitro experiments were carried out, evaluating the formulation biocompatibility (MTT and Neutral Red) and irritant potential (Hen's egg test on the chorioallantoic membrane, HET-CAM) for cutaneous application. The results showed that the HG-NLCVE has adequate features for skin application, is biocompatible and non-irritant. From this study, it was predicted the in vivo irritant potential of the developed formulation, avoiding the need to perform a high number of tests on human volunteers. Regarding vitamin E and NLC potential to improve skin hydration, we suggest that the HG-NLCVE could be used in cosmetic (e.g. moisturizers and anti-aging) or dermatologic (e.g. xerosis and other skin disorders) products.

  11. Evaluation of chitosan-GP hydrogel biocompatibility in osteochondral defects: an experimental approach

    PubMed Central

    2014-01-01

    Background Articular cartilage, because of its avascular nature, has little capacity for spontaneous healing, and tissue engineering approaches, employing different biomaterials and cells, are under development. Among the investigated biomaterials are the chitosan-based hydrogels. Although thoroughly studied in other mammalian species, studies are scarce in equines. So, the aim of the present study was to investigate the biocompatibility of chitosan-GP in horse joints submitted to high mechanical loads. Results An osteochondral defect was created by arthroscopy in the medial surface of lateral trochlea of talus of left or right leg, randomly selected, from six healthy geldings. The defect was filled up with chitosan-GP. The contralateral joint received an identical defect with no implant. The chondral fragment removed to produce the defect was collected, processed and used as the “Initial” sample (normal cartilage) for histology, immunohistochemistry, and metabolic labelling of PGs. After 180 days, the repair tissues were collected, and also analyzed. At the end of the experiment (180 days after lesion), the total number of cells per field in repair tissues was equal to control, and macrophages and polymorphonuclear cells were not detected, suggesting that no significant inflammation was present. These cells were able to synthesize type II collagen and proteoglycans (PGs). Nevertheless, the cell population in these tissues, both in presence of chitosan-GP and in untreated controls, were heterogeneous, with a lower proportion of type II collagen-positives cells and some with a fibroblastic aspect. Moreover, the PGs synthesized in repair tissues formed in presence or absence of chitosan-GP were similar to those of normal cartilage. However, the chitosan-GP treated tissue had an disorganized appearance, and blood vessels were present. Conclusions Implanted chitosan-GP did not evoke an important inflammatory reaction, and permitted cell growth. These cells were

  12. Novel biopolymers as implant matrix for the delivery of ciprofloxacin: biocompatibility, degradation, and in vitro antibiotic release.

    PubMed

    Fulzele, Suniket V; Satturwar, Prashant M; Dorle, Avinash K

    2007-01-01

    The purpose of this study was to investigate the in vitro-in vivo degradation and tissue compatibility of three novel biopolymers viz. polymerized rosin (PR), glycerol ester of polymerized rosin (GPR) and pentaerythritol ester of polymerized rosin (PPR) and study their potential as implant matrix for the delivery of ciprofloxacin hydrochloride. Free films of polymers were used for in vitro degradation in PBS (pH 7.4) and in vivo in rat subcutaneous model. Sample weight loss, molecular weight decline, and morphological changes were analyzed after periodic intervals (30, 60, and 90 days) to monitor the degradation profile. Biocompatibility was evaluated by examination of the inflammatory tissue response to the implanted films on postoperative days 7, 14, 21, and 28. Furthermore, direct compression of dry blends of various polymer matrices with 20%, 30%, and 40% w/w drug loading was performed to investigate their potential for implant systems. The implants were characterized in terms of porosity and ciprofloxacin release. Biopolymer films showed slow rate of degradation, in vivo rate being faster on comparative basis. Heterogeneous bulk degradation was evident with the esterified products showing faster rates than PR. Morphologically all the films were stiff and intact with no significant difference in their appearance. The percent weight remaining in vivo was 90.70 +/- 6.2, 85.59 +/- 5.8, and 75.56 +/- 4.8 for PR, GPR, and PPR films respectively. Initial rapid drop in Mw was demonstrated with nearly 20.0% and 30.0% decline within 30 days followed by a steady decline to nearly 40.0% and 50.0% within 90 days following in vitro and in vivo degradation respectively. Biocompatibility demonstrated by acute and subacute tissue reactions showed minimal inflammatory reactions with prominent fibrous encapsulation and absence of necrosis demonstrating good tissue compatibility to the extent evaluated. All implants showed erosion and increase in porosity that affected the drug

  13. Evaluation of in vivo biocompatibility of different devices for interventional closure of the patent ductus arteriosus in an animal model

    PubMed Central

    Sigler, M; Handt, S; Seghaye, M; von Bernuth, G; Grabitz, R

    2000-01-01

    OBJECTIVE—To evaluate the in vivo biocompatibility of three different devices following interventional closure of a patent ductus arteriosus (PDA) in an animal model.
MATERIALS AND METHODS—A medical grade stainless steel coil (n = 8), a nickel/titanium coil (n = 10), and a polyvinylalcohol foam plug knitted on a titanium wire frame (n = 11) were used for interventional closure of PDA in a neonatal lamb model. The PDA had been maintained by repetitive angioplasty. Between one and 278 days after implantation the animals were killed and the ductal block removed. In addition to standard histology and scanning electron microscopy, immunohistochemical staining for biocompatibility screening was also undertaken.
RESULTS—Electron microscopy revealed the growth of a cellular layer in a cobblestone pattern on the implant surfaces with blood contact, which was completed as early as five weeks after implantation of all devices. Immunohistochemical staining of these superficial cells showed an endothelial cell phenotype. After initial thrombus formation causing occlusion of the PDA after implantation there was ingrowth of fibromuscular cells resembling smooth muscle cells. Transformation of thrombotic material was completed within six weeks in the polyvinylalcohol plug and around the nickel/titanium coil, and within six months after implantation of the stainless steel coil. An implant related foreign body reaction was seen in only one of the stainless steel coil specimens and in two of the nickel/titanium coil specimens.
CONCLUSION—After implantation, organisation of thrombotic material with ingrowth of fibromuscular cells was demonstrated in a material dependent time pattern. The time it took for endothelium to cover the implants was independent of the type of implant. Little or no inflammatory reaction of the surrounding tissue was seen nine months after implantation.


Keywords: congenital heart disease; patent ductus arteriosus; catheter technique

  14. A biocompatible in vivo ligation reaction and its application for noninvasive bioluminescent imaging of protease activity in living mice.

    PubMed

    Godinat, Aurélien; Park, Hyo Min; Miller, Stephen C; Cheng, Ke; Hanahan, Douglas; Sanman, Laura E; Bogyo, Matthew; Yu, Allen; Nikitin, Gennady F; Stahl, Andreas; Dubikovskaya, Elena A

    2013-05-17

    The discovery of biocompatible reactions had a tremendous impact on chemical biology, allowing the study of numerous biological processes directly in complex systems. However, despite the fact that multiple biocompatible reactions have been developed in the past decade, very few work well in living mice. Here we report that D-cysteine and 2-cyanobenzothiazoles can selectively react with each other in vivo to generate a luciferin substrate for firefly luciferase. The success of this "split luciferin" ligation reaction has important implications for both in vivo imaging and biocompatible labeling strategies. First, the production of a luciferin substrate can be visualized in a live mouse by bioluminescence imaging (BLI) and furthermore allows interrogation of targeted tissues using a "caged" luciferin approach. We therefore applied this reaction to the real-time noninvasive imaging of apoptosis associated with caspase 3/7. Caspase-dependent release of free D-cysteine from the caspase 3/7 peptide substrate Asp-Glu-Val-Asp-D-Cys (DEVD-(D-Cys)) allowed selective reaction with 6-amino-2-cyanobenzothiazole (NH(2)-CBT) in vivo to form 6-amino-D-luciferin with subsequent light emission from luciferase. Importantly, this strategy was found to be superior to the commercially available DEVD-aminoluciferin substrate for imaging of caspase 3/7 activity. Moreover, the split luciferin approach enables the modular construction of bioluminogenic sensors, where either or both reaction partners could be caged to report on multiple biological events. Lastly, the luciferin ligation reaction is 3 orders of magnitude faster than Staudinger ligation, suggesting further applications for both bioluminescence and specific molecular targeting in vivo.

  15. Synthesis, characterization, bioactivity and biocompatibility of nanostructured materials based on the wollastonite-poly(ethylmethacrylate-co-vinylpyrrolidone) system.

    PubMed

    Rodríguez-Lorenzo, L M; García-Carrodeguas, R; Rodríguez, M A; De Aza, S; Jiménez, J; López-Bravo, A; Fernandez, M; San Román, J

    2009-01-01

    Composite materials are very promising biomaterials for hard tissue augmentation. The approach assayed in this work involves the manufacturing of a composite made of a bioactive ceramic, natural wollastonite (W) and a nanostructured copolymer of ethylmethacrylate (EMA) and vinylpyrrolidone (VP) to yield a bioresorbable and biocompatible VP-EMA copolymer. A bulk polymerization was induced thermally at 50 degrees C, using 1 wt % azobis(isobutyronitrile) (AIBN) as free-radical initiator. Structural characterization, compressive strength, flexural strength (FS), degradation, bioactivity, and biocompatibility were evaluated in specimens with a 60/40 VP/EMA ratio and ceramic content in the range 0-60%. A good integration between phases was achieved. Greater compression and FS, in comparison with the pure copolymer specimens was obtained only when the ceramic load got up to 60% of the total weight. The soaking in NaCl solution resulted in the initial swelling of the specimens tested. The maximum swelling was reached after 2-3 h of immersion and it was significantly greater for lower ceramic loads. This result makes the polymer component the main responsible for the interactions with the media. After soaking in SBF, microdomains segregation can be observed in the polymer component that can be related with a dramatic difference in the reactivity of both monomers in free radical polymerization, whereas the formation of an apatite-like layer on the W surfaces can be observed. Biocompatibility in vitro studies showed the absence of cytotoxicity of all formulations. The cells were able to adhere on the polystyrene negative control and on specimens containing 60 wt % wollastonite forming a monolayer and showing a normal morphology. However, a low cellular growth was observed.

  16. Potential Use of Porous Titanium–Niobium Alloy in Orthopedic Implants: Preparation and Experimental Study of Its Biocompatibility In Vitro

    PubMed Central

    Wang, Xu; Huang, Jia-Zhang; Zhang, Chao; Muhammad, Hassan; Ma, Xin; Liao, Qian-De

    2013-01-01

    Background The improvement of bone ingrowth into prosthesis and enhancement of the combination of the range between the bone and prosthesis are important for long-term stability of artificial joints. They are the focus of research on uncemented artificial joints. Porous materials can be of potential use to solve these problems. Objectives/Purposes This research aims to observe the characteristics of the new porous Ti-25Nb alloy and its biocompatibility in vitro, and to provide basic experimental evidence for the development of new porous prostheses or bone implants for bone tissue regeneration. Methods The Ti-25Nb alloys with different porosities were fabricated using powder metallurgy. The alloys were then evaluated based on several characteristics, such as mechanical properties, purity, pore size, and porosity. To evaluate biocompatibility, the specimens were subjected to methylthiazol tetrazolium (MTT) colorimetric assay, cell adhesion and proliferation assay using acridine staining, scanning electron microscopy, and detection of inflammation factor interleukin-6 (IL-6). Results The porous Ti-25Nb alloy with interconnected pores had a pore size of 200 µm to 500 µm, which was favorable for bone ingrowth. The compressive strength of the alloy was similar to that of cortical bone, while with the elastic modulus closer to cancellous bone. MTT assay showed that the alloy had no adverse reaction to rabbit bone marrow mesenchymal stem cells, with a toxicity level of 0 to 1. Cell adhesion and proliferation experiments showed excellent cell growth on the surface and inside the pores of the alloy. According to the IL-6 levels, the alloy did not cause any obvious inflammatory response. Conclusion All porous Ti-25Nb alloys showed good biocompatibility regardless of the percentage of porosity. The basic requirement of clinical orthopedic implants was satisfied, which made the alloy a good prospect for biomedical application. The alloy with 70% porosity had the optimum

  17. Silk fibroin scaffolds for urologic tissue engineering

    PubMed Central

    Sack, Bryan S.; Mauney, Joshua R.; Estrada, Carlos R.

    2016-01-01

    Urologic tissue engineering efforts have been largely focused on bladder and urethral defect repair. The current surgical gold standard for treatment of poorly compliant pathological bladders and severe urethral stricture disease is enterocystoplasty and onlay urethroplasty with autologous tissue, respectively. The complications associated with autologous tissue use and harvesting have led to efforts to develop tissue-engineered alternatives. Natural and synthetic materials have been used with varying degrees of success, but none has proved consistently reliable for urologic tissue defect repair in humans. Silk fibroin (SF) scaffolds have been tested in bladder and urethral repair because of their favorable biomechanical properties including structural strength, elasticity, biodegradability and biocompatibility. SF scaffolds have been used in multiple animal models, and have demonstrated robust regeneration of smooth muscle and urothelium. The pre-clinical data involving SF scaffolds in urologic defect repair are encouraging and suggest that they hold potential for future clinical use. PMID:26801192

  18. Aloe Vera for Tissue Engineering Applications

    PubMed Central

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-01-01

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers. PMID:28216559

  19. Aloe Vera for Tissue Engineering Applications.

    PubMed

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-02-14

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  20. [Application of poly (N-isopropylacrylamide) and its derivatives in tissue engineering].

    PubMed

    Wang, Xin; Luo, Hanqing; Guan, Yanqing

    2010-02-01

    Poly-N-isopropylacrylamide (PNIPAAm) is a new kind of intelligent material. It shows favorable thermo sensitivity because of the structure of hydrophilic acrylamino and hydrophobic isopropyl. PNIPAAm also shows good biocompatibility and non-toxicity. All the characters as above make it an ideal extra cellular matrix material for tissue engineering. This paper reviews its application in tissue engineering.

  1. Intraluminal tissue welding for anastomosis

    DOEpatents

    Glinsky, Michael; London, Richard; Zimmerman, George; Jacques, Steven

    1998-10-27

    A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or "welded" using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage.

  2. Intraluminal tissue welding for anastomosis

    DOEpatents

    Glinsky, M.; London, R.; Zimmerman, G.; Jacques, S.

    1998-10-27

    A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or ``welded`` using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage. 8 figs.

  3. Improved biocompatibility of small intestinal submucosa (SIS) following conditioning by human endothelial cells.

    PubMed

    Woods, A M; Rodenberg, E J; Hiles, M C; Pavalko, F M

    2004-02-01

    Small intestinal submucosa (SIS) is a naturally occurring tissue matrix composed of extracellular matrix proteins and various growth factors. SIS is derived from the porcine jejunum and functions as a remodeling scaffold for tissue repair. While SIS has proven to be a useful biomaterial for implants in vivo, problems associated with endothelialization and thrombogenicity of SIS implants may limit its vascular utility. The goal of this study was to determine if the biological properties of SIS could be improved by growing human umbilical vein endothelial cells (HUVEC) on SIS and allowing these cells to deposit human basement membrane proteins on the porcine substrate to create what we have called "conditioned" SIS (c-SIS). Using an approach in which HUVEC were grown for 2 weeks on SIS and then removed via a technique that leaves behind an intact basement membrane, we hypothesized that the surface properties of SIS might be improved. We found that when re-seeded on c-SIS, HUVEC exhibited enhanced organization of cell junctions and had increased metabolic activity compared to cells on native SIS (n-SIS). Furthermore, HUVEC grown on c-SIS released lower amounts of the pro-inflammatory prostaglandin PGI2 into the media compared to cells grown on n-SIS. Additionally, we found that adhesion of resting or activated human platelets to c-SIS was significantly decreased compared to n-SIS suggesting that, in addition to improved cell growth characteristics, conditioning SIS with human basement membrane proteins might decrease its thrombogenic potential. In summary, conditioning of porcine SIS by human endothelial cells improves key biological properties of the material that may improve its usefulness as remodeling scaffold for tissue repair. Identification of critical modifications of SIS by human endothelial cells should help guide future efforts to develop more biocompatible vascular grafts.

  4. Translational Applications of Nanodiamonds: From Biocompatibility to Theranostics

    NASA Astrophysics Data System (ADS)

    Moore, Laura Kent

    Nanotechnology marks the next phase of development for drug delivery, contrast agents and gene therapy. For these novel systems to achieve success in clinical translation we must see that they are both effective and safe. Diamond nanoparticles, also known as nanodiamonds (NDs), have been gaining popularity as molecular delivery vehicles over the last decade. The uniquely faceted, carbon nanoparticles possess a number of beneficial properties that are being harnessed for applications ranging from small-molecule drug delivery to biomedical imaging and gene therapy. In addition to improving the effectiveness of a variety of therapeutics and contrast agents, initial studies indicate that NDs are biocompatible. In this work we evaluate the translational potential of NDs by demonstrating efficacy in molecular delivery and scrutinizing particle tolerance. Previous work has demonstrated that NDs are effective vehicles for the delivery of anthracycline chemotherapeutics and gadolinium(III) based contrast agents. We have sought to enhance the gains made in both areas through the addition of active targeting. We find that ND-mediated targeted delivery of epirubicin to triple negative breast cancers induces tumor regression and virtually eliminates drug toxicities. Additionally, ND-mediated delivery of the MRI contrast agent ProGlo boosts the per gadolinium relaxivity four fold, eliminates water solubility issues and effectively labels progesterone receptor expressing breast cancer cells. Both strategies open the door to the development of targeted, theranostic constructs based on NDs, capable of treating and labeling breast cancers at the same time. Although we have seen that NDs are effective vehicles for molecular delivery, for any nanoparticle to achieve clinical utility it must be biocompatible. Preliminary research has shown that NDs are non-toxic, however only a fraction of the ND-subtypes have been evaluated. Here we present an in depth analysis of the cellular

  5. 75 FR 13556 - Biocompatibles UK Ltd.; Filing of Color Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... HUMAN SERVICES Food and Drug Administration Biocompatibles UK Ltd.; Filing of Color Additive Petition...) is announcing that Biocompatibles UK Ltd., has filed a petition proposing that the color additive...] (CAS Reg. No. 4499-01-8) reacted with polyvinyl alcohol as a color additive in vascular...

  6. [Biocompatibility and pharmacokinetics of hydroxypropyl methylcellulose (HPMC) in the anterior chamber of the rabbit eye].

    PubMed

    Ehrich, W; Höh, H; Kreiner, C F

    1990-06-01

    The biocompatibility and pharmacokinetics of hydroxypropylmethylcellulose (HPMC) 2% (Adatocel) and Tylose 2% (MH 1000) were investigated. A modified anterior chamber implantation test on the rabbit eye is suitable for testing both the biocompatibility and the pharmacokinetics of visco-surgical substances. Both substances were well tolerated. From the fourth day onward, HPMC was no longer detectable in the anterior chamber by infrared spectroscopy.

  7. Antibacterial and Biocompatibility Properties of Nano-Silver Thin Layer

    NASA Astrophysics Data System (ADS)

    Emadi, R.; Raeissi, K.

    Ag/TiO2 coating was prepared by anodizing the surface of Ti followed by electrodeposition of silver. By X-ray diffraction (XRD) analyses, that indicated the crystalline size of Ag deposit onto the oxidized surface of Ti was around 32 nm. Scanning electron microscopy (SEM) images of the oxidized surface with and without Ag deposit show that TiO2 is formed uniformly but Ag deposit consisted of numerous spherical structures. The Escherichia coli and Staphylococcus aureus bacteria were utilized to test the antibacterial effect of Ag/TiO2 coating which showed more than 99% of bacteria were killed after 24 h incubation. The results of in vitro test showed Ag/TiO2 coating is also biocompatible.

  8. Assessing biocompatibility of graphene oxide-based nanocarriers: A review.

    PubMed

    Kiew, Siaw Fui; Kiew, Lik Voon; Lee, Hong Boon; Imae, Toyoko; Chung, Lip Yong

    2016-03-28

    Graphene oxide (GO)-based nanocarriers have been frequently studied due to their high drug loading capacity. However, the unsatisfactory biocompatibility of these GO-based nanocarriers hampers their use in clinical settings. This review discusses how each of the physicochemical characteristics (e.g., size, surface area, surface properties, number of layers and particulate states) and surface coatings on GO affect its in vitro and in vivo nanotoxicity. We provide an overview on the effect of GO properties on interactions with cells such as red blood cells, macrophages and cell lines, and experimental organisms including rodents, rabbits and Zebrafish, offering some guidelines for development of safe GO-based nanocarriers. We conclude the paper by outlining the challenges involving GO-based formulations and future perspectives of this research in the biomedical field.

  9. Development of cost-effective biocompatible packaging for microelectronic devices.

    PubMed

    Qian, Karen; Malachowski, Karl; Fiorini, Paolo; Velenis, Dimitrios; de Beeck, Maaike Op; Van Hoof, Chris

    2011-01-01

    A cost-effective, miniaturized and biocompatible packaging method for medical devices is proposed, resulting in a small, soft and comfortable implantable package. Towards this end, the barrier materials and fabrication process for the individual die encapsulation are largely explored. We demonstrate that various common clean room materials are good candidates for preventing metal leaching into body. In accelerated tests at higher temperature, several conductive barrier materials are damaged by the test bio-fluid, suggesting insufficient resistance to body fluids in long term. Covering electrodes by noble metals will solve this problem. For metallization, noble metals as Pt are best candidates. CoO calculations showed that selective plating of Pt is more cost-effective than sputtering. To reduce the cost of a sputter process, Pt recycling is very important.

  10. Properties of silver nanostructure-coated PTFE and its biocompatibility

    NASA Astrophysics Data System (ADS)

    Siegel, Jakub; Polívková, Markéta; Kasálková, Nikola Slepičková; Kolská, Zdeňka; Švorčík, Václav

    2013-09-01

    Silver nanolayers were sputtered on polytetrafluoroethylene (PTFE) and subsequently transformed into discrete nanoislands by thermal annealing. The Ag/PTFE composites prepared under different conditions were characterized by several complementary methods (goniometry, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy), and new data on the mechanism of Ag layer growth and Ag atom clustering under annealing were obtained. Biocompatibility of selected Ag/PTFE composites was studied in vitro using vascular smooth muscle cell (VSMC) cultures. Despite of the well-known inhibitory properties of silver nanostructures towards broad spectrum of bacterial strains and cells, it was found that very thin silver coating stimulates both adhesion and proliferation of VSMCs.

  11. A biocompatible, highly efficient click reaction and its applications.

    PubMed

    Yuan, Yue; Liang, Gaolin

    2014-02-14

    Herein, we review the development, optimization, applications and potential prospects of a novel click reaction based on the condensation reaction between 2-cyanobenzothiazole (CBT) and D-cysteine (D-Cys) in fireflies. This click condensation reaction has obvious advantages in biocompatibility, efficiency and stability in aqueous environments. Optimization of this click reaction has been carried out so that it can be controlled by pH change, reduction, or enzymatic cleavage to synthesize large molecules and self-assembled nanostructures, or enhance probe signals. Consequently, this CBT-based click reaction has been and could be successfully applied to a wide range of biomedical applications such as molecular imaging (e.g., optical imaging, nuclear imaging and magnetic resonance imaging), biomolecular detection, drug delivery and other potentialities.

  12. Interfacing microbial styrene production with a biocompatible cyclopropanation reaction.

    PubMed

    Wallace, Stephen; Balskus, Emily P

    2015-06-08

    The introduction of new reactivity into living organisms is a major challenge in synthetic biology. Despite an increasing interest in both the development of small-molecule catalysts that are compatible with aqueous media and the engineering of enzymes to perform new chemistry in vitro, the integration of non-native reactivity into metabolic pathways for small-molecule production has been underexplored. Herein we report a biocompatible iron(III) phthalocyanine catalyst capable of efficient olefin cyclopropanation in the presence of a living microorganism. By interfacing this catalyst with E. coli engineered to produce styrene, we synthesized non-natural phenyl cyclopropanes directly from D-glucose in single-vessel fermentations. This process is the first example of the combination of nonbiological carbene-transfer reactivity with cellular metabolism for small-molecule production.

  13. Analysis of the biocompatibility of ALCAP ceramics in rat femurs.

    PubMed

    Mattie, D R; Bajpai, P K

    1988-12-01

    Ceramics composed of aluminum, calcium, and phosphorus oxides (ALCAP) were tested for compatibility as bone replacement biomaterials. Implantation of ALCAP ceramics in rat femurs had no deleterious effect on body weights, organ/body weight ratios, muscle, bone, blood, and kidney function. Aluminum resorbed from ALCAP ceramic bone implants was excreted in the urine and was not deposited in adjacent muscle. Plasma levels of aluminum were not elevated in rats implanted with ALCAP ceramics. Alkaline phosphatase activity of excised implant sites indicated greater bone formation in ALCAP ceramic implants than in bone autografts. Radiographs and implant histology demonstrated excellent bone association with implants and ingrowth of new bone into ALCAP ceramic implants. ALCAP ceramics are biocompatible and suitable for reconstruction of bone.

  14. Metallic biomaterials TiN-coated: corrosion analysis and biocompatibility.

    PubMed

    Paschoal, André Luís; Vanâncio, Everaldo Carlos; Canale, Lauralice de Campos Franceschini; da Silva, Orivaldo Lopes; Huerta-Vilca, Domingos; Motheo, Artur de Jesus

    2003-05-01

    Corrosion processes due to contact with the physiological environment should be avoided or minimized in orthopedic implants. Four metallic substrates frequently used as biomaterials: pure Ti, Ti-6Al-4V alloy, ASTM F138 stainless steel, and Co-Cr-Mo alloy, were coated with TiN using the physical vapor deposition (PVD) technique. These coatings have been screened by polarization curves in physiological solutions. TiN prepared by PVD is efficient as coating for stainless steel. On titanium and alloy there are no benefits concerning the corrosion resistance compared to the bare Ti-materials. TiN coatings have been screened according to ISO 10993 standard tests for biocompatibility and exhibited no cytotoxicity, dermal irritation, or acute systemic toxicity response.

  15. Biocompatible coatings for CMUTs in a harsh, aqueous environment

    NASA Astrophysics Data System (ADS)

    Zhuang, X.; Nikoozadeh, A.; Beasley, M. A.; Yaralioglu, G. G.; Khuri-Yakub, B. T.; Pruitt, B. L.

    2007-05-01

    The results of coating capacitive micromachined ultrasonic transducer (CMUT) arrays with two different biocompatible materials, parylene-c and polydimethylsiloxane (PDMS), are reported. These materials were characterized for use with CMUTs to enable direct contact transcutaneous and in vivo imaging. A passivation coating is required to provide electrical isolation to the active areas of the device and to protect it from a corrosive environment. It must also provide good mechanical characteristics to void imaging artifacts. The coated devices were compared side by side with uncoated devices for testing in air. The resonant frequency, collapse voltage and crosstalk were sampled. Parylene coated CMUTs were also tested underwater using pulse excitation. The parylene coating provided electrical insulation to the aqueous solution for 14 days. Both coatings showed a decrease in device resonant frequency and an increase in collapse voltage, as expected from the proposed theory.

  16. Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia.

    SciTech Connect

    Liu, X.; Novosad, V.; Rozhkova, E. A.; Chen, H.; Yefremenko, V.; Pearson, J.; Torno, M.; Bader, S. D.; Rosengart, A. J.; Univ. Chicago Pritzker School of Medicine

    2007-06-01

    We report a simplified single emulsion (oil-in-water) solvent evaporation protocol to synthesize surface functionalized biocompatible magnetic nanospheres by using highly concentrated hydrophobic magnetite (gel) and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol-maleimide) (PLA-PEG-maleimide) (10:1 by mass) polymers. The as-synthesized particles are approximately spherical with an average diameter of 360-370 nm with polydispersity index of 0.12-0.18, are surface-functionalized with maleimide groups, and have saturation magnetization values of 25-40 emu/g. The efficiency of the heating induced by 400-kHz oscillating magnetic fields is compared for two samples with different magnetite loadings. Results show that these nanospheres have the potential to provide an efficient cancer-targeted hyperthermia.

  17. Conjugation of gold nanoparticles to polypropylene mesh for enhanced biocompatibility.

    PubMed

    Grant, D N; Benson, J; Cozad, M J; Whelove, O E; Bachman, S L; Ramshaw, B J; Grant, D A; Grant, S A

    2011-12-01

    Polypropylene mesh materials have been utilized in hernia surgery for over 40 years. However, they are prone to degradation due to the body's aggressive foreign body reaction, which may cause pain or complications, forcing mesh removal from the patient. To mitigate these complications, gold nanomaterials were attached to polypropylene mesh in order to improve cellular response. Pristine samples of polypropylene mesh were exposed to hydrogen peroxide/cobalt chloride solutions to induce formation of surface carboxyl functional groups. Gold nanoparticles were covalently linked to the mesh. Scanning electron microscopy confirmed the presence of gold nanoparticles. Differential scanning calorimetry and mechanical testing confirmed that the polypropylene did not undergo any significantly detrimental changes in physicochemical properties. A WST-1 cell culture study showed an increase in cellularity on the gold nanoparticle-polypropylene mesh as compared to pristine mesh. This study showed that biocompatibility of polypropylene mesh may be improved via the conjugation of gold nanoparticles.

  18. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    PubMed

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  19. Tailored Carbon Nanotubes for Tissue Engineering Applications

    PubMed Central

    Veetil, Jithesh V.; Ye, Kaiming

    2008-01-01

    A decade of aggressive researches on carbon nanotubes (CNTs) has paved way for extending these unique nanomaterials into a wide range of applications. In the relatively new arena of nanobiotechnology, a vast majority of applications are based on CNTs, ranging from miniaturized biosensors to organ regeneration. Nevertheless, the complexity of biological systems poses a significant challenge in developing CNT-based tissue engineering applications. This review focuses on the recent developments of CNT-based tissue engineering, where the interaction between living cells/tissues and the nanotubes have been transformed into a variety of novel techniques. This integration has already resulted in a revaluation of tissue engineering and organ regeneration techniques. Some of the new treatments that were not possible previously become reachable now. Because of the advent of surface chemistry, the CNT’s biocompatibility has been significantly improved, making it possible to serve as tissue scaffolding materials to enhance the organ regeneration. The superior mechanic strength and chemical inert also makes it ideal for blood compatible applications, especially for cardiopulmonary bypass surgery. The applications of CNTs in these cardiovascular surgeries led to a remarkable improvement in mechanical strength of implanted catheters and reduced thrombogenecity after surgery. Moreover, the functionalized CNTs have been extensively explored for in vivo targeted drug or gene delivery, which could potentially improve the efficiency of many cancer treatments. However, just like other nanomaterials, the cytotoxicity of CNTs has not been well established. Hence, more extensive cytotoxic studies are warranted while converting the hydrophobic CNTs into biocompatible nanomaterials. PMID:19496152

  20. How hydrophobically modified chitosans are stabilized by biocompatible lipid aggregates.

    PubMed

    Ruocco, Nino; Frielinghaus, Heide; Vitiello, Giuseppe; D'Errico, Gerardino; Leal, Leslie G; Richter, Dieter; Ortona, Ornella; Paduano, Luigi

    2015-08-15

    Nanostructured hydrogels composed by biocompatible molecules are formulated and characterized. They are based on a polymer network formed by hydrophobically modified chitosans (HMCHIT or CnCHIT) in which vesicles of monoolein (MO) and oleic acid or sodium oleate (NaO), depending on pH, are embedded. The best conditions for gel formation, in terms of pH, length of the hydrophobic moieties of chitosan, and weight proportion among the three components were estimated by visual inspection of a large number of samples. Among all possible combinations, the system C12CHIT-MO-NaO in the weight proportion (1:1:1) is optimal for the formation of a well-structured gel-like system, which is also confirmed by rheological experiments. Electron paramagnetic resonance (EPR) measurements unambiguously show the presence of lipid bilayers in this mixture, indicating that MO-NaO vesicles are stabilized by C12CHIT even at acid pH. A wide small angle neutron scattering investigation performed on several ternary systems of general formula CnCHIT-MO-NaO shows that the length of the hydrophobic tail Cn is a crucial parameter in stabilizing the polymer network in which lipid vesicles are embedded. Structural parameters for the vesicles are determined by using a multilamellar model that admits the possibility of displacement of the center of each shell. The number of shells tends to be reduced by increasing the polymer content. The thickness and the distance between consecutive lamellae are not influenced by either the polymer or MO-NaO concentration. The hydrogel presented in this work, being fully biocompatible and nanostructured, is well-suited for possible application in drug delivery.

  1. Material Tissue Interaction--From Toxicity to Tissue Regeneration.

    PubMed

    Schmalz, G; Widbiller, M; Galler, K M

    2016-01-01

    The topic of material tissue interaction has gained increasing interest over recent decades from both the dental profession and the public. The primary goal initially was to avoid adverse reactions after the application of dental materials. New laboratory test methods have been developed, and currently premarket testing programs, which attempt to guarantee a basic level of patient safety, are legally required worldwide. The dentist is responsible for selecting the correct indication as well as the proper handling of any newly emerging risk. Apart from this phenomenon-oriented "inert materials concept," the "analytical concept" focuses primarily on analyzing the reasons for adverse reactions, and identifying their associated modifying factors, in order to prevent them or to develop new and more biocompatible materials. The "concept of bioactivity" involves addressing the possibility of positively influencing tissue by materials application, such as the generation of tertiary dentin or antibacterial effects. Finally, tissue regeneration may be supported and promoted by the use of various suitable materials (matrices/scaffolds) into which stem cells can migrate or be seeded, leading to cell differentiation and the generation of new tissue. These new dental materials must also fulfill additional requirements such as controlled degradability in order to be suitable for clinical use. Clearly, the field of material tissue interaction is complex and comprises a wide range of issues. To be successful as dentists in the future, practitioners should remain informed of these important new developments and have the argumentative competence to both properly advise and treat their patients.

  2. Composite scaffolds of dicalcium phosphate anhydrate /multi-(amino acid) copolymer: in vitro degradability and osteoblast biocompatibility.

    PubMed

    Yao, Qianqian; Ye, Jun; Xu, Qian; Mo, Anchun; Gong, Ping

    2015-01-01

    This study aims to evaluate in vitro degradability and osteoblast biocompatibility of dicalcium phosphate anhydrate/multi-(amino acid) (DCPA/MAA) composites prepared by in situ polymerization method. The results revealed that the composites could be slowly degraded in PBS solution, with weight loss of 9.5 ± 0.2 wt.% compared with 12.2 ± 0.2 wt.% of MAA copolymer after eight weeks, and the changes of pH value were in the range of 7.18-7.4 and stabilized at 7.24. In addition, the compressive strength of the composite decreased from 98 to 62 MPa while that of MAA copolymer from 117 to 86 MPa. Furthermore, with non-toxicity demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assay, the addition of DCPA to the MAA copolymer evidenced an enhancement of osteoblast differentiation and attachment compared with pure MAA materials regarding to alkaline phosphatase activity as well as initial cell adhesion. The results indicated that the DCPA/MAA scaffolds with good osteoblast biocompatibility, degradability, and sufficient strength had promising potential application in bone tissue engineering.

  3. CaCO3/Tetraethylenepentamine-Graphene Hollow Microspheres as Biocompatible Bone Drug Carriers for Controlled Release.

    PubMed

    Li, Jie; Jiang, Hongkun; Ouyang, Xiao; Han, Shihui; Wang, Jun; Xie, Rui; Zhu, Wenting; Ma, Ning; Wei, Hao; Jiang, Zhongyi

    2016-11-09

    CaCO3 is one kind of important biological mineral, which widely exists in coral, shell, and other organisms. Since it is similar to bone tissue elements and has good biocompatibility, it was very suitable as a candidates for bone drug carriers. In this work, we used tetraethylenepentamine-graphene (rGO-TEPA) sheet matrices induction of CaCO3 mineralization and successfully constructed CaCO3/rGO-TEPA drug carriers with a hollow structure and rough surface. As potential drug carriers, doxorubicin (DOX) loading and release measurements were carried out. It showed that load efficiency was 94.7% and the release efficiencies were 13.8% and 91.7% at values of pH 7.4 and 5.0. The as-prepared drug carriers showed some appealing advantages, such as the pH-sensitive release characteristics and mild storage-release behaviors. The excellent biocompatibility and nontoxicity of CaCO3/rGO-TEPA hybrid microspheres were tested by the cell viability of mouse preosteoblast cells (MC3T3-E1). And cytotoxicity with human osteosarcoma cells (MG-63) was carried out to demonstrate the drug release effect in the cells system. Therefore, the CaCO3/rGO-TEPA hybrid microspheres would be a competitive alternative in bone drug carriers.

  4. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    PubMed

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2014-09-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration.

  5. Toward a selective, sensitive, fast-responsive, and biocompatible two-photon probe for hydrogen sulfide in live cells.

    PubMed

    Singha, Subhankar; Kim, Dokyoung; Moon, Hyunsoo; Wang, Taejun; Kim, Ki Hean; Shin, Youn Ho; Jung, Junyang; Seo, Eunseok; Lee, Sang-Joon; Ahn, Kyo Han

    2015-01-20

    Hydrogen sulfide has emerged as an exciting endogenous gasotransmitter in addition to nitric oxide and carbon dioxide. Noninvasive detection methods for hydrogen sulfide thus become indispensable tools for studying its diverse roles in biological systems. Accordingly, fluorescent probes for hydrogen sulfide have received great attention in recent years. A practically useful fluorescent probe for bioimaging of hydrogen sulfide should be selective, sensitive, fast-responsive, biocompatible, observable in the biological optical window, and capable of deep-tissue imaging. These sensing properties, however, are extremely difficult to achieve at the same time. Disclosed here is the two-photon fluorescent probe that meets all of these criteria. The probe belongs to a Michael acceptor system, which raised a serious selectivity issue over the competing biothiols such as cysteine and glutathione. We have addressed the selectivity issue by optimizing the electronic and steric interactions between biothiols and the probe, in addition to achieving very high sensitivity, fast-response, and biocompatibility. Also, the sensing mechanism suggested in the literature was revised. The probe thus enables us to image the endogenously produced hydrogen sulfide with negligible interference from other biothiols in live cells. The excellent sensing properties of the probe combined with its capability of bioimaging thus make it a practically useful tool for further studying biological roles of hydrogen sulfide.

  6. Chitosan–cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility

    PubMed Central

    Harkins, April L.; Duri, Simon; Kloth, Luther C.; Tran, Chieu D.

    2014-01-01

    Chitosan (CS), a polysaccharide derived from chitin, the second most abundant polysaccharide, is widely used in the medical world because of its natural and nontoxic properties and its innate ability for antibacterial and hemostasis effects. In this study, the novel composites containing CS and cellulose (CEL) (i.e., [CEL + CS]), which we have previously synthesized using a green and totally recyclable method, were investigated for their antimicrobial activity, absorption of anticoagulated whole blood, anti-inflammatory activity through the reduction of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the biocompatibility with human fibroblasts. The [CEL + CS] composites were found to inhibit the growth of both Gram positive and negative microorganisms. For examples, the regenerated 100% lyophilized chitosan material was found to reduce growth of Escherichia coli (ATCC 8739 and vancomycin resistant Enterococcus faecalis (ATCC 51299) by 78, 36, and 64%, respectively. The composites are nontoxic to fibroblasts; that is, fibroblasts, which are critical to the formation of connective tissue matrix were found to grow and proliferate in the presence of the composites. They effectively absorb blood, and at the same rate and volume as commercially available wound dressings. The composites, in both air-dried and lyophilized forms, significantly inhibit the production of TNF-α and IL-6 by stimulated macrophages. These results clearly indicate that the biodegradable, biocompatible and nontoxic [CEL + CS] composites, particularly those dried by lyophilizing, can be effectively used as a material in wound dressings. PMID:24407857

  7. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water.

    PubMed

    Yu, Lin; Zhang, Zheng; Zhang, Huan; Ding, Jiandong

    2010-08-09

    This study examines in vitro and in vivo biodegradation and biocompatibility of a thermogelling polymeric material, which we call a mixture hydrogel. The mixture contains two ABA-type triblock copolymers poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(d,l-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) with different block ratios, and one polymer is soluble in water, but the other is not. The aqueous solutions of some mixtures with appropriate mix ratios form hydrogels at the body temperature. The degradation of mixture hydrogels proceeded by hydrolysis of ester bonds followed by the erosion of gel in phosphate saline buffer solution at 37 degrees C for nearly one month. The mass loss and reduction of molecular weight were detected. The mix ratio was found to significantly influence the degradation profiles. The rapid in vivo gel formation was confirmed after subcutaneous injection of the thermogelling copolymer mixtures into Sprague-Dawley rats. The in vivo degradation was a bit accelerated than in vitro hydrolysis, and the persistence time of injected hydrogels in vivo was found to be tuned by mix ratio. MTT assay and histological observations were used to examine the copolymer mixtures. Both in vitro and in vivo results illustrate acceptable biocompatibility of our materials. As such, the thermosensitive hydrogel of copolymer mixture is confirmed to be a promising candidate of an injectable biomaterial for drug delivery and tissue engineering.

  8. Enhanced biocompatibility and adhesive properties by aromatic amino acid-modified allyl 2-cyanoacrylate-based bio-glue.

    PubMed

    Lim, Jin Ik; Lee, Woo-Kul

    2014-10-01

    Cyanoacrylates have numerous advantages, including that they can be applied quickly during first aid and can provide good cosmetic outcomes, but they also have limitations in that they have a low bond strength and local tissue toxicity. Consequently, they are primarily used only in urgent applications. To improve both the biocompatibility and the mechanical properties of cyanoacrylate, allyl 2-cyanoacrylate (AC) was prepolymerized and mixed with a dopamine co-initiator. Various properties of prepolymerized AC (PAC)/dopamine mixtures were tested using mouse fibroblast cell (L-929), including their bond strength, setting time, crystallization intensity, and cytotoxicity. Enhanced mechanical properties and biocompatibility were confirmed, and a cytotoxicity test was used to determine the optimal conditions for prepolymerization of AC to be 130°C for 60min. A combination of 5mg of dopamine in 5ml of PAC achieved a high bond strength with cytotoxicity of the dopamine/PAC at approximately 1.5 times lower than that of PAC. These results indicate that dopamine/PAC materials can be extensively used as advanced bio-glues in various applications.

  9. Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility.

    PubMed

    Harkins, April L; Duri, Simon; Kloth, Luther C; Tran, Chieu D

    2014-08-01

    Chitosan (CS), a polysaccharide derived from chitin, the second most abundant polysaccharide, is widely used in the medical world because of its natural and nontoxic properties and its innate ability for antibacterial and hemostasis effects. In this study, the novel composites containing CS and cellulose (CEL) (i.e., [CEL + CS]), which we have previously synthesized using a green and totally recyclable method, were investigated for their antimicrobial activity, absorption of anticoagulated whole blood, anti-inflammatory activity through the reduction of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the biocompatibility with human fibroblasts. The [CEL + CS] composites were found to inhibit the growth of both Gram positive and negative micro-organisms. For examples, the regenerated 100% lyophilized chitosan material was found to reduce growth of Escherichia coli (ATCC 8739 and vancomycin resistant Enterococcus faecalis (ATCC 51299) by 78, 36, and 64%, respectively. The composites are nontoxic to fibroblasts; that is, fibroblasts, which are critical to the formation of connective tissue matrix were found to grow and proliferate in the presence of the composites. They effectively absorb blood, and at the same rate and volume as commercially available wound dressings. The composites, in both air-dried and lyophilized forms, significantly inhibit the production of TNF-α and IL-6 by stimulated macrophages. These results clearly indicate that the biodegradable, biocompatible and nontoxic [CEL + CS] composites, particularly those dried by lyophilizing, can be effectively used as a material in wound dressings.

  10. Development and characterization of a family of shape memory, biocompatible, degradable, porous (co)-polyurethanes via sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Lippincott, Hugh Walker

    In support of the goal of a tissue engineering scaffold that is moldable, biodegradable and has shape-memory, this work explored the space of polyurethane sol-gel formulations and solvents to create a biocompatible, porous xerogel with potential to be such a porous scaffold. The work has resulted in both a process and a sol-gel formulation to effectively create a family of degradable, biocompatible, shape memory, porous, block copolyurethane xerogels from polycaprolactone and castor oil. Formulations of the sol-gel family of potential scaffolds were characterized for their biocompatibility, hydrolytic degradability, porosity, and shape memory. Of the scaffolds tested in this fashion, the most successful supported the attachment and growth of 3T3 fibroblast cells at 72% of the rate of attachment and growth in the standard tissue culture plastic Petri dishes. A method was developed and explained that selects the solvent for creation of a porous xerogel by controlling the phase separation of the polymerizing polyurethane from the reaction solution. This method uses standard polymer solvent swelling and extraction test data. Solvent solutions plotted in the 3-D space of Hansen solubility parameters were used to select solvents that produced porous xerogels from two different polyurethane sol-gel formulations. The process effectively combines a set of methods that search the sol-gel formulation spaces for both shape-memory and porosity. Easily produced dense xerogels from trial sol-gel formulations are sufficient for DSC and initial DMA shape-memory test data, as well as standard solvent swelling and extraction test data to support the search for shape memory and the computation of rankings to select solvent(s) that is most likely to produce a porous xerogel. Accelerated degradation tests on the dense xerogels also produced results useful to guide further testing of the sol-gel formulations. Standard shape-memory research testing only characterizes the free return to

  11. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  12. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.

    PubMed

    Occhetta, Paola; Visone, Roberta; Russo, Laura; Cipolla, Laura; Moretti, Matteo; Rasponi, Marco

    2015-06-01

    The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications.

  13. Isocyanate-functional adhesives for biomedical applications. Biocompatibility and feasibility study for vascular closure applications.

    PubMed

    Hadba, Ahmad R; Belcheva, Nadya; Jones, Fatima; Abuzaina, Ferass; Calabrese, Allison; Kapiamba, Mbiya; Skalla, Walter; Taylor, Jack L; Rodeheaver, George; Kennedy, John

    2011-10-01

    Biodegradable isocyanate-functional adhesives based on poly(ethylene glycol)-adipic acid esters were synthesized, characterized, and evaluated in vitro and in vivo. Two types of formulations, P2TT and P2MT, were developed by functionalization with 2,4-tolylene diisocyanate (TDI) or 4,4'-methylene-bis(phenyl isocyanate) (MDI), respectively, and branching with 1,1,1-trimethylolpropane (TMP). The biocompatibility of the synthesized adhesive formulations was evaluated as per ISO 10993. Cytotoxicity, systemic toxicity, pyrogenicity, genotoxicity (reverse mutation of Salmonella typhimurium and Escherichia coli), hemolysis, intracutaneous reactivity, and delayed-type hypersensitivity were evaluated. All formulations met the requirements of the conducted standard tests. The biological behavior and ability of the adhesive formulations to close an arteriotomy and withstand arterial pressure following partial approximation with a single suture were evaluated in a rat abdominal aorta model. Animals were evaluated at 1, 2, 3, and 4 weeks after surgery. Macroscopic and histopathologic evaluation of explanted arteries suggested that the P2TT formulation had better in vivo performance than the P2MT formulation. Additionally, the P2TT formulation resulted in less tissue reaction than P2MT formulation. To our knowledge, this is the first study demonstrating the potential of this new class of isocyanate-functional degradable adhesives for vascular applications.

  14. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals.

    PubMed

    Li, Chuan; Zhang, Jia; Zu, Yu-Jiao; Nie, Shu-Fang; Cao, Jun; Wang, Qian; Nie, Shao-Ping; Deng, Ze-Yuan; Xie, Ming-Yong; Wang, Shu

    2015-09-01

    Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer.

  15. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials.

    PubMed

    Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2016-01-01

    Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications.

  16. Histological biocompatibility of a stainless steel miniature glaucoma drainage device in humans: a case report.

    PubMed

    De Feo, Fabio; Jacobson, Stewart; Nyska, Abraham; Pagani, Paola; Traverso, Carlo Enrico

    2009-06-01

    The purpose of this study was to evaluate the histological biocompatibility of a stainless steel miniature glaucoma drainage device. Twenty-four months before death due to heart failure, this seventy-three-year-old female patient underwent filtration surgery for primary open-angle glaucoma uncontrolled in the right eye. The device was implanted at the limbus under a scleral flap. For histopathological evaluation, two corneoscleral specimens were embedded in methacrylate blocks sectioned to a thickness of 50 microns, polished and stained with periodic acid schiff. Some sections included a longitudinal cross-section of the implant. At the interface between the spur and the flange of the device and the cornea, there was a small shoulder of fibrous tissue. A thin, fibrous capsule covered the remainder of the body of the device up to the distal tip. No inflammatory cells occurred within the fibrous capsule. No material or blockage was noted within the lumen. Our results support the biological inertness of the device.

  17. Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility.

    PubMed

    Müller, Rainer; Abke, Jochen; Schnell, Edith; Macionczyk, Frank; Gbureck, Uwe; Mehrl, Robert; Ruszczak, Zbigniev; Kujat, Richard; Englert, Carsten; Nerlich, Michael; Angele, Peter

    2005-12-01

    It was shown recently that the deposition of thin films of tantalum and tantalum oxide enhanced the long-term biocompatibility of stainless steel biomaterials due to an increase in their corrosion resistance. In this study, we used this tantalum oxide coating as a basis for covalent immobilization of a collagen layer, which should result in a further improvement of implant tissue integration. Because of the high degradation rate of natural collagen in vivo, covalent immobilization as well as carbodiimide induced cross-linking of the protein was performed. It was found that the combination of the silane-coupling agent aminopropyl triethoxysilane and the linker molecule N,N'-disulphosuccinimidyl suberate was a very effective system for collagen immobilizing. Mechanical and enzymatic stability testing revealed a higher stability of covalent bound collagen layers compared to physically adsorbed collagen layers. The biological response induced by the surface modifications was evaluated by in vitro cell culture with human mesenchymal stem cells as well as by in vivo subcutaneous implantation into nude mice. The presence of collagen clearly improved the cytocompatibility of the stainless steel implants which, nevertheless, significantly depended on the cross-linking degree of the collagen layer.

  18. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    PubMed Central

    Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2016-01-01

    Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. PMID:27226713

  19. The Biocompatibility of Degradable Magnesium Interference Screws: An Experimental Study with Sheep

    PubMed Central

    Thormann, Ulrich; Alt, Volker; Heimann, Lydia; Gasquere, Cyrille; Heiss, Christian; Szalay, Gabor; Franke, Jörg; Schnettler, Reinhard; Lips, Katrin Susanne

    2015-01-01

    Screws for ligament reconstruction are nowadays mostly made of poly-L-lactide (PLLA). However, magnesium-based biomaterials are gathering increased interest in this research field because of their good mechanical property and osteoanabolic influence on bone metabolism. The aim of this pilot study was to evaluate the biocompatibility of an interference screw for ligament reconstruction made of magnesium alloy W4 by diecasting and milling and using different PEO-coatings with calcium phosphates. PLLA and titanium screws were used as control samples. The screws were implanted in the femur condyle of the hind leg of a merino sheep. The observation period was six and twelve weeks and one year. Histomorphometric, immunohistochemical, immunofluorescence, and molecular biological evaluation were conducted. Further TEM analysis was done. In all magnesium screws a clinically relevant gas formation in the vicinity of the biomaterial was observed. Except for the PLLA and titanium control samples, no screw was fully integrated in the surrounding bone tissue. Regarding the fabrication process, milling seems to produce less gas liberation and has a better influence on bone metabolism than diecasting. Coating by PEO with calcium phosphates could not reduce the initial gas liberation but rather reduced the bone metabolism in the vicinity of the biomaterial. PMID:25717474

  20. Biocompatibility of a porous alumina ceramic scaffold coated with hydroxyapatite and bioglass.

    PubMed

    Kido, Hueliton Wilian; Ribeiro, Daniel Araki; de Oliveira, Poliani; Parizotto, Nivaldo Antônio; Camilo, Claudia Cristiane; Fortulan, Carlos Alberto; Marcantonio, Elcio; da Silva, Victor Hugo Pereira; Renno, Ana Claudia Muniz

    2014-07-01

    This study aimed to evaluate the osteointegration and genotoxic potential of a bioactive scaffold, composed of alumina and coated with hydroxyapatite and bioglass, after their implantation in tibias of rats. For this purpose, Wistar rats underwent surgery to induce a tibial bone defect, which was filled with the bioactive scaffolds. Histology analysis (descriptive and morphometry) of the bone tissue and the single-cell gel assay (comet) in multiple organs (blood, liver, and kidney) were used to reach this aim after a period of 30, 60, 90, and 180 days of material implantation. The main findings showed that the incorporation of hydroxyapatite and bioglass in the alumina scaffolds produced a suitable environment for bone ingrowth in the tibial defects and did not demonstrate any genotoxicity in the organs evaluated in all experimental periods. These results clearly indicate that the bioactive scaffolds used in this study present osteogenic potential and still exhibit local and systemic biocompatibility. These findings are promising once they convey important information about the behavior of this novel biomaterial in biological system and highlight its possible clinical application.

  1. Photochemically-assisted synthesis of non-toxic and biocompatible gold nanoparticles.

    PubMed

    Teixeira, Priscila R; Santos, Mayara S C; Silva, Ana Luísa G; Báo, Sônia N; Azevedo, Ricardo B; Sales, Maria José A; Paterno, Leonardo G

    2016-12-01

    This contribution describes the photochemically-assisted synthesis of aqueous colloidal suspensions of non-toxic and biocompatible spherical gold nanoparticles stabilized by branched polyethylenimine, or else Au-np-PEI. The method consists on 30min of photoexcitation (254nm, 16W) at room temperature of an aqueous diluted solution of chloroauric acid (HAuCl4) containing PEI. While the UV irradiation forms the [Au((3+))Cl4(-)]* excited species that succesively transforms into zero valent Au, PEI controls the nucleation step of nanoparticles formation. Varying the PEI to Au molar ratio permits one to tune the size of nanoparticles between 100nm to 8nm. The obtained colloidal suspensions display an intense plasmonic absorption band at 520-530nm and positive zeta potentials greater than +20mV. The cells viability for in vitro tests performed with human connective tissues and human breast adenocarcinoma (MCF-7) cell lines is over 80% and 90%, respectively, when they are incubated with Au-np-PEI formulations (25μgmL(-1)). The present photochemically-assisted synthesis is advantageous because it is fast and does not require for either hazardous or cytotoxic reductant agents and additional purification procedures.

  2. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets.

    PubMed

    Guzman, Rodrigo; Fernandez-García, Elisa; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Lopez-Lacomba, Jose Luis; Lopez-Esteban, Sonia

    2016-01-01

    Alumina-titanium materials (cermets) of enhanced mechanical properties have been lately developed. In this work, physical properties such as electrical conductivity and the crystalline phases in the bulk material are evaluated. As these new cermets manufactured by spark plasma sintering may have potential application for hard tissue replacements, their biocompatibility needs to be evaluated. Thus, this research aims to study the cytocompatibility of a novel alumina-titanium (25 vol. % Ti) cermet compared to its pure counterpart, the spark plasma sintered alumina. The influence of the particular surface properties (chemical composition, roughness and wettability) on the pre-osteoblastic cell response is also analyzed. The material electrical resistance revealed that this cermet may be machined to any shape by electroerosion. The investigated specimens had a slightly undulated topography, with a roughness pattern that had similar morphology in all orientations (isotropic roughness) and a sub-micrometric average roughness. Differences in skewness that implied valley-like structures in the cermet and predominance of peaks in alumina were found. The cermet presented a higher surface hydrophilicity than alumina. Any cytotoxicity risk associated with the new materials or with the innovative manufacturing methodology was rejected. Proliferation and early-differentiation stages of osteoblasts were statistically improved on the composite. Thus, our results suggest that this new multifunctional cermet could improve current alumina-based biomedical devices for applications such as hip joint replacements.

  3. Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane

    PubMed Central

    Qu, Yili; Wang, Ping; Man, Yi; Li, Yubao; Zuo, Yi; Li, Jidong

    2010-01-01

    Nano-hydroxyapatite/polyamide 66 (nHA/PA66) composite with good bioactivity and osteoconductivity was employed to develop a novel porous membrane with asymmetric structure for guided bone regeneration (GBR). In order to test material cytotoxicity and to investigate surface-dependent responses of bone-forming cells, the morphology, proliferation, and cell cycle of bone marrow stromal cells (BMSCs) of rats cultured on the prepared membrane were determined. The polygonal and fusiform shape of BMSCs was observed by scanning electronic microscopy (SEM). The proliferation of BMSCs cultured on nHA/PA66 membrane tested by the MTT method (MTT: [3-{4,5-dimethylthiazol-2yl}-2,5-diphenyl-2H-tetrazoliumbromide]) was higher than that of negative control groups for 1 and 4 days’ incubation and had no significant difference for 7 and 11 days’ culture. The results of cell cycle also suggested that the membrane has no negative influence on cell division. The nHA/PA66 membranes were then implanted into subcutaneous sites of nine Sprague Dawley rats. The wounds and implant sites were free from suppuration and necrosis in all periods. All nHA/PA66 membranes were surrounded by a fibrous capsule with decreasing thickness 1 to 8 weeks postoperatively. In conclusion, the results of the in vitro and in vivo studies reveal that nHA/PA66 membrane has excellent biocompatibility and indicate its use in guided tissue regeneration (GTR) or GBR. PMID:20957164

  4. Cyanoacrylate medical glue application in intervertebral disc annulus defect repair: Mechanical and biocompatible evaluation.

    PubMed

    Kang, Ran; Li, Haisheng; Lysdahl, Helle; Quang Svend Le, Dang; Chen, Menglin; Xie, Lin; Bünger, Cody

    2017-01-01

    In an attempt to find an ideal closure method during annulus defect repair, we evaluate the use of medical glue by mechanical and biocompatible test. Cyanoacrylate medical glue was applied together with a multilayer microfiber/nanofiber polycaprolactone scaffold and suture in annulus repair. Continuous axial loading and fatigue mechanical test was performed. Furthermore, the in vitro response of mesenchymal stem cell (MSC) to the glue was evaluated by cell viability assay. The in vivo response of annulus tissue to the glue and scaffold was also studied in porcine lumbar spine; histological sections were evaluated after 3 months. Cyanoacrylate glue significantly improved the closure effect in the experimental group with failure load 2825.7 ± 941.6 N, compared to 774.1 ± 281.3 N in the control group without glue application (p < 0.01). The experimental group also withstood the fatigue test. No toxic effect was observed by in vitro cell culture and in vivo implantation. On the basis of this initial evaluation, the use of cyanoacrylate medical glue improves closure effect with no toxicity in annulus defect repair. This method of annulus repair merits further effectiveness study in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 14-20, 2017.

  5. Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Lee, Deuk Yong; Kim, Tae-Hyung; Song, Yo-Seung; Cho, Nam-Ihn

    2014-05-01

    Hyaluronic acid hydrogels (HAHs) were synthesized by immersing HA microbeads crosslinked with divinyl sulfone in a phosphate buffered saline solution to evaluate the biocompatibility of the gels by means of cytotoxicity, genotoxicity ( in vitro chromosome aberration test, reverse mutation assay, and in vivo micronucleus test), skin sensitization, and intradermal reactivity. The HAHs induced no cytotoxicity or genotoxicity. In guinea pigs treated with grafts and prostheses, no animals died and there were no abnormal clinical signs. The sensitization scores were zero in all guinea pigs after 24 h and 48 h challenge, suggesting that the HAHs had no contact allergic sensitization in the guinea pig maximization test. No abnormal signs were found in New Zealand White rabbits during the 72 h observation period after the injection. There was no difference between the HAHs and negative control mean scores because skin reaction such as erythema or oedema was not observed after injection. Experimental results suggest that the HAHs would be suitable for soft tissue augmentation due to the absence of cytotoxicity, genotoxicity, skin sensitization, and intradermal reactivity.

  6. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating.

    PubMed

    Chen, X B; Nisbet, D R; Li, R W; Smith, P N; Abbott, T B; Easton, M A; Zhang, D-H; Birbilis, N

    2014-03-01

    A simple strontium phosphate (SrP) conversion coating process was developed to protect magnesium (Mg) from the initial degradation post-implantation. The coating morphology, deposition rate and resultant phases are all dependent on the processing temperature, which determines the protective ability for Mg in minimum essential medium (MEM). Coatings produced at 80 °C are primarily made up of strontium apatite (SrAp) with a granular surface, a high degree of crystallinity and the highest protective ability, which arises from retarding anodic dissolution of Mg in MEM. Following 14 days' immersion in MEM, the SrAp coating maintained its integrity with only a small fraction of the surface corroded. The post-degradation effect of uncoated Mg and Mg coated at 40 and 80 °C on the proliferation and differentiation of human mesenchymal stem cells was also studied, revealing that the SrP coatings are biocompatible and permit proliferation to a level similar to that of pure Mg. The present study suggests that the SrP conversion coating is a promising option for controlling the early rapid degradation rate, and hence hydrogen gas evolution, of Mg implants without adverse effects on surrounding cells and tissues.

  7. In vivo biocompatibility of custom-fabricated apatite-wollastonite-mesenchymal stromal cell constructs.

    PubMed

    Lee, Jennifer A; Knight, Charlotte A; Kun, Xiao; Yang, Xuebin B; Wood, David J; Dalgarno, Kenneth W; Genever, Paul G

    2015-10-01

    We have used the additive manufacturing technology of selective laser sintering (SLS), together with post SLS heat treatment, to produce porous three dimensional scaffolds from the glass-ceramic apatite-wollastonite (A-W). The A-W scaffolds were custom-designed to incorporate a cylindrical central channel to increase cell penetration and medium flow to the center of the scaffolds under dynamic culture conditions during in vitro testing and subsequent in vivo implantation. The scaffolds were seeded with human bone marrow mesenchymal stromal cells (MSCs) and cultured in spinner flasks. Using confocal and scanning electron microscopy, we demonstrated that MSCs formed and maintained a confluent layer of viable cells on all surfaces of the A-W scaffolds during dynamic culture. MSC-seeded, with and without osteogenic pre-differentiation, and unseeded A-W scaffolds were implanted subcutaneously in MF1 nude mice where osteoid formation and tissue in-growth were observed following histological assessment. The results demonstrate that the in vivo biocompatibility and osteo-supportive capacity of A-W scaffolds can be enhanced by SLS-custom design, without the requirement for osteogenic pre-induction, to advance their potential as patient-specific bone replacement materials.

  8. Biocompatibility and characteristics of chitosan/cellulose acetate microspheres for drug delivery

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Zhou, Dong-Ju; Zhang, Wei-Fen; Jiang, Ling-Juan; Li, Jun-Bo; Chen, Xi-Guang

    2011-12-01

    In this work, chitosan/cellulose acetate microspheres (CCAM) were prepared by the method of W/O/W emulsion with no toxic reagents. The microspheres were spherical, free flowing, and non-aggregated, which had a narrow size distribution. More than 90% of the microspheres had the diameter ranging from 200 to 280 μm. The hemolytic analysis indicated that CCAM was safe and had no hemolytic effect. The implanted CCAM did not produce any significant changes in the hematology of Sprague-Dawley (SD) rats, such as white blood cell, red blood cell, platelet, and the volume of hemoglobin. In addition, the levels of serum alanine aminotransferase, blood urea nitrogen, and creatinine had no obvious changes in SD rats implanted with CCAM, surger thread, or normal SD rats without any implantation. Thus, the CCAM had good blood compatibility and had no hepatotoxicity or renal toxicity to SD rats. Furthermore, CCAM with or without the model drug had good tissue compatibility with respect to the inflammatory reaction in SD rats and showed no significant difference from that of SD rats implanted with surgery thread. CCAM shows promise as a long-acting delivery system, which had good biocompatibility and biodegradability.

  9. Biocompatibility of Tungsten Disulfide Inorganic Nanotubes and Fullerene-Like Nanoparticles with Salivary Gland Cells

    PubMed Central

    Goldman, Elisheva B.; Zak, Alla; Tenne, Reshef; Kartvelishvily, Elena; Levin-Zaidman, Smadar; Neumann, Yoav; Stiubea-Cohen, Raluca; Palmon, Aaron; Hovav, Avi-Hai

    2015-01-01

    Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles. PMID:25366879

  10. The Influence of Surface Roughness on Biocompatibility and Fatigue Life of Titanium Based Alloys

    NASA Astrophysics Data System (ADS)

    Major, S.; Cyrus, P.; Hubálovská, M.

    2017-02-01

    This article deals with the effect of treatment on the mechanical properties ofbiocompatible alloys. In the case of implants, it is desirable to ensure good biocompatibility. Generally, the environment in the body is very aggressive and implants can quickly degrade due the corrosion. The process of corrosion leads to the release of harmful particles into the body. Other reasons for rejection of the implants, is their coverage bacterial plaque. Another reason for the rejection of the implant may be a smooth surface. In some cases, the tissue does not adhere to the smooth surface of the implant, in this regionsoccurs an accumulation of body fluids. This problem can be solved with a rough surface. From the viewpoint of fatigue resistance, the rough surface containing grooves and holes has a negative influence on the fatigue resistance against mechanical loading. The rough surface can be produced by machining or asymmetric deposition of particles of oxides, nitrides or other particles on surface. In this work the formation and propagation of fatigue cracks in the material with granular surface is analysed. The formation and growth of fatigue crack originated from granular surface is simulated. Also, experimental studies were carried out.

  11. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  12. A novel albumin-based tissue scaffold for autogenic tissue engineering applications.

    PubMed

    Li, Pei-Shan; Lee, I-Liang; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-18

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  13. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    PubMed Central

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-01-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes. PMID:25034369

  14. Development and testing of new biologically-based polymers as advanced biocompatible contact lenses

    SciTech Connect

    Bertozzi, Carolyn R.

    2000-06-01

    Nature has evolved complex and elegant materials well suited to fulfill a myriad of functions. Lubricants, structural scaffolds and protective sheaths can all be found in nature, and these provide a rich source of inspiration for the rational design of materials for biomedical applications. Many biological materials are based in some fashion on hydrogels, the crosslinked polymers that absorb and hold water. Biological hydrogels contribute to processes as diverse as mineral nucleation during bone growth and protection and hydration of the cell surface. The carbohydrate layer that coats all living cells, often referred to as the glycocalyx, has hydrogel-like properties that keep cell surfaces well hydrated, segregated from neighboring cells, and resistant to non-specific protein deposition. With the molecular details of cell surface carbohydrates now in hand, adaptation of these structural motifs to synthetic materials is an appealing strategy for improving biocompatibility. The goal of this collaborative project between Prof. Bertozzi's research group, the Center for Advanced Materials at Lawrence Berkeley National Laboratory and Sunsoft Corporation was the design, synthesis and characterization of novel hydrogel polymers for improved soft contact lens materials. Our efforts were motivated by the urgent need for improved materials that allow extended wear, and essential feature for those whose occupation requires the use of contact lenses rather than traditional spectacles. Our strategy was to transplant the chemical features of cell surface molecules into contact lens materials so that they more closely resemble the tissue in which they reside. Specifically, we integrated carbohydrate molecules similar to those found on cell surfaces, and sulfoxide materials inspired by the properties of the carbohydrates, into hydrogels composed of biocompatible and manufacturable substrates. The new materials were characterized with respect to surface and bulk hydrophilicity, and

  15. Carbon Nanostructures in Bone Tissue Engineering

    PubMed Central

    Perkins, Brian Lee; Naderi, Naghmeh

    2016-01-01

    Background: Recent advances in developing biocompatible materials for treating bone loss or defects have dramatically changed clinicians’ reconstructive armory. Current clinically available reconstructive options have certain advantages, but also several drawbacks that prevent them from gaining universal acceptance. A wide range of synthetic and natural biomaterials is being used to develop tissue-engineered bone. Many of these materials are currently in the clinical trial stage. Methods: A selective literature review was performed for carbon nanostructure composites in bone tissue engineering. Results: Incorporation of carbon nanostructures significantly improves the mechanical properties of various biomaterials to mimic that of natural bone. Recently, carbon-modified biomaterials for bone tissue engineering have been extensively investigated to potentially revolutionize biomaterials for bone regeneration. Conclusion: This review summarizes the chemical and biophysical properties of carbon nanostructures and discusses their functionality in bone tissue regeneration. PMID:28217212

  16. Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility

    PubMed Central

    Anderson, James M.

    2016-01-01

    As the science and engineering of biomaterials continues to expand with increased emphasis on the development of nanomaterials and tissue engineering scaffolds, emphasis also must be placed on appropriate and adequate approaches to the in vivo and in vitro evaluation of biomaterial biocompatibility/biological response evaluation. This article presents six topic areas that should be addressed by investigators as they move forward in the development of new systems for regenerative medicine. Most certainly, there are other areas that require attention to detail and a more complete understanding of the strengths and weaknesses of various experimental approaches to biomaterial/biological response evaluation. The small number of issues addressed in this article is only meant to bring to the attention of prospective investigators and authors, the importance of the development of adequate and appropriate evaluation techniques that address the unique features of biomaterials utilized in the development of new medical devices. PMID:27047672

  17. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys.

    PubMed

    da Silva, Luciano Monteiro; Claro, Ana Paula Rosifini Alves; Donato, Tatiani Ayako Goto; Arana-Chavez, Victor E; Moraes, João Carlos Silos; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto

    2011-05-01

    The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys. This article presents the effect of heat treatment and oxygen doping in some mechanical properties and the biocompatibility of three alloys of the Ti-Nb system, characterized by density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, in vitro cytotoxicity, and mechanical spectroscopy.

  18. In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings

    PubMed Central

    Vladescu, Alina; Titorencu, Irina; Dekhtyar, Yuri; Jinga, Victor; Pruna, Vasile; Balaceanu, Mihai; Dinu, Mihaela; Pana, Iulian; Vendina, Viktorija

    2016-01-01

    In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings’ surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating. PMID:27571361

  19. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.

    PubMed

    Xie, Lu; Yu, Haiyang; Yang, Weizhong; Zhu, Zhuoli; Yue, Li

    2016-01-01

    Biodegradable and bioactive scaffolds with interconnected macroporous structures, suitable biodegradability, adequate mechanical property, and excellent biocompatibility have drawn increasing attention in bone tissue engineering. Hence, in this work, porous hydroxyapatite whisker-reinforced poly(L-lactide) (HA-w/PLLA) composite scaffolds with different ratios of HA and PLLA were successfully developed through compression molding and particle leaching. The microstructure, in vitro mineralization, cytocompatibility, hemocompatibility, and in vivo biocompatibility of the porous HA-w/PLLA were investigated for the first time. The SEM results revealed that these HA-w/PLLA scaffolds possessed interconnected pore structures. Compared with porous HA powder-reinforced PLLA (HA-p/PLLA) scaffolds, HA-w/PLLA scaffolds exhibited better mechanical property and in vitro bioactivity, as more formation of bone-like apatite layers were induced on these scaffolds after mineralization in SBF. Importantly, in vitro cytotoxicity displayed that porous HA-w/PLLA scaffold with HA/PLLA ratio of 1:1 (HA-w1/PLLA1) produced no deleterious effect on human mesenchymal stem cells (hMSCs), and cells performed elevated cell proliferation, indicating a good cytocompatibility. Simultaneously, well-behaved hemocompatibility and favorable in vivo biocompatibility determined from acute toxicity test and histological evaluation were also found in the porous HA-w1/PLLA1 scaffold. These findings may provide new prospects for utilizing the porous HA whisker-based biodegradable scaffolds in bone repair, replacement, and augmentation applications.

  20. Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model

    PubMed Central

    Sun, Kwang-Hsiao; Liu, Zhao; Liu, Changjian; Yu, Tong; Shang, Tao; Huang, Chen; Zhou, Min; Liu, Cheng; Ran, Feng; Li, Yun; Shi, Yi; Pan, Lijia

    2016-01-01

    Recent advances in understanding the interaction between electricity and cells/biomolecules have generated great interest in developing biocompatible electrically conductive materials. In this study, we investigated the biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel using in vitro and in vivo experiments in a rat model. The polyaniline hydrogel was used to coat a polycaprolactone scaffold and was cultured with rat endothelial progenitor cells differentiated from rat adipose-derived stem cells. Compared with the control sample on a pristine polycaprolactone scaffold, the treated polyaniline hydrogel had the same non-poisonous/cytotoxicity grade, enhanced cell adhesion, and a higher cell proliferation/growth rate. In implant studies, the polyaniline hydrogel sample induced milder inflammatory responses than did the control at the same time points. Combining the advantages of a biocompatible hydrogel and an organic conductor, the inositol phosphate-gelated polyaniline hydrogel could be used in bioelectronics applications such as biosensors, neural probes, cell stimulators, medical electrodes, tissue engineering, and electro-controlled drug delivery. PMID:27073144

  1. Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model

    NASA Astrophysics Data System (ADS)

    Sun, Kwang-Hsiao; Liu, Zhao; Liu, Changjian; Yu, Tong; Shang, Tao; Huang, Chen; Zhou, Min; Liu, Cheng; Ran, Feng; Li, Yun; Shi, Yi; Pan, Lijia

    2016-04-01

    Recent advances in understanding the interaction between electricity and cells/biomolecules have generated great interest in developing biocompatible electrically conductive materials. In this study, we investigated the biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel using in vitro and in vivo experiments in a rat model. The polyaniline hydrogel was used to coat a polycaprolactone scaffold and was cultured with rat endothelial progenitor cells differentiated from rat adipose-derived stem cells. Compared with the control sample on a pristine polycaprolactone scaffold, the treated polyaniline hydrogel had the same non-poisonous/cytotoxicity grade, enhanced cell adhesion, and a higher cell proliferation/growth rate. In implant studies, the polyaniline hydrogel sample induced milder inflammatory responses than did the control at the same time points. Combining the advantages of a biocompatible hydrogel and an organic conductor, the inositol phosphate-gelated polyaniline hydrogel could be used in bioelectronics applications such as biosensors, neural probes, cell stimulators, medical electrodes, tissue engineering, and electro-controlled drug delivery.

  2. Biocompatible Green and Red Fluorescent Organic Dots with Remarkably Large Two-Photon Action Cross Sections for Targeted Cellular Imaging and Real-Time Intravital Blood Vascular Visualization.

    PubMed

    Xiang, Jiayun; Cai, Xiaolei; Lou, Xiaoding; Feng, Guangxue; Min, Xuehong; Luo, Wenwen; He, Bairong; Goh, Chi Ching; Ng, Lai Guan; Zhou, Jian; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong

    2015-07-15

    Fluorescent organic dots are emerging as promising bioimaging reagents because of their high brightness, good photostability, excellent biocompatibility, and facile surface functionalization. Organic dots with large two-photon absorption (TPA) cross sections are highly desired for two-photon fluorescence microscopy. In this work, we report two biocompatible and photostable organic dots fabricated by encapsulating tetraphenylethene derivatives within DSPE-PEG matrix. The two organic dots show absorption maxima at 425 and 483 nm and emit green and red fluorescence at 560 and 645 nm, with high fluorescence quantum yields of 64% and 22%, respectively. Both organic dots exhibit excellent TPA property in the range of 800-960 nm, affording upon excitation at 820 nm remarkably large TPA cross sections of 1.2×10(6) and 2.5×10(6) GM on the basis of dot concentration. The bare fluorophores and their organic dots are biocompatible and have been used to stain living cells for one- and two-photon fluorescence bioimagings. The cRGD-modified organic dots can selectively target integrin αvβ3 overexpressing breast cancer cells for targeted imaging. The organic dots are also applied for real-time two-photon fluorescence in vivo visualization of the blood vasculature of mouse ear, providing the spatiotemporal information about the whole blood vascular network. These results demonstrate that the present fluorescent organic dots are promising candidates for living cell and tissue imaging.

  3. Myocardial tissue engineering using electrospun nanofiber composites

    PubMed Central

    Kim, Pyung-Hwan; Cho, Je-Yoel

    2016-01-01

    Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36] PMID:26497579

  4. Characterization, physicochemical properties and biocompatibility of La-incorporated apatites.

    PubMed

    Guo, D G; Wang, A H; Han, Y; Xu, K W

    2009-11-01

    In this study, the physicochemical properties and biocompatibilities of La-containing apatites were intensively investigated together with their characterizations in terms of composition, structure, valent state and morphology using X-ray diffraction, Fourier-transform infrared spectra, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. The results indicate that the La(3+) ion can be incorporated into the crystal lattice of hydroxyapatite resulting in the production of La-incorporated apatites (La(x)Ca(10-x)(PO(4))(6)(OH)(2+x-2y)O(y square y-x) (x> or =0.5, y<1+x/2) or La(x)Ca(10-x)(PO(4))(6)O(y square y-x) (0.5biocompatibilities of the La-incorporated apatites. In contrast to La-free apatite, La-incorporated apatites possess a series of attractive properties, including higher thermal stability, higher flexural strength, lower dissolution rate, larger alkaline phosphatase activity, preferable osteoblast morphology and comparable cytotoxicity. In particular, the sintered La-incorporated apatite block achieves a maximal flexure strength of 66.69+/-0.98 MPa at 5% La content (confidence coefficient 0.95), increased 320% in comparison with the La-free apatite. The present study suggests that the La-incorporated apatite possesses application potential in developing a new type of bioactive coating material for metal implants and also as a promising La carrier for further exploring the beneficial functions of La in the human body.

  5. Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films

    SciTech Connect

    Coll Ferrer, M. Carme; Eckmann, Uriel N.; Composto, Russell J.; Eckmann, David M.

    2013-11-01

    In previous work, we developed novel antibacterial hybrid coatings based on dextran containing dispersed Ag NPs (∼ 5 nm, DEX-Ag) aimed to offer dual protection against two of the most common complications associated with implant surgery, infections and rejection of the implant. However, their blood-material interactions are unknown. In this study, we assess the hemocompatibility and biocompatibility of DEX-Ag using fresh blood and two cell lines of the immune system, monocytes (THP-1 cells) and macrophages (PMA-stimulated THP-1 cells). Glass, polyurethane (PU) and bare dextran (DEX) were used as reference surfaces. PU, DEX and DEX-Ag exhibited non-hemolytic properties. Relative to glass (100%), platelet attachment on PU, DEX and DEX-Ag was 15%, 10% and 34%, respectively. Further, we assessed cell morphology and viability, pro-inflammatory cytokines expression (TNF-α and IL-1β), pro-inflammatory eicosanoid expression (Prostaglandin E{sub 2}, PGE{sub 2}) and release of reactive oxygen species (ROS, superoxide and H{sub 2}O{sub 2}) following incubation of the cells with the surfaces. The morphology and cell viability of THP-1 cells were not affected by DEX-Ag whereas DEX-Ag minimized spreading of PMA-stimulated THP-1 cells and caused a reduction in cell viability (16% relative to other surfaces). Although DEX-Ag slightly enhanced release of ROS, the expression of pro-inflammatory cytokines remained minimal with similar levels of PGE{sub 2}, as compared to the other surfaces studied. These results highlight low toxicity of DEX-Ag and hold promise for future applications in vivo. - Highlights: • We examined specific blood-contact reactions of dextran doped with Ag NPs coatings. • Biocompatibility was assessed with THP-1 cells and PMA-stimulated THP-1 cells. • Glass, polyurethane and dextran were used as reference surfaces. • Hybrid coatings exhibited non-hemolytic properties. • Low toxicity, inflammatory response and ROS suggest potential for in vivo use.

  6. Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging.

    PubMed

    Naczynski, Dominik J; Andelman, Tamar; Pal, David; Chen, Suzie; Riman, Richard E; Roth, Charles M; Moghe, Prabhas V

    2010-08-02

    The use of traditional fluorophores for in vivo imaging applications is limited by poor quantum yield, poor tissue penetration of the excitation light, and excessive tissue autofluorescence, while the use of inorganic fluorescent particles that offer a high quantum yield is frequently limited due to particle toxicity. Rare-earth-doped nanoparticles that utilize near-infrared upconversion overcome the optical limitations of traditional fluorophores, but are not typically suitable for biological application due to their insolubility in aqueous solution, lack of functional surface groups for conjugation of biomolecules, and potential cytotoxicity. A new approach to establish highly biocompatible and biologically targetable nanoshell complexes of luminescent rare-earth-doped NaYF(4) nanoparticles (REs) excitable with 920-980 nm near-infrared light for biomedical imaging applications is reported. The approach involves the encapsulation of NaYF(4) nanoparticles doped with Yb and Er within human serum albumin nanoshells to create water-dispersible, biologically functionalizable composite particles. These particles exhibit narrow size distributions around 200 nm and are stable in aqueous solution for over 4 weeks. The albumin shell confers cytoprotection and significantly enhances the biocompatibility of REs even at concentrations above 200 microg REs mL(-1). Composite particles conjugated with cyclic arginine-glycine-aspartic acid (cRGD) specifically target both human glioblastoma cell lines and melanoma cells expressing alpha(v)beta(3) integrin receptors. These findings highlight the promise of albumin-encapsulated rare-earth nanoparticles for imaging cancer cells in vitro and the potential for targeted imaging of disease sites in vivo.

  7. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    NASA Astrophysics Data System (ADS)

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-06-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.

  8. A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration

    NASA Astrophysics Data System (ADS)

    Raspa, A.; Marchini, A.; Pugliese, R.; Mauri, M.; Maleki, M.; Vasita, R.; Gelain, F.

    2015-12-01

    The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an effective therapy will require contribution of different disciplines such as materials science, cell biology, drug delivery and nanotechnology. One of the biggest challenges in SCI regeneration is to create an artificial scaffold that could mimic the extracellular matrix (ECM) and support nervous system regeneration. Electrospun constructs and hydrogels based on self-assembling peptides (SAPs) have been recently preferred. In this work SAPs and polymers were assembled by using a coaxial electrospinning setup. We tested the biocompatibility of two types of coaxially electrospun microchannels: the first one made by a core of poly(ε-caprolactone) and poly(d,l-lactide-co-glycolide) (PCL-PLGA) and a shell of an emulsion of PCL-PLGA and a functionalized self-assembling peptide Ac-FAQ and the second one made by a core of Ac-FAQ and a shell of PCL-PLGA. Moreover, we tested an annealed scaffold by PCL-PLGA microchannel heat-treatment. The properties of coaxial scaffolds were analyzed using scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), contact angle measurements and differential scanning calorimetry (DSC). In vitro cytotoxicity was assessed via viability and differentiation assays with neural stem cells (NSCs); whereas in vivo inflammatory response was evaluated following scaffold implantation in rodent spinal cords. Emulsification of the outer shell turned out to be the best choice in terms of cell viability and tissue response: thus suggesting the potential of using functionalized SAPs in coaxial electrospinning for applications in regenerative medicine.The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an

  9. Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review.

    PubMed

    Qazi, Taimoor H; Rai, Ranjana; Boccaccini, Aldo R

    2014-11-01

    Conducting polymers have found numerous applications as biomaterial components serving to effectively deliver electrical signals from an external source to the seeded cells. Several cell types including cardiomyocytes, neurons, and osteoblasts respond to electrical signals by improving their functional outcomes. Although a wide variety of conducting polymers are available, polyaniline (PANI) has emerged as a popular choice due to its attractive properties such as ease of synthesis, tunable conductivity, environmental stability, and biocompatibility. PANI in its pure form has exhibited biocompatibility both in vitro and in vivo, and has been combined with a host of biodegradable polymers to form composites having a range of mechanical, electrical, and surface properties. Moreover, recent studies in literature report on the functionalization of polyaniline oligomers with end segments that make it biodegradable and improve its biocompatibility, two properties which make these materials highly desirable for applications in tissue engineering. This review will discuss the features and properties of PANI based composites that make them effective biomaterials, and it provides a comprehensive summary of studies where the use of PANI as a biomaterial component has enhanced cellular function and behavior. We also discuss recent studies utilizing functionalized PANI oligomers, and conclude that electroactive PANI and its derivatives show great promise in eliciting favorable responses from various cell lines that respond to electrical stimuli, and are therefore effective biomaterials for the engineering of electrically responsive biological tissues and organs.

  10. Facile synthesis, silanization, and biodistribution of biocompatible quantum dots.

    PubMed

    Ma, Nan; Marshall, Ann F; Gambhir, Sanjiv S; Rao, Jianghong

    2010-07-19

    A facile strategy for the synthesis of silica-coated quantum dots (QDs) for in vivo imaging is reported. All the QD synthesis and silanization steps are conducted in water and methanol under mild conditions without involving any organometallic precursors or high-temperature, oxygen-free environments. The as-prepared silica-coated QDs possess high quantum yields and are extremely stable in mouse serum. In addition, the silanization method developed here produces nanoparticles with small sizes that are difficult to achieve via conventional silanization methods. The silica coating helps to prevent the exposure of the QD surface to the biological milieu and therefore increases the biocompatibility of QDs for in vivo applications. Interestingly, the silica-coated QDs exhibit a different biodistribution pattern from that of commercially available Invitrogen QD605 (carboxylate) with a similar size and emission wavelength. The Invitrogen QD605 exhibits predominant liver (57.2% injected dose (ID) g(-1)) and spleen (46.1% ID g(-1)) uptakes 30 min after intravenous injection, whereas the silica-coated QDs exhibit much lower liver (16.2% ID g(-1)) and spleen (3.67% ID g(-1)) uptakes but higher kidney uptake (8.82% ID g(-1)), blood retention (15.0% ID g(-1)), and partial renal clearance. Overall, this straightforward synthetic strategy paves the way for routine and customized synthesis of silica-coated QDs for biological use.

  11. Mimicking Neural Stem Cell Niche by Biocompatible Substrates

    PubMed Central

    Regalado-Santiago, Citlalli; Juárez-Aguilar, Enrique; Olivares-Hernández, Juan David; Tamariz, Elisa

    2016-01-01

    Neural stem cells (NSCs) participate in the maintenance, repair, and regeneration of the central nervous system. During development, the primary NSCs are distributed along the ventricular zone of the neural tube, while, in adults, NSCs are mainly restricted to the subependymal layer of the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus. The circumscribed areas where the NSCs are located contain the secreted proteins and extracellular matrix components that conform their niche. The interplay among the niche elements and NSCs determines the balance between stemness and differentiation, quiescence, and proliferation. The understanding of niche characteristics and how they regulate NSCs activity is critical to building in vitro models that include the relevant components of the in vivo niche and to developing neuroregenerative approaches that consider the extracellular environment of NSCs. This review aims to examine both the current knowledge on neurogenic niche and how it is being used to develop biocompatible substrates for the in vitro and in vivo mimicking of extracellular NSCs conditions. PMID:26880934

  12. Piper betle-mediated green synthesis of biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Punuri, Jayasekhar Babu; Sharma, Pragya; Sibyala, Saranya; Tamuli, Ranjan; Bora, Utpal

    2012-08-01

    Here, we report the novel use of the ethonolic leaf extract of Piper betle for gold nanoparticle (AuNP) synthesis. The successful formation of AuNPs was confirmed by UV-visible spectroscopy, and different parameters such as leaf extract concentration (2%), gold salt concentration (0.5 mM), and time (18 s) were optimized. The synthesized AuNPs were characterized with different biophysical techniques such as transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). TEM experiments showed that nanoparticles were of various shapes and sizes ranging from 10 to 35 nm. FT-IR spectroscopy revealed that AuNPs were functionalized with biomolecules that have primary amine group -NH2, carbonyl group, -OH groups, and other stabilizing functional groups. EDX showed the presence of the elements on the surface of the AuNPs. FT-IR and EDX together confirmed the presence of biomolecules bounded on the AuNPs. Cytotoxicity of the AuNPs was tested on HeLa and MCF-7 cancer cell lines, and they were found to be nontoxic, indicating their biocompatibility. Thus, synthesized AuNPs have potential for use in various biomedical applications.

  13. Low-cost and biocompatible long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Soto-Olmos, Jorge A.; Oropeza-Ramos, Laura; Hernández-Cordero, Juan

    2011-09-01

    In this paper, a low-cost long-period fiber grating (LPFG) induced by a polymeric microstructure is demonstrated. LPFGs are induced on a tapered optical fiber (TOF) when a periodic micro-grating comes into contact with the thin region of the fiber. The micro-grating device is made using polydimethylsiloxane (PDMS), an inexpensive, nontoxic and optically transparent polymer that is extensively used in microfluidics, organic electronics and biotechnological applications. Soft lithography, along with molds built from thermoplastic polystyrene sheets, makes the fabrication straightforward and extremely low-cost. Additionally, no precision machining is necessary and the resolution of the microstructures is limited only by the resolution of the laser printer used for patterning the polystyrene sheets. The TOF and the micro-grating were dimensionally characterized using optical microscopy and white light interferometry, respectively. Variations on the optical spectrum due to pressure and temperature were observed and their magnitudes were similar to those obtained using metallic microstructures. Thus, LPFGs can be made in an inexpensive and expeditious way using PDMS and TOFs. These polymeric devices can be integrated into microfluidic and other labon- a-chip systems where biocompatibility is a valuable characteristic.

  14. Reinforcement of bacterial cellulose aerogels with biocompatible polymers

    PubMed Central

    Pircher, N.; Veigel, S.; Aigner, N.; Nedelec, J.M.; Rosenau, T.; Liebner, F.

    2014-01-01

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77 K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. PMID:25037381

  15. Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes

    PubMed Central

    Guo, Chuan Fei; Liu, Qihan; Wang, Guohui; Wang, Yecheng; Shi, Zhengzheng; Suo, Zhigang; Chu, Ching-Wu; Ren, Zhifeng

    2015-01-01

    Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics. PMID:26392537

  16. Facile Synthesis, Silanization and Biodistribution of Biocompatible Quantum Dots

    PubMed Central

    Ma, Nan; Marshall, Ann F.; Gambhir, Sanjiv S.

    2016-01-01

    Here we report a facile strategy to the synthesis of silica-coated quantum dots (QDs) for in vivo imaging. All the QD synthesis and silanization steps are conducted in water and methanol under mild conditions without involving any organometallic precursors and high temperature, oxygen-free environments. The as-prepared silica-coated QDs possess high quantum yields and are extremely stable in mouse serum. In addition, the silanization method developed here produces nanoparticles (NPs) with small sizes that are difficult to achieve via conventional silanization methods. The silica coating helps to prevent the exposure of QD surface to the biological milieu and therefore increases the biocompatibility of QDs for in vivo applications. Interestingly, the silica-coated QDs exhibit a different biodistribution pattern than commercially available Invitrogen QD605 (carboxylate) with a similar size and emission wavelength. The Invitrogen QD605 exhibited predominant liver (57.2% ID g-1) and spleen (46.1% ID g-1) uptakes 30 mins after intravenous injection, whereas the silica-coated QDs exhibited much lower liver (16.2% ID g-1) and spleen (3.67% ID g-1) uptakes but higher kidney uptake (8.82% ID g-1), blood retention (15.0% ID g-1) and partial renal clearance. Overall, this straightforward synthetic strategy paves the way for routine and customized synthesis of silica-coated QDs for biological use. PMID:20564726

  17. Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes.

    PubMed

    Guo, Chuan Fei; Liu, Qihan; Wang, Guohui; Wang, Yecheng; Shi, Zhengzheng; Suo, Zhigang; Chu, Ching-Wu; Ren, Zhifeng

    2015-10-06

    Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics.

  18. Highly fluorescent and biocompatible iridium nanoclusters for cellular imaging.

    PubMed

    Vankayala, Raviraj; Gollavelli, Ganesh; Mandal, Badal Kumar

    2013-08-01

    Highly fluorescent iridium nanoclusters were synthesized and investigated its application as a potential intracellular marker. The iridium nanoclusters were prepared with an average size of ~2 nm. Further, these nanoclusters were refluxed with aromatic ligands, such as 2,2'-binaphthol (BINOL) in order to obtain fluorescence properties. The photophysical properties of these bluish-green emitting iridium nanoclusters were well characterized by using UV-Visible, fluorescence and lifetime decay measurements. The emission spectrum for these nanoclusters exhibit three characteristic peaks at 449, 480 and 515 nm. The fluorescence quantum yield of BINOL-Ir NCs were estimated to be 0.36 and the molar extinction co-efficients were in the order of 10(6) M(-1)cm(-1). In vitro cytotoxicity studies in HeLa cells reveal that iridium nanoclusters exhibited good biocompatibility with an IC50 value of ~100 μg/ml and also showed excellent co-localization and distribution throughout the cytoplasm region without entering into the nucleus. This research has opened a new window in developing the iridium nanoparticle based intracellular fluorescent markers and has wide scope to act as biomedical nanocarrier to carry many biological molecules and anticancer drugs.

  19. Biocompatibility of electrospun human albumin: a pilot study.

    PubMed

    Noszczyk, B H; Kowalczyk, T; Łyżniak, M; Zembrzycki, K; Mikułowski, G; Wysocki, J; Kawiak, J; Pojda, Z

    2015-03-02

    Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures.

  20. Biocompatible glass-ceramic materials for bone substitution.

    PubMed

    Vitale-Brovarone, Chiara; Verné, Enrica; Robiglio, Lorenza; Martinasso, Germana; Canuto, Rosa A; Muzio, Giuliana

    2008-01-01

    A new bioactive glass composition (CEL2) in the SiO(2)-P(2)O(5)-CaO-MgO-K(2)O-Na(2)O system was tailored to control pH variations due to ion leaching phenomena when the glass is in contact with physiological fluids. CEL2 was prepared by a traditional melting-quenching process obtaining slices that were heat-treated to obtain a glass-ceramic material (CEL2GC) that was characterized thorough SEM analysis. Pre-treatment of CEL2GC with SBF was found to enhance its biocompatibility, as assessed by in vitro tests. CEL2 powder was then used to synthesize macroporous glass-ceramic scaffolds. To this end, CEL2 powders were mixed with polyethylene particles within the 300-600 microm size-range and then pressed to obtain crack-free compacted powders (green). This was heat-treated to remove the organic phase and to sinter the inorganic phase, leaving a porous structure. The biomaterial thus obtained was characterized by X-ray diffraction, SEM equipped with EDS, density measurement, image analysis, mechanical testing and in vitro evaluation, and found to be a glass-ceramic macroporous scaffold with uniformly distributed and highly interconnected porosity. The extent and size-range of the porosity can be tailored by varying the amount and size of the polyethylene particles.

  1. Biocompatibility Evaluation of Nanosecond Laser Treated Titanium Surfaces

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Mizutani, Masayoshi; Ohmori, Hitoshi; Komotori, Jun

    We developed surface modification technologies for dental implants in this study. The study contributes to shortening the time required for adhesion between alveolar bone and fixtures which consist of dental implants. A Nd:YVO4 nanosecond laser was used to modify the surfaces of commercially pure titanium (CP Ti) disks, and their biocompatibility was evaluated cytocompatibility and bioactivity. First, rows of 200 µm spaced rectilinear laser treatments were performed on surfaces of CP Ti disks. Osteoblasts derived from rat mesenchymal stem cells were then cultured on the treated surfaces. Cytocompatibility on the laser treated area was evaluated by observing adhesion behavior of cells on these surfaces. The results indicated that the micro-order structure formed by the laser treatment promoted adhesion of osteoblasts and that traces of laser treatment without microstucture didn't affect the adhesion. Second, surfaces of CP Ti disks were completely covered by traces of laser treatment, which created complex microstructures of titania whose crystal structure is rutile and anatase. This phenomenon allowed the creation of hydroxyapatite on the surface of the disks in 1.5-times simulated body fluid (1.5SBF) while no hydroxyapatite was observed on conventional polished surfaces in the same conditions. This result indicates that bioactivity was enabled on CP Ti by the laser treatment. From these two results, laser treatment for CP Ti surfaces is an effective method for enhancing adhesion of osteoblasts and promoting bioactivity, which are highly appreciated properties for dental implants.

  2. Spheroid model study comparing the biocompatibility of Biodentine and MTA.

    PubMed

    Pérard, Matthieu; Le Clerc, Justine; Watrin, Tanguy; Meary, Fleur; Pérez, Fabienne; Tricot-Doleux, Sylvie; Pellen-Mussi, Pascal

    2013-06-01

    The primary objective of this study was to assess the biological effects of a new dentine substitute based on Ca₃SiO₅ (Biodentine™) for use in pulp-capping treatment, on pseudo-odontoblastic (MDPC-23) and pulp (Od-21) cells. The secondary objective was to evaluate the effects of Biodentine and mineral trioxide aggregate (MTA) on gene expression in cultured spheroids. We used the acid phosphatase assay to compare the biocompatibility of Biodentine and MTA. Cell differentiation was investigated by RT-qPCR. We investigated the expression of genes involved in odontogenic differentiation (Runx2), matrix secretion (Col1a1, Spp1) and mineralisation (Alp). ANOVA and PLSD tests were used for data analysis. MDPC-23 cells cultured in the presence of MTA had higher levels of viability than those cultured in the presence of Biodentine and control cells on day 7 (P = 0.0065 and P = 0.0126, respectively). For Od-21 cells, proliferation rates on day 7 were significantly lower in the presence of Biodentine or MTA than for control (P < 0.0001). Col1a1 expression levels were slightly lower in cells cultured in the presence of MTA than in those cultured in the presence of Biodentine and in control cells. Biodentine and MTA may modify the proliferation of pulp cell lines. Their effects may fluctuate over time, depending on the cell line considered. The observed similarity between Biodentine and MTA validates the indication for direct pulp-capping claimed by the manufacturers.

  3. Biocompatibility of new Ti-Nb-Ta base alloys.

    PubMed

    Hussein, Abdelrahman H; Gepreel, Mohamed A-H; Gouda, Mohamed K; Hefnawy, Ahmad M; Kandil, Sherif H

    2016-04-01

    β-type titanium alloys are promising materials in the field of medical implants. The effect of β-phase stability on the mechanical properties, corrosion resistance and cytotoxicity of a newly designed β-type (Ti77Nb17Ta6) biocompatible alloys are studied. The β-phase stability was controlled by the addition of small quantities of Fe and O. X-ray diffraction and microstructural analysis showed that the addition of O and Fe stabilized the β-phase in the treated solution condition. The strength and hardness have increased with the increase in β-phase stability while ductility and Young's modulus have decreased. The potentio-dynamic polarization tests showed that the corrosion resistance of the new alloys is better than Ti-6Al-4V alloy by at least ten times. Neutral red uptake assay cytotoxicity test showed cell viability of at least 95%. The new alloys are promising candidates for biomedical applications due to their high mechanical properties, corrosion resistance, and reduced cytotoxicity.

  4. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    NASA Astrophysics Data System (ADS)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S. V.; Ganesan, V.; Kulkarni, Anjali

    2013-12-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle-RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml-1) as compared to neat RIF (125 μg ml-1). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle-RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml-1, respectively. Further studies are underway to determine the efficacy of NPs-RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates.

  5. Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahamed, Maqusood; Majeed Khan, M. A.; Siddiqui, M. K. J.; AlSalhi, Mohamad S.; Alrokayan, Salman A.

    2011-04-01

    Although green synthesis of silver nanoparticles (Ag NPs) by various plants and microorganisms has been reported, the potential of plants as biological materials for the synthesis of nanoparticles and their compatibility to biological systems is yet to be fully explored. In this study, we report a simple green method for the synthesis of Ag NPs using garlic clove extract as a reducing and stabilizing agent. In addition to green synthesis, biological response of Ag NPs in human lung epithelial A549 cells was also assessed. Ag NPs were rapidly synthesized using garlic clove extract and the formation of nanoparticles was observed within 30 min. The green synthesized Ag NPs were characterized using UV-vis spectrum, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray energy-dispersive spectroscopy (EDX) and dynamic light scattering (DLS). Characterization data demonstrated that the particles were crystalline in nature and spherical shaped with an average diameter of 12 nm. Measurements of cell viability, cell membrane integrity and intracellular production of reactive oxygen species have shown that the green synthesized Ag NPs were nontoxic to human lung epithelial A549 cells. This study demonstrated a simple, cost-effective and environmentally benign synthesis of Ag NPs with excellent biocompatibility to human lung epithelial A549 cells. This preliminary in vitro investigation needs to be followed up by future studies with various biological systems.

  6. Biocompatibility of a Self-Assembled Crosslinkable Hyaluronic Acid Nanogel.

    PubMed

    Pedrosa, Sílvia Santos; Pereira, Paula; Correia, Alexandra; Moreira, Susana; Rocha, Hugo; Gama, Francisco Miguel

    2016-11-01

    Hyaluronic acid nanogel (HyA-AT) is a redox sensitive crosslinkable nanogel, obtained through the conjugation of a thiolated hydrophobic molecule to the hyaluronic acid chain. Engineered nanogel was studied for its biocompatibility, including immunocompatibility and hemocompatability. The nanogel did not compromise the metabolic activity or cellular membrane integrity of 3T3, microvascular endothelial cells, and RAW 264.7 cell lines, as determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase release assays. Also, we didn't observe any apoptotic effect on these cell lines through the Annexin V-FITC test. Furthermore, the nanogel cell internalization was analyzed using murine bone marrow derived macrophages, and the in vivo and ex vivo biodistribution of the Cy5.5 labeled nanogel was monitored using a non-invasive near-infrared fluorescence imaging system. The HyA-AT nanogel exhibits fairly a long half-live in the blood stream, thus showing potential for drug delivery applications.

  7. Ocular biocompatibility of polyquaternium 10 gel: functional and morphological results.

    PubMed

    Alasino, Roxana Valeria; Garcia, Luciana Guadalupe; Gramajo, Ana Laura; Pusterla, Juan Pablo; Beltramo, Dante Miguel; Luna, José Domingo

    2015-02-01

    This paper deals with the characterization study of topical and intraocular biocompatibility and toxicity of cationic hydroxyethylcellulose Polyquaternium 10 (PQ10). It also evaluates the rheological properties of gels. The cytotoxicity assays were done in two cell lines: HEp-2 and VERO (human larynx epidermoid carcinoma cell and African green monkey kidney cells respectively). For the in vivo study, New Zealand albino rabbits were used. The in vitro cytotoxic activity of PQ10 shows no statistically significant differences in relation to the control of hydroxypropylmethylcellulose (HPMC) in any of the cell lines used in this study. Similarly, the signs of inflammation observed after treatment showed no significant difference between the groups of animals treated with the polymer compared to the control group. Normal histological characteristics were seen in both groups with no histological inflammatory reaction. After 1 month of the intracameral application of 2% PQ10 (treatment group) or 0.3% HPMC (control group), electroretinograms showed similar levels of a- and b-waves latencies and amplitude. In summary, PQ10 gel was well tolerated in these experiments, with proper monitoring, it could stand as a new alternative in the development of ophthalmic viscosurgical devices.

  8. The biocompatibility evaluation of mPEG-PLGA-PLL copolymer and different LA/GA ratio effects for biocompatibility.

    PubMed

    He, Zelai; Wang, Qi; Sun, Ying; Shen, Ming; Zhu, Mingjie; Gu, Malin; Wang, Yi; Duan, Yourong

    2014-01-01

    Biomaterial poly(lactic-co-glycolic acid) (PLGA), a FDA-approved material for clinical application, showed broad prospects in the past, but gradually can no longer meet present clinical developments and requirements, which we synthesized monomethoxy(polyethylene glycol)-poly(D,L-lactic-co-glycolic acid)-poly(L-lysine) (mPEG-PLGA-PLL) (PEAL) and have had some relevant reports. But studies on biocompatibility and the impacts of LA and GA ratio (LA/GA=60/40, 70/30, and 80/20) in main material have not yet been reported. Hemolysis experiment indicates that the hemolysis rate of PEAL extraction medium is less than 5%. Whole blood clotting time (CT), plasma recalcification time, activated partial thromboplastin time, prothrombin time evaluations, and dynamic CT assay show that the anticoagulant time of PEAL copolymer for blood is longer than that under negative and positive control. Protein adsorption assay indicates that PEAL films adsorb less protein than PLGA films (p<0.01); but comparing with expanded polytetrafluoroethylene, the aforementioned difference is not significant (p>0.05). Complement activation test shows that PEAL surface does not induce complement activation. CCK8 measurement shows that the relative growth rates of Huh7, L02, and L929 cells co-incubated with PEAL nanoparticles (NPs) are more than 90%. PEAL NPs co-incubated with 5% foetal bovine serum or 2% bovine serum albumin, through dynamic light scattering assay, remain stable. Different concentrations of PEAL NPs co-incubated with zebrafish embryos at 6-72 h post fertilization show that comparing with negative control, 10, 100, or 500 μM of NPs for embryos development has no significant effects (p>0.05), only 1000 or 2000 μM of NPs has some effects (p<0.05). It is concluded that the PEAL copolymer, with excellent biocompatibility, proves to be a high-safety dose as drug carrier and implant candidate in vivo.

  9. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering

    PubMed Central

    Annabi, Nasim; Nichol, Jason W.; Zhong, Xia; Ji, Chengdong; Koshy, Sandeep; Khademhosseini, Ali

    2010-01-01

    Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques. PMID:20121414

  10. The use of nanoscaffolds and dendrimers in tissue engineering.

    PubMed

    Gorain, Bapi; Tekade, Muktika; Kesharwani, Prashant; Iyer, Arun K; Kalia, Kiran; Tekade, Rakesh Kumar

    2017-02-20

    To avoid tissue rejection during organ transplantation, research has focused on the use of tissue engineering to regenerate required tissues or organs for patients. The biomedical applications of hyperbranched, multivalent, structurally uniform, biocompatible dendrimers in tissue engineering include the mimicking of natural extracellular matrices (ECMs) in the 3D microenvironment. Dendrimers are unimolecular architects that can incorporate a variety of biological and/or chemical substances in a 3D architecture to actively support the scaffold microenvironment during cell growth. Here, we review the use of dendritic delivery systems in tissue engineering. We discuss the available literature, highlighting the 3D architecture and preparation of these nanoscaffolds, and also review challenges to, and advances in, the use dendrimers in tissue engineering. Advances in the manufacturing of dendritic nanoparticles and scaffold architectures have resulted in the successful incorporation of dendritic scaffolds in tissue engineering.

  11. Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties.

    PubMed

    Ullm, Sandra; Krüger, Anne; Tondera, Christoph; Gebauer, Tim P; Neffe, Axel T; Lendlein, Andreas; Jung, Friedrich; Pietzsch, Jens

    2014-12-01

    Hydrogels prepared from gelatin and lysine diisocyanate ethyl ester provide tailorable elastic properties and degradation behavior. Their interaction with human aortic endothelial cells (HAEC) as well as human macrophages (Mɸ) and granulocytes (Gɸ) were explored. The experiments revealed a good biocompatibility, appropriate cell adhesion, and cell infiltration. Direct contact to hydrogels, but not contact to hydrolytic or enzymatic hydrogel degradation products, resulted in enhanced cyclooxygenase-2 (COX-2) expression in all cell types, indicating a weak inflammatory activation in vitro. Only Mɸ altered their cytokine secretion profile after direct hydrogel contact, indicating a comparably pronounced inflammatory activation. On the other hand, in HAEC the expression of tight junction proteins, as well as cytokine and matrix metalloproteinase secretion were not influenced by the hydrogels, suggesting a maintained endothelial cell function. This was in line with the finding that in HAEC increased thrombomodulin synthesis but no thrombomodulin membrane shedding occurred. First in vivo data obtained after subcutaneous implantation of the materials in immunocompetent mice revealed good integration of implants in the surrounding tissue, no progredient fibrous capsule formation, and no inflammatory tissue reaction in vivo. Overall, the study demonstrates the potential of gelatin-based hydrogels for temporal replacement and functional regeneration of damaged soft tissue.

  12. Evaluation of Biocompatibility of an Etch-and-Rinse Adhesive System Based in Tertiary Butanol Applied in Deep Cavity

    PubMed Central

    Alves, Gilvanely Cardoso; Sobral, Ana Paula Veras

    2015-01-01

    The aim of this study was to evaluate biocompatibility of an etch-and-rinse adhesive system based in tertiary butanol applied in deep cavity human teeth with approximately 1 mm of remaining dentin by observing histological changes of the pulp tissue of humans at intervals of 01, 07, 14 and 21 days. Twenty third molars with indication for xtraction from patients of both sexes, presenting no systemic alterations were used. Class I cavity was made deeper and then, XP BOND adhesive system and resin Filtek Z250 were applied. The sample was divided into four groups according to the time intervals between the application of adhesive system and extraction. Morphologic criteria analysed considered the presence of hyperemia, type of inflammatory cell response, organization of odontoblast cells layer, organization of pulp tissue and the presence or absence of bacteria. Data were submitted to Fisher Exact Test p> 0.05. We observed mild inflammatory infiltrate, preserved pulp tissue morphology, disorganization of the odontoblast layer in most specimens, as well as absence of bacteria at the intervals of 01, 07, 14 and 21 days. In some cases there was pulp hyperemia. The etchand- rinse adhesive system based in tertiary butanol showed satisfactory behavior in the conditions studied. PMID:26140062

  13. Science and technology of biocompatible thin films for implantable biomedical devices.

    PubMed

    Li, Wei; Kabius, Bernd; Auciello, Orlando

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: 1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye)-the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and 2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human bodynovel Al2O3/TiO2 nanolaminates exhibit abnormally high dielectric constant to enable super-capacitors with very high-capacitance.

  14. Superior SWNT dispersion by amino acid based amphiphiles: designing biocompatible cationic nanohybrids.

    PubMed

    Brahmachari, Sayanti; Das, Dibyendu; Das, Prasanta Kumar

    2010-11-28

    Stable aqueous SWNT dispersion up to 92% was achieved using amino acid based amphiphiles through a structure-property investigation. The nanohybrids showed remarkable serum stability and biocompatibility to mammalian cells.

  15. Effect of CO2 pulsed laser irradiation on improving the biocompatibility of a polyethersulfone film

    NASA Astrophysics Data System (ADS)

    Jelvani, S.; Pazokian, H.; Moradi Farisar, S.

    2013-02-01

    In this paper a 200 ns pulsed TEA CO2 laser is used for treatment of polyethersulfone (PES) films surface. The laser induced structures and chemical compositions on the surface upon irradiation are studied. The hydrophilicity and biocompatibility of the irradiated surfaces are examined by contact angle and platelet adhesion measurements, respectively. The optimum number of pulses and fluence for improving the surface biocompatibility are found.

  16. Biocompatibility aspects of cellophane, cellulose acetate, polyacrylonitrile, polysulfone and polycarbonate hemodialyzers.

    PubMed

    Smeby, L C; Widerøe, T E; Balstad, T; Jørstad, S

    1986-01-01

    The biocompatibility of cuprammonium rayon (Cu), cellulose acetate, polysulfone (Ps) and polyacrylonitrile hollow-fiber dialyzers and a polycarbonate-polyether flat plate dialyzer has been investigated. The Cu dialyzer resulted in more complement activation and a greater degree of leukopenia than the others, while the Ps hollow-fiber dialyzer appeared to be the most biocompatible of the membrane equipment in this study. These results were confirmed by in vitro evaluations and microscopic examinations of the different dialyzers.

  17. Tissue types (image)

    MedlinePlus

    There are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports other tissues and binds them together (bone, blood, and lymph tissues). ...

  18. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation.

    PubMed

    Inam Ul Ahad; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Korczyc, Barbara; Ciach, Tomasz; Brabazon, Dermot

    2014-09-01

    Polymeric biomaterials are being widely used for the treatment of various traumata, diseases and defects in human beings due to ease in their synthesis. As biomaterials have direct interaction with the extracellular environment in the biological world, biocompatibility is a topic of great significance. The introduction or enhancement of biocompatibility in certain polymers is still a challenge to overcome. Polymer biocompatibility can be controlled by surface modification. Various physical and chemical methods (e.g., chemical and plasma treatment, ion implantation, and ultraviolet irradiation etc.) are in use or being developed for the modification of polymer surfaces. However an important limitation in their employment is the alteration of bulk material. Different surface and bulk properties of biomaterials are often desirable for biomedical applications. Because extreme ultraviolet (EUV) radiation penetration is quite limited even in low density mediums, it could be possible to use it for surface modification without influencing the bulk material. This article reviews the degree of biocompatibility of different polymeric biomaterials being currently employed in various biomedical applications, the surface properties required to be modified for biocompatibility control, plasma and laser ablation based surface modification techniques, and research studies indicating possible use of EUV for enhancing biocompatibility.

  19. Femtosecond pulsed laser deposition of biological and biocompatible thin layers

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Kecskeméti, G.; Klini, A.; Bor, Zs.

    2007-07-01

    In our study we investigate and report the femtosecond pulsed laser deposition of biological and biocompatible materials. Teflon, polyhydroxybutyrate, polyglycolic-acid, pepsin and tooth in the form of pressed pellets were used as target materials. Thin layers were deposited using pulses from a femtosecond KrF excimer laser system (FWHM = 450 fs, λ = 248 nm, f = 10 Hz) at different fluences: 0.6, 0.9, 1.6, 2.2, 2.8 and 3.5 J/cm 2, respectively. Potassium bromide were used as substrates for diagnostic measurements of the films on a FTIR spectrometer. The pressure in the PLD chamber was 1 × 10 -3 Pa, and in the case of tooth and Teflon the substrates were heated at 250 °C. Under the optimized conditions the chemical structure of the deposited materials seemed to be largely preserved as evidenced by the corresponding IR spectra. The polyglycolic-acid films showed new spectral features indicating considerable morphological changes during PLD. Surface structure and thickness of the layers deposited on Si substrates were examined by an atomic force microscopy (AFM) and a surface profilometer. An empirical model has been elaborated for the description of the femtosecond PLD process. According to this the laser photons are absorbed in the surface layer of target resulting in chemical dissociation of molecules. The fast decomposition causes explosion-like gas expansion generating recoil forces which can tear off and accelerate solid particles. These grains containing target molecules without any chemical damages are ejected from the target and deposited onto the substrate forming a thin layer.

  20. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications.

    PubMed

    Madhumathi, K; Shalumon, K T; Rani, V V Divya; Tamura, H; Furuike, T; Selvamurugan, N; Nair, S V; Jayakumar, R

    2009-07-01

    Chitosan, a deacetylated derivative of chitin is a commonly studied biomaterial for tissue-engineering applications due to its biocompatibility, biodegradability, low toxicity, antibacterial activity, wound healing ability and haemostatic properties. However, chitosan has poor mechanical strength due to which its applications in orthopedics are limited. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has mechanical strength and osteoconductive property. In this work, HAp was deposited on the surface of chitosan hydrogel membranes by a wet chemical synthesis method by alternatively soaking the membranes in CaCl(2) (pH 7.4) and Na(2)HPO(4) solutions for different time intervals. These chitosan hydrogel-HAp membranes were characterized using SEM, AFM, EDS, FT-IR and XRD analyses. MTT assay was done to evaluate the biocompatibility of these membranes using MG-63 osteosarcoma cells. The biocompatibility studies suggest that chitosan hydrogel-HAp composite membranes can be useful for tissue-engineering applications.

  1. Evaluation of the Biocompatibility of New Fiber-Reinforced Composite Materials for Craniofacial Bone Reconstruction.

    PubMed

    Lazar, Mădălina-Anca; Rotaru, Horaţiu; Bâldea, Ioana; Boşca, Adina B; Berce, Cristian P; Prejmerean, Cristina; Prodan, Doina; Câmpian, Radu S

    2016-10-01

    This study aims to assess the biocompatibility of new advanced fiber-reinforced composites (FRC) to be used for custom-made cranial implants. Four new formulations of FRC were obtained using polymeric matrices (combinations of monomers bisphenol A glycidylmethacrylate [bis-GMA], urethane dimethacrylate [UDMA], triethylene glycol dimethacrylate [TEGDMA], hydroxyethyl methacrylate [HEMA]) and E-glass fibers (300 g/mp). Every FRC contains 65% E-glass and 35% polymeric matrix. Composition of polymeric matrices are: bis-GMA (21%), TEGDMA (14%) for FRC1; bis-GMA (21%), HEMA (14%) for FRC2; bis-GMA (3.5%), UDMA (21%), TEGDMA (10.5%) for FRC3, and bis-GMA (3.5%), UDMA (21%), HEMA (10.5%) for FRC4. Cytotoxicity test was performed on both human dental pulp stem cells and dermal fibroblasts. Viability was assessed by tetrazolium dye colorimetric assay. Subcutaneous implantation test was carried out on 40 male Wistar rats, randomly divided into 4 groups, according to the FRC tested. Each group received subcutaneous dorsal implants. After 30 days, intensity of the inflammatory reaction, tissue repair status, and presence of the capsule were the main criteria assessed. Both cell populations showed no signs of cytotoxicity following the FRC exposures. In terms of cytotoxicity, the best results were obtained by FRC3 followed by FRC2, FRC4, and FRC1. FRC3 showed also the mildest inflammatory reaction and this correlated both with the noncytotoxic behavior and the presence of a well-organized capsule. The composite biomaterials developed may constitute an optimized alternative of the similar materials used for the reconstruction of craniofacial bone defects. According to authors' studies, the authors conclude that FRC3 is the best formulation regarding the biological behavior.

  2. Biocompatibility of silver containing silica films on Bioverit® II middle ear prostheses in rabbits.

    PubMed

    Duda, Franziska; Bradel, Susanne; Bleich, André; Abendroth, Philipp; Heemeier, Tanja; Ehlert, Nina; Behrens, Peter; Esser, Karl-Heinz; Lenarz, Thomas; Brandes, Gudrun; Prenzler, Nils K

    2015-07-01

    For several centuries silver is known for its antibacterial effects. The middle ear is an interesting new scope for silver application since chronic inflammations combined with bacterial infection cause complete destruction of the fragile ossicle chain and tympanic membrane. The resulting conductive deafness requires tympanoplasty for reconstruction. Strategies to prevent bacterial growth on middle ear prostheses are highly recommended. In this study, rabbits were implanted with Bioverit® II middle ear prostheses functionalized with silver containing dense and nanoporous silica films which were compared with pure silica coatings as well as silver sulfadiazine cream applied on nanoporous silica coating. The health status of animals was continuously monitored; blood was examined before and after implantation. After 21 days, the middle ears were inspected; implants and mucosal samples were processed for electron microscopy. Autopsies were performed and systemic spreading of silver was chemically analyzed exemplarily in liver and kidneys. For verification of direct cytotoxicity, NIH 3T3 cells were cultured on similar silver containing silica coatings on glass up to 3 days. In vitro a reduced viability of fibroblasts adhering directly on the samples was detected compared to cells growing on the surrounding plastic of the same culture dish. In transmission electron microscopy, phagocytosed silver silica fragments, silver sulfadiazine cream as well as silver nanoparticles were noticed inside endosomes. In vivo, clinical and post mortem examinations were inconspicuous. Chemical analyses showed no increased silver content compared to controls. Mucosal coverages on almost all prostheses were found. But reduction of granulation tissue was only obvious around silver-coated implants. Single necroses and apoptosis in the mucosa were correlated by intracellular accumulation of metallic silver. For confirming supportive healing effects of middle ear implants, silver ion

  3. Intracranial drug-delivery scaffolds: Biocompatibility evaluation of sucrose acetate isobutyrate gels

    SciTech Connect

    Lee, James; Jallo, George I.; Penno, Margaret B.; Gabrielson, Kathleen L.; Young, G. David; Johnson, Randolph M.; Gillis, Edward M.; Rampersaud, Charles; Carson, Benjamin S.; Guarnieri, Michael . E-mail: mguarnie@jhmi.edu

    2006-08-15

    Introduction: Sucrose acetate isobutyrate (SAIB) is a water insoluble, biodegradable gel used for controlled-release oral and subcutaneous drug delivery. We investigated SAIB compatibility in the rat central nervous system (CNS) by implanting solutions of SAIB in adult and in neonatal brains. Methods: 10-15 {mu}L solutions of SAIB gels in 0-30% ethanol were injected into the cerebral cortex of adult Fischer 344 rats. Control animals were implanted with a 10 mg biodegradable poly anhydride copolymer of poly [bis (p-carboxyphenoxy) propane] anhydride and sebacic acid (PCPP:SA). Adult rats were evaluated for signs of pain and distress, including changes in posture, facial signs, and grooming behavior. 1-2 {mu}L solutions of SAIB gels in 15% ethanol were injected into brains of 12-24 h-old rats. Neonatal rats were evaluated for survival. Adult and neonatal brains were examined by histopathology 3-48 days after implant. Results: Gel implants produced elliptical compression of cortical tissue, cell loss, and inflammation. Cell loss appeared to be confined to the implantation wound and associated neuronal fields. In adult rats, neurophil compression, inflammation, and cell loss appeared similar with the 10-mg PCPP:SA implants and the 10-mg SAIB implants. There was no clinical evidence of pain or distress from SAIB implants. 1-2 {mu}L implants of SAIB-15% ethanol had no effect on survival of neonatal animals. Conclusion: Brain implants of SAIB induce a mild to moderate inflammatory response and associated neuronal cell damage. The implants appeared to be biocompatible in adult and neonatal animals. These results suggest that further studies of SAIB as an injectable drug-delivery scaffold for CNS therapeutic agents are warranted.

  4. Quantitative in vivo biocompatibility of new ultralow-nickel cobalt-chromium-molybdenum alloys.

    PubMed

    Sonofuchi, Kazuaki; Hagiwara, Yoshihiro; Koizumi, Yuichiro; Chiba, Akihiko; Kawano, Mitsuko; Nakayama, Masafumi; Ogasawara, Kouetsu; Yabe, Yutaka; Itoi, Eiji

    2016-09-01

    Nickel (Ni) eluted from metallic biomaterials is widely accepted as a major cause of allergies and inflammation. To improve the safety of cobalt-chromium-molybdenum (Co-Cr-Mo) alloy implants, new ultralow-Ni Co-Cr-Mo alloys with and without zirconium (Zr) have been developed, with Ni contents of less than 0.01%. In the present study, we investigated the biocompatibility of these new alloys in vivo by subcutaneously implanting pure Ni, conventional Co-Cr-Mo, ultralow-Ni Co-Cr-Mo, and ultralow-Ni Co-Cr-Mo with Zr wires into the dorsal sides of mice. After 3 and 7 days, tissues around the wire were excised, and inflammation; the expression of IL-1β, IL-6, and TNF-α; and Ni, Co, Cr, and Mo ion release were analyzed using histological analyses, qRT-PCR, and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Significantly larger amounts of Ni eluted from pure Ni wires than from the other wires, and the degree of inflammation depended on the amount of eluted Ni. Although no significant differences in inflammatory reactions were identified among new alloys and conventional Co-Cr-Mo alloys in histological and qRT-PCR analyses, ICP-MS analysis revealed that Ni ion elution from ultralow-Ni Co-Cr-Mo alloys with and without Zr was significantly lower than from conventional Co-Cr-Mo alloys. Our study, suggests that the present ultralow-Ni Co-Cr-Mo alloys with and without Zr have greater safety and utility than conventional Co-Cr-Mo alloys. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1505-1513, 2016.

  5. Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration.

    PubMed

    Cardoso, D Alves; van den Beucken, J J J P; Both, L L H; Bender, J; Jansen, J A; Leeuwenburgh, S C G

    2014-03-01

    An emerging approach toward development of injectable, self-setting, and fully biodegradable bone substitutes involves the combination of injectable hydrogel matrices with a dispersed phase consisting of nanosized calcium phosphate particles. Here, novel injectable composites for bone regeneration have been developed based on the combination of ultrapure alginate as the matrix phase, crystalline CaP [monetite and poorly crystalline hydroxyapatite (HA)] powders as both a dispersed mineral phase and a source of calcium for cross-linking alginate, glucono-delta-lactone (GDL) as acidifier and glycerol as both plasticizer and temporary sequestrant. The composites were maximized with respect to CaP content to obtain the highest amount of osteoconductive filler. The viscoelastic and physicochemical properties of the precursor compounds and composites were analyzed using rheometry, elemental analysis (for calcium release and uptake), acidity [by measuring pH in simulated body fluid (SBF)], general biocompatibility (subcutaneous implantation in rabbits), and osteocompatibility (implantation in femoral condyle bone defect of rabbits). The gelation of the resulting composites could be controlled from seconds to tens of minutes by varying the solubility of the CaP phase (HA vs. monetite) or amount of GDL. All composites mineralized extensively in SBF for up to 11 days. In vivo, the composites also disintegrated upon implantation in subcutaneous or bone tissue, leaving behind less degradable but osteoconductive CaP particles. Although the composites need to be optimized with respect to the available amount of calcium for cross-linking of alginate, the beneficial bone response as observed in the in vivo studies render these gels promising for minimally invasive applications as bone-filling material.

  6. Epithelial cell biocompatibility of silica nanospheres for contrast-enhanced ultrasound molecular imaging

    NASA Astrophysics Data System (ADS)

    Chiriacò, Fernanda; Conversano, Francesco; Soloperto, Giulia; Casciaro, Ernesto; Ragusa, Andrea; Sbenaglia, Enzo Antonio; Dipaola, Lucia; Casciaro, Sergio

    2013-07-01

    Nanosized particles are receiving increasing attention as future contrast agents (CAs) for ultrasound (US) molecular imaging, possibly decorated on its surface with biological recognition agents for targeted delivery and deposition of therapeutics. In particular, silica nanospheres (SiNSs) have been demonstrated to be feasible in terms of contrast enhancement on conventional US systems. In this work, we evaluated the cytotoxicity of SiNSs on breast cancer (MCF-7) and HeLa (cervical cancer) cells employing NSs with sizes ranging from 160 to 330 nm and concentration range of 1.5-5 mg/mL. Cell viability was evaluated in terms of size, dose and time dependence, performing the MTT reduction assay with coated and uncoated SiNSs. Whereas uncoated SiNSs caused a variable significant decrease in cell viability on both cell lines mainly depending on size and exposure time, PEGylated SiNSs (SiNSs-PEG) exhibit a high level of biocompatibility. In fact, after 72-h incubation, viability of both cell types was above the cutoff value of 70 % at concentration up to 5 mg/mL. We also investigated the acoustical behavior of coated and uncoated SiNSs within conventional diagnostic US fields in order to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable CAs. Our results indicate that the employment of SiNSs with diameters around 240 nm assures the most effective contrast enhancement even at the lowest tested concentration, coupled with the possibility of targeting all tumor tissues, being the SiNSs still in a size range where reticuloendothelial system trapping effect is relatively low.

  7. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  8. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  9. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.

    PubMed

    Zong, Chen; Qian, Xiaodan; Tang, Zihua; Hu, Qinghong; Chen, Jiarong; Gao, Changyou; Tang, Ruikang; Tong, Xiangmin; Wang, Jinfu

    2014-06-01

    Copolymer composite scaffolds and bioceramic/polymer composite scaffolds are two representative forms of composite scaffolds used for bone tissue engineering. Studies to compare biocompatibility and bone-repairing effects between these two scaffolds are significant for selecting or improving the scaffold for clinical application. We prepared two porous scaffolds comprising poly-lactic-acid/poly-glycolic-acid (PLGA) and poly-lactic-acid/nano-hydroxyapatite (nHAP/PLA) respectively, and examined their biocompatibility with human bone marrow-derived mesenchymal stem cells (hMSCs) through evaluating adhesion, proliferation and osteogenic differentiation potentials of hMSCs in the scaffold. Then, the PLGA scaffold with hMSCs (PM construct) and the nHAP/PLA scaffold with hMSCs (HPM construct) were transplanted into the rat calvarial defect areas to compare their effects on the bone reconstruction. The results showed that the nHAP/PLA scaffold was in favor of adhesion, matrix deposition and osteogenic differentiation of hMSCs. For in vivo transplantation, both HPM and PM constructs led to mineralization and osteogenesis in the defect area of rat. However, the area grafted with PM construct showed a better formation of mature bone than that with HPM construct. In addition, the evaluation of in vitro and in vivo degradation indicated that the degradation rate of nHAP/PLA scaffold was much lower than that of PLGA scaffold. It is inferred that the lower degradation of nHAP/PLA scaffold should result in its inferior bone reconstruction in rat calvaria. Therefore, the preparation of an ideal composite scaffold for bone tissue engineering should be taken into account of the balance between its biocompatibility, degradation rate, osteoconductivity and mechanical property.

  10. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.

    PubMed

    Kucinska-Lipka, J; Gubanska, I; Janik, H; Sienkiewicz, M

    2015-01-01

    Electrospinning is a unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of the cardiovascular system. Such artificial soft tissues of the cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportunity to form fibres with nm- to μm-scale in diameter. The arrangement of obtained fibres and their surface determine the biocompatibility of the scaffolds. Polyurethanes (PUs) are being commonly used as a prosthesis of cardiovascular soft tissues due to their excellent biocompatibility, non-toxicity, elasticity and mechanical properties. PUs also possess fine spinning properties. The combination of a variety of PU properties with an electrospinning technique, conducted at the well tailored conditions, gives unlimited possibilities of forming novel polyurethane materials suitable for soft tissue scaffolds applied in cardiovascular tissue engineering. This paper can help researches to gain more widespread and deeper understanding of designing electrospinable PU materials, which may be used as cardiovascular soft tissue scaffolds. In this paper we focus on reagents used in PU synthesis designed to increase PU biocompatibility (polyols) and biodegradability (isocyanates). We also describe suggested surface modifications of electrospun PUs, and the direct influence of surface wettability on providing enhanced biocompatibility of scaffolds. We indicate a great influence of electrospinning parameters (voltage, flow rate, working distance) and used solvents (mostly DMF, THF and HFIP) on fibre alignment and diameter - what impacts the biocompatibility and hemocompatibility of such electrospun PU scaffolds. Moreover, we present PU modifications with natural polymers with novel approach applied in electrospinning of PU scaffolds. This work may contribute with further developing of novel electrospun PUs, which may be

  11. Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Kandanapitiye, Murthi S.

    -ray computed tomography is capable of delineating the 3-D images of soft tissues with superb quality. The variation of X-ray attenuation from one tissue to another is used to generate the well spatial resolved superb quality images. Exogenous radiopaque agents are necessary for the superb visualization of different types of soft tissues. Heavy metals with high atomic number are better suited for biomedical applications to enhance the image contrast due to their high mass attenuation coefficient. Bismuth (Z- 83) is the nonradioactive, heaviest, nontoxic element available among the other closest neighbors (Hg, Tl, Pb and Po) of the periodic table. We have set out to search for compounds that are hydrolytically stable, more efficient and more amenable in terms of biocompatibility. Moreover this new discovery can significantly reduce the average radiation dose in one CT scan. We have discovered a simple one-step aqueous solution route for preparing biocompatible and ultra-small bismuth oxyiodide BiOI nanoparticles and investigated their potential application as an efficient CT contrast agent. Our ultra-small monodisperse BiOI NPs have excellent water dispersability, thermodynamic stability, kinetic inertness, high biocompatibility and superior attenuation power, suggesting their potential as an organ-specific CT contrast agent that may fill the gap left by the other nanoparticulate and iodine-based CT contrasting agents. The chapter 6 of this dissertation discusses synthesis and characterization of novel nanoparticulate therapeutics and theranostics. D-penicillamine has the highest efficacy, and hence is currently the most widely used drug for WD across the world. We have prepared the D-PEN-conjugated Au NPs of the average size of 16 [special character omited] 2 nm with superb water dispersability, and examined the kinetics and selectivity of copper binding of such NPs in aqueous solution. We also studied the cellular uptake, cytotoxicity and intracellular copper removal of these

  12. Synthesis and Characterization of Novel Polycarbonate Based Polyurethane/Polymer Wrapped Hydroxyapatite Nanocomposites: Mechanical Properties, Osteoconductivity and Biocompatibility.

    PubMed

    Selvakumar, M; Jaganathan, Saravana Kumar; Nando, Golok B; Chattopadhyay, Santanu

    2015-02-01

    The present investigation reports the preparation of two types of 2D rod-like nano-hydroxyapatite (nHA) (unmodified and Polypropylene glycol (PPG) wrapped) of varying high-aspect ratios, by modified co-precipitation methods, without any templates. These nHA were successfully introduced into novel synthesized Thermoplastic Polyurethane (TPU) matrices based on polycarbonate soft segments, by both in-situ and ex-situ techniques. Physico-mechanical properties of the in-situ prepared TPU/nHA nanocomposites were found to be superior compared to the ex-situ counterparts, and pristine nHA reinforced TPU. Improved biocompatibility of the prepared nanocomposites was confirmed by MTT assays using osteoblast-like MG63 cells. Cell proliferation was evident over an extended period. Osteoconductivity of the nanocomposites was observed by successful formation of an apatite layer on the surface of the samples, after immersion into simulated body fluid (SBF). Prothrombin time (PT) and activated partial thromboplastin time (APTT), as calculated from coagulation assays, displayed an increase in the clotting time, particularly for the PPG-wrapped nHA nanocomposites, prepared through the in-situ technique. Only 0.3% of hemolysis was observed for the in-situ prepared nanocomposites, which establishes the antithrombotic property of the material. The key parameters for enhancing the technical properties and biocompatibility of the nanocomposites are: the interfacial adhesion parameter (B(σy)), the polymer-filler affinity, the aspect ratio of filler and non-covalent modifications, and the state of dispersion. Thus, the novel TPU/polymer wrapped nHA nanocomposites have great potential for biomedical applications, in particular for vascular prostheses, cardiovascular implants, scaffolds, and soft and hard tissues implants.

  13. Surface modification of poly(D,L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry.

    PubMed

    Mahjoubi, Hesameddin; Kinsella, Joseph M; Murshed, Monzur; Cerruti, Marta

    2014-07-09

    Scaffolds made with synthetic polymers such as polyesters are commonly used in bone tissue engineering. However, their hydrophobicity and the lack of specific functionalities make their surface not ideal for cell adhesion and growth. Surface modification of these materials is thus crucial to enhance the scaffold's integration in the body. Different surface modification techniques have been developed to improve scaffold biocompatibility. Here we show that diazonium chemistry can be used to modify the outer and inner surfaces of three-dimensional poly(D,L-lactic acid) (PDLLA) scaffolds with phosphonate groups, using a simple two-step method. By changing reaction time and impregnation procedure, we were able to tune the concentration of phosphonate groups present on the scaffolds, without degrading the PDLLA matrix. To test the effectiveness of this modification, we immersed the scaffolds in simulated body fluid, and characterized them with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and infrared spectroscopy. Our results showed that a layer of hydroxyapatite particles was formed on all scaffolds after 2 and 4 weeks of immersion; however, the precipitation was faster and in larger amounts on the phosphonate-modified than on the bare PDLLA scaffolds. Both osteogenic MC3T3-E1 and chondrogenic ATDC5 cell lines showed increased cell viability/metabolic activity when grown on a phosphonated PDLLA surface in comparison to a control PDLLA surface. Also, more calcium-containing minerals were deposited by cultures grown on phosphonated PDLLA, thus showing the pro-mineralization properties of the proposed modification. This work introduces diazonium chemistry as a simple and biocompatible technique to modify scaffold surfaces, allowing to covalently and homogeneously bind a number of functional groups without degrading the scaffold's polymeric matrix.

  14. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.

    PubMed

    Mehrali, Mehdi; Moghaddam, Ehsan; Shirazi, Seyed Farid Seyed; Baradaran, Saeid; Mehrali, Mohammad; Latibari, Sara Tahan; Metselaar, Hendrik Simon Cornelis; Kadri, Nahrizul Adib; Zandi, Keivan; Osman, Noor Azuan Abu

    2014-03-26

    Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.

  15. BIOKID: Randomized controlled trial comparing bicarbonate and lactate buffer in biocompatible peritoneal dialysis solutions in children [ISRCTN81137991

    PubMed Central

    Nau, Barbara; Schmitt, Claus P; Almeida, Margarida; Arbeiter, Klaus; Ardissino, Gianluigi; Bonzel, Klaus E; Edefonti, Alberto; Fischbach, Michel; Haluany, Karin; Misselwitz, Joachim; Kemper, Markus J; Rönnholm, Kai; Wygoda, Simone; Schaefer, Franz

    2004-01-01

    Background Peritoneal dialysis (PD) is the preferred dialysis modality in children. Its major drawback is the limited technique survival due to infections and progressive ultrafiltration failure. Conventional PD solutions exert marked acute and chronic toxicity to local tissues. Prolonged exposure is associated with severe histopathological alterations including vasculopathy, neoangiogenesis, submesothelial fibrosis and a gradual loss of the mesothelial cell layer. Recently, more biocompatible PD solutions containing reduced amounts of toxic glucose degradation products (GDPs) and buffered at neutral pH have been introduced into clinical practice. These solutions contain lactate, bicarbonate or a combination of both as buffer substance. Increasing evidence from clinical trials in adults and children suggests that the new PD fluids may allow for better long-term preservation of peritoneal morphology and function. However, the relative importance of the buffer in neutral-pH, low-GDP fluids is still unclear. In vitro, lactate is cytotoxic and vasoactive at the concentrations used in PD fluids. The BIOKID trial is designed to clarify the clinical significance of the buffer choice in biocompatible PD fluids. Methods/design The objective of the study is to test the hypothesis that bicarbonate based PD solutions may allow for a better preservation of peritoneal transport characteristics in children than solutions containing lactate buffer. Secondary objectives are to assess any impact of the buffer system on acid-base status, peritoneal tissue integrity and the incidence and severity of peritonitis. After a run-in period of 2 months during which a targeted cohort of 60 patients is treated with a conventional, lactate buffered, acidic, GDP containing PD fluid, patients will be stratified according to residual renal function and type of phosphate binding medication and randomized to receive either the lactate-containing Balance solution or the bicarbonate-buffered Bicavera

  16. Tissue repair

    PubMed Central

    2010-01-01

    As living beings that encounter every kind of traumatic event from paper cut to myocardial infarction, we must possess ways to heal damaged tissues. While some animals are able to regrow complete body parts following injury (such as the earthworm who grows a new head following bisection), humans are sadly incapable of such feats. Our means of recovery following tissue damage consists largely of repair rather than pure regeneration. Thousands of times in our lives, a meticulously scripted but unseen wound healing drama plays, with cells serving as actors, extracellular matrix as the setting and growth factors as the means of communication. This article briefly reviews the cells involved in tissue repair, their signaling and proliferation mechanisms and the function of the extracellular matrix, then presents the actors and script for the three acts of the tissue repair drama. PMID:21220961

  17. Tissue Issues

    ERIC Educational Resources Information Center

    Metz, James

    2016-01-01

    Every day, 27,000 trees are used to make bathroom tissue. Americans use an average of 23.6 rolls per person per year, and more than 7 billion rolls of toilet paper are sold yearly in the United States alone. Perhaps the amount of bathroom tissue used can be reduced by changing the dimensions of the paper or the core. This brief article presents…

  18. Histological Evaluation of the Biocompatibility of Polyurea Crosslinked Silica Aerogel Implants in a Rat Model: A Pilot Study

    PubMed Central

    Sabri, Firouzeh; Boughter Jr, John D.; Gerth, David; Skalli, Omar; Phung, Thien-Chuong N.; Tamula, George-Rudolph M.; Leventis, Nicholas

    2012-01-01

    Background Aerogels are a versatile group of nanostructured/nanoporous materials with physical and chemical properties that can be adjusted to suit the application of interest. In terms of biomedical applications, aerogels are particularly suitable for implants such as membranes, tissue growth scaffolds, and nerve regeneration and guidance inserts. The mesoporous nature of aerogels can also be used for diffusion based release of drugs that are loaded during the drying stage of the material. From the variety of aerogels polyurea crosslinked silica aerogels have the most potential for future biomedical applications and are explored here. Methodology This study assessed the short and long term biocompatibility of polyurea crosslinked silica aerogel implants in a Sprague-Dawley rat model. Implants were inserted at two different locations a) subcutaneously (SC), at the dorsum and b) intramuscularly (IM), between the gluteus maximus and biceps femoris of the left hind extremity. Nearby muscle and other internal organs were evaluated histologically for inflammation, tissue damage, fibrosis and movement (travel) of implant. Conclusion/Significance In general polyurea crosslinked silica aerogel (PCSA) was well tolerated as a subcutaneous and an intramuscular implant in the Sprague-Dawley rat with a maximum incubation time of twenty months. In some cases a thin fibrous capsule surrounded the aerogel implant and was interpreted as a normal response to foreign material. No noticeable toxicity was found in the tissues surrounding the implants nor in distant organs. Comparison was made with control rats without any implants inserted, and animals with suture material present. No obvious or noticeable changes were sustained by the implants at either location. Careful necropsy and tissue histology showed age-related changes only. An effective sterilization technique for PCSA implants as well as staining and sectioning protocol has been established. These studies further support the

  19. Fabrication of Gelatin/PCL Electrospun Fiber Mat with Bone Powder and the Study of Its Biocompatibility

    PubMed Central

    Rong, Dongming; Chen, Ping; Yang, Yuchao; Li, Qingtao; Wan, Wenbing; Fang, Xingxing; Zhang, Jie; Han, Zhongyu; Tian, Jing; Ouyang, Jun

    2016-01-01

    Fabricating ideal scaffolds for bone tissue engineering is a great challenge to researchers. To better mimic the mineral component and the microstructure of natural bone, several kinds of materials were adopted in our study, namely gelatin, polycaprolactone (PCL), nanohydroxyapatite (nHA), and bone powder. Three types of scaffolds were fabricated using electrospinning; gelatin/PCL, gelatin/PCL/nHA, and gelatin/PCL/bone powder. Scaffolds were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. Then, Adipose-derived Stem Cells (ADSCs) were seeded on these scaffolds to study cell morphology, cell viability, and proliferation. Through this study, we found that nHA and bone powder can be successfully united in gelatin/PCL fibers. When compared with gelatin/PCL and gelatin/PCL/nHA, the gelatin/PCL/bone powder scaffolds could provide a better environment to increase ADSCs’ growth, adhesion, and proliferation. Thus, we think that gelatin/PCL/bone powder has good biocompatibility, and, when compared with nHA, bone powder may be more effective in bone tissue engineering due to the bioactive factors contained in it. PMID:26959071

  20. Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties.

    PubMed

    Oh, So-Yeon; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2015-09-01

    A new family of highly elastic polyurethanes (PUs) partially based on renewable isosorbide were prepared by reacting hexamethylene diisocyanate with a various ratios of isosorbide and polycarbonate diol 2000 (PCD) via a one-step bulk condensation polymerization without catalyst. The influence of the isorsorbide/PCD ratio on the properties of the PU was evaluated. The successful synthesis of the PUs was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. The resulting PUs showed high number-average molecular weights ranging from 56,320 to 126,000 g mol(-1) and tunable Tg values from -34 to -38℃. The thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The PU films were flexible with breaking strains from 955% to 1795% at from 13.5 to 54.2 MPa tensile stress. All the PUs had 0.9-2.8% weight lost over 4 weeks and continual slow weight loss of 1.1-3.6% was observed within 8 weeks. Although the cells showed a slight lower rate of proliferation than that of the tissue culture polystyrene as a control, the PU films were considered to be cytocompatible and nontoxic. These thermoplastic PUs were soft, flexible and biocompatible polymers, which open up a range of opportunities for soft tissue augmentation and regeneration.

  1. Production, characterization and biocompatibility of marine collagen matrices from an alternative and sustainable source: the sea urchin Paracentrotus lividus.

    PubMed

    Benedetto, Cristiano Di; Barbaglio, Alice; Martinello, Tiziana; Alongi, Valentina; Fassini, Dario; Cullorà, Emanuele; Patruno, Marco; Bonasoro, Francesco; Barbosa, Mario Adolfo; Carnevali, Maria Daniela Candia; Sugni, Michela

    2014-09-24

    Collagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the safest and recently exploited ones. Sea urchins possess a circular area of soft tissue surrounding the mouth, the peristomial membrane (PM), mainly composed by mammalian-like collagen. The PM of the edible sea urchin Paracentrotus lividus therefore represents a potential unexploited collagen source, easily obtainable as a food industry waste product. Our results demonstrate that it is possible to extract native collagen fibrils from the PM and produce suitable substrates for in vitro system. The obtained matrices appear as a homogeneous fibrillar network (mean fibril diameter 30-400 nm and mesh < 2 μm) and display remarkable mechanical properties in term of stiffness (146 ± 48 MPa) and viscosity (60.98 ± 52.07 GPa·s). In vitro tests with horse pbMSC show a good biocompatibility in terms of overall cell growth. The obtained results indicate that the sea urchin P. lividus can be a valuable low-cost collagen source for mechanically resistant biomedical devices.

  2. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents

    NASA Astrophysics Data System (ADS)

    Mao, Lin; Shen, Li; Niu, Jialin; Zhang, Jian; Ding, Wenjiang; Wu, Yu; Fan, Rong; Yuan, Guangyin

    2013-09-01

    Biodegradable metal alloys emerge as a new class of biomaterials for tissue engineering and medical devices such as cardiovascular stents. Deploying biodegradable materials to fabricate stents not only obviates a second surgical intervention for implant removal but also circumvents the long-term foreign body effect of permanent implants. However, these materials for stents suffer from an un-controlled degradation rate, acute toxic responses, and rapid structural failure presumably due to a non-uniform, fast corrosion process. Here we report that highly uniform, nanophasic degradation is achieved in a new Mg alloy with unique interstitial alloying composition as the nominal formula Mg-2.5Nd-0.2Zn-0.4Zr (wt%, hereafter, denoted as JDBM). This material exhibits highly homogeneous nanophasic biodegradation patterns as compared to other biodegradable metal alloy materials. Consequently it has significantly reduced degradation rate determined by electrochemical characterization. The in vitro cytotoxicity test using human vascular endothelial cells indicates excellent biocompatibility and potentially minimal toxic effect on arterial vessel walls. Finally, we fabricated a cardiovascular stent using JDBM and performed in vivo long-term assessment via implantation of this stent in an animal model. The results confirmed the reduced degradation rate in vivo, excellent tissue compatibility and long-term structural and mechanical durability. Thus, this new Mg-alloy with highly uniform nanophasic biodegradation represents a major breakthrough in the field and a promising material for manufacturing the next generation biodegradable vascular stents.

  3. Electrospun scaffolds of a polyhydroxyalkanoate consisting of omega-hydroxylpentadecanoate repeat units: fabrication and in vitro biocompatibility studies.

    PubMed

    Focarete, Maria Letizia; Gualandi, Chiara; Scandola, Mariastella; Govoni, Marco; Giordano, Emanuele; Foroni, Laura; Valente, Sabrina; Pasquinelli, Gianandrea; Gao, Wei; Gross, Richard A

    2010-01-01

    Electrospinning was used to fabricate fibrous scaffolds of lipase-catalyzed poly(omega-pentadecalactone) (PPDL). The slow resorbability of this biomaterial is expected to be valuable for tissue-engineering applications requiring long healing times. The effect of solvent systems and instrumental parameters on fiber morphology was investigated. PPDL electrospinning was optimized and defect-free fibers (diameter 410 +/- 150 nm) were obtained by using a mixed three-solvent system. Scaffolds were characterized by scanning electron microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXS). TGA showed no residual solvent in the scaffolds. DSC and WAXS results indicated that electrospun PPDL is semicrystalline. Biocompatibility of PPDL scaffolds was evaluated through indirect cytotoxicity tests using embryonic rat cardiac H9c2 cells. The ability of PPDL electrospun mats to support cell growth was verified by culturing H9c2 cells onto the scaffold. Cell adhesion, proliferation and morphology were evaluated. The results indicated that PPDL mats are not cytotoxic and they support proliferation of H9c2 cells. The cumulative results of this study suggest further exploration of PPDL fibrous mats as scaffolds for tissue-engineered constructs.

  4. Production, Characterization and Biocompatibility of Marine Collagen Matrices from an Alternative and Sustainable Source: The Sea Urchin Paracentrotus lividus

    PubMed Central

    Di Benedetto, Cristiano; Barbaglio, Alice; Martinello, Tiziana; Alongi, Valentina; Fassini, Dario; Cullorà, Emanuele; Patruno, Marco; Bonasoro, Francesco; Barbosa, Mario Adolfo; Candia Carnevali, Maria Daniela; Sugni, Michela

    2014-01-01

    Collagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the safest and recently exploited ones. Sea urchins possess a circular area of soft tissue surrounding the mouth, the peristomial membrane (PM), mainly composed by mammalian-like collagen. The PM of the edible sea urchin Paracentrotus lividus therefore represents a potential unexploited collagen source, easily obtainable as a food industry waste product. Our results demonstrate that it is possible to extract native collagen fibrils from the PM and produce suitable substrates for in vitro system. The obtained matrices appear as a homogeneous fibrillar network (mean fibril diameter 30–400 nm and mesh < 2 μm) and display remarkable mechanical properties in term of stiffness (146 ± 48 MPa) and viscosity (60.98 ± 52.07 GPa·s). In vitro tests with horse pbMSC show a good biocompatibility in terms of overall cell growth. The obtained results indicate that the sea urchin P. lividus can be a valuable low-cost collagen source for mechanically resistant biomedical devices. PMID:25255130

  5. Effects of carbon and nitrogen plasma immersion ion implantation on in vitro and in vivo biocompatibility of titanium alloy.

    PubMed

    Zhao, Ying; Wong, Sze Man; Wong, Hoi Man; Wu, Shuilin; Hu, Tao; Yeung, Kelvin W K; Chu, Paul K

    2013-02-01

    Growth of bony tissues on titanium biomedical implants can be time-consuming, thereby prolonging recovery and hospitalization after surgery and a method to improve and expedite tissue-implant integration and healing is thus of scientific and clinical interests. In this work, nitrogen and carbon plasma immersion ion implantation (N-PIII and C-PIII) is conducted to modify Ti-6Al-4V to produce a graded surface layer composed of TiN and TiC, respectively. Both PIII processes do not significantly alter the surface hydrophilicity but increase the surface roughness and corrosion resistance. In vitro studies disclose improved cell adhesion and proliferation of MC3T3-E1 preosteoblasts and L929 fibroblasts after PIII. Micro-CT evaluation conducted 1 to 12 weeks after surgery reveals larger average bone volumes and less bone resorption on the N-PIII and C-PIII titanium alloy pins than the unimplanted one at every time point. The enhancements observed from both the in vitro and in vivo studies can be attributed to the good cytocompatibility, roughness, and corrosion resistance of the TiN and TiC structures which stimulate the response of preosteoblasts and fibroblasts and induce early bone formation. Comparing the two PIII processes, N-PIII is more effective and our results suggest a simple and practical means to improve the surface biocompatibility of medical-grade titanium alloy implants.

  6. Evaluation of biocompatible osteoconductive polymer shelf arthroplasty for the surgical correction of hip dysplasia in normal dogs.

    PubMed Central

    Lussier, B; Lanthier, T; Martineau-Doizé, B

    1994-01-01

    Biocompatible osteoconductive polymer (BOP) shelf arthroplasty was performed on ten nondysplastic dogs, divided into five groups. Each group was evaluated at 6, 13, 17, 26 or 39 weeks postsurgery. Evaluation consisted of clinical, radiological and histological studies. The dogs were injected with three fluorochrome markers, 28 days, 14 days and 6 hours before euthanasia. Transverse sections of undecalcified arthroplasty site were examined by microradiography and fluorescence microscopy; surface-stained sections were evaluated by light microscopy. The BOP shelf arthroplasty was not technically difficult. Minimal mineralization of the shelf was noted by radiography, 26 and 39 weeks postop. A moderate to large amount of fibrous mature connective tissue was observed around the BOP fibers throughout the study. Bone ingrowth occurred around the BOP fibers, but was minimal within them. This osseous proliferation of the arthroplasty was very slow to take place; it was first noted microscopically 17 weeks postsurgery and was still minimal 39 weeks after surgery. These findings suggest that there may be interference to the osteoconductive properties of BOP by fibrous tissue. Ossification of the shelf arthroplasty was too unsatisfactory to recommend its use for the treatment of canine hip dysplasia. Images Fig. 2. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:7954118

  7. Biocompatible ionic liquid-biopolymer electrolyte-enabled thin and compact magnesium-air batteries.

    PubMed

    Jia, Xiaoteng; Yang, Yang; Wang, Caiyun; Zhao, Chen; Vijayaraghavan, R; MacFarlane, Douglas R; Forsyth, Maria; Wallace, Gordon G

    2014-12-10

    With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air battery device with a total thickness of approximately 300 μm. It consists of a biocompatible polypyrrole-para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9 × 10(-3) S cm(-1). The assembled battery delivers a maximum volumetric power density of 3.9 W L(-1), which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium-air battery may pave the way to a future generation of implantable power sources.

  8. Biocompatible Polymer/Quantum Dots Hybrid Materials: Current Status and Future Developments

    PubMed Central

    Shen, Lei

    2011-01-01

    Quantum dots (QDs) are nanometer-sized semiconductor particles with tunable fluorescent optical property that can be adjusted by their chemical composition, size, or shape. In the past 10 years, they have been demonstrated as a powerful fluorescence tool for biological and biomedical applications, such as diagnostics, biosensing and biolabeling. QDs with high fluorescence quantum yield and optical stability are usually synthesized in organic solvents. In aqueous solution, however, their metallic toxicity, non-dissolubility and photo-luminescence instability prevent the direct utility of QDs in biological media. Polymers are widely used to cover and coat QDs for fabricating biocompatible QDs. Such hybrid materials can provide solubility and robust colloidal and optical stability in water. At the same time, polymers can carry ionic or reactive functional groups for incorporation into the end-use application of QDs, such as receptor targeting and cell attachment. This review provides an overview of the recent development of methods for generating biocompatible polymer/QDs hybrid materials with desirable properties. Polymers with different architectures, such as homo- and co-polymer, hyperbranched polymer, and polymeric nanogel, have been used to anchor and protect QDs. The resulted biocompatible polymer/QDs hybrid materials show successful applications in the fields of bioimaging and biosensing. While considerable progress has been made in the design of biocompatible polymer/QDs materials, the research challenges and future developments in this area should affect the technologies of biomaterials and biosensors and result in even better biocompatible polymer/QDs hybrid materials. PMID:24956449

  9. Optical Coherence Tomography in Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Yang, Ying; Wang, Ruikang K.; Boppart, Stephen A.

    Tissue engineering holds the promise for a therapeutic solution in regenerative medicine. The primary goal of tissue engineering is the development of physiologically functional and biocompatible tissues/organs being implanted for the repair and replacement of damaged or diseased ones. Given the complexity in the developing processes of engineered tissues, which involves multi-dimensional interactions among cells of different types, three-dimensionally constructed scaffolds, and actively intervening bioreactors, a capable real-time imaging tool is critically required for expanding our knowledge about the developing process of desired tissues or organs. It has been recognized that optical coherence tomography (OCT), an emerging noninvasive imaging technique that provides high spatial resolution (up to the cellular level) and three-dimensional imaging capability, is a promising investigative tool for tissue engineering. This chapter discusses the existing and potential applications of OCT in tissue engineering. Example OCT investigations of the three major components of tissue engineering, i.e., cells, scaffolds, and bioreactors are overviewed. Imaging examples of OCT and its enabling functions and variants, e.g., Doppler OCT, polarization-sensitive OCT, optical coherence microscopy are emphasized. Remaining challenges in the application of OCT to tissue engineering are discussed, and the prospective solutions including the combination of OCT with other high-contrast and high-resolution modalities such as two-photon fluorescence microscopy are suggested as well. It is expected that OCT, along with its functional variants, will make important contributions toward revealing the complex cellular dynamics in engineered tissues as well as help us culture demanding tissue/organ implants that will advance regenerative medicine.

  10. Nanoscale hydroxyapatite particles for bone tissue engineering.

    PubMed

    Zhou, Hongjian; Lee, Jaebeom

    2011-07-01

    Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancem