Chen, Hua; Li, Huibo; Deng, Yuxiao; Rong, Xin; Gong, Quan; Li, Tao; Song, Yueming; Liu, Hao
2017-04-01
Lateral mass mini-screws used in plated cervical laminoplasty might penetrate into facet joints. The objective is to observe this complication incidence and to identify the optimal areas for 5- and 7-mm-long mini-screws to implant on lateral mass. 47 patients who underwent plated cervical laminoplasty were included. The optimal area for mini-screws implanting was set according to pre-operative 3D CT reconstruction data. Then, each posterior-lateral mass surface was divided into three regions: 7-mm region, 5-mm region, and dangerous area. The mini-screw implanted region was recorded. Post-operative CT images were used to identify whether the mini-screws penetrated into facet joints. 235 mini-plates and 470 lateral mass mini-screws were used in the study. 117 (24.9%) mini-screws penetrated 88 (37.4%) facet joints. The 5-mm-long mini-screw optimal area occupied the upper 72, 65, 65, 64, and 65 % area of the posterior-lateral mass surface for C3-7, while the 7-mm-long mini-screw optimal area encompassed the upper 54, 39, 40, 33, and 32 %. Only 7-mm-long mini-screws were used to fix the plate to the lateral mass. 4 of 240 mini-screws in 7-mm region, 67 of the 179 mini-screws in 5-mm region, and 46 of the 51 mini-screws in dangerous region penetrated into the facet joint. The differences in the rate of facet joint penetration related to region were statistically significant (P < 0.001). The facet joint destruction by mini-screws was not a rare complication in plated cervical laminoplasty. The optimal areas we proposed may help guide the mini-screw implantation positions.
Fully customized placement of orthodontic miniplates: a novel clinical technique
2014-01-01
Introduction The initial stability and survival rate of orthodontic mini-implants are highly dependent on the amount of cortical bone at their insertion site. In areas with limited bone availability, mini-plates are preferred to provide effective skeletal anchorage. The purpose of this paper was to present a new clinical technique for the insertion of mini-plates. Methods In order to apply this new technique, a cone-beam image of the insertion area is required. A software (Galaxy Sirona, Bensheim, Germany) is used to construct a three-dimensional image of the scanned area and to virtually determine the exact location of the mini-plate as well as the position of the fixation screws. A stereolithographic model (STL) is then created by means of a three-dimensional scanner. Prior to its surgical insertion, the bone plate is adapted to the stereo-lithographic model. Finally, a custom transfer jig is fabricated in order to assist with accurate placement of the mini-plate intra-operatively. Results The presented technique minimizes intra-operative decision making, because the final position of the bone plate is determined pre-surgically. This significantly reduces the duration of the surgical procedure and improves its outcome. Conclusions A novel method for surgical placement of orthodontic mini-plates is presented. The technique facilitates accurate adaptation of mini-plates and insertion of retaining surgical screws; thereby enabling clinicians to more confidently increase the use of bone plates, especially in anatomical areas where the success of non-osseointegrated mini-screws is less favorable. PMID:24886597
Comparison of titanium and biodegradable miniplates for fixation of mandibular fractures.
Lee, Hyo-Bin; Oh, Ji-Su; Kim, Su-Gwan; Kim, Hak-Kyun; Moon, Seong-Yong; Kim, Young-Kyun; Yun, Pil-Young; Son, Jun-Sik
2010-09-01
The purpose of the present study was to compare the use of biodegradable miniplates and titanium miniplates for the fixation of mandibular fractures. BioSorb FX biodegradable plates and screws and titanium miniplates were used in 91 patients (65 males and 26 females; age range 11 to 69 years) for the treatment of mandibular fractures. The clinical and radiographic findings were recorded at 1, 3, 6, and 12 months after surgery. The overall complication rate was 4.41%. In the biodegradable plate group, infection occurred in 2 cases (4.26%) and was resolved by incision and drainage and antibiotics. In the titanium plate group, infection occurred in 1 case and plate fracture in 1 case (4.56%). The fractured plate was removed, and a new titanium miniplate was applied using a trocar. The infection was resolved with antibiotics. No adverse tissue reactions, malocclusions, or malunions occurred during the observation period. Our results have shown that the rate of morbidity is very low with the use of biodegradable plates and titanium plates, suggesting that biodegradable and titanium plates have the potential for successful use in the fixation of mandibular fractures. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.
Challenges and opportunities of biodegradable plastics: A mini review.
Rujnić-Sokele, Maja; Pilipović, Ana
2017-02-01
The concept of materials coming from nature with environmental advantages of being biodegradable and/or biobased (often referred to as bioplastics) is very attractive to the industry and to the consumers. Bioplastics already play an important role in the fields of packaging, agriculture, gastronomy, consumer electronics and automotive, but still they have a very low share in the total production of plastics (currently about 1% of the about 300 million tonnes of plastic produced annually). Biodegradable plastics are often perceived as the possible solution for the waste problem, but biodegradability is just an additional feature of the material to be exploited at the end of its life in specific terms, in the specific disposal environment and in a specific time, which is often forgotten. They should be used as a favoured choice for the applications that demand a cheap way to dispose of the item after it has fulfilled its job (e.g. for food packaging, agriculture or medical products). The mini-review presents the opportunities and future challenges of biodegradable plastics, regarding processing, properties and waste management options.
Fixation of zygomatic and mandibular fractures with biodegradable plates.
Degala, Saikrishna; Shetty, Sujeeth; Ramya, S
2013-01-01
In this prospective study, 13 randomly selected patients underwent treatment for zygomatic-complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Descriptives, Frequencies, and Chi-square test were used. In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome.
Fixation of mandibular fractures with biodegradable plates and screws.
Yerit, Kaan C; Enislidis, Georg; Schopper, Christian; Turhani, Dritan; Wanschitz, Felix; Wagner, Arne; Watzinger, Franz; Ewers, Rolf
2002-09-01
Little data exist regarding the use of biodegradable plates and screws for the internal fixation of human mandibular fractures. The purpose of this study was to evaluate the stability of biodegradable, self-reinforced poly-L-lactide plates and screws for the internal fixation of fractures of the human mandible. Twenty-two individuals (14 male, 8 female; average age, 26.3 years) with a variety of fracture patterns of the mandible underwent management with a biodegradable fixation system. After surgery, maxillomandibular fixation was applied in 3 cases. Images (panoramic radiograph, computed tomographic scan) were taken immediately after surgery and at the 4-week, 8-week, 12-week, and 24-week intervals. The follow-up period averaged 49.1 weeks (range, 22 to 78 weeks). Mucosal dehiscences over the resorbable devices were present in 2 patients. In 1 of these 2 cases, the material had to be replaced with titanium plates. Mucosal healing and consolidation of the fracture were normal in all other patients. Self-reinforced biodegradable osteosynthesis materials provide a reliable and sufficient alternative to conventional titanium plate systems.
Fixation of zygomatic and mandibular fractures with biodegradable plates
Degala, Saikrishna; Shetty, Sujeeth; Ramya, S
2013-01-01
Context: In this prospective study, 13 randomly selected patients underwent treatment for zygomatic–complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. Aims: To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. Materials and Methods: In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Statistical Analysis Used: Descriptives, Frequencies, and Chi-square test were used. Results: In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Conclusions: Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome. PMID:23662255
Prasarn, Mark L; Meyers, Kathleen N; Wilkin, Geoffrey; Wellman, David S; Chan, Daniel B; Ahn, Jaimo; Lorich, Dean G; Helfet, David L
2015-12-01
We sought to evaluate clinical and biomechanical outcomes of dual mini-fragment plate fixation for clavicle fractures. We hypothesized that this technique would produce an anatomical reduction with good clinical outcomes, be well tolerated by patients, and demonstrate equivalent biomechanics to single plating. Dual mini-fragment plating was performed for 17 isolated, displaced midshaft clavicle fractures. Functional outcomes and complications were retrospectively reviewed. A sawbones model compared dual plating biomechanics to a (1) superior 3.5-mm locking reconstruction plate, or (2) antero-inferior 3.5-mm locking reconstruction plate. On biomechanical testing, with anterior loading, dual plating was significantly more rigid than single locked anterior-plating (p = 0.02) but less rigid than single locked superior-plating (p = 0.001). With superior loading, dual plating trended toward higher rigidity versus single locked superior-plating (p = 0.07) but was less rigid than single locked anterior-plating (p = 0.03). No statistically significant differences in axial loading (p = 0.27) or torsion (p = 0.23) were detected. Average patient follow-up was 16.1 months (12-38). Anatomic reduction was achieved and maintained through final healing (average 14.7 weeks). No patient underwent hardware removal. Average 1-year DASH score was 4.0 (completed in 88 %). Displaced midshaft clavicle fractures can be effectively managed with dual mini-fragment plating. This technique results in high union rates and excellent clinical outcomes. Compared to single plating, dual plating is biomechanically equivalent in axial loading and torsion, yet offers better multi-planar bending stiffness despite the use of smaller plates. This technique may decrease the need for secondary surgery due to implant prominence and may aid in fracture reduction by buttressing butterfly fragments in two planes.
Bali, Rishi K.; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani
2013-01-01
Aims: The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. Materials and Methods: This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inion CPS) using standard plating principles and observed for a total period of 24 weeks. Characteristics of the fractures, ease of use of bioresorbable plate/screw system and post operative complications were assessed. Results: Of total 10 patients, eight patients were of midface fracture and two pediatric patients with mandibular fracture, with nine male and one female. The mean age was 32.8 years. Out of 20 plates and 68 screws applied to the 10 fractures sites; there were three incidences of screw breakage with no other intraoperative difficulties. Paresthesia of the infraorbital nerve was present in two patients, and recovered completely in four weeks after surgery. Fracture reduction was considered to be satisfactory in all cases. One patient developed postsurgical infection and was managed with oral antibiotics and analgesics. Conclusions: Favorable healing can be observed through the use of biodegradable plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood, however further studies with more sample size are required. PMID:24665170
Bali, Rishi K; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani
2013-07-01
The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inion CPS) using standard plating principles and observed for a total period of 24 weeks. Characteristics of the fractures, ease of use of bioresorbable plate/screw system and post operative complications were assessed. Of total 10 patients, eight patients were of midface fracture and two pediatric patients with mandibular fracture, with nine male and one female. The mean age was 32.8 years. Out of 20 plates and 68 screws applied to the 10 fractures sites; there were three incidences of screw breakage with no other intraoperative difficulties. Paresthesia of the infraorbital nerve was present in two patients, and recovered completely in four weeks after surgery. Fracture reduction was considered to be satisfactory in all cases. One patient developed postsurgical infection and was managed with oral antibiotics and analgesics. Favorable healing can be observed through the use of biodegradable plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood, however further studies with more sample size are required.
Wegner, Adam M; Wolinsky, Philip R; Robbins, Michael A; Garcia, Tanya C; Amanatullah, Derek F
2018-05-01
Horizontal fractures of the medial malleolus occur through application of valgus or abduction force through the ankle that creates a tension failure of the medial malleolus. The authors hypothesize that mini-fragment T-plates may offer improved fixation, but the optimal fixation construct for these fractures remains unclear. Forty synthetic distal tibiae with identical osteotomies were randomized into 4 fixation constructs: (1) two parallel unicortical cancellous screws; (2) two parallel bicortical cortical screws; (3) a contoured mini-fragment T-plate with 2 unicortical screws in the fragment and 2 bicortical screws in the shaft; and (4) a contoured mini-fragment T-plate with 2 bicortical screws in the fragment and 2 unicortical screws in the shaft. Specimens were subjected to offset axial tension loading on a servohydraulic testing system and tracked using high-resolution video. Failure was defined as 2 mm of articular displacement. Analysis of variance followed by a Tukey-Kramer post hoc test was used to assess for differences between groups, with significance defined as P<.05. The mean stiffness (±SD) values of both mini-fragment T-plate constructs (239±83 N/mm and 190±37 N/mm) and the bicortical screw construct (240±17 N/mm) were not statistically different. The mean stiffness values of both mini-fragment T-plate constructs and the bicortical screw construct were higher than that of a parallel unicortical screw construct (102±20 N/mm). Contoured T-plate constructs provide stiffer initial fixation than a unicortical cancellous screw construct. The T-plate is biomechanically equivalent to a bicortical screw construct, but may be superior in capturing small fragments of bone. [Orthopedics. 2018; 41(3):e395-e399.]. Copyright 2018, SLACK Incorporated.
Liu, Yun-Feng; Fan, Ying-Ying; Jiang, Xian-Feng; Baur, Dale A
2017-11-15
The purpose of this study was to design a customized fixation plate for mandibular angle fracture using topological optimization based on the biomechanical properties of the two conventional fixation systems, and compare the results of stress, strain and displacement distributions calculated by finite element analysis (FEA). A three-dimensional (3D) virtual mandible was reconstructed from CT images with a mimic angle fracture and a 1 mm gap between two bone segments, and then a FEA model, including volume mesh with inhomogeneous bone material properties, three loading conditions and constraints (muscles and condyles), was created to design a customized plate using topological optimization method, then the shape of the plate was referenced from the stress concentrated area on an initial part created from thickened bone surface for optimal calculation, and then the plate was formulated as "V" pattern according to dimensions of standard mini-plate finally. To compare the biomechanical behavior of the "V" plate and other conventional mini-plates for angle fracture fixation, two conventional fixation systems were used: type A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain and displacement distributions within the three fixation systems were compared and discussed. The stress, strain and displacement distributions to the angle fractured mandible with three different fixation modalities were collected, respectively, and the maximum stress for each model emerged at the mandibular ramus or screw holes. Under the same loading conditions, the maximum stress on the customized fixation system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% compared to type B. All maximum von Mises stresses of mandible were well below the allowable stress of human bone, as well as maximum principal strain. And the displacement diagram of bony segments indicated the effect of treatment with different fixation systems. The customized fixation system with topological optimized structure has good biomechanical behavior for mandibular angle fracture because the stress, strain and displacement within the plate could be reduced significantly comparing to conventional "one mini-plate" or "two mini-plates" systems. The design methodology for customized fixation system could be used for other fractures in mandible or other bones to acquire better mechanical behavior of the system and improve stable environment for bone healing. And together with SLM, the customized plate with optimal structure could be designed and fabricated rapidly to satisfy the urgent time requirements for treatment.
Application of biodegradable plates for treating pediatric mandibular fractures.
An, Jingang; Jia, Pengcheng; Zhang, Yi; Gong, Xi; Han, Xiaodong; He, Yang
2015-05-01
We assessed the clinical results of a biodegradable plate system for the internal fixation of mandibular fractures in children, and observed the imaging features of fracture healing and bone changes around the biodegradable plates and screws during follow-up. We enrolled 39 patients (22 male, 17 female, average age 4 years 10 months) with different mandibular fractures. We used 2.0-mm resorbable plates to repair the fractures. Postoperative follow-up ranged from 6 months to 5 years; average follow-up was 1 year 2 months. The outcome measures identified and assessed included facial symmetry, mouth opening, occlusal relationship, infection, nonunion, malunion, and plate dehiscence. We fixed 42 fractures with 43 resorbable plates; the fracture site of one patient (aged 11 years 3 months) was fixed with two plates. Two patients developed small fistulas at the intraoral incision 2 months after surgery; the fistulas healed after 1 month without special treatment. In the other patients, the incision healed well, there was facial symmetry, mouth opening was >35 mm, and occlusion was good. Follow-up computed tomography examination data were available for 20 cases, and revealed different degrees of radiolucency indicating that osteolysis had occurred. Radiolucency was observed around the resorbable plates 1 month after the surgery. The extent and depth of the radiolucent region were obvious within 1 year of surgery. In the second year, there were obvious repairs, with the bony defect areas becoming shallower. After 2 years, the bony defect areas had almost disappeared. Biodegradable fixation devices are safe and efficient for treating pediatric mandibular fractures. Osteolysis commonly follows biodegradable fixation of pediatric mandibular fractures, and has no adverse effect on fracture healing. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Rapid surface colony counts determination with three new miniaturised techniques.
Malik, K A
1977-01-01
Three different miniaturised methods for the rapid surface viable counting are described. The methods were tried in parallel to seven different existing methods (Table 1) for viable counts and were found to be easier, quicker and insome cases more accurate. The techniques require about 10% of the material and time needed for conventional spread-plates method and the results were in no way inferior to that (Table 1 and 2). Mini agar discs were cut aseptically with an especially designed stainless steel agar disc cutter (25 mm internal and 28 mm external diameter, Fig. 1b) or with a test tube of similar diameter. The area of the resulted mini-agar-disc of 25 mm diameter was kept such (about 1/10th of the normal plate) that the ratio of the colony-bearing area to the inoculm remained the same as on big plates in spread-plate-method (Table 2). In normal Petri dishes (about 90 mm diameter) up to seven mini agar discs were possible to cut. Each small agar disc was seperated from the other mini-disc by a distance of at least 6 mm (Fig. 1a). The empty place around the disc was still enlarged during over drying of the plates and during incubation. This created complete isolation from the neighbouring disc. For micro-determination of surface viable counts 10 micronl from each dilution was delivered on a well-dired mini-disc with a piston micropipette. The inoculm was immediately spread on the whole mini-disc with a specially designed flame sterilizable platinum-Mini-spreader (Fig. 2a). No spinning of the plate was needed. Alternatively the dropping pipette and spreader was replaced by a calibrated platinum wire Loop-spreader (Fig. 2b). A loop of 3 mm internal diameter made from a platinum-iridium wire of 0.75 mm thickness proved most useful and carried a drop of 10 micronl. Differences especially in surface tension of various diluting fluids did not influence to drop of this size and no recalibration was needed for water and nutrient broth. The loop was further shaped to Loop-spreader form. From each bacterial suspension 10 micronl were carried and spread on each mini-disc. The method is useful for pathogenic organisms as the loop can readily be flame sterilized. For routine purposes where only approximate numbers of bacteria need to be known a still rapid semiquantitative method was deviced making use of a calibrated stainless steel Stamping-disc (Fig. 2c). A disc of 25mm diameter and 1 mm thickness delivered approximateyl 10 microlitres of supensions and was found to be most useful to stamp seven dilutions on a single plate. In collections and bacteriology laboratories where by conventional methods large number of plates are to be plated and counted the presented techniques could prove most convenient, rapid and economical.
Son, Jang-Ho; Ha, Jinhee; Cho, Yeong-Cheol; Sung, Iel-Yong
2017-08-01
To investigate whether biodegradable plates are applicable in endoscope-assisted open reduction and internal fixation (EAORIF) of mandibular subcondyle fractures. This retrospective case-series study included patients with mandibular subcondyle fractures treated with EAORIF using an unsintered hydroxyapatite particles/poly-l-lactide biodegradable plate system, with at least 6 months of clinical follow-up data available. The outcome variables were fracture healing with postoperative stability and postoperative complications. Other variables included age, gender, fracture site, cause of injury, accompanying mandibular fracture, total follow-up period, fracture classification, extent of displacement, preoperative status of occlusion, preoperative mandibular movements, fixation materials in accompanying mandibular fracture, location and number of fixation plates, periods of intermaxillary fixation/elastic bands, and postoperative mandibular movements. Fracture healing in these patients was assessed by comparing the immediate postoperative cone-beam computed tomography (CBCT) images with those obtained at least 3 months after surgery. A total of 11 patients, 9 male and 2 female, with a mean ± standard deviation age of 35.3 ± 15.9 years, were included. The mean follow-up period was 18.8 ± 7.8 months. Four patients had an accompanying mandibular fracture. Two 4-hole, 2.0-mm biodegradable plates were fixed with 6-mm screws along the posterior border of the mandibular ramus and near the sigmoid notch. Complete bone formation around the fracture lines or fading of the fracture lines, with no change in the position of the fractured segments, was observed on the postoperative CBCT images at 3 months. With the exception of 2 patients, no patient complained of plate palpability, deviation in occlusion, or discomfort during the postoperative follow-up period. EAORIF using biodegradable plates for mandible subcondylar fractures is a stable and reliable method, with considerable advantages compared with titanium plates. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Comparison of circummandibular wiring with resorbable bone plates in pediatric mandibular fractures.
Saikrishna, D; Gupta, Nimish
2010-06-01
Pediatric patients present a unique challenge to maxillofacial surgeons in terms of their treatment planning as well as in their functional and nutritional needs which are different from that of adult patients. Early literature has advocated conservative closed management of pediatric fractures to prevent complications. However recent advances in maxillofacial surgery has enabled us to use biodegradable plates and screws, which overcomes the limitations of metallic plates. We present a comparison of two cases of parasymphysis fracture treated with circum-mandibular wiring and biodegradable plate fixation their outcome in terms of fracture healing and functional stability.
Hiraishi, Tomohiro
2016-02-01
Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.
Hsu, Yung-Heng; Chen, Dave Wei-Chih; Tai, Chun-Der; Chou, Ying-Chao; Liu, Shih-Jung; Ueng, Steve Wen-Neng; Chan, Err-Cheng
2014-01-01
We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L)-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration) for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics. PMID:25246790
2014-10-02
Journal article published in International Biodeterioration & Biodegradation 95 (2014) 311-319. The U.S. Government is joint author of the work and...SUBJECT TERMS pseudomonas biofilms, polyurethane, biodegradation , FTIR spectroscopy, citrate, impranil 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...International Biodeterioration & Biodegradation 95 (2014) 311e319Contents lists avaiInternational Biodeterioration & Biodegradation journal homepage
Early Experience with Biodegradable Fixation of Pediatric Mandibular Fractures.
Mazeed, Ahmed Salah; Shoeib, Mohammed Abdel-Raheem; Saied, Samia Mohammed Ahmed; Elsherbiny, Ahmed
2015-09-01
This clinical study aims to evaluate the stability and efficiency of biodegradable self-reinforced poly-l/dl-lactide (SR-PLDLA) plates and screws for fixation of pediatric mandibular fractures. The study included 12 patients (3-12 years old) with 14 mandibular fractures. They were treated by open reduction and internal fixation by SR-PLDLA plates and screws. Maxillomandibular fixation was maintained for 1 week postoperatively. Clinical follow-up was performed at 1 week, 6 weeks, 3 months, and 12 months postoperatively. Radiographs were done at 1 week, 3 months, and 12 months postoperatively to observe any displacement and fracture healing. All fractures healed both clinically and radiologically. No serious complications were reported in the patients. Normal occlusion was achieved in all cases. Biodegradable osteofixation of mandibular fractures offers a valuable clinical solution for pediatric patients getting the benefit of avoiding secondary surgery to remove plates, decreasing the hospital stay, further painful procedures, and psychological impact.
Biodegradable compounds: Rheological, mechanical and thermal properties
NASA Astrophysics Data System (ADS)
Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.
2015-12-01
Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.
Yan, Rongliang; Qu, Jiafu; Cao, Lihai; Liu, Hongda; Chen, Jianghua; Gao, Yan; Peng, Yi
2018-05-01
To summarize the effectiveness of mini locking plate combined with Kirschner wire in treatment of comminuted Jones fracture. Between January 2011 and October 2016, 25 cases with comminuted Jones fracture were treated with mini locking plate combined with Kirschner wire. There were 9 males and 16 females with an average age of 31.4 years (range, 16-66 years). The fractures located on the left side in 11 cases and on the right side in 14 cases. The causes of injury included spraining in 21 cases, falling down in 3 cases, and bruise in 1 case. The bone fragment of all cases was more than 3 pieces. The fracture line was mostly Y-shape or T-shape. Twelve of them were combined with other fractures. The time from injury to operation was 1-9 days (mean, 5 days). The mini locking plate and Kirschner wire were removed at 9-12 months postoperatively. At 12 months postoperatively, the pain was evaluated by the visual analogue scale (VAS) score, and the function by the American Orthopaedic Foot & Ankle Society (AOFAS) score. All incisions healed by first intention. All cases were followed up 12-36 months with an average of 21.7 months. Fracture union was observed in all patients without complications such as nonunion, delayed union, and malunion. The fracture union time was 8-12 weeks (mean, 9.4 weeks). At 12 months postoperatively, the VAS score was 1.15±0.87; the AOFAS score was 89.45±6.24, and the results were excellent in 14 cases, good in 9 cases, fair in 1 case, and poor in 1 case, with an excellent and good rate of 92%. The procedure of mini locking plate combined with Kirschner wire for comminuted Jones fracture has such advantages as convenient operation, more rigid fixation, high rate of fracture healing, and good functional recovery in foot.
The use of biodegradable plates and screws to stabilize facial fractures.
Bell, R Bryan; Kindsfater, Craig S
2006-01-01
The purpose of this preliminary retrospective study was to review the demographics and outcome of patients with a variety of facial fractures that were stabilized with PL bone plates and screws. The records of 295 consecutive patients with facial fractures treated by open reduction and internal fixation, performed by the author from 2001 through 2004, were retrospectively reviewed. Patients were selected to receive biodegradable fixation on the basis of mechanism of injury, the degree of bony displacement demonstrated on clinical and radiographic examination, patient age, and fracture pattern or location. Outcome measures such as infection, non-union, and mal-union were identified and subjectively assessed. Descriptive statistics were recorded and analyzed. Two hundred eighty-one patients met the criteria for inclusion in the study with follow-up of 3 weeks to 3 years. Fifty-nine (21%) patients were identified as having received biodegradable plates and screws. All patients eventually went on to satisfactory healing with favorable restoration of form and function. Complications occurred in 16 patients overall (6%). Of these, 2 patients were treated with resorbable plates and screws; 1 patient with a zygomatico-maxillary complex fracture developed a sterile abscess that presented 1 year postoperatively and responded to local measures. Another patient with a Le Fort I fracture developed an anterior open bite necessitating Le Fort I osteotomy for correction. Favorable healing can be observed through the use of biodegradable PL plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood.
Scanning electron microscopic observations of 'fractured' biodegradable plates and screws.
Kosaka, Masaaki; Uemura, Fumiko; Tomemori, Shoko; Kamiishi, Hiroshi
2003-02-01
We encountered two out of 100 cases in which implanted biodegradable plates and screws had fractured within 1 month postoperatively. Failure of the material was confirmed through clinical symptoms, radiographs or CT findings. In addition, four specimens obtained from these two cases were examined with regard to their ultrastructure using scanning electron microscopy. Several principal patterns of the fractured surface were found: (1) gradual cracking, i.e. 'circular stair' and, (2) tortuous threads, i.e. a wavy line. It is conceivable that the material may not have been hit by major sudden forces but a disproportion between the thread configuration and the drilled hole may have led to screw loosening and torsion. Subsequently, the threads were deformed in a 'wavy' manner, finally leading to cracking and fracture of plates and screws. Fractures of plates and screws due to these instabilities are thought to be distinguishable from material resorption. In the application of biodegradable materials, more than two screws per single bone segment should be used as a principle of plate-fixation technique in order to avoid a stability-compromising situation, particularly in the stress-bearing areas of the maxillofacial region. Moreover, three-dimensional fixation using more than two plates is recommended in the facial skeleton e.g. zygomatic tripod. Intermaxillary fixation should also be considered to reinforce initial stability in stress-bearing areas.
van Bakelen, N. B.; Vermeulen, K. M.; Buijs, G. J.; Jansma, J.; de Visscher, J. G. A. M.; Hoppenreijs, Th. J. M.; Bergsma, J. E.; Stegenga, B.; Bos, R. R. M.
2015-01-01
Background Biodegradable fixation systems could reduce/delete the problems associated with titanium plate removal. This means less surgical discomfort, and a reduction in costs. Aim The aim of the present study was to compare the cost-effectiveness between a biodegradable and a titanium system in Maxillofacial surgery. Materials and Methods This multicenter RCT was performed in the Netherlands from December 2006 to July 2009. Included were 230 patients who underwent a bilateral sagittal split osteotomy (BSSO), a Le Fort-I osteotomy, or a bi-maxillary osteotomy and those treated for fractures of the mandible, maxilla, or zygoma. The patients were randomly assigned to a titanium group (KLS Martin) or to a biodegradable group (Inion CPS). Costs were assessed from a societal perspective. Health outcomes in the incremental cost-effectiveness ratio (ICER) were bone healing (8 weeks) and plate removal (2 years). Results In 25 out of the 117 patients who were randomized to the biodegradable group, the maxillofacial surgeon made the decision to switch to the titanium system intra-operatively. This resulted in an Intention-To-Treat (ITT-)analysis and a Treatment-Received (TR-) analysis. Both analyses indicated that operations performed with titanium plates and screws had better health outcomes. In the TR-analysis the costs were lower in the biodegradable group, in the ITT-analysis costs were lower in the titanium group. Conclusion and Discussion The difference in costs between the ITT and the TR analyses can be explained by the intra-operative switches: In the TR-analysis the switches were analysed in the titanium group. In the ITT-analysis they were analysed in the biodegradable group. Considering the cost-effectiveness the titanium system is preferable to the biodegradable system in the regular treatment spectrum of mandibular, Le Fort-I, and zygomatic fractures, and BSSO’s, Le Fort-I osteotomies and bimaxillary osteotomies. Trial Registration Controlled-Trials.com ISRCTN 44212338 PMID:26192813
Biological removal of phenol from wastewaters: a mini review
NASA Astrophysics Data System (ADS)
Pradeep, N. V.; Anupama, S.; Navya, K.; Shalini, H. N.; Idris, M.; Hampannavar, U. S.
2015-06-01
Phenol and its derivatives are common water pollutants and include wide variety of organic chemicals. Phenol poisoning can occur by skin absorption, inhalation, ingestion and various other methods which can result in health effects. High exposures to phenol may be fatal to human beings. Accumulation of phenol creates toxicity both for flora and fauna. Therefore, removal of phenol is crucial to perpetuate the environment and individual. Among various treatment methods available for removal of phenols, biodegradation is environmental friendly. Biological methods are gaining importance as they convert the wastes into harmless end products. The present work focuses on assessment of biological removal (biodegradation) of phenol. Various factors influence the efficiency of biodegradation of phenol such as ability of the microorganism, enzymes involved, the mechanism of degradation and influencing factors. This study describes about the sources of phenol, adverse effects on the environment, microorganisms involved in the biodegradation (aerobic and anaerobic) and enzymes that polymerize phenol.
Early Experience with Biodegradable Fixation of Pediatric Mandibular Fractures
Mazeed, Ahmed Salah; Shoeib, Mohammed Abdel-Raheem; Saied, Samia Mohammed Ahmed; Elsherbiny, Ahmed
2014-01-01
This clinical study aims to evaluate the stability and efficiency of biodegradable self-reinforced poly-l/dl-lactide (SR-PLDLA) plates and screws for fixation of pediatric mandibular fractures. The study included 12 patients (3–12 years old) with 14 mandibular fractures. They were treated by open reduction and internal fixation by SR-PLDLA plates and screws. Maxillomandibular fixation was maintained for 1 week postoperatively. Clinical follow-up was performed at 1 week, 6 weeks, 3 months, and 12 months postoperatively. Radiographs were done at 1 week, 3 months, and 12 months postoperatively to observe any displacement and fracture healing. All fractures healed both clinically and radiologically. No serious complications were reported in the patients. Normal occlusion was achieved in all cases. Biodegradable osteofixation of mandibular fractures offers a valuable clinical solution for pediatric patients getting the benefit of avoiding secondary surgery to remove plates, decreasing the hospital stay, further painful procedures, and psychological impact. PMID:26269728
Choi, Sung Yoon; Hur, Woojune; Kim, Byeung Kyu; Shasteen, Catherine; Kim, Myung Hun; Choi, La Mee; Lee, Seung Ho; Park, Chun Gwon; Park, Min; Min, Hye Sook; Kim, Sukwha; Choi, Tae Hyun; Choy, Young Bin
2015-04-01
Bone fixation systems made of biodegradable polymers are radiolucent, making post-operative diagnosis with X-ray imaging a challenge. In this study, to allow X-ray visibility, we separately prepared a radiopaque layer and attached it to a bioabsorbable bone plate approved for clinical use (Inion, Finland). We employed barium sulfate as a radiopaque material due to the high X-ray attenuation coefficient of barium (2.196 cm(2) /g). The radiopaque layer was composed of a fine powder of barium sulfate bound to a biodegradable material, poly(lactic-co-glycolic acid) (PLGA), to allow layer degradation similar to the original Inion bone plate. In this study, we varied the mass ratio of barium sulfate and PLGA in the layer between 3:1 w/w and 10:1 w/w to modulate the degree and longevity of X-ray visibility. All radiopaque plates herein were visible via X-ray, both in vitro and in vivo, for up to 40 days. For all layer types, the radio-opacity decreased with time due to the swelling and degradation of PLGA, and the change in the layer shape was more apparent for layers with a higher PLGA content. The radiopaque plates released, at most, 0.5 mg of barium sulfate every 2 days in a simulated in vitro environment, which did not appear to affect the cytotoxicity. The radiopaque plates also exhibited good biocompatibility, similar to that of the Inion plate. Therefore, we concluded that the barium sulfate-based, biodegradable plate prepared in this work has the potential to be used as a fixation device with both X-ray visibility and biocompatibility. © 2014 Wiley Periodicals, Inc.
Gareb, B; van Bakelen, N B; Buijs, G J; Jansma, J; de Visscher, J G A M; Hoppenreijs, Th J M; Bergsma, J E; van Minnen, B; Stegenga, B; Bos, R R M
2017-01-01
Biodegradable fixation systems could reduce or eliminate problems associated with titanium removal of implants in a second operation. The aim of this study was to compare the long-term (i.e. >5 years postoperatively) clinical performance of a titanium and a biodegradable system in oral and maxillofacial surgery. The present multicenter Randomized Controlled Trial (RCT) was performed in four hospitals in the Netherlands. Patients treated with a bilateral sagittal split osteotomy (BSSO) and/or a Le Fort-I osteotomy, and those treated for fractures of the mandible, maxilla, or zygoma were included from December 2006 to July 2009. The patients were randomly assigned to either a titanium (KLS Martin) or a biodegradable group (Inion CPS). After >5 years postoperatively, plate removal was performed in 22 of the 134 (16.4%) patients treated with titanium and in 23 of the 87 (26.4%) patients treated with the biodegradable system (P = 0.036, hazard ratio (HR) biodegradable (95% CI) = 2.0 (1.05-3.8), HR titanium = 1). Occlusion, VAS pain scores, and MFIQ showed good and (almost) pain free mandibular function in both groups. In conclusion, the performance of the Inion CPS biodegradable system was inferior compared to the KLS Martin titanium system regarding plate/screws removal in the abovementioned surgical procedures. http://controlled-trials.com ISRCTN44212338.
Articular Exposure with the Swashbuckler versus a Mini-Swashbuckler Approach
2012-01-01
autogenous bone grafting.1–4,15–16 Modern minimally invasive plating techniques which utilise indirect reduction of the metadiaphysis, even in the presence of...room conditions. All approaches were then performed by the senior author (J.R.H.), a fellowship- trained orthopaedic traumatologist. A Mini-swashbuckler
USDA-ARS?s Scientific Manuscript database
This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as ...
Wolff, M; Luczak, M; Schaper, J G; Wiese, B; Dahms, M; Ebel, T; Willumeit-Römer, R; Klassen, T
2018-09-01
The study is focussing towards Metal Injection Moulding (MIM) of Mg-alloys for biomedical implant applications. Especially the influence of the sintering processing necessary for the consolidation of the finished part is in focus of this study. In doing so, the chosen high strength EZK400 Mg-alloy powder material was sintered using different sintering support bottom plate materials to evaluate the possibility of iron impurity pick up during sintering. It can be shown that iron pick up took place from the steel bottom plate into the specimen. Despite the fact that a separating boron nitrite (BN) barrier layer was used and the Mg-Fe phase diagram is not predicting any significant solubility to each other. As a result of this study a new bottom plate material not harming the sintering and the biodegradation performance of the as sintered material, namely a carbon plate material, was found.
Giant mini-clusters as possible origin of halo phenomena observed in super-families
NASA Technical Reports Server (NTRS)
1985-01-01
Among 91 mini-clusters from 30 high energy Chiron-type families in Chacaltaya emulsion chambers, there were observed several extremely large multiplicity clusters in the highest energy range, far beyond the average of ordinary type clusters. Some details of microscopic observation of those giant mini-clusters in nuclear emulsion plates and some phenomenological regularity found in common among them are described. Such giant mini-clusters are possible candidates for the origin of narrow symmetric single halo phenomena in X-ray films which are frequently observed in super-families of visible energy greater than 1,000 TeV.
2016-01-01
For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity. PMID:27617441
Wurtzler, Elizabeth M; Wendell, David
2016-01-01
For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity.
van Bakelen, N. B.; Buijs, G. J.; Jansma, J.; de Visscher, J. G. A. M.; Hoppenreijs, Th. J. M.; Bergsma, J. E.; van Minnen, B.; Stegenga, B.; Bos, R. R. M.
2017-01-01
Background Biodegradable fixation systems could reduce or eliminate problems associated with titanium removal of implants in a second operation. Aim The aim of this study was to compare the long-term (i.e. >5 years postoperatively) clinical performance of a titanium and a biodegradable system in oral and maxillofacial surgery. Materials and methods The present multicenter Randomized Controlled Trial (RCT) was performed in four hospitals in the Netherlands. Patients treated with a bilateral sagittal split osteotomy (BSSO) and/or a Le Fort-I osteotomy, and those treated for fractures of the mandible, maxilla, or zygoma were included from December 2006 to July 2009. The patients were randomly assigned to either a titanium (KLS Martin) or a biodegradable group (Inion CPS). Results After >5 years postoperatively, plate removal was performed in 22 of the 134 (16.4%) patients treated with titanium and in 23 of the 87 (26.4%) patients treated with the biodegradable system (P = 0.036, hazard ratio (HR) biodegradable (95% CI) = 2.0 (1.05–3.8), HR titanium = 1). Occlusion, VAS pain scores, and MFIQ showed good and (almost) pain free mandibular function in both groups. Conclusion In conclusion, the performance of the Inion CPS biodegradable system was inferior compared to the KLS Martin titanium system regarding plate/screws removal in the abovementioned surgical procedures. Trial registration http://controlled-trials.com ISRCTN44212338. PMID:28493922
Ağlarcı, Cahide; Esenlik, Elçin; Fındık, Yavuz
2016-06-01
The aim of this study was to compare the short-term dental and skeletal effects of a face mask (FM) with those of skeletal anchorage (SA) therapy with intermaxillary elastics in prepubertal patients with skeletal Class III malocclusion. Fifty patients with skeletal Class III malocclusion and maxillary deficiency were divided into two groups. In the FM group, an FM was applied by a bite plate with a force of 400g for each side. In the SA group, mini-plates were placed between mandibular lateral incisors and canines, and mini-implants were inserted between maxillary second premolars and first molars. A bite plate was inserted into the upper arch, and Class III elastics were applied with a force of 200g between each mini-plate and mini-implant. Mean treatment durations were 0.52±0.09 years for FM and 0.76±0.09 years for SA. After the treatment, statistically significant increases in SNA°, ANB°, A-y, 1-NA, SnGoGn°, Co-A, Co-Gn, and A-Nperp, and reductions in SNB° and FH┴N-Pg were observed in both groups, and these changes were similar in both groups. In the FM group, 1-NB decreased significantly, and in the SA group, it increased significantly (P < 0.05). The undesired dentoalveolar effects of the FM treatment were eliminated with SA treatment, except with regard to lower incisor inclination. Favourable skeletal outcomes can be achieved by SA therapies, which could be an alternative to the extraoral appliances frequently applied to treat skeletal Class III patients with maxillary deficiency. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Joshi, Samir; Kshirsagar, Rajesh; Mishra, Akshay; Shah, Rahul
2015-01-01
To evaluate the efficacy of open reduction and semirigid internal fixation in the management of displaced pediatric mandibular fractures. Ten patients with displaced mandibular fractures treated with 1.5 mm four holed titanium mini-plate and 4 mm screws which were removed within four month after surgery. All cases showed satisfactory bone healing without any growth disturbance. Open reduction and rigid internal fixation (ORIF) with 1.5 mm titanium mini- plates and 4 mm screws is a reliable and safe method in treatment of displaced paediatric mandibular fractures.
Stabilization of multiple rib fractures in a canine model.
Huang, Ke-Nan; Xu, Zhi-Fei; Sun, Ju-Xian; Ding, Xin-Yu; Wu, Bin; Li, Wei; Qin, Xiong; Tang, Hua
2014-12-01
Operative stabilization is frequently used in the clinical treatment of multiple rib fractures (MRF); however, no ideal material exists for use in this fixation. This study investigates a newly developed biodegradable plate system for the stabilization of MRF. Silk fiber-reinforced polycaprolactone (SF/PCL) plates were developed for rib fracture stabilization and studied using a canine flail chest model. Adult mongrel dogs were divided into three groups: one group received the SF/PCL plates, one group received standard clinical steel plates, and the final group did not undergo operative fracture stabilization (n = 6 for each group). Radiographic, mechanical, and histologic examination was performed to evaluate the effectiveness of the biodegradable material for the stabilization of the rib fractures. No nonunion and no infections were found when using SF-PCL plates. The fracture sites collapsed in the untreated control group, leading to obvious chest wall deformity not encountered in the two groups that underwent operative stabilization. Our experimental study shows that the SF/PCL plate has the biocompatibility and mechanical strength suitable for fixation of MRF and is potentially ideal for the treatment of these injuries. Copyright © 2014 Elsevier Inc. All rights reserved.
[The use of titanium nickelide devices in treating fractures of the zygomatico-orbital complex].
Medvedev, Iu A; Sivolapov, K A
1993-01-01
The authors analyze the results of surgical treatment of 78 patients with zygomatico-orbital injuries. Mini-cramps and mini-plates of titanium nickelide with thermomechanical memory were employed for fracture fixation. Surgical strategy based on osteosynthesis with the use of such devices provides a reliable fixation of bone fragments and makes the operation less traumatic.
Code of Federal Regulations, 2012 CFR
2012-10-01
... plates, ramps or other appropriate devices; (4) Mini-high platforms, with multiple mini-high platforms or... chooses a means of meeting the performance standard other than using car-borne lifts, it must perform a comparison of the costs (capital, operating, and life-cycle costs) of car-borne lifts and the means chosen by...
Code of Federal Regulations, 2014 CFR
2014-10-01
... plates, ramps or other appropriate devices; (4) Mini-high platforms, with multiple mini-high platforms or... chooses a means of meeting the performance standard other than using car-borne lifts, it must perform a comparison of the costs (capital, operating, and life-cycle costs) of car-borne lifts and the means chosen by...
Code of Federal Regulations, 2011 CFR
2011-10-01
... plates, ramps or other appropriate devices; (4) Mini-high platforms, with multiple mini-high platforms or... chooses a means of meeting the performance standard other than using car-borne lifts, it must perform a comparison of the costs (capital, operating, and life-cycle costs) of car-borne lifts and the means chosen by...
Code of Federal Regulations, 2013 CFR
2013-10-01
... plates, ramps or other appropriate devices; (4) Mini-high platforms, with multiple mini-high platforms or... chooses a means of meeting the performance standard other than using car-borne lifts, it must perform a comparison of the costs (capital, operating, and life-cycle costs) of car-borne lifts and the means chosen by...
MARGINS mini-lessons: A tour of the Mariana Subduction System (Invited)
NASA Astrophysics Data System (ADS)
Goodliffe, A. M.; Oakley, A.
2009-12-01
MARGINS mini-lessons provide an efficient way to quickly move cutting edge MARGINS research into the university classroom. Instructors who are not necessarily familiar with the MARGINS program can easily use mini-lessons in a variety of educational settings. The mini-lesson described herein is centered on bathymetric and multi-channel seismic data collected during a 2003 NSF-MARGINS funded marine geophysical survey in the Mariana Basin. Designed as an approximately sixty minute lecture segment, the lesson covers both the techniques used to collect marine geophysical data and a description of the geology of the system. All geological provinces are included, from the subducting Pacific Plate in the east to the remnant arc in the west. Representative seismic lines and bathymetric images are presented for each province, along with a description of key processes including deformation of the subducting plate, serpentinite mud volcanism, forearc faulting, potentially tsunamigenic landslides, arc volcanism, and backarc spreading. The Mariana subduction system mini-lesson requires a computer with an internet connection, powerpoint, Google Earth, and a web-browser. Questions are embedded in the powerpoint presentation that can be adapted to a specific interactive response system as needed. Optimally the lesson should be used in parallel with a GeoWall. A 3-dimensional ArcScene visualization of the Mariana system is available for download through the MARGINS mini-lessons web site. Such visualizations are particularly effective in helping students understand complex three-dimensional systems. If presented in a computer lab students will benefit from being able to explore the Mariana system using tools such as GeoMapApp.
Mumtaz, Mohammad Umar; Farooq, Muneer Ahmad; Rasool, Altaf Ahmad; Kawoosa, Altaf Ahmad; Badoo, Abdul Rashid; Dhar, Shabir Ahmad
2010-07-01
Accurate open reduction and internal fixation for metacarpal and phalangeal fractures of the hand is required in less than 5% of the patients; otherwise, closed treatment techniques offer satisfactory results in most of these cases as these fractures are stable either before or after closed reduction. AO mini-fragment screws and plates, when used in properly selected cases, can provide rigid fixation, allowing early mobilization of joints and hence good functional results while avoiding problems associated with protruding K-wires and immobilization. The advantages of such internal fixation urged us to undertake such a study in our state where such hand injuries are commonly seen. Forty patients with 42 unstable metacarpal and phalangeal fractures were treated with open reduction and internal fixation using AO mini-fragment screws and plates over a period of three years in a prospective manner. The overall results were good in 78.5% of cases, fair in 19% of cases and poor in 2.5% of cases, as judged according to the criteria of the American Society for Surgery of the Hand. This technique is a reasonable option for treating unstable metacarpal and phalangeal fractures as it provides a highly rigid fixation, which is sufficient to allow early mobilization of the adjacent joints, thus helping to achieve good functional results.
Yuan, Heyang; Herzog, Bastian; Helmreich, Brigitte; Lemmer, Hilde; Müller, Elisabeth
2014-07-15
The aerobic biodegradation of 5-methyl-benzotriazole (5-TTri) was optimized using lab-scale setups and activated sludge communities (ASC) collected from three wastewater treatment plants (WWTP) MBR-MH, CAS-E and CAS-M being different in their treatment technologies. ASC inocula were diluted to rule out non-biodegrading species and incubated under two nutrient conditions: A) mineral salt media (MSM) and B) carbon and nitrogen supplied MSM giving MSM-CN. 5-TTri removal with the ASC ranged from 60% to 100% in only 10 days. 100 μL suspended biomass from the biodegrading setups was subsequently plated on solid media to eliminate possible activated sludge remnants. After growth occurred, mixed colonies were harvested and inoculated in fresh liquid MSM containing 20 mg L(-1) 5-TTri. These bacterial consortia showed good 5-TTri removal in MSM-CN rather than in MSM, indicating nutrient supply being required for efficient biodegradation. In addition, experiments with high 5-TTri concentrations ranging from 20 to 1,000 mg L(-1) were conducted in both, MSM and MSM-CN and the maximal 5-TTri removal capacity of the ASC evaluated. 50 mg L(-1) 5-TTri was still removed in both media whereas 100 mg L(-1) was solely removed in MSM-CN. 5-TTri biodegradation patterns also indicated that 5-TTri might be co-metabolized by microbial consortia. Furthermore, experiments with gradient-solid-media-plates showed 5-TTri to be inhibitory for the ASC in concentrations above 50 mg L(-1) and revealed the optimal conditions regarding carbon and nitrogen concentration and pH value for effective 5-TTri biodegradation by ASC. Nitrogen proved a crucial factor for enhancing organisms' biodegradation capacity with an optimal pH around 7 while carbon showed no such effect. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, Jung Min; Kim, Ji Heui; Lee, Ok Joo; Park, Chan Hum
2013-06-01
Bioresorbable fixation systems have been popular for the treatment of facial fractures. However, their mechanical properties are uncertain and complications have been reported. To overcome these problems, we developed a bioresorbable fixation plate using a composite of silk fibroin and bacterial cellulose (SF-BC) with biodegradability and increased biocompatibility. To investigate the regenerative effect of the bioresorbable SF-BC fixation plate on zygomatic arch defects in rats. In vivo animal study. The SF-BC composite plate had a tensile strength similar to that of a polylactic acid plate and a tight, pore-free microstructure. Bilateral segmental bone defects (2 mm in length) were created in the zygomatic arches of adult rats. One side was fixed with the SF-BC composite plate, and the other side was left without fixation. Academic research laboratory. Fifteen adult Sprague-Dawley rats. Fixation of the zygomatic arch defect with the SF-BC composite plate. Micro-computed tomography and histological evaluation of bone samples. Gross inspection revealed no specific complication. At 1, 2, 4, and 8 postoperative weeks, the zygomatic arches were explored by micro-computed tomography and histological examination. Control sides did not heal completely and showed bony degeneration and necrosis during the 8-week follow-up. However, we observed new bone formation in sides treated with the SF-BC composite plate, and bony defects were completely healed within 8 weeks. The SF-BC composite plate is a potential candidate for a new bioresorbable fixation system. Our composite material could considerably shorten bone regeneration time. Additional study of the control of biodegradability and mechanical properties of SF-BC composite plates and a comparative study with the resorbable plates currently in use should be undertaken.
Park, Jung-Hyun; Kim, Minkyu; Kim, Sang Yoon; Jung, Hwi-Dong; Jung, Young-Soo
2016-04-01
To evaluate three-dimensional change in maxillary position using biodegradable plates. A total of 53 patients who underwent orthognathic surgery using biodegradable plates were analyzed retrospectively. The position of maxilla was measured three-dimensionally using cone beam computed tomography data at preoperative (T0), 1-month postoperative (T1), and 1-year postoperative (T2) time points. Changes in the maxilla 1 year after the operation (T2-T1) were analyzed to demonstrate postoperative stability. The correlation between postoperative relapse (T2-T1) and surgical movement (T1-T0) of the maxilla was investigated. At 1-year postoperatively, no significant changes in maxillary position were noted in the antero-posterior and transverse dimensions. The anterior maxillary position in the vertical dimension also showed no significant changes, but the posterior maxillary position (posterior nasal spine, greater palatine foramen) showed a 0- to 2.98-mm relapse at 1-year postoperatively. The posterior maxilla tended to relapse inferiorly when the amount of surgical upward movement was greater than 3-3.5 mm and to relapse superiorly when the amount of surgical upward movement was less than 3-3.5 mm. For all patients, no postoperative complications in the osteofixated maxilla were observed during the follow-up period. Maxilla fixed with biodegradable plates was stable in the antero-posterior and transverse and the vertical (anterior maxilla) dimensions. Posterior maxillary vertical relapse was clinically acceptable, but relapse patterns that relate to the amount of surgical upward movement should be considered for surgical treatment planning. Copyright © 2016. Published by Elsevier Ltd.
Zone plate lenses for X-ray microscopy
NASA Astrophysics Data System (ADS)
Vladimirsky, Y.; Kern, D. P.; Chang, T. H. P.; Attwood, D. T.; Iskander, N.; Rothman, S.; McQuaide, K.; Kirz, J.; Ade, H.; McNulty, I.; Rarback, H.; Shu, D.
1988-04-01
Fresnel zone plate lenses with feature sizes as small as 50 nm have been constructed and used in the Stony Brook/NSLS scanning X-ray microscope with 3.1 nm radiation from Brookhaven's X-17 mini-undulator. The zone plates were fabricated at IBM using electron beam writing techniques, moiré pattern techniques to monitor ellipticity, and a double development/double plating technique to provide additional thickness in the central region. A spatial resolution down to 75 nm was measured in the microscope. Using these zone plates, biological images were obtained of unaltered subcellular components. The images highlight protein concentration in unsectioned, unfixed, and unstained enzymatic granules in an aqueous environment.
2007-08-01
simultaneously transferred to a single flask and provided with toluene as a growth substrate. The cells were subsequently harvested and checked for 1,4... harvested via centrifugation, rinsed with fresh media, and re-suspended to an OD550 of 1-2. Aliquots of the prepared cells were then transferred to...Total RNA from the bacterial cells was isolated with an RNeasy Mini kit (Qiagen, Valencia, CA) with some modifications. The harvested cells were
Roubal, George; Atlas, Ronald M.
1978-01-01
Hydrocarbon-utilizing microorganisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene ≫ pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population. PMID:655706
Kidgell, Dawson J; Horvath, Deanna M; Jackson, Brendan M; Seymour, Philip J
2007-05-01
Lateral ankle sprain (LAS) is one of the most common injuries incurred during sporting activities, and effective rehabilitation programs for this condition are challenging to develop. The purpose of this research was to compare the effect of 6 weeks of balance training on either a mini-trampoline or a dura disc on postural sway and to determine if the mini-trampoline or the dura disc is more effective in improving postural sway. Twenty subjects (11 men, 9 women) with a mean age of 25.4 +/- 4.2 years were randomly allocated into a control group, a dura disc training (DT) group, or a mini-trampoline (MT) group. Subjects completed 6 weeks of balance training. Postural sway was measured by subjects performing a single limb stance on a force plate. The disbursement of the center of pressure was obtained from the force plate in the medial-lateral and the anterior-posterior sway path and was subsequently used for pretest and posttest analysis. After the 6-week training intervention, there was a significant (p < 0.05) difference in postural sway between pre- and posttesting for both the MT (pretest = 56.8 +/- 20.5 mm, posttest = 33.3 +/- 8.5 mm) and DT (pretest = 41.3 +/- 2.6 mm, posttest = 27.2 +/- 4.8 mm) groups. There was no significant (p > 0.05) difference detected for improvements between the MT and DT groups. These results indicate that not only is the mini-trampoline an effective tool for improving balance after LAS, but it is equally as effective as the dura disc.
Pollock, Richard A.
2008-01-01
Fractures of the palate have defied conventional management, such that malrotation and disinclination of the palatal shelves occur in a significant number of patients after repair. The fractured palatal shelves of eight patients were first prealigned. To do so, one or more 205-mm ratchet clamps and two intermaxillary fixation (IMF) posts were used. Rigid fixation was then achieved by applying a 2.0-mm mini-locking titanium plate (across the palatal vault) and by applying an adaptation miniplate across the fracture line as it exited the anterior surface of the maxilla. Screws were passed directly through the mucoperiosteum, to engage the palatal shelves and to lock the locking plate into position. Lacerations in the mucoperiosteum were neither used to aid fixation nor used as portals for dissection; incisions and mucoperiosteal flaps in the palatal vault were avoided. Adjuncts, such as intraoral splints, have not been used in cases to date, and early mobilization was allowed. Reconstitution of the craniomaxillofacial buttresses was added in patients with more extensive maxillary injury. The palatal appliance and screws remained rigidly in position in the roof of the mouth, much like an external fixator, until their removal 8 to 12 weeks after the repair. No patient suffered erosion of the mucoperiosteum or other major morbidity, other than a transient fistula of the soft palate. The palatoalveolar segments remained in proper realignment and inclination, and pretraumatic occlusal patterns and the width and depth of the lower face appear to have been restored with one exception. The latter suffered a subtle posterolateral open bite that was corrected orthodontically. Prealignment of fractured palatal shelves with one or more large ratchet clamps and two IMF posts provides several points of forced reduction of the palatal shelves, along the dental arch. In addition, stabilization with mini-locking plate(s) in the palatal vault and an adaptation plate across the fracture line, as it exits the maxilla, appear to have merit, based on this preliminary report (n = 8). Outcomes seen on computed tomography and clinical examination during this 3-year experience have been favorable. PMID:22110785
ER-1422: Biodegradation of 1,4-Dioxane
2007-08-01
simultaneously transferred to a single flask and provided with toluene as a growth substrate. The cells were subsequently harvested and checked for 1,4... harvested via centrifugation, rinsed with fresh media, and re-suspended to an OD550 of 1-2. Aliquots of the prepared cells were then transferred to...Total RNA from the bacterial cells was isolated with an RNeasy Mini kit (Qiagen, Valencia, CA) with some modifications. The harvested cells were
Experimental investigation on the miniature mixed refrigerant cooler driven by a mini-compressor
NASA Astrophysics Data System (ADS)
Chen, Gaofei; Gong, Maoqiong; Wu, Yinong
2018-05-01
Three miniature Joule-Thomson cryogenic coolers and a testing set up were built to investigate the cooling performance in this work. Shell-and-tube heat exchanger and plate fin heat exchangers with rectangular micro channels were designed to achieve high specific surface area. The main processing technology of micro mixed refrigerant cooler (MMRC) was described. The design and fabrication processing of the plate fin heat exchangers were also described. The new developed micro plate-fin type heat exchanger shows high compactness with the specific heat surface larger than 1.0x104 m2/m3. The results of experimental investigations on miniature mixed refrigerant J-T cryogenic coolers driven by a Mini-Compressor were discussed. The performance evaluation and comparison of the three coolers was made to find out the features for each type of cooler. Expressions of refrigeration coefficient and exergy efficiency were pointed out. No-load temperature of about 112 K, and the cooling power of 4.0W at 118K with the input power of 120W is achieved. The exergy efficiency of the SJTC is 5.14%.
He, Xianfeng; Zhu, Limei; Zhang, Jingwei; Li, Ming; Yu, Yihui
2014-12-30
To compare the clinical efficacies of mini-invasive percutaneous osteosynthesis (MIPO) versus supercutaneous plating with closed reduction in the treatment of distal tibial fractures. A total of 48 patients with close distal tibial fractures were treated between January 2010 and January 2012. The MIPO group included 16 males and 8 females with an average age of 36 years. And the types were A (n = 15), B (n = 6) and C (n = 3) according to the classification scheme of Association for the Study of Internal Fixation (AO/ASIF). The supercutaneous plating group also included 16 males and 8 females with an average age of 37 years. And the types were A (n = 15), B (n = 6) and C (n = 3). And the operative duration, hospital stay, union time, postoperative complications and function of ankle were compared between two groups. The mean follow-up period was 18.5 (12-26) months. There was no instance of nonunion, hardware breakdown or deep infection. Patients in supercutaneous plating group had significantly shorter mean operative duration, hospital stay and union time. Three patients and 1 patient in MIPO group presented with superficial infection and delayed union respectively while there was no occurrence in supercutaneous plating group. And the differences were not statistically significant. Fifteen patients (62.5%) complained of implant impingement or discomfort. And stripping occurred at an incidence of 15.6% during the removal time of locking screws in MIPO group. While in supercutaneous plating group, there as no complaint of skin irritation and removal of supercutaneous plate was easily performed without anesthesia. The mean AOFAS score was 90.7 ± 3.8 in supercutaneous plating group versus 88.9 ± 4.1 in MIPO group (P = 0.070). Distal tibia fractures may be treated successfully with MIPO or supercutaneous plating. However, supercutaneous plating offers multiple advantages in terms of mean operative duration, hospital stay, union time, skin irritation and implant removal.
An innovative miniature microbial fuel cell fabricated using photolithography.
Chen, You-Peng; Zhao, Yue; Qiu, Ke-Qiang; Chu, Jian; Lu, Rui; Sun, Min; Liu, Xian-Wei; Sheng, Guo-Ping; Yu, Han-Qing; Chen, Jie; Li, Wen-Jie; Liu, Gang; Tian, Yang-Chao; Xiong, Ying
2011-02-15
Recently microbial fuel cells (MFCs) have attracted increasing interests in both environmental and energy fields. Among the various MFC configurations, miniature microbial fuel cell (mini-MFC) has a great potential for the application in medical, communication and other areas because of its miniature volume and high output power density. In this work, a 25-μL single-chamber mini-MFC was fabricated using the photolithography technique. The plate-shaped gold anodic electrode in the mini-MFC showed a higher electrochemical activity than the stripe-shaped one. A biofilm of Shewanella oneidensis MR-1 was formed on the surface of gold electrode in this micro-liter-scale MFCs. As a result, a maximum power density of 29 mW/m(2) and a maximum current density of 2148 mA/m(2) were achieved by this single-chamber mini-MFC. Copyright © 2010 Elsevier B.V. All rights reserved.
Melanosome degradation: fact or fiction.
Borovanský, Jan; Elleder, Milan
2003-06-01
Our mini review summarizes what is known about the (bio)degradation of melanosomes. Unlike melanosome biogenesis where our knowledge enables us to explain it in molecular terms posing many interesting questions on the relation between lysosomes and melanosomes, melanosome degradation has remained 'terra incognita'. Observations at optical and ultrastructural levels describe the disintegration of melanosomes in the lysosomal compartment (in auto- and heterophagosomes). Histochemical studies suggest the participation of acid hydrolases in the process of melanosome degradation. Biochemical data confirm the ability of lysosomal hydrolases to degrade melanosome constituents except the melanin moiety. The similarity of melanin structure to that of polycyclic aromatic hydrocarbons suggests that melanin should be sensitive mainly, if not exclusively, to oxidative breakdown. In vitro melanin can indeed be decomposed by an oxidative attack and the degradation is accompanied by fluorescence and decreasing absorbance. From enzymes engaged in the biotransformation of polycyclic hydrocarbons only phagosomal NADPH oxidase meets the criteria (particularly as for compartmental and catalytic properties) to be involved in melanin biodegradation. The in vivo biodegradation of melanin has so far been clearly demonstrated in Aspergillus and fungi melanins.
Helling, Hanns-Joachim; Prokop, Axel; Schmid, Hans Ulrich; Nagel, Michael; Lilienthal, Jürgen; Rehm, Klaus Emil
2006-01-01
This multicenter, prospective, randomized study compares the use of biodegradable polylactide pins with standard metal mini-fragment implants for the treatment of displaced radial head fractures. It compares complication rates and clinical outcomes of both treatment methods. At 2 years, 135 (82%) of 164 patients were available for evaluation. Equivalence of treatment method was defined as a difference of 10% or less in the number of complication-free patients. Functional status was assessed by using the Broberg and Morrey Elbow Score and compared by an unpaired t test. Good or excellent clinical results were achieved by 92% (56/61) of the control patients and 96% (71/74) of the polylactide patients. The incidence of complication-free patients was 3.7% less in the polylactide group than in the control group. The 1-sided 95% confidence interval for the treatment difference between the 2 groups was more than -6.1%. Biodegradable polylactide pins have at least comparable outcomes as standard metal implants for the internal fixation of reconstructable displaced radial head fractures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakan Ozaltun; Pavel Medvedev
The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate frommore » RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.« less
Peng, Weihai; Zheng, Wei; Shi, Kai; Wang, Wangshu; Shao, Ying; Zhang, Duo
2015-11-09
Internal fixation of bone fractures using biodegradable poly(L-lactic-acid) (PLLA)-based materials has attracted the attention of many researchers. In the present study, 36 male beagle dogs were randomly assigned to two groups: PLLA/PLLA-gHA (PLLA-grafted hydroxyapatite) group and PLLA group. PLLA/PLLA-gHA and PLLA plates were embedded in the muscular bags of the erector spinae and also implanted to fix mandibular bone fractures in respective groups. At 1, 2, 3, 6, 9, and 12 months postoperatively, the PLLA/PLLA-gHA and PLLA plates were evaluated by adsorption and degradation tests, and the mandibles were examined through radiographic analysis, biomechanical testing, and histological analysis. The PLLA/PLLA-gHA plates were non-transparent and showed a creamy white color, and the PLLA plates were transparent and faint yellow in color. At all time points following surgery, adsorption and degradation of the PLLA/PLLA-gHA plates were significantly less than those of the PLLA plates, and the lateral and longitudinal bending strengths of the surgically treated mandibles of the beagle dogs in the PLLA/PLLA-gHA group were significantly greater than those of the PLLA group and reached almost the value of intact mandibles at 12 months postoperatively. Additionally, relatively rapid bone healing was observed in the PLLA/PLLA-gHA group with the formation of new lamellar bone tissues at 12 months after the surgery. The PLLA/PLLA-gHA nano-composite can be employed as a biodegradable material for internal fixation of mandibular bone fractures.
Experimental model of the role of cracks in the mechanism of explosive eruption of St. Helens-80
NASA Astrophysics Data System (ADS)
Kedrinskii, V. K.; Skulkin, A. A.
2017-07-01
A unique mini model of explosive volcano eruption through a formed system of cracks is developed. The process of crack formation and development is simulated by electric explosion of a conductor in a plate of optically transparent organic glass submerged into water. The explosion of a wire aligned with a through hole in the plate generates shock-wave loading along the plate and forms cracks. The fundamental role of high velocity flow in crack wedging by a high power hydrodynamic flow of a pulsating explosion cavity has been demonstrated.
Otegui, Marisa S.; Mastronarde, David N.; Kang, Byung-Ho; Bednarek, Sebastian Y.; Staehelin, L. Andrew
2001-01-01
The three-dimensional architecture of syncytial-type cell plates in the endosperm of Arabidopsis has been analyzed at ∼6-nm resolution by means of dual-axis high-voltage electron tomography of high-pressure frozen/freeze-substituted samples. Mini-phragmoplasts consisting of microtubule clusters assemble between sister and nonsister nuclei. Most Golgi-derived vesicles appear connected to these microtubules by two molecules that resemble kinesin-like motor proteins. These vesicles fuse with each other to form hourglass-shaped intermediates, which become wide (∼45 nm in diameter) tubules, the building blocks of wide tubular networks. New mini-phragmoplasts also are generated de novo around the margins of expanding wide tubular networks, giving rise to new foci of cell plate growth, which later become integrated into the main cell plate. Spiral-shaped rings of the dynamin-like protein ADL1A constrict but do not fission the wide tubules at irregular intervals. These rings appear to maintain the tubular geometry of the network. The wide tubular network matures into a convoluted fenestrated sheet in a process that involves increases of 45 and 130% in relative membrane surface area and volume, respectively. The proportionally larger increase in volume appears to reflect callose synthesis. Upon fusion with the parental plasma membrane, the convoluted fenestrated sheet is transformed into a planar fenestrated sheet. This transformation involves clathrin-coated vesicles that reduce the relative membrane surface area and volume by ∼70%. A ribosome-excluding matrix encompasses the cell plate membranes from the fusion of the first vesicles until the onset of the planar fenestrated sheet formation. We postulate that this matrix contains the molecules that mediate cell plate assembly. PMID:11549762
Innovative biological approaches for monitoring and improving water quality
Aracic, Sanja; Manna, Sam; Petrovski, Steve; Wiltshire, Jennifer L.; Mann, Gülay; Franks, Ashley E.
2015-01-01
Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages. PMID:26322034
Cifuentes, S C; Frutos, E; Benavente, R; Lorenzo, V; González-Carrasco, J L
2017-01-01
This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bulnes-Abundis, David; Carrillo-Cocom, Leydi M; Aráiz-Hernández, Diana; García-Ulloa, Alfonso; Granados-Pastor, Marisa; Sánchez-Arreola, Pamela B; Murugappan, Gayathree; Alvarez, Mario M
2013-04-01
In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5-100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple-easy to assemble, easy to use, easy to clean-cell culture mini-bioreactors for lab-scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini-bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini-bioreactor were comparable to those observed for 6-well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini-bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini-bioreactor. Copyright © 2012 Wiley Periodicals, Inc.
Spurrier, Francis R.; Pierce, Bill L.; Wright, Maynard K.
1986-01-01
A plate for a fuel cell has an arrangement of ribs defining an improved configuration of process gas channels and slots on a surface of the plate which provide a modified serpentine gas flow pattern across the plate surface. The channels are generally linear and arranged parallel to one another while the spaced slots allow cross channel flow of process gas in a staggered fashion which creates a plurality of generally mini-serpentine flow paths extending transverse to the longitudinal gas flow along the channels. Adjacent pairs of the channels are interconnected to one another in flow communication. Also, a bipolar plate has the aforementioned process gas channel configuration on one surface and another configuration on the opposite surface. In the other configuration, there are not slots and the gas flow channels have a generally serpentine configuration.
Dimkić, Ivica; Stupar, Miloš; Stanković, Slaviša; Vukojević, Jelena; Ljaljević Grbić, Milica
2018-01-01
The principal purpose of the study was to evaluate in vitro the potential ability of fungal isolates obtained from the painted layer of frescoes and surrounding air to induce symptoms of fresco deterioration, associated with their growth and metabolism, so that the risk of such deterioration can be precisely assessed and appropriate conservation treatments formulated. Biodegradative properties of the tested microfungi were qualitatively characterized through the use of a set of special agar plates: CaCO3 glucose agar (calcite dissolution), casein nutrient agar (casein hydrolysis), Czapek-Dox minimal medium (pigment secretion); and Czapek-Dox minimal broth (acid and alkali production). Most of the tested isolates (71.05%) demonstrated at least one of the degradative properties, with Penicillium bilaiae as the most potent, since it tested positive in all four. The remaining isolates (28.95%) showed no deterioration capabilities and were hence considered unlikely to partake in the complex process of fungal deterioration of murals via the tested mechanisms. The obtained results clearly indicate that utilization of fast and simple plate assays can provide insight into the biodegradative potential of deteriogenic fungi and allow for their separation from allochthonous transients, a prerequisite for precise assessment of the amount of risk posed by a thriving mycobiota to mural paintings. PMID:29309432
Combined Mini-Cylex & Disk Acceleration Tests in Type K Copper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maines, Warren Russell; Kittell, David E.; Hobbs, Michael L.
We combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State at the tube wall. And we estimated Gurney velocity both at the test cap and tube wall. Our experiments and simulations are within expected uncertainty. The test and the analysis effectively reduce costs while keeping similar fidelity compared with more expensive tests.
Miniaturized protein separation using a liquid chromatography column on a flexible substrate
NASA Astrophysics Data System (ADS)
Yang, Yongmo; Chae, Junseok
2008-12-01
We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5-20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ~11 000 and successfully separates denatured and native protein mixtures at ~71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ~20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions.
Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali
2015-01-01
We have designed and fabricated a miniature microscope from off-the-shelf components and webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters such as cell/tissue viability (e.g. Live/Dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60X, achieves a resolution as high as <2 μm, and possesses a long working distance of 4.5 mm (at a magnification of 8X). The mini-microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread applications in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required. PMID:26282117
A cost-effective fluorescence mini-microscope for biomedical applications.
Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali
2015-01-01
We have designed and fabricated a miniature microscope from off-the-shelf components and a webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters, such as cell/tissue viability (e.g. live/dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60×, achieves a resolution as high as <2 μm, and possesses a long working distance of 4.5 mm (at a magnification of 8×). The mini-microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including, but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread application in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required.
Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Zhang, Wenhao; Huang, Zhenying
2012-05-01
In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted. © 2011 Blackwell Publishing Ltd.
Loftus, Christopher J; Hinck, Bryan; Makovey, Iryna; Sivalingam, Sri; Monga, Manoj
2018-04-01
To determine how sheath and endoscope size affect intrarenal pelvic pressures and risk of postoperative infectious complications comparing "Mini" vs "Standard" percutaneous nephrolithotomy (PCNL). Uropathogenic Escherichia coli were grown and 10 9 of them were instilled into the porcine renal pelvis through retrograde access for 1 hour. Percutaneous access utilized a 14/16F 20 cm ureteral access sheath for the Mini arm and a 30F sheath for the Standard arm. Nephroscopy was simulated utilizing either an 8/9.8F semirigid ureteroscope or 26F nephroscope for 1 hour while intrarenal pelvic pressure was continuously monitored. Blood and tissue cultures of kidney, liver, and spleen biopsies were plated and incubated and positive cultures were confirmed with polymerase chain reaction. Intrapelvic pressures were higher in the Mini group, 18.76 ± 5.82 mm Hg vs 13.56 ± 5.82 mm Hg (p < 0.0001). Time spent above 30 mm Hg was greater in the Mini arm, 117.0 seconds vs 66.1 seconds (p = 0.0452). All pigs had positive kidney tissue cultures whereas spleen cultures were positive in 100% and 60% of pigs in the Mini and Standard arms, respectively (p = 0.0253); 90% and 30% had positive liver tissue culture in the Mini and Standard arms, respectively (p = 0.0062). Blood cultures were positive in 30% of pigs in the Mini arm compared with none in the Standard arm (p = 0.0603). Mini-PCNL was associated with higher intrarenal pressures and higher risk of end organ bacterial seeding in the setting of an infected collecting system. This suggests a higher potential for infectious complications in a clinical setting.
A mini-microscope for in situ monitoring of cells.
Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali
2012-10-21
A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.
A mini-microscope for in situ monitoring of cells†‡
Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R.; Hamilton, Geraldine A.; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E.
2013-01-01
A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost. PMID:22911426
Kharmanda, Ghias; Kharma, Mohamed-Yaser
2017-06-01
The objective of this work is to integrate structural optimization and reliability concepts into mini-plate fixation strategy used in symphysis mandibular fractures. The structural reliability levels are next estimated when considering a single failure mode and multiple failure modes. A 3-dimensional finite element model is developed in order to evaluate the ability of reducing the negative effect due to the stabilization of the fracture. Topology optimization process is considered in the conceptual design stage to predict possible fixation layouts. In the detailed design stage, suitable mini-plates are selected taking into account the resulting topology and different anatomical considerations. Several muscle forces are considered in order to obtain realistic predictions. Since some muscles can be cut or harmed during the surgery and cannot operate at its maximum capacity, there is a strong motivation to introduce the loading uncertainties in order to obtain reliable designs. The structural reliability is carried out for a single failure mode and multiple failure modes. The different results are validated with a clinical case of a male patient with symphysis fracture. In this case while use of the upper plate fixation with four holes, only two screws were applied to protect adjacent vital structure. This behavior does not affect the stability of the fracture. The proposed strategy to optimize bone plates leads to fewer complications and second surgeries, less patient discomfort, and shorter time of healing.
Outcome of low profile mesh plate in management of comminuted displaced fracture patella.
Singer, Mohamed S; Halawa, Abdelsamie M; Adawy, Adel
2017-06-01
To assess the clinical results of using mesh plate in management of displaced comminuted fracture patella. Between January 2014 and October 2015, nine patients with closed displaced comminuted fracture patella were fixed using mesh plate and 2mm mini screws. All fractures united after an average of 10 weeks. At final follow-up of an average 19.6 months, average postoperative Lysholm score was 89.1±4.9, and average Postoperative Böstman scale was 27.2±3.1. No hardware related complications were recorded. Low profile mesh plate is a good option in management of comminuted fracture patella with good clinical outcome. This new surgical technique may be particularly useful in comminuted fractures when patellectomy would otherwise be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms.
Kim, Mi Yeon; Kim, Changman; Moon, Jungheun; Heo, Jinhee; Jung, Sokhee P; Kim, Jung Rae
2017-02-28
Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.
Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation.
Su, X M; Bamba, A M; Zhang, S; Zhang, Y G; Hashmi, M Z; Lin, H J; Ding, L X
2018-04-01
The bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sites is not running smoothly, because of the lower activity of PAH-degrading bacteria in actual bioremediation applications. The phenomenon of "viable but nonculturable" (VBNC) state may be a main limiting factor for their poor biodegradation capabilities of PAHs. Due to their abilities of entering into the VBNC state, most of bacterial populations with PAH-degradation potential remain unculturable. Resuscitation of VBNC bacteria will enhance the degradation capability of indigenous bacteria which will eventually obtain their better capabilities in environmental bioremediation. Although evidences have been presented indicating that resuscitation of VBNC bacteria in polychlorinated biphenyl (PCB)-contaminated environments not only significantly enhanced PCB degradation, but also obtained novel highly efficient PCB-degrading bacteria, scanty information is available on the VBNC bacteria in PAH-contaminated sites. VBNC bacteria, as a vast majority of potential microbial resource could be the repository of novel highly efficient PAH-biodegraders. Therefore, studies need to be done on resuscitation of VBNC bacteria to overcome key bottlenecks in bioremediation of PAH-contaminated sites. This mini-review provides a new insight into the potential functions of VBNC bacteria in PAHs biodegradation. As the vast majority microbial resource, viable but nonculturable (VBNC) bacteria, which showed their potential functions in polycyclic aromatic hydrocarbons (PAHs) biodegradation, can be of great significance in environmental bioremediation. It is therefore important to resuscitate VBNC bacteria for their better capabilities. Meanwhile, preventing the indigenous functional community from entering into the VBNC state will also maintain the high activity of PAH-degrading bacteria in actual bioremediation applications. Undoubtedly, much more work needs to be done to reveal indigenous micro-organisms in the VBNC state from the perspective of environmental functions. © 2018 The Society for Applied Microbiology.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Ming, D. W.; Gellert, R.; Yen, A.; Clark, B. C.; Gnaff, T. G.; Arvidson, R. E.; Squyres, S. W.
2008-01-01
The Alpha Particle X-ray Spectrometer (APXS) instrument on the Mars Exploration Rover (MER) Spirit measured three targets on or adjacent to Home Plate in Gusev Crater that have unusually high SiO2 concentrations (68% to 91%), unusually low FeO concentrations (1% to 7%, with total Fe as FeO), and unusually high TiO2/FeO ratios (0.2 to 1.2 by weight) [1]. Two targets (Kenosha Comets and Lefty Ganote) are located on high albedo soil (Gertrude Weise) that was exposed by the rover wheels, and one target is a float rock called Fuzzy Smith. Kenosha Comets has the highest SiO2 concentration, lowest FeO concentration, and highest TiO2/FeO ratio. Mineralogical evidence from the MER Miniature Thermal Emission Spectrometer (Mini-TES) suggests that the SiO2 is present as amorphous (noncrystalline) SiO2 at Gertrude Weise and nearby targets [2,3]. Mini-TES data were not acquired for Fuzzy Smith. Home Plate is considered to have an explosive volcanic origin, resulting when basaltic magma came into contact with ground water or ice [4]. Within 50 m to 1 km of Home Plate are sulfate rich soil deposits (Paso Robles class soils with 22-35% SO3) which are considered to be probable fumarolic and/or hydrothermal deposits associated with the volcanism [5]. We develop the model here, suggested by [5], that the high-silica materials are another manifestation of acid-sulfate processes associated with fumarolic and hydrothermal activity at Home Plate. This is done by analogy with basaltic materials altered by acid sulfate processes on the Island of Hawaii.
Biodegradation of polyester polyurethane by Aspergillus tubingensis.
Khan, Sehroon; Nadir, Sadia; Shah, Zia Ullah; Shah, Aamer Ali; Karunarathna, Samantha C; Xu, Jianchu; Khan, Afsar; Munir, Shahzad; Hasan, Fariha
2017-06-01
The xenobiotic nature and lack of degradability of polymeric materials has resulted in vast levels of environmental pollution and numerous health hazards. Different strategies have been developed and still more research is being in progress to reduce the impact of these polymeric materials. This work aimed to isolate and characterize polyester polyurethane (PU) degrading fungi from the soil of a general city waste disposal site in Islamabad, Pakistan. A novel PU degrading fungus was isolated from soil and identified as Aspergillus tubingensis on the basis of colony morphology, macro- and micro-morphology, molecular and phylogenetic analyses. The PU degrading ability of the fungus was tested in three different ways in the presence of 2% glucose: (a) on SDA agar plate, (b) in liquid MSM, and (c) after burial in soil. Our results indicated that this strain of A. tubingensis was capable of degrading PU. Using scanning electron microscopy (SEM), we were able to visually confirm that the mycelium of A. tubingensis colonized the PU material, causing surface degradation and scarring. The formation or breakage of chemical bonds during the biodegradation process of PU was confirmed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The biodegradation of PU was higher when plate culture method was employed, followed by the liquid culture method and soil burial technique. Notably, after two months in liquid medium, the PU film was totally degraded into smaller pieces. Based on a comprehensive literature search, it can be stated that this is the first report showing A. tubingensis capable of degrading PU. This work provides insight into the role of A. tubingensis towards solving the dilemma of PU wastes through biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
3D-printed Microfluidic Devices: Fabrication, Advantages and Limitations—a Mini Review
Chen, Chengpeng; Mehl, Benjamin T.; Munshi, Akash S.; Townsend, Alexandra D.; Spence, Dana M.; Martin, R. Scott
2016-01-01
A mini-review with 79 references. In this review, the most recent trends in 3D-printed microfluidic devices are discussed. In addition, a focus is given to the fabrication aspects of these devices, with the supplemental information containing detailed instructions for designing a variety of structures including: a microfluidic channel, threads to accommodate commercial fluidic fittings, a flow splitter; a well plate, a mold for PDMS channel casting; and how to combine multiple designs into a single device. The advantages and limitations of 3D-printed microfluidic devices are thoroughly discussed, as are some future directions for the field. PMID:27617038
3D-printed Microfluidic Devices: Fabrication, Advantages and Limitations-a Mini Review.
Chen, Chengpeng; Mehl, Benjamin T; Munshi, Akash S; Townsend, Alexandra D; Spence, Dana M; Martin, R Scott
2016-08-21
A mini-review with 79 references. In this review, the most recent trends in 3D-printed microfluidic devices are discussed. In addition, a focus is given to the fabrication aspects of these devices, with the supplemental information containing detailed instructions for designing a variety of structures including: a microfluidic channel, threads to accommodate commercial fluidic fittings, a flow splitter; a well plate, a mold for PDMS channel casting; and how to combine multiple designs into a single device. The advantages and limitations of 3D-printed microfluidic devices are thoroughly discussed, as are some future directions for the field.
Stability of biodegradable implants in treatment of mandibular fractures.
Yerit, Kaan C; Hainich, Sibylle; Turhani, Dritan; Klug, Clemens; Wittwer, Gert; Ockher, Michael; Ploder, Oliver; Undt, Gerhard; Baumann, Arnulf; Ewers, Rolf
2005-06-01
Biodegradable implants have not been used on a large scale for internal fixation of mandibular fractures because of presumed inferior mechanical properties. This prospective clinical trial was designed to elucidate the stability and biocompatibility of self-reinforced poly-L/D-lactide plates and screws used to stabilize a variety of mandible fractures by open reduction and internal fixation. Sixty-six consecutive patients (22 female, 44 male; mean age, 23.9 years) with a total of 89 fractures at various sites of the mandible were included in the study. Stability of plates and screws and bone healing were observed by clinical and radiographic assessment. Intermaxillary fixation was applied in eight patients with concomitant condylar fractures for 2 to 3 weeks. The self-reinforcement technique provided sufficient mechanical stability of the implants for primary healing of these high-load mandibular bone areas. Postoperative complications were transient and limited to wound dehiscence and localized wound infection (two patients). In some patients, hypesthesia (three patients) or slight pain (10 patients) was reported at the 1-year recall examination, but implant-related serious adverse tissue reactions were not observed during the follow-up (mean, 24.4 months; range 6.4 to 44.3 months). On the basis of these preliminary results, the authors conclude that biodegradable self-reinforced implants show efficient stability during initial bone healing and promise a high potential for successful use in osteofixation of mandibular fractures.
Enzymatic degradation of thiolated chitosan.
Laffleur, Flavia; Hintzen, Fabian; Rahmat, Deni; Shahnaz, Gul; Millotti, Gioconda; Bernkop-Schnürch, Andreas
2013-10-01
The objective of this study was to evaluate the biodegradability of thiolated chitosans in comparison to unmodified chitosan. Mediated by carbodiimide, thioglycolic acid (TGA) and mercaptonicotinic acid (MNA) were covalently attached to chitosan via formation an amide bond. Applying two different concentrations of carbodiimide 50 and 100 mM, two chitosan TGA conjugates (TGA A and TGA B) were obtained. According to chitosan solution (3% m/v) thiomer solutions were prepared and chitosanolytic enzyme solutions were added. Lysozyme, pectinase and cellulase were examined in chitosan degrading activity. The enzymatic degradability of these thiomers was investigated by viscosity measurements with a plate-plate viscometer. The obtained chitosan TGA conjugate A displayed 267.7 µmol and conjugate B displayed 116.3 µmol of immobilized thiol groups. With 325.4 µmol immobilized thiol groups, chitosan MNA conjugate displayed the most content of thiol groups. In rheological studies subsequently the modification proved that chitosan TGA conjugates with a higher coupling rate of thiol groups were not only degraded to a lesser extent by 20.9-26.4% but also more slowly. Chitosan mercaptonicotinic acid was degraded by 31.4-50.1% depending the investigated enzyme and even faster than unmodified chitosan. According to these results the biodegradability can be influenced by various modifications of the polymer which showed in particular that the rate of biodegradation is increased when MNA is the ligand, whereas the degradation is hampered when TGA is used as ligand for chitosan.
MINI-RPV Engine Demonstrator Program.
1980-03-01
longer main bearings that were more widely spaced for better crankshaft support, and re- duced the moment arm of the overhung propeller and rotor mass...Exploded View of Tillotson Carburetor ........... ... 13 3 MK II First Generation Crankshaft ... ........... ... 15 4 Crankshaft Balance Diagram...Plate ...... .............. .. 29 14 Alternator with Integrated PCU .... ........... . 36 15 Rotor Construction and Flux Path ........... 37 16
Metallic fragments on the surface of miniplates and screws before insertion.
Ray, M S; Matthew, I R; Frame, J W
1999-02-01
Particulate metal fragments have been identified histologically within the tissues adjacent to miniplates and screws after they have been removed. These were thought to have been caused by corrosion and degradation of the metal. However, the particles may have originated from rough edges or from protuberances left on the metal surface after cutting and machining during manufacture, and subsequently become detached. This study was undertaken to analyse the incidence and distribution of metal fragments on the surface of miniplates and screws before use. Fifteen miniplates and 60 screws were examined by stereomicroscopy and scanning electron microscopy. Rough metal edges or protuberances were identified on over half the samples, mostly in the countersink area of screw holes on the mini-plates. Fragments were detected within some of the cruciform screw heads and on some screw threads. We conclude that metal protuberances are present on the surface of mini-plate components when they are received from the manufacturer. There is a risk that the fragments might be detached and deposited into the tissues during insertion.
Combined Mini-Cylex & Disk Acceleration Tests in Type K Copper
Maines, Warren Russell; Kittell, David E.; Hobbs, Michael L.
2018-04-16
In this work, we combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State and estimated Gurney velocity at the tube wall. The test also provides an additional method to estimate reaction products Hugoniot through knowledge of the copper test cap. Our experiments and simulations are within expected uncertainty. Lastly, the test and the analysis effectively reducemore » costs while keeping or increasing fidelity.« less
Combined Mini-Cylex & Disk Acceleration Tests in Type K Copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maines, Warren Russell; Kittell, David E.; Hobbs, Michael L.
In this work, we combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State and estimated Gurney velocity at the tube wall. The test also provides an additional method to estimate reaction products Hugoniot through knowledge of the copper test cap. Our experiments and simulations are within expected uncertainty. Lastly, the test and the analysis effectively reducemore » costs while keeping or increasing fidelity.« less
ShellFit: Reconstruction in the MiniCLEAN Detector
NASA Astrophysics Data System (ADS)
Seibert, Stanley
2010-02-01
The MiniCLEAN dark matter experiment is an ultra-low background liquid cryogen detector with a fiducial volume of approximately 150 kg. Dark matter candidate events produce ultraviolet scintillation light in argon at 128 nm and in neon at 80 nm. In order to detect this scintillation light, the target volume is enclosed by acrylic plates forming a spherical shell upon which an organic fluor, tetraphenyl butadiene (TPB), has been applied. TPB absorbs UV light and reemits visible light isotropically which can be detected by photomultiplier tubes. Two significant sources of background events in MiniCLEAN are decays of radon daughters embedded in the acrylic surface and external sources of neutrons, such as the photomultiplier tubes themselves. Both of these backgrounds can be mitigated by reconstructing the origin of the scintillation light and cutting events beyond a particular radius. The scrambling of photon trajectories at the TPB surface makes this task very challenging. The ``ShellFit'' algorithm for reconstructing event position and energy in a detector with a spherical wavelength-shifting shell will be described. The performance of ShellFit will be demonstrated using Monte Carlo simulation of several event types in the MiniCLEAN detector. )
Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink.
Dominic, A; Sarangan, J; Suresh, S; Sai, Monica
2014-03-01
The high density heat removal in electronic packaging is a challenging task of modern days. Finding compact, energy efficient and cost effective methods of heat removal is being the interest of researchers. In the present work, mini channel with forced convective heat transfer in simultaneously developing regime is investigated as the heat transfer coefficient is inversely proportional to hydraulic diameter. Mini channel heat sink is made from the aluminium plate of 30 mm square with 8 mm thickness. It has 15 mini channel of 0.9 mm width, 1.3 mm height and 0.9 mm of pitch. DI water and water based 0.1% and 0.2% volume fractions of Al2O3/water nanofluids are used as coolant. The flow rates of the coolants are maintained in such a way that it is simultaneously developing. Reynolds number is varied from 400 to 1600 and heat input is varied from 40 W to 70 W. The results showed that heat transfer coefficient is more than the heat transfer coefficient of fully developed flow. Also the heat transfer is more for nanofluids compared to DI water.
Quantum vacuum polarization, nanotechnology and a robotic mission to Proxima Centauri
NASA Astrophysics Data System (ADS)
de Morais Mendonca Teles, Antonio
In order to achieve an interstellar flight mission it is necessary powerful propulsion technologies. The space between stars and the time for a flight are highly vast. As an example, the closest star to the Sun is α Cen C (known as Proxima Centauri) distant 4.2 light-years. It is a star with spectral type dM5e (a "reddish dwarf"), which makes part of a quasi-triple gravitational star system -together with α Cen A and α Cen B. Based on theoretical models and observa-tional data on stellar and planetary systems evolution, Proxima Centauri has the possibility of having a non-stellar companion (perhaps a Mars or Moon-sized object) orbiting close to it. So, here in this paper, I propose as a first interstellar flight reconnaissance mission, for testing new technologies and gathering of scientific data, it would be interesting a flyby-and-rendezvous mission to Proxima Centauri. . . Such mission, using nanotechnology and solar energy, could be achieved by one mini-spacecraft (the carrier with the propulsion mini-motors) and three smaller mini-spacecrafts inside -one for a flyby inside the star system, other (lighter) for orbital in-sertion around Proxima Centauri, and the other (attached to the lighter one) for landing on a possible Proxima Centauri's companion, based on observational data from the one in orbit. The reason for the use of nanotechnology is that it provides a large number of equipment inside a spacecraft, uses few energy for the internal processes of the mini-spacecrafts, can repair them-selves (nanotechnology-built materials are also shown as "intelligent" materials), and makes them with small inertial mass -important for relativistic matters. Solar energy is a powerful energy source -there are 3 stars making the α Cen system. Such technologies can obviously be also used to explore the Solar System. A mission to Proxima Centauri with a speed of 0.1 c takes 42 Earth years to arrive there. Knowing that the mini-spacecraft has to decelerate and the inertial mass of the mini-spacecraft has a relativistic increase factor of 0.005, fifty years of mission is a feasible one. A way of achieving this is by using altogether the possible available spacecraft acceleration: gravity assistance, ionic propulsion, and using characteristics of the medium through which any spacecrafts travel by -vacuum. Vacuum has intrinsic quantum properties such as quantum tunneling, latent quantum residual energy, and the quantum vac-uum polarization phenomenon. I also propose the use of such quantum vacuum polarization (QVP) for the propulsion assistance for possible future Solar System and interstellar missions. QVP is a natural phenomenon arisen as a second-order correction for perturbation of quantum vacuum fluctuations, within the quantum field physics arena. It is related experimentally to the Casimir effect (the appearance of a negative potential barrier between very close and par-allel metallic plates in vacuum). Using a laser beam with a minimum of 1.22 MeV energy it is possible to create inside those plates in vacuum 1 real pair of electron-positron (anti-electron), and associated with this there is the creation of 1 virtual pair of electron-positron, through the geometrodynamical arrangement of the quantum vacuum fluctuations states, with a very small interval of time (δt). With much greater energies (GeV, TeV) it is possible to create virtual pairs with much longer δt, with the appearance of a repulsive force between the real and asso-ciated virtual pairs, caused by forced alignment of the spins of the real and virtual pairs. This could be attained by the use of a magnetic field. A powerful laser put in the extremity of the mini-spacecraft (together with the ionic mini-motor) in the middle of Casimir plates, could use that repulsive force to get much more momentum to the mini-spacecraft, for a possible speed in the order of 0.1 c. Telecommunication aspect can be arranged through the use of a tracking and data relay mini-satellites system orbiting the Sun.
NASA Astrophysics Data System (ADS)
Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan; Sainan, Khairul Imran; Talib, Siti Fatimah Abu
2015-08-01
Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al2O3 in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. A steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.
Hijnen, W A M; Schurer, R; Bahlman, J A; Ketelaars, H A M; Italiaander, R; van der Wal, A; van der Wielen, P W J J
2018-02-01
It is possible to distribute drinking water without a disinfectant residual when the treated water is biologically stable. The objective of this study was to determine the impact of easily and slowly biodegradable compounds on the biostability of the drinking water at three full-scale production plants which use the same surface water, and on the regrowth conditions in the related distribution systems. Easily biodegradable compounds in the drinking water were determined with AOC-P17/Nox during 2012-2015. Slowly biodegradable organic compounds measured as particulate and/or high-molecular organic carbon (PHMOC), were monitored at the inlet and after the different treatment stages of the three treatments during the same period. The results show that PHMOC (300-470 μg C L -1 ) was approximately 10% of the TOC in the surface water and was removed to 50-100 μg C L -1 . The PHMOC in the water consisted of 40-60% of carbohydrates and 10% of proteins. A significant and strong positive correlation was observed for PHMOC concentrations and two recently introduced bioassay methods for slowly biodegradable compounds (AOC-A3 and biomass production potential, BPC 14 ). Moreover, these three parameters in the biological active carbon effluent (BACF) of the three plants showed a positive correlation with regrowth in the drinking water distribution system, which was assessed with Aeromonas, heterotrophic plate counts, coliforms and large invertebrates. In contrast, the AOC-P17/Nox concentrations did not correlate with these regrowth parameters. We therefore conclude that slowly biodegradable compounds in the treated water from these treatment plants seem to have a greater impact on regrowth in the distribution system than easily biodegradable compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket
2015-09-16
Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.
Application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate.
Bis, M; Montusiewicz, A; Ozonek, J; Pasieczna-Patkowska, S
2015-09-01
In this study, the application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate was investigated. Three configurations of cavitation device were examined and operational parameters of the process were selected. The study indicated that the orifice plate with a 3/10mm diameter conical concentric hole, characterized by the cavitation number of 0.033, is a reasonable choice to ensure the enhanced biodegradability of mature leachate. Using such a configuration and maintaining 30 recirculation passes through the cavitation zone at inlet pressure of 7 bar, the highest increase of biodegradability index (BI) of approximately 22% occurred, i.e., from the value of 0.046 to 0.056. The FT-IR/PAS analysis confirmed a degradation of refractory compounds that typically prevail in mature leachate. An evaluation of energy efficiency was made in terms of the actual consumed energy measured by using the Kyoritsu KEW6310 Power Quality Tester. A cavitational yield of 9.8 mg COD kJ(-1) was obtained for the optimum configuration and 30 recirculation passes. Regarding energy efficiency, the application of 10 cavitation cycles appeared to be the most profitable. This was due to an almost threefold higher cavitational yield of 27.5 mg COD kJ(-1). However, the preferable option should be selected by considering a satisfactory effect in the biodegradability enhancement. Copyright © 2015 Elsevier B.V. All rights reserved.
Reddy, Arun B; Reddy, Narendar D
2017-07-01
Clarithromycin (CM), a broad spectrum macrolide antibiotic used to eradicate H. pylori in peptic ulcer. Clarithromycin (CM) is well absorbed from the gastrointestinal tract, but has a bioavailability of 50% due to rapid biodegradation. The aim of this investigation was to increase the gastric residence time, and to control the drug release of clarithromycin by formulating into multiple unit floating mini-tablets. Floating tablets were prepared by using direct compression method with HPMC K 4 M and Polyox WSR 1105 as release retarded polymers and sodium bicarbonate as gas generating agent. The prepared mini-tablets were evaluated for thickness, weight variation, friability, hardness, drug content, in vitro buoyancy, swelling studies, in vitro dissolution studies by using modified Rossett-Rice test and in vivo radiographic studies in healthy human volunteers in fasting conditions. DSC analysis revealed that no interaction between drug and excipients. All the physical parameters of the tablets were within the acceptable limits. The optimized formulation (F6) had showed controlled drug release of 99.16±3.22% in 12 h, by zero-order release kinetics, along with floating lag time of 9.5±1.28 s and total floating time of 12±0.14 h. X-ray imaging studies revealed that in vivo gastric residence time of clarithromycin floating mini-tablet in the stomach was about 3.5 h. The results demonstrated that the developed floating mini-tablets of clarithromycin caused significant enhancement in gastric retention time along with sustained effect and increased oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.
Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar
2017-06-01
The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.
Amaral, Marcio Bruno Figueiredo; Bueno, Sebastião Cristian; Abdala, Icaro Buchholz; da Silveira, Roger Lanes
2017-09-01
The present study aims to describe three cases of patients inflicted by rubber bullets with severe facial fractures. In addition, a review of English-language literature involving facial fractures by rubber bullets from 1975 to 2016 was performed. This current study demonstrated that the use of the LLRBW is unsafety even when applied by police enforcements exclusively. Management of facial fractures caused by LLRBW is done in a usual manner with closed or open reduction associated with bone mini-plates or reconstruction plates when indicated. Special initial wound care should be done to avoid secondary infection and additional procedures.
Schmidt, M.E.; Farrand, W. H.; Johnson, J. R.; Schroder, C.; Hurowitz, J.A.; McCoy, T.J.; Ruff, S.W.; Arvidson, R. E.; Des Marais, D.J.; Lewis, K.W.; Ming, D. W.; Squyres, S. W.; De Souza, P.A.
2009-01-01
Over the last ~ 3??years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80??m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by M??ssbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx.
Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.; ...
2016-12-01
Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.
Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less
1974-06-01
retrans- minied modulation signals. A phase-lock loop was used to provide correlation detection, allowing automatic acquisition and phase tracking at...steel strips, 0.5-inch-wide by 0.009-inch-thick, and formed to a 0.75-inch radius. Each antenne -was plated with silver to imprive con- dutivity...Telemetry Requirements k. Phase Detector Output Requirements 1. Primary Power Requirements m. AM Suppression Requirements n. Data Feedback Loop Gain
Wang, Suiyuan; Xiao, Yang; Tong, Zuoming; Li, Guiqiu; Jiang, Juhua; Yao, Jinghui; Wu, Zhiyong; Li, Tengfei; Wu, Qun
2013-09-01
To evaluate the surgical techniques and effectiveness of arthroscopic treatment of anterior cruciate ligament (ACL) tibial eminence avulsion fracture with non-absorbable suture fixation combined with the miniplate. Between January 2009 and March 2012, 32 patients with ACL tibial eminence avulsion fractures were treated. There were 18 males and 14 females, aged 12-40 years (mean, 17.5 years). The injury causes included traffic accident injury in 15 cases, sport injury in 6 cases, and falling injury in 11 cases. The time from injury to operation ranged 7-18 days with an average of 9.5 days. Before operation, the results of Lachman test were all positive; the Lysholm score was 52.13 +/- 4.22 and the International Knee Documentation Committee (IKDC) score was 44.82 +/- 2.44. According to Meyers-McKeever classification criteria, there were 12 cases of type II and 20 cases of type III. After arthroscopic poking reduction of fracture, tibial eminence avulsion fractures were fixed with the Ethibond non-absorbable sutures bypass figure-of-eight tibial tunnel combined with the metacarpal and phalangeal mini-plate. Primary healing was obtained in all incisions; no joint infection or skin necrosis occurred after operation. All patients were followed up with an average time of 22.4 months (range, 12-50 months). The patients showed negative Lachman test at 12 weeks after operation. Except 3 patients having knee extension limitation at last follow-up, the knee extension range of motion (ROM) was normal in the other patients; the knee flexion ROM was normal in all patients. The Lysholm score and IKDC score were significantly improved to 94.19 +/- 0.93 and 94.35 +/- 1.22 at last follow-up, showing significant differences when compared with preoperative values (t = 55.080, P = 0.000; t = 101.715, P = 0.000). The arthroscopic treatment of ACL tibial eminence avulsion fracture with Ethibond non-absorbable suture fixation combined with mini-plate is an effective procedure with the advantages of minimal trauma, reliable fixation, and satisfactory recovery of the knee joint function.
Open bite: diagnosis, treatment and stability.
Matsumoto, Mírian Aiko Nakane; Romano, Fábio Lourenço; Ferreira, José Tarcísio Lima; Valério, Rodrigo Alexandre
2012-01-01
Open bite has fascinated Orthodontics due to the difficulties regarding its treatment and maintenance of results. This anomaly has distinct characteristics that, in addition to the complexity of multiple etiological factors, have aesthetic and functional consequences. Within this etiological context, several types of mechanics have been used in open bite treatment, such as palatal crib, orthopedic forces, occlusal adjustment, orthodontic camouflage with or without extraction, orthodontic intervention using mini-implants or mini-plates, and even orthognathic surgery. An accurate diagnosis and etiological determination are always the best guides to establish the objectives and the ideal treatment plan for such a malocclusion. This report describes two cases of open bite. At the end of the treatment, both patients had their canines and molars in Class I occlusion, normal overjet and overbite, and stability during the posttreatment period.
Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M
2014-07-01
To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan
Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al{sub 2}O{sub 3} in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. Amore » steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.« less
Singh, Mahinder; Singh, R K; Passi, Deepak; Aggarwal, Mohit; Kaur, Guneet
2016-01-01
The purpose of this study was to determine the efficacy and stability of the biodegradable fixation system for treatment of mandible fractures in pediatric patients by measuring the bite force. Sixty pediatric patients with mandibular fractures (36 males, 24 females) were included in this study. The 2.5-mm resorbable plates were adapted along Champy's line of ideal osteosynthesis and secured with four 2.5 mm diameter monocortical resorbable screws, 8 mm in length. All patients were followed for 10 months. Clinical parameters, such as soft tissue infection, nonunion, malunion, implant exposure, malocclusion, nerve injury, and bite force for stability, were prospectively assessed. Adequate fixation and primary bone healing was achieved in 100% of the cases. Six minor complications (10%) were observed: 2 soft tissue infections (3%), 1 plate dehiscence (2%), 1 malocclusion (2%), and 2 paresthesia (3%). 2.5-mm resorbable plating system along Champy's line of ideal osteosynthesis is a good treatment modality for mandible fractures in pediatric patients.
Hydrothermal origin of halogens at Home Plate, Gusev Crater
NASA Astrophysics Data System (ADS)
Schmidt, Mariek E.; Ruff, Steven W.; McCoy, Timothy J.; Farrand, William H.; Johnson, Jeffrey R.; Gellert, Ralf; Ming, Douglas W.; Morris, Richard V.; Cabrol, Nathalie; Lewis, Kevin W.; Schroeder, Christian
2008-06-01
In the Inner Basin of the Columbia Hills, Gusev Crater is Home Plate, an 80 m platform of layered clastic rocks of the Barnhill class with microscopic and macroscopic textures, including a bomb sag, suggestive of a phreatomagmatic origin. We present data acquired by the Spirit Mars Exploration Rover by Alpha Particle X-Ray Spectrometer (APXS), Mössbauer Spectrometer, Miniature Thermal Emission Spectrometer (Mini-TES), and Panoramic Camera (Pancam) for the Barnhill class rocks and nearby vesicular Irvine class basalts. In major element concentrations (e.g., SiO2, Al2O3, MgO, and FeO*), the two rock classes are similar, suggesting that they are derived from a similar magmatic source. The Barnhill class, however, has higher abundances of Cl, Br, Zn, and Ge with comparable SO3 to the Irvine basalts. Nanophase ferric oxide (np ox) and volcanic glass were detected in the Barnhill class rocks by Mössbauer and Mini-TES, respectively, and imply greater alteration and cooling rates in the Barnhill than in the Irvine class rocks. The high volatile elements in the Barnhill class agree with volcanic textures that imply interaction with a briny groundwater during eruption and (or) by later alteration. Differences in composition between the Barnhill and Irvine classes allow the fingerprinting of a Na-Mg-Zn-Ge-Cl-Br (+/-Fe +/- Ca +/- CO2) brine with low S. Nearby sulfate salt soils of fumarolic origin may reflect fractionation of an acidic S-rich vapor during boiling of a hydrothermal brine at depth. Persistent groundwater was likely present during and after the formation of Home Plate.
Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine.
Chen, Jianwei; Wu, Qihao; Hua, Yi; Chen, Jun; Zhang, Huawei; Wang, Hong
2017-12-01
Rhamnolipids have recently emerged as promising bioactive molecules due to their novel structures, diverse and versatile biological functions, lower toxicity, higher biodegradability, as well as production from renewable resources. The advantages of rhamnolipids make them attractive targets for research in a wide variety of applications. Especially rhamnolipids are likely to possess potential applications of the future in areas such as biomedicine, therapeutics, and agriculture. The purpose of this mini review is to provide a comprehensive prospective of biosurfactant rhamnolipids as potential antimicrobials, immune modulators, and virulence factors, and anticancer agents in the field of biomedicine and agriculture that may meet the ever-increasing future pharmacological treatment and food safety needs in human health.
Similarities and differences in coatings for magnesium-based stents and orthopaedic implants
Ma, Jun; Thompson, Marc; Zhao, Nan; Zhu, Donghui
2016-01-01
Magnesium (Mg)-based biodegradable materials are promising candidates for the new generation of implantable medical devices, particularly cardiovascular stents and orthopaedic implants. Mg-based cardiovascular stents represent the most innovative stent technology to date. However, these products still do not fully meet clinical requirements with regards to fast degradation rates, late restenosis, and thrombosis. Thus various surface coatings have been introduced to protect Mg-based stents from rapid corrosion and to improve biocompatibility. Similarly, different coatings have been used for orthopaedic implants, e.g., plates and pins for bone fracture fixation or as an interference screw for tendon-bone or ligament-bone insertion, to improve biocompatibility and corrosion resistance. Metal coatings, nanoporous inorganic coatings and permanent polymers have been proved to enhance corrosion resistance; however, inflammation and foreign body reactions have also been reported. By contrast, biodegradable polymers are more biocompatible in general and are favoured over permanent materials. Drugs are also loaded with biodegradable polymers to improve their performance. The key similarities and differences in coatings for Mg-based stents and orthopaedic implants are summarized. PMID:27695671
Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model.
Juvonen, Tiina; Koistinen, Arto; Kröger, Heikki; Lappalainen, Reijo
2012-09-27
The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material. Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.
Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin; Awasthi, M. K.; Sarsaiya, S.
2012-01-01
Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria) produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days. PMID:22518141
Wu, Y F; Wang, Y M; Jing, Y B; Zhuang, J P; Yan, J L; Shao, Z K; Jin, M S; Wu, C J; Zhou, Y
2017-10-01
Microarc oxidation (MAO) coated magnesium (Mg) with improved corrosion resistance appeal increasing interests as a revolutionary biodegradable metal for fractured bone fixing implants application. However, the in vivo corrosion degradation of the implants and bone healing response are not well understood, which is highly required in clinic. In the present work, 10μm and 20μm thick biocompatible MAO coatings mainly composed of MgO, Mg 2 SiO 4 , CaSiO 3 and Mg 3 (PO 4 ) 2 phases were fabricated on AZ31 magnesium alloy. The electrochemical tests indicated an improved corrosion resistance of magnesium by the MAO coatings. The 10μm and 20μm coated and uncoated magnesium plates were separately implanted into the radius bone fracture site of adult New Zealand white rabbits using a 3mm width bone fracture defect model to investigate the magnesium implants degradation and uninhibited bone healing. Taking advantage of the good biocompatibility of the MAO coatings, no adverse effects were detected through the blood test and histological examination. The implantation groups of coated and uncoated magnesium plates were both observed the promoting effect of bone fracture healing compared with the simple fracture group without implant. The releasing Mg 2+ by the degradation of implants into the fracture site improved the bone fracture healing, which is attributed to the magnesium promoting CGRP-mediated osteogenic differentiation. Mg degradation and bone fracture healing promoting must be tailored by microarc oxidation coating with different thickness for potential clinic application. Copyright © 2017. Published by Elsevier B.V.
Extraoral approach to mandibular condylar fractures: our experience with 100 cases.
Colletti, Giacomo; Battista, Valeria Marinella Augusta; Allevi, Fabiana; Giovanditto, Federica; Rabbiosi, Dimitri; Biglioli, Federico
2014-07-01
Mandibular condylar fractures are very common. The current literature contains many indications and methods of treatment. Extraoral approaches are complicated by the need to avoid injury to the facial nerve. On the other hand intraoral approaches can make fracture reduction and/or fixation difficult. The mini-retromandibular approach provides an excellent view of the surgical field, minimises the risk of injury to the facial nerve, and allows rapid and easy management of condylar fractures. We have collected and reviewed our first 100 condylar fractures treated by means of a mini-retromandibular approach. Between June 2006 and June 2012, Eighty-seven patients with extracapsular condylar fractures underwent open reduction and rigid fixation for 100 extracapsular condylar fractures via a mini-retromandibular approach. Dental occlusion and anatomic reduction were restored in all 100 condylar fractures. Postoperative infection developed in three patients. There was one sialocele and one case of plate fracture. Four patients experienced transient palsy of the buccal branch of the facial nerve. No permanent deficit of any facial nerve branch was observed. No patient showed condylar head resorption. Our experience with the treatment of the first 100 condylar fractures using the mini-retromandibular approach has demonstrated that this technique has allowed the Authors to safely manage extracapsular condylar fractures at all levels. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
[Outcomes and complications of Tightrope button plate for repairing acromioclavicular dislocation].
Zuo, Yong-Xiang; Ma, Zi-Ping
2017-10-25
To study the clinical outcome and complications of Tightrope button plate for repairing acromioclavicular dislocation of Rockwood type III to V. From May 2014 to December 2016, 17 patients with acromioclavicular dislocation of type III-V were treated with Tightrope button plate including 10 males and 7 females with an average age 39.8 years old ranging from 20 to 68 years old. Four patients were treated with arthroscopy and 17 patients were treated with mini-invasive by X-ray assisted. Shoulder function, X-ray and complications after operation were assessed. All patients were followed up for 5 to 23 months with a mean of 10.8 months. All patients got satisfying reduction immediately postoperatively. Among them, 1 case of clavicle end wound foreign body reaction, rupture, effusion, healing after the second suture; 1 case of foreign body granuloma formation at the end of clavicle were resected and removed at 4 months after operation; 3 cases loss reduction(less than 50% of acromioclavicular joint). No coracoid fracture and suture breakage observed. The shoulder mobility was restored in 15 cases at 4 to 6 weeks postoperatively, and the shoulder adhesion in 2 cases was delayed to 5 to 7 months after operation. The Constant scores were improved from 46.9±6.0 preoperatively to 92.7±4.0 at the final follow-up. X-ray evaluation of postoperative coracoclavicular tunnel location, patients' coracoclavicular tunnel with mini-invasive fluoroscopy all closed to the ideal position (across the clavicle vertically through the coracoid base center), while different degree of tunnel position deviation were observed in arthroscopic patients. Tightrope button plate for the treatment of acromioclavicular joint dislocation had advantages of minimally invasive, effective, good clinical results, the majority of common complications does not affect efficacy. Small incision X-ray method can provide more satisfactory and reliable tunnel location.
Biodegradation of nicotine by a newly isolated Pseudomonas stutzeri JZD
NASA Astrophysics Data System (ADS)
Petricevic, Jelena; Gujanicic, Vera; Radic, Danka; Jovicic Petrovic, Jelena; Jovic, Jelena; Raicevic, Vera
2013-04-01
The tobacco-manufacturing process and all activities that use tobacco, produce solid or liquid wastes with high concentrations of nicotine. Nicotine is a significant toxic waste product in tobacco industry. This waste is classified as 'toxic and hazardous' by European Union regulations when the nicotine content exceeds 500 milligrams per kilogram dry weight. Therefore, there is a major environmental requirement to remove nicotine from tobacco wastes. Bioremediation techniques which involve nicotine degradation by microorganisms have attracted attention during the last years, because microorganisms have the potential to reduce nicotine levels in tobacco and to detoxify tobacco wastes. The aim of this study is isolation and identification of nicotine degraded bacteria and optimization of nicotine degradation in laboratory conditions. An aerobic bacterial strain capable of effectively degrading nicotine was isolated from the tobacco industry waste, Serbia. After isolation, the liquid culture was spread onto the solid plates of the nicotine inorganic salt medium using the dilution plate method. Cell morphology of strain was observed by a light microscope and physiological characteristics were determined by Api technique and sequence analyzes of 16S rDNA. This isolate was identified as Pseudomonas stutzeri based on morphology, physiological characteristics, and Apiweb technique. Comparison with sequences available in data library showed the 99% similarity with 16S rDNA gene sequence of the species Pseudomonas stutzeri ( GenBank Acc. No. CP003725). We analyzed the effect of initial nicotine concentration (1g/L, 1.5 g/L, 2.5 g/L) on microbial activity in aim to optimize biodegradation. The effect of cultivation temperature (25°C; 30°C; 37°C) on nicotine degradation by P. stutzeri was evaluated after 24 h of cultivation, with 1.5 g/L nicotine added as the sole carbon source. Effect of biodegradation has depended on initial concentration. During incubation, number of bacteria was increased in all variants of initial concentrations. Nicotine degradation rate increased with increasing cultivation temperature. The optimal temperature was 37°C. The results suggest that the P. stutzeri may be useful for bioremediation of nicotine-polluted waste and confirms its possible application in solving of nicotine contamination problems. Key words: Pseudomonas stutzeri, biodegradation; nicotine; waste
Chang, Yi-Tang; Yang, Chu-Wen; Chang, Yu-Jie; Chang, Ting-Chieh; Wei, Da-Jiun
2014-01-01
Synthetic sewage containing high concentrations of pharmaceuticals and personal care products (PPCPs, mg/L level) was treated using an anoxic/aerobic (A/O) reactor coupled with a microbial fuel cell (MFC) at hydraulic retention time (HRT) of 8 h. A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity. The average CODCr and total nitrogen removal efficiencies achieved were 97.20% and 83.75%, respectively. High removal efficiencies of pharmaceuticals, including acetaminophen, ibuprofen, and sulfamethoxazole, were also obtained and ranged from 98.21% to 99.89%. A maximum power density of 532.61 mW/cm2 and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode. Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms. The bacterial groups involved in PPCP biodegradation were identified as Dechloromonas spp., Sphingomonas sp., and Pseudomonas aeruginosa. This design, which couples an A/O reactor with a novel design of SPGRP MFC, allows the simultaneous removal of PPCPs and successful electricity production. PMID:25197659
Isolation and characterization of Arctic microorganisms decomposing bioplastics.
Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M
2017-12-01
The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.
Pangallo, Domenico; Chovanová, Katarina; Simonovicová, Alexandra; Ferianc, Peter
2009-03-01
This study deals with establishing the characteristics of a microbial community isolated from indoor artworks and the surrounding air environment. It is one of the few studies on microbial degradation of indoor artworks. It shows the potential biodegradative risk that can occur if artworks are not exhibited and conserved in an appropriate environment. The microbial community isolated from the indoor artworks and air environment was examined by cultural and molecular methods. Different plate assays were used to screen the biodegradative activity of the isolated microflora: Remazol Brilliant Blue R, phenol red, and Azure B for the ligninolytic properties; Ostazin brilliant red H-3B for cellulose degradation; CaCO3 glucose agar for solubilization activity; and B4 agar for biomineralization. To type the bacterial and fungal isolates, 2 PCR methods, repetitive extragenic palindromes (REP) and random amplified microsatellite polymorphisms (RAMP) were used. The art objects were principally colonized by fungi. The most commonly isolated strains were represented by hyphomycetes of the genera Penicillium, Aspergillus, Cladosporium, and Chaetomium. Members of these genera showed intensive biodegradation activity, both on wood and on stone. Bacteria were predominant in the air, exhibiting complex communities, both in the air and on the artworks. The most frequently isolated genera were Bacillus and Staphylococcus with extensive biodegradation abilities. REP-PCR revealed high variability within strains belonging to the same genus. RAMP is a new PCR-based method, used in this research for the first time to cluster the microfilamentous fungi and to characterize and select especially Penicillium and Aspergillus strains, which were isolated in a large number.
NASA Astrophysics Data System (ADS)
Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.
2016-08-01
Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Mary Ann; Dombrowski, David E.; Clarke, Kester Diederik
U-10 wt. % Mo (U-10Mo) alloys are being developed as low enrichment monolithic fuel for the CONVERT program. Optimization of processing for the monolithic fuel is being pursued with the use of electrical discharge machining (EDM) under CONVERT HPRR WBS 1.2.4.5 Optimization of Coupon Preparation. The process is applicable to manufacturing experimental fuel plate specimens for the Mini-Plate-1 (MP-1) irradiation campaign. The benefits of EDM are reduced machining costs, ability to achieve higher tolerances, stress-free, burr-free surfaces eliminating the need for milling, and the ability to machine complex shapes. Kerf losses are much smaller with EDM (tenths of mm) comparedmore » to conventional machining (mm). Reliable repeatability is achievable with EDM due to its computer-generated machining programs.« less
Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel M. Wachs; Richard G. Ambrosek; Gray Chang
2006-10-01
Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progressmore » toward element testing will be reviewed.« less
Hydrothermal origin of halogens at Home Plate, Gusev Crater
Schmidt, M.E.; Ruff, S.W.; McCoy, T.J.; Farrand, W. H.; Johnson, J. R.; Gellert, Ralf; Ming, D. W.; Morris, R.V.; Cabrol, N.; Lewis, K.W.; Schroeder, C.
2008-01-01
In the Inner Basin of the Columbia Hills, Gusev Crater is Home Plate, an 80 m platform of layered elastic rocks of the Barnhill class with microscopic and macroscopic textures, including a bomb sag, suggestive of a phreatomagmatic origin. We present data acquired by the Spirit Mars Exploration Rover by Alpha Particle X-Ray Spectrometer (APXS), Mo??ssbauer Spectrometer, Miniature Thermal Emission Spectrometer (Mini-TES), and Panoramic Camera (Pancam) for the Barnhill class rocks and nearby vesicular Irvine class basalts. In major element concentrations (e.g., SiO2, Al2O3, MgO, and FeO*), the two rock classes are similar, suggesting that they are derived from a similar magmatic source. The Barnhill class, however, has higher abundances of Cl, Br, Zn, and Ge with comparable SO3 to the Irvine basalts. Nanophase ferric oxide (np ox) and volcanic glass were detected in the Barnhill class rocks by Mo??ssbauer and Mini-TES, respectively, and imply greater alteration and cooling rates in the Barnhill than in the Irvine class rocks. The high volatile elements in the Barnhill class agree with volcanic textures that imply interaction with a briny groundwater during eruption and (or) by later alteration. Differences in composition between the Barnhill and Irvine classes allow the fingerprinting of a Na-Mg-Zn-Ge-Cl-Br (??Fe ?? Ca ?? CO2) brine with low S. Nearby sulfate salt soils of fumarolic origin may reflect fractionation of an acidic S-rich vapor during boiling of a hydrothermal brine at depth. Persistent groundwater was likely present during and after the formation of Home Plate. Copyright 2008 by the American Geophysical Union.
Singh, Mahinder; Singh, R.K.; Passi, Deepak; Aggarwal, Mohit; Kaur, Guneet
2015-01-01
Aims The purpose of this study was to determine the efficacy and stability of the biodegradable fixation system for treatment of mandible fractures in pediatric patients by measuring the bite force. Methods Sixty pediatric patients with mandibular fractures (36 males, 24 females) were included in this study. The 2.5-mm resorbable plates were adapted along Champy's line of ideal osteosynthesis and secured with four 2.5 mm diameter monocortical resorbable screws, 8 mm in length. All patients were followed for 10 months. Clinical parameters, such as soft tissue infection, nonunion, malunion, implant exposure, malocclusion, nerve injury, and bite force for stability, were prospectively assessed. Results Adequate fixation and primary bone healing was achieved in 100% of the cases. Six minor complications (10%) were observed: 2 soft tissue infections (3%), 1 plate dehiscence (2%), 1 malocclusion (2%), and 2 paresthesia (3%). Conclusion 2.5-mm resorbable plating system along Champy's line of ideal osteosynthesis is a good treatment modality for mandible fractures in pediatric patients. PMID:27195206
RERTR-8 Irradiation Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez; M. A. Lillo; G. S. Chang
2011-12-01
The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-8, was designed to test monolithic mini-fuel plates fabricated via hot isostatic pressing (HIP), the effect of molybdenum (Mo) content on the monolithic fuel behavior, and the efficiency of ternary additions to dispersion fuel particles on the interaction layer behavior at higher burnup. The following report summarizes the life of the RERTR-8 experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.
Activity of Imipenem against Klebsiella pneumoniae Biofilms In Vitro and In Vivo
2014-02-01
the channels were stained with Live/ Dead BacLight (Invitrogen) for 30 min to determine the live/dead status of bacteria in the remaining biofilms. Due...medium (Fig. 1). To quantify the killing effect of imipenem, we used the mini- mum biofilm eradication concentration (MBEC) assay (11) to determine the...each peg, treated and nontreated, were recovered by sonication, and the number of viable bacteria was determined by serial dilutions and plating. As
Biocompatibility and characterization of renewable agricultural residues and polyester composites.
Wu, Chin-San; Hsu, Yi-Chiang; Yeh, Jen-taut; Liao, Hsin-Tzu; Jhang, Jheng-Jie; Sie, Yong-Yu
2013-04-15
Composites of sesame husk and glycidyl methacrylate-grafted polytrimethylene terephthalate (PTT-g-GMA/SH) exhibit noticeably superior mechanical properties compared to PTT/SH composites due to greater compatibility between the two components. The dispersion of SH in the PTT-g-GMA matrix is highly homogeneous as a result of condensation reaction formations. Human lung fibroblasts (FBs) were seeded on these two series of composites to characterize the biocompatibility properties. In a time-dependent course, the FB proliferation results demonstrated higher performance from the PTT/SH series of composites than from the PTT-g-GMA/SH composites. In addition, collagen production by FBs present in the PTT/SH series was 20% higher than in regular culture-plates after 7 days of incubation. The water resistance of PTT-g-GMA/SH was higher than that of PTT/SH, although the weight loss of both composites buried in soil compost indicated that they were both biodegradable, especially at higher levels of SH substitution. The PTT/SH and PTT-g-GMA/SH composites were more biodegradable than pure PTT, implying a strong connection between SH content and biodegradability. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yasonov, S A; Lopatin, A V; Bel'chenko, V A; Vasil'ev, I G
Over the past 15 years, resorbable materials have been successfully used for osteosynthesis, but their high cost prevents widespread application. However, the use of resorbable systems could be a method of choice, especially in treatment of children in the active growth period. Obviously, biodegradable materials not only are highly competitive with known metal constructs in terms of fixation rigidity, biocompatibility, and a low risk of infection but also have an undeniable advantage, such as gradual resorption allowing quick return of damaged bones to the physiological conditions of functioning. A special feature of bioresorbable systems is that they can be assembled using ultrasonic welding, which greatly facilitates the fixation process and also provides necessary rigidity, even in cases of joining very thin bones when reliable fixation with screws is impossible. Over the past 10 years, we have used biodegradable systems in 324 patients. In 244 of them, we used traditional (plate/screw) systems; in 80 cases, an ultrasonic welding system was chosen for osteosynthesis. In the present work, we discuss, based on clinical evidence, the advantages and disadvantages of both fixation systems for reconstructive craniofacial surgery in children.
Development of Biodegradable Implants for Use in Maxillofacial Surgery
1988-09-23
Previous edit,ons are obsolete EC1_4 ’ Y C ,S ’iCAT ON OF 7±5S aGE I"L{..-. { ~; ABBREVIATIONS poly(DL-lactide) (DL-PLA) poly(L-lactide) (L-PLA...modulus of L-PLA plates ........... ......................... 53 13 Non-coated hydroxyapatite particles after drying .............. 59 14 Hydroxyapatite ...77 (continued) ix LIST OF FIGURES (continued) Fieure age 23 Drawing No. 1 scale: 1/2" - 1" iaterial:alumina (99.7% A1203
The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting.
Sim, Edwin Yih Shyang; Wu, Ta Yeong
2010-10-01
There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW. Copyright © 2010 Society of Chemical Industry.
Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates
Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.
2015-09-03
Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less
[Finite element study of maxillary Le Fort-I osteotomy with rigid internal fixation].
Zhou, Jian; Sun, Geng-Lin; Wu, Wei; Xu, Chong-Tao; Wang, Peng-Lin
2010-05-01
To study the biomechanical characteristic of maxillary Le fort- I osteotomy with rigid internal fixation (RIF) , so as to choose best fixation method. The 3-dimensional finite element models of maxillary Le Fort-I osteotomy with 9 kinds of RIF methods were established. Then the models were divided into three groups to calculate the stress distribution of the maxilla and the displacement of bone segment under 3 kinds of occlusion condition. The fixation stability of the different RIF methods was evaluated. Under the incisor occlusion condition, the stress of the cranio maxillary complex transmits mainly along the nasal-maxillary buttress. Under the premolar and molar occlusion condition, the stress transmits along the alveolar process first, then turns to the nasal-maxillary and zygomatic-maxillary buttress. The focused stress position of the internal fixation system is at the connection between the screws and the plate and at the plate near the osteotomy line. Under the premolar occlusion condition, the displacement of bone segment with different RIF methods was (in a decreasing order) 0.396509 mm (with bio-absorbable plate), 0.148393 mm (with micro-plate ), 0.078436 mm (with mini-plate) in group 1; 0.188791 mm (fixing at the nasal-maxillary buttress), 0.121718 mm (fixing at the zygomatic-maxillary buttress), 0.078436 mm (fixing at the both buttress) in group 2; 0.091023 mm (with straight plate), 0.078436 mm (with L shape plate), 0.072450 mm (with Y shape plate), 0.065617 mm (with T shape plate) in group 3. The fixation stability of using the bio-absorbable plate in Le Fort-I osteotomy is less stable than using the titanium plate. Fixing at the zygomatic-maxillary buttress is more stable than at the naso-maxillary buttress. The fixation stability is different by using different shapes of plates.
Shi, Jun; Yuan, Hao; Xu, Bing
2013-01-01
Surgery for mandibular condyle fractures must allow direct vision of the fracture, reduce surgical trauma and achieve reduction and fixation while avoiding facial nerve injury. This prospective study was conducted to introduce a new surgical approach for open reduction and internal fixation of mandibular condyle fractures using a modified transparotid approach via the parotid mini-incision, and surgical outcomes were evaluated. The modified transparotid approach via the parotid mini-incision was applied and rigid internal fixation using a small titanium plate was carried out for 36 mandibular condyle fractures in 31 cases. Postoperative follow-up of patients ranged from 3 to 26 months; in the first 3 months after surgery, outcomes for all patients were analyzed by evaluating the degree of mouth opening, occlusal relationship, facial nerve function and results of imaging studies. The occlusal relationships were excellent in all patients and none had symptoms of intraoperative ipsilateral facial nerve injury. The mean degree of mouth opening was 4.0 (maximum 4.8 cm, minimum 3.0 cm). No mandibular deviations were noted in any patient during mouth opening. CT showed complete anatomical reduction of the mandibular condyle fracture in all patients. The modified transparotid approach via the smaller, easily concealed parotid mini-incision is minimally invasive and achieves anatomical reduction and rigid internal fixation with a simplified procedure that directly exposes the fracture site. Study results showed that this procedure is safe and feasible for treating mandibular condyle fracture, and offers a short operative path, protection of the facial nerve and satisfactory aesthetic outcomes. PMID:24386221
1992-01-01
Periodontics and Oral Biology, University of Missouri-Kansas City, School of Dentistry, Kansas City, MO 64108. •* Departments of Hospital Dentistry and...as a matrix for osseous grafting, for the occlusion of large bony defects, for soft tissue contour defects, and also as a bone plating system. All of...Hunsck EE: Tissue reaction to biodegradable polylactide acid suture. Oral Surg, 31:134, 1971. 5. Kulkurni RK, Pani KC, Neuman C, et al.: Polylactic acid
Apparatus for improved DNA sequencing
Douthart, R.J.; Crowell, S.L.
1996-05-07
This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection. 18 figs.
Apparatus for improved DNA sequencing
Douthart, Richard J.; Crowell, Shannon L.
1996-01-01
This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection.
NASA Astrophysics Data System (ADS)
Dielforder, Armin; Frasca, Gianluca; Ford, Mary
2017-04-01
The European plate was affected by contractional deformation events in Late Cretaceous time. This is recorded by inception of thrusting and foreland basin subsidence in the Pyrenean realm, and inversion of Mesozoic rift systems in the interior of the European plate. It is widely accepted that the plate-wide deformation resulted from the onset of NE-directed convergence of Africa-Iberia relative to Europe, and a strong mechanical coupling of the plates, which allowed the transfer of stresses far into Europe. Geological data from both the Pyrenean orogen and the interior of the European plate indicate, however, that these conditions persisted only for 15-20 Myr and that Europe experienced a plate-wide stress relaxation during Paleocene time. Although a slow down in plate convergence between Africa and Europe and North Atlantic continental rifting were proposed as potential causes for the stress relaxation, the subject has remained controversial. In particular, none of the mechanisms seem to be suitable to explain the required changes in the mechanical coupling of Iberian and European plates and the associated stress transfer. Here we propose a new model for the Upper Cretaceous to Paleocene tectonic evolution of the European plate, which takes the temporal evolution of the Pyrenean plate boundary fault into account. Based on plate reconstructions, geological field-data, and restored cross-sections we argue that the plate boundary fault initiated during the Upper Cretaceous within the exhumed mantle domain situated between the rifted margins of the Iberian and European plates. At the transition from the Late Cretaceous to Paleocene, the mantle domain was closed and the rifted margins collided. This evolution was associated with a substantial change in the fault rheology leading to an overall decrease in the plate coupling force. During Paleocene time, the plate coupling force was efficiently balanced by the gravitational push of the European plate, leading to a near neutral stress state in the upper plate and the observed plate-wide stress relaxation in Europe. This study is part of the Orogen research program and conducted in close collaboration with the BRGM (Bureau de Recherches Géologiques et Minières), the CNRS (Centre National de la Recherche Scientifique), and Total.
Recent Results from the Spirit Rover at Home Plate and "Silica Valley"
NASA Astrophysics Data System (ADS)
Squyres, S. W.
2007-12-01
The Mars Exploration Rover Spirit has spent more than 500 sols exploring Home Plate in the inner basin of the Columbia Hills, and adjacent materials. Home Plate is a plateau of layered rocks 80-90 meters in diameter and ~2 meters high. The rocks are clastic and of moderately altered alkali basalt composition, enriched in some volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations, including a prominent bomb sag, indicate that the lower strata were emplaced in an explosive event. Geochemical similarities to nearby volcanic rocks and the enrichment in volatile elements favor an explosive volcanic origin. Along the northern portion of Home Plate, the upper unit is very well sorted and composed of well rounded sand sized grains, pointing to textural maturity and suggesting an eolian origin. Along the southeastern portion, however, the upper unit contains some coarser granules too large to be transported by saltation. While their size is comparable to other clasts on Mars that have moved by saltation-induced creep, the observed textures clearly are consistent with emplacement as a pyroclastic surge. The upper and lower units are effectively identical in composition, so the upper unit probably represents a finer-grained fraction of pyroclastic materials that may have undergone some local reworking by wind. Rocks along the margins of Home Plate show a consistent dip toward the center of the plateau. We interpret Home Plate to be the eroded remnants of a formerly more extensive sheet of pyroclastic materials, perhaps produced in a phreatomagmatic eruption. The inward dips may have arisen when pyroclastic materials overrode and partially buried a pre-existing bowl-shaped depression such as an impact crater, draping the topography. Immediately to the east of Home Plate is a narrow valley bounded on one side by Home Plate and on the other by Mitcheltree Ridge. While operating within this valley, Spirit's inoperative right front wheel excavated a small patch of high albedo soil. Mini-TES spectra of this soil were well fit by amorphous silica, and subsequent investigation with the APXS showed a composition that was more than 90% SiO2. The deposits are also enriched in Ti. Mini-TES spectra of nearby rocks also show a strong signature of amorphous silica, and APXS spectra of these rocks also confirm a high silica content. We consider two hypotheses for the formation of these silica-rich deposits. One is that they developed via precipitation from hydrothermal fluids. Siliceous sinter deposits are common in terrestrial hydrothermal environments where fluids dissolve Si from host rocks at high temperatures and then reprecipitate silica at lower temperatures. Alternatively, the Si-rich materials may represent the remnants of formerly basaltic materials that have been extensively leached in a fumarolic environment under acid sulfate conditions. In either case, the proximity to Home Plate is consistent with formation via the interaction of basaltic volcanism with groundwater. The astrobiological implications of these Si-rich deposits may be significant. Both hydrothermal systems and fumaroles are capable of supporting microbial ecosystems on Earth, and precipitated silica deposits in both environments can preserve strong textural evidence of microbial life.
NASA Astrophysics Data System (ADS)
Wiwanto, Siska; Sulistyani, Lilies Dwi; Latief, Fourier Dzar Eljabbar; Supriadi, Sugeng; Priosoeryanto, Bambang Pontjo; Latief, Benny Syariefsyah
2018-02-01
Study of biodegradations of Magnesium ECAP (Equal Channel Angular Pressing) miniplate in the osteosynthesis system has been used as a new material for plate and screw in oral and maxillofacial surgery. This miniplate and screw that were made of Magnesium ECAP were implanted in the femurs of New Zealand rabbits. The degradation process was detected through pocket gas that appeared in hard and soft tissues surrounding in the implanted miniplates and screws. From the changes on the tissues, we can assess the biodegradation process by measuring the gas pocket through micro-CT Scan. Upon the first month of study we euthanized the rabbits and made a micro-CT Scan to see how far the effect of the gas pocket was. Histological analyses were performed to investigate the local tissue response adjacent to the Magnesium ECAP miniplates. We analyzed the femur of a rabbit a month, three months, and five months after implantation. The result showed a degradation rate in the implanted Magnesium ECAP miniplate of 0.61±0.39 mm/year. Unlike the screws, miniplates have higher water content and blood flow than bone, therefore they degrade faster. This study shows promising results for further development of Magnesium ECAP and in the production of osteosynthesis material for rigid fixation in Oral and Maxillofacial skeleton.
Fluoroscopic radiation exposure: are we protecting ourselves adequately?
Hoffler, C Edward; Ilyas, Asif M
2015-05-06
While traditional intraoperative fluoroscopy protection relies on thyroid shields and aprons, recent data suggest that the surgeon's eyes and hands receive more exposure than previously appreciated. Using a distal radial fracture surgery model, we examined (1) radiation exposure to the eyes, thyroid, chest, groin, and hands of a surgeon mannequin; (2) the degree to which shielding equipment can decrease exposure; and (3) how exposure varies with fluoroscopy unit size. An anthropomorphic model was fit with radiation-attenuating glasses, a thyroid shield, an apron, and gloves. "Exposed" thermoluminescent dosimeters overlaid the protective equipment at the eyes, thyroid, chest, groin, and index finger while "shielded" dosimeters were placed beneath the protective equipment. Fluoroscopy position and settings were standardized. The mini-c-arm milliampere-seconds were fixed based on the selection of the kilovolt peak (kVp). Three mini and three standard c-arms scanned a model of the patient's wrist continuously for fifteen minutes each. Ten dosimeter exposures were recorded for each c-arm. Hand exposure averaged 31 μSv/min (range, 22 to 48 μSv/min), which was 13.0 times higher than the other recorded exposures. Eye exposure averaged 4 μSv/min, 2.2 times higher than the mean thyroid, chest, and groin exposure. Gloves reduced hand exposure by 69.4%. Glasses decreased eye exposure by 65.6%. There was no significant difference in exposure between mini and standard fluoroscopy. Surgeons' hands receive the most radiation exposure during distal radial plate fixation under fluoroscopy. There was a small but insignificant difference in mean exposure between standard fluoroscopy and mini-fluoroscopy, but some standard units resulted in lower exposure than some mini-units. On the basis of these findings, we recommend routine protective equipment to mitigate exposure to surgeons' hands and eyes, in addition to the thyroid, chest, and groin, during fluoroscopy procedures. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Miniature Optical Wide-Angle-Lens Startracker (Mini-OWLS)
NASA Technical Reports Server (NTRS)
Miller, Rick; Coulter, Joe E.; Levine, Seymour
1993-01-01
This paper provides a brief overview of the design considerations and the current status of the Miniature Optical Wide-Angle Lens Startracker Program. Mini-OWLS offers a revolutionary alternative to the conventional startracker. It is a small, lightweight, low cost, high performance startracker that can be used in a variety of applications including calibration and alignment of Inertial Measurement Units (IMU's) Mini-OWLS makes use of a strap down design incorporating Holographic Optical Elements (HOES) in place of conventional optics. HOES can be multiplexed so that the same aperture can be used for multiple separate optical paths looking in several directions simultaneously without startracker rotation. Additionally, separate Schmidt corrector plates are not required to compensate for spherical aberration. The optical assembly, or what would normally be considered as the telescope, is less than 20 cc in volume, weighs less than 55 grams, and contains the equivalent of three individual telescopes. Each one has a 4 deg Field of View (FOV) with a field of regard of 48 square degrees. Mini-OWLS has a bandwidth of approximately 300 nm in or near the visible wavelength. The projected resolution of the startracker is 5 to 10 arcseconds, depending on the centroiding algorithm used. The Mini-OWLS program was initiated last year and represents a miniaturized version of a similar design for aeronautical applications. The contract is managed by Wright Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio, with funding from the Strategic Defense Initiative Organization through Eglin AFB. The initial phase of the program is to build and test a development unit. The second phase is to integrate the startracker with the Charles Stark Draper Laboratory Micromechanical Inertial Guidance System (MIGS) and the Signal Processing Packaging Design (SPPD) being developed by Texas Instruments. The preliminary design review was conducted in November 1991. Three-axes prototype telescope assemblies have been built and design evaluation tests initiated.
Miniature Optical Wide-Angle-Lens Startracker (Mini-OWLS)
NASA Astrophysics Data System (ADS)
Miller, Rick; Coulter, Joe E.; Levine, Seymour
1993-02-01
This paper provides a brief overview of the design considerations and the current status of the Miniature Optical Wide-Angle Lens Startracker Program. Mini-OWLS offers a revolutionary alternative to the conventional startracker. It is a small, lightweight, low cost, high performance startracker that can be used in a variety of applications including calibration and alignment of Inertial Measurement Units (IMU's) Mini-OWLS makes use of a strap down design incorporating Holographic Optical Elements (HOES) in place of conventional optics. HOES can be multiplexed so that the same aperture can be used for multiple separate optical paths looking in several directions simultaneously without startracker rotation. Additionally, separate Schmidt corrector plates are not required to compensate for spherical aberration. The optical assembly, or what would normally be considered as the telescope, is less than 20 cc in volume, weighs less than 55 grams, and contains the equivalent of three individual telescopes. Each one has a 4 deg Field of View (FOV) with a field of regard of 48 square degrees. Mini-OWLS has a bandwidth of approximately 300 nm in or near the visible wavelength. The projected resolution of the startracker is 5 to 10 arcseconds, depending on the centroiding algorithm used. The Mini-OWLS program was initiated last year and represents a miniaturized version of a similar design for aeronautical applications. The contract is managed by Wright Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio, with funding from the Strategic Defense Initiative Organization through Eglin AFB. The initial phase of the program is to build and test a development unit. The second phase is to integrate the startracker with the Charles Stark Draper Laboratory Micromechanical Inertial Guidance System (MIGS) and the Signal Processing Packaging Design (SPPD) being developed by Texas Instruments. The preliminary design review was conducted in November 1991. Three-axes prototype telescope assemblies have been built and design evaluation tests initiated.
Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping.
Unthan, Simon; Radek, Andreas; Wiechert, Wolfgang; Oldiges, Marco; Noack, Stephan
2015-03-11
The throughput of cultivation experiments in bioprocess development has drastically increased in recent years due to the availability of sophisticated microliter scale cultivation devices. However, as these devices still require time-consuming manual work, the bottleneck was merely shifted to media preparation, inoculation and finally the analyses of cultivation samples. A first step towards solving these issues was undertaken in our former study by embedding a BioLector in a robotic workstation. This workstation already allowed for the optimization of heterologous protein production processes, but remained limited when aiming for the characterization of small molecule producer strains. In this work, we extended our workstation to a versatile Mini Pilot Plant (MPP) by integrating further robotic workflows and microtiter plate assays that now enable a fast and accurate phenotyping of a broad range of microbial production hosts. A fully automated harvest procedure was established, which repeatedly samples up to 48 wells from BioLector cultivations in response to individually defined trigger conditions. The samples are automatically clarified by centrifugation and finally frozen for subsequent analyses. Sensitive metabolite assays in 384-well plate scale were integrated on the MPP for the direct determination of substrate uptake (specifically D-glucose and D-xylose) and product formation (specifically amino acids). In a first application, we characterized a set of Corynebacterium glutamicum L-lysine producer strains and could rapidly identify a unique strain showing increased L-lysine titers, which was subsequently confirmed in lab-scale bioreactor experiments. In a second study, we analyzed the substrate uptake kinetics of a previously constructed D-xylose-converting C. glutamicum strain during cultivation on mixed carbon sources in a fully automated experiment. The presented MPP is designed to face the challenges typically encountered during early-stage bioprocess development. Especially the bottleneck of sample analyses from fast and parallelized microtiter plate cultivations can be solved using cutting-edge robotic automation. As robotic workstations become increasingly attractive for biotechnological research, we expect our setup to become a template for future bioprocess development.
Supercritical carbon dioxide design strategies: from drug carriers to soft killers.
Aguiar-Ricardo, Ana; Bonifácio, Vasco D B; Casimiro, Teresa; Correia, Vanessa G
2015-12-28
The integrated use of supercritical carbon dioxide (scCO(2)) and micro- and nanotechnologies has enabled new sustainable strategies for the manufacturing of new medications. 'Green' scCO(2)-based methodologies are well suited to improve either the synthesis or materials processing leading to the assembly of three-dimensional multifunctional constructs. By using scCO(2) either as C1 feedstock or as solvent, simple, economic, efficient and clean routes can be designed to synthesize materials with unique properties such as polyurea dendrimers and oxazoline-based polymers/oligomers. These new biocompatible, biodegradable and water-soluble polymeric materials can be engineered into multifunctional constructs with antimicrobial activity, targeting moieties, labelling units and/or efficiently loaded with therapeutics. This mini-review highlights the particular features exhibited by these materials resulting directly from the followed supercritical routes. © 2015 The Author(s).
Jiang, Bei; Tan, Liang; Ning, Shuxiang; Shi, Shengnan
2016-09-01
Magnetically immobilized cells of Comamonas sp. JB coupling with electrode reaction was developed to enhance the treatment efficiency of coking wastewater containing phenol, carbazole (CA), dibenzofuran (DBF), and dibenzothiophene (DBT). The pair of graphite plate-stainless iron mesh electrodes was chosen as the most suitable electrodes. Magnetically immobilized cells coupling with graphite plate-stainless iron mesh electrodes (coupling system) exhibited high degradation activity for all the compounds, which were significantly higher than the sum by single magnetically immobilized cells and electrode reaction at the optimal voltage. Recycling experiments demonstrated that the degradation activity of coupling system increased gradually during eight recycles, indicating that there was a coupling effect between the biodegradation and electrode reaction. Phenol hydroxylase and qPCR assays confirmed that appropriate electrical stimulation could improve phenol hydroxylase activity and promote cells growth. Toxicity assessment suggested the treatment of the coking wastewater by coupling system led to less toxicity than untreated wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Romana, C; Ciais, G; Fitoussi, F
2015-06-01
Treatment of severe radial club hand is difficult. Several authors have emphasized the importance of preliminary soft-tissue distraction before centralization. Treatment of severe radial club hand by articulated mini-rail allowing prior soft-tissue distraction improves results. Thirteen patients were treated sequentially, with an initial step of distraction and a second step of centralization. The first step consisted in fitting 2 mini-fixators, one in the concavity and the other in the convexity of the deformity. Four transfixing wires through the ulna and metacarpal bone connected the 2 fixators. After this preliminary distraction, the fixator was removed and a centralization wire was introduced percutaneously, with ulnar osteotomy if necessary. Sagittal and coronal correction was measured on the angle between forearm and hand. Mean age at treatment was 37.5 months (range, 9-120 months). Mean distraction time was 53.2 days (26-90 days). Ulnar osteotomy was required in 8 cases (61%). There were no major complications requiring interruption of distraction. Sagittal and coronal correction after centralization reduced mean residual forearm/hand angulation to<12°. Soft-tissue distraction in the concavity ahead of centralization is essential to good correction, avoiding extensive soft-tissue release and hyperpressure on the distal ulnar growth plate. There have been several studies of distraction; the present technique, associating 2 mini-fixators connected by threaded K-wires, provided sufficient distraction in the concavity of the deformity to allow satisfactory correction in all cases. Subsequent complications (breakage or displacement of the centralization wires) testify to the complexity of long-term management. The present study confirms the interest of a preliminary soft-tissue distraction step in treating severe radial club hand. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Sterile Neutrino Searches in MiniBooNE and MicroBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignarra, Christina M.
Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This thesis fi rst presents the motivation for sterile neutrino models by describing the short-baseline anomalies that can be addressed with them. This is followed by a discussion of the phenomenology of these models. The MiniBooNE experiment and results are then described in detail, particularly the most recent antineutrino analysis. This will be followed by a discussion of global fits to world data, including the anomalous data sets. Lastly, futuremore » experiments will be addressed, especially focusing on the MicroBooNE experiment and light collection studies. In particular, understanding the degradation source of TPB, designing the TPB-coated plates for MicroBooNE and developing lightguide collection systems will be discussed. We find an excess of events in the MiniBooNE antineutrino mode results consistent with the LSND anomaly, but one that has a di fferent energy dependence than the low-energy excess reported in neutrino mode. This disagreement creates tension within global fi ts which include up to three sterile neutrinos. The low-energy excess will be addressed by the MicroBooNE experiment, which is expected to start taking data in early 2015. Tension among existing experiments calls for additional, more decisive future experiments.« less
Lemay, Jean-François; Gagnon, Dany; Duclos, Cyril; Grangeon, Murielle; Gauthier, Cindy; Nadeau, Sylvie
2013-06-01
Postural steadiness while standing is impaired in individuals with spinal cord injury (SCI) and could be potentially associated with increased reliance on visual inputs. The purpose of this study was to compare individuals with SCI and able-bodied participants on their use of visual inputs to maintain standing postural steadiness. Another aim was to quantify the association between visual contribution to achieve postural steadiness and a clinical balance scale. Individuals with SCI (n = 15) and able-bodied controls (n = 14) performed quasi-static stance, with eyes open or closed, on force plates for two 45 s trials. Measurements of the centre of pressure (COP) included the mean value of the root mean square (RMS), mean COP velocity (MV) and COP sway area (SA). Individuals with SCI were also evaluated with the Mini-Balance Evaluation Systems Test (Mini BESTest), a clinical outcome measure of postural steadiness. Individuals with SCI were significantly less stable than able-bodied controls in both conditions. The Romberg ratios (eyes open/eyes closed) for COP MV and SA were significantly higher for individuals with SCI, indicating a higher contribution of visual inputs for postural steadiness in that population. Romberg ratios for RMS and SA were significantly associated with the Mini-BESTest. This study highlights the contribution of visual inputs in individuals with SCI when maintaining quasi-static standing posture. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Prasetyaningrum, Aji; Jos, Bakti; Dharmawan, Yudhy; Prabowo, Bilal T.; Fathurrazan, Muh.; Fyrouzabadi
2018-05-01
Chromium (VI) is one of the major metallic pollutants in plating industrial wastewater. Cr(VI) is one of toxic metal that cause serious threat to human health and the environment because its non-biodegradable. Among the technologies for removing these pollutants, electrocoagulation can be considered as an effective method. This method have some advantages such as less amount of produced sludge and high efficiency in removal of pollutants.This research intended to study the effects of type of electrode on the degree of Cr(VI) removal from wastewater of plating industry using electrocoagulation method. This laboratory research conducted with 3 types of electrode (aluminum, stainless and combination of both electrode). Synthetic chromium wastewater was prepared at the initial concentration of 100 mg L-1. The process was conducted at pH 3. The electricity current was setting at 3 Ampere. The variable of time of electrocoagulation at 1 and 2 hours. After performing the process on electrochemical cells, samples analyzed by the UV-Vis spectrophotometer regarding amount of Cr(VI) metals. The results showed that aluminium was the best performance electrode at variable of 2 hours with 26% of reduction of Cr(VI)metal content in plating industrial waste water.
Day, Gregory; Szvetko, Attila; Griffiths, Lyn; McPhee, I Bruce; Tuffley, John; LaBrom, Robert; Askin, Geoffrey; Woodland, Peter; McClosky, Eamonn; Torode, Ian; Tomlinson, Francis
2009-06-01
Reduced SHOX gene expression has been demonstrated to be associated with all skeletal abnormalities in Turner syndrome, other than scoliosis (and kyphosis). There is evidence to suggest that Turner syndrome scoliosis is clinically and radiologically similar to idiopathic scoliosis, although the phenotypes are dissimilar. This pilot gene expression study used relative quantitative real-time PCR (qRT-PCR) of the SHOX (short stature on X) gene to determine whether it is expressed in vertebral body growth plates in idiopathic and congenital scoliosis. After vertebral growth plate dissection, tissue was examined histologically and RNA was extracted and its integrity was assessed using a Bio-Spec Mini, NanoDrop ND-1000 spectrophotometer and standard denaturing gel electrophoresis. Following cDNA synthesis, gene-specific optimization in a Corbett RotorGene 6000 real-time cycler was followed by qRT-PCR of vertebral tissue. Histological examination of vertebral samples confirmed that only growth plate was analyzed for gene expression. Cycling and melt curves were resolved in triplicate for all samples. SHOX abundance was demonstrated in congenital and idiopathic scoliosis vertebral body growth plates. SHOX expression was 11-fold greater in idiopathic compared to congenital (n = 3) scoliosis (p = 0.027). This study confirmed that SHOX was expressed in vertebral body growth plates, which implies that its expression may also be associated with the scoliosis (and kyphosis) of Turner syndrome. SHOX expression is reduced in Turner syndrome (short stature). In this study, increased SHOX expression was demonstrated in idiopathic scoliosis (tall stature) and congenital scoliosis. Copyright 2008 Orthopaedic Research Society
Min, Woo-Kie; Seo, Il; Na, Sang-Bong; Choi, Young-Seo; Choi, Ji-Yeon
2017-01-01
This study aimed to present radiologic analysis of minimal safe distance (MSD) and optimal screw angle (OSA) that enables to fix screws in a lateral mass safely without facet joint violation in open-door laminoplasty using a plate. A retrospective analysis was made of 22 patients (male: 17; female: 5), average age 62 years. Seventy-nine lateral mass screws were fixed among a total of 158 screws. MSD that doesn't allow 5-mm screws to violate a facet joint was measured for C3-C7 and a comparative analysis was performed. If the MSD is not secured, the OSA to be given to the cephalad direction is calculated to avoid violation of the facet joint. The screws violating inferior facet joints accounted for 34.1% of the screws fixed in inferior lateral mass. Joint surface to distal mini-screw distances were 3.18 ± 1.46 mm and 4.75 ± 1.71 mm in groups of facet joint violation and non-facet violation (FV), respectively ( p = 0.001). When 5-mm screws were inserted into a lateral mass, MSD was 4.39 ± 0.83 mm. The average MSD of C3, C4, and C5 was 4.05 ± 0.78 mm, 4.10 ± 0.70 mm, and 4.26 ± 0.74 mm, respectively. There was no significant differences among levels ( p > 0.05). The average MSD of C6 and C7 was 4.92 ± 0.81 mm and 4.80 ± 0.96 mm, respectively, showing significant differences from those of C3, C4, and C5 ( p < 0.05). If 6 mm of the MSD isn't secured, OSA showed in the cephalad direction of 11.5° for 5 mm and 22° for 4 mm approximately. We suggest that mini-screw on lateral mass can be fixed safely without FV, if they are fixed at MSD of 6 mm from a joint surface. Facet joint violation doesn't occur if an OSA is given in the cephalad direction in case of not enough MSD for mini-screws.
Rezai, K A; Farrokh-Siar, L; Botz, M L; Godowski, K C; Swanbom, D D; Patel, S C; Ernest, J T
1999-05-01
To evaluate the attachment of human fetal rctinal pigment epithelial (HFRPE) cells to a biodegradable polymer film with subsequent formation of spheroids in vitro. Ten biodegradable polymer films with different compositions were examined for their physical properties and ease of manipulation under a dissecting microscope. The film with the most suitable handling characteristics was chosen, and a purely isolated sheet of HFRPE cells was attached to it. The purity of the cells was assessed by their pigmentation and expression of cytokeratin. Proliferation was assessed by incorporation of 5-bromo-2'-deoxyuridine (BrdtJ). Cellular structure was analyzed under light and electron microscopes, and the functional capability of the cells was evaluated by rod outer segment (ROS) phagocytosis. The polymer film with composition 50:50 poly (DL-lactide) (PLA)/poly (DL-lactide-co-glycolide) (PLG) with an inherent viscosity of 1.03 dl/g was found to be the most suitable for handling under the microscope. Sheets of HFRPE cells attached to the polymer films within 48 hours and began to form spheroids. All the isolated cells were pigmented and expressed cytokeratin. They possessed a cuboidal morphology, numerous apical microvilli, and no sign of dedifferentiation. HFRPE cells produced extracellular matrix (collagen filaments) on their basal side, filling the cavities of the polymer film. The cells subsequently proliferated, incorporated BrdU, migrated onto the culture plate to form monolayers, and phagocytized ROS. Biodegradable polymer films can be used as a scaffold for the adhesion of the HFRPE sheet and formation of spheroids. Spheroids represent a source of high density and well-differentiated HFRPE cells that are easy to transfer. Furthermore, the stricture of the membrane makes it suitable for additional applications.
Herzog, Bastian; Lemmer, Hilde; Horn, Harald; Müller, Elisabeth
2014-02-22
Evaluation of xenobiotics biodegradation potential, shown here for benzotriazoles (corrosion inhibitors) and sulfamethoxazole (sulfonamide antibiotic) by microbial communities and/or pure cultures normally requires time intensive and money consuming LC/GC methods that are, in case of laboratory setups, not always needed. The usage of high concentrations to apply a high selective pressure on the microbial communities/pure cultures in laboratory setups, a simple UV-absorbance measurement (UV-AM) was developed and validated for screening a large number of setups, requiring almost no preparation and significantly less time and money compared to LC/GC methods. This rapid and easy to use method was evaluated by comparing its measured values to LC-UV and GC-MS/MS results. Furthermore, its application for monitoring and screening unknown activated sludge communities (ASC) and mixed pure cultures has been tested and approved to detect biodegradation of benzotriazole (BTri), 4- and 5-tolyltriazole (4-TTri, 5-TTri) as well as SMX. In laboratory setups, xenobiotics concentrations above 1.0 mg L(-1) without any enrichment or preparation could be detected after optimization of the method. As UV-AM does not require much preparatory work and can be conducted in 96 or even 384 well plate formats, the number of possible parallel setups and screening efficiency was significantly increased while analytic and laboratory costs were reduced to a minimum.
2014-01-01
Background Evaluation of xenobiotics biodegradation potential, shown here for benzotriazoles (corrosion inhibitors) and sulfamethoxazole (sulfonamide antibiotic) by microbial communities and/or pure cultures normally requires time intensive and money consuming LC/GC methods that are, in case of laboratory setups, not always needed. Results The usage of high concentrations to apply a high selective pressure on the microbial communities/pure cultures in laboratory setups, a simple UV-absorbance measurement (UV-AM) was developed and validated for screening a large number of setups, requiring almost no preparation and significantly less time and money compared to LC/GC methods. This rapid and easy to use method was evaluated by comparing its measured values to LC-UV and GC-MS/MS results. Furthermore, its application for monitoring and screening unknown activated sludge communities (ASC) and mixed pure cultures has been tested and approved to detect biodegradation of benzotriazole (BTri), 4- and 5-tolyltriazole (4-TTri, 5-TTri) as well as SMX. Conclusions In laboratory setups, xenobiotics concentrations above 1.0 mg L-1 without any enrichment or preparation could be detected after optimization of the method. As UV-AM does not require much preparatory work and can be conducted in 96 or even 384 well plate formats, the number of possible parallel setups and screening efficiency was significantly increased while analytic and laboratory costs were reduced to a minimum. PMID:24558966
El-Amin, S F; Lu, H H; Khan, Y; Burems, J; Mitchell, J; Tuan, R S; Laurencin, C T
2003-03-01
The nature of the extracellular matrix (ECM) is crucial in regulating cell functions via cell-matrix interactions, cytoskeletal organization, and integrin-mediated signaling. In bone, the ECM is composed of proteins such as collagen (CO), fibronectin (FN), laminin (LM), vitronectin (VN), osteopontin (OP) and osteonectin (ON). For bone tissue engineering, the ECM should also be considered in terms of its function in mediating cell adhesion to biomaterials. This study examined ECM production, cytoskeletal organization, and adhesion of primary human osteoblastic cells on biodegradable matrices applicable for tissue engineering, namely polylactic-co-glycolic acid 50:50 (PLAGA) and polylactic acid (PLA). We hypothesized that the osteocompatible, biodegradable polymer surfaces promote the production of bone-specific ECM proteins in a manner dependent on polymer composition. We first examined whether the PLAGA and PLA matrices could support human osteoblastic cell growth by measuring cell adhesion at 3, 6 and 12h post-plating. Adhesion on PLAGA was consistently higher than on PLA throughout the duration of the experiment, and comparable to tissue culture polystyrene (TCPS). ECM components, including CO, FN, LM, ON, OP and VN, produced on the surface of the polymers were quantified by ELISA and localized by immunofluorescence staining. All of these proteins were present at significantly higher levels on PLAGA compared to PLA or TCPS surfaces. On PLAGA, OP and ON were the most abundant ECM components, followed by CO, FN, VN and LN. Immunofluorescence revealed an extracellular distribution for CO and FN, whereas OP and ON were found both intracellularly as well as extracellularly on the polymer. In addition, the actin cytoskeletal network was more extensive in osteoblasts cultured on PLAGA than on PLA or TCPS. In summary, we found that osteoblasts plated on PLAGA adhered better to the substrate, produced higher levels of ECM molecules, and showed greater cytoskeletal organization than on PLA and TCPS. We propose that this difference in ECM composition is functionally related to the enhanced cell adhesion observed on PLAGA. There is initial evidence that specific composition of the PLAGA polymer favors the ECM. Future studies will seek to optimize ECM production on these matrices for bone tissue engineering applications.
Chu, Tien-Min G.; Warden, Stuart J.; Turner, Charles H.; Stewart, Rena L.
2006-01-01
Segmental defect regeneration has been a clinical challenge. Current tissue engineering approach using porous biodegradable scaffolds to delivery osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property, the porous scaffolds were evaluated in non-load bearing area or were stabilized with stress-shielding devices (bone plate or external fixation). In this paper, we tested a scaffold that does not require a bone plate because it has sufficient biomechanical strength. The tube-shaped scaffolds were manufactured from poly(propylene) fumarate/tricalcium phosphate (PPF/TCP) composites. Dicalcium phosphate dehydrate (DCPD) were used as bone morphogenetic protein -2 (BMP-2) carrier. Twenty two scaffolds were implanted in 5 mm segmental defects in rat femurs stabilized with k-wire for 6 and 15 weeks with and without 10 μg of rhBMP-2. Bridging of the segmental defect was evaluated first radiographically and was confirmed by histology and micro- computer tomography (μ-CT) imaging. The scaffolds in the BMP group maintained the bone length throughout the duration of the study and allow for bridging. The scaffolds in the control group failed to induce bridging and collapsed at 15 weeks. Peripheral computed tomography (pQCT) showed that BMP-2 does not increase the bone mineral density in the callus. Finally, the scaffold in BMP group was found to restore the mechanical property of the rat femur after 15 weeks. Our results demonstrated that the load-bearing BMP-2 scaffold can maintain bone length and allow successfully regeneration in segmental defects. PMID:16996588
Dorati, Rossella; DeTrizio, Antonella; Modena, Tiziana; Conti, Bice; Benazzo, Francesco; Gastaldi, Giulia; Genta, Ida
2017-01-01
A great deal of research is ongoing in the area of tissue engineering (TE) for bone regeneration. A possible improvement in restoring damaged tissues involves the loading of drugs such as proteins, genes, growth factors, antibiotics, and anti-inflammatory drugs into scaffolds for tissue regeneration. This mini-review is focused on the combination of the local delivery of antibiotic agents with bone regenerative therapy for the treatment of a severe bone infection such as osteomyelitis. The review includes a brief explanation of scaffolds for bone regeneration including scaffolds characteristics and types, a focus on severe bone infections (especially osteomyelitis and its treatment), and a literature review of local antibiotic delivery by the combination of scaffolds and drug-delivery systems. Some examples related to published studies on gentamicin sulfate-loaded drug-delivery systems combined with scaffolds are discussed, and future perspectives are highlighted. PMID:29231857
Lorget, Florence; Parenteau, Audrey; Carrier, Michel; Lambert, Daniel; Gueorguieva, Ana; Schuetz, Chris; Bantseev, Vlad; Thackaberry, Evan
2016-09-06
Many long-acting delivery strategies for ocular indications rely on pH- and/or temperature-driven release of the therapeutic agent and degradation of the drug carrier. Yet, these physiological parameters are poorly characterized in ocular animal models. These strategies aim at reducing the frequency of dosing, which is of particular interest for the treatment of chronic disorders affecting the posterior segment of the eye, such as macular degeneration that warrants monthly or every other month intravitreal injections. We used anesthetized white New Zealand rabbits, Yucatan mini pigs, and cynomolgus monkeys to characterize pH and temperature in several vitreous locations and the central aqueous location. We also established post mortem pH changes in the vitreous. Our data showed regional and species differences, which need to be factored into strategies for developing biodegradable long-acting delivery systems.
Sucrose esters as natural surfactants in drug delivery systems--a mini-review.
Szűts, Angéla; Szabó-Révész, Piroska
2012-08-20
Sucrose esters (SEs) are widely used in the food and cosmetic industries and there has recently been great interest in their applicability in different pharmaceutical fields. They are natural and biodegradable excipients with well-known emulsifying and solubilizing behavior. Currently the most common pharmaceutical applications of SEs are for the enhancement of drug dissolution and drug absorption/permeation, and in controlled-release systems. Although the number of articles on SEs is continuously increasing, they have not yet been widely used in the pharmaceutical industry. The aim of this review is to discuss and summarize some of the findings and applications of SEs in different areas of drug delivery. The article highlights the main properties of SEs and focuses on their use in pharmaceutical technology and on their regulatory and toxicological status. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Zero Energy Ready Home Case Study: Healthy Efficient Homes - Spirit Lake, Iowa
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-11-01
This case study describes a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, V. A., E-mail: vli2@hawaii.edu; Dorrill, R.; Duvall, M. J.
2016-02-15
We present the development of the miniTimeCube (mTC), a novel compact neutrino detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% {sup 10}B–doped scintillator (13 cm){sup 3} cube surrounded by 24 Micro-Channel Plate (MCP) photon detectors, each with an 8 × 8 anode totaling 1536 individual channels/pixels viewing the scintillator. It uses custom-made electronics modules which mount on top of the MCPs, making our detector compact and able to both distinguishmore » different types of events and reject noise in real time. The detector is currently deployed and being tested at the National Institute of Standards and Technology Center for Neutron Research nuclear reactor (20 MW{sub th}) in Gaithersburg MD. A shield for further tests is being constructed, and calibration and upgrades are ongoing. The mTC’s improved spatiotemporal resolution will allow for determination of incident particle directions beyond previous capabilities.« less
Medvedev, Yu A; Petruk, P S; Shamanaeva, L S; Volkova, V A; Davidov, A R
2016-01-01
The aim of this study was to improve the efficiency of surgical treatment of patients with fractures involving zygomatico-orbital complex and maxillary sinus through the use of Foley catheter. 352 patients with fractures of the middle third of the facial skeleton were treated at the Departments of Oral & Maxillofacial Surgery in Novokuznetsk Institute and I.M. Sechenov First MSMU. All patients underwent open reduction and osteosynthesis using extramedullary titanium mini-plates and NiTi mini-clamps. In the cases with large bone defects additional reconstructive techniques were used such as replantation of bone fragments and endoprosthesis with NiTi implants. For the purpose of drainage and retention Foley catheter was placed in the cavity of the maxillary sinus after the surgical procedure. We obtained good and satisfactory results in the majority of clinical cases. The use of Foley catheter was found to be very effective for the post-operative drainage and hemostasis of the maxillary sinus and in cases involving the use of fixation implant in the reconstructive surgeries in the middle third of the face.
Trimpin, Sarah; Deinzer, Max L
2007-01-01
A mini ball mill (MBM) solvent-free matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) method allows for the analysis of bacteriorhodopsin (BR), an integral membrane protein that previously presented special analytical problems. For well-defined signals in the molecular ion region of the analytes, a desalting procedure of the MBM sample directly on the MALDI target plate was used to reduce adduction by sodium and other cations that are normally attendant with hydrophobic peptides and proteins as a result of the sample preparation procedure. Mass analysis of the intact hydrophobic protein and the few hydrophobic and hydrophilic tryptic peptides available in the digest is demonstrated with this robust new approach. MS and MS/MS spectra of BR tryptic peptides and intact protein were generally superior to the traditional solvent-based method using the desalted "dry" MALDI preparation procedure. The solvent-free method expands the range of peptides that can be effectively analyzed by MALDI-MS to those that are hydrophobic and solubility-limited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaltun, Hakan; Medvedev, Pavel G
2015-06-01
Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance havemore » been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.« less
Antikainen, T; Pernu, H; Törmälä, P; Kallioinen, M; Waris, T; Serlo, W
1994-01-01
The right coronal sutures of twelve (12) newborn rabbits were fixed with commercially available, self-reinforced poly-L-lactide miniplates, with eight (8) rabbits sham treated with titanium miniplate fixation as reference experiments, in order to demonstrate the possible effects on skull growth. After six (6) months follow-up, both types of plate were detected to have caused a similar asymmetry in the neurocranium. Therefore, in our opinion, fixing across growing sutures, even with the new biodegradable devices, should be avoided.
Schuh, Reinhard; Hofstaetter, Jochen Gerhard; Benca, Emir; Willegger, Madeleine; von Skrbensky, Gobert; Zandieh, Shahin; Wanivenhaus, Axel; Holinka, Johannes; Windhager, Reinhard
2014-05-01
The proximal chevron osteotomy provides high correctional power. However, relatively high rates of dorsiflexion malunion of up to 17 % are reported for this procedure. This leads to insufficient weight bearing of the first ray and therefore to metatarsalgia. Recent biomechanical and clinical studies pointed out the importance of rigid fixation of proximal metatarsal osteotomies. Therefore, the aim of the present study was to compare biomechanical properties of fixation of proximal chevron osteotomies with variable locking plate and cancellous screw respectively. Ten matched pairs of human fresh frozen cadaveric first metatarsals underwent proximal chevron osteotomy with either variable locking plate or cancellous screw fixation after obtaining bone mineral density. Biomechanical testing included repetitive plantar to dorsal loading from 0 to 31 N with the 858 Mini Bionix(®) (MTS(®) Systems Corporation, Eden Prairie, MN, USA). Dorsal angulation of the distal fragment was recorded. The variable locking plate construct reveals statistically superior results in terms of bending stiffness and dorsal angulation compared to the cancellous screw construct. There was a statistically significant correlation between bone mineral density and maximum tolerated load until construct failure occurred for the screw construct (r = 0.640, p = 0.406). The results of the present study indicate that variable locking plate fixation shows superior biomechanical results to cancellous screw fixation for proximal chevron osteotomy. Additionally, screw construct failure was related to levels of low bone mineral density. Based on the results of the present study we recommend variable locking plate fixation for proximal chevron osteotomy, especially in osteoporotic bone.
Ong, Su Yean; Zainab-L, Idris; Pyary, Somarajan; Sudesh, Kumar
2018-03-01
Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some commonly used petrochemical-based plastics. Therefore, PHA is attractive as a biodegradable thermoplastic. It has always been a challenge to commercialize PHA due to the high cost involved in the biosynthesis of PHA via bacterial fermentation and the subsequent purification of the synthesized PHA from bacterial cells. Innovative enterprise by researchers from various disciplines over several decades successfully reduced the cost of PHA production through the efficient use of cheap and renewable feedstock, precisely controlled fermentation process, and customized bacterial strains. Despite the fact that PHA yields have been improved tremendously, the recovery and purification processes of PHA from bacterial cells remain exhaustive and require large amounts of water and high energy input besides some chemicals. In addition, the residual cell biomass ends up as waste that needs to be treated. We have found that some animals can readily feed on the dried bacterial cells that contain PHA granules. The digestive system of the animals is able to assimilate the bacterial cells but not the PHA granules which are excreted in the form of fecal pellets, thus resulting in partial recovery and purification of PHA. In this mini-review, we will discuss this new concept of biological recovery, the selection of the animal model for biological recovery, and the properties and possible applications of the biologically recovered PHA.
Zhao, Chao; Ruan, Lingwei
2011-11-01
The bacteria involved in the biodegradation of Enteromorpha prolifera (EP) are largely unknown, especially in offshore mangrove environments. In order to obtain the bacterial EP-degrading communities, sediments from a typical mangrove forest were sampled on the roots of mangrove in Dongzhai Port (Haikou, China). The sediments were enriched with crude EP powders as the sole carbon source. The bacterial composition of the resulting mangrove-degrading micro-community (MDMC), named D2-1, was analysed. With methods of plate cultivation and polymerase chain reaction-denaturing gradient gel electrophoresis and 16S rRNA library analysis, 18 bacteria belonging to nine genera were detected from this community. Among these detected bacteria, five major bands closely related to Bacillus, Marinobacter, Paenibacillus, Photobacterium, and Zhouia were determined. A novel two-step pretreatment for EP was proposed to lower the severity requirement of biodegraded pretreatment time. It consisted of a mild physical or chemical step (ultrasonic or H(2)O(2)) and a subsequent biological treatment with community D2-1. The combined treatment led to significant increases in the EP degradation. After combined treatment, the net yields of total soluble sugars and reducing sugars increased. The combined pretreatment of H(2)O(2) (2%, 48 h) and MDMC (7 days) was more effective than the treatment of MDMC only for 15 days. It could remarkably shorten the residence time and reduce the losses of carbohydrates. © Springer-Verlag 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Mikhail A.; Nanstad, Randy K.
Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of smallmore » specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Assessment and validation of mini-CT specimen geometry has been performed on previously well characterized HSST Plate 13B, an A533B class 1 steel. It was shown that the fracture toughness transition temperature measured by these Mini-CT specimens is within the range of To values that were derived from various large fracture toughness specimens. Moreover, the scatter of the fracture toughness values measured by Mini-CT specimens perfectly follows the Weibull distribution function providing additional proof for validation of this geometry for the Master Curve evaluation of rector pressure vessel steels. Moreover, the International collaborative program has been developed to extend the assessment and validation efforts to irradiated weld metal. The program is underway and involves ORNL, CRIEPI, and EPRI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maines, Warren Russell; Kittell, David E.; Hobbs, Michael L.
In this work, we combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State and estimated Gurney velocity at the tube wall. The test also provides an additional method to estimate reaction products Hugoniot through knowledge of the copper test cap. Our experiments and simulations are within expected uncertainty. Lastly, the test and the analysis effectively reducemore » costs while keeping or increasing fidelity.« less
Tuner design and RF test of a four-rod RFQ
NASA Astrophysics Data System (ADS)
Zhou, QuanFeng; Zhu, Kun; Guo, ZhiYu; Kang, MingLei; Gao, ShuLi; Lu, YuanRong; Chen, JiaEr
2011-12-01
A mini-vane four-rod radio frequency quadruple (RFQ) accelerator has been built for neutron imaging. The RFQ will operate at 201.5 MHz, and its length is 2.7 m. The original electric field distribution along the electrodes is not flat. The resonant frequency needs to be tuned to the operating value. And the frequency needs to be compensated for temperature change during high power RF test and beam test. As tuning such a RFQ is difficult, plate tuners and stick tuners are designed. This paper will present the tuners design, the tuning procedure, and the RF properties of the RFQ.
Kim, Yeon-Hee; Lee, Si Young
2015-02-01
Mitis-salivarius (MS) agar has been used widely in microbial epidemiological studies because oral viridans streptococci can be selectively grown on this medium. Even though the previous findings reported the limited selecting power of MS agar for streptococcus strains, the identities of non-streptococcal strains from human oral samples which can grow on this medium are not clear yet. In this study, we identified non-streptococcal organisms grown on MS agar plates by polymerase chain reaction (PCR) amplification and sequencing of the 16S ribosomal RNA (rRNA) gene. Eighty bacterial colonies on MS plates were isolated from plaque samples, and bacterial identification was achieved with the rapid ID 32 Strep system and mini API reader. The bacterial colonies identified as non-streptococci by the API system were selected for further identification. The 16S rRNA gene was amplified by PCR and verified using DNA sequencing analysis for identification. Sequences were compared with those of reference organisms in the genome database of the National Center for Biotechnology Information using the Basic Local Alignment Search Tool (BLAST). Among the 11 isolated non-streptococcal strains on MS plates, 3 strains were identified as Actinomyces naeslundii, 7 strains were identified as Actinomyces oris and 1 strain were identified as Actinomyces sp. using Blastn. In this study, we showed that some oral Actinomyces species can grow on Streptococcus-selective MS agar plates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers
NASA Astrophysics Data System (ADS)
Christensen, Philip R.; Mehall, Greg L.; Silverman, Steven H.; Anwar, Saadat; Cannon, George; Gorelick, Noel; Kheen, Rolph; Tourville, Tom; Bates, Duane; Ferry, Steven; Fortuna, Teresa; Jeffryes, John; O'Donnell, William; Peralta, Richard; Wolverton, Thomas; Blaney, Diana; Denise, Robert; Rademacher, Joel; Morris, Richard V.; Squyres, Steven
2003-12-01
The Miniature Thermal Emission Spectrometer (Mini-TES) will provide remote measurements of mineralogy and thermophysical properties of the scene surrounding the Mars Exploration Rovers and guide the rovers to key targets for detailed in situ measurements by other rover experiments. The specific scientific objectives of the Mini-TES investigation are to (1) determine the mineralogy of rocks and soils, (2) determine the thermophysical properties of selected soil patches, and (3) determine the temperature profile, dust and water-ice opacity, and water vapor abundance in the lower atmospheric boundary layer. The Mini-TES is a Fourier Transform Spectrometer covering the spectral range 5-29 μm (339.50 to 1997.06 cm-1) with a spectral sample interval of 9.99 cm-1. The Mini-TES telescope is a 6.35-cm-diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a voice-coil motor assembly. A single deuterated triglycine sulfate (DTGS) uncooled pyroelectric detector with proven space heritage gives a spatial resolution of 20 mrad; an actuated field stop can reduce the field of view to 8 mrad. Mini-TES is mounted within the rover's Warm Electronics Box and views the terrain using its internal telescope looking up the hollow shaft of the Pancam Mast Assembly (PMA) to the fixed fold mirror and rotating elevation scan mirror in the PMA head located ~1.5 m above the ground. The PMA provides a full 360°of azimuth travel and views from 30° above the nominal horizon to 50° below. An interferogram is collected every two seconds and transmitted to the Rover computer, where the Fast Fourier Transform, spectral summing, lossless compression, and data formatting are performed prior to transmission to Earth. Radiometric calibration is provided by two calibration V-groove blackbody targets instrumented with platinum thermistor temperature sensors with absolute temperature calibration of +/-0.1°C. One calibration target is located inside the PMA head; the second is on the Rover deck. The Mini-TES temperature is expected to vary diurnally from -10 to +30°C, with most surface composition data collected at scene temperatures >270 K. For these conditions the radiometric precision for two-spectra summing is +/-1.8 × 10-8 W cm-2 sr-1/cm-1 between 450 and 1500 cm-1, increasing to ~4.2 × 10-8 W cm-2 sr-1/cm-1 at shorter (300 cm-1) and longer (1800 cm-1) wave numbers. The absolute radiance error will be <5 × 10-8 W cm-2 sr-1/cm-1, decreasing to ~1 × 10-8 W cm-2 sr-1/cm-1 over the wave number range where the scene temperature will be determined (1200-1600 cm-1). The worst-case sum of these random and systematic radiance errors corresponds to an absolute temperature error of ~0.4 K for a true surface temperature of 270 K and ~1.5 K for a surface at 180 K. The Mini-TES will be operated in a 20-mrad panorama mode and an 8-mrad targeted mode, producing two-dimensional rasters and three-dimensional hyperspectral image cubes of varying sizes. The overall Mini-TES envelope size is 23.5 × 16.3 × 15.5 cm, and the mass is 2.40 kg. The power consumption is 5.6 W average. The Mini-TES was developed by Arizona State University and Raytheon Santa Barbara Remote Sensing.
Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.
Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L
2017-11-01
This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.
[The mini-open Latarjet procedure for treatment of recurrent anterior instability of the shoulder].
Pogorzelski, J; Beitzel, K; Imhoff, A B; Braun, S
2016-12-01
Shoulder stabilization. Symptomatic recurrent anterior shoulder instability combined with glenoid bone loss of approximately 20-35 % of the glenoid surface, engaging Hill-Sachs lesion and/or previously failed arthroscopic Bankart repair. In patients with a high risk of redislocation (contact sports) or irreparable soft tissue injury the Latarjet procedure can be considered as a first-line treatment. Contraindicated if arthroscopic Bankart repair is possible. Irreparable damage of subscapularis tendon. Bony defect >35 % of the glenoid that cannot be filled with coracoid bone block. Arbitrary shoulder dislocation. Young patients with open growth plates (relative contraindication). Mini-open deltopectoral approach of approximately 6 cm. Preparation of the coracoid process and the conjoined tendons. Osteotomy of the coracoid process at its base using a 90° sawblade. Split of the subscapularis tendon. Preparation of the glenoid defect and implantation of 2-3 suture anchors where appropriate. Drilling of two parallel holes through the coracoid process. Fixation of the bone block with cannulated screws at the anterior glenoid rim and refixation of the joint capsula, if necessary with the help of the suture anchors. Wound drainage and closure in layers. Intermittent immobilization in a sling for 6 weeks with limited abduction, flexion and external rotation. Sport-specific training after 3 months, over-head sports after 6 months. Since 2009 64 mini-open Latarjet procedures (61 patients) performed. In all, 9.4 % of patients suffered from persistent instability (dislocations and subluxations); only 1 patient needed revision surgery due to instability.
Baheiraei, Nafiseh; Yeganeh, Hamid; Ai, Jafar; Gharibi, Reza; Azami, Mahmoud; Faghihi, Faezeh
2014-11-01
There has been a growing trend towards applying conducting polymers for electrically excitable cells to increase electrical signal propagation within the cell-loaded substrates. A novel biodegradable electroactive polyurethane containing aniline pentamer (AP-PU) was synthesized and fully characterized by spectroscopic methods. To tune the physico-chemical properties and biocompatibility, the AP-PU was blended with polycaprolactone (PCL). The presence of electroactive moieties and the electroactivity behavior of the prepared films were confirmed by UV-visible spectroscopy and cyclic voltammetry. A conventional four probe analysis demonstrated the electrical conductivity of the films in the semiconductor range (~10(-5)S/cm). MTT assays using L929 mouse fibroblast and human umbilical vein endothelial cells (HUVECs) showed that the prepared blend (PB) displayed more cytocompatibility compared with AP-PU due to the introduction of a biocompatible PCL moiety. The in vitro cell culture also confirmed that PB was as supportive as tissue culture plate. The antioxidant activity of the AP-PU was proved using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV-vis spectroscopy. In vitro degradation tests conducted in phosphate-buffered saline, pH7.4 and pH5.5, proved that the films were also biodegradable. The results of this study have highlighted the potential application of this bioelectroactive polyurethane as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation
Mehdikhani-Nahrkhalaji, Mehdi; Fathi, Mohammad Hossein; Mortazavi, Vajihesadat; Mousavi, Sayed Behrouz; Akhavan, Ali; Haghighat, Abbas; Hashemi-Beni, Batool; Razavi, Sayed Mohammad; Mashhadiabbas, Fatemeh
2015-01-01
Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Mechanical stability of the prepared nanocomposite coatings was studied during intramedullary implantation of coated Kirschner wires (K-wires) into rabbit tibia. Titanium mini-screws coated with nanocomposite coatings and without coating were implanted intramedullary in rabbit tibia. Bone tissue interaction with the prepared nanocomposite coatings was evaluated 30 and 60 days after surgery. The non-parametric paired Friedman and Kruskal-Wallis tests were used to compare the samples. For all tests, the level of significance was P < 0.05. Results: The results showed that nanocomposite coatings remained stable on the K-wires with a minimum of 96% of the original coating mass. Tissue around the coated implants showed no adverse reactions to the coatings. Woven and trabecular bone formation were observed around the coated samples with a minimum inflammatory reaction. PBG nanocomposite coating induced more rapid bone healing than PBGHA nanocomposite coating and titanium without coating (P < 0.05). Conclusion: It was concluded that PBG nanocomposite coating provides an ideal surface for bone formation and it could be used as a candidate for coating dental and orthopedic implants. PMID:25709681
Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.
Zafra, German; Cortés-Espinosa, Diana V
2015-12-01
Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.
Zhou, Miaomiao; Yan, Binghua; Wong, Jonathan W C; Zhang, Yang
2018-01-01
Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beck, John D; Harness, Neil G; Spencer, Hillard T
2014-04-01
To determine the percentage of AO B3 distal radius fractures that lose reduction after operative fixation and to see whether fracture morphology, patient factors, or fixation methods predict failure. We hypothesized that initial fracture displacement, amount of lunate facet available for fixation, plate position, and screw fixation would be significant risk factors for loss of reduction. A prospective, observational review was conducted of 51 patients (52 fractures) with AO B3 (volar shearing) distal radius fractures treated operatively between January 2007 and June 2012. We reviewed a prospective distal radius registry to determine demographic data, medical comorbidities, and physical examination findings. Radiographs were evaluated for AO classification, loss of reduction, length of volar cortex available for fixation, and adequacy of stabilization of the lunate facet fragment with a volar plate. Preoperative data were compared between patients who maintained radiographic alignment and those with loss of reduction. A multivariate logistic regression analysis was completed to determine significant predictors of loss of reduction. Volar shearing fractures with separate scaphoid and lunate facet fragments (AO B3.3), preoperative lunate subsidence distance, and length of volar cortex available for fixation were significant predictors for loss of reduction; the latter was significant in multivariate analysis. Plate position and number of screws used to stabilize the lunate facet were not statistically different between groups. Patients with AO B3.3 fractures with less than 15 mm of lunate facet available for fixation, or greater than 5 mm of initial lunate subsidence, are at risk for failure even if a volar plate is properly placed. In these cases, we recommend additional fixation to maintain reduction of the small volar lunate facet fracture fragments in the form of plate extensions, pins, wires, suture, wire forms, or mini screws. Therapeutic III. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Biodegradable fixation of mandibular fractures in children: stability and early results.
Yerit, Kaan C; Hainich, Sibylle; Enislidis, Georg; Turhani, Dritan; Klug, Clemens; Wittwer, Gert; Ockher, Michael; Undt, Gerhard; Kermer, Christian; Watzinger, Franz; Ewers, Rolf
2005-07-01
The aim of this study was to assess the safety and efficiency of biodegradable self-reinforced (SR-PLDLA) bone plates and screws in open reduction and internal fixation of mandible fractures in children. Thirteen patients (5 female, 8 male; mean age 12 years, range 5-16 years) were operated on various fractures of the mandible (2 symphyseal, 6 parasymphyseal, 4 body, 3 angle, 1 ramus, 2 condylar fractures). The mean follow-up time was 26.4 months (range 10.9-43.4 months). Intermaxillary fixation was applied in cases with concomitant condylar fractures up to 3 weeks. Primary healing of the fractured mandible was observed in all patients. Postoperative complications were minor and transient. The outcome of the operations was not endangered. Adverse tissue reactions to the implants, malocclusion, and growth restrictions did not occur during the observation period. Pediatric patients benefit from the advantages of resorbable materials, especially from faster mobilization and the avoidance of secondary removal operations. Based on these preliminary results, self-reinforced fixation devices are safe and efficient in the treatment of pediatric mandible fractures. However, further clinical investigations are necessary to evaluate the long-term reliability.
Biodegradation and bioremediation of endosulfan contaminated soil.
Kumar, Mohit; Lakshmi, C Vidya; Khanna, Sunil
2008-05-01
Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected.
NASA Astrophysics Data System (ADS)
Chang, G. S.; Lillo, M. A.
2009-08-01
The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y-Z mini-plate fuel model was developed. The Y-Z model divides each fuel plate into 30 equal intervals in both the Y and Z directions. The MCNP-calculated results and the detailed Y-Z fission power mapping were used to help design the AFIP fuel test assembly to demonstrate that the AFIP test assembly thermal-hydraulic limits will not exceed the ATR safety limits.
Complete Status Report Documenting Weld Development for Thin Wall Tubing of ODS Ferritic Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoelzer, David T.; Edmondson, Philip D.; Gussev, Maxim N.
Beginning in 2015, research in the FCRD program began the development of FSW for joining thin sections of 14YWT in the form of thin (0.5 mm) plate and ultimately thin wall tubing. In the previous fiscal year, a ~1 mm thick plate, or sheet, of 14YWT was produced by hot rolling with no edge cracking. The initial FSW experiment was performed on the 1 mm thick plate and involved a bead-on-plate weld in which the spinning pin tool is plunged into the plate surface, but does not penetrate the thickness of the plate, and then travels the length of themore » plate. The FSW run successfully produced a bead-on-plate stir zone on the 1 mm thick plate of 14YWT, but no characterization studies of the stir zone were performed by the end of FY15. Therefore, the results presented in this report cover the microstructural analysis of the bead-on-plate stir zone and the initial research task on obtaining tensile properties of the stir zone using the digital image correlation (DIC) approach during testing of miniature tensile specimens to assess the quality of the FSW parameters used in the initial experiment. The results of the microstructural characterization study using optical, scanning electron and scanning transmission electron microscopies showed the grain structure in the SZ to have isotropic and irregular shape but very similar size compared to the highly elongated grains oriented horizontally with the plane of the plate that were observed in the unaffected zone of 14YWT. Several cracks oriented horizontally were observed mostly on the retreating side of the SZ in both the SZ and TMAZ. These cracks may have formed due to insufficient pressure being exerted on the top surface of the plate by the shoulder and pin tool during the FSW run. High resolution STEM-EDS analysis showed the presence of the Y-Ti-O particles in the SZ, but that some particles exhibited coarsening. Overall, the FSW parameters used to produce the bead-on-plate SZ in the 0.1 cm thick plate of 14YWT were nearly optimized. The results of the digital image correlation (DIC) analysis of the two SS-Mini-2 tensile specimens fabricated from the 0.1 cm thick plate of 14YWT showed that the specimens exhibited high strength and good ductility. However, strain localization occurred in one of the specimens during the tensile test that was too close to the grips, which invalidated the data from the DIC analysis. This was surprising since the abrupt crack pop-in that occurred in the 0.1 cm thick plate of 14YWT during fabrication by wire EDM suggested that residual stresses were high. Residual stress measurements and the effects of post weld heat treatment on the FSW quality of joined 14YWT plates will be investigated in the next FW work package.« less
Veis, Alexander; Dabarakis, Nikolaos; Koutrogiannis, Christos; Barlas, Irodis; Petsa, Elina; Romanos, Georgios
2015-06-01
The aim of the present study was to evaluate histologically vertical bone regeneration outcomes after using bovine bone graft material in block and granular forms. The buccal bony plates of the outer mandibles of 10 New Zealand rabbits received Bio-Oss blocks that were immobilized using orthopedic mini-plates, and another 10 received granular forms that were gently packed and stabilized into the custom-made perforated metallic cubes. The mean graft area (GA), new bone area (NBA), bone-to-graft contact (BGC), and maximum vertical height reached by the new bone development (MVH) were histometrically evaluated and showed no significant differences between 2 graft types. The new bone was observed mostly close to the basal bone and developed penetrating the trabecular scaffold in the form of seams that covered the intralumen surfaces of the block type graft, while in the granular graft type the new bone was observed to grow between the graft particles usually interconnecting them. Either form of Bio-Oss was capable of providing considerable vertical bone augmentation.
R245fa Flow Boiling inside a 4.2 mm ID Microfin Tube
NASA Astrophysics Data System (ADS)
Longo, G. A.; Mancin, S.; Righetti, G.; Zilio, C.
2017-11-01
This paper presents the R245fa flow boiling heat transfer and pressure drop measurements inside a mini microfin tube with internal diameter at the fin tip of 4.2 mm, having 40 fins, 0.15 mm high with a helix angle of 18°. The tube was brazed inside a copper plate and electrically heated from the bottom. Sixteen T-type thermocouples are located in the copper plate to monitor the wall temperature. The experimental measurements were carried out at constant mean saturation temperature of 30 °C, by varying the refrigerant mass velocity between 100 kg m-2 s-1 and 300 kg m-2 s-1, the vapour quality from 0.15 to 0.95, at two different heat fluxes: 30 and 60 kW m-2. The experimental results are presented in terms of two-phase heat transfer coefficient, onset dryout vapour quality, and frictional pressure drop. Moreover, the experimental measurements are compared against the most updated models for boiling heat transfer coefficient and frictional pressure drop estimations available in the open literature for microfin tubes.
Tyser, Andrew R; Tsai, Michael A; Parks, Brent G; Means, Kenneth R
2015-02-01
To compare stability and range of motion after hemi-hamate reconstruction versus volar plate arthroplasty in a biomechanical proximal interphalangeal (PIP) joint fracture-dislocation model. Eighteen digits from 6 cadaver hands were tested. We created defects of 40%, 60%, and 80% in the palmar base of each digit's middle phalanx, simulating an acute PIP joint fracture-dislocation. Each defect scenario was reconstructed with a hemi-hamate arthroplasty followed by a volar plate arthroplasty. A computer-controlled mechanism was used to bring each digit's PIP joint from full extension to full flexion via the digital tendons in each testing state, and in the intact state. During each testing scenario we collected PIP joint cinedata in a true lateral projection using mini-fluoroscopy. A digital radiography program was used to measure the amount of middle phalanx dorsal translation (subluxation) in full PIP joint extension. We recorded the angle at which subluxation, if present, occurred during each testing scenario. Average dorsal displacement of the middle phalanx in relation to the proximal phalanx was 0.01 mm for the hemi-hamate reconstructed joints and -0.03 mm for the volar plate arthroplasty, compared with the intact state. Flexion contractures were noted in each of the specimens reconstructed with volar plate arthroplasty. Degree of contracture was directly correlated with defect size, averaging 20° for 40% defects, 35° for 60% defects, and 60° for 80% defects. We observed no flexion contractures in the hemi-hamate reconstructions. Surgeons can use both hemi-hamate and volar plate arthroplasty to restore PIP joint stability following a fracture dislocation with a large middle phalanx palmar base defect. Use of volar plate arthroplasty led to an increasing flexion contracture as the middle phalanx palmar base defect increased. Clinicians can use the information from this study to help with surgical decision-making and patient education. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mobarak, H. M.; Masjuki, H. H.; Mohamad, E. Niza; Kalam, M. A.; Rashedul, H. K.; Rashed, M. M.; Habibullah, M.
2014-10-01
The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.
[Biomaterials in bone repair].
Puska, Mervi; Aho, Allan J; Vallittu, Pekka K
2013-01-01
In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.
Ghazvini, Habibollah; Hiebert, Colin W; Thomas, Julian B; Fetch, Thomas
2013-02-01
An important aspect of studying putative new genes in wheat is determining their position on the wheat genetic map. The primary difficulty in mapping genes is determining which chromosome carries the gene of interest. Several approaches have been developed to address this problem, each with advantages and disadvantages. Here we describe a new approach called multiple bulked segregant analysis (MBSA). A set of 423 simple sequence repeat (SSR) markers were selected based on profile simplicity, frequency of polymorphism, and distribution across the wheat genome. SSR primers were preloaded in 384-well PCR plates with each primer occupying 16 wells. In practice, 14 wells are reserved for "mini-bulks" that are equivalent to four gametes (e.g. two F(2) individuals) comprised of individuals from a segregated population that have a known homozygous genotype for the gene of interest. The remaining two wells are reserved for the parents of the population. Each well containing a mini-bulk can have one of three allele compositions for each SSR: only the allele from one parent, only the allele from the other parent, or both alleles. Simulation experiments were performed to determine the pattern of mini-bulk allele composition that would indicate putative linkage between the SSR in question and the gene of interest. As a test case, MBSA was employed to locate an unidentified stem rust resistance (Sr) gene in the winter wheat cultivar Norin 40. A doubled haploid (DH) population (n = 267) was produced from hybrids of the cross LMPG-6S/Norin 40. The DH population segregated for a single gene (χ (1:1) (2) = 0.093, p = 0.76) for resistance to Puccinia graminis f.sp. tritici race LCBN. Four resistant DH lines were included in each of the 14 mini-bulks for screening. The Sr gene was successfully located to the long arm of chromosome 2D using MBSA. Further mapping confirmed the chromosome location and revealed that the Sr gene was located in a linkage block that may represent an alien translocation. The new Sr gene was designated as Sr54.
External bioresorbable airway rigidification to treat refractory localized tracheomalacia.
Gorostidi, François; Reinhard, Antoine; Monnier, Philippe; Sandu, Kishore
2016-11-01
Our study evaluates the efficacy of extraluminal bioresorbable plates to treat refractory localized airway malacia in patients undergoing corrective surgery for complex multilevel laryngotracheal stenosis. Retrospective case series. Secondary malacic airway segments were characterized (severity, site, type) by a dynamic transnasal flexible laryngotracheobronchoscopy before surgery. Extraluminal bioresorbable plates were used to stabilize the malacic segment through a transcervical approach under intraoperative flexible endoscopic guidance. Results were evaluated subjectively and by a postoperative dynamic endoscopy. We report our experience in seven patients (6 children, 1 adult). External tracheal stiffening allowed complete or partial resolution of refractory proximal airway malacia in six of seven complex cases described (result in one case is awaited). It allowed quick decannulation in four of seven patients who experienced multiple previous failures. Decannulation failures were due to recurrence of stenosis. With up to 2 years of follow-up, we report no direct complications related to the presence of extraluminal bioresorbable plates around the airway. Extraluminal biodegradable tracheal stiffening represents a valid therapeutic option in select cases of upper airway malacia. It can be highly useful in cases of complex multilevel airway obstructions. External stiffening needs to be planned on a case-to-case basis according to the type of malacia and must be performed under endoscopic guidance. 4. Laryngoscope, 126:2605-2610, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Iskandar, Maria Emil; Aslani, Arash; Liu, Huinan
2013-08-01
Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Although its biodegradability is an attractive property, rapid degradation of Mg in the physiological environments imposes a major obstacle that limits the translation of Mg-based implants to clinical applications. Therefore, the objective of this study was to develop a nanostructured hydroxyapatite (nHA) coating on polished Mg substrates to mediate the rapid degradation of Mg while improving its integration with bone tissue for orthopedic applications. The nHA coatings were deposited on polished Mg using the patented transonic particle acceleration (Spire Biomedical) process. Surface morphology, elemental compositions, and crystal structures were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction (XRD) analysis, respectively. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating the samples in phosphate buffered saline and revised simulated body fluid, under standard cell culture conditions. Rat bone marrow stromal cells (BMSCs) were harvested and cultured with nHA-coated and non-coated Mg samples to determine cytocompatibility. The degradation results suggested that the nHA coatings decreased Mg degradation. Improved BMSC adhesion was observed on the surfaces of the nHA-coated and non-coated Mg samples, in comparison with the cells on the culture plate surrounding the Mg samples. In conclusion, nHA coatings showed promise for improving the biodegradation and cytocompatibility properties of Mg-based orthopedic implants and should be further studied. Copyright © 2013 Wiley Periodicals, Inc.
Petrovic, Igor
2016-09-01
The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw waste as well as planning landfill mining projects. © The Author(s) 2016.
Elazar, Victoria; Adwan, Hassan; Bäuerle, Tobias; Rohekar, Keren; Golomb, Gershon; Berger, Martin R
2010-04-01
Poor prognosis in mammary carcinoma is associated with a certain expression profile of a defined set of genes including osteopontin and bone sialoprotein. Efficient and specific delivery of antisenses (AS) and a protection of the sequences from degradation are the crucial conditions for AS therapeutic efficiency. We hypothesized that effective and safe AS delivery direceted against these genes could be achieved by polymeric nanoparticles (NP) fabricated from a biocompatible polymer. Due to their nano-size range and small negative charge, AS-NP can overcome the absorption barrier offering increased resistance to nuclease degradation, sustained duration of AS administration, and consequently, prolonged antisense action. The ASs designed against OPN and BSP-II were successfully encapsulated in NP composed of the biodegradable and biocompatible polylactide-co-glycolide polymer (PLGA), exhibiting sustained release and stability of the ASs. The therapeutic efficacy of the AS-NP delivery system was examined in vitro, and in a breast cancer bone metastasis animal model of MDA-MB-231 human breast cancer cells in nude rats. Treatment with OPN-AS or BSP-AS loaded NP in comparison with osmotic mini-pumps (locoregional injection and SC implants, respectively) resulted in a significant decrease in both, tumor bone metastasis incidence and in the size of the lesions in rats with metastases. Despite its smaller dose, AS-NP exhibited a better therapeutic efficacy than osmotic mini-pumps in terms of lesion ratio at later time periods (8-12 weeks). It may be concluded that AS delivery by NP is a promising therapeutic modality providing stability of the encapsulated AS and a sustained release.
Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review.
Ting, Yien Fang; Praveena, Sarva Mangala
2017-04-01
Steroid estrogens, such as estrone (E 1 ), 17β-estradiol (E 2 ), estriol (E 3 ), and 17α-ethinylestradiol (EE 2 ), are natural and synthetic hormones released into the environment through incomplete sewage discharge. This review focuses on the sources of steroid estrogens in wastewater treatment plants (WWTPs). The mechanisms and fate of steroid estrogens throughout the entire wastewater treatment system are also discussed, and relevant information on regulatory aspects is given. Municipal, pharmaceutical industry, and hospitals are the main sources of steroid estrogens that enter WWTPs. A typical WWTP comprises primary, secondary, and tertiary treatment units. Sorption and biodegradation are the main mechanisms for removal of steroid estrogens from WWTPs. The fate of steroid estrogens in WWTPs depends on the types of wastewater treatment systems. Steroid estrogens in the primary treatment unit are removed by sorption onto primary sludge, followed by sorption onto micro-flocs and biodegradation by microbes in the secondary treatment unit. Tertiary treatment employs nitrification, chlorination, or UV disinfection to improve the quality of the secondary effluent. Activated sludge treatment systems for steroid estrogens exhibit a removal efficiency of up to 100%, which is higher than that of the trickling filter treatment system (up to 75%). Moreover, the removal efficiency of advance treatment systems exceeds 90%. Regulatory aspects related to steroid estrogens are established, especially in the European Union. Japan is the only Asian country that implements a screening program and is actively involved in endocrine disruptor testing and assessment. This review improves our understanding of steroid estrogens in WWTPs, proposes main areas to be improved, and provides current knowledge on steroid estrogens in WWTPs for sustainable development.
Design and fabrication of the Mini-Brayton Recuperator (MBR)
NASA Technical Reports Server (NTRS)
Killackey, J. J.; Graves, R.; Mosinskis, G.
1978-01-01
Development of a recuperator for a 2.0 kW closed Brayton space power system is described. The plate-fin heat exchanger is fabricated entirely from Hastelloy X and is designed for 10 years continuous operation at 1000 K (1300 F) with a Xenon-helium working fluid. Special design provisions assure uniform flow distribution, crucial for meeting 0.975 temperature effectiveness. Low-cycle fatigue, resulting from repeated startup and shutdown cycles, was identified as the most critical structural design problem. It is predicted that the unit has a minimum fatigue life of 220 cycles. This is in excess of the BIPS requirement of 100 cycles. Heat transfer performance and thermal cycle testing with air, using a prototype unit, verified that all design objectives can be met.
Cronier, P; Frin, J-M; Steiger, V; Bigorre, N; Talha, A
2013-06-01
Tarsal navicular fractures are rare and treatment of comminuted fractures is especially difficult. Since 2007, the authors have had access to 3D reconstruction from CT scan images and specific locking plates, and they decided to evaluate whether these elements improved management of these severe cases. Between 2007 and 2011, 10 comminuted tarsal navicular fractures were treated in a prospective study. All of the fractures were evaluated by 3D reconstruction from CT scan images, with suppression of the posterior tarsal bones. The surgical approach was chosen according to the type of lesion. Reduction was achieved with a mini-distractor when necessary, and stabilized by AO locking plate fixation (Synthes™). Patient follow-up included a clinical and radiological evaluation (Maryland Foot score, AOFAS score). Eight patients underwent postoperative CT scan. All patients were followed up after a mean 20.5 months. Union was obtained in all patients and arthrodesis was not necessary in any of them. The mean Maryland Foot score was 92.8/100, and the AOFAS score 90.6/100. One patient with an associated comminuted calcaneal fracture had minimal sequella from a compartment syndrome of the foot. The authors did not find any series in the literature that reported evaluating tarsal navicular fractures by 3D reconstruction from CT scan images. The images obtained after suppression of the posterior tarsal bones systematically showed a lateral plantar fragment attached to the plantar calcaneonavicular ligament, which is essential for stability, and which helped determine the reduction technique. Locking plate fixation of these fractures has never been reported. Comminuted fractures of the tarsal navicular were successfully treated with specific imaging techniques in particular 3D reconstructions of CT scan images to choose the surgical approach and the reduction technique. Locking plate fixation of the navicular seems to be a satisfactory solution for the treatment of these particularly difficult fractures. Level IV. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Zhang, Fang; Ahn, Yongtae; Logan, Bruce E
2014-01-01
The effectiveness of refinery wastewater (RW) treatment using air-cathode, microbial fuel cells (MFCs) was examined relative to previous tests based on completely anaerobic microbial electrolysis cells (MECs). MFCs were configured with separator electrode assembly (SEA) or spaced electrode (SPA) configurations to measure power production and relative impacts of oxygen crossover on organics removal. The SEA configuration produced a higher maximum power density (280±6 mW/m(2); 16.3±0.4 W/m(3)) than the SPA arrangement (255±2 mW/m(2)) due to lower internal resistance. Power production in both configurations was lower than that obtained with the domestic wastewater (positive control) due to less favorable (more positive) anode potentials, indicating poorer biodegradability of the RW. MFCs with RW achieved up to 84% total COD removal, 73% soluble COD removal and 92% HBOD removal. These removals were higher than those previously obtained in mini-MEC tests, as oxygen crossover from the cathode enhanced degradation in MFCs compared to MECs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Improving the 'tool box' for robust industrial enzymes.
Littlechild, J A
2017-05-01
The speed of sequencing of microbial genomes and metagenomes is providing an ever increasing resource for the identification of new robust biocatalysts with industrial applications for many different aspects of industrial biotechnology. Using 'natures catalysts' provides a sustainable approach to chemical synthesis of fine chemicals, general chemicals such as surfactants and new consumer-based materials such as biodegradable plastics. This provides a sustainable and 'green chemistry' route to chemical synthesis which generates no toxic waste and is environmentally friendly. In addition, enzymes can play important roles in other applications such as carbon dioxide capture, breakdown of food and other waste streams to provide a route to the concept of a 'circular economy' where nothing is wasted. The use of improved bioinformatic approaches and the development of new rapid enzyme activity screening methodology can provide an endless resource for new robust industrial biocatalysts.This mini-review will discuss several recent case studies where industrial enzymes of 'high priority' have been identified and characterised. It will highlight specific hydrolase enzymes and recent case studies which have been carried out within our group in Exeter.
[Bone graft reconstruction for posterior mandibular segment using the formwork technique].
Pascual, D; Roig, R; Chossegros, C
2014-04-01
Pre-implant bone graft in posterior mandibular segments is difficult because of masticatory and lingual mechanical constraints, because of the limited bone vascularization, and because of the difficulty to cover it with the mucosa. The formwork technique is especially well adapted to this topography. The recipient site is abraded with a drill. Grooves are created to receive and stabilize the grafts. The bone grafts were harvested from the ramus. The thinned cortices are assembled in a formwork and synthesized by mini-plates. The gaps are filled by bone powder collected during bone harvesting. The bone volume reconstructed with the formwork technique allows anchoring implants more than 8mm long. The proximity of the inferior alveolar nerve does not contra indicate this technique. The formwork size and its positioning on the alveolar crest can be adapted to prosthetic requirements by using osteosynthesis plates. The lateral implant walls are supported by the formwork cortices; the implant apex is anchored on the native alveolar crest. The primary stability of implants is high, and the torque is important. The ramus harvesting decreases operative risks. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D
2014-02-01
Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P < 0.05 vs control defects). In a challenging aged rabbit model, bone marrow-derived hyaline cartilage repair can be promoted by treating acute drill holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Weatherill, John; Krause, Stefan; Voyce, Kevin; Drijfhout, Falko; Levy, Amir; Cassidy, Nigel
2014-03-01
Integrated approaches for the identification of pollutant linkages between aquifers and streams are of crucial importance for evaluating the environmental risks posed by industrial contaminants like trichloroethene (TCE). This study presents a systematic, multi-scale approach to characterising groundwater TCE discharge to a 'gaining' UK lowland stream receiving baseflow from a major Permo-Triassic sandstone aquifer. Beginning with a limited number of initial monitoring points, we aim to provide a 'first pass' mechanistic understanding of the plume's fate at the aquifer/stream interface using a novel combination of streambed diffusion samplers, riparian monitoring wells and drive-point mini-piezometers in a spatially nested sampling configuration. Our results indicate the potential discharge zone of the plume to extend along a stream reach of 120 m in length, delineated by a network of 60 in-situ diffusion samplers. Within this section, a 40 m long sub-reach of higher concentration (>10 μg L(-1)) was identified; centred on a meander bend in the floodplain. 25 multi-level mini-piezometers installed to target this down-scaled reach revealed even higher TCE concentrations (20-40 μg L(-1)), significantly above alluvial groundwater samples (<6 μg L(-1)) from 15 riparian monitoring wells. Significant lateral and vertical spatial heterogeneity in TCE concentrations within the top 1m of the streambed was observed with the decimetre-scale vertical resolution provided by multi-level mini-piezometers. It appears that the distribution of fine-grained material in the Holocene deposits of the riparian floodplain and below the channel is exerting significant local-scale geological controls on the location and magnitude of the TCE discharge. Large-scale in-situ biodegradation of the plume was not evident during the monitoring campaigns. However, detections of cis-1,2-dichloroethene and vinyl chloride in discrete sections of the sediment profile indicate that shallow (e.g., <20 cm) TCE transformation may be significant at a local scale in the streambed deposits. Our findings highlight the need for efficient multi-scale monitoring strategies in geologically heterogeneous lowland stream/aquifer systems in order to more adequately quantify the risk to surface water ecological receptors posed by point-source groundwater contaminants like TCE. Copyright © 2013 Elsevier B.V. All rights reserved.
Virtual Research Expeditions along Plate Margins: Examples from an Online Oceanography Course
NASA Astrophysics Data System (ADS)
Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H. J.
2010-12-01
An undergraduate online course in oceanography is based on the participation of each student in a series of virtual, at-sea, research expeditions, two of which are used to examine the tectonic processes at plate boundaries. The objective is to leverage the results of major federal research initiatives in the ocean sciences into effective learning tools with a long lifespan for use in undergraduate geoscience courses. These web-based expeditions examine: (1) hydrothermal vents along the divergent plate boundary at the Explorer Ridge and (2) the convergent plate boundary fault along the Nankai Trough, which is the objective of the multi-year NanTroSEIZE drilling program. Here we focus on the convergent plate boundary in NanTroSEIZE 3-D, which is based on a seismic survey supported through NSF-MARGINS, IODP and CDEX in Japan to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan. The virtual voyage can be used in undergraduate classes at anytime, since it is not directly tied to the finite duration of a specific seagoing project, and comes in two versions, one that is being used in geoscience major courses and the other in non-major courses, such as the oceanography course mentioned above and a lower-division global studies course with a science emphasis. NanTroSEIZE in 3-D places undergraduate learning in an experiential framework as students participate on the expedition and carry out research on the structure of the plate boundary fault. Students learn the scientific background of the program, especially the critical role of international collaboration, and meet the chief scientists before joining the 3-D seismic imaging expedition to identify the active faults that were the likely sources of devastating earthquakes and tsunamis in Japan in 1944 and 1948. The initial results of phase I ODP drilling that began in 2007 are also reviewed. Students document their research on a worksheet that accompanies the expedition, interpret a slice through the 3-D seismic volume, and compose an “AGU-style” abstract summarizing their work, which is submitted to the instructor for review. NanTroSEIZE in 3-D is openly available and can be accessed through the MARGINS Mini-lesson section of the Science Education Resource Center (SERC).
Beirer, Marc; Postl, Lukas; Crönlein, Moritz; Siebenlist, Sebastian; Huber-Wagner, Stefan; Braun, Karl F; Biberthaler, Peter; Kirchhoff, Chlodwig
2015-05-28
Fractures of the clavicle present very common injuries with a peak of incidence in young active patients. Recently published randomized clinical trials demonstrated an improved functional outcome and a lower rate of nonunions in comparison to non-operative treatment. Anterior chest wall numbness due to injury of the supraclavicular nerve and postoperative pain constitute common surgery related complications in plate fixation of displaced clavicle fractures. We recently developed a technique for mini open plating (MOP) of the clavicle to reduce postoperative numbness and pain. The purpose of this study was to analyze the size of anterior chest wall numbness and the intensity of postoperative pain in MOP in comparison to conventional open plating (COP) of clavicle fractures. 24 patients (mean age 38.2 ± 14.2 yrs.) with a displaced fracture of the clavicle (Orthopaedic Trauma Association B1.2-C1.2) surgically treated using a locking compression plate (LCP) were enrolled. 12 patients underwent MOP and another 12 patients COP. Anterior chest wall numbness was measured with a transparency grid on the second postoperative day and at the six months follow-up. Postoperative pain was evaluated using the Visual Analog Scale (VAS). Mean ratio of skin incision length to plate length was 0.61 ± 0.04 in the MOP group and 0.85 ± 0.06 in the COP group (p < 0.05). Mean ratio of the area of anterior chest wall numbness to plate length was postoperative 7.6 ± 5.9 (six months follow-up 4.7 ± 3.9) in the MOP group and 22.1 ± 19.1 (16.9 ± 14.1) in the COP group (p < 0.05). Mean VAS was 2.6 ± 1.4 points in the MOP group and 3.4 ± 1.6 points in the COP group (p = 0.20). In our study, MOP significantly reduced anterior chest wall numbness in comparison to a conventional open approach postoperative as well as at the six months follow-up. Postoperative pain tended to be lower in the MOP group, however this difference was not statistically significant. ClinicalTrials.gov NCT02247778 . Registered 21 September 2014.
Bobrowski, A N; Torriani, M A; Sonego, C L; Carvalho, P H deA; Post, L K; Chagas Júnior, O L
2017-04-01
This study aimed to answer the following question: What is the best treatment option for fractures of the dentate portion of the mandible in paediatric patients when considering the occurrence of postoperative complications? A systematic literature review was done using the PubMed, Scopus, and Cochrane Library databases, and 1186 articles on the topic were found. Twelve of these articles were included in the final review after the full texts had been read. A sample of 178 paediatric patients was obtained. In the six cases in which treatment was surgery with titanium plate fixation, there were no postoperative complications, whereas in the 141 cases in which treatment was surgery with biodegradable plates, there were 12 postoperative complications, and in the 31 cases in which treatment was non-surgical, there were three postoperative complications. A connection between the best treatment and the number of postoperative complications in fractures of the dentate portion of the mandible in paediatric patients could not be established; however, the occurrence of postoperative complications was low for both surgical and non-surgical treatments. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Turvey, T. A.; Proffit, W. P.; Phillips, C.
2011-01-01
Patient acceptance, safety, and efficacy of poly-L/DL-lactic acid (PLLDL) bone plates and screws in craniomaxillofacial surgery are reported in this article. Included in the sample are 745 patients who underwent 761 separate operations, including more than 1400 surgical procedures (orthognathic surgery (685), bone graft reconstruction (37), trauma (191) and transcranial surgery (20)). The success (no breakage or inflammation requiring additional operating room treatment) was 94%. Failure occurred because of breakage (14) or exuberant inflammation (31). All breakage occurred at mandibular sites and the majority of inflammatory failure occurred in the maxilla or orbit (29), with only two in the mandible. Failures were evenly distributed between the two major vendors. PLLDL 70/30 bone plates and screws may be used successfully in a variety of craniomaxillofacial surgical applications. The advantages include the gradual transference of physiological forces to the healing bone, the reduced need for a second operation to remove the material and its potential to serve as a vehicle to deliver bone-healing proteins to fracture/osteotomy sites. Bone healing was noted at all sites, even where exuberant inflammation required a second surgical intervention. PMID:21185695
Takagaki, Kyozo; Gonda, Tomoya; Maeda, Yoshinobu
2015-09-01
Lateral force to mini-implants should be avoided because mini-implants are weak mechanically because of its small diameter. Overdentures retained by mini-implants are usually formed using ball attachments. However, bar attachments can offer the advantage of splinting the mini-implants. This study examined the effect of attachments in withstanding these lateral forces in tilted mini-implants of overdentures. Strain gauges were attached to the mini-implants (2.5 × 18 mm) embedded in an acrylic resin block. Two mini-implants were inserted vertically (Control) or with one mini-implant inclined at 10° or 20° (10-inclined and 20-inclined, respectively). The female portions of the attachments were secured to the denture base. A prefabricated ball attachment and CAD/CAM-fabricated bar attachment were compared. A vertical load of 49 N was applied to the occlusal surface at a distance 10 mm away from the center of two mini-implants. The lateral force borne by the mini-implants was measured via the attached strain gauge. Mann-Whitney U-test and an analysis of Bonferroni correction were used to compare differences between the two attachments and among the three models (P < 0.05). The lateral force exerted to the inclined mini-implant was significantly greater than that borne by a vertical mini-implant for both attachment types. The lateral force on the 20° inclined mini-implants with bar attachments was smaller than that on mini-implants with ball attachments. Inclined mini-implants are subjected to greater stresses than vertical ones, and a bar attachment can reduce the lateral forces borne by the mini-implant when one mini-implant inclined at 20°. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jurado, Encarnación; Fernández-Serrano, Mercedes; Núñez-Olea, Josefa; Lechuga, Manuela
2009-09-01
In this paper a study was made of the biodegradation of a non-ionic surfactant, a nonylphenol polyethoxylate, in biodegradability tests by monitoring the residual surfactant matter. The influence of the concentration on the extent of primary biodegradation, the toxicity of biodegradation metabolites, and the kinetics of degradation were also determined. The primary biodegradation was studied at different initial concentrations: 5, 25 and 50 mg/L, (at sub-and supra-critical micelle concentration). The NPEO used in this study can be considered biodegradable since the primary biodegradation had already taken place (a biodegradation greater than 80% was found for the different initial concentration tested). The initial concentration affected the shape of the resulting curve, the mean biodegradation rate and the percentage of biodegradation reached (99% in less than 8 days at 5 mg/L, 98% in less than 13 days at 25 mg/L and 95% in 14 days at 50 mg/L). The kinetic model of Quiroga and Sales (1991) was applied to predict the biodegradation of the NPEO. The toxicity value was measured as EC(20) and EC(50). In addition, during the biodegradation process of the surfactant a toxicity analysis was made of the evolution of metabolites generated, confirming that the subproducts of the biodegradation process were more toxic than the original.
An Earth Summit in a Large General Education Oceanography Class
NASA Astrophysics Data System (ADS)
Dodson, H.; Prothero, W. A.
2001-12-01
An Earth Summit approach in UCSB's undergraduate physical oceanography course has raised student interest level while it also supports the course goals of increased learner awareness of the process of science, and critical analysis of scientific claims. At the beginning of the quarter, each group of students chooses a country to represent in the Earth Summit. During the course of the quarter, these groups relate each of the class themes to their chosen country. Themes include 1) ocean basins and plate tectonics, 2) atmospheres, oceans and climate, and 3) fisheries. Students acquire and utilize Earth data to support their positions. Earth data sources include the "Our Dynamic Planet" CDROM (http://oceanography.geol.ucsb.edu/ODP_Advert/odp_onepage.htm), NOAA's ocean and climate database (http://ferret.wrc.noaa.gov/las/), WorldWatcher CD (http://www.worldwatcher.northwestern.edu/) and JPL's Seawinds web site (http://haifung.jpl.nasa.gov/index.html). During the atmospheres, oceans and climate theme, students choose from 12 mini-studies that use various kinds of on-line Earth data related to important global or regional phenomena relevant to the course. The Earth datasets that the students access for their analysis include: winds; atmospheric pressure; ocean chemistry; sea surface temperature; solar radiation; precipitation, etc. The first group of 6 mini-studies focus on atmosphere and ocean, and are: 1) global winds and surface currents, 2) atmosphere and ocean interactions, 3) stratospheric ozone depletion, 4) El Nino, 5) Indian monsoon, and 6) deep ocean circulation. The second group focus on the Earth's heat budget and climate and are: 1) influence of man's activities on the climate, 2) the greenhouse effect, 3) seasonal variation and the Earth's heat budget, 4) global warming, 5) paleoclimate, and 6) volcanoes and climate. The students use what they have learned in these mini-studies to address atmospheric and climatic issues pertinent to their specific Earth Summit countries. For example, students representing the country of Chile might model their investigations after a)winds and surface currents, b)atmosphere and ocean interactions, c) stratospheric ozone depletion, d)El Nino; and/or e)volcanoes and climate. Please join the "Oceanography" interest group of DLESE to discuss, develop, and access oceanography related mini-studies that use earth data (http://oceanography.geol.ucsb.edu/dlese/wg_oceanog/Index.html). >http://oceanography.geol.ucsb.edu/AWP/Class_Info/GS-4/Labs/Labs Index.html
Mini-Laparoscopy: Instruments and Economics.
Shadduck, Phillip P; Paquentin, Eduardo Moreno; Carvalho, Gustavo L; Redan, Jay A
2015-11-01
Mini-laparoscopy (Mini) was pioneered more than 20 years ago, initially with instruments borrowed from other specialties and subsequently with tools designed specifically for Mini. Early adoption of Mini was inhibited though by the limitations of these first-generation instruments, especially functionality and durability. Newer generation Mini instruments have recently become available with improved effector tips, a choice of shaft diameters and lengths, better shaft insulation and electrosurgery capability, improved shaft strength and rotation, more ergonomic handles, low-friction trocar options, and improved instrument durability. Improvements are also occurring in imaging and advanced energy for Mini. The current status of mini-laparoscopy instruments and economics are presented.
Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays
NASA Astrophysics Data System (ADS)
LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.
2017-12-01
The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow slip events.
Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y
2011-03-01
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.
Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério
2013-10-01
Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants. Copyright © 2013 Elsevier B.V. All rights reserved.
Abdullah, Mohamed Ruslan; Goharian, Amirhossein; Abdul Kadir, Mohammed Rafiq; Wahit, Mat Uzir
2015-11-01
The use of polyetheretherketone (PEEK) composites in the trauma plating system, total replacement implants, and tissue scaffolds has found great interest among researchers. In recent years (2008 afterward), this type of composites has been examined for suitability as substitute material over stainless steel, titanium alloys, ultra high molecular weight polyethylene, or even biodegradable materials in orthopedic implant applications. Biomechanical and bioactivity concepts were contemplated for the development of PEEK orthopedic implants and a few primary clinical studies reported the clinical outcomes of PEEK-based orthopedic implants. This study aims to review and discuss the recent concepts and contribute further concepts in terms of biomechanical and bioactivity challenges for the development of PEEK and PEEK composites in orthopedic implants. © 2015 Wiley Periodicals, Inc.
Polyphosphazenes - New polymers with inorganic backbone atoms
NASA Technical Reports Server (NTRS)
Allcock, H. R.
1976-01-01
Unique and useful properties of the class of nonhydrocarbon, nonhalocarbon, nonsilicone polymers known as polyphosphazenes are discussed at length. These polymers, with molecular weights to 4 million (degree of polymerization 15,000), can be fabricated as tubes, fibers, woven fabrics, flexible films, or plates, and many variants are stable to attack by water, bases, aqueous acids, jet fuels, oils, hydraulic fluids, gasoline, or other hydrocarbons. Rubbery polymers with these properties can be fashioned into flexible hose, fuel hose, gaskets, or O-rings. Since they do not provoke clotting reactions in blood, and reveal no carcinogenic effects to date, they are considered for internal prosthetic applications (replacement bone, temporary skin, heart valves), as biodegradable suturing material, as carriers for slow release of drugs, and as carriers for chemotherapeutic agents against cancers.
Evidence for High and Low Temperature Alteration across Home Plate, Gusev Crater
NASA Astrophysics Data System (ADS)
Schmidt, M. E.; Arvidson, R. E.; Des Marais, D. J.; Farrand, W. H.; Hurowitz, J. A.; Johnson, J. R.; McCoy, T. J.; Ming, D. W.; Ruff, S. W.; Schröder, C.
2008-12-01
Over the last ~2 years in Gusev Crater, the Mars Exploration Rover Spirit has observed coherent variations in mineralogy and geochemistry along an almost circular traverse of Home Plate, an 80 m-diameter outcrop of layered, basaltic tephra. Observations of Home Plate from orbit by the High Resolution Imaging Science Experiment (HiRISE) camera (0.3 m per pixel) and from the summit of Husband Hill (0.7 km to the north) by the Panoramic Camera (Pancam) onboard Spirit show clear longitudinal differences in visible/near- infrared (VNIR) colors, where its eastern region is more blue and western region is more red. Up close, Pancam spectra of rock targets brushed by the Rock Abrasion Tool (RAT) revealed similar variations and confirm that color contrasts observed at greater distances reflect meaningful differences in outcrop mineralogy. Mineralogical observations by the Spirit Mössbauer Spectrometer and Miniature Thermal Emission Spectrometer (Mini-TES) are consistent with the VNIR data, indicating that pyroxene and magnetite dominate the Fe-bearing assemblage at the east side, while olivine, nanophase ferric oxide (npOx), and glass are more abundant at the west. Alpha Particle X-Ray Spectrometer (APXS) observations indicate that eastern Home Plate has higher concentrations of Si, Al, Zn, Ni, and K, while Cl and Br are higher in the west. Compositional similarities in major elements between the two sides of Home Plate, as well as geologic observations indicate that upper, cross-bedded materials that span Home Plate belong to the same stratigraphic unit. However the compositions of more fluid-soluble elements and Fe-bearing minerals in the upper unit vary independently of stratigraphy. We propose that these variations are the result of two distinct alteration regimes: one that produced npOx at the west and another that recrystallized olivine to form pyroxene by Si addition at the east. Abundant npOx at the west is the likely product of breakdown and oxidation of glass or other igneous phases by either low temperature hydrothermal alteration or chemical weathering. Some mass transport during the recrystallization event is implied by small but systematic changes in composition across Home Plate (e.g., decreasing SiO2 and Zn from east to west). Under hydrothermal conditions, SiO2 solubility is increased and Zn and Ni can form temperature-dependent complexes with Cl. The higher concentrations of SiO2, Zn, and Ni in eastern Home Plate rocks indicate that higher temperatures were likely attained there (likely ~300° C to subsolidus temperatures). The localized nature of the high temperature alteration indicates perhaps that the event was relatively short-lived, temperature gradients were steep, and lateral advection was minor across Home Plate.
miniTri Mantevo miniapp v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Johathan; Stark, Dylan; Wolf, Michael
2016-02-02
miniTri is a miniapplication developed as part of the Mantevo project. Given a graph, miniTri enumerates all triangles in this graph and computes a metric for each triangle based on the triangle edge and vertex degree. The output of miniTri is a summary of this metric. miniTri mimics the computational requirements of an important set of data science applications. Several approaches to this problem are included in the miniTri software.
Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B
2009-09-01
Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.
Lewandrowski, K U; Lorente, C; Schomacker, K T; Flotte, T J; Wilkes, J W; Deutsch, T F
1996-01-01
Surgical reconstruction of bony defects in the maxillofacial region involves fixation of bony fragments with mini and micro plates. Bone stabilization during hole drilling is often challenging due to the need to apply pressure when using a conventional mechanical Hall drill. In addition, fragmentation of the fragile bones may occur and complicate the reconstruction. The pulsed Er:YAG laser offers an attractive alternative drilling modality because it does not require physical contact with the bone in order to drill holes, cuts bone with minimal thermal damage, and allows precise control of bone cutting. The objective of this study was to investigate the pulsed Er:YAG laser as an alternative to the mechanical bur by comparing bone healing using both modalities. Bone healing in an inferior border defect of the rat mandible was examined using either an Er:YAG laser or a mechanical bur for drilling. The healing of osteotomies in facial bones and of screw holes for plate stabilization of free bone fragments was studied. All defects healed by 4 weeks postoperatively. Histologic evaluation demonstrated no difference in the amount of newly formed woven bone at the osteotomy site or screw holes made by either the laser or the drill. The extent of thermal damage at the osteotomy sites was comparable in laser and mechanically cut bone fragments. On the basis of this study we suggest that the Er: YAG laser can be used clinically in thin, fragile bones in the maxillofacial region.
Bare below elbows: does this policy affect handwashing efficacy and reduce bacterial colonisation?
Burger, A; Wijewardena, C; Clayson, S; Greatorex, RA
2010-01-01
INTRODUCTION UK Department of Health guidelines recommend that clinical staff are ‘bare below the elbows’. There is a paucity of evidence to support this policy. One may hypothesise that absence of clothing around wrists facilitates more effective handwashing: this study aims to establish whether dress code affects bacterial colonisation before and after handwashing. SUBJECTS AND METHODS Sixty-six clinical staff volunteered to take part in the study, noting whether they were bare below the elbows (BBE) or not bare (NB). Using a standardised technique, imprints of left and right fingers, palms, wrists and forearms were taken onto mini agar plates. Imprints were repeated after handwashing. After incubation, colonies per plate were counted, and subcultures taken. RESULTS Thirty-eight staff were BBE and 28 were not. A total of 1112 plates were cultured. Before handwashing there was no significant difference in number of colonies between BBE and NB groups (Mann–Whitney, P < 0.05). Handwashing reduced the colony count, with greatest effect on fingers, palms and dominant wrists (t-test, P < 0.05). Comparing the two groups again after handwashing revealed no significant difference (Mann–Whitney, P < 0.05). Subcultures revealed predominantly skin flora. CONCLUSIONS There was a large variation in number of colonies cultured. Handwashing resulted in a statistically significant reduction in colony count on fingers, palms and dominant wrist regardless of clothing. We conclude that handwashing produces a significant reduction in number of bacterial colonies on staff hands, and that clothing that is not BBE does not impede this reduction. PMID:20727253
ERIC Educational Resources Information Center
Cook, David A.; Beckman, Thomas J.; Mandrekar, Jayawant N.; Pankratz, V. Shane
2010-01-01
The mini-CEX is widely used to rate directly observed resident-patient encounters. Although several studies have explored the reliability of mini-CEX scores, the dimensionality of mini-CEX scores is incompletely understood. Objective: Explore the dimensionality of mini-CEX scores through factor analysis and generalizability analysis. Design:…
Concomitant aerobic biodegradation of benzene and thiophene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyreborg, S.; Arvin, E.; Broholm, K.
The concomitant aerobic biodegradation of benzene and thiophene was investigated in microcosm experiments using a groundwater enrichment culture. Benzene was biodegraded within 1 d, whereas thiophene could not be biodegraded as the sole source of carbon and energy. Some interesting phenomena were observed when both benzene and thiophene were present. In most cases, removal of thiophene was observed, and the removal occurred concomitantly with the biodegradation of benzene, suggesting that benzene was used as a primary substrate in the cometabolic biodegradation of thiophene. No biodegradation of the two compounds was observed for some combinations of concentrations, suggesting that thiophene couldmore » act as an inhibitor to benzene biodegradation. However, this effect could be overcome if more benzene was added to the microcosm. Residual concentrations of benzene and thiophene were observed in some microcosms and the data indicated that the biodegradation of the two compounds stopped when a critical threshold ratio between the concentrations of thiophene and benzene was reached. This ratio varied between 10 and 20. Results from modeling the biodegradation data suggested that thiophene was cometabolized concomitantly with the biodegradation of benzene and that the biodegradation may be described by a modified model based on a traditional model with an inhibition term incorporated.« less
A Mini-review on the Effect of Mini-implants on Contemporary Orthodontic Science
Nosouhian, Saeid; Rismanchian, Mansour; Sabzian, Roya; Shadmehr, Elham; Badrian, Hamid; Davoudi, Amin
2015-01-01
The purpose of this literature review was to screen the valuable published articles regarding to the impacts of mini-implants on orthodontic science, briefly. The searching category was performed on the Pubmed using MeSH words such as “dental (mini) implants, orthodontic anchorage procedures, and orthodontic appliances.” After preliminary sketch, they were grouped as follow: Those evaluating (a) common appliances for providing orthodontic anchorage, (b) biomechanical details of mini-implants and their insertion, (c) clinical application of mini-implants for orthognathic treatments, (d) limitations and possible complications. In conclusion, mini-implant evolved the orthodontic treatment plans and compromised the required orthognathic surgery. Malocclusion treatment and pure orthodontic or orthopedic movements in the three-dimensions have become recently possible by using mini-implant to provide skeletal anchorage. PMID:26225113
Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger
NASA Astrophysics Data System (ADS)
Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel
2018-01-01
We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.
Nakai, Satoshi; Okuda, Tetsuji; Nishijima, Wataru; Okada, Mitsumasa
2015-10-01
Ozonation is believed to improve the biodegradability of organic compounds. In the present study, degradation of nonylphenol ethoxylates (NPEOs) was monitored in hybrid treatment systems consisting of ozonation and microbial degradation processes. We found that ozonation of NPEOs decreased, rather than increased, the biodegradability under certain conditions. The timing of ozonation was a definitive factor in determining whether ozonation increased or decreased the biodegradation rates of NPEOs. Initial ozonation of NPEOs prior to biodegradation reduced the rate of dissolved organic carbon (DOC) removal during the subsequent 14 d of biodegradation, whereas intermediate ozonation at the 9th day of biodegradation improved subsequent DOC removal during 14 d of NPEO biodegradation. Furthermore, reduction of DOC removal was also observed, when initial ozonation prior to biodegradation was subjected to cetyl alcohol ethoxylates. The production of less biodegradable intermediates, such as mono- and dicarboxylated polyethylene glycols (MCPEGs and DCPEGs), was responsible for the negative effect of ozonation on biodegradability of NPEOs. DCPEGs and MCPEGs were produced by biodegradation of polyethylene glycols (PEGs) that were ozonolysis products of the NPEOs, and the biodegradability of DCPEGs and MCPEGs was less than that of the precursor PEGs. The results indicate that, if the target chemicals contain ethoxy chains, production of PEGs may be one of the important factors when ozonation is considered. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rožman, Marko; Acuña, Vicenç; Petrović, Mira
2018-02-01
A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
DOE Office of Scientific and Technical Information (OSTI.GOV)
E, J. C.; Huang, J. Y.; Bie, B. X.
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
E, J. C.; Huang, J. Y.; Bie, B. X.; ...
2016-08-02
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
Belcaro, Gianni; Dugall, Mark; Corsi, Marcello; Agus, Giovanni B; Ippolito, Edmondo
2016-08-01
This registry study evaluated low-cost outpatient surgery (mini-S) for venous insufficiency as an alternative to stripping. This 20-year follow-up is focused on the recurrence of varices and on the long-term efficacy of the mini-S (group 1) in comparison with controls (2, stripping), sclerotherapy (3) or a combination of mini-S+sclerotherapy (4). Costs were compared. At 20-years of follow-up, considering recurrence/development of new varicose veins, 24.05% of the limbs treated with mini-S developed new varices in comparison with 64.4% in group 2, 24.1% in group 3 and 15.4% in group 4 (P<0.05). New surgical procedures were needed in 18.9% of mini-S patients vs. 58.5% in group 2, 21.9% in group 3 and 19.7% in group 4 (P<0.05 between group 2 and the other groups). Sclerotherapy (in the years following the initial treatment) was used in 37.9% of mini-S patients in comparison with 67.7% of subjects in group 2 patients, 33.1% in group 3 and 22.8% in group 4 (P<0.05 between outpatient treatment and group 2). The superficial venous system was incompetent in 21% of mini-S patients in comparison with 38.8% in group 2 (P<0.05), 20.7% in group 3 and 17.9% of group 4. At 20 years edema was present in 10.5% of limbs in group 2 in comparison with a <3% (range 2.2-2.1%) in the other groups. Edema was more significant after stripping. Ambulatory venous pressure measurements in subgroups was lower in groups 1, 3 and 4 with a lower refilling time (P<0.05). The cost of in-hospital, daily surgical treatments were €1978 (covered by the heathcare provider). The cost of mini-S was on average €488 per limb (covered by patients). Outpatients procedures, in particular the mini-S management plan, were cheaper than stripping and more effective at 20-years follow-up. They could be a model for emerging contries with restricted budgets for vein surgery. Also being cheaper more people may have benefits from treatment when/where hospital procedures are not covered by an healthcare provider.
Experimental verification of using nanostructured ceramic implants and osteograft
NASA Astrophysics Data System (ADS)
Rerikh, V. V.; Lastevskiy, A. D.; Sadovoy, M. A.; Zaidman, A. M.; Bataev, A. V.; Predein, Yu. A.; Avetisyan, A. R.; Romanenko, V. V.; Mamonova, E. V.; Nikulina, A. A.; Semantsova, E. S.; Smirnov, A. I.
2017-09-01
Ventral interbody fusion was carried out in 8 mini pigs in order to determine the effectiveness of anterior stabilization of the vertebral unit with implants made of nanostructured alumina ceramics using cellular technologies to form a bone block. A ceramic cage with a through cylindrical orifice in the center was implanted into the interbody gap; either cellular osteograft (group 1) or cellular autograft (group 2) was placed in it. The adjacent vertebrae were fixed anteriorly with a ceramic plate containing 4 screws. Bone block formation was studied radiographically, morphologically, and by MSCT. The signs of osteointegration of ceramic implants were observed in both groups after 90 days. MSCT and morphological analysis revealed the formation of the osteoceramic block and completed osteogenesis in the bone-graft contact region in group 1 compared to the control group (p < 0.05).
Evaluating the primary and ready biodegradability of dianilinodithiophosphoric acid.
Lin, Weixiong; Sun, Shuiyu; Xu, Pingting; Dai, Yongkang; Ren, Jie
2016-04-01
Dianilinodithiophosphoric acid (DDA) is widely used as sulfide mineral flotation collector in China. It is necessary to investigate the biodegradability of DDA to provide the fundamental knowledge to assess the environmental fate in the risk assessment of DDA and to design and operate the DDA flotation wastewater biological treatment plant. In the present study, the primary and ready aerobic biodegradations of DDA were studied and the primary biodegradation kinetic model of DDA was developed. The results show that DDA displays a good primary biodegradability and its biodegradation ratio reaches 99.8 % in 7 days. In contrast, DDA is not easily ready biodegradable; hence, it is a partially biodegradable organic compound. The primary aerobic biodegradation kinetics can be described using the first-order reaction kinetics equation: C = 19.72191e(-0.01513t).
Failure rates of mini-implants placed in the infrazygomatic region.
Uribe, Flavio; Mehr, Rana; Mathur, Ajay; Janakiraman, Nandakumar; Allareddy, Veerasathpurush
2015-01-01
The purpose of this pilot study was to evaluate the failure rates of mini-implants placed in the infrazygomatic region and to evaluate factors that affect their stability. A retrospective cohort study of 30 consecutive patients (55 mini-implants) who had infrazygomatic mini-implants at a University Clinic were evaluated for failure rates. Patient, mini-implant, orthodontic, surgical, and mini-implant maintenance factors were evaluated by univariate logistic regression models for association to failure rates. A 21.8 % failure rate of mini-implants placed in the infazygomatic region was observed. None of the predictor variables were significantly associated with higher or lower odds for failed implants. Failure rates for infrazygomatic mini-implants were slightly higher than those reported in other maxilla-mandibular osseous locations. No predictor variables were found to be associated to the failure rates.
Comparison of success rates of orthodontic mini-screws by the insertion method.
Kim, Jung Suk; Choi, Seong Hwan; Cha, Sang Kwon; Kim, Jang Han; Lee, Hwa Jin; Yeom, Sang Seon; Hwang, Chung Ju
2012-10-01
The aim of this study was to compare the success rates of the manual and motor-driven mini-screw insertion methods according to age, gender, length of mini-screws, and insertion sites. We retrospectively reviewed 429 orthodontic mini-screw placements in 286 patients (102 in men and 327 in women) between 2005 and 2010 at private practice. Age, gender, mini-screw length, and insertion site were cross-tabulated against the insertion methods. The Cochran-Mantel-Haenszel test was performed to compare the success rates of the 2 insertion methods. The motor-driven method was used for 228 mini-screws and the manual method for the remaining 201 mini-screws. The success rates were similar in both men and women irrespective of the insertion method used. With respect to mini-screw length, no difference in success rates was found between motor and hand drivers for the 6-mm-long mini-screws (68.1% and 69.5% with the engine driver and hand driver, respectively). However, the 8-mm-long mini-screws exhibited significantly higher success rates (90.4%, p < 0.01) than did the 6-mm-long mini-screws when placed with the engine driver. The overall success rate was also significantly higher in the maxilla (p < 0.05) when the engine driver was used. Success rates were similar among all age groups regardless of the insertion method used. Taken together, the motor-driven insertion method can be helpful to get a higher success rate of orthodontic mini-screw placement.
Shah, Nadeem W; Thornton, Steven F; Bottrell, Simon H; Spence, Michael J
2009-01-26
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 degrees C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6+/-1.6 microg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 microg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2-3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.
Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.
Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E
2018-04-01
Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint quantification, dynamic cell tracking, and migration quantification following varied drug treatments. This system provides a versatile platform to study collective cell migration in high throughput for a broad range of applications.
40 CFR 265.1084 - Waste determination procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... biodegradation efficiency (Rbio) for a treated hazardous waste. (i) The fraction of organics biodegraded (Fbio... biodegradation efficiency, percent. Fbio = Fraction of organic biodegraded as determined in accordance with the... biodegradation rate (MRbio) for a treated hazardous waste. (i) The MRbio shall be determined based on results for...
40 CFR 265.1084 - Waste determination procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... biodegradation efficiency (Rbio) for a treated hazardous waste. (i) The fraction of organics biodegraded (Fbio... biodegradation efficiency, percent. Fbio = Fraction of organic biodegraded as determined in accordance with the... biodegradation rate (MRbio) for a treated hazardous waste. (i) The MRbio shall be determined based on results for...
40 CFR 158.2280 - Environmental fate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... biodegradability, porous pot, the biodegradation in activated sludge study as described in the “Simulation Tests to... applicant must choose either to: A. Conduct the biodegradation in activated sludge study as described in the... ready biodegradability study; or B. Conduct one of the following studies: The biodegradation in...
40 CFR 158.2280 - Environmental fate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... biodegradability, porous pot, the biodegradation in activated sludge study as described in the “Simulation Tests to... applicant must choose either to: A. Conduct the biodegradation in activated sludge study as described in the... ready biodegradability study; or B. Conduct one of the following studies: The biodegradation in...
40 CFR 265.1084 - Waste determination procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... biodegradation efficiency (Rbio) for a treated hazardous waste. (i) The fraction of organics biodegraded (Fbio... biodegradation efficiency, percent. Fbio = Fraction of organic biodegraded as determined in accordance with the... biodegradation rate (MRbio) for a treated hazardous waste. (i) The MRbio shall be determined based on results for...
40 CFR 265.1084 - Waste determination procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... biodegradation efficiency (Rbio) for a treated hazardous waste. (i) The fraction of organics biodegraded (Fbio... biodegradation efficiency, percent. Fbio = Fraction of organic biodegraded as determined in accordance with the... biodegradation rate (MRbio) for a treated hazardous waste. (i) The MRbio shall be determined based on results for...
Production of extended release mini-tablets using directly compressible grades of HPMC.
Mohamed, Faiezah A A; Roberts, Matthew; Seton, Linda; Ford, James L; Levina, Marina; Rajabi-Siahboomi, Ali R
2013-11-01
Hypromellose (HPMC) has been previously used to control drug release from mini-tablets. However, owing to poor flow, production of mini-tablets containing high HPMC levels is challenging. Directly compressible (DC) HPMC grades have been developed by Dow Chemical Company. To compare the properties of HPMC DC (METHOCEL™ K4M and K100M) with regular (REG) HPMC grades. Particle size distribution and flowability of HPMC REG and DC were evaluated. 3 mm mini-tablets, containing hydrocortisone or theophylline as model drugs and 40% w/w HPMC DC or REG were produced. Mini-tablets containing HPMC DC grades were manufactured using a rotary press simulator at forces between 2-4 kN and speeds of 5, 10, 15 or 20 rpm. Mini-tablets containing HPMC REG were produced manually. The improved flowability of HPMC DC grades, which have a narrower particle size distribution and larger particle sizes, meant that simulated large scale production of mini-tablets with good weight uniformity (CV 1.79-4.65%) was feasible. It was not possible to automatically manufacture mini-tablets containing HPMC REG due to the poor flowability of the formulations. Drug release from mini-tablets comprising HPMC DC and REG were comparable. Mini-tablets containing HPMC DC illustrated a higher tensile strength compared to mini-tablets made with HPMC REG. Mini-tablets produced with HPMC DC at different compression speeds had similar drug release profiles. Production of extended release mini-tablets was successfully achieved when HPMC DC was used. Drug release rate was not influenced by the different HPMC DC grades (K4M or K100M) or production speed.
Chan, Robin F.; Lewellyn, Lara; DeLoyht, Jacqueline M.; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C.; Warrick, John M.; Grotewiel, Mike
2014-01-01
Background The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white, a derivative of the endogenous gene white. Whether the mini-white transgenic marker or the endogenous white gene influence behavioral responses to acute ethanol exposure in flies has not been systematically investigated. Methods We manipulated mini-white and white expression via (i) transposons marked with mini-white, (ii) RNAi against mini-white and white and (iii) a null allele of white. We assessed ethanol sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of ethanol) and an assay based on ethanol-induced sedation. Results In eRING assays, ethanol-induced impairment of climbing correlated inversely with expression of the mini-white marker from a series of transposon insertions. Additionally, flies harboring a null allele of white or flies with RNAi-mediated knockdown of mini-white were significantly more sensitive to ethanol in eRING assays than controls expressing endogenous white or the mini-white marker. In contrast, ethanol sensitivity and rapid tolerance measured in the ethanol sedation assay were not affected by decreased expression of mini-white or endogenous white in flies. Conclusions Ethanol sensitivity measured in the eRING assay is noticeably influenced by white and mini-white, making eRING problematic for studies on ethanol-related behavior in Drosophila using transgenes marked with mini-white. In contrast, the ethanol sedation assay described here is a suitable behavioral paradigm for studies on ethanol sedation and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-white. PMID:24890118
Lee, Jin-Hwa; Choo, Hyeran; Kim, Seong-Hun; Chung, Kyu-Rhim; Giannuzzi, Lucille A; Ngan, Peter
2011-06-01
When mini-implants fail during orthodontic treatment, there is a need to have a backup plan to either replace the failed implant in the adjacent interradicular area or wait for the bone to heal before replacing the mini-implant. We propose a novel way to overcome this problem by replacement with a miniplate so as not to interrupt treatment or prolong treatment time. The indications, advantages, efficacy, and procedures for switching from a mini-implant to a miniplate are discussed. Two patients who required replacement of failed mini-implants are presented. In the first patient, because of the proximity of the buccal vestibule to the mini-implant, it was decided to replace the failed mini-implant by an I-shaped C-tube miniplate. In the second patient, radiolucencies were found around the failed mini-implants, making the adjacent alveolar bone unavailable for immediate placement of another mini-implant. In addition, the maxillary sinus pneumatization was expanded deeply into the interradicular spaces; this further mandated an alternative placement site. One failed mini-implant was examined under a scanning electron microscope for bone attachment. Treatment was completed in both patients after replacement with miniplates without interrupting the treatment mechanics or prolonging the treatments. Examination under the scanning electron microscope showed partial bone growth into the coating pores and titanium substrate interface even after thorough cleaning and sterilization. Replacement with a miniplate is a viable solution for failed mini-implants during orthodontic treatment. The results from microscopic evaluation of the failed mini-implant suggest that stringent guidelines are needed for recycling used mini-implants. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-García, Esteban; Aparicio, Tomás; Lorenzo, Víctor de
Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesismore » libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes.« less
Ng'etich, Annette I; Rawago, Fredrick O; Jura, Walter G Z O; Mwinzi, Pauline N; Won, Kimberly Y; Odiere, Maurice R
2016-02-16
Identification of populations to be targeted for individual treatment and broad-spectrum therapy in schistosomiasis-endemic areas, assessment of therapy efficacy, morbidity, and evaluation of control strategies need to be based on reliable diagnostic tools. Kato-Katz is routinely used and remains the standard diagnostic technique for schistosomiasis, despite its many challenges. This study was conducted in Nyamanga village, Mbita, western Kenya, and evaluated the diagnostic performance of Kato-Katz, Mini-Parasep and modified Mini-FLOTAC techniques in detection of Schistosoma mansoni and soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura and hookworm) ova. Stool samples from 132 individuals were screened for eggs of S. mansoni by the 3 techniques. Mini-Parasep faecal parasite concentrator (Apacor Ltd, England), a single-use diagnostic device with a built-in filter for faecal concentration of helminth eggs by sedimentation was employed on stool samples fixed in 10% formalin. A modified Mini-FLOTAC (University of Naples, Italy) was based on floatation of helminths eggs with two different solutions (FS2 and FS7) using a closed system (Fill-FLOTAC) with 5% formalin. Kato-Katz was performed following WHO recommendation. Prevalence of S. mansoni and STH, sensitivity and degree of agreement among the 3 techniques were determined. Prevalence of S. mansoni was 47.0%, 34.1% and 20.5% by Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7 techniques, respectively. Prevalence of any STH infection was 6.1%, 3.0%, 6.1% and 6.8% by Mini-Parasep, Kato-Katz, modified Mini-FLOTAC FS2 and modified Mini-FLOTAC FS7 techniques, respectively. Considering the pooled results of the three methods (Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7) as diagnostic 'gold' standard, the sensitivity of Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7 for S. mansoni was 77.5%, 56.1%, and 33.8%, respectively. Mini-Parasep and modified Mini-FLOTAC FS7 techniques had moderate (κ = 0.46) and fairly good (κ = 0.25) agreements with Kato-Katz for S. mansoni, respectively. Mini-Parasep detected a higher proportion of light intensity S. mansoni infections compared to Kato-Katz, which detected high proportions of heavy infections. Mini-Parasep detected a similar mean number of S. mansoni eggs per gram (EPG) of stool compared to the standard Kato-Katz (62.9 vs 97.3; t (131) = -0.49, P = 0.6265) and significantly higher EPG compared to the modified Mini-FLOTAC FS7 (62.9 vs 34.6; t (131) = 5.39, P < 0.0001). The high sensitivity of Mini-Parasep suggests its promising potential as an alternative tool in enhancing diagnosis and in monitoring schistosomiasis transmission and determining endpoint of intervention programs, especially in low endemicity areas. Mini-Parasep is also easy to operate, safe and also permits work with fresh stool.
Chan, Robin F; Lewellyn, Lara; DeLoyht, Jacqueline M; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C; Warrick, John M; Grotewiel, Mike
2014-06-01
The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol (EtOH)-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white(mini-w), a derivative of the endogenous gene white(w). Whether the mini-w transgenic marker or the endogenous w gene influences behavioral responses to acute EtOH exposure in flies has not been systematically investigated. We manipulated mini-w and w expression via (i) transposons marked with mini-w, (ii) RNAi against mini-w and w, and (iii) a null allele of w. We assessed EtOH sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of EtOH) and an assay based on EtOH-induced sedation. In eRING assays, EtOH-induced impairment of climbing correlated inversely with expression of the mini-w marker from a series of transposon insertions. Additionally, flies harboring a null allele of w or flies with RNAi-mediated knockdown of mini-w were significantly more sensitive to EtOH in eRING assays than controls expressing endogenous w or the mini-w marker. In contrast, EtOH sensitivity and rapid tolerance measured in the EtOH sedation assay were not affected by decreased expression of mini-w or endogenous w in flies. EtOH sensitivity measured in the eRING assay is noticeably influenced by w and mini-w, making eRING problematic for studies on EtOH-related behavior in Drosophila using transgenes marked with mini-w. In contrast, the EtOH sensitivity assay described here is a suitable behavioral paradigm for studies on EtOH sensitivity and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-w. Copyright © 2014 by the Research Society on Alcoholism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopman, G.; Tu, M.
1997-09-01
It is shown that a combination of two programs, MultiCASE and META, can help assess the biodegradability of industrial organic materials in the ecosystem. MultiCASE is an artificial intelligence computer program that had been trained to identify molecular substructures believed to cause or inhibit biodegradation and META is an expert system trained to predict the aerobic biodegradation products of organic molecules. These two programs can be used to help evaluate the fate of disposed chemicals by estimating their biodegradability and the nature of their biodegradation products under conditions that may model the environment.
How UV photolysis accelerates the biodegradation and mineralization of sulfadiazine (SD).
Pan, Shihui; Yan, Ning; Liu, Xinyue; Wang, Wenbing; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E
2014-11-01
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.
Improving ready biodegradability testing of fatty amine derivatives.
van Ginkel, C G; Gancet, C; Hirschen, M; Galobardes, M; Lemaire, Ph; Rosenblom, J
2008-09-01
This study assesses the biodegradation potential of a number of fatty amine derivatives in tests following the OECD guidelines for ready biodegradability. A number of methods are used to reduce toxicity and improve the bioavailability of the fatty amine derivatives in these tests. Alkyl-1,3-diaminopropanes and octadecyltrimethylammonium chloride are toxic to microorganisms at concentrations used in OECD ready biodegradability tests. The concentration of these fatty amine derivatives in the aqueous phase can be reduced by reacting humic, or lignosulphonic acids with the derivatives or through the addition of silica gel to the test bottles. Using these non-biodegradable substances, ready biodegradability test results were obtained with tallow-1,3-diaminopropane and octadecyltrimethylammonium chloride. Demonstration of the ready biodegradability of the water-insoluble dioctadecylamine under the prescribed standard conditions is almost impossible due to the limited bioavailability of this compound. However, ready biodegradability results were achieved by using very low initial test substance concentrations and by introducing an organic phase. The contents of the bottles used to assess the biodegradability of dioctadecylamine were always mixed. False negative biodegradability results obtained with the fatty amine derivatives studied are the result of toxic effects and/or limited bioavailability. The aids investigated therefore improve ready biodegradability testing.
NASA Astrophysics Data System (ADS)
Basso, Tessa Chiara; Iovieno, Michele; Bertoldo, Silvano; Perotto, Giovanni; Athanassiou, Athanassia; Canavero, Flavio; Perona, Giovanni; Tordella, Daniela
2017-11-01
An introduction to innovative, bio-compatible, ultralight, disposable radiosondes that are aimed to be passively transported on isopycnic surfaces in cloud and clear air environments. Their goal is to track small-scale fluctuations of velocity, temperature, humidity, acceleration and pressure for several hours within and outside the cloud boundary. With a target weight of 15 g, the volume is chosen such that the probes float on isopycnic surfaces at constant altitudes from 1000 to 3000 m. They are filled with helium gas to obtain a buoyancy force equal to the weight of the system. Transmitters within the probes will send data to receivers on Earth to be analysed and compared with numerical simulations. To minimise their environmental impact, it is foreseen that the disposable radiosondes be made with biodegradable smart materials which keep the desired hydrophobicity and flexibility. These environmentally friendly, hydrophobic balloons will provide an insight into the unsteady life cycle of warm clouds over land, ocean and alpine environments. These explorative observations will contribute to the current understanding of microphysical processes in clouds with the purpose of improving weather prediction and climate modelling.
Equilibrium Partitioning Sediment Guidelines (ESGs) for the ...
... PLC = partial life-cycle ... 5 ii mini iiiiiiiii iiiiiii mi 1 1 iii mini ii i B : - Benthic vs WQC i— w ~_ ~ _ o° _ -0 ° - - - ii mini iiiiiiiii iiiiiii iiiiiiiii mini ii 0.1 ... PhD thesis. ...
Walther, Frans J.; Waring, Alan J.; Hernandez-Juviel, Jose M.; Gordon, Larry M.; Wang, Zhengdong; Jung, Chun-Ling; Ruchala, Piotr; Clark, Andrew P.; Smith, Wesley M.; Sharma, Shantanu; Notter, Robert H.
2010-01-01
Background Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. Methodology/Results FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Conclusion Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B. PMID:20084172
Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas
2015-01-01
The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659
Zapater-Pereyra, M; van Dien, F; van Bruggen, J J A; Lens, P N L
2013-01-01
A constructed wetroof (CWR) is defined in this study as the combination of a green roof and a constructed wetland: a shallow wastewater treatment system placed on the roof of a building. The foremost challenge of such CWRs, and the main aim of this investigation, is the selection of an appropriate matrix capable of assuring the required hydraulic retention time, the long-term stability and the roof load-bearing capacity. Six substrata were subjected to water dynamics and destructive tests in two testing-tables. Among all the materials tested, the substratum configuration composed of sand, light expanded clay aggregates, biodegradable polylactic acid beads together with stabilization plates and a turf mat is capable of retaining the water for approximately 3.8 days and of providing stability (stabilization plates) and an immediate protection (turf mat) to the system. Based on those results, a full-scale CWR was built, which did not show any physical deterioration after 1 year of operation. Preliminary wastewater treatment results on the full-scale CWR suggest that it can highly remove main wastewater pollutants (e.g. chemical oxygen demand, PO4(3-)-P and NH4(+)-N). The results of these tests and practical design considerations of the CWR are discussed in this paper.
Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas
2015-03-04
The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s -1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus ( B. cereus , B. subtilis ), Pseudomonas ( P. aeruginosa , P. putida ), Stapylococcus ( S. aureus ) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 10 7 to 3.7 × 10 11 CFU g -1 .
Lim, Hyun-Woo; Park, Ji-Hoon; Park, Hyun-Hee
2017-01-01
Objective This paper describes changes in the characteristics of patients seeking orthodontic treatment over the past decade and the treatment they received, to identify any seasonal variations or trends. Methods This single-center retrospective cohort study included all patients who presented to Seoul National University Dental Hospital for orthodontic diagnosis and treatment between January 1, 2005 and December 31, 2015. The study analyzed a set of heterogeneous variables grouped into the following categories: demographic (age, gender, and address), clinical (Angle Classification, anomaly, mode of orthodontic treatment, removable appliances for Phase 1 treatment, fixed appliances for Phase 2 treatment, orthognathic surgery, extraction, mini-plate, mini-implant, and patient transfer) and time-related variables (date of first visit and orthodontic treatment time). Time series analysis was applied to each variable. Results The sample included 14,510 patients with a median age of 19.5 years. The number of patients and their ages demonstrated a clear seasonal variation, which peaked in the summer and winter. Increasing trends were observed for the proportion of male patients, use of non-extraction treatment modality, use of ceramic brackets, patients from provinces outside the Seoul region at large, patients transferred from private practitioners, and patients who underwent orthognathic surgery performed by university surgeons. Decreasing trends included the use of metal brackets and orthodontic treatment time. Conclusions Time series analysis revealed a seasonal variation in some characteristics, and several variables showed changing trends over the past decade. PMID:28861391
Research regarding biodegradable properties of food polymeric products under microorganism activity
NASA Astrophysics Data System (ADS)
Opran, Constantin; Lazar, Veronica; Fierascu, Radu Claudiu; Ditu, Lia Mara
2018-02-01
Aim of this research is the structural analysis by comparison of the biodegradable properties of two polymeric products made by non-biodegradable polymeric material (polypropylene TIPPLEN H949 A) and biodegradable polymeric material (ECOVIO IS 1335), under microorganism activity in order to give the best solution for the manufacture of food packaging biodegradable products. It presents the results of experimental determinations on comparative analysis of tensile strength for the two types of polymers. The sample weight variations after fungal biodegradation activity revealed that, after 3 months, there are no significant changes in polymeric substratum for non-biodegradable polymeric. The microscopically analysis showed that the fungal filaments did not strongly adhered on the non-biodegradable polymeric material, instead, both filamentous fungi strains adhered and covered the surface of the biodegradable sample with germinated filamentous conidia. The spectral analysis of polymer composition revealed that non-biodegradable polymer polypropylene spectra are identical for control and for samples that were exposed to fungal activity, suggesting that this type of sample was not degraded by the fungi strains. Instead, for biodegradable polymer sample, it was observed significant structural changes across multiple absorption bands, suggesting enzyme activity manifested mainly by Aspergillus niger strain. Structural analysis of interdisciplinary research results, lead, to achieving optimal injection molded technology emphasizing technological parameters, in order to obtain food packaging biodegradable products.
Øhre, Beate; Saltnes, Hege; von Tetzchner, Stephen; Falkum, Erik
2014-05-22
There is a need for psychiatric assessment instruments that enable reliable diagnoses in persons with hearing loss who have sign language as their primary language. The objective of this study was to assess the validity of the Norwegian Sign Language (NSL) version of the Mini International Neuropsychiatric Interview (MINI). The MINI was translated into NSL. Forty-one signing patients consecutively referred to two specialised psychiatric units were assessed with a diagnostic interview by clinical experts and with the MINI. Inter-rater reliability was assessed with Cohen's kappa and "observed agreement". There was 65% agreement between MINI diagnoses and clinical expert diagnoses. Kappa values indicated fair to moderate agreement, and observed agreement was above 76% for all diagnoses. The MINI diagnosed more co-morbid conditions than did the clinical expert interview (mean diagnoses: 1.9 versus 1.2). Kappa values indicated moderate to substantial agreement, and "observed agreement" was above 88%. The NSL version performs similarly to other MINI versions and demonstrates adequate reliability and validity as a diagnostic instrument for assessing mental disorders in persons who have sign language as their primary and preferred language.
Rapid and low-cost hot-embossing of polycaprolactone microfluidic devices
NASA Astrophysics Data System (ADS)
Fan, Yiqiang; Liu, Shicheng; He, Jianyun; Gao, Kexin; Zhang, Yajun
2018-01-01
Polycaprolactone (PCL) is a low-cost biocompatible and biodegradable material which is highly suitable for the short-live applications like microfluidics in the biological and medical field. In this study, a rapid and low-cost microfabrication technique for PCL-based microfluidic devices is proposed, the SU-8 mold fabricated on the silicon substrate was used for the hot-embossing of microstructures on PCL. Since PCL after the molding process is optically non-transparent, to improve the visibility of the fluid in the microfluidic device and enclosing the microchannel, a transparency adhesive film which originally used for the sealing of PCR well-plate is used for the sealing of the microchannels embossed on PCL substrate. The profile of the fabricated microchannels was carefully characterized, the bonding strength is tested and several PCL-based microfluidic devices were also fabricated and tested for demonstration.
Ballesteros Martín, M M; Esteban García, B; Ortega-Gómez, E; Sánchez Pérez, J A
2014-01-01
A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5% in biodegradation efficiency (E f) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD5/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs).
Biodegradation of organic sulfur compounds in crude oils from Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopmans, M.P.; Sinninghe Damste, J.S.; Leeuw, J.W. de
1996-10-01
Five closely related crude oils from Oman, showing various degrees of biodegradation ranging from non-biodegraded to severely biodegraded, were quantitatively investigated for free and sulfur-bound hydrocarbons. Hydrocarbons sequestered in the alkylsulfide fraction and the polar fraction were analysed after Raney Ni desulfurisation and subsequent hydrogenation. With increasing degree of biodegradation, pristane (Pr), phytane (Ph) and a series of mid-chain methyl alkanes are enriched relative to the n-alkanes, as evidenced by increased Pr/n-C{sub 17} and Ph/n-C{sub 18} ratios. In the severely biodegraded oil no free n-alkanes, mid-chain alkanes or isoprenoid alkanes could be detected. Sterane and hopane distributions, however, remain unchangedmore » throughout the biodegradation series. Hydrocarbons sequestered in the alkylsulfide fraction (i.e. n-alkanes, mid-chain methyl alkanes, Pr and Ph) are biodegraded at lower rates than the corresponding hydrocarbons in the saturated hydrocarbon fraction. Similar hydrocarbons sequestered in the polar fraction are biodegraded at even lower rates. These results suggest that hydrocarbons bound by a higher amount of sulfur links are biodegraded at a lower rate.« less
[Biodegradation of polyethylene].
Yang, Jun; Song, Yi-ling; Qin, Xiao-yan
2007-05-01
Plastic material is one of the most serious solid wastes pollution. More than 40 million tons of plastics produced each year are discarded into environment. Plastics accumulated in the environment is highly resistant to biodegradation and not be able to take part in substance recycle. To increase the biodegradation efficiency of plastics by different means is the main research direction. This article reviewed the recent research works of polyethylene biodegradation that included the modification and pretreatment of polyethylene, biodegradation pathway, the relevant microbes and enzymes and the changes of physical, chemical and biological properties after biodegradation. The study directions of exploiting the kinds of life-forms of biodegradation polyethylene except the microorganisms, isolating and cloning the key enzymes and gene that could produce active groups, and enhancing the study on polyethylene biodegradation without additive were proposed.
BTEX biodegradation by bacteria from effluents of petroleum refinery.
Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida
2010-09-15
Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and effective tool in the treatment of water contaminated with BTEX mixture. Therefore, the raw petroleum refinery effluent might be a source of hydrocarbon-biodegrading microorganisms. Copyright 2010 Elsevier B.V. All rights reserved.
Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers.
Meckenstock, Rainer U; Elsner, Martin; Griebler, Christian; Lueders, Tillmann; Stumpp, Christine; Aamand, Jens; Agathos, Spiros N; Albrechtsen, Hans-Jørgen; Bastiaens, Leen; Bjerg, Poul L; Boon, Nico; Dejonghe, Winnie; Huang, Wei E; Schmidt, Susanne I; Smolders, Erik; Sørensen, Sebastian R; Springael, Dirk; van Breukelen, Boris M
2015-06-16
Biodegradation is one of the most favored and sustainable means of removing organic pollutants from contaminated aquifers but the major steering factors are still surprisingly poorly understood. Growing evidence questions some of the established concepts for control of biodegradation. Here, we critically discuss classical concepts such as the thermodynamic redox zonation, or the use of steady state transport scenarios for assessing biodegradation rates. Furthermore, we discuss if the absence of specific degrader populations can explain poor biodegradation. We propose updated perspectives on the controls of biodegradation in contaminant plumes. These include the plume fringe concept, transport limitations, and transient conditions as currently underestimated processes affecting biodegradation.
Biodegradability Evaluation of Polymers by ISO 14855-2
Funabashi, Masahiro; Ninomiya, Fumi; Kunioka, Masao
2009-01-01
Biodegradabilities of polymers and their composites in a controlled compost were described. Polycaprolactone (PCL) and poly(lactic acid) (PLA) were employed as biodegradable polymers. Biodegradabilities of PCL and PLA samples in a controlled compost were measured using a Microbial Oxidative Degradation Analyzer (MODA) according to ISO 14855-2. Sample preparation method for biodegradation test according to ISO/DIS 10210 was also described. Effects of sizes and shapes of samples on biodegradability were studied. Reproducibility of biodegradation test of ISO 14855-2 by MODA was confirmed. Validity of sample preparation method for polymer pellets, polymer film, and polymer products of ISO/DIS 10210 for ISO 14855-2 was confirmed. PMID:20111676
Biodegradation of sorbed chemicals in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scow, K.M.; Fan, S.; Johnson, C.
Rates of biodegradation of sorbed chemicals are usually lower in soil than in aqueous systems, in part because sorption reduces the availability of the chemical to microorganisms. Biodegradation, sorption, and diffusion occur simultaneously and are tightly coupled. In soil, the rate of biodegradation is a function of a chemical`s diffusion coefficient, sorption partition coefficient, the distance it must diffuse from the site of sorption to microbial populations that can degrade it, and its biodegradation rate constant. A model (DSB model) was developed that describes biodegradation of chemicals limited in the availability by sorption and diffusion. Different kinetics expressions describe biodegradationmore » depending on whether the reaction is controlled by mass transfer (diffusion and sorption) or the intrinsic biodegradation rate, and whether biodegradation begins during or after the majority of sorption has occurred. We tested the hypothesis that there is a direct relationship between how strongly a chemical is sorbed and the chemical`s biodegradation rate. In six soils with different organic carbon contents, there was no relationship between the extent or rate of biodegradation and the sorption partition coefficient for phenanthrene. Aging of phenanthrene residues in soil led to a substantial reduction in the rate of biodegradation compared to biodegradation rates of recently added phenanthrene. Considerable research has focused on identification and development of techniques for enhancing in situ biodegradation of sorbed chemicals. Development of such techniques, especially those involving inoculation with microbial strains, should consider physical mass transfer limitations and potential decreases in bioavailability over time. 4 refs., 3 figs., 1 tab.« less
Nievas, M L; Commendatore, M G; Esteves, J L; Bucalá, V
2008-06-15
The biodegradation of a hazardous waste (bilge waste), a fuel oil-type complex residue from normal ship operations, was studied in a batch bioreactor using a microbial consortium in seawater medium. Experiments with initial concentrations of 0.18 and 0.53% (v/v) of bilge waste were carried out. In order to study the biodegradation kinetics, the mass of n-alkanes, resolved hydrocarbons and unresolved complex mixture (UCM) hydrocarbons were assessed by gas chromatography (GC). Emulsification was detected in both experiments, possibly linked to the n-alkanes depletion, with differences in emulsification start times and extents according to the initial hydrocarbon concentration. Both facts influenced the hydrocarbon biodegradation kinetics. A sequential biodegradation of n-alkanes and UMC was found for the higher hydrocarbon content. Being the former growth associated, while UCM biodegradation was a non-growing process showing enzymatic-type biodegradation kinetics. For the lower hydrocarbon concentration, simultaneous biodegradation of n-alkanes and UMC were found before emulsification. Nevertheless, certain UCM biodegradation was observed after the medium emulsification. According to the observed kinetics, three main types of hydrocarbons (n-alkanes, biodegradable UCM and recalcitrant UCM) were found adequate to represent the multicomponent substrate (bilge waste) for future modelling of the biodegradation process.
Residual toxicity after biodegradation: interactions among benzene, toluene, and chloroform.
da Silva Nunes-Halldorson, Vânia; Steiner, Robert L; Smith, Geoffrey B
2004-02-01
A microbial enrichment originating from a pristine aquifer was found to aerobically biodegrade benzene and toluene, but not chloroform. This enrichment culture was used to study changes in pollutant toxicity as affected by biodegradative activity. Two assays for toxicity were used: (1) a 48-h acute toxicity test using the freshwater invertebrate Ceriodaphnia dubia and (2) microbial biodegradation activity as affected by the presence of mixed pollutants. At 20-ppm concentrations, toluene was significantly more toxic (99% mortality) to C. dubia than benzene (48% mortality) or chloroform (40% mortality). Also at 20-ppm concentrations, but before biodegradation, toluene was significantly more toxic (88% mortality) to C. dubia than benzene (33% mortality). After biodegradation of 98% of toluene and benzene, significant residual toxicity still remained in the bacterial supernatant: toluene-degraded supernatant caused 33% mortality in C. dubia and benzene-degraded supernatant caused 24% mortality. In the second toxicity assay, examining the effect of mixed pollutants on biodegradation activity, the presence of benzene slowed the biodegradation of toluene, but chloroform had no effect on either benzene or toluene biodegradation. Results indicate that significant toxicity remain after biodegradation and that halogenated aliphatic hydrocarbons may have little or no effect on aromatic hydrocarbon biodegradation at sites impacted by mixed pollutants.
Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker
2007-02-15
Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (OSAR 1) and on 16 inactivating molecular fragments (GSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (GSAR 1) and 70.4% (OSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: (1) Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. (2) Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. (3) Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.
Chang, Y C; Huang, S C; Chen, K F
2014-01-01
In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.
Coupling UV-H2O2 to accelerate dimethyl phthalate (DMP) biodegradation and oxidation.
Chen, Bin; Song, Jiaxiu; Yang, Lihui; Bai, Qi; Li, Rongjie; Zhang, Yongming; Rittmann, Bruce E
2015-11-01
Dimethyl phthalate (DMP), an important industrial raw material, is an endocrine disruptor of concern for human and environmental health. DMP exhibits slow biodegradation, and its coupled treatment by means of advanced oxidation may enhance its biotransformation and mineralization. We evaluated two ways of coupling UV-H2O2 advanced oxidation to biodegradation: sequential coupling and intimate coupling in an internal circulation baffled biofilm reactor (ICBBR). During sequential coupling, UV-H2O2 pretreatment generated carboxylic acids that depressed the pH, and subsequent biodegradation generated phthalic acid; both factors inhibited DMP biodegradation. During intimately coupled UV-H2O2 with biodegradation, carboxylic acids and phthalic acid (PA) did not accumulate, and the biodegradation rate was 13 % faster than with biodegradation alone and 78 % faster than with biodegradation after UV-H2O2 pretreatment. Similarly, DMP oxidation with intimate coupling increased by 5 and 39 %, respectively, compared with biodegradation alone and sequential coupling. The enhancement effects during intimate coupling can be attributed to the rapid catabolism of carboxylic acids, which generated intracellular electron carriers that directly accelerated di-oxygenation of PA and relieved the inhibition effect of PA and low pH. Thus, intimate coupling optimized the impacts of energy input from UV irradiation used together with biodegradation.
Reasons for mini-implants failure: choosing installation site should be valued!
Consolaro, Alberto; Romano, Fábio Lourenço
2014-01-01
Mini-implant loss is often associated with physical and mechanical aspects that result from choosing an inappropriate placement site. It is worth highlighting that: a) Interdental alveolar bone crests are flexible and deformable. For this reason, they may not offer the ideal absolute anchorage. The more cervical the structures, the more delicate they are, thus offering less physical support for mini-implant placement; b) Alveolar bone crests of triangular shape are more deformable, whereas those of rectangular shape are more flexible; c) The bases of the alveolar processes of the maxilla and the mandible are not flexible, for this reason, they are more likely to receive mini-implants; d) The more cervical a mini-implant is placed, the higher the risk of loss; the more apical a mini-implant is placed, the better its prognosis will be; e) 3D evaluations play a major role in planning the use of mini-implants. Based on the aforementioned considerations, the hypotheses about mini-implant loss are as follows: 1) Deflection of maxillary and mandibular alveolar processes when mini-implants are more cervically placed; 2) Mini-implants placed too near the periodontal ligament, with normal intra-alveolar tooth movement; 3) Low bone density, low thickness and low alveolar bone volume; 4) Low alveolar cortical bone thickness; 5) Excessive pressure inducing trabecular bone microfracture; 6) Sites of higher anatomical weakness in the mandible and the maxilla; 7) Thicker gingival tissue not considered when choosing the mini-implant. PMID:24945511
Revisiting the stability of mini-implants used for orthodontic anchorage.
Yao, Chung-Chen Jane; Chang, Hao-Hueng; Chang, Jenny Zwei-Chieng; Lai, Hsiang-Hua; Lu, Shao-Chun; Chen, Yi-Jane
2015-11-01
The aim of this study is to comprehensively analyze the potential factors affecting the failure rates of three types of mini-implants used for orthodontic anchorage. Data were collected on 727 mini-implants (miniplates, predrilled titanium miniscrews, and self-drilling stainless steel miniscrews) in 220 patients. The factors related to mini-implant failure were investigated using a Chi-square test for univariate analysis and a generalized estimating equation model for multivariate analysis. The failure rate for miniplates was significantly lower than for miniscrews. All types of mini-implants, especially the self-drilling stainless steel miniscrews, showed decreased stability if the previous implantation had failed. The stability of predrilled titanium miniscrews and self-drilling stainless steel miniscrews were comparable at the first implantation. However, the failure rate of stainless steel miniscrews increased at the second implantation. The univariate analysis showed that the following variables had a significant influence on the failure rates of mini-implants: age of patient, type of mini-implant, site of implantation, and characteristics of the soft tissue around the mini-implants. The generalized estimating equation analysis revealed that mini-implants with miniscrews used in patients younger than 35 years, subjected to orthodontic loading after 30 days and implanted on the alveolar bone ridge, have a significantly higher risk of failure. This study revealed that once the dental surgeon becomes familiar with the procedure, the stability of orthodontic mini-implants depends on the type of mini-implant, age of the patient, implantation site, and the healing time of the mini-implant. Miniplates are a more feasible anchorage system when miniscrews fail repeatedly. Copyright © 2014. Published by Elsevier B.V.
Impact of formation water geochemistry and crude oil biodegradation on microbial methanogenesis
Shelton, Jenna L.; McIntosh, Jennifer C.; Warwick, Peter D.; McCray, John E.
2016-01-01
Shallow wells (393–442 m depth) contained highly biodegraded oils associated with low extent of methanogenesis, while the deepest (> 1208 m) wells contained minimally degraded oils and produced fluids suggesting a low extent of methanogenesis. Mid-depth wells (666–857 m) in the central field had the highest indicators of methanogenesis and contained moderately biodegraded oils. Little correlation existed between extents of crude oil biodegradation and methanogenesis across the whole transect (avg.R2 = 0.13). However, when wells with the greatest extent of crude oil biodegradation were eliminated (3 of 6 oilfields), better correlation between extent of methanogenesis and biodegradation (avg. R2 = 0.53) was observed. The results suggest that oil quality and salinity impact methanogenic crude oil biodegradation. Reservoirs indicating moderate extent of crude oil biodegradation and high extent of methanogenesis, such as the central field, would be good candidates for attempting to enhance methanogenic crude oil biodegradation as a result of the observations from the study.
Biodegradability of organic nanoparticles in the aqueous environment.
Kümmerer, Klaus; Menz, Jakob; Schubert, Thomas; Thielemans, Wim
2011-03-01
Synthetic nanoparticles have already been detected in the aquatic environment. Therefore, knowledge on their biodegradability is of utmost importance for risk assessment but such information is currently not available. Therefore, the biodegradability of fullerenes, single, double, multi-walled as well as COOH functionalized carbon nanotubes and cellulose and starch nanocrystals in aqueous environment has been investigated according to OECD standards. The biodegradability of starch and cellulose nanoparticles was also compared with the biodegradability of their macroscopic counterparts. Fullerenes and all carbon nanotubes did not biodegrade at all, while starch and cellulose nanoparticles biodegrade to similar levels as their macroscopic counterparts. However, neither comfortably met the criterion for ready biodegradability (60% after 28 days). The cellulose and starch nanoparticles were also found to degrade faster than their macroscopic counterparts due to their higher surface area. These findings are the first report of biodegradability of organic nanoparticles in the aquatic environment, an important accumulation environment for manmade compounds. Copyright © 2010 Elsevier Ltd. All rights reserved.
Velázquez, Yolanda Flores; Nacheva, Petia Mijaylova
2017-03-01
The biodegradation of fluoxetine, mefenamic acid, and metoprolol using ammonium-nitrite-oxidizing consortium, nitrite-oxidizing consortium, and heterotrophic biomass was evaluated in batch tests applying different retention times. The ammonium-nitrite-oxidizing consortium presented the highest biodegradation percentages for mefenamic acid and metoprolol, of 85 and 64% respectively. This consortium was also capable to biodegrade 79% of fluoxetine. The heterotrophic consortium showed the highest ability to biodegrade fluoxetine reaching 85%, and it also had a high potential for biodegrading mefenamic acid and metoprolol, of 66 and 58% respectively. The nitrite-oxidizing consortium presented the lowest biodegradation of the three pharmaceuticals, of less than 48%. The determination of the selected pharmaceuticals in the dissolved phase and in the biomass indicated that biodegradation was the major removal mechanism of the three compounds. Based on the obtained results, the biodegradation kinetics was adjusted to pseudo-first-order for the three pharmaceuticals. The values of k biol for fluoxetine, mefenamic acid, and metoprolol determined with the three consortiums indicated that ammonium-nitrite-oxidizing and heterotrophic biomass allow a partial biodegradation of the compounds, while no substantial biodegradation can be expected using nitrite-oxidizing consortium. Metoprolol was the less biodegradable compound. The sorption of fluoxetine and mefenamic acid onto biomass had a significant contribution for their removal (6-14%). The lowest sorption coefficients were obtained for metoprolol indicating that the sorption onto biomass is poor (3-4%), and the contribution of this process to the global removal can be neglected.
Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes
Karapanagioti, Hrissi K.; Gossard, Chris M.; Strevett, Keith A.; Kolar, Randall L.; Sabatini, David A.
2001-01-01
Diffusion, sorption and biodegradation are key processes impacting the efficiency of natural attenuation. While each process has been studied individually, limited information exists on the kinetic coupling of these processes. In this paper, a model is presented that couples nonlinear and nonequilibrium sorption (intraparticle diffusion) with biodegradation kinetics. Initially, these processes are studied independently (i.e., intraparticle diffusion, nonlinear sorption and biodegradation), with appropriate parameters determined from these independent studies. Then, the coupled processes are studied, with an initial data set used to determine biodegradation constants that were subsequently used to successfully predict the behavior of a second data set. The validated model is then used to conduct a sensitivity analysis, which reveals conditions where biodegradation becomes desorption rate-limited. If the chemical is not pre-equilibrated with the soil prior to the onset of biodegradation, then fast sorption will reduce aqueous concentrations and thus biodegradation rates. Another sensitivity analysis demonstrates the importance of including nonlinear sorption in a coupled diffusion/sorption and biodegradation model. While predictions based on linear sorption isotherms agree well with solution concentrations, for the conditions evaluated this approach overestimates the percentage of contaminant biodegraded by as much as 50%. This research demonstrates that nonlinear sorption should be coupled with diffusion/sorption and biodegradation models in order to accurately predict bioremediation and natural attenuation processes. To our knowledge this study is unique in studying nonlinear sorption coupled with intraparticle diffusion and biodegradation kinetics with natural media.
Psychometric Properties of the Mini-Social Phobia Inventory
Seeley-Wait, Elizabeth; Rapee, Ronald M.
2009-01-01
Objective: Although a potentially useful measure, to date, there has been only one published test of the psychometric properties of the Mini-Social Phobia Inventory (Mini-SPIN). Therefore, the psychometric properties of the Mini-SPIN, a brief 3-item screen for social anxiety disorder, were examined. Method: Participants were 186 patients diagnosed with social anxiety disorder (DSM-IV criteria) attending a specialized anxiety disorders clinic for treatment, and 56 nonclinical participants were recruited to serve as comparisons. Participants were diagnosed using the Anxiety Disorders Interview Schedule for DSM-IV, and they also completed the Mini-SPIN, the Social Interaction Anxiety Scale (SIAS), and the Social Phobia Scale (SPS). Construct validity for the Mini-SPIN was assessed by its correlations with the SIAS and the SPS. Reliability, internal consistency, discriminant validity, and sensitivity to change were also examined, and receiver operating characteristic curve analysis was conducted to determine guidelines regarding cutoff scores for the Mini-SPIN. The study was conducted between April 1999 and December 2001. Results: Supporting findings from a previous study, strong support was found for the Mini-SPIN's ability to discriminate individuals with social anxiety disorder from those without the disorder. Receiver operating characteristic analysis revealed that using a cutoff score of 6 or greater (P < .001), the Mini-SPIN demonstrates excellent sensitivity, specificity, and positive and negative predictive values. Conclusions: Findings suggest that the Mini-SPIN is a reliable and valid instrument for screening social anxiety disorder in adults. Importantly, the use of the Mini-SPIN in primary care may be one way to address the underrecognition of social anxiety disorder in such settings. Due to the ease and brevity of the measure, it also shows potential for use in epidemiology. Given that this study has revealed the ability of the Mini-SPIN to reflect treatment change, the Mini-SPIN may also be considered for use in treatment outcome studies that specifically require minimal assessment. PMID:19956461
Raju, Murugesan; Santhoshkumar, Puttur; Sharma, K. Krishna
2012-01-01
Background A substitution mutation in human αA-crystallin (αAG98R) is associated with autosomal dominant cataract. The recombinant mutant αAG98R protein exhibits altered structure, substrate-dependent chaperone activity, impaired oligomer stability and aggregation on prolonged incubation at 37°C. Our previous studies have shown that αA-crystallin–derived mini-chaperone (DFVIFLDVKHFSPEDLTVK) functions like a molecular chaperone by suppressing the aggregation of denaturing proteins. The present study was undertaken to determine the effect of αA-crystallin–derived mini-chaperone on the stability and chaperone activity of αAG98R-crystallin. Methodology/Principal Findings Recombinant αAG98R was incubated in presence and absence of mini-chaperone and analyzed by chromatographic and spectrometric methods. Transmission electron microscope was used to examine the effect of mini-chaperone on the aggregation propensity of mutant protein. Mini-chaperone containing photoactive benzoylphenylalanine was used to confirm the interaction of mini-chaperone with αAG98R. The rescuing of chaperone activity in mutantα-crystallin (αAG98R) by mini-chaperone was confirmed by chaperone assays. We found that the addition of the mini-chaperone during incubation of αAG98R protected the mutant crystallin from forming larger aggregates that precipitate with time. The mini-chaperone-stabilized αAG98R displayed chaperone activity comparable to that of wild-type αA-crystallin. The complexes formed between mini-αA–αAG98R complex and ADH were more stable than the complexes formed between αAG98R and ADH. Western-blotting and mass spectrometry confirmed the binding of mini-chaperone to mutant crystallin. Conclusion/Significance These results demonstrate that mini-chaperone stabilizes the mutant αA-crystallin and modulates the chaperone activity of αAG98R. These findings aid in our understanding of how to design peptide chaperones that can be used to stabilize mutant αA-crystallins and preserve the chaperone function. PMID:22970163
Measuring postural control during mini-squat posture in men with early knee osteoarthritis.
Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M
2017-04-01
Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=<0.001), stiffness (p=0.001) and physical function (p<0.001) were found for the OAG. Moderate and negative correlations were found between the AP COP amplitude of displacement and physical function (ρ=-0.40, p=0.02). Moderate and negative correlations were observed between the AP COP velocity of displacement and physical function (ρ=0.47, p=0.01) and stiffness (ρ=-0.45, p=0.02). The findings of the present study emphasize the importance of rehabilitation from the early degrees of knee OA to prevent postural instability and the need to include quadriceps muscle strengthening, especially by eccentric contractions. The relationship between the self-reported symptoms and a lower and slower COP displacement suggest that the postural control strategy during tasks with a semi-flexed knee should be further investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of fracture torque resistance of orthodontic mini-implants.
Dalla Rosa, Fernando; Burmann, Paola Fp; Ruschel, Henrique C; Vargas, Ivana A; Kramer, Paulo F
2016-12-01
This study sought to assess the fracture torque resistance of mini-implants used for orthodontic anchorage. Five commercially available brands of mini-implants were used (SIN®, CONEXÃO®, NEODENT®, MORELLI®, andFORESTADENT®). Ten mini-implants of each diameter of each brand were tested, for a total 100 specimens. The mini-implants were subject to a static torsion test as described in ASTMstandard F543. Analysis of variance (ANOVA) with the Tukey multiple comparisons procedure was used to assess results. Overall, mean fracture strength ranged from 15.7 to 70.4 N·cm. Mini-implants with larger diameter exhibited higher peak torque values at fracture and higher yield strength, regardless of brand. In addition, significant differences across brands were observed when implants were stratified by diameter. In conclusion, larger mini-implant diameter is associated with increased fracture torque resistance. Additional information on peak torque values at fracture of different commercial brands of mini-implants may increase the success rate of this orthodontic anchorage modality. Sociedad Argentina de Investigación Odontológica.
Sheehan, David V; Sheehan, Kathy H; Shytle, R Douglas; Janavs, Juris; Bannon, Yvonne; Rogers, Jamison E; Milo, Karen M; Stock, Saundra L; Wilkinson, Berney
2010-03-01
To investigate the concurrent validity and reliability of the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID), a short structured diagnostic interview for DSM-IV and ICD-10 psychiatric disorders in children and adolescents. Participants were 226 children and adolescents (190 outpatients and 36 controls) aged 6 to 17 years. To assess the concurrent validity of the MINI-KID, participants were administered the MINI-KID and the Schedule for Affective Disorders and Schizophrenia for School Aged Children-Present and Lifetime Version (K-SADS-PL) by blinded interviewers in a counterbalanced order on the same day. Participants also completed a self-rated measure of disability. In addition, interrater (n = 57) and test-retest (n = 83) reliability data (retest interval, 1-5 days) were collected, and agreement between the parent version of the MINI-KID and the standard MINI-KID (n = 140) was assessed. Data were collected between March 2004 and January 2008. Substantial to excellent MINI-KID to K-SADS-PL concordance was found for syndromal diagnoses of any mood disorder, any anxiety disorder, any substance use disorder, any ADHD or behavioral disorder, and any eating disorder (area under curve [AUC] = 0.81-0.96, kappa = 0.56-0.87). Results were more variable for psychotic disorder (AUC = 0.94, kappa = 0.41). Sensitivity was substantial (0.61-1.00) for 15/20 individual DSM-IV disorders. Specificity was excellent (0.81-1.00) for 18 disorders and substantial (> 0.73) for the remaining 2. The MINI-KID identified a median of 3 disorders per subject compared to 2 on the K-SADS-PL and took two-thirds less time to administer (34 vs 103 minutes). Interrater and test-retest kappas were substantial to almost perfect (0.64-1.00) for all individual MINI-KID disorders except dysthymia. Concordance of the parent version (MINI-KID-P) with the standard MINI-KID was good. The MINI-KID generates reliable and valid psychiatric diagnoses for children and adolescents and does so in a third of the time as the K-SADS-PL. (c) 2010 Physicians Postgraduate Press, Inc.
Use of mini-refuges by female northern pintails wintering in southwestern Louisiana
Cox, Robert R.; Afton, Alan D.
1998-01-01
The Gulf Coast Joint Venture of the North American Waterfowl Management Plan began contracting private agricultural lands (hereafter mini-refuges) in 1988 to expand existing sanctuaries for northern pintails (Anas acuta) in southwestern Louisiana. Previous research suggested that mini-refuges may prove more attractive to pintails than permanent, open-water pools (pools) on refuges because mini-refuges provide sanctuary and food during the day, whereas pools generally provide only sanctuary (Rave and Cordes 1993). We used radiotelemetry to compare diel use of mini-refuges and pools (Lacassine Pool and Amoco Pool) by female pintails in southwestern Louisiana during winters of 1991-1992 and 1992-1993. We examined variation in use of these areas in relation to female age (immature or adult), time period (prehunting season, first hunting season, time between split hunting seasons, second hunting season, and posthunting season), and winter (1991-1992 and 1992-1993). Diurnal use of min-refuges and pools differed among time periods, but differences were not consistent between winters. Mini-refuges accounted for <2% of diurnal use by pintails in 7 of 10 time-period and winter comparisons. Diurnal use of mini-refuges was lower than that of Lacassine Pool in 8 of 10 time-period and winter comparisons. Diurnal use of mini-refuges was lower than tha of Amoco pool during first hunting season in 1992-1993, but use of these areas did not differ within other time periods and winters. Nocturnal use of mini-refuges and pools did not differ in relation to female age, time period, winter, or individual bird. Nocturnal use of mini-refuges did not differ from that of Lacassine Pool. In contrast to predictions and findings by Rave and Cordes (1993), we found that: (1) female pintails did not use mini-refuges more than pools, and (2) female pintails used mini-refuges at night. We believe that use of mini-refuges by pintails could be increased if mini-refuges were (1) located in areas of traditionally high pintail use, (2) increased in size, (3) flooded immediately prior to hunting season, and (4) cleared of dense vegetation by rolling, disking, or burning.
Wang, Feng; Li, Weiying; Zhang, Junpeng; Qi, Wanqi; Zhou, Yanyan; Xiang, Yuan; Shi, Nuo
2017-05-01
For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.
Pajoum Shariati, Seyed Ramin; Shokrgozar, Mohammad Ali; Vossoughi, Manouchehr; Eslamifar, Ali
2009-07-01
Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chitosan scaffold that contains fibroblasts. The culture methods for propagation of keratinocytes and fibroblasts isolated from human neonatal foreskin were developed. The growth and proliferation of normal human keratinocytes were evaluated in serum-free (keratinocyte growth medium) and our modified medium. Characterization of human keratinocytes was determined by using pan-keratin and anti-involucrin monoclonal antibodies. For fabrication of relevant biodegradable and biocompatible collagen-chitosan porous scaffold with improved biostability, modified method of freeze-gelation was used. In generating organotypic co-cultures, epidermal keratinocytes were plated onto the upper surface of scaffold containing embedded fibroblasts. The results showed that the growth of isolated human skin fibroblasts and keratinocytes in our modified medium was more than that in the serum-free medium. The different evaluations of collagen-chitosan scaffold showed that it is relevant to growth of cells (fibroblast and keratinocyte) and has a good flexibility in manipulation of the living skin equivalents. These findings indicate that the integration of collagen-chitosan scaffold with co-cultured keratinocyte and fibroblast in vitro provides a potential source of living skin for grafting in vivo.
El-Fantroussi, Said
2000-01-01
Soil treated with linuron for more than 10 years showed high biodegradation activity towards methoxy-methyl urea herbicides. Untreated control soil samples taken from the same location did not express any linuron degradation activity, even after 40 days of incubation. Hence, the occurrence in the field of a microbiota having the capacity to degrade a specific herbicide was related to the long-term treatment of the soil. The enrichment culture isolated from treated soil showed specific degradation activity towards methoxy-methyl urea herbicides, such as linuron and metobromuron, while dimethyl urea herbicides, such as diuron, chlorotoluron, and isoproturon, were not transformed. The putative metabolic intermediates of linuron and metobromuron, the aniline derivatives 3,4-dichloroaniline and 4-bromoaniline, were also degraded. The temperature of incubation drastically affected degradation of the aniline derivatives. Whereas linuron was transformed at 28 and 37°C, 3,4-dichloroaniline was transformed only at 28°C. Monitoring the enrichment process by reverse transcription-PCR and denaturing gradient gel electrophoresis (DGGE) showed that a mixture of bacterial species under adequate physiological conditions was required to completely transform linuron. This research indicates that for biodegradation of linuron, several years of adaptation have led to selection of a bacterial consortium capable of completely transforming linuron. Moreover, several of the putative species appear to be difficult to culture since they were detectable by DGGE but were not culturable on agar plates. PMID:11097876
Fate of THMs and HAAs in low TOC surface water.
Kim, Jinkeun
2009-02-01
A total of 30 conventional surface water treatment plants (WTPs) implementing prechlorination and postchlorination simultaneously from different regions in Korea were investigated to assess formation and removal of THMs and HAA(5). All water was low in total organic carbon (TOC) ranging from 0.74 to 6.20 mg/L with an average of 1.63 mg/L. The ranges of THMs and HAA(5) levels were 4.5-84.3 microg/L and 1.5-90.8 microg/L, respectively. THMs concentration was more sensitive to water temperature than HAA(5) and the ratio of THMs in summer over winter was 2.06. The sum of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) was 97% of HAA(5). The extent of formation and speciation of DBPs varied greatly by season and geography. The concentration of DCAA and TCAA of the finished water was comparable on a yearly base, but more TCAA was noticed in summer and the opposite trend was noticed in winter. This can be caused by different biodegradability in the sand filter between DCAA and TCAA that formed through prechlorination. Investigation on the removal of preformed DBPs in the GAC filter-adsorber (FA) revealed that breakthrough of THMs and HAA(5) was noticed after 3 months of operation. However, gradual improvement (>90%) in HAA(5) removal was observed again after breakthrough, which could be attributable to biodegradation. Heterotrophic plate counts confirmed active biological activity in the GAC FA.
Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil
2015-04-01
Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.
External validation of EPIWIN biodegradation models.
Posthumus, R; Traas, T P; Peijnenburg, W J G M; Hulzebos, E M
2005-01-01
The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.
A review of plastic waste biodegradation.
Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S
2005-01-01
With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.
2007-08-01
26 8. ISTC Simulation Comparisons...Comparison c. Ground Range Comparison Figure 8. ISTC Simulation Comparisons Mini-Rocket User Guide REAL-WORLD COMPARISON 30 In particular, note...even though Mini-Rocket does not directly model the missile rigid body dynamics. The ISTC subsequently used Mini-Rocket as a driver to stimulate other
Abbassy, Mona A.; Sabban, Hanady M.; Hassan, Ali H.; Zawawi, Khalid H.
2015-01-01
Objectives: To evaluate the accuracy of using routine 2-dimensional (2D) radiographs (panoramic and periapical) when evaluating the position of orthodontic temporary anchorage devices (mini-implants) in the maxilla, and to compare the results to 3-dimensional cone-beam computed tomography (CBCT). Methods: This cross-sectional study was conducted at King Abdulaziz University, Faculty of Dentistry, Jeddah, Kingdom of Saudi Arabia from February 2014 to January 2015. Panoramic and periapical radiographs were used to examine the position of mini-implants in relation to the adjacent roots. Rating of mini-implants position was performed by 82 dentists from different specialties, using 2 D images according to the following criteria: 1) away from the root; 2) mini-implant tip appears touching the lamina dura; and 3) mini-implant overlays the lamina dura. The results were compared with CBCT findings. Results: There was no difference between dentists from different specialties when rating the position of the mini-implants (Cronbach’s alpha=0.956). The accuracy of the periapical images was 45.1%, while the panoramic images 33.6%. However, both panoramic and periapical radiographs were significantly inaccurate when assessing the mini-implant position when compared with the CBCT findings (p=0.0001). Conclusion: Three-dimensional CBCT technology allows better visualization of mini-implant placement. The use of CBCT when assessing the position of mini-implants is recommended. PMID:26593168
Color perception differentiates Alzheimer's Disease (AD) from Vascular Dementia (VaD) patients.
Arnaoutoglou, N A; Arnaoutoglou, M; Nemtsas, P; Costa, V; Baloyannis, S J; Ebmeier, K P
2017-08-01
Alzheimer's Disease (AD) and Vascular Dementia (VaD) are the most common causes of dementia in older people. Both diseases appear to have similar clinical symptoms, such as deficits in attention and executive function, but specific cognitive domains are affected. Current cohort studies have shown a close relationship between αβ deposits and age-related macular degeneration (Johnson et al., 2002; Ratnayaka et al., 2015). Additionally, a close link between the thinning of the retinal nerve fiber (RNFL) and AD patients has been described, while it has been proposed that AD patients suffer from a non-specific type of color blindness (Pache et al., 2003). Our study included 103 individuals divided into three groups: A healthy control group (n = 35), AD (n = 32) according to DSM-IV-TR, NINCDS-ADRDA criteria, and VaD (n = 36) based on ΝΙΝDS-AIREN, as well as Magnetic Resonance Imaging (MRI) results. The severity of patient's cognitive impairment, was measured with the Mini-Mental State Examination (MMSE) and was classified according to the Reisberg global deterioration scale (GDS). Visual perception was examined using the Ishihara plates: "Ishihara Color Vision Test - 38 Plate." The three groups were not statistically different for demographic data (age, gender, and education). The Ishihara color blindness test has a sensitivity of 80.6% and a specificity of 87.5% to discriminate AD and VaD patients when an optimal (32.5) cut-off value of performance is used. Ishihara Color Vision Test - 38 Plate is a promising potential method as an easy and not time-consuming screening test for the differential diagnosis of dementia between AD and VaD.
High Throughput Biodegradation-Screening Test To Prioritize and Evaluate Chemical Biodegradability.
Martin, Timothy J; Goodhead, Andrew K; Acharya, Kishor; Head, Ian M; Snape, Jason R; Davenport, Russell J
2017-06-20
Comprehensive assessment of environmental biodegradability of pollutants is limited by the use of low throughput systems. These are epitomized by the Organisation for Economic Cooperation and Development (OECD) Ready Biodegradability Tests (RBTs), where one sample from an environment may be used to assess a chemical's ability to readily biodegrade or persist universally in that environment. This neglects the considerable spatial and temporal microbial variation inherent in any environment. Inaccurate designations of biodegradability or persistence can occur as a result. RBTs are central in assessing the biodegradation fate of chemicals and inferring exposure concentrations in environmental risk assessments. We developed a colorimetric assay for the reliable quantification of suitable aromatic compounds in a high throughput biodegradation screening test (HT-BST). The HT-BST accurately differentiated and prioritized a range of structurally diverse aromatic compounds on the basis of their assigned relative biodegradabilities and quantitative structure-activity relationship (QSAR) model outputs. Approximately 20 000 individual biodegradation tests were performed, returning analogous results to conventional RBTs. The effect of substituent group structure and position on biodegradation potential demonstrated a significant correlation (P < 0.05) with Hammett's constant for substituents on position 3 of the phenol ring. The HT-BST may facilitate the rapid screening of 100 000 chemicals reportedly manufactured in Europe and reduce the need for higher-tier fate and effects tests.
A DNA mini-barcode for land plants.
Little, Damon P
2014-05-01
Small portions of the barcode region - mini-barcodes - may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini-barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini-barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30,472)]. PCR amplification for all mini-barcodes, as estimated by validated electronic simulation, was successful for 90.2-99.8% of species. Overall Sanger sequence quality for mini-barcodes was very low - the best mini-barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini-barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini-barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini-barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini-barcode D (F52/R193). © 2013 John Wiley & Sons Ltd.
De Ceulaer, Geert; Pascoal, David; Vanpoucke, Filiep; Govaerts, Paul J
2017-11-01
The newest Nucleus CI processor, the CP900, has two new options to improve speech-in-noise perception: (1) use of an adaptive directional microphone (SCAN mode) and (2) wireless connection to MiniMic1 and MiniMic2 wireless remote microphones. An analysis was made of the absolute and relative benefits of these technologies in a real-world mimicking test situation. Speech perception was tested using an adaptive speech-in-noise test (sentences-in-babble noise). In session A, SRTs were measured in three conditions: (1) Clinical Map, (2) SCAN and (3) MiniMic1. Each was assessed for three distances between speakers and CI recipient: 1 m, 2 m and 3 m. In session B, the benefit of the use of MiniMic2 was compared to benefit of MiniMic1 at 3 m. A group of 13 adult CP900 recipients participated. SCAN and MiniMic1 improved performance compared to the standard microphone with a median improvement in SRT of 2.7-3.9 dB for SCAN at 1 m and 3 m, respectively, and 4.7-10.9 dB for the MiniMic1. MiniMic1 improvements were significant. MiniMic2 showed an improvement in SRT of 22.2 dB compared to 10.0 dB for MiniMic1 (3 m). Digital wireless transmission systems (i.e. MiniMic) offer a statistically and clinically significant improvement in speech perception in challenging, realistic listening conditions.
Development of biodegradable materials; balancing degradability and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, J.M.; Allen, A.L.; Dell, P.A.
1993-12-31
The development of biodegradable materials suitable for packaging must take into consideration various performance criteria such as mechanical and barrier properties, as well as rate of biodegradability in given environments. Individual or blended biopolymer films were obtained commercially or blown into film in the laboratory and tested for tensile strength, ultimate elongation and oxygen barrier. These films were then subjected to accelerated marine biodegradation tests as well as simulated marine respirometry. Starch/ethylene vinyl alcohol films exhibited good mechanical and excellent oxygen barrier properties, but were very slow to biodegrade in the simulated and excellent oxygen barrier properties, but were verymore » slow to biodegrade in the simulated marine environment. Polyhydroxyalkanoates had good mechanical properties, average oxygen barrier and good biodegradability. Data indicate that performance and biodegradability of packaging can be tailored to needs by combining individual biopolymers in different proportions in blends and laminates.« less
Rate and extent NOM removal during oxidation and biofiltration.
Black, Kerry E; Bérubé, Pierre R
2014-04-01
The presence of natural organic matter (NOM) in drinking water treatment presents many challenges. Integrated treatment processes combining oxidation and biofiltration have been demonstrated to be very effective at reducing NOM, specifically biodegradable organics. Laboratory bench-scale experiments were carried out to investigate the effect of oxidation by ozonation or UV/H2O2 on NOM. Specifically the rate of biodegradation was studied by performing bench-scale biodegradation experiments using acclimatized biological activated carbon (BAC). For the source water investigated, oxidation did not preferentially react with the biodegradable or non-biodegradable NOM. In addition, the type or dose of oxidation applied did not affect the observed rate of biodegradation. The rate kinetics for biodegradation were constant for all oxidation conditions investigated. Oxidation prior to biofiltration increased the overall removal of organic matter, but did not affect the rate of biodegradation of NOM. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s.
Zgoła-Grześkowiak, Agnieszka; Grześkowiak, Tomasz; Zembrzuska, Joanna; Łukaszewski, Zenon
2006-07-01
The biodegradation of poly(ethylene glycol)s (PEGs) and poly(propylene glycol)s (PPGs), both being major by-products of non-ionic surfactants biodegradation, was studied under the conditions of the River Water Die-Away Test. PEGs were isolated from a water matrix using solid-phase extraction with graphitized carbon black sorbent, then derivatized with phenyl isocyanate and determined by HPLC with UV detection. PPGs were isolated from a water matrix by liquid-liquid extraction with chloroform, then derivatized with naphthyl isocyanate and determined by HPLC with fluorescence detection. The primary biodegradation of both PEGs and PPGs reached approximately 99% during the test. The tests show different biodegradation pathways of PEG and PPG. During PEG biodegradation, their chains are shortened leading to the formation of ethylene glycol and diethylene glycol. During PPG biodegradation, no short-chained biodegradation products were found.
Enhanced Biodegradability of Pharmaceuticals and Personal Care Products by Ionizing Radiation.
Kim, Hyun Young; Lee, O-Mi; Kim, Tae-Hun; Yu, Seungho
2015-04-01
The radiolytic degradation of antibiotic compounds, including lincomycin (LMC), sulfamethoxazole (SMX), and tetracycline (TCN), and the change of biodegradability of the radiation-treated target compounds were evaluated. As a result, the degradation of target antibiotics by hydrolysis, biodegradation, and gamma irradiation showed a compound-dependent manner. However, the biodegradability of all target compounds was enhanced by the gamma irradiation. The enhanced biodegradability after gamma irradiation (2 kGy) followed the trend of LMC (18.89%)
Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.
Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui
2002-10-01
The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.
NREL: International Activities - Country Programs
for use of mini-grid quality assurance and design standards and advising on mini-grid business models communities of practice and technical collaboration across countries on mini-grid development, modeling and interconnection standards and procedures, and with strengthening mini-grids and energy access programs. NREL is
Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers.
Ochi, Shinji
2011-02-25
The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.
Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers
Ochi, Shinji
2011-01-01
The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms. PMID:28880000
Biodegradation of BTEX mixture by Pseudomonas putida YNS1 isolated from oil-contaminated soil.
You, Youngnam; Shim, Jaehong; Cho, Choa-Hyoung; Ryu, Moon-Hee; Shea, Patrick J; Kamala-Kannan, Seralathan; Chae, Jong-Chan; Oh, Byung-Taek
2013-05-01
The presence of mixed contaminants, such as BTEX (benzene, toluene, ethylbenzene and xylene isomers) can affect the biodegradation, fate and environmental impacts of each compound. To understand the influence of interactions among BTEX compounds on their biodegradation, four bacteria were isolated from oil-contaminated soil and assayed for BTEX biodegradation in vitro. The isolate exhibiting maximum biodegradation was identified as Pseudomonas putida based on the 16S rDNA sequence. The biodegradation of the BTEX compounds was greatly influenced by pH, temperature, and salinity. Substrate mixture studies (binary, tertiary and quaternary) revealed that the presence of toluene increased the biodegradation rate of benzene, ethylbenzene, and xylene. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Hsinkai; Yang, Ya-Tang
2017-09-15
The current standard protocols for characterizing the optogenetic circuit of bacterial cells using flow cytometry in light tubes and light exposure of culture plates are tedious, labor-intensive, and cumbersome. In this work, we engineer a bioreactor with working volume of ∼10 mL for in vivo real-time optogenetic characterization of E. coli with a CcaS-CcaR light-sensing system. In the bioreactor, optical density measurements, reporter protein fluorescence detection, and light input stimuli are provided by four light-emitting diode sources and two photodetectors. Once calibrated, the device can cultivate microbial cells and record their growth and gene expression without human intervention. We measure gene expression during cell growth with different organic substrates (glucose, succinate, acetate, pyruvate) as carbon sources in minimal medium and demonstrate evolutionary tuning of the optogenetic circuit by serial dilution passages.
Screening materials with the XIA UltraLo alpha particle counter at Southern Methodist University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakib, M. Z.; Cooley, J.; Kara, B.
2013-08-08
Southern Methodist University houses one of five existing commercially available UltraLo 1800 production model alpha counters made by XIA LLC. The instrument has an electron drift chamber with a 707 cm{sup 2} or 1800 cm{sup 2} counting region which is determined by selecting the inner electrode size. The SMU team operating this device is part of the SuperCDMS screening working group, and uses the alpha counter to study the background rates from the decay of radon in materials used to construct the SuperCDMS experiment. We have studied four acrylic samples obtained from the MiniCLEAN direct dark matter search with themore » XIA instrument demonstrating its utility in low background experiments by investigating the plate-out of {sup 210}Pb and comparing the effectiveness of cleaning procedures in removing {sup 222}Rn progenies from the samples.« less
2009-06-17
CAPE CANAVERAL, Fla. – A wide view captures both Launch Complex-41 on Cape Canaveral Air Force Station at right and Launch Pad 39A at NASA's Kennedy Space Center in Florida at left. Space shuttle Endeavour is still on the pad after launch was officially scrubbed at 1:55 a.m. this morning when a gaseous hydrogen leak occurred at the Ground Umbilical Carrier Plate. NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are on Complex 41 waiting for launch on the Atlas V/Centaur rocket. LRO and LCROSS are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. The LRO also includes seven instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA, CRATER, Mini-RF and LROC. Launch is scheduled for 5:22 p.m. EDT June 18 . Photo credit: NASA/Jack Pfaller
Structural systems for deep sea terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, A.
1995-10-01
This paper describes the various structural systems that can be used for loading and unloading crude oil and other by-products by small and large tankers using fixed berths. The overall facility generally consists of a long trestle supporting piping and roadway, loading and unloading platforms supporting loadings arms, metering skid, antenna towers, gangways, surge tanks, etc., breasting dolphins to absorb ships impact, mooring dolphins, and walkways. The paper examines each unit of the facility with the various structural systems applicable with their relative merits and demerits. Some of the structural systems examined are as follows: Use of multiple steel modulesmore » supported by free standing piles versus steel jackets/mini-jackets for loading platforms; Use of concrete platforms; Use of prestress concrete sections versus steel plate girders or steel trusses for trestles; Use of rubblemound causeway in lieu of a trestle in shallow waters; Use of large spare monopile dolphins versus multi-pile steel dolphins.« less
Anaerobic Biodegradation of soybean biodiesel and diesel ...
Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and 20% petrodiesel). Results indicate that the biodiesel could be effectively biodegraded in the presence or absence of petrodiesel, whereas petrodiesel could not be biodegraded at all under sulfate-reducing conditions. The kinetics of biodegradation of individual Fatty Acid Methyl Ester (FAME) compounds and their accompanying sulfate-reduction rates were studied using a serum bottle test. As for the biodegradation of individual FAME compounds, the biodegradation rates for the saturated FAMEs decreased with increasing carbon chain length. For unsaturated FAMEs, biodegradation rates increased with increasing number of double bonds. The presence of petrodiesel had a greater effect on the rate of biodegradation of biodiesel than on the extent of removal. The objective of this study was to investigate anaerobic biodegradation of soybean biodiesel and petrodiesel blends in a sulfate-reducing environment, which is a prevalent condition in anaerobic sediments.
Wet air oxidation induced enhanced biodegradability of distillery effluent.
Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N
2014-04-01
The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang
2012-01-01
Environmentally Degradable Parameter (Ed K) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept Ed K was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated Ed K was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the Ed K values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of Ed K for each material. The Ed K values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the Ed K was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment. PMID:22675455
Wei, Z.; Moldowan, J.M.; Peters, K.E.; Wang, Y.; Xiang, W.
2007-01-01
The biodegradability of diamondoids was investigated using a collection of crude oil samples from the San Joaquin Valley, California, that had been biodegraded to varying extent in the reservoir. Our results show that diamondoids are subjected to biodegradation, which is selective as well as stepwise. Adamantanes are generally more susceptible to biodegradation than other diamondoids, such as diamantanes and triamantanes. We report a possible pathway for the microbial degradation of adamantane. This cage hydrocarbon possibly breaks down to a metabolic intermediate through the action of microbes at higher levels of biodegradation in petroleum reservoirs. Microbial alteration has only a minor effect on diamondoid abundance in oil at low levels of biodegradation. Our results suggest that most diamondoids (with the exception of adamantane) are resistant to biodegradation, like the polycyclic terpanes (e.g. C19-C24 tricyclic terpanes, hopanes, gammacerane, oleananes, Ts, Tm, C29 Ts), steranes and diasteranes. Microbial alteration of diamondoids has a negligible impact on the quantification of oil cracking achieved using the diamondoid-biomarker method. ?? 2007 Elsevier Ltd. All rights reserved.
40 CFR 265.1084 - Waste determination procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to determine the organic biodegradation efficiency (Rbio) for a treated hazardous waste. (i) The... Where: Rbio = Organic biodegradation efficiency, percent. Fbio = Fraction of organic biodegraded as... to determine the actual organic mass biodegradation rate (MRbio) for a treated hazardous waste. (i...
Anaerobic Biodegradation of Soybean Biodiesel and Diesel ...
Biotransformation of soybean biodiesel and the inhibitory effect of petrodiesel were studied under methanogenic conditions. Biodiesel removal efficiency of more than 95% was achieved in a chemostat with influent biodiesel concentrations up to 2.45 g/L. The kinetics of anaerobic biodegradation of soybean biodiesel B100 (biodiesel only) with different petrodiesel loads were studied using biomass pre-acclimated to B100 and B80 (80% biodiesel and 20 petrodiesel). The results indicated that the biodiesel fraction of the blend could be effectively biodegraded, whereas petrodiesel was not biodegraded at all under methanogenic conditions. The presence of petrodiesel in blends with biodiesel had a greater inhibitory effect on the rate of biodegradation than the biodegradation efficiency (defined as the efficiency of methane production). Both the biodegradation rate coefficient and the methane production efficiency increased almost linearly with the increasing fraction of biodiesel. With the increasing fraction of petrodiesel, the biodegradation rate and efficiency were correlated with the concentration of soluble FAMEs in the water. The objective of this study was to investigate the anaerobic biodegradation of soybean biodiesel blends under methanogenic conditions. Biological methane potential (BMP) tests were conducted in serum bottles to determine the anaerobic biodegradation kinetics of biodiesel in the absence and presence of different concentrations of petrod
Accelerating Quinoline Biodegradation and Oxidation with Endogenous Electron Donors.
Bai, Qi; Yang, Lihui; Li, Rongjie; Chen, Bin; Zhang, Lili; Zhang, Yongming; Rittmann, Bruce E
2015-10-06
Quinoline, a recalcitrant heterocyclic compound, is biodegraded by a series of reactions that begin with mono-oxygenations, which require an intracellular electron donor. Photolysis of quinoline can generate readily biodegradable products, such as oxalate, whose bio-oxidation can generate endogenous electron donors that ought to accelerate quinoline biodegradation and, ultimately, mineralization. To test this hypothesis, we compared three protocols for the biodegradation of quinoline: direct biodegradation (B), biodegradation after photolysis of 1 h (P1h+B) or 2 h (P2h+B), and biodegradation by adding oxalate commensurate to the amount generated from photolysis of 1 h (O1+B) or 2 h (O2+B). The experimental results show that P1h+B and P2h+B accelerated quinoline biodegradation by 19% and 50%, respectively, compared to B. Protocols O1+B and O2+B also gave 19% and 50% increases, respectively. During quinoline biodegradation, its first intermediate, 2-hydroxyquinoline, accumulated gradually in parallel to quinoline loss but declined once quinoline was depleted. Mono-oxygenation of 2-hydroxyquinoline competed with mono-oxygenation of quinoline, but the inhibition was relieved when extra electrons donors were added from oxalate, whether formed by UV photolysis or added exogenously. Rapid oxalate oxidation stimulated both mono-oxygenations, which accelerated the overall quinoline oxidation that provided the bulk of the electron donor.
Reading Mini-Lessons: An Instructional Practice for Meaning Centered Reading Programs.
ERIC Educational Resources Information Center
Barrentine, Shelby; And Others
1995-01-01
Mini-lessons (brief, informative explanations that demonstrate what readers do) are a key instructional practice in meaning centered reading programs. The content of the mini-lessons is determined by the needs of learners. In procedural mini-lessons, teachers explain the steps for successfully completing a task or performing a reading-related…
Strotmann, Uwe; Reuschenbach, Peter; Schwarz, Helmut; Pagga, Udo
2004-01-01
Well-established biodegradation tests use biogenously evolved carbon dioxide (CO2) as an analytical parameter to determine the ultimate biodegradability of substances. A newly developed analytical technique based on the continuous online measurement of conductivity showed its suitability over other techniques. It could be demonstrated that the method met all criteria of established biodegradation tests, gave continuous biodegradation curves, and was more reliable than other tests. In parallel experiments, only small variations in the biodegradation pattern occurred. When comparing the new online CO2 method with existing CO2 evolution tests, growth rates and lag periods were similar and only the final degree of biodegradation of aniline was slightly lower. A further test development was the unification and parallel measurement of all three important summary parameters for biodegradation—i.e., CO2 evolution, determination of the biochemical oxygen demand (BOD), and removal of dissolved organic carbon (DOC)—in a multicomponent biodegradation test system (MCBTS). The practicability of this test method was demonstrated with aniline. This test system had advantages for poorly water-soluble and highly volatile compounds and allowed the determination of the carbon fraction integrated into biomass (heterotrophic yield). The integrated online measurements of CO2 and BOD systems produced continuous degradation curves, which better met the stringent criteria of ready biodegradability (60% biodegradation in a 10-day window). Furthermore the data could be used to calculate maximal growth rates for the modeling of biodegradation processes. PMID:15294794
Yingyongyudha, Anyamanee; Saengsirisuwan, Vitoon; Panichaporn, Wanvisa; Boonsinsukh, Rumpa
2016-01-01
Balance deficits a significant predictor of falls in older adults. The Balance Evaluation Systems Test (BESTest) and the Mini-Balance Evaluation Systems Test (Mini-BESTest) are tools that may predict the likelihood of a fall, but their capabilities and accuracies have not been adequately addressed. Therefore, this study aimed at examining the capabilities of the BESTest and Mini-BESTest for identifying older adult with history of falls and comparing the participants with history of falls identification accuracy of the BESTest, Mini-BESTest, Berg Balance Scale (BBS), and the Timed Up and Go Test (TUG) for identifying participants with a history of falls. Two hundred healthy older adults with a mean age of 70 years were classified into participants with and without history of fall groups on the basis of their 12-month fall history. Their balance abilities were assessed using the BESTest, Mini-BESTest, BBS, and TUG. An analysis of the resulting receiver operating characteristic curves was performed to calculate the area under the curve (AUC), sensitivity, specificity, cutoff score, and posttest accuracy of each. The Mini-BESTest showed the highest AUC (0.84) compared with the BESTest (0.74), BBS (0.69), and TUG (0.35), suggesting that the Mini-BESTest had the highest accuracy in identifying older adult with history of falls. At the cutoff score of 16 (out of 28), the Mini-BESTest demonstrated a posttest accuracy of 85% with a sensitivity of 85% and specificity of 75%. The Mini-BESTest had the highest posttest accuracy, with the others having results of 76% (BESTest), 60% (BBS), and 65% (TUG). The Mini-BESTest is the most accurate tool for identifying older adult with history of falls compared with the BESTest, BBS, and TUG.
Biodegradable synthetic bone composites
Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.
2013-01-01
The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.
Evaluation of the river die-away biodegradation test
Wylie, Glenn D.; Jones, John R.; Johnson, B. Thomas
1982-01-01
The reliability of the river die-away (RDA) test for establishing the biodegradability of chemicals was assessed. Reproducibility of biodegradation in the RDA test was analyzed under conditions in which the test is commonly done. Biodegradation results were not reproducible for di-2-ethylexyl phthalate (DEHP) and phthalic acid in replicated RDA tests using Missouri River water. Chemical and biological changes during the RDA tests probably reflected relative laboratory conditions. Initial suspended solids and subsequent DEHP biodegradation were directly related. Interpretation of RDA test results is enhanced by replicating experiments and comparing biodegradation of the test compound with a compound whose degradation properties are known. However, biodegradation measured with the RDA test is too variable and too dependent on laboratory treatment of samples to apply results directly to the aquatic environment.
2012-01-01
Microorganisms are ubiquitous on earth and have diverse metabolic transformative capabilities important for environmental biodegradation of chemicals that helps maintain ecosystem and human health. Microbial biodegradative metabolism is the main focus of the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD). UM-BBD data has also been used to develop a computational metabolic pathway prediction system that can be applied to chemicals for which biodegradation data is currently lacking. The UM-Pathway Prediction System (UM-PPS) relies on metabolic rules that are based on organic functional groups and predicts plausible biodegradative metabolism. The predictions are useful to environmental chemists that look for metabolic intermediates, for regulators looking for potential toxic products, for microbiologists seeking to understand microbial biodegradation, and others with a wide-range of interests. PMID:22587916
Bortoluzzi, C; Paras, K L; Applegate, T J; Verocai, G G
2018-04-30
Monitoring Eimeria shedding has become more important due to the recent restrictions to the use of antibiotics within the poultry industry. Therefore, there is a need for the implementation of more precise and accurate quantitative diagnostic techniques. The objective of this study was to compare the precision and accuracy between the Mini-FLOTAC and the McMaster techniques for quantitative diagnosis of Eimeria maxima oocyst in poultry. Twelve pools of excreta samples of broiler chickens experimentally infected with E. maxima were analyzed for the comparison between Mini-FLOTAC and McMaster technique using, the detection limits (dl) of 23 and 25, respectively. Additionally, six excreta samples were used to compare the precision of different dl (5, 10, 23, and 46) using the Mini-FLOTAC technique. For precision comparisons, five technical replicates of each sample (five replicate slides on one excreta slurry) were read for calculating the mean oocyst per gram of excreta (OPG) count, standard deviation (SD), coefficient of variation (CV), and precision of both aforementioned comparisons. To compare accuracy between the methods (McMaster, and Mini-FLOTAC dl 5 and 23), excreta from uninfected chickens was spiked with 100, 500, 1,000, 5,000, or 10,000 OPG; additional samples remained unspiked (negative control). For each spiking level, three samples were read in triplicate, totaling nine reads per spiking level per technique. Data were transformed using log10 to obtain normality and homogeneity of variances. A significant correlation (R = 0.74; p = 0.006) was observed between the mean OPG of the McMaster dl 25 and the Mini-FLOTAC dl 23. Mean OPG, CV, SD, and precision were not statistically different between the McMaster dl 25 and Mini-FLOTAC dl 23. Despite the absence of statistical difference (p > 0.05), Mini-FLOTAC dl 5 showed a numerically lower SD and CV than Mini-FLOTAC dl 23. The Pearson correlation coefficient revealed significant and positive correlation among the four dl (p ≤ 0.05). In the accuracy study, it was observed that the Mini-FLOTAC dl 5 and 23 were more accurate than the McMaster for 100 OPG, and the Mini-FLOTAC dl 23 had the highest accuracy for 500 OPG. The McMaster and Mini-FLOTAC dl 23 techniques were more accurate than the Mini-FLOTAC dl 5 for 5,000 OPG, and both dl of the Mini-FLOTAC were less accurate for 10,000 OPG counts than the McMaster technique. However, the overall accuracy of the Mini-FLOTAC dl 23 was higher than the McMaster and Mini-FLOTAC dl 5 techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
Prediction of biodegradability from chemical structure: Modeling or ready biodegradation test data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loonen, H.; Lindgren, F.; Hansen, B.
1999-08-01
Biodegradation data were collected and evaluated for 894 substances with widely varying chemical structures. All data were determined according to the Japanese Ministry of International Trade and Industry (MITI) I test protocol. The MITI I test is a screening test for ready biodegradability and has been described by Organization for Economic Cooperation and Development (OECD) test guideline 301 C and European Union (EU) test guideline C4F. The chemicals were characterized by a set of 127 predefined structural fragments. This data set was used to develop a model for the prediction of the biodegradability of chemicals under standardized OECD and EUmore » ready biodegradation test conditions. Partial least squares (PLS) discriminant analysis was used for the model development. The model was evaluated by means of internal cross-validation and repeated external validation. The importance of various structural fragments and fragment interactions was investigated. The most important fragments include the presence of a long alkyl chain; hydroxy, ester, and acid groups (enhancing biodegradation); and the presence of one or more aromatic rings and halogen substituents (regarding biodegradation). More than 85% of the model predictions were correct for using the complete data set. The not readily biodegradable predictions were slightly better than the readily biodegradable predictions (86 vs 84%). The average percentage of correct predictions from four external validation studies was 83%. Model optimization by including fragment interactions improve the model predicting capabilities to 89%. It can be concluded that the PLS model provides predictions of high reliability for a diverse range of chemical structures. The predictions conform to the concept of readily biodegradable (or not readily biodegradable) as defined by OECD and EU test guidelines.« less
Long-term evolution of biodegradation and volatilization rates in a crude oil-contaminated aquifer
Chaplin, B.P.; Delin, G.N.; Baker, R.J.; Lahvis, M.A.
2002-01-01
Volatilization and subsequent biodegradation near the water Table make up a coupled natural attenuation pathway that results in significant mass loss of hydrocarbons. Rates of biodegradation and volatilization were documented twice 12 years apart at a crude-oil spill site near Bemidji, Minnesota. Biodegradation rates were determined by calibrating a gas transport model to O2, CO2, and CH4 gas-concentration data in the unsaturated zone. Reaction stoichiometry was assumed in converting O2 and CO2 gas-flux estimates to rates of aerobic biodegradation and CH4 gas-flux estimates to rates of methanogenesis. Model results indicate that the coupled pathway has resulted in significant hydrocarbon mass loss at the site, and it was estimated that approximately 10.52 kg/day were lost in 1985 and 1.99 kg/day in 1997. In 1985 3% of total volatile hydrocarbons diffusing from the floating oil were biodegraded in the lower 1 m of the unsaturated zone and increased to 52% by 1997. Rates of hydrocarbon biodegradation above the center of the floating oil were relatively stable from 1985 to 1997, as the primary metabolic pathway shifted from aerobic to methanogenic biodegradation. Model results indicate that in 1997 biodegradation under methanogenenic conditions represented approximately one-half of total hydrocarbon biodegradation in the lower 1 m of the unsaturated zone. Further downgradient, where substrate concentrations have greatly increased, total biodegradation rates increased by greater than an order of magnitude from 0.04 to 0.43 g/m2-day. It appears that volatilization is the primary mechanism for attenuation in early stages of plume evolution, while biodegradation dominates in later stages.
“Rational” Management of Dichlorophenols Biodegradation by the Microalga Scenedesmus obliquus
Papazi, Aikaterini; Kotzabasis, Kiriakos
2013-01-01
The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps) under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp – no meta-substitution) consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp – one meta-chloride) was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp – two meta-chlorides) could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity) was higher, than group I (lower toxicity) and the biodegradation of dichlorophenols (higher toxicity) was higher than the corresponding monochlorophenols (lower toxicity). The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as “smart” bioenergetic “machines”, that have the ability to continuously “calculate” the energy reserves and “use” the most energetically advantageous dcp-biodegradation strategy. We tried to manipulate the above fact, changing the energy reserves and as a result the chosen strategy, in order to take advantage of their abilities in detoxifying the environment. PMID:23613903
"Rational" management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus.
Papazi, Aikaterini; Kotzabasis, Kiriakos
2013-01-01
The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps) under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp - no meta-substitution) consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp - one meta-chloride) was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp - two meta-chlorides) could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity) was higher, than group I (lower toxicity) and the biodegradation of dichlorophenols (higher toxicity) was higher than the corresponding monochlorophenols (lower toxicity). The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as "smart" bioenergetic "machines", that have the ability to continuously "calculate" the energy reserves and "use" the most energetically advantageous dcp-biodegradation strategy. We tried to manipulate the above fact, changing the energy reserves and as a result the chosen strategy, in order to take advantage of their abilities in detoxifying the environment.
DEVELOPMENT OF BIOPLUME 4 MODEL FOR FUELS AND CHLORINATED SOLVENT BIODEGRADATION
The Bioplume model has been in development and use for modeling biodegradation and natural attenuation since the late 1980s. Bioplume 1 focused on aerobic biodegradation of BTEX. Bioplume II simulated oxygen and hydrocarbons and simulated biodegradation using an instantaneous r...
DEVELOPMENT OF BIOPLUME4 MODEL FOR FUELS AND CHLORINATED SOLVENT BIODEGRADATION
The Bioplume model has been in development and use for modeling biodegradation and natural attenuation since the late 80's. Bioplume I focused on aerobic biodegradation of BTEX. Bioplume II simulated oxygen and hydrocarbons and simulated biodegradation using an instantaneous re...
Towell, Marcie G; Paton, Graeme I; Semple, Kirk T
2011-12-01
The effect of cable oil concentration, nutrient amendment and bioaugmentation on cable oil component biodegradation in a pristine agricultural soil was investigated. Biodegradation potential was evaluated over 21 d by measuring cumulative CO(2) respiration on a Micro-Oxymax respirometer and (14)C-phenyldodecane mineralisation using a (14)C-respirometric assay. Cable oil concentration had a significant effect upon oil biodegradation. Microbial respiratory activity increased with increasing cable oil concentration, whereas (14)C-phenydodecane mineralisation decreased. Bioaugmentation achieved the best cable oil biodegradation performance, resulting in increases in cumulative CO(2) respiration, and maximum rates and extents of (14)C-phenyldodecane mineralisation. Generally, nutrient amendment also enhanced cable oil biodegradation, but not to the extent that degrader amendment did. Cable oil biodegradation was a function of (i) cable oil concentration and (ii) catabolic ability of microbial populations. Bioaugmentation may enhance cable oil biodegradation, and is dependent upon composition, cell number and application of catabolic inocula to soil. Copyright © 2011 Elsevier Ltd. All rights reserved.
BIOB: a mathematical model for the biodegradation of low solubility hydrocarbons.
Geng, Xiaolong; Boufadel, Michel C; Personna, Yves R; Lee, Ken; Tsao, David; Demicco, Erik D
2014-06-15
Modeling oil biodegradation is an important step in predicting the long term fate of oil on beaches. Unfortunately, existing models do not account mechanistically for environmental factors, such as pore water nutrient concentration, affecting oil biodegradation, rather in an empirical way. We present herein a numerical model, BIOB, to simulate the biodegradation of insoluble attached hydrocarbon. The model was used to simulate an experimental oil spill on a sand beach. The biodegradation kinetic parameters were estimated by fitting the model to the experimental data of alkanes and aromatics. It was found that parameter values are comparable to their counterparts for the biodegradation of dissolved organic matter. The biodegradation of aromatics was highly affected by the decay of aromatic biomass, probably due to its low growth rate. Numerical simulations revealed that the biodegradation rate increases by 3-4 folds when the nutrient concentration is increased from 0.2 to 2.0 mg N/L. Published by Elsevier Ltd.
Anaerobic biodegradation of soybean biodiesel and diesel blends under methanogenic conditions.
Wu, Shuyun; Yassine, Mohamad H; Suidan, Makram T; Venosa, Albert D
2015-12-15
Biotransformation of soybean biodiesel and the inhibitory effect of petrodiesel were studied under methanogenic conditions. Biodiesel removal efficiency of more than 95% was achieved in a chemostat with influent biodiesel concentrations up to 2.45 g/L. The kinetics of anaerobic biodegradation of soybean biodiesel B100 (biodiesel only) with different petrodiesel loads was studied using biomass pre-acclimated to B100 and B80 (80% biodiesel and 20% petrodiesel). The results indicated that the biodiesel fraction of the blend could be effectively biodegraded, whereas petrodiesel was not biodegraded at all under methanogenic conditions. The presence of petrodiesel in blends with biodiesel had a greater inhibitory effect on the rate of biodegradation than the biodegradation efficiency (defined as the efficiency of methane production). Both the biodegradation rate coefficient and the methane production efficiency increased almost linearly with the increasing fraction of biodiesel. With the increasing fraction of petrodiesel, the biodegradation rate and efficiency were correlated with the concentration of soluble FAMEs in the water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maynaud, Géraldine; Druilhe, Céline; Daumoin, Mylène; Jimenez, Julie; Patureau, Dominique; Torrijos, Michel; Pourcher, Anne-Marie; Wéry, Nathalie
2017-05-01
The stability of digestate organic matter is a key parameter for its use in agriculture. Here, the organic matter stability was compared between 14 post-treated digestates and the relationship between organic matter complexity and biodegradability was highlighted. Respirometric activity and CH 4 yields in batch tests showed a positive linear correlation between both types of biodegradability (R 2 =0.8). The accessibility and complexity of organic matter were assessed using chemical extractions combined with fluorescence spectroscopy, and biodegradability was mostly anti-correlated with complexity of organic matter. Post-treatments presented a significant effect on the biodegradability and complexity of organic matter. Biodegradability was low for composted digestates which comprised slowly accessible complex molecules. Inversely, solid fractions obtained after phase separation contained a substantial part of remaining biodegradable organic matter with a significant easily accessible fraction comprising simpler molecules. Understanding the effect of post-treatment on the biodegradability of digestates should help to optimize their valorization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anaerobic biodegradation of soybean biodiesel and diesel blends under sulfate-reducing conditions.
Wu, Shuyun; Yassine, Mohamad H; Suidan, Makram T; Venosa, Albert D
2016-10-01
Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and 20% petrodiesel). Results indicate that the biodiesel could be effectively biodegraded in the presence or absence of petrodiesel, whereas petrodiesel could not be biodegraded at all under sulfate-reducing conditions. The kinetics of biodegradation of individual Fatty Acid Methyl Ester (FAME) compounds and their accompanying sulfate-reduction rates were studied using a serum bottle test. As for the biodegradation of individual FAME compounds, the biodegradation rates for the saturated FAMEs decreased with increasing carbon chain length. For unsaturated FAMEs, biodegradation rates increased with increasing number of double bonds. The presence of petrodiesel had a greater effect on the rate of biodegradation of biodiesel than on the extent of removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications.
Yang, Jingxin; Guo, Jason L; Mikos, Antonios G; He, Chunyan; Cheng, Guang
2018-06-04
In recent years, biodegradable metallic materials have played an important role in biomedical applications. However, as typical for the metal materials, their structure, general properties, preparation technology and biocompatibility are hard to change. Furthermore, biodegradable metals are susceptible to excessive degradation and subsequent disruption of their mechanical integrity; this phenomenon limits the utility of these biomaterials. Therefore, the use of degradable metals, as the base material to prepare metal matrix composite materials, it is an excellent alternative to solve the problems above described. Biodegradable metals can thus be successfully combined with other materials to form biodegradable metallic matrix composites for biomedical applications and functions. The present article describes the processing methods currently available to design biodegradable metal matrix composites for biomedical applications and provides an overview of the current existing biodegradable metal systems. At the end, the manuscript presents and discusses the challenges and future research directions for development of biodegradable metallic matrix composites for biomedical purposes.
Bareha, Y; Girault, R; Jimenez, J; Trémier, A
2018-04-26
Prediction of organic nitrogen mineralization into ammonium during anaerobic digestion is required for optimizing substitution of mineral fertilizer by digestates. The aim of this study was to understand organic nitrogen biodegradability and to investigate how it can be predicted from carbon biodegradability, and nitrogen bioaccessibility, respectively. Bioaccessibility was assessed using fractionation methods based on sequential extractions. Results showed that organic nitrogen was present in fractions whose bioaccessibility levels differed. Organic nitrogen and carbon biodegradability were also determined and compared. Results highlighted two groups of substrates: the first with an initial NH 4 + /TKN < 30%, whose carbon and nitrogen biodegradability are similar; the second with an initial NH 4 + /TKN > 30%, whose carbon and nitrogen biodegradability differ significantly. To enable prediction on all substrates, partial least square (PLS) regressions were carried out to link organic nitrogen bioaccessibility indicators to biodegradability. The models successfully predicted organic nitrogen biodegradability with a maximum prediction error of 10%. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Campbell, Thomas F.
2013-01-01
This case study will investigate teachers' and administrators' perceptions of the relationship between mini observations and teacher performance to understand what effect, if any, a system of mini observations has on teacher performance, and if mini observations influences a teacher's pedagogical practice differently than a…
Biopatterning of Silk Proteins for Soft Micro-optics.
Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K
2015-04-29
Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.
Phthalates biodegradation in the environment.
Liang, Da-Wei; Zhang, Tong; Fang, Herbert H P; He, Jianzhong
2008-08-01
Phthalates are synthesized in massive amounts to produce various plastics and have become widespread in environments following their release as a result of extensive usage and production. This has been of an environmental concern because phthalates are hepatotoxic, teratogenic, and carcinogenic by nature. Numerous studies indicated that phthalates can be degraded by bacteria and fungi under aerobic, anoxic, and anaerobic conditions. This paper gives a review on the biodegradation of phthalates and includes the following aspects: (1) the relationship between the chemical structure of phthalates and their biodegradability, (2) the biodegradation of phthalates by pure/mixed cultures, (3) the biodegradation of phthalates under various environments, and (4) the biodegradation pathways of phthalates.
Scale up of diesel oil biodegradation in a baffled roller bioreactor.
Nikakhtari, Hossein; Song, Wanning; Kumar, Pardeep; Nemati, Mehdi; Hill, Gordon A
2010-05-01
Diesel oil is a suitable substance to represent petroleum contamination from accidental spills in operating and transportation facilities. Using a microbial culture enriched from a petroleum contaminated soil, biodegradation of diesel oil was carried out in 2.2, 55, and 220 L roller baffled bioreactors. The effects of bioreactor rotation speed (from 5 to 45 rpm) and liquid loading (from 18% to 73% of total volume) on the biodegradation of diesel oil were studied. In the small scale bioreactor (2.2L), the maximum rotation speed of 45 rpm resulted in the highest biodegradation rate with a first order biodegradation kinetic constant of 0.095 d(-1). In the larger scale bioreactors, rotation speed did not affect the biodegradation rate. Liquid loadings higher than 64% resulted in reduced biodegradation rates in the small scale bioreactor; however, in the larger roller bioreactors liquid loading did not affect the biodegradation rate. Biodegradation of diesel oil at 5 rpm and 73% loading is recommended for operating large scale roller baffled bioreactors. Under these conditions, high diesel oil concentrations up to 50 gL(-1) can be bioremediated at a rate of 1.61 gL(-1)d(-1). Copyright 2010 Elsevier Ltd. All rights reserved.
The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.
Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo
2017-06-01
Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.
Biodegradation performance of environmentally-friendly insulating oil
NASA Astrophysics Data System (ADS)
Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong
2018-02-01
In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.
Sato, Hiroaki; Shibata, Atsushi; Wang, Yang; Yoshikawa, Hiromichi; Tamura, Hiroto
2003-01-01
This paper reports the characterization of the biodegradation intermediates of octylphenol octaethoxylate (OP(8)EO) by means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The biodegradation test study was carried out in a pure culture (Pseudomonas putida S-5) under aerobic conditions using OP(8)EO as the sole carbon source and (18)O-labeled water as an incubation medium. In the MALDI-MS spectra of biodegraded samples, a series of OP(n)EO molecules with n = 2-8 EO units and their corresponding carboxylic acid products (OP(n)EC) were observed. The use of purified OP(8)EO enabled one to distinguish the shortened OPEO molecules as biodegradation intermediates. Furthermore, the formation of OP(8)EC (the oxidized product of OP(8)EO) supported the notion that terminal oxidation is a step in the biodegradation process. When biodegradation study was carried out in (18)O-labeled water, incorporation of (18)O atoms into the carboxyl group was observed for OPEC, while no incorporation was observed for the shortened OPEO products. These results could provide some rationale to the biodegradation mechanism of alkylphenol polyethoxylates.
Advances in Biodegradation of Multiple Volatile Organic Compounds
NASA Astrophysics Data System (ADS)
Zhang, M.; Yoshikawa, M.
2017-12-01
Bioremediation of soil and groundwater containing multiple contaminants remains a challenge in environmental science and engineering because complete biodegradation of all components is necessary but very difficult to accomplish in practice. This presentation provides a brief overview on advances in biodegradation of multiple volatile organic compounds (VOCs) including chlorinated ethylenes, benzene, toluene and dichloromethane (DCM). Case studies on aerobic biodegradation of benzene, toluene and DCM, and integrated anaerobic-aerobic biodegradation of 7 contaminants, specifically, tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), DCM, benzene and toluene will be provided. Recent findings based on systematic laboratory experiments indicated that aerobic toluene degradation can be enhanced by co-existence of benzene. Propioniferax, not a known benzene, toluene and DCM degrader can be a key microorganism that involves in biodegradation when the three contaminants co-exist. Integrated anaerobic-aerobic biodegradation is capable of completely degrading the seven VOCs with initial concentrations less than 30 mg/L. Dehalococcoides sp., generally considered sensitive to oxygen, can survive aerobic conditions for at least 28 days, and can be activated during the subsequent anaerobic biodegradation. This presentation may provide a systematic information about biodegradation of multiple VOCs, and a scientific basis for the complete bioremediation of multiple contaminants in situ.
Devillers, J; Pandard, P; Richard, B
2013-01-01
Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.
Biodegradation of plastics: current scenario and future prospects for environmental safety.
Ahmed, Temoor; Shahid, Muhammad; Azeem, Farrukh; Rasul, Ijaz; Shah, Asad Ali; Noman, Muhammad; Hameed, Amir; Manzoor, Natasha; Manzoor, Irfan; Muhammad, Sher
2018-03-01
Plastic is a general term used for a wide range of high molecular weight organic polymers obtained mostly from the various hydrocarbon and petroleum derivatives. There is an ever-increasing trend towards the production and consumption of plastics due to their extensive industrial and domestic applications. However, a wide spectrum of these polymers is non-biodegradable with few exceptions. The extensive use of plastics, lack of waste management, and casual community behavior towards their proper disposal pose a significant threat to the environment. This has raised growing concerns among various stakeholders to devise policies and innovative strategies for plastic waste management, use of biodegradable polymers especially in packaging, and educating people for their proper disposal. Current polymer degradation strategies rely on chemical, thermal, photo, and biological procedures. In the presence of proper waste management strategies coupled with industrially controlled biodegradation facilities, the use of biodegradable plastics for some applications such as packaging or health industry is a promising and attractive option for economic, environmental, and health benefits. This review highlights the classification of plastics with special emphasis on biodegradable plastics and their rational use, the identified mechanisms of plastic biodegradation, the microorganisms involved in biodegradation, and the current insights into the research on biodegradable plastics. The review has also identified the research gaps in plastic biodegradation followed by future research directions.
Biodegradation of Single-Walled Carbon Nanotubes in Macrophages through Respiratory Burst Modulation
Hou, Jie; Wan, Bin; Yang, Yu; Ren, Xiao-Min; Guo, Liang-Hong; Liu, Jing-Fu
2016-01-01
The biodegradation of carbon nanotubes (CNTs) may be one of major determinants of the toxic outcomes in exposed individuals. In this study, we employed a macrophage/monocyte model, Raw264.7, to investigate the feasibility of regulating the biodegradation of three types of single-walled carbon nanotubes (SWCNTs) (pristine, ox-, and OH-SWCNTs) by respiratory burst modulation. An artificial fluid mimicking the enzymatic reactions of respiratory burst was constituted to reveal the role of respiratory burst played in SWCNT biodegradation. The biodegradation of SWCNTs were characterized by Raman, ultraviolet-visible-near-infrared spectroscopy, and transmission electron microscopy. Our results showed significantly accelerated biodegradation of ox-SWCNTs and OH-SWCNTs in macrophages activated by phorbol myristate acetate (PMA), which could be prevented by N-acetyl-l-cysteine (NAC), whereas p-SWCNTs were resistant to biodegradation. Similar tendencies were observed by using the in vitro enzymatic system, and the degradation rates of these SWCNTs are in the order of OH-SWCNTs > ox-SWCNTs >> p-SWCNTs, suggesting a pivotal role of respiratory burst in accelerating the biodegradation of SWCNTs and that defect sites on SWCNTs might be a prerequisite for the biodegradation to occur. Our findings might provide invaluable clues on the development of intervention measurements for relieving the side effects of SWCNTs and would help to design safer SWCNT products with higher biodegradability and less toxicity. PMID:27011169
Lee, Robert J; Moon, Won; Hong, Christine
2017-05-01
Bone-borne palatal expansion relies on mini-implant stability for successful orthopedic expansion. The large magnitude of applied force experienced by mini-implants during bone-borne expansion may lead to high failure rates. Use of bicortical mini-implant anchorage rather than monocortical anchorage may improve mini-implant stability. The aims of this study were to analyze and compare the effects of bicortical and monocortical anchorages on stress distribution and displacement during bone-borne palatal expansion using finite element analysis. Two skull models were constructed to represent expansion before and after midpalatal suture opening. Three clinical situations with varying mini-implant insertion depths were studied in each skull model: monocortical, 1-mm bicortical, and 2.5-mm bicortical. Finite element analysis simulations were performed for each clinical situation in both skull models. Von Mises stress distribution and transverse displacement were evaluated for all models. Peri-implant stress was greater in the monocortical anchorage model compared with both bicortical anchorage models. In addition, transverse displacement was greater and more parallel in the coronal plane for both bicortical models compared with the monocortical model. Minimal differences were observed between the 1-mm and the 2.5-mm bicortical models for both peri-implant stress and transverse displacement. Bicortical mini-implant anchorage results in improved mini-implant stability, decreased mini-implant deformation and fracture, more parallel expansion in the coronal plane, and increased expansion during bone-borne palatal expansion. However, the depth of bicortical mini-implant anchorage was not significant. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Lee, Robert J.; Moon, Won; Hong, Christine
2017-01-01
Introduction Bone-borne palatal expansion relies on mini-implant stability for successful orthopedic expansion. The large magnitude of applied force experienced by mini-implants during bone-borne expansion may lead to high failure rates. Use of bicortical mini-implant anchorage rather than monocortical anchorage may improve mini-implant stability. The aim of this study was to analyze and compare the effects of bicortical and monocortical anchorage on stress distribution and displacement during bone-borne palatal expansion using finite element analysis (FEA). Methods Two skull models were constructed to represent expansion prior to and after midpalatal suture opening. Three clinical situations with varying mini-implant insertion depths were studied in each skull model: monocortical, 1mm bicortical, and 2.5mm bicortical. FEA simulations were performed for each clinical situation in both skull models. Von Mises stress distribution and transverse displacement was evaluated for all models. Results Peri-implant stress was greater in the monocortical anchorage model compared to both bicortical anchorage models. In addition, transverse displacement was greater and more parallel in the coronal plane for both bicortical models compared to the monocortical model. Minimal differences were observed between the 1mm bicortical and 2.5mm bicortical models for both peri-implant stress and transverse displacement. Conclusions Bicortical mini-implant anchorage results in improved mini-implant stability, decreased mini-implant deformation and fracture, more parallel expansion in the coronal plane, and increased expansion during bone-borne palatal expansion. However, the depth of bicortical mini-implant anchorage was not significant. PMID:28457266
Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y
2015-07-05
Whether mini-tablets (tablets, diameters ≤6mm) belong to single- or multiple-unit dosage forms is still questionable. Accordingly, Pharmacopoeial evaluation procedures for mini-tablets are lacking. In this study, the aforementioned points were discussed. Moreover, their potential for oral controlled delivery was assessed. The antidepressant venlafaxine hydrochloride (Vx), a highly soluble drug undergoing first pass effect, low bioavailability and short half-life was selected as a challenging payload. In an attempt to weigh up mini-tablets versus pellets as multiparticulate carriers, Vx-loaded mini-tablets were compared to formulated pellets of the same composition and the innovator Effexor(®)XR pellets. Formulations were prepared using various polymer hydrogels in the core and ethyl cellulose film coating with increasing thickness. Mini-tablets (diameter 2mm) showed extended Vx release (<60%, 8h). Indeed, release profiles comparable to Effexor(®)XR pellets were obtained. Remarkably higher coating thickness was required for pellets to provide equivalent retardation. Ethyl cellulose in the core ensured faster release due to polymer migration to the surface and pore formation in the coat. mini-tablets showed higher stability to pellets upon storage. Industrially speaking, mini-tablets proved to be superior to pellets in terms of manufacturing, product quality and economical aspects. Results point out the urgent need for standardized evaluation procedures for mini-tablets. Copyright © 2015. Published by Elsevier B.V.
USING STABLE CARBON ISOTOPES TO ESTIMATE THE RATE OF NATURAL BIODEGRADATION OF MTBE AT FIELD SCALE
Natural biodegradation of fuel contaminants in ground water reduces the risk of contamination of drinking water wells. It is very difficult to estimate the natural rate of biodegradation of MTBE in ground water because its primary biodegradation product, TBA, is also a component...
40 CFR 435.15 - Standards of performance for new sources (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not exceed 1.0... Water Docket, 1200 Pennsylvania Ave., NW., Washington, DC 20460. 7 Biodegradation rate ratio...), biodegradation rate ratio (Footnote 7), PAH, mercury, and cadmium stock limitations (C16-C18 internal olefin...
ETHANOL BIODEGRADATION FROM GASOLINE RELEASES AND ITS EFFECT ON BTEX BIODEGRADATIONS
How fast will ethanol biodegrade and what impact will it have on the biodegradation of BTEX in a gasoline spill? This session will provide evidence to answer these questions based on laboratory data. Material from UST spills from Long Island, New York, New Jersey, Florida, and ...
Garside, Mark J; Fisher, James M; Blundell, Adrian G; Gordon, Adam L
2018-01-01
Mini Geriatric E-Learning Modules (Mini-GEMs) are short, focused, e-learning videos on geriatric medicine topics, hosted on YouTube, which are targeted at junior doctors working with older people. This study aimed to explore how these resources are accessed and used. The authors analyzed the viewing data from 22 videos published over the first 18 months of the Mini-GEM project. We conducted a focus group of U.K. junior doctors considering their experiences with Mini-GEMS. The Mini-GEMs were viewed 10,291 times over 18 months, equating to 38,435 minutes of total viewing time. The average viewing time for each video was 3.85 minutes. Learners valued the brevity and focused nature of the Mini-GEMs and reported that they watched them in a variety of settings to supplement clinical experiences and consolidate learning. Watching the videos led to an increase in self-reported confidence in managing older patients. Mini-GEMs can effectively disseminate clinical teaching material to a wide audience. The videos are valued by junior doctors due to their accessibility and ease of use.
Impact of implant design on primary stability of orthodontic mini-implants.
Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter
2008-01-01
Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.
Nonlinear Modeling of Joint Dominated Structures
NASA Technical Reports Server (NTRS)
Chapman, J. M.
1990-01-01
The development and verification of an accurate structural model of the nonlinear joint-dominated NASA Langley Mini-Mast truss are described. The approach is to characterize the structural behavior of the Mini-Mast joints and struts using a test configuration that can directly measure the struts' overall stiffness and damping properties, incorporate this data into the structural model using the residual force technique, and then compare the predicted response with empirical data taken by NASA/LaRC during the modal survey tests of the Mini-Mast. A new testing technique, referred to as 'link' testing, was developed and used to test prototype struts of the Mini-Masts. Appreciable nonlinearities including the free-play and hysteresis were demonstrated. Since static and dynamic tests performed on the Mini-Mast also exhibited behavior consistent with joints having free-play and hysteresis, nonlinear models of the Mini-Mast were constructed and analyzed. The Residual Force Technique was used to analyze the nonlinear model of the Mini-Mast having joint free-play and hysteresis.
[Bone remodeling and modeling/mini-modeling.
Hasegawa, Tomoka; Amizuka, Norio
Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.
Ishida, Hideyuki; Sobajima, Jun; Yokoyama, Masaru; Nakada, Hiroshi; Okada, Norimichi; Kumamoto, Kensuke; Ishibashi, Keiichiro
2014-01-01
We performed a retrospective review of non-overweight (body mass index ≤ 25 kg/m2) patients scheduled to undergo a curative resection of locally advanced colon cancer via a transverse mini-incision (n = 62) or a longitudinal mini-incision (skin incision ≤7 cm, n = 62), with the latter group of patients randomly selected as historical controls matched with the former group according to tumor location. Extension of the transverse mini-incision wound was necessary in 3 patients (5%). Both groups were largely equivalent in terms of demographic, clinicopathological, and surgical factors and frequency of postoperative complications. Postoperative analgesic was significantly less (P = 0.04) and postoperative length of the hospital stay was significantly shorter (P < 0.01) in the transverse mini-incision group. Concerning a mini-incision approach for locally advanced colonic cancer, a transverse incision seems to be advantageous with regard to minimal invasiveness and early recovery compared with a longitudinal incision. PMID:24833142
Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF Radar
NASA Technical Reports Server (NTRS)
Carter, Lynn M.; Neish, Catherine D.; Bussey, D. B. J.; Spudis, Paul D.; Patterson, G. Wesley; Cahill, Joshua T.; Raney, R. Keith
2011-01-01
The Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows.
Midterm results of surgical treatment of displaced proximal humeral fractures in children.
Pavone, Vito; de Cristo, Claudia; Cannavò, Luca; Testa, Gianluca; Buscema, Antonio; Condorelli, Giuseppe; Sessa, Giuseppe
2016-07-01
To analyse the clinical outcomes of 26 children treated surgically for displaced proximal humerus fracture. From January 2008 to December 2012, 26 children/adolescents (14 boys, 12 girls) were treated surgically for displaced fractures at the proximal extremity of the humerus. Ten were grade III and 16 were grade IV according to the Neer-Horowitz classification with a mean age of 12.8 ± 4.2 years. Twenty young patients were surgically treated with a closed reduction and direct percutaneous pinning; six required an open approach. To obtain a proper analysis, we compared the Costant scores with the contralateral shoulder (Δ Costant). The mean follow-up period was 34 months (range 10-55). Two grade IV patients showed a loss in the reduction after percutaneous treatment. This required open surgery with a plate and screws. On average, the treated fractures healed at 40 days. The mean Δ Costant score was 8.43 (range 2-22). There was a statistically significant improvement in the mean Δ Costant score in grade III patients. In grade IV patients, there was a significant improvement in the mean Δ Costant score in those treated with open surgery versus mini-invasive surgery. Our study shows excellent results with percutaneous k-wires. This closed surgery had success in these patients, and the excellent outcomes noted here lead us to prefer the mini-invasive surgical approach in NH grade III fractures. In grade IV, the best results were noted in patients treated with open surgery. We suggest an open approach for these patients. III.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsay, B.A.; Langlade, V.; Carreau, P.J.
1993-04-01
PHAs, biodegradable thermoplastics, are a promising option to synthetic resins such as polyethylene, in combination with starch, to produce biodegradable plastics. This paper describes the mechanical properties and biodegradability of blends of wheat starch and P(HB-co-HV). The results indicate that the addition of starch to P(HB-co-HV) not only reduces the cost but also leads to a completely biodegradable material whose degradation can be tailored by adjusting the starch/PHA ratio. 15 refs., 3 figs., 1 tab.
Screening of Biodegradable Function of Indigenous Ligno-degrading Mushroom Using Dyes
Cho, Soo-Muk; Seok, Soon-Ja; Kong, Won-Sik; Kim, Gyu-Hyun; Sung, Jae-Mo
2009-01-01
The process of biodegradation in lingo-cellulosic materials is critically relevant to biospheric carbon. The study of this natural process has largely involved laboratory investigations, focused primarily on the biodegradation and recycling of agricultural by-products, generally using basidiomycetes species. In order to collect super white rot fungi and evaluate its ability to degrade lingo-cellulosic material, 35 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye. In the laccase enzymatic analysis chemical test, 33 white rot fungi and 2 brown rot fungi were identified. The degradation ability of polycyclic aromatic hydrocarbons (PAHs) according to the utilized environmental conditions was higher in the mushrooms grown in dead trees and fallen leaves than in the mushrooms grown in humus soil and livestock manure. Using Poly-R 478 dye to assess the PAH-degradation activity of the identified strains, four strains, including Agrocybe pediades, were selected. The activities of laccase, MnP, and Lip of the four strains with PAH-degrading ability were highest in Pleurotus incarnates. 87 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye on solid media. Using Poly-R 478 dye to assess the PAHdegrading activity of the identified strains, it was determined that MKACC 51632 and 52492 strains evidenced superior activity in static and shaken liquid cultures. Subsequent screening on plates containing the polymeric dye poly R-478, the decolorization of which is correlated with lignin degradation, resulted in the selection of a strain of Coriolus versicolor, MKACC52492, for further study, primarily due to its rapid growth rate and profound ability to decolorize poly R-478 on solid media. Considering our findings using Poly-R 478 dye to evaluate the PAH-degrading activity of the identified strains, Coriolus versicolor, MKACC 52492 was selected as a favorable strain. Coriolus versicolor, which was collected from Mt. Yeogi in Suwon, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). PMID:23983508
Mini-marathon groups: psychological "first aid" following disasters.
Terr, L C
1992-01-01
Large group counseling sessions for soldiers following battle have been commonly used since World War II. The author conceptualizes and demonstrates how these mini-marathon sessions can be adapted to support all ages and types of civilians involved in disasters. Mini-marathons take about 3 hours and are divided into three sections: story sharing, symptom sharing, and suggestions for self-help, including sharing tales of heroism and survival. After an initial mini-marathon session, a second session may be held emphasizing creativity. The author also describes how mini-marathons can be adapted for therapists who will lead their own sessions.
Current approaches for the assessment of in situ biodegradation.
Bombach, Petra; Richnow, Hans H; Kästner, Matthias; Fischer, Anko
2010-04-01
Considering the high costs and technical difficulties associated with conventional remediation strategies, in situ biodegradation has become a promising approach for cleaning up contaminated aquifers. To verify if in situ biodegradation of organic contaminants is taking place at a contaminated site and to determine if these processes are efficient enough to replace conventional cleanup technologies, a comprehensive characterization of site-specific biodegradation processes is essential. In recent years, several strategies including geochemical analyses, microbial and molecular methods, tracer tests, metabolite analysis, compound-specific isotope analysis, and in situ microcosms have been developed to investigate the relevance of biodegradation processes for cleaning up contaminated aquifers. In this review, we outline current approaches for the assessment of in situ biodegradation and discuss their potential and limitations. We also discuss the benefits of research strategies combining complementary methods to gain a more comprehensive understanding of the complex hydrogeological and microbial interactions governing contaminant biodegradation in the field.
Recent developments in broadly applicable structure-biodegradability relationships.
Jaworska, Joanna S; Boethling, Robert S; Howard, Philip H
2003-08-01
Biodegradation is one of the most important processes influencing concentration of a chemical substance after its release to the environment. It is the main process for removal of many chemicals from the environment and therefore is an important factor in risk assessments. This article reviews available methods and models for predicting biodegradability of organic chemicals from structure. The first section of the article briefly discusses current needs for biodegradability estimation methods related to new and existing chemicals and in the context of multimedia exposure models. Following sections include biodegradation test methods and endpoints used in modeling, with special attention given to the Japanese Ministry of International Trade and Industry test; a primer on modeling, describing the various approaches that have been used in the structure/biodegradability relationship work, and contrasting statistical and mechanistic approaches; and recent developments in structure/biodegradability relationships, divided into group contribution, chemometric, and artificial intelligence approaches.
Tran, Ngoc Han; Urase, Taro; Ngo, Huu Hao; Hu, Jiangyong; Ong, Say Leong
2013-10-01
Many efforts have been made to understand the biodegradation of emerging trace organic contaminants (EOCs) in the natural and engineered systems. This review summarizes the current knowledge on the biodegradation of EOCs while having in-depth discussion on metabolism and cometabolism of EOCs. Biodegradation of EOCs is mainly attributed to cometabolic activities of both heterotrophic and autotrophic microorganisms. Metabolism of EOCs can only be observed by heterotrophic microbes. Autotrophic ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaeal (AOA) cometabolize a variety of EOCs via the non-specific enzymes, such as ammonia monooxygenase (AMO). Higher biodegradation of EOCs is often noted under nitrification at high ammonia loading rate. The presence of a growth substrate promotes cometabolic biodegradation of EOCs. Potential strategies for enhancing the biodegradation of EOCs were also proposed in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gräber, Martin; Andersson, Mats; Rundbäck, Fabian; Pozzo, Tania; Karlsson, Eva Nordberg; Adlercreutz, Patrick
2010-01-15
The present work describes the development of a novel direct screening method, assayed in 96-well format, for evaluation of enzymatic alkyl glycoside production in a hexanol-water two-phase system. Alkyl glycosides are surfactants with a range of applications and with good biodegradability and low toxicity. Enzymatic synthesis makes it possible to prepare beta-d-glucopyranosides with high purity. In the developed screening assay, hexyl-beta-d-glucopyranoside was chosen as a model product to be synthesised by reversed hydrolysis in a water-hexanol two-phase system. In a first step the model product is produced by glucosidases expressed in E. coli cells in 96-deep-well plates. After phase separation, the hexyl-beta-d-glucopyranoside in the organic phase is degraded enzymatically and the released glucose detected spectrophotometrically at 405nm utilizing peroxidase/glucose oxidase, and the reagent 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS). The aqueous phase is used to monitor hydrolysis of p-NPG at 405nm, allowing use of a ratio of the two assays to compensate for expression differences. The complete method was used for comparison of two different beta-glucosidases, classified under glycoside hydrolase family 1 and 3, respectively, showing a significant difference in their ability to synthesise hexyl-beta-d-glucopyranoside by reversed hydrolysis.
The biodegradation of organic contaminants in the subsurface has become a major focus of attention, in part, due to the tremendous interest in applying in situ biodegradation and natural attenuation approaches for site remediation. The biodegradation and trans...
40 CFR 435.15 - Standards of performance for new sources (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not exceed 1.0...) and (uu). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
Code of Federal Regulations, 2011 CFR
2011-07-01
... sediment toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not... Water Docket, 1200 Pennsylvania Ave., NW., Washington, DC 20460. 7 Biodegradation rate ratio...), biodegradation rate ratio (Footnote 7), PAH, mercury, and cadmium stock limitations (C16-C18 internal olefin...
Biodegradation of Organofluorine Compounds
2016-02-01
BIODEGRADATION OF ORGANOFLUORINE COMPOUNDS ECBC-TR-1347 Melissa M. Dixon Steve P. Harvey RESEARCH AND...2011 4. TITLE AND SUBTITLE Biodegradation of Organofluorine Compounds 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...compounds as sole carbon sources. This work will be continued in future studies. 15. SUBJECT TERMS Organofluorine Biodegradation Defluorination
40 CFR 435.15 - Standards of performance for new sources (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not exceed 1.0...) and (uu). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
40 CFR 435.15 - Standards of performance for new sources (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not exceed 1.0...) and (uu). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by pr...
Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B
2011-02-01
Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.
Siiki, Antti; Sand, Juhani; Laukkarinen, Johanna
2018-05-18
Biodegradable self-expanding stents are an emerging alternative to standard biliary stents as the development of endoscopic insertion devices advances. The aim was to systematically review the existing literature on biodegradable biliary stents. In-vivo studies on the use of biodegradable stents in the biliary duct were systematically reviewed from 1990 to 2017. Despite extensive research on the biocompatibility of stents, the experience so far on their clinical use is limited. A few favorable reports have recently been presented on endoscopically and percutaneously inserted self-expanding biodegradable polydioxanone stents in benign biliary strictures. Another potential indication appears to be postcholecystectomy leak of the cystic duct. The main benefit of biodegradable stents is that stent removal can be avoided. The biocompatibility of the current biodegradable stent materials, most prominently polydioxanone, is well documented. In the few studies currently available, biodegradable stents are reported to be feasible and safe, also in humans. The initial results of the endoscopic use of these stents in benign biliary stricture management and for treating postcholecystectomy bile leaks are promising. Further controlled studies on long-term clinical results and cost-effectiveness are needed.
Gong, Haibo; Wang, Kun; Strich, Randy; Zhou, Jack G.
2017-01-01
Zinc–Magnesium (Zn–Mg) alloy as a novel biodegradable metal holds great potential in biodegradable implant applications as it is more corrosion resistant than Magnesium (Mg). However, the mechanical properties, biodegradation uniformity, and cytotoxicity of Zn–Mg alloy remained as concerns. In this study, hot extrusion process was applied to Zn–1 wt % Mg (Zn–1Mg) to refine its microstructure. Effects of hot extrusion on biodegradation behavior and mechanical properties of Zn–1Mg were investigated in comparison with Mg rare earth element alloy WE43. Metallurgical analysis revealed significant grain size reduction, and immersion test found that corrosion rates of WE43 and Zn–1Mg were reduced by 35% and 57%, respectively after extrusion. Moreover, hot extrusion resulted in a much more uniform biodegradation in extruded Zn–1Mg alloy and WE43. In vitro cytotoxicity test results indicated that Zn–1Mg alloy was biocompatible. Therefore, hot extruded Zn–1Mg with homogenous microstructure, uniform as well as slow degradation, improved mechanical properties, and good biocompatibility was believed to be an excellent candidate material for load-bearing biodegradable implant application. PMID:25581552
Huesemann, Michael H; Hausmann, Tom S; Fortman, Tim J
2004-08-01
In order to determine whether bioavailability limits the biodegradability of petroleum hydrocarbons in aged soils, both the biodegradation and abiotic desorption rates of PAHs and n-alkanes were measured at various time points in six different aged soils undergoing slurry bioremediation treatment. Alkane biodegradation rates were always much greater than the respective desorption rates, indicating that these saturated hydrocarbons apparently do not need to be dissolved into the aqueous phase prior to metabolism by soil microorganisms. The biodegradation of PAHs was generally not mass-transfer rate limited during the initial phase, while it often became so at the end of the treatment period when biodegradation rates equaled abiotic desorption rates. However, in all cases where PAH biodegradation was not observed or PAH removal temporarily stalled, bioavailability limitations were not deemed responsible for this recalcitrance since these PAHs desorbed rapidly from the soil into the aqueous phase. Consequently, aged PAHs that are often thought to be recalcitrant due to bioavailability limitations may not be so and therefore may pose a greater risk to environmental receptors than previously thought.
Formulation of microbial cocktails for BTEX biodegradation.
Nagarajan, Karthiga; Loh, Kai-Chee
2015-02-01
BTEX biodegradation by a mixed community of micro-organisms offers a promising approach in terms of cost-effectiveness and elimination of secondary pollution. Two bacterial strains, Pseudomonas putida F1 and Pseudomonas stutzeri OX1 were chosen to formulate synthetic consortia based on their ability to biodegrade the mono-aromatic compounds. Benzene and toluene supported the growth of both the strains; while ethyl benzene and o-xylene were only utilized as growth substrates by P. putida F1 and P. stutzeri OX1, respectively. In a mixed substrate system, P. putida F1 exhibited incomplete removal of o-xylene while P. stutzeri OX1 displayed cometabolic removal of ethyl benzene with dark coloration of the growth medium. The biodegradation potential of the two Pseudomonas species complemented each other and offered opportunities to explore their performance as a co-culture for enhanced BTEX biodegradation. Several microbial formulations were concocted and their BTEX biodegradation characteristics were evaluated. Mixed culture biodegradation ascertained the advantages of the co-culture over the individual Pseudomonas species. This study also emphasized the significance of inoculum density and species proportion while concocting preselected micro-organisms for enhanced BTEX biodegradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.
In order to determine whether bioavailability limits the biodegradability of petroleum hydrocarbons in aged soils, both the biodegradation and abiotic desorption rates of PAHs and n-alkanes were measured at various time points in six different aged soils undergoing slurry bioremediation treatment. Alkane biodegradation rates were always much greater than the respective desorption rates, indicating that these saturated hydrocarbons do not need to be transferred into the aqueous phase prior to metabolism by soil microorganisms. The biodegradation of PAHs was generally not mass-transfer rate limited during the initial phase, while it often became so at the end of the treatment periodmore » when biodegradation rates equaled abiotic desorption rates. However, in all cases where PAH biodegradation was not observed or PAH removal temporarily stalled, bioavailability limitations were not deemed responsible for this recalcitrance since these PAHs desorbed rapidly from the soil into the aqueous phase. Consequently, aged PAHs that are often thought to be recalcitrant due to bioavailability limitations may not be so and therefore may pose a greater risk to environmental receptors than previously thought.« less
Nzila, Alexis
2018-05-07
The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface
Kristensen, Andreas H.; Henriksen, Kaj; Mortensen, Lars; Scow, Kate M.; Moldrup, Per
2011-01-01
Naturally occurring biodegradation of petroleum hydrocarbons in the vadose zone depends on the physical soil environment influencing field-scale gas exchange and pore-scale microbial metabolism. In this study, we evaluated the effect of soil physical heterogeneity on biodegradation of petroleum vapors in a 16-m-deep, layered vadose zone. Soil slurry experiments (soil/water ratio 10:30 w/w, 25°C) on benzene biodegradation under aerobic and well-mixed conditions indicated that the biodegradation potential in different textured soil samples was related to soil type rather than depth, in the order: sandy loam > fine sand > limestone. Similarly, O2 consumption rates during in situ respiration tests performed at the site were higher in the sandy loam than in the fine sand, although the difference was less significant than in the slurries. Laboratory and field data generally agreed well and suggested a significant potential for aerobic biodegradation, even with nutrient-poor and deep subsurface conditions. In slurries of the sandy loam, the biodegradation potential declined with increasing in situ water saturation (i.e., decreasing air-filled porosity in the field). This showed a relation between antecedent undisturbed field conditions and the slurry biodegradation potential, and suggested airfilled porosity to be a key factor for the intrinsic biodegradation potential in the field. PMID:21617737
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.
It is commonly assumed that mass-transfer limitations are the cause for slow and incomplete biodegradation of PAHs in aged soils. In order to test this hypothesis, the biodegradation rate and the abiotic release rate were measured and compared for selected PAHs in three different soils. It was found that PAH biodegradation was not mass-transfer limited during slurry bioremediation of an aged loamy soil. By contrast, PAH biodegradation rates were much larger than abiotic release rates in kaolinite clay indicating that sorbed-phase PAHs can apparently be biodegraded directly from mineral surfaces without prior desorption or dissolution into the aqueous phase. Amore » comparison of PAH biodegradation rates and abiotic release rates at termination of the slurry bioremediation treatment revealed that abiotic release rates are much larger than the respective biodegradation rates. In addition, it was found that the number of hydrocarbon degraders decreased by four orders of magnitude during the bioremediation treatment. It can therefore be concluded that the slow and incomplete biodegradation of PAHs is not caused by mass-transfer limitations but rather by microbial factors. Consequently, the residual PAHs that remain after extensive bioremediation treatment are still bioavailable and for that reason could pose a greater risk to environmental receptors than previously thought.« less
Jan, Kulsum; Riar, C S; Saxena, D C
2015-12-01
Different agro-industrial wastes were mixed with different plasticizers and extruded to form the pellets to be used further for development of biodegradable molded pots. Bulk density and macro-porosity are the important engineering properties used to determine the functional characteristics of the biodegradable pellets viz., expansion volume, water solubility, product colour, flowability and compactness. Significant differences in the functional properties of pellets with varying bulk densities (loose and tapped) and macro-porosities (loose, tapped) were observed. The observed mean bulk density of biodegradable pellets made from different formulations ranged between 0.213 and 0.560 g/ml for loose fill conditions and 0.248 to 0.604 g/ml for tapped fill conditions. Biodegradable pellets bear a good compaction for both loose and tapped fill methods. The mean macro-porosity of biodegradable pellets ranged between 1.19 and 54.48 % for loose fill condition and 0.29 to 53.35 % for tapped fill condition. Hausner ratio (HR) for biodegradable pellets varied from 1.026 to 1.328, indicating a good flowability of biodegradable pellets. Pearson's correlation between engineering properties and functional properties of biodegradable pellets revealed that from engineering properties functional properties can be predicted.
Kayashima, Takakazu; Taruki, Masanori; Katagiri, Kazuomi; Nabeoka, Ryosuke; Yoshida, Tomohiko; Tsuji, Toshiaki
2014-02-01
The Organisation for Economic Co-operatoin and development (OECD) Guidelines for the Testing of Chemicals list 7 types of tests for determining the ready biodegradability of chemical compounds (301A-F and 310). The present study compares the biodegradation performance of test guideline 301C, which is applied in Japan's Chemical Substances Control Law, with the performance of the other 6 ready biodegradability tests (RBTs) listed in the guidelines. Test guideline 301C specifies use of activated sludge precultured with synthetic sewage containing glucose and peptone (301C sludge) as a test inoculum; in the other RBTs, however, activated sludge from wastewater treatment plants (WWTP sludge) is frequently employed. Analysis based on percentage of biodegradation and pass levels revealed that the biodegradation intensity of test guideline 301C is relatively weak compared with the intensities of RBTs using WWTP sludge, and the following chemical compounds are probably not biodegraded under test guideline 301C conditions: phosphorus compounds; secondary, tertiary, and quaternary amines; and branched quaternary carbon compounds. The relatively weak biodegradation intensity of test guideline 301C may be related to the markedly different activities of the 301C and WWTP sludges. These findings will be valuable for evaluating RBT data in relation to Japan's Chemical Substances Control Law. © 2013 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabak, H.H.; Desai, S.; Govind, R.
1990-01-01
Electrolytic respirometry is attaining prominence in biodegradation studies and is becoming one of the more suitable experimental methods for measuring the biodegradability and the kinetics of biodegradation of toxic organic compounds by the sewage, sludge, and soil microbiota and for determining substrate inhibitory effects to microorganisms in wastewater treatment systems. The purpose of the study was to obtain information on biological treatability of the benzene, phenol, phthalate, ketone organics and of the Superfund CERCLA organics bearing wastes in wastewater treatment systems which will support the development of an EPA technical guidance document on the discharge of the above organics tomore » POTWs. The paper discusses the experimental design and procedural steps for the respirometric biodegradation and toxicity testing approach for individual organics or specific industrial wastes at different concentration levels in a mineral salts medium. A developed multi-level protocol is presented for determination of the biodegradability, microbial acclimation to toxic substrates and first order kinetic parameters of biodegradation for estimation of the Monod kinetic parameter of toxic organic compounds, in order to correlate the extent and rate of biodegradation with a predictive model based on chemical properties and molecular structure of these compounds. Respirometric biodegradation/inhibition and biokinetic data are provided for representative RCRA alkyl benzene and ketone organics.« less
Papazi, Aikaterini; Assimakopoulos, Konstantinos; Kotzabasis, Kiriakos
2012-01-01
Cultures from the unicellular green alga Scenedesmus obliquus biodegrade the toxic p-cresol (4-methylphenol) and use it as alternative carbon/energy source. The biodegradation procedure of p-cresol seems to be a two-step process. HPLC analyses indicate that the split of the methyl group (first step) that is possibly converted to methanol (increased methanol concentration in the growth medium), leading, according to our previous work, to changes in the molecular structure and function of the photosynthetic apparatus and therefore to microalgal biomass increase. The second step is the fission of the intermediately produced phenol. A higher p-cresol concentration results in a higher p-cresol biodegradation rate and a lower total p-cresol biodegradability. The first biodegradation step seems to be the most decisive for the effectiveness of the process, because methanol offers energy for the further biodegradation reactions. The absence of LHCII from the Scenedesmus mutant wt-lhc stopped the methanol effect and significantly reduced the p-cresol biodegradation (only 9%). The present contribution deals with an energy distribution between microalgal growth and p-cresol biodegradation, activated by p-cresol concentration. The simultaneous biomass increase with the detoxification of a toxic phenolic compound (p-cresol) could be a significant biotechnological aspect for further applications. PMID:23251641
The second green revolution? Production of plant-based biodegradable plastics.
Mooney, Brian P
2009-03-01
Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.
He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying
2016-07-01
Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.
Assessment of toxicity and biodegradability on activated sludge of priority and emerging pollutants.
Tobajas, Montserrat; Verdugo, Verónica; Polo, Alicia M; Rodriguez, Juan J; Mohedano, Angel F
2016-01-01
Several methods for evaluating the toxicity and biodegradability of hazardous pollutants (chlorinated compounds, chemical additives and pharmaceuticals) have been studied in this work. Different bioassays using representative bacteria of marine and terrestrial ecosystems such as Vibrio fischeri and Pseudomonas putida have been used to assess the ecotoxicity. Activated sludge was used to analyse the effect of those pollutants in a biological reactor of a sewage treatment plant (STP). The results demonstrate that none of the compounds is toxic to activated sludge, except ofloxacin to P. putida. The additives tested can be considered moderately toxic according to the more sensitive V. fischeri assays, whereas the EC50 values of the pharmaceuticals depend on the specific microorganism used in each test. Regarding the biodegradability, respirometric measurements were carried out for fast biodegradability assessment and the Zahn-Wellens test for inherent biodegradability. The evolution of the specific oxygen uptake rate (SOUR) showed that only diethyl phthalate was easily biodegradable and acetylsalicylic acid was partially biodegradable (98% and 65% degradation, respectively). The persistence of dichloromethane, ofloxacin and hidrochlorothiazide was confirmed along the 28 days of the Zahn-Wellens test whereas 1,1,1-trichloroethane showed inherent biodegradability (74% removal). Most of the chlorinated compounds, pharmaceuticals, bisphenol A and ethylenediaminetetraacetic acid were partially degraded in 28 d with total organic carbon (TOC) reduction ranging from 21% to 51%. Sulphamethoxazole showed certain biodegradation (50% removal) with TOC decrease around 31%, which indicates the formation of non-biodegradable by-products.
Adamowska, Sylwia; Sylwia, Adamowska; Adamowski, Tomasz; Tomasz, Adamowski; Frydecka, Dorota; Dorota, Frydecka; Kiejna, Andrzej; Andrzej, Kiejna
2014-10-01
Since over forty years structuralized interviews for clinical and epidemiological research in child and adolescent psychiatry are being developed that should increase validity and reliability of diagnoses according to classification systems (DSM and ICD). The aim of the study is to assess the validity of the Polish version of MINI-KID (Mini International Neuropsychiatric Interview for Children and Adolescents) in comparison to clinical diagnosis made by a specialist in the field of child and adolescent psychiatry. There were 140 patients included in the study (93 boys, 66.4%, mean age 11.8±3.0 and 47 girls 33.5%, mean age 14.0±2.9). All the patients were diagnosed by the specialist in the field of child and adolescent psychiatry according to ICD-10 criteria and by the independent interviewer with the Polish version of MINI-KID (version 2.0, 2001). There was higher agreement between clinical diagnoses and diagnoses based on MINI-KID interview with respect to eating disorders and externalizing disorders (κ 0.43-0.56) and lower in internalizing disorders (κ 0.13-0.45). In the clinical interview, there was smaller number of diagnostic categories (maximum 3 diagnoses per one patient) in comparison to MINI-KID (maximum 10 diagnoses per one patient), and the smaller percentage of patients with one diagnosis (65,7%) in comparison to MINI-KID interview (72%). Our study has shown satisfactory validity parameters of MINI-KID questionnaire, promoting its use for clinical and epidemiological settings. The Mini International Neuropsychiatry Interview for Children and Adolescent (MINI-KID) is the first structuralized diagnostic interview for assessing mental status in children and adolescents, which has been translated into Polish language. Our validation study demonstrated satisfactory psychometric properties of the questionnaire, enabling its use in clinical practice and in research projects. Copyright © 2014 Elsevier Inc. All rights reserved.
Satisfaction, function and repair integrity after arthroscopic versus mini-open rotator cuff repair.
Barnes, L A Fink; Kim, H M; Caldwell, J-M; Buza, J; Ahmad, C S; Bigliani, L U; Levine, W N
2017-02-01
Advances in arthroscopic techniques for rotator cuff repair have made the mini-open approach less popular. However, the mini-open approach remains an important technique for repair for many surgeons. The aims of this study were to compare the integrity of the repair, the function of the shoulder and satisfaction post-operatively using these two techniques in patients aged > 50 years. We identified 22 patients treated with mini-open and 128 patients treated with arthroscopic rotator cuff repair of July 2007 and June 2011. The mean follow-up was two years (1 to 5). Outcome was assessed using the American Shoulder and Elbow Surgeons (ASES) and Simple Shoulder Test (SST) scores, and satisfaction. The integrity of the repair was assessed using ultrasonography. A power analysis ensured sufficient enrolment. There was no statistically significant difference between the age, function, satisfaction, or pain scores (p > 0.05) of the two groups. The integrity of the repair and the mean SST scores were significantly better in the mini-open group (91% of mini-open repairs were intact versus 60% of arthroscopic repairs, p = 0.023; mean SST score 10.9 (standard deviation (sd) 1.3) in the mini-open group; 8.9 (sd 3.5) in arthroscopic group; p = 0.003). The ASES scores were also higher in the mini-open group (mean ASES score 91.0 (sd 10.5) in mini-open group; mean 82.70 (sd 19.8) in the arthroscopic group; p = 0.048). The integrity of the repair and function of the shoulder were better after a mini-open repair than after arthroscopic repair of a rotator cuff tear in these patients. The functional difference did not translate into a difference in satisfaction. Mini-open rotator cuff repair remains a useful technique despite advances in arthroscopy. Cite this article: Bone Joint J 2017;99-B:245-9. ©2017 The British Editorial Society of Bone & Joint Surgery.
Mei, Cheng-Fang; Liu, Yan-Zhen; Long, Wei-Nian; Sun, Guo-Ping; Zeng, Guo-Qu; Xu, Mei-Ying; Luan, Tian-Gang
2015-01-01
4,4'-Diaminodiphenylmethane (MDA) is a widely used compound in industries. Studies on the biodegradability of MDA are necessary for environmental hazard identification and risk assessment. Previous studies have suggested that MDA was not readily biodegradable. In the present study, three batches of biodegradation tests (OECD 301A, B, D and F tests) were performed on MDA in June, August and December of 2012. MDA was found to be readily biodegradable and produced colored intermediates in the 301A, B and F test systems. MDA biodegradation measurements were consistent among the three batches of tests. Differences in the extent of biodegradation determined in different methods originated from different test conditions and assessment endpoints. The 301D test has stringent test conditions and is usually performed on chemicals that are toxic to microorganisms, so the test results obtained from 301D tests are less meaningful for evaluating the biodegradability of MDA. The low MDA biodegradation measurements in the 301B tests compared to the 301A and F tests were due to the assessment method, which did not account for MDA incorporation into biomass in its calculation of CO2 formation rate. The differences in the biodegradation rates, as measured by the different OECD 301 test systems, could also be related to the structure and properties of the chemical. For test substances that can be assessed by all OECD 301 test methods, the highest biodegradation values may be obtained from the 301A and F test methods. This study provides new information to assess the environmental fate in the risk assessment of MDA. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
König, Sara; Worrich, Anja; Wick, Lukas Y.; Miltner, Anja; Kästner, Matthias; Thullner, Martin; Centler, Florian; Banitz, Thomas; Frank, Karin
2016-04-01
Biodegradation of organic compounds in soil is an important microbial ecosystem service. Soil ecosystems are constantly exposed to disturbances of different spatial configurations and frequencies, challenging their ability to recover the biodegradation function. Thus, the response to these disturbances is crucial for the soil systems' biodegradation performance. The influence of spatial aspects of the disturbance regimes on long-term biodegradation dynamics under periodic disturbances has not been examined, yet. We applied a numerical simulation model considering bacterial growth, degradation, and dispersal to analyze the spatiotemporal biodegradation dynamics under disturbances occuring with different frequencies and with different spatial configurations. We found biodegradation performance decreasing in response to periodic disturbances but on average approaching a new quasi steady state. This mean performance of the disturbed systems increases with both, the interval length between disturbance events and the fragmentation of the spatial disturbance patterns. A detailed spatiotemporal analysis of degradation activity reveals that under highly fragmented disturbance patterns, biodegradation still takes place in the entire disturbed area. For moderately fragmented disturbance patterns, parts of the disturbed area become completely inactive. However, areas with high degradation activity emerge at the interface between disturbed and undisturbed areas, allowing the systems to maintain a relatively high degradation performance. Further decreasing the disturbance patterns' fragmentation, fewer interfaces between disturbed and undisturbed area and, thus, fewer active habitats occur, which reduces biodegradation performances. In additional simulations, we found that bacterial dispersal networks, as for example provided by fungal hyphae, usually increase the areas of high degradation activity and, thus, the biodegradation performance in presence of periodic disturbances. However, for some specific regimes with highly fragmented disturbance patterns, dispersal networks can in turn decrease the biodegradation performance. Our results show that spatial aspects of the periodic disturbance regime influence the biodegradation dynamics, indicating the relevance of spatial processes for functional stability. The level of connectivity between disturbed and undisturbed areas is crucial for the local and global dynamics of the ecosystem service biodegradation. Networks enhancing bacterial dispersal may often, but not always, increase the functional stability.
Krueger, C.J.; Radakovich, K.M.; Sawyer, T.E.; Barber, L.B.; Smith, R.L.; Field, J.A.
1998-01-01
Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2-and 3- phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2- and 3-phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.
Madhavan, Sangeetha; Bishnoi, Alka
2017-12-01
The Mini-BESTest is a recently developed balance assessment tool that incorporates challenging dynamic balance tasks. Few studies have compared the psychometric properties of the Mini-BESTest to the commonly used Berg Balance Scale (BBS). However, the utility of these scales in relationship to post stroke walking speeds has not been explored. The purpose of this study was to compare the sensitivity and specificity of the Mini-BESTest and BBS to evaluate walking speeds in individuals with stroke. A retrospective exploratory design. Forty-one individuals with chronic stroke were evaluated with the Mini-BESTest, BBS, and 10-meter self-selected walk test (10MWT). Based on their self-selected gait speeds (below or above 0.8 m/s), participants were classified as slow and fast walkers. Significant linear correlations were observed between the Mini-BESTest vs. BBS (r = 0.72, p ≤ 0.001), Mini-BESTest vs. 10MWT (r = 0.58, p ≤ 0.001), and BBS vs. 10MWT (r = 0.30, p = 0.05). Independent t-tests comparing the balance scores for the slow and fast walkers revealed significant group differences for the Mini-BESTest (p = 0.003), but not for the BBS (p = 0.09). The Mini-BESTest demonstrated higher sensitivity (93%) and specificity (64%) compared to the BBS (sensitivity 81%, specificity 56%) for discriminating participants into slow and fast walkers. The Mini-BESTest has a greater discriminative ability than the BBS to categorize individuals with stroke into slow and fast walkers.
Madhavan, Sangeetha; Bishnoi, Alka
2017-01-01
Background The Mini-BESTest is a recently developed balance assessment tool that incorporates challenging dynamic balance tasks. Few studies have compared the psychometric properties of the Mini-BESTest to the commonly used Berg Balance Scale (BBS). However, the utility of these scales in relationship to post stroke walking speeds has not been explored. Objectives The purpose of this study was to compare the sensitivity and specificity of the Mini-BESTest and BBS to evaluate walking speeds in individuals with stroke. Design A retrospective exploratory design. Methods Forty-one individuals with chronic stroke were evaluated with the Mini-BESTest, BBS, and 10-meter self-selected walk test (10MWT). Based on their self-selected gait speeds (below or above 0.8 m/s), participants were classified as slow and fast walkers. Results Significant linear correlations were observed between the Mini-BESTest vs. BBS (r = 0.72, p ≤ 0.001), Mini-BESTest vs. 10MWT (r = 0.58, p ≤ 0.001), and BBS vs. 10MWT (r = 0.30, p = 0.05). Independent t-tests comparing the balance scores for the slow and fast walkers revealed significant group differences for the Mini-BESTest (p =0.003), but not for the BBS (p = 0.09). The Mini-BESTest demonstrated higher sensitivity (93%) and specificity (64%) compared to the BBS (sensitivity 81%, specificity 56%) for discriminating participants into slow and fast walkers. No significant results were observed with the FMLE-M scores. Conclusions The Mini-BESTest has a greater discriminative ability than the BBS to categorize individuals with stroke into slow and fast walkers. PMID:28826325
Ranta, Klaus; Kaltiala-Heino, Riittakerttu; Rantanen, Päivi; Marttunen, Mauri
2012-07-01
Onset of social phobia (SP) typically occurs in adolescence. Short screening instruments for its assessment are needed for use in primary health and school settings. The 3-item Mini-Social Phobia Inventory (SPIN) has demonstrated effectiveness in screening for generalized SP (GSP) in adults. This study examined the psychometrics of the Mini-SPIN in an adolescent general population sample. Three hundred fifty adolescents aged 12 to 17 years were clinically interviewed using the Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version for identification of SP and other Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Axis I disorders, blind to their Mini-SPIN status. Associations between SP; subclinical SP; other anxiety, depressive, and disruptive disorders; and Mini-SPIN scores were examined, and diagnostic efficiency statistics were calculated. The association between Mini-SPIN scores and the generalized subtype of SP was also examined. As in adults, the Mini-SPIN items differentiated subjects with SP from those without. A score of 6 points or greater was found optimal in predicting SP with a sensitivity of 86%, specificity of 84%, and positive and negative predictive values of 26% and 99%. The Mini-SPIN also possessed discriminative validity, as scores were higher for adolescents with SP than they were for those with depressive, disruptive, and other anxiety disorders. The Mini-SPIN was also able to differentiate adolescents with GSP from the rest of the sample. The Mini-SPIN has good psychometrics for screening SP in adolescents from general population and may have value in screening for GSP. Copyright © 2012 Elsevier Inc. All rights reserved.
Akbulut, Fatih; Kucuktopcu, Onur; Kandemir, Emre; Sonmezay, Erkan; Simsek, Abdulmuttalip; Ozgor, Faruk; Binbay, Murat; Muslumanoglu, Ahmet Yaser; Gurbuz, Gokhan
2016-01-01
To compare the outcomes of flexible ureterorenoscopy (F-URS) and mini-percutaneous nephrolithotomy (mini-PNL) in the treatment of lower calyceal stones smaller than 2 cm. Patients who underwent F-URS and mini-PNL for the treatment of lower calyceal stones smaller than 2 cm between March 2009 and December 2014 were retrospectively evaluated. Ninety-four patients were divided into two groups by treatment modality: F-URS (Group 1: 63 patients) and mini-PNL (Group 2: 31 patients). All patients were preoperatively diagnosed with intravenous pyelography or computed tomography. Success rates for F-URS and mini-PNL at postoperative first month were 85.7% and 90.3%, respectively. Operation time, fluoroscopy time, and hospitalization time for F-URS and mini-PNL patients were 44.40 min, 2.9 min, 22.4 h, and 91.9 min, 6.4 min, and 63.8 h, respectively. All three parameters were significantly shorter among the F-URS group (p < 0.001). Postoperative hemoglobin drop was significantly lower in F-URS group compared to mini-PNL group (0.39 mg/dL vs. 1.15 mg/dL, p = 0.001). A comparison of complications according to the Clavien classification demonstrated significant differences between the groups (p = 0.001). More patients in the F-URS groups require antibiotics due to urinary tract infection, and more patients in the mini-PNL group required ureteral double J catheter insertion under general anesthesia. Although both F-URS and mini-PNL have similar success rates for the treatment of lower calyceal stones, F-URS appears to be more favorable due to shorter fluoroscopy and hospitalization times; and lower hemoglobin drops. Multicenter and studies using higher patient volumes are needed to confirm these findings.
Hedayati, Zohreh; Shomali, Mehrdad
2016-12-01
Nowadays, mini screws are used in orthodontic tooth movement to obtain maximum or absolute anchorage. They have gained popularity among orthodontists for en masse retraction of anterior teeth after first premolar extraction in maximum anchorage cases. The purpose of this study was to determine the type of anterior tooth movement during the time when force was applied from different mini screw placements to the anterior power arm with various heights. A finite element method was used for modeling maxillary teeth and bone structure. Brackets, wire, and hooks were also designed for modeling. Two appropriate positions for mini screw in the mesial and distal of the second premolar were designed as fixed nodes. Forces were applied from the mini screw to four different levels of anterior hook height: 0, 3, 6, and 9 mm. Initial tooth movement in eight different conditions was analyzed and calculated with ANSYS software. Rotation of anterior dentition was decreased with a longer anterior power arm and the mesial placement of the mini screw. Bodily movements occurred with the 9-mm height of the power arm in both mini screw positions. Intrusion or extrusion of the anterior teeth segment depended on the level of the mini screw and the edge of the power arm on the Z axis. According to the findings of this study, the best control in the sagittal plane during anterior en masse retraction was achieved by mesial placement of the mini screw and the 9-mm height of the anterior power arm. Where control in the vertical plane was concerned, distal placement of the mini screw with the 6-mm power arm height had minimum adverse effect on anterior dentition.
Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Meg
This review provides an overview of strategies and currently available technologies used for demandside management (DSM) on mini-grids throughout the world. For the purposes of this review, mini-grids are defined as village-scale electricity distribution systems powered by small local generation sources and not connected to a main grid.1 Mini-grids range in size from less than 1 kW to several hundred kW of installed generation capacity and may utilize different generation technologies, such as micro-hydro, biomass gasification, solar, wind, diesel generators, or a hybrid combination of any of these. This review will primarily refer to AC mini-grids, though much of themore » discussion could apply to DC grids as well. Many mini-grids include energy storage, though some rely solely on real-time generation.« less
Acquisition of the Concept "Biodegradable" Through Written Instruction: Pretest and Age Effects.
ERIC Educational Resources Information Center
Arganian, Mourad P.; And Others
The primary purpose of this study/experiment was to determine whether children in the middle elementary grades would be able to learn the concepts "biodegradable agent,""biodegradable material," and "biodegradable process" from a short written lesson. Secondary purposes were to examine the degree to which a pretest, grade level, and sex of the…
Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng
2012-01-01
Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...
USDA-ARS?s Scientific Manuscript database
Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation on the oxidation and biodegradation of linear low density poly (ethylene) PE-LLD films containing pro-oxidant were examined. To achieve oxidation and degradation, films were first exposed to the sunlight for 93 days du...
Code of Federal Regulations, 2013 CFR
2013-07-01
... sediment toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not...). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal olefin... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
Code of Federal Regulations, 2014 CFR
2014-07-01
... sediment toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not...). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal olefin... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
Code of Federal Regulations, 2012 CFR
2012-07-01
... sediment toxicity ratio 6 shall not exceed 1.0. Biodegradation rate Biodegradation rate ratio 7 shall not...). 7 Biodegradation rate ratio = Cumulative headspace gas production (ml) of C16-C18 internal olefin... fluids that meet the base fluid sediment toxicity ratio (Footnote 6), biodegradation rate ratio (Footnote...
Critical evaluation of biodegradable polymers used in nanodrugs
Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina
2013-01-01
Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720
Vroman, Isabelle; Tighzert, Lan
2009-01-01
Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.
Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai
2015-09-18
The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings.
Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai
2015-01-01
The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings. PMID:26393637
[Validation of the portuguese version of the Mini-Social Phobia Inventory (Mini-SPIN)].
D'El Rey, Gustavo José Fonseca; Matos, Cláudia Wilmor
2009-01-01
Social phobia (also known as social anxiety disorder) is a severe mental disorder that brings distress and disability. The aim of this study was validate to the Portuguese language the Mini-Social Phobia Inventory (Mini-SPIN) in a populational sample. We performed a discriminative validity study of the Mini-SPIN in a sample of 644 subjects (Mini-SPIN positive group: n = 218 and control/negative group: n = 426) of a study of anxiety disorders' prevalence in the city of Santo André-SP. The Portuguese version of the Mini-SPIN (with score of 6 points, suggested in the original English version) demonstrated a sensitivity of 95.0%, specificity of 80.3%, positive predictive value of 52.8%, negative predictive value of 98.6% and incorrect classification rate of 16.9%. With score of 7 points, was observed an increase in the specificity and positive predictive value (88.6% and 62.7%), while the sensitivity and negative predictive value (84.8% and 96.2%) remained high. The Portuguese version of the Mini-SPIN showed satisfactory psychometric qualities in terms of discriminative validity. In this study, the cut-off of 7, was considered to be the most suitable to screening of the generalized social phobia.
A simple three-dimensional stent for proper placement of mini-implant
2013-01-01
Background This paper deals with the fabrication of a three-dimensional stent which is simple in design but provides an accurate placement of a mini-implant in three planes of space, namely, sagittal (root proximity), vertical (attached gingiva/alveolar mucosa) and transverse (angulation). Findings The stent is made of 0.018 × 0.025 in. stainless steel archwire which consists of a ‘u loop’ angulated at 20°, a vertical limb, a horizontal limb and a stop. The angulation of the ‘u’ helps in the placement of the mini-implant at 70° to the long axis of the tooth. The vertical height is determined such that the mini-implant is placed at the mucogingival junction. The mini-implant is placed with the aid of the stent, and its angulation and proximity to the adjacent roots are checked with a cone beam computed tomography image. The cone beam computed tomography image showed the mini-implant at an angle of 70° to the long axis of the tooth. There is no contact between mini-implant and the roots of the adjacent teeth. Conclusion This stent is simple, easy to fabricate, cost-effective, and provides ease of insertion/removal, and three-dimensional orientation of the mini-implant. PMID:24326158
First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Lemmon, Mark T.; Spanovich, Nicole; Banfield, Don; Budney, Charles J.; Clancy, R. Todd; Ghosh, Amitabha; Landis, Geoffrey A.; Smith, Peter;
2004-01-01
Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES.
Smith, Michael D; Wolff, Michael J; Lemmon, Mark T; Spanovich, Nicole; Banfield, Don; Budney, Charles J; Clancy, R Todd; Ghosh, Amitabha; Landis, Geoffrey A; Smith, Peter; Whitney, Barbara; Christensen, Philip R; Squyres, Steven W
2004-12-03
Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko
2015-01-01
The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.
Arc-to-Arc mini-sling 1999: a critical analysis of concept and technology.
Palma, Paulo
2011-01-01
The aim of this study was to critically review the Arc-to-Arc mini-sling (Palma's technique) a less invasive mid-urethral sling using bovine pericardium as the sling material. The Arc-to-Arc mini-sling, using bovine pericardium, was the first published report of a mini-sling, in 1999. The technique was identical to the "tension-free tape" operation, midline incision and dissection of the urethra. The ATFP (white line) was identified by blunt dissection, and the mini-sling was sutured to the tendinous arc on both sides with 2 polypropylene 00 sutures. The initial results were encouraging, with 9/10 patients cured at the 6 weeks post-operative visit. However, infection and extrusion of the mini-sling resulted in sling extrusion and removal, with 5 patients remaining cured at 12 months. The Arc-to-Arc mini-sling was a good concept, but failed because of the poor technology available at that time. Further research using new materials and better technology has led to new and safer alternatives for the management of stress urinary incontinence.
Corneal oedema in a unilateral corneal graft patient induced by high Dk mini-scleral contact lens.
Guillon, Natalie C; Godfrey, Andrew; Hammond, David S
2018-05-24
Scleral contact lenses are increasingly becoming accepted as the method of choice for visual correction of the irregular cornea. As such, cases have surfaced which demonstrate complications arising from mini-scleral lenses. Identification of these issues and adjusting fitting techniques accordingly is necessary for reducing the risks associated with mini-scleral lens wear. A 58 year old Caucasian female was referred for rigid gas permeable contact lens fitting for correction of right irregular astigmatism post penetrating keratoplasty. After four months of successful mini-scleral contact lens wear, the patient experienced a graft rejection episode and treated accordingly, then refit with a new mini-scleral lens. Five months after the lens refit, the patient presented with complaints of hazy vision, and a diagnosis of lens-induced corneal oedema made. Increased awareness of the potential complications of mini-scleral lenses is necessary to encourage and enforce mini-scleral lens fitting techniques that meet the requirements of minimum vault but adequate protection of the compromised cornea. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Investigations into polymer and carbon nanomaterial separations
NASA Astrophysics Data System (ADS)
Owens, Cherie Nicole
The work of this thesis follows a common theme of research focused on innovative separation science. Polyhydroxyalkanoates are biodegradable polyesters produced by bacteria that can have a wide distribution in molecular weight and monomer composition. This large distribution often leads to unpredictable physical properties making commercial applications challenging. To improve polymer homogeneity and obtain samples with a clear set of physical characteristics, poly-3-hydroxyvalerate-co-3-hydroxybutyrate copolymers were fractionated using gradient polymer elution chromatography (GPEC) with carefully optimized gradients. The resulting fractions were analyzed using Size Exclusion Chromatography (SEC) and NMR. As the percentage of “good” solvent was increased in the mobile phase, the polymers eluted with decreasing percentage of 3-hydroxyvalerate and increasing molecular weight, which indicates the importance of precipitation/redissolution in the separation. As such, GPEC is an excellent choice to provide polyhydroxyalkanoate samples with a narrower distribution in composition than the original bulk copolymer. Additionally, the critical condition was found for 3-hydroxybutyrate to erase its effects on retention of the copolymer. Copolymer samples were then separated using Liquid Chromatography at the Critical Condition (LCCC) and it was determined that poly(3-hydroxvalerate-co-3-hydroxybutyrate) is a statistically random copolymer. The second project uses ultra-thin layer chromatography (UTLC) to study the performance and behavior of polyhydroxybutyrate (P3HB) as a chromatographic substrate. One specific polyhydroxyalkanoate, polyhydroxybutyrate, is a liquid crystalline polymer that can be electrospun. Electrospinning involves the formation of nanofibers though the application of an electric potential to a polymer solution. Precisely controlled optimization of electrospinning parameters was conducted to achieve the smallest diameter PHA nanofibers to date to utilize as novel UTLC substrates. Additionally, aligned electrospun UTLC (AE-UTLC) substrates were developed to compare to the randomly oriented electrospun (E-UTLC) devices. The PHB plates were compared to commercially available substrates for the separation of biological samples: nucleotides and steroids. The electrospun substrates show lower band broadening and higher reproducibility in a smaller development distance than commercially available TLC plates, conserving both resources and time. The AE-UTLC plates provided further enhancement of reproducibility and development time compared to E-UTLC plates. Thus, the P3HB E-UTLC phases are an excellent sustainable option for TLC as they are biodegradable and perform better than commercial phases. A third topic of interest is the study of ordered carbon nanomaterials. The typical amorphous carbon used as a stationary phase in Hypercarb ® is known to consist of basal- and edge-plane oriented sites. This heterogeneity of the stationary phase can lead to peak broadening that may be improved by using homogeneous carbon throughout. Amorphous, basal-plane, and edge-plane carbons were produced in-house through membrane template synthesis. Amorphous, basal-plane, and edge-plane carbons were then used separately as chromatographic phases in capillary electrochomatography (CEC). Differences in chromatographic performance between these species were assessed by modeling retention data for test solutes to determine Linear Solvation Energy Relationships (LSER). The LSER study for the three carbon phases indicates that the main difference is in the polarizability, and hydrogen bonding character of the surface leading to unique solute interactions. These results highlight the possible usefulness of using these phases independently.
Nabeoka, Ryosuke; Taruki, Masanori; Kayashima, Takakazu; Yoshida, Tomohiko; Kameya, Takashi
2016-01-01
In Japan, understanding the environmental persistence of chemicals is very important for risk assessment, and ready biodegradability tests are mainly conducted according to the Organisation for Economic Co-operation and Development test guideline 301C. However, the highest test concentration specified in test guideline 301C, 100 mg/L, may cause microbial toxicity and incomplete biodegradation. The authors performed test guideline 301C tests at test concentrations of 30 mg/L for 13 substances that were readily biodegradable in ready biodegradability tests but not in test guideline 301C tests. Of the 5 substances with potential to cause microbial toxicity at 100 mg/L, the percentage of biodegradation of sodium dimethyldithiocarbamate, 4-chloro-3-cresol (CC), thymol (THY), and p-tert-butyl-α-methylbenzenepropionaldehyde measured by biochemical oxygen demand (BOD) increased in the test guideline 301C test at 30 mg/L, suggesting a reduction in toxicity effects. Furthermore, CC and THY met the criteria for ready biodegradability, which are more than 60% of biodegradation by BOD and a 10-d window. Of the 8 substances with a low potential for causing microbial toxicity at 100 mg/L, the percentage of biodegradation of only 2-(diethylamino)ethanol increased in the test guideline 301C test at 30 mg/L. Employing a lower test concentration in the standard test guideline 301C test will contribute to improvement of consistency between results of a test guideline 301C test and other ready biodegradability tests. © 2015 SETAC.
Biodegradability of fluorinated fire-fighting foams in water.
Bourgeois, A; Bergendahl, J; Rangwala, A
2015-07-01
Fluorinated fire-fighting foams may be released into the environment during fire-fighting activities, raising concerns due to the potential environmental and health impacts for some fluorinated organics. The current study investigated (1) the biodegradability of three fluorinated fire-fighting foams, and (2) the applicability of current standard measures used to assess biodegradability of fluorinated fire-fighting foams. The biodegradability of three fluorinated fire-fighting foams was evaluated using a 28-day dissolved organic carbon (DOC) Die-Away Test. It was found that all three materials, diluted in water, achieved 77-96% biodegradability, meeting the criteria for "ready biodegradability". Defluorination of the fluorinated organics in the foam during biodegradation was measured using ion chromatography. It was found that the fluorine liberated was 1-2 orders of magnitude less than the estimated initial amount, indicating incomplete degradation of fluorinated organics, and incomplete CF bond breakage. Published biodegradability data may utilize biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) metrics to quantify organics. COD and TOC of four fluorinated compounds were measured and compared to the calculated carbon content or theoretical oxygen demand. It was found that the standard dichromate-based COD test did not provide an accurate measure of fluorinated organic content. Thus published biodegradability data using COD for fluorinated organics quantification must be critically evaluated for validity. The TOC measurements correlated to an average of 91% of carbon content for the four fluorinated test substances, and TOC is recommended for use as an analytical parameter in fluorinated organics biodegradability tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biodegradable and compostable alternatives to conventional plastics.
Song, J H; Murphy, R J; Narayan, R; Davies, G B H
2009-07-27
Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.
Evolution of biodegradation of deinking by-products used as alternative cover material.
Aït-Benichou, Samah; Rodrigues Cabral, Alexandre; Teixeira Panarotto, Claudia
2008-01-01
Deinking by-products (DBP) have been used as alternative cover material for landfills and mine tailings. Since DBP is biodegradable because of its high cellulose and hemicellulose content, a laboratory experimental program was performed to monitor the evolution of biodegradation and changes in the physico-chemical and geotechnical properties of DBP samples submitted to accelerated biodegradation for 1460 days at 38 degrees C. The evolution of gas and leachate production was monitored in terms of both quality and quantity, which allowed for the calculation of mass loss with time. Under the conditions of the tests (no load applied), 19.6% of the mass was lost as gas, whereas 6.1% was leached out. The results show that biodegradation did not significantly alter the compaction behavior of DBP. The void ratio and water content increased significantly, while the volume of the samples slightly decreased. This seem to indicate that the porous structure of the samples was no longer the same after 1460 d of accelerated biodegradation. A slight increase in the relative density indicates that the organic/inorganic matter ratio increased. The results of permeability tests performed with samples at various stages of biodegradation and at various confining stresses show that the saturated hydraulic conductivity of recompacted biodegraded DBP decreased from 7 x 10(-7)cm/s to approximately 2 x 10(-7)cm/s, as biodegradation advanced.
Shekoohiyan, Sakine; Moussavi, Gholamreza; Naddafi, Kazem
2016-08-05
A bacterial peroxidase-mediated oxidizing process was developed for biodegrading total petroleum hydrocarbons (TPH) in a sequencing batch reactor (SBR). Almost complete biodegradation (>99%) of high TPH concentrations (4g/L) was attained in the bioreactor with a low amount (0.6mM) of H2O2 at a reaction time of 22h. A specific TPH biodegradation rate as high as 44.3mgTPH/gbiomass×h was obtained with this process. The reaction times required for complete biodegradation of TPH concentrations of 1, 2, 3, and 4g/L were 21, 22, 28, and 30h, respectively. The catalytic activity of hydrocarbon catalyzing peroxidase was determined to be 1.48U/mL biomass. The biodegradation of TPH in seawater was similar to that in fresh media (no salt). A mixture of bacteria capable of peroxidase synthesis and hydrocarbon biodegradation including Pseudomonas spp. and Bacillus spp. were identified in the bioreactor. The GC/MS analysis of the effluent indicated that all classes of hydrocarbons could be well-degraded in the H2O2-induced SBR. Accordingly, the peroxidase-mediated process is a promising method for efficiently biodegrading concentrated TPH-laden saline wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.
Biodegradability of tannin-containing wastewater from leather industry.
He, Qiang; Yao, Kai; Sun, Danhong; Shi, Bi
2007-08-01
Tannins occur commonly in the wastewaters from forestry, plant medicine, paper and leather industries. The treatment of this kind of wastewaters, including settling and biodegradation, is usually difficult because tannins are highly soluble in water and would inhibit the growth of microorganisms in activated sludge. The objective of this study is to investigate biodegradability of tannin-containing wastewaters, so as to characterize the pollution properties of such wastewaters and provide a reference for their biological treatment in wastewater treatment plants. The research was typified by using the wastewater collected from vegetable tanning process in leather industry. A model was developed to describe the activated sludge process, and the biodegradation kinetics of vegetable tanning wastewater (VET wastewater) was studied. It was found that the biodegradability of tannin-containing wastewater varies heavily with the content of tannins in wastewater. The biodegradation of VET wastewater with tannin content around 4,900 mg/l occurred inefficiently due to the inhibition of tannins to the activated sludge process, and only 34.7% of biodegradation extent was reached in 14 days of incubation. The optimal biodegradability of VET wastewater was observed when its tannin content was diluted to 490 mg/l, where the COD and tannin removals reached 51.3% and 45.1% respectively in 6 days. Hence, it is suggested that a proper control of tannin content is necessary to achieve an effective biodegradation of tannin-containing wastewaters in wastewater treatment plants.
Schneider, Mandy; Meder, Fabian; Haiß, Annette; Treccani, Laura; Rezwan, Kurosch; Kümmerer, Klaus
2014-03-01
Engineered sub-micron particles are being used in many technical applications, leading to an increasing introduction into the aquatic environment. Only a few studies have dealt with the biodegradability of non-functionalized organic particles. In fact the knowledge of organically surface functionalized colloids is nearly non-existent. We have investigated the biodegradability of organically surface functionalized silica (SiO2) particles bearing technically relevant groups such as amino-, carboxyl-, benzyl-, sulfonate-, chloro-, and phosphatoethyl-derivatized alkyls. Essential physicochemical properties including zeta potential, isoelectric point, morphology, surface area, porosity, surface density, and elemental composition of the particles were investigated, followed by biodegradability testing using the Closed Bottle Test (OECD 301D). None of the particles met the biodegradability threshold value of 60%. Only a slight biodegradation was revealed for SiO2-Benzyl (13.7±6.7%) and for SiO2-3-Chlorpropane (10.8±1.5%). For the other particles biodegradability was below the normal background fluctuation of 5%. The results were different of those obtained from structurally similar chemicals not being functionalized on the particle surface and from general rules of structure-biodegradation prediction of organic molecules. Therefore, our results suggest that the attachment of the organic groups heavily reduces their biodegradability, increases their residence time and possibility for adverse effects to environmental species. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chen, Baoliang; Ding, Jie
2012-08-30
To assess the "bioaccessible" pool of mycelia-bound polycyclic aromatic hydrocarbons (PAHs) and to quantify its biodegradation kinetics in soil, a soil-slurry system containing mycelial pellets of Phanerochaete chrysosporium as a separable biophase was set up. In sterilized and unsterilized soil-slurry, the distribution and dissipation of phenanthrene and pyrene in soil, fungal body of P. chrysosporium and water were independently quantified over the incubation periods. Biosorption and biodegradation contributions to bio-dissipation of dissolved- and sorbed-PAHs were identified. The biodegradation kinetics of PAHs by allochthonous P. chrysosporium and soil wild microorganisms was higher than those predicted by a coupled desorption-biodegradation model, suggesting both allochthonous and wild microorganisms could access sorbed-PAHs. The obvious hysteresis of PAHs in soil reduced their biodegradation, while the biosorbed-PAHs in P. chrysosporium body as an interim pool exhibited reversibly desorption and were almost exhausted via biodegradation. Both biosorption and direct biodegradation of PAHs in soil slurry were stimulated by allochthonous P. chrysosporium. After 90-day incubation, the respective biodegradation percentages for phenanthrene and pyrene were 63.8% and 51.9% in the unsterilized soil without allochthonous microorganisms, and then increased to 94.9% and 90.6% when amended with live P. chrysosporium. These indicate that allochthonous and wild microorganisms may synergistically attack sorbed-PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The increasing use of disposable nonwovens made of petroleum-based materials generates a large amount of non-biodegradable, solid waste in the environment. As an effort to enhance the usage of biodegradable cotton in nonwovens, this study analyzed the biodegradability of mechanically pre-cleaned gr...
Owsianiak, Mikołaj; Szulc, Alicja; Chrzanowski, Łukasz; Cyplik, Paweł; Bogacki, Mariusz; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J
2009-09-01
In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures.
Biodegradation of hydrocarbon cuts used for diesel oil formulation.
Penet, Sophie; Marchal, Rémy; Sghir, Abdelghani; Monot, Frédéric
2004-11-01
The biodegradability of various types of diesel oil (DO), such as straight-run DO, light-cycle DO, hydrocracking DO, Fischer-Tropsch DO and commercial DO, was investigated in biodegradation tests performed in closed-batch systems using two microflorae. The first microflora was an activated sludge from an urban wastewater treatment plant as commonly used in biodegradability tests of commercial products and the second was a microflora from a hydrocarbon-polluted soil with possible specific capacities for hydrocarbon degradation. Kinetics of CO(2) production and extent of DO biodegradation were obtained by chromatographic procedures. Under optimised conditions, the polluted-soil microflora was found to extensively degrade all the DO types tested, the degradation efficiencies being higher than 88%. For all the DOs tested, the biodegradation capacities of the soil microflora were significantly higher than those of the activated sludge. Using both microflora, the extent of biodegradation was highly dependent upon the type of DO used, especially its hydrocarbon composition. Linear alkanes were completely degraded in each test, whereas identifiable branched alkanes such as farnesane, pristane or phytane were degraded to variable extents. Among the aromatics, substituted mono-aromatics were also variably biodegraded.
Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments.
Khan, Ali M; Wick, Lukas Y; Harms, Hauke; Thullner, Martin
2016-04-01
Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis.
Hadad, D; Geresh, S; Sivan, A
2005-01-01
To select a polyethylene-degrading micro-organism and to study the factors affecting its biodegrading activity. A thermophilic bacterium Brevibaccillus borstelensis strain 707 (isolated from soil) utilized branched low-density polyethylene as the sole carbon source and degraded it. Incubation of polyethylene with B. borstelensis (30 days, 50 degrees C) reduced its gravimetric and molecular weights by 11 and 30% respectively. Brevibaccillus borstelensis also degraded polyethylene in the presence of mannitol. Biodegradation of u.v. photo-oxidized polyethylene increased with increasing irradiation time. Fourier Transform Infra-Red (FTIR) analysis of photo-oxidized polyethylene revealed a reduction in carbonyl groups after incubation with the bacteria. This study demonstrates that polyethylene--considered to be inert--can be biodegraded if the right microbial strain is isolated. Enrichment culture methods were effective for isolating a thermophilic bacterium capable of utilizing polyethylene as the sole carbon and energy source. Maximal biodegradation was obtained in combination with photo-oxidation, which showed that carbonyl residues formed by photo-oxidation play a role in biodegradation. Brevibaccillus borstelensis also degraded the CH2 backbone of nonirradiated polyethylene. Biodegradation of polyethylene by a single bacterial strain contributes to our understanding of the process and the factors affecting polyethylene biodegradation.
Rücker, Christoph; Mahmoud, Waleed M M; Schwartz, Dirk; Kümmerer, Klaus
2018-04-17
Mercaptocarboxylic acids and their esters, a class of difunctional compounds bearing both a mercapto and a carboxylic acid or ester functional group, are industrial chemicals of potential environmental concern. Biodegradation of such compounds was systematically investigated here, both by literature search and by experiments (Closed Bottle Test OECD 301D and Manometric Respirometry Test OECD 301F). These compounds were found either readily biodegradable or at least biodegradable to a significant extent. Some related compounds of divalent sulfur were tested for comparison (mercaptans, sulfides, disulfides). For the two relevant monofunctional compound classes, carboxylic acids/esters and mercaptans, literature data were compiled, and by comparison with structurally similar compounds without these functional groups, the influence of COOH/COOR' and SH groups on biodegradability was evaluated. Thereby, an existing rule of thumb for biodegradation of carboxylic acids/esters was supported by experimental data, and a rule of thumb could be formulated for mercaptans. Concurrent to biodegradation, abiotic processes were observed in the experiments, rapid oxidative formation of disulfides (dimerisation of monomercaptans and cyclisation of dimercaptans) and hydrolysis of esters. Some problems that compromise the reproducibility of biodegradation test results were discussed.
Hao, Ruixia; Li, Jianbing; Zhou, Yuwen; Cheng, Shuiyuan; Zhang, Yi
2009-05-01
The relationship between nonylphenol (NP) isomer structure and its biodegradability within the wastewater treatment process of sequencing batch reactor (SBR) was investigated. The GC-MS method was used for detecting the NP isomers existing in the SBR influent, activated sludge and effluent. Fifteen NP isomers were detected in the influent, with significant biodegradability variations being observed among these isomers. It was found that the NP isomers associated with retention time of 10.553, 10.646, 10.774, and 10.906 min in the GC-MS analysis showed higher biodegradability, while the isomers with retention time of 10.475, 10.800, and 10.857 min illustrated lower biodegradability. Through analyzing the mass spectrograms, the chemical structures of four selected NP isomers in the wastewater were further deduced. The higher correlation coefficients of 0.9421 and 0.9085 were observed between the NP isomer biodegradation rates and the molecular connectivity indexes with the order of two and four, respectively. Such correlation analysis indicated that a more complex side branch structure (such as a larger side carbon-chain branch or more branches in the nonyl) of NP isomer would lead to lower biodegradability, and a longer nonyl chain of the isomer would result in a higher biodegradability.
NASA Astrophysics Data System (ADS)
Brusseau, Mark L.; Xie, Lily H.; Li, Li
1999-04-01
Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by properties of the microbial population and the substrate, but also by hydrodynamic properties (e.g., residence time, dispersivity). By nondimensionalizing the coupled-process equations for transport and nonlinear biodegradation, we show that transport behavior is controlled by three characteristic parameters: the effective maximum specific growth rate, the relative half-saturation constant, and the relative substrate-utilization coefficient. The impact on biodegradation and transport of these parameters, which constitute various combinations of factors reflecting the influences of biotic and hydraulic properties of the system, are examined numerically. A type-curve diagram based on the three characteristic parameters is constructed to illustrate the conditions under which steady and non-steady transport is observed, and the conditions for which the linear, first-order approximation is valid for representing biodegradation. The influence of constraints to microbial growth and substrate utilization on contaminant transport is also briefly discussed. Additionally, the impact of biodegradation, with and without biomass growth, on spatial solute distribution and moments is examined.
Why are mini-implants lost: the value of the implantation technique!
Romano, Fabio Lourenço; Consolaro, Alberto
2015-01-01
The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.
VAST 2010 Challenge: Arms Dealings and Pandemics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinstein, Georges; Konecni, Shawn; Plaisant, Catherine
2010-10-23
The 5th VAST Challenge consisted of three mini-challenges that involved both intelligence analysis and bioinformatics. Teams could solve one, two or all three mini-challenges and assess the overall situation to enter the Grand Challenge. Mini-challenge one involved text reports about people and events giving information about arms dealers, situations in various countries and linkages between different countries. Mini-challenge two involved hospital admission and death records from various countries providing information about the spread of a world wide pandemic. Mini-challenge three involved genetic data to be used to identify the origin of the pandemic and the most dangerous viral mutations. Themore » Grand Challenge was to determine how these various mini-challenges were connected. As always the goal was to analyze the data and provide novel interactive visualizations useful in the analytic process. We received 58 submissions in total and gave 15 awards.« less
Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2005-01-01
NASA Johnson Space Center (JSC) is developing a low-volume, low-mass, robotic free-flying camera known as Mini-AERCam (Autonomous Extra-vehicular Robotic Camera) to assist the International Space Station (ISS) operations. Mini-AERCam is designed to provide astronauts and ground control real-time video for camera views of ISS. The system will assist ISS crewmembers and ground personnel to monitor ongoing operations and perform visual inspections of exterior ISS components without requiring extravehicular activity (EAV). Mini-AERCam consists of a great number of subsystems. Many institutions and companies have been involved in the R&D for this project. A Mini-AERCam ground control system has been studied at Texas A&M University [3]. The path planning and control algorithms that direct the motions of Mini-AERCam have been developed through the joint effort of Carnegie Mellon University and the Texas Robotics and Automation Center [5]. NASA JSC has designed a layered control architecture that integrates all functions of Mini-AERCam [8]. The research described in this report is part of a larger effort focused on the communication and tracking subsystem that is designed to perform three major tasks: 1. To transmit commands from ISS to Mini-AERCam for control of robotic camera motions (downlink); 2. To transmit real-time video from Mini-AERCam to ISS for inspections (uplink); 3. To track the position of Mini-AERCam for precise motion control. The ISS propagation environment is unique due to the nature of the ISS structure and multiple RF interference sources [9]. The ISS is composed of various truss segments, solar panels, thermal radiator panels, and modules for laboratories and crew accommodations. A tracking system supplemental to GPS is desirable both to improve accuracy and to eliminate the structural blockage due to the close proximity of the ISS which could at times limit the number of GPS satellites accessible to the Mini-AERCam. Ideally, the tracking system will be a passive component of the communication system which will need to operate in a time-varying multipath environment created as the robot camera moves over the ISS structure. In addition, due to many interference sources located on the ISS, SSO, LEO satellites and ground-based transmitters, selecting a frequency for the ISS and Mini-AERCam link which will coexist with all interferers poses a major design challenge. To meet all of these challenges, ultrawideband (UWB) radio technology is being studied for use in the Mini-AERCam communication and tracking subsystem. The research described in this report is focused on design and evaluation of passive tracking system algorithms based on UWB radio transmissions from mini-AERCam.
Residency Mini-fellowships in the PGY-5 Year: Is There Added Value?
Shenoy-Bhangle, Anuradha S; Eisenberg, Ronald L; Fineberg, Tabitha; Slanetz, Priscilla J
2018-06-01
With the restructuring of radiology board certification, many residencies created PGY-5 "mini-fellowships," during which residents spend focused time pursuing advanced subspecialty training or developing nonclinical skills in leadership, health policy and health-care economics, education, quality improvement, informatics, research, or global health. We surveyed graduates of an academic diagnostic radiology residency to assess the relative value and impact of PGY-5 mini-fellowships on career satisfaction and success. From 2012 to 2016, 39 radiology residents at our institution were offered the opportunity to pursue a 3- to 6-month mini-fellowship during the PGY-5 year. Thirty of 39 radiology residents (77%) participated, whereas 9 of 39 (23%) opted out. Of 39 residents, 13 completed two clinical mini-fellowships, 3 completed research mini-fellowships only, and 14 completed one nonclinical and one clinical mini-fellowship. Through SurveyMonkey, 23 of 39 residents (59%) responded to a questionnaire that collected basic demographic information and asked respondents about the value of this experience as it relates to fellowship choice and career using a five-point Likert scale. Of 23 respondents (14 male, 8 female,1 not specified), 78.3% practice in an academic university-based setting, with 8.7% in a community-based hospital practice, 4.3% in the veterans system, and 4.3% in a private practice setting. Of 23 respondents, the most popular clinical mini-fellowships were magnetic resonance imaging (31.6%), neuroradiology (21.1%), and interventional radiology (15.8%). For nonclinical mini-fellowships, the most popular were research (10.5%), education (10.5%), global health (5.3%), and healthcare economics (5.3%). Of 23 respondents who did mini-fellowships, 95% felt that the mini-fellowship prepared them well for their career, 85% felt it gave them the necessary skills to succeed, 85% cited that it gave them additional skills beyond their peers, and 40% felt it helped them create a life-long connection to a mentor. Ninety-five percent of respondents would choose to do the mini-fellowship again. Respondents suggested increasing the duration to 6-9 months and to develop a more structured curriculum and mentorship component. Only one respondent felt that the nonclinical mini-fellowship took away time from furthering clinical skills. Graduates of a university-affiliated academic radiology residency who participated in clinical and nonclinical mini-fellowships during the PGY-5 year of residency greatly value this experience and uniformly recommend that this type of program continue to be offered to trainees given its ability to develop skills perceived to be vital to ultimate career satisfaction and success. Published by Elsevier Inc.
Oil biodegradation: Interactions of artificial marine snow, clay particles, oil and Corexit.
Rahsepar, Shokouh; Langenhoff, Alette A M; Smit, Martijn P J; van Eenennaam, Justine S; Murk, Albertinka J; Rijnaarts, Huub H M
2017-12-15
During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study is to explore the effect of these interactions on biodegradation of oil in the water. Laboratory experiments were performed, analyzing respiration and n-alkane and BTEX biodegradation in multiple conditions containing Corexit, alginate particles as marine snow, and kaolin clay. Two oil degrading bacterial pure cultures were added, Pseudomonas putida F1 and Rhodococcus qingshengii TUHH-12. Results show that the presence of alginate particles enhances oil biodegradation. The presence of Corexit alone or in combination with alginate particles and/or kaolin clay, hampers oil biodegradation. Kaolin clay and Corexit have a synergistic effect in increasing BTEX concentrations in the water and cause delay in oil biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.
2014-03-01
Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.
NASA Astrophysics Data System (ADS)
Morse, Clinton; Latuga, Brian M.; Delfaus, Stephen; Devore, Thomas C.; Augustine, Brian H.; Hughes, W. Christopher; Warne, Paul G.
2003-11-01
Using the liquid cell capability of the atomic force microscope (AFM), we report the determination of the activation energy of the biodegradation process of the enzymatic biodegradation of poly 3-hydroxybutyrate / poly 3-hydroxyvalerate [P(3HB-HV)] thin films. We have prepared P(3HB-3HV) copolymer microstructures by the selective dewetting of soft lithographically patterned gold substrates with features sizes down to 10 mm. These have been then used as an internal height standard to measure the volume of material as a function of biodegradation time. Biodegradation is measured in-situ and real time using contact mode AFM in an enzymatic solution produced from Streptomyces sp. bacteria. The temperature dependent biodegradation has been measured over a temperature range from 23oC to 40oC. We will discuss the calculation of the activation energy of this process as well as a physical model to describe three distinct regions in the biodegradation process that have been observed.
Tran, N H; Nguyen, V T; Urase, T; Ngo, H H
2014-06-01
The biodegradation of the six artificial sweetening agents including acesulfame (ACE), aspartame (ASP), cyclamate (CYC), neohesperidindihydrochalcone (NHDC), saccharin (SAC), and sucralose (SUC) by nitrifying activated sludge was first examined. Experimental results showed that ASP and NHDC were the most easily degradable compounds even in the control tests. CYC and SAC were efficiently biodegraded by the nitrifying activated sludge, whereas ACE and SUC were poorly removed. However, the biodegradation efficiencies of the ASs were increased with the increase in initial ammonium concentrations in the bioreactors. The association between nitrification and co-metabolic degradation was investigated and a linear relationship between nitrification rate and co-metabolic biodegradation rate was observed for the target artificial sweeteners (ASs). The contribution of heterotrophic microorganisms and autotrophic ammonia oxidizers in biodegradation of the ASs was elucidated, of which autotrophic ammonia oxidizers played an important role in the biodegradation of the ASs, particularly with regards to ACE and SUC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin
2015-10-01
The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation. Copyright © 2015. Published by Elsevier Ltd.
Smułek, Wojciech; Zdarta, Agata; Kwiczak, Joanna; Zgoła-Grześkowiak, Agnieszka; Cybulski, Zefiryn; Kaczorek, Ewa
2017-11-10
Halophenols make a group of aromatic compounds that are resistible to biodegradation by environmental microorganisms. In this study, the biodegradation of 4-bromo-, 4-chloro- and 4-fluorophenols was studied with two types of activated sludges (from a small rural plant and from a bigger municipal plant) as an inoculum. Because of their wide use, surfactants are present in the wastewater and inhibitors enhance the biodegradation of different pollutants; the influence of natural surfactants on halophenols' biodegradation was also tested. Both types of activated sludge contained bacterial strains which were active in the halophenols' biodegradation process. The coexistence of surfactants and halophenols in the wastewater does not prevent microorganisms from effective halophenols' biodegradation. Moreover, surfactants can enhance the effectiveness of halophenols' removal from the environment. Different cell surface modifications of two isolated bacterial strains were observed in the same system of halophenols with or without surfactants. Halophenols and surfactants may also induce changes in bacteria cell surface properties.
Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; ...
2015-07-01
We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using thismore » system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.ds using both co-crystallization and soaking. We used a A similar approach to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.« less
Matys, Jacek; Flieger, Rafał; Tenore, Gianluca; Grzech-Leśniak, Kinga; Romeo, Umberto; Dominiak, Marzena
2018-04-01
It is important to identify factors that affect primary stability of orthodontic mini-implants because it determines the success of treatment. We assessed mini-implant primary stability (initial mechanical engagement with the bone) placed in pig jaws. We also assessed mini-implant insertion failure rate (mini-implant fracture, mini-implants to root contact). A total of 80 taper-shaped mini-implants (Absoanchor® Model SH1312-6; Dentos Inc., Daegu, Korea) 6 mm long with a diameter of 1.1 mm were used. Bone decortication was made before mini-implant insertion by means of three different methods: Group G1: Er:YAG laser (LiteTouch®, Light Instruments, Yokneam, Israel) at energy of 300 mJ, frequency 25 Hz, fluence 38.2 J/cm2, cooling 14 ml/min, tip 1.0 × 17 mm, distance 1 mm, time of irradiation 6 s; Group G2: drill (Hager & Meisinger GmbH, Hansemannstr, Germany); Group G3: piezosurgery (Piezotom Solo, Acteon, NJ, USA). In G4 group (control), mini-implants were driven by a self-drilling method. The primary stability of mini-implants was assessed by measuring damping characteristics between the implant and the tapping head of Periotest device (Gulden-Medizinteknik, Eschenweg, Modautal, Germany). The results in range between - 8 to + 9 allowed immediate loading. Significantly lower Periotest value was found in the control group (mean 0.59 ± 1.57, 95% CI 0.7, 2.4) as compared with Er:YAG laser (mean 4.44 ± 1.64, 95% CI 3.6, 5.3), piezosurgery (mean 17.92 ± 2.73, 95% CI 16.5, 19.3), and a drill (mean 5.91 ± 1.52, 95% CI 5.2, 6.6) (p < 0.05). The highest failure rate (33.3%) during mini-implant insertion was noted for self-drilling method (G4) as compared with G1, G2, and G3 groups (p < 0.05). The small diameter decortication by Er:YAG laser appeared to provide better primary stability as compared to drill and piezosurgery. Decortication of the cortical bone before mini-implant insertion resulted in reduced risk of implant fracture or injury of adjacent teeth. The high initial stability with a smaller diameter of the mini-implant resulted in increased risk of fracture, especially for a self-drilling method.
Boskhomdzhiev, A P; Banartsev, A P; Makhina, T K; Myshkina, V L; Ivanov, E A; Bagrov, D V; Filatova, E V; Iordanskiĭ, A L; Bonartseva, G A
2009-01-01
The aim of this study was to evaluate and to compare of long-term kinetics curves of biodegradation of poly(3-hydroxybutyrate) (PHB), its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and PHB/polylactic acid blend. The total weight loss and the change of average viscosity molecular weight were used as an index of biodegradation degree. The rate of biodegradation was analyzed in vitro in presence oflipase and in vivo when the films were implanted in animal tissues. The morphology of PHB films surface was studied by atomic force microscopy technique. It was shown that biodegradation of PHB is occurred by means of as polymer hydrolysis, and as its enzymatic biodegradation. The obtained data can be used for development of medical devices on the base of PHB.
NASA Astrophysics Data System (ADS)
Chen, Yu Dao; Barker, James F.; Gui, Lai
2008-02-01
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600˜800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.
Comparative analysis of numerical and experimental data of orthodontic mini-implants.
Chatzigianni, Athina; Keilig, Ludger; Duschner, Heinz; Götz, Hermann; Eliades, Theodore; Bourauel, Christoph
2011-10-01
The purpose of this study was to compare numerical simulation data derived from finite element analysis (FEA) to experimental data on mini-implant loading. Nine finite element (FE) models of mini-implants and surrounding bone were derived from corresponding experimental specimens. The animal bone in the experiment consisted of bovine rib. The experimental groups were based on implant type, length, diameter, and angle of insertion. One experimental specimen was randomly selected from each group and was digitized in a microCT scanner. The FE models consisted of bone pieces containing Aarhus mini-implants with dimensions 1.5 × 7 mm and 1.5 × 9 mm or LOMAS mini-implants (dimensions 1.5 × 7 mm, 1.5 × 9 mm, and 2 × 7 mm). Mini-implants were inserted in two different ways, perpendicular to the bone surface or at 45 degrees to the direction of the applied load. Loading and boundary conditions in the FE models were adjusted to match the experimental situation, with the force applied on the neck of the mini-implants, along the mesio-distal direction up to a maximum of 0.5 N. Displacement and rotation of mini-implants after force application calculated by FEA were compared to previously recorded experimental deflections of the same mini-implants. Analysis of data with the Altman-Bland test and the Youden plot demonstrated good agreement between numerical and experimental findings (P = not significant) for the models selected. This study provides further evidence of the appropriateness of the FEA as an investigational tool in relevant research.
Kirac, Mustafa; Bozkurt, Ömer Faruk; Tunc, Lutfi; Guneri, Cagri; Unsal, Ali; Biri, Hasan
2013-06-01
The aim of this study was to compare the outcomes of retrograde intrarenal surgery (RIRS) and miniaturized percutaneous nephrolithotomy (mini-PNL) in management of lower-pole renal stones with a diameter smaller than 15 mm. Between December 2009 and July 2012, the patients with the diagnosis of lower-pole stones were evaluated by ultrasonography, intravenous pyelography and computed tomography. The records of 73 evaluable patients who underwent mini-PNL (n = 37) or RIRS (n = 36) for lower-pole (LP) stones with diameter smaller than 15 mm were reviewed retrospectively. Of the 73 patients, 37 underwent mini-PNL and 36 underwent RIRS. The stone-free rates were 89.1 and 88.8 % for mini-PNL and RIRS groups, respectively. The mean operation time was 53.7 ± 14.5 in the mini-PNL group but 66.4 ± 15.8 in the RIRS group (P = 0.01). The mean fluoroscopy times and hospitalization times were significantly higher in the mini-PNL group. There was no major complication in any patient. RIRS and mini-PNL are safe and effective methods for treatment of LP calculi with a diameter smaller than 15 mm. RIRS is a non-invasive and feasible treatment option, and has also short hospitalization time, low morbidity and complication rate. It may be an alternative of mini-PNL in the treatment LP calculi with smaller than 15 mm.
Are Ducted Mini-Splits Worth It?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jonathan M; Maguire, Jeffrey B; Metzger, Cheryn E.
Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within themore » Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).« less
Anaerobic Biodegradation of Detergent Surfactants
Merrettig-Bruns, Ute; Jelen, Erich
2009-01-01
Detergent surfactants can be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants).
Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi
2009-08-26
Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.
Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi
2009-01-01
Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515
The effect of biodegradation on gammacerane in crude oils.
Huang, Haiping
2017-08-01
Gammacerane is one of the major biomarkers widely used in depositional environment diagnosis, oil family classification, and oil-source correlation. It is generally accepted that gammacerane is more resistant to biodegradation than regular hopanes. However, whether it is biodegradable as well has not been reported in literatures. In order to investigate the effect of biodegradation on gammacerane in crude oils, 69 core samples from two biodegraded petroleum accumulations were geochemically characterized by quantitative GC-MS analysis. All samples are originated from lacustrine source rocks in China and have experienced at least level 8 degree of biodegradation on the scale of Peters and Moldowan (The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments, Prentice Hall, Englewood Cliffs, 1993). Both case histories showed the concentration of gammacerane decrease with increasing severity of biodegradation, indicating the destruction of gammacerane by biodegradation. A whole series of 25-norhopanes paralleling the 17α,21β-hopanes (up to C 34 ), together with C 28 18-α-25,30-bisnorneohopane, C 29 25-nordiahopane and C 29 25-norgammacerane, is found in the Liaohe sample suite but C 33 , C 34 25-norhopane and 25-norgammacerane are almost undetectable in the Junggar case. The gammacerane in the Liaohe case study appear to be altered simultaneously with hopanes, although the rate of gammacerane alteration is slower. Its susceptibility to biodegradation is similar to 18α(H)-22,29,30-trisnorneohopane (Ts) and 17α(H)-22,29,30-trisnorhopane (Tm) but more vulnerable than 18α-30-norneohopane (C 29 Ts), 15α-methyl-17α(H)-27-norhopane (C 30 diahopane) and pregnanes. The gammacerane in the Junggar oils appear to be less biodegradable than the Liaohe case history. It was altered simultaneously with pregnanes and C 29 Ts but faster than C 30 diahopane. The present data suggest that biodegradation sequence is not universal since the relative rates of biodegradation of different compound classes depend upon specific environmental conditions. Like the case of hopane demethylation, the mechanism of gammacerane biodegradation is not straightforward. While the conversion of gammacerane to 25-norgammacerane is not quantitatively balanced in the Liaohe case history, no 25-norgammacerane has been formed from the degradation of gammacerane in the Junggar case history. The ratio of gammacerane to regular hopanes increases with biodegradation degree especially at extreme levels of degradation, gammacerane index is no longer valid for depositional environment assessment or oil-source correlation.
Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Podorson, David; Varshney, Kapil
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, J.; Podorson, D.; Varshney, K.
2014-05-01
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Environmental Assessment: Proposed Construction of Army and Air Force Exchange Service Mini-Mall
2003-10-01
fast food style restaurant would be accommodated in the mini-mall. Data on electrical consumption for the Burger King restaurant at MAFB (Building...MAFB-Gunter Annex. Assuming the new restaurant in the mini-mall consumes approximately the same quantity of electricity annually as the Burger King ...in the mini-mall. Data on natural gas consumption for the Burger King restaurant at MAFB (Building 1087) in FY 2001 reveals that this facility
Whang, Liang-Ming; Liu, Pao-Wen G; Ma, Chih-Chung; Cheng, Sheng-Shung
2009-05-30
This study investigated the effects of pH and ammonium concentrations on the potential application of two biosurfactants, surfactin (SF) and rhamnolipid (RL), for enhanced diesel biodegradation with a series of bench-scale experiments. In general, compared to the experiments without biosurfactant addition, adding RL or SF to diesel-water systems at concentrations above their critical micelle concentration (CMC) values benefited diesel emulsification, and therefore enhanced diesel biodegradation. The effects of pH on RL or SF-enhanced biodegradation of diesel were in good agreement with the trends of emulsion index values for RL or SF addition, respectively, under different pH conditions, suggesting that enhanced diesel emulsification by RL or SF addition promoted biodegradation of diesel. In diesel-water systems with 50mg/L of RL addition, an optimum pH condition for microbial growth and diesel biodegradation was found to be at a pH 7.2, while decreasing pH to 5.2 or increasing it to 8.4 reduced those parameters considerably. For the cases where 40 mg/L of SF was added, the enhancing ability shared a general trend with that observed for adding 50mg/L of RL as the pH increased from 5.2 to 7.2. Further increase of pH to 8.4, however, did not seem to negatively influence biodegradation and biomass growth. With respect to the effects of ammonium concentration on diesel biodegradation in diesel-water systems with 50mg/L of RL addition, an optimum ammonium addition for microbial growth and diesel biodegradation was found between 200 and 300 mg-N/L, but a dramatic decrease in growth and biodegradation occurred at ammonium addition up to 450 mg-N/L. For the cases where 40 mg/L of SF was added, an increase of ammonium addition from 50 to 200mg-N/L substantially increased microbial growth and biodegradation of diesel. Further increase of ammonium concentration to 450 mg-N/L, however, did not further improve diesel biodegradation.
NASA Astrophysics Data System (ADS)
DiGregorio, A.; Wilson, E. L.; Hoffman, C.; Grunberg, C.; Mao, J.; Ramanathan, A. K.
2016-12-01
We present an updated, ruggedized design of NASA Goddard Space Flight Center's Miniaturized Laser Heterodyne Radiometer (mini-LHR), and the results of testing in the Bonanza Creek Research Forest. The mini-LHR is a passive variation of typical heterodyne radiometry instruments, designed to work in tandem with the AERONET sun photometer for collection of column methane (CH4) and carbon dioxide (CO2) in harsh environments. Advancements in the development of the Cube-Sat version of the mini-LHR have allowed a more than 50% reduction in size, weight, and power usage of the mini-LHR. Now small enough to fit in a medium handbag, the mini-LHR can be run off of a small 35 Watt solar panel and backup battery for continuous measurement. Using a touch-screen control interface built off of a Raspberry Pi, the updated mini-LHR is capable of data collection and preliminary data processing, even without internet, cellular, or satellite connectivity. The improvements made to the mini-LHR were tested in a field campaign in May 2016 funded under NASA's IDS program to track CH4 and CO2 emissions above thawing permafrost. In addition to being a comprehensive study of methane release from thawing permafrost, this pilot study tested the ruggedization and functionality of the instrument in three different environments- a black spruce forest, collapsed scar bog, and fen.
2013-01-01
Background Sulfamethoxazole (SMX, sulfonamide antibiotic) biodegradation by activated sludge communities (ASC) is still only partly understood. The present work is focusing on nine different bacteria species capable of SMX biodegradation that were isolated from SMX-acclimated ASC. Results Initially 110 pure cultures, isolated from activated sludge, were screened by UV-absorbance measurements (UV-AM) for their SMX biodegradation potential. Identification via almost complete 16S rRNA gene sequencing revealed five Pseudomonas spp., one Brevundimonas sp., one Variovorax sp. and two Microbacterium spp.. Thus seven species belonged to the phylum Proteobacteria and two to Actinobacteria. These cultures were subsequently incubated in media containing 10 mg L-1 SMX and different concentrations of carbon (sodium-acetate) and nitrogen (ammonium-nitrate). Different biodegradation patterns were revealed with respect to media composition and bacterial species. Biodegradation, validated by LC-UV measurements to verify UV-AM, occurred very fast with 2.5 mg L-1 d-1 SMX being biodegraded in all pure cultures in, for UV-AM modified, R2A-UV medium under aerobic conditions and room temperature. However, reduced and different biodegradation rates were observed for setups with SMX provided as co-substrate together with a carbon/nitrogen source at a ratio of DOC:N – 33:1 with rates ranging from 1.25 to 2.5 mg L-1 d-1. Conclusions Media containing only SMX as carbon and nitrogen source proved the organisms’ ability to use SMX as sole nutrient source where biodegradation rates decreased to 1.0 – 1.7 mg L-1 d-1. The different taxonomically identified species showed specific biodegradation rates and behaviours at various nutrient conditions. Readily degradable energy sources seem to be crucial for efficient SMX biodegradation. PMID:24289789
West, Robert J; Davis, John W; Pottenger, Lynn H; Banton, Marcy I; Graham, Cynthia
2007-05-01
Eight propylene glycol substances, ranging from 1,2-propanediol to a poly(propylene glycol) (PPG) having number-average molecular weight (M(n)) of 2,700 (i.e., PPG 2700), were evaluated in the Organization for Economic Cooperation and Development (OECD) ready- and seawater biodegradability tests. Uniformity in test parameters, such as inoculum source/density and test substance concentrations, combined with frequent measurements of O2 consumption and CO2 evolution, revealed unexpected biodegradability trends across this family of substances. Biodegradability in both tests decreased with increased number of oxy-propylene repeating units (n = 1, 2, 3, 4) of the oligomeric propylene glycols (PGs). However, this trend was reversed for the PPG polymers, and increased biodegradability was observed with increases of average n to seven, 17, and 34 (M(n) = 425, 1,000, and 2,000, respectively). This relationship between molecular weight and biodegradability was reversed again when average n was incremented from 34 (PPG 2000) to 46 (PPG 2700). Six of the tested substances (n = 1, 2, 3, 7, 17, and 34) met the OECD-specified criteria for "ready biodegradability," whereas the tetrapropylene glycol (n = 4) and PPG 2700 substances failed to meet these criteria. Biodegradation half-lives for these eight substances ranged from 3.8 d (PPG 2000) to 33.2 d (PPG 2700) in the ready test, and from 13.6 (PG) to 410 d (PPG 2700) in seawater. Biodegradation half-lives in seawater were significantly correlated with half-lives determined in the ready test. However, half-lives in both tests were correlated poorly with molecular weight, water solubility, and log K(ow). It is speculated that the molecular conformation of these substances, perhaps more so than these other physicochemical properties, has an important role in influencing biodegradability of the propylene glycol substances.
An equivalent-time-lines model for municipal solid waste based on its compression characteristics.
Gao, Wu; Bian, Xuecheng; Xu, Wenjie; Chen, Yunmin
2017-10-01
Municipal solid waste (MSW) demonstrates a noticeable time-dependent stress-strain behavior, which contributes greatly to the settlement of landfills and therefore influences both the storage capacity of landfills and the integrity of internal structures. The long-term compression tests for MSW under different biodegradation conditions were analyzed. It showed that the primary compression can affect the secondary compression due to the biodegradation and mechanical creep. Based on the time-lines model for clays and the compression characteristics of MSW, relationships between MSW's viscous strain rate and equivalent time were established, and then the viscous strain functions of MSW under different biodegradation conditions were deduced, and an equivalent-time-lines model for MSW settlement for two biodegradation conditions was developed, including the Type I model for the enhanced biodegradation condition and the Type II model for the normal biodegradation condition. The simulated compression results of laboratory and field compression tests under different biodegradation conditions were consistent with the measured data, which showed the reliability of both types of the equivalent-time-lines model for MSW. In addition, investigations of the long-term settlement of landfills from the literature indicated that the Type I model is suitable for predicting settlement in MSW landfills with a distinct biodegradation progress of MSW, a high content of organics in MSW, a short fill age or under an enhanced biodegradation environment; while the Type II model is good at predicting settlement in MSW landfills with a distinct progress of mechanical creep compression, a low content of organics in MSW, a long fill age or under a normal biodegradation condition. Furthermore, relationships between model parameters and the fill age of landfills were summarized. Finally, the similarities and differences between the equivalent-time-lines model for MSW and the stress-biodegradation model for MSW were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
MINI PILOT PLANT FOR DRINKING WATER RESEARCH
The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...
Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin
2016-06-25
Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.
Competitive substrate biodegradation during surfactant-enhanced remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudar, C.; Strevett, K.; Grego, J.
The impact of synthetic surfactants on the aqueous phase biodegradation of benzene, toluene, and p-xylene (BTpX) was studied using two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), and two nonionic surfactants, POE(20) sorbitan monooleate (T-maz-80) and octyl-phenolpoly(ethyleneoxy) ethanol (CA-620). Batch biodegradation experiments were performed to evaluate surfactant biodegradability using two different microbial cultures. Of the four surfactants used in this study, SDS and T-maz-80 were readily degraded by a microbial consortium obtained from an activated sludge treatment system, whereas only SDS was degraded by a microbial culture that was acclimated to BTpX. Biodegradation kinetic parametersmore » associated with SDS and T-maz-80 degradation by the activated sludge consortium were estimated using respirometric data in conjunction with a nonlinear parameter estimation technique as {mu}{sub max} = 0.93 h{sup {minus}1}, K{sub s}= 96.18 mg/L and {mu}{sub max} = 0.41 h{sup {minus}1}, K{sub s} = 31.92 mg/L, respectively. When both BTpX and surfactant were present in the reactor along with BTpX-acclimated microorganisms, two distinct biodegradation patterns were seen. SDS was preferentially utilized inhibiting hydrocarbon biodegradation, whereas, the other three surfactants had no impact on BTpX biodegradation. None of the four surfactants were toxic to the microbial cultures used in this study. Readily biodegradable surfactants are not very effective for subsurface remediation applications as they are rapidly consumed, and also because of their potential inhibitory effects on intrinsic hydrocarbon biodegradation. This greatly increases treatment costs as surfactant recovery and reuse are adversely affected.« less
Biodegradable and compostable alternatives to conventional plastics
Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.
2009-01-01
Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060
Yoshikawa, Miho; Zhang, Ming; Toyota, Koki
2017-01-01
Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis -dichloroethylene ( cis -DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis -DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.
Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil
NASA Astrophysics Data System (ADS)
Zawierucha, I.; Malina, G.
2011-04-01
Respirometry studies using the 10-chamber Micro-Oxymax respirometer (Columbus, Ohio) were conducted to determine the effect of biostimulation (by diverse ways of O2 supply) on enhancing biodegradation in soils contaminated with oil hydrocarbons. Soil was collected from a former military airport in Kluczewo, Poland. Oxygen was supplied by means of aerated water, aqueous solutions of H2O2 and KMnO4. The biodegradation was evaluated on the basis of O2 uptake and CO2 production. The O2 consumption and CO2 production rates during hydrocarbons biodegradation were estimated from the slopes of cumulative curve linear regressions. The pertinent intrinsic and enhanced biodegradation rates were calculated on the basis of mass balance equation and O2 uptake and CO2 production rates. The biodegradation rates of 5-7 times higher as compared to a control were observed when the aqueous solution of KMnO4 in concentration of 20 g L-1 was applied. Permanganate is known to readily oxidize alkene carbon - carbon double bonds; so it can be successfully applied in remediation technology for soils contaminated with oil hydrocarbons. While hydrocarbons are not completely mineralized by permanganate oxidation reactions, their structure is altered by polar functional groups providing vast improvements in aqueous solubility and availability for biodegradation. The 3% aqueous solution of H2O2 caused significant improvement of the biodegradation rates as compared to a control (on average about 260%). Aerobic biodegradation of hydrocarbons can benefit from the presence of oxygen released during H2O2 decomposition. Adding of aerated water resulted in an increase of biodegradation rates (about 114 - 229%) as compared to a control. The aerated water can both be the source of oxygen for microorganisms and determine the transport of substrate to bacteria cells.
Enantioselective biodegradation of the pyrethroid (±)-lambda-cyhalothrin by marine-derived fungi.
Birolli, Willian G; Vacondio, Bruna; Alvarenga, Natália; Seleghim, Mirna H R; Porto, André L M
2018-04-01
The contamination of agricultural lands by pesticides is a serious environmental issue. Consequently, the development of bioremediation methods for different active ingredients, such as pyrethroids, is essential. In this study, the enantioselective biodegradation of (±)-lambda-cyhalothrin ((±)-LC) by marine-derived fungi was studied. Experiments were performed with different fungi strains (Aspergillus sp. CBMAI 1829, Acremonium sp. CBMAI 1676, Microsphaeropsis sp. CBMAI 1675 and Westerdykella sp. CBMAI 1679) in 3% malt liquid medium with 100 mg L -1 of (±)-LC. All strains biodegraded this insecticide and the residual concentrations of (±)-LC (79.2-55.2 mg L -1 , i.e., 20.8-44.8% biodegradation), their enantiomeric excesses (2-42% ee) and the 3-phenoxybenzoic acid (PBAc) concentrations (0.0-4.1 mg L -1 ) were determined. In experiments for 28 days of biodegradation in the absence and presence of artificial seawater (ASW) with the most efficient strain Aspergillus sp. CBMAI 1829, increasing concentrations of PBAc with (0.0-4.8 mg L -1 ) and without ASW (0.0-15.3 mg L -1 ) were observed. In addition, a partial biodegradation pathway was proposed. All the evaluated strains biodegraded preferentially the (1R,3R,αS)-gamma-cyhalothrin enantiomer. Therefore, marine-derived fungi enantioselectively biodegraded (±)-LC and can be applied in future studies for bioremediation of contaminated areas. This enantioselective biodegradation indicates that the employment of the most active enantiomer GC as insecticide not only enable the use of a lower amount of pesticide, but also a more easily biodegradable product, reducing the possibility of environmental contamination. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.
2015-08-01
Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at the same exposure time will have same interior orientation parameters (IOPs) and exterior orientation parameters (EOPs) after band-to-band registration (BBR). Thus, in the aerial triangulation stage, the master band of MiniMCA-12 was treated as a reference channel to link with DSLR RGB images. It means, all reference images from the master band of MiniMCA-12 and all RGB images were triangulated at the same time with same coordinate system of ground control points (GCP). Due to the spatial resolution of RGB images is higher than the MiniMCA-12, the GCP can be marked on the RGB images only even they cannot be recognized on the MiniMCA images. Furthermore, a one meter gridded digital surface model (DSM) is created by the RGB images and applied to the MiniMCA imagery for ortho-rectification. Quantitative error analyses show that the proposed BBR scheme can achieve 0.33 pixels of average misregistration residuals length and the co-registration errors among 12 MiniMCA ortho-images and between MiniMCA and Canon RGB ortho-images are all less than 0.6 pixels. The experimental results demonstrate that the proposed method is robust, reliable and accurate for future remote sensing applications.
History and current status of mini-invasive thoracic surgery
He, Jianxing
2011-01-01
Mini-invasive thoracic technique mainly refers to a technique involving the significant reduction of the chest wall access-related trauma. Notably, thoracoscope is the chief representative. The development of thoracoscope technique is characterized by: developing from direct peep to artificial lighting, then combination with image and video technique in equipments; technically developing from diagnostic to therapeutic approaches; developing from simpleness to complexity in application scope; and usually developing together with other techniques. At present, the widely used mini-invasive thoracic surgery refers to the mini-open thoracic surgery performed mainly by using some instruments to control target tissues and organs based on the vision associated with multi-limb coordination, which may be hand-assisted if necessary. The mini-invasive thoracic surgery consists of three approaches including video-assisted thoracic surgery (VATS), video-assisted Hybrid and hand-assisted VATS. So far the mini-invasive thoracic technique has achieved great advances due to the development in instruments of mini-invasive thoracic surgery which has the following features: instruments of mini-invasive thoracic surgery appear to be safe and practical, and have successive improvement and diversification in function; the specific instruments of open surgeries has been successively developed into dedicated instruments of endoscopic surgery; the application of endoscopic mechanical suture device generates faster fragmentation and reconstruction of organ tissues; the specific delicated instruments of endoscopic surgery have rapid development and application; and the simple instruments structurally similar to the conventional instruments are designed according to the mini-incison. In addition, the mini-invasive thoracic technique is widely used in five aspects including diseases of pleura membrane and chest wall, lung diseases, esophageal diseases, mediastinal diseases and heart diseases. However, there remain many problems in specifications and trainings, economic cost, conservation and innovation. Therefore, particular attention should be paid to these problems. Nevertheless, the promotion of thoracic surgery appears promising in the future. PMID:22263074
Catalán, Alfonso; Martínez, Alejandra; Marchesani, Francisco; González, Urcesino
2016-07-01
Patients with atrophic edentulous ridges generally have problems with retention, therapeutic satisfaction, and comfort with their complete dentures. An alternative treatment to assist in improving retention and stability involves the use of mini-implants. The aim of this study was to evaluate the retention of mandibular overdentures connected to two mini-implants and overall patient satisfaction with them. Seven patients with atrophic mandibular ridges (Type 4D Misch classification), aged 62 to 74 years old were rehabilitated with complete dentures. In each patient, two mini-implants measuring 15 or 13 mm in length and 1.8 mm in diameter were placed. After 15 days, overdentures were connected to the mini-implants with O-ring attachments. In each patient, retention of the overdentures was measured, and a survey of therapeutic satisfaction before and after connection to the mini-implants was administered. Prosthesis retention was measured with a digital dynamometer at 1 month, 6 months, and 2, 3, 5, and 7 years after mini-implant placement. Patient satisfaction was assessed with a survey. Data were analyzed with Student's t-test (satisfaction survey) and the Friedman test (retention measurements and satisfaction survey). The initial retention values (0.34 to 0.63 N without mini-implants) varied significantly (p ≤ 0.050). These values were less than the subsequent measurements of 3.92 to 9.64 N, taken after placement of the mini-implants and connecting them to the dentures. Satisfaction was good to very good over the 7-year observation period. Mucosa and peri-implant bone showed no pathological changes. In this limited sample size clinical study the results indicated that after connecting mandibular overdentures to two mini-implants, patient satisfaction significantly increased and retention significantly improved during the 7-year observation period. © 2015 by the American College of Prosthodontists.
Ergin, Giray; Kirac, Mustafa; Kopru, Burak; Ebiloglu, Turgay; Biri, Hasan
2018-04-22
To compare the pain status and stone free rates of flexible ureterorenoscopy (F-URS) versus mini-percutaneousnephrolithotomy (mini-PNL) for the treatment of 1-to 2-cm renal stones. This study was retrospectively designed with match paired method. Between January 2013 and December 2016, 387 patients underwent stone surgery for renal stones, 45 patients underwent FURS and 45 patients underwent mini-PNL. 90 patients were divided into two groups according to the surgical procedures. Group 1 patients underwent F-URS, and Group 2 patients underwent mini-PNL. During the intraoperative andpostoperative periods, pain management for all patients was standardized. Pain scores were determined using a visual analogue scale (VAS) completed at 2, 6, 12 and 24 hours postoperatively. The stone free status, hemoglobin levels, fluoroscopy time (FT), operation time (OT), hospitalization time (HT), return to work time (RWT), and complications were noted for each patient. Of all patients, the mean age was 41.1 ± 12.1 years and the mean stone size was 13.9 ± 2.9 mm. The VAS scores were significantly higher in the mini-PNL group at 2, 6, 12 and 24 hours (P < .05). The stone-free status and complication rates were similar between the two groups (P > .05); however, the hemoglobin decreases and the fluoroscopy, operation, hospitalization and return to work times were higher in the mini-PNL group than in the F-URS group (P < .05). F-URS is less painful than mini-PNL for the treatment of 1- to 2-cm renal stones. However, the stone free rate is similar between the two procedures while mini-PNL is superior in terms of fluoroscopy, operation, hospitalization and return to work duration. We think that F-URS is more comfortable and less painful than mini-PNL and achieves a similar stone free rate for the treatment of 1- to 2-cm renal stones.
Biodegradation studies of selected hydrocarbons from diesel oil.
Sepic, E; Trier, C; Leskovsek, H
1996-10-01
In-vitro biodegradation of aliphatic and aromatic hydrocarbons present in diesel oil by Pseudomonas fluorescens, Texaco was studied in an aqueous medium. Small aliquots of diesel oil and its aromatic fraction were incubated aerobically for periods of up to seven months and analysed by GC-MS. Biotic losses proved to be greater for aliphatic than aromatic compounds. Most biodegradation occurred within the first 20 d of incubation. The most rapid biodegradation, up to 65% in 8 d, was observed for n-alkanes (C14-C18). The same compounds were also shown to be less affected by abiotic losses. Biodegradation of n-alkanes from diesel oil and diesel oil itself showed first order kinetics for the initial incubation period. Aromatic compounds proved to be resistant to biodegradation and only phenanthrene had been degraded (30%) within 6 months.
Biodegradation of PuEDTA and Impacts on Pu Mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xun, Luying; Bolton, Jr., Harvey
Ethylenediaminetetraacetate (EDTA) and nitrilotriacetate (NTA) are synthetic chelating agents, which can form strong water-soluble complexes with radionuclides and metals and has been used to decontaminate and process nuclear materials. Synthetic chelating agents were co-disposed with radionuclides (e.g., 60Co, Pu) and heavy metals enhancing their transport in the subsurface. An understanding of EDTA biodegradation is essential to help mitigate enhanced radionuclide transport by EDTA. The objective of this research is to develop fundamental data on factors that govern the biodegradation of radionuclide-EDTA. These factors include the dominant EDTA aqueous species, the biodegradation of various metal-EDTA complexes, the uptake of various metal-EDTAmore » complexes into the cell, the distribution and mobility of the radionuclide during and after EDTA biodegradation, and the enzymology and genetics of EDTA biodegradation.« less
Chan-Chan, L H; Vargas-Coronado, R F; Cervantes-Uc, J M; Cauich-Rodríguez, J V; Rath, R; Phelps, E A; García, A J; San Román Del Barrio, J; Parra, J; Merhi, Y; Tabrizian, M
2013-08-01
Biodegradable segmented polyurethanes were prepared with poly(caprolactone) diol as a soft segment, 4,4'-methylene bis(cyclohexyl isocyanate) (HMDI) and either butanediol or dithioerythritol as chain extenders. Platelet adhesion was similar in all segmented polyurethanes studied and not different from Tecoflex® although an early stage of activation was observed on biodegradable segmented polyurethane prepared with dithioerythritol. Relative viability was higher than 80% on human umbilical vein endothelial cells in contact with biodegradable segmented polyurethane extracts after 1, 2 and 7 days. Furthermore, both biodegradable segmented polyurethane materials supported human umbilical vein endothelial cell adhesion, spreading, and viability similar to Tecoflex® medical-grade polyurethane. These biodegradable segmented polyurethanes represent promising materials for cardiovascular applications.
Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions.
Phan, Duc C; Goodwin, David G; Frank, Benjamin P; Bouwer, Edward J; Fairbrother, D Howard
2018-10-15
The properties and commercial viability of biodegradable polymers can be significantly enhanced by the incorporation of carbon nanotubes (CNTs). The environmental impact and persistence of these carbon nanotube/polymer nanocomposites (CNT/PNCs) after disposal will be strongly influenced by their microbial interactions, including their biodegradation rates. At the end of consumer use, CNT/PNCs will encounter diverse communities of microorganisms in landfills, surface waters, and wastewater treatment plants. To explore CNT/PNC biodegradation under realistic environmental conditions, the effect of multi-wall CNT (MWCNT) incorporation on the biodegradation of polyhydroxyalkanoates (PHA) was investigated using a mixed culture of microorganisms from wastewater. Relative to unfilled PHA (0% w/w), the MWCNT loading (0.5-10% w/w) had no statistically significant effect on the rate of PHA matrix biodegradation. Independent of the MWCNT loading, the extent of CNT/PNC mass remaining closely corresponded to the initial mass of CNTs in the matrix suggesting a lack of CNT release. CNT/PNC biodegradation was complete in approximately 20 days and resulted in the formation of a compressed CNT mat that retained the shape of the initial CNT/PNC. This study suggests that although CNTs have been shown to be cytotoxic towards a range of different microorganisms, this does not necessarily impact the biodegradation of the surrounding polymer matrix in mixed culture, particularly in situations where the polymer type and/or microbial population favor rapid polymer biodegradation. Copyright © 2018 Elsevier B.V. All rights reserved.
Here today, gone tomorrow: biodegradable soft robots
NASA Astrophysics Data System (ADS)
Rossiter, Jonathan; Winfield, Jonathan; Ieropoulos, Ioannis
2016-04-01
One of the greatest challenges to modern technologies is what to do with them when they go irreparably wrong or come to the end of their productive lives. The convention, since the development of modern civilisation, is to discard a broken item and then procure a new one. In the 20th century enlightened environmentalists campaigned for recycling and reuse (R and R). R and R has continued to be an important part of new technology development, but there is still a huge problem of non-recyclable materials being dumped into landfill and being discarded in the environment. The challenge is even greater for robotics, a field which will impact on all aspects of our lives, where discards include motors, rigid elements and toxic power supplies and batteries. One novel solution is the biodegradable robot, an active physical machine that is composed of biodegradable materials and which degrades to nothing when released into the environment. In this paper we examine the potential and realities of biodegradable robotics, consider novel solutions to core components such as sensors, actuators and energy scavenging, and give examples of biodegradable robotics fabricated from everyday, and not so common, biodegradable electroactive materials. The realisation of truly biodegradable robots also brings entirely new deployment, exploration and bio-remediation capabilities: why track and recover a few large non-biodegradable robots when you could speculatively release millions of biodegradable robots instead? We will consider some of these exciting developments and explore the future of this new field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katori, Teppei
2008-12-01
The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for v μ → v e appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (v μ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10more » -38 cm 2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). v e appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.« less
Do dual-thread orthodontic mini-implants improve bone/tissue mechanical retention?
Lin, Yang-Sung; Chang, Yau-Zen; Yu, Jian-Hong; Lin, Chun-Li
2014-12-01
The aim of this study was to understand whether the pitch relationship between micro and macro thread designs with a parametrical relationship in a dual-thread mini-implant can improve primary stability. Three types of mini-implants consisting of single-thread (ST) (0.75 mm pitch in whole length), dual-thread A (DTA) with double-start 0.375 mm pitch, and dual-thread B (DTB) with single-start 0.2 mm pitch in upper 2-mm micro thread region for performing insertion and pull-out testing. Histomorphometric analysis was performed in these specimens in evaluating peri-implant bone defects using a non-contact vision measuring system. The maximum inserted torque (Tmax) in type DTA was found to be the smallest significantly, but corresponding values found no significant difference between ST and DTB. The largest pull-out strength (Fmax) in the DTA mini-implant was found significantly greater than that for the ST mini-implant regardless of implant insertion orientation. Mini-implant engaged the cortical bone well as observed in ST and DTA types. Dual-thread mini-implant with correct micro thread pitch (parametrical relationship with macro thread pitch) in the cortical bone region can improve primary stability and enhanced mechanical retention.
Duncan, Laura; Georgiades, Kathy; Wang, Li; Van Lieshout, Ryan J; MacMillan, Harriet L; Ferro, Mark A; Lipman, Ellen L; Szatmari, Peter; Bennett, Kathryn; Kata, Anna; Janus, Magdalena; Boyle, Michael H
2017-12-04
The goals of the study were to examine test-retest reliability, informant agreement and convergent and discriminant validity of nine DSM-IV-TR psychiatric disorders classified by parent and youth versions of the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID). Using samples drawn from the general population and child mental health outpatient clinics, 283 youth aged 9 to 18 years and their parents separately completed the MINI-KID with trained lay interviewers on two occasions 7 to 14 days apart. Test-retest reliability estimates based on kappa (κ) went from 0.33 to 0.79 across disorders, samples and informants. Parent-youth agreement on disorders was low (average κ = 0.20). Confirmatory factor analysis provided evidence supporting convergent and discriminant validity. The MINI-KID disorder classifications yielded estimates of test-retest reliability and validity comparable to other standardized diagnostic interviews in both general population and clinic samples. These findings, in addition to the brevity and low administration cost, make the MINI-KID a good candidate for use in epidemiological research and clinical practice. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Kim, Seong-Hun; Choi, Yong-Suk; Hwang, Eui-Hwan; Chung, Kyu-Rhim; Kook, Yoon-Ah; Nelson, Gerald
2007-04-01
This article illustrates a new surgical guide system that uses cone-beam computed tomography (CBCT) images to replicate dental models; surgical guides for the proper positioning of orthodontic mini-implants were fabricated on the replicas, and the guides were used for precise placement. The indications, efficacy, and possible complications of this method are discussed. Patients who were planning to have orthodontic mini-implant treatment were recruited for this study. A CBCT system (PSR 9000N, Asahi Roentgen, Kyoto, Japan) was used to acquire virtual slices of the posterior maxilla that were 0.1 to 0.15 mm thick. Color 3-dimensional rapid prototyping was used to differentiate teeth, alveolus, and maxillary sinus wall. A surgical guide for the mini-implant was fabricated on the replica model. Proper positioning for mini-implants on the posterior maxilla was determined by viewing the CBCT images. The surgical guide was placed on the clinical site, and it allowed precise pilot drilling and accurate placement of the mini-implant. CBCT imaging allows remarkably lower radiation doses and thinner acquisition slices compared with medical computed tomography. Virtually reproduced replica models enable precise planning for mini-implant positions in anatomically complex sites.
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bartoszek, L. M.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyer, H.-O.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Nowak, J. A.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Sands, W.; Schirato, R.; Schofield, G.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2009-02-01
The MiniBooNE neutrino detector was designed and built to look for ν→ν oscillations in the (sin 2θ,Δm) parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and baseline that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.
Quality Assurance Framework for Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esterly, Sean; Baring-Gould, Ian; Booth, Samuel
To address the root challenges of providing quality power to remote consumers through financially viable mini-grids, the Global Lighting and Energy Access Partnership (Global LEAP) initiative of the Clean Energy Ministerial and the U.S. Department of Energy teamed with the National Renewable Energy Laboratory (NREL) and Power Africa to develop a Quality Assurance Framework (QAF) for isolated mini-grids. The framework addresses both alternating current (AC) and direct current (DC) mini-grids, and is applicable to renewable, fossil-fuel, and hybrid systems.
Biodegradation of Phenolic Contaminants: Current Status and Perspectives
NASA Astrophysics Data System (ADS)
Zhao, Lin; Wu, Qi; Ma, Aijin
2018-01-01
Phenolic compounds, a class of toxic pollutants in water, come mainly from a variety of industrial processes. The industrial application for biodegradation has become an important topic in recent years. In this review, we discuss the present situation, properties, and pollution characteristics of phenolic contaminants, factors affecting the degradation of phenols, microbial species and biodegradation methods. The challenges and opportunities in developing biodegradation processes of phenolic contaminants are also discussed.
Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus
da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi
2013-01-01
Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057
Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.
da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi
2013-01-01
Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.
Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)
NASA Astrophysics Data System (ADS)
Iozzino, Valentina; Speranza, Vito; Pantani, Roberto
2015-12-01
The use of biodegradable polymers is certainly an excellent strategy to solve many of the problems related to the disposal of the traditional polymers, whose accumulation in the environment is harmful and damaging. In order to optimize the use of biodegradable polymers, it is very important to understand and control the transformation processes, the structures and the morphologies resulting from the process conditions used to produce the articles and, not least, the biodegradation. The latter is strictly dependent on the just mentioned variables. The poly-lactic acid, PLA, is a biodegradable polymer. Many studies have been carried out on the degradation process of this polymer. In the course of this work we performed degradation tests on the PLA, with a specific D-isomer content, having amorphous structure, and in particular of biodegradation and hydrolysis. An acid chemical, fumaric acid, was added to PLA with the objective of controlling the rate of hydrolysis and of biodegradation. The hydrolysis process was followed, as function of time, by means of different techniques: pH variation, variation of weight of samples and variation of crystallinity degree and glass transition temperature using DSC analysis. The samples were also analyzed in terms of biodegradability by means of a homemade respirometer apparatus, in controlled composting conditions.
Zhao, Lanmei; Bao, Mutai; Yan, Miao; Lu, Jinren
2016-09-01
Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product. Copyright © 2016 Elsevier Ltd. All rights reserved.
Writer, Jeffrey; Barber, Larry B.; Ryan, Joseph N.; Bradley, Paul M.
2011-01-01
Biodegradation of select endocrine-disrupting compounds (17β-estradiol, estrone, 17α-ethynylestradiol, 4-nonylphenol, 4-nonylphenolmonoexthoylate, and 4-nonylphenoldiethoxylate) was evaluated in stream biofilm, sediment, and water matrices collected from locations upstream and downstream from a wastewater treatment plant effluent discharge. Both biologically mediated transformation to intermediate metabolites and biologically mediated mineralization were evaluated in separate time interval experiments. Initial time intervals (0–7 d) evaluated biodegradation by the microbial community dominant at the time of sampling. Later time intervals (70 and 185 d) evaluated the biodegradation potential as the microbial community adapted to the absence of outside energy sources. The sediment matrix was more effective than the biofilm and water matrices at biodegrading 4-nonylphenol and 17β-estradiol. Biodegradation by the sediment matrix of 17α-ethynylestradiol occurred at later time intervals (70 and 185 d) and was not observed in the biofilm or water matrices. Stream biofilms play an important role in the attenuation of endocrine-disrupting compounds in surface waters due to both biodegradation and sorption processes. Because sorption to stream biofilms and bed sediments occurs on a faster temporal scale (<1 h) than the potential to biodegrade the target compounds (50% mineralization at >185 d), these compounds can accumulate in stream biofilms and sediments.
Effects of carbon nanotubes on atrazine biodegradation by Arthrobacter sp.
Zhang, Chengdong; Li, Mingzhu; Xu, Xu; Liu, Na
2015-04-28
The environmental risks of engineered nanoparticles have attracted attention. However, little is known regarding the effects of carbon nanotubes (CNTs) on the biodegradation and persistence of organic contaminants in water. We investigated the impacts of pristine and oxidized multiwalled CNTs on the atrazine biodegradation rate and efficiency using Arthrobacter sp. At a concentration of 25mg/L, the CNTs enhanced the biodegradation rate by up to 20%; however, at a concentration of 100mg/L, the CNTs decreased the biodegradation rate by up to 50%. The stimulation effects resulted from enhanced bacterial growth and the overexpression of degradation genes. The inhibitory effects resulted from the toxicity of the CNTs at high concentrations. The differences between the two CNTs at tested concentrations were not significant. The biodegradation efficiency was not impacted by adsorption, and the pre-adsorbed atrazine on the CNTs was fully biodegraded when the CNT concentration was ≤25mg/L. This finding was consistent with the lack of observable desorption hysteresis for atrazine on the tested CNTs. Our results indicate that CNTs can enhance or inhibit biodegradation through a balance of two effects: the toxic effects on microbial activity and the effects of the changing bioavailability that result from adsorption and desorption. Copyright © 2015 Elsevier B.V. All rights reserved.
Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.
Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar
2014-01-01
Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers.
Polo, A M; Tobajas, M; Sanchis, S; Mohedano, A F; Rodríguez, J J
2011-07-01
Different methods for determining the toxicity and biodegradability of hazardous compounds evaluating their susceptibility to biological treatment were studied. Several compounds including chlorophenols and herbicides have been evaluated. Toxicity was analyzed in terms of EC50 and by a simple respirometric procedure based on the OECD Method 209 and by the Microtox® bioassay. The values of EC50 obtained from respirometry were in all the cases higher than those from the Microtox® test. The respirometric inhibition values of chlorophenols were related well with the number of chlorine atoms and their position in the aromatic ring. In general, herbicides showed lower inhibition, being alachlor the less toxic from this criterion. For determination of biodegradability an easier and faster alternative to the OECD Method 301, with a higher biomass to substrate ratio is proposed. When this test was negative, the Zahn-Wellens one was performed in order to evaluate the inherent biodegradability. In the fast test of biodegradability, 4-chlorocatechol and 4-chlorophenol showed a complete biodegradation by an unacclimated sludge upon 48 h. These results together with their low respirometric inhibition, allow concluding that these compounds could be conveniently removed in a WWTP. Alachlor, 2,4-dichlorophenol, 2,4,6-trichlorophenol and MCPA showed a partial biodegradation upon 28 days by the Zahn-Wellens inherent biodegradability test.