2014-10-02
Journal article published in International Biodeterioration & Biodegradation 95 (2014) 311-319. The U.S. Government is joint author of the work and...SUBJECT TERMS pseudomonas biofilms, polyurethane, biodegradation , FTIR spectroscopy, citrate, impranil 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...International Biodeterioration & Biodegradation 95 (2014) 311e319Contents lists avaiInternational Biodeterioration & Biodegradation journal homepage
Isolation of five Rubrobacter strains from biodeteriorated monuments
NASA Astrophysics Data System (ADS)
Laiz, L.; Miller, A. Z.; Jurado, V.; Akatova, E.; Sanchez-Moral, S.; Gonzalez, J. M.; Dionísio, A.; Macedo, M. F.; Saiz-Jimenez, C.
2009-01-01
In the last few years, the microbial colonisation of mural paintings in ancient monuments has been attracting the attention of microbiologists and conservators. The genus Rubrobacter is commonly found in biodeteriorated monuments, where it has been reported to cause rosy discolouration. However, to date, only three species of this genus have been isolated, all from thermophilic environments. In this paper, we studied three monuments: the Servilia and Postumio tombs in the Roman Necropolis of Carmona (Spain), and Vilar de Frades church (Portugal), in search of Rubrobacter strains. In all cases, biodeterioration and the formation of efflorescences were observed, and five Rubrobacter strains were isolated. These isolates showed different physiology and migration in denaturing gradient gel electrophoresis, suggesting they might represent new species within this genus. The isolates reproduced some biodeterioration processes in the laboratory and revealed their biomediation in crystal formation.
Investigation of best practices for maintenance of concrete bridge railings.
DOT National Transportation Integrated Search
2015-01-01
Biodeterioration on concrete surfaces of vertical elements of bridges represents a serious challenge to : the highway infrastructure in Louisiana. This report aims to document the causes of biodeterioration of : concrete surfaces and to document curr...
"Life after Last Orders": Microbiology as a Career
ERIC Educational Resources Information Center
Verran, Joanna
2004-01-01
The 2003 conference of the International Biodegradation and Biodeterioration Society (www.biodeterioration. org) and the International Biodegradation Research Group (www.ibrg.org), was held last September at the Manchester Metropolitan University. The conference, "Management and Control of Undesirable Microorganisms", followed the usual…
Enhancing durability of wood-based composites with nanotechnology
Carol Clausen
2012-01-01
Wood protection systems are needed for engineered composite products that are susceptible to moisture and biodeterioration. Protection systems using nano-materials are being developed to enhance the durability of wood-based composites through improved resistance to biodeterioration, reduced environmental impact from chemical leaching, and improved resistance to...
Guide for In-Place Treatment of Covered and Timber Bridges
Stan Lebow; Grant Kirker; Robert White; Terry Amburgey; H. Michael Barnes; Michael Sanders; Jeff Morrell
2012-01-01
Historic covered bridges and current timber bridges can be vulnerable to damage from biodeterioration or fire. This guide describes procedures for selecting and applying in-place treatments to prevent or arrest these forms of degradation. Vulnerable areas for biodeterioration in covered bridges include members contacting abutments, members near the ends of bridges...
Boniek, D; de Castro Mendes, I; Paiva, C A O; de Paula Lana, U G; Dos Santos, A F B; de Resende Stoianoff, M A
2017-11-01
This study aimed to evaluate the action of organic acids produced by the fungal population associated with the biodeterioration process of the Twelve Prophets of Aleijadinho, a set of soapstone sculptures in Congonhas, state of Minas Gerais, Brazil. For this, samples of fungi were obtained from the surface of each of the 12 outdoor stone sculptures that comprise the set of Prophets. The identification of the colonizing filamentous fungi was performed by classical microbiology and molecular methods. Some species of filamentous fungi-dependent cultivation were detected, and the presence of species Aspergillus versicolor, Curvularia lunata, Epicoccum nigrum, Penicillium citrinum and Pseudocercospora norchiensis indicated a connection with the excretion of organic acids. The acids produced by each of these fungal species were analysed quantitatively by chromatographic methods, revealing potential biodeterioration by the action of acidic metabolites excreted in the stone. Minas Gerais, Brazil, is vulnerable to the activities of mineral extraction industries, posing an imminent risk to United Nations Educational, Scientific and Cultural Organization (UNESCO) recognized cities, e.g. Congonhas. Many of these municipalities hold many soapstone religious sculptures and historical monuments. Consequently, soapstone is susceptible to filamentous fungi attack causing irreversible biodeterioration. Despite the concern related to nondestructive sampling of 18th century sculptures, in this study, we have discussed the factors that lead to biodeterioration of soapstone due to organic acid excretion by the fungi that damage the stone, thereby providing an insight in conserving and preserving the soapstone monuments. © 2017 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Mastalygina, E. E.; Popov, A. A.; Pantyukhov, P. V.
2017-06-01
The paper is devoted to investigation of deterioration of natural fillers and polyethylene composites on their basis (polyethylene/filler=70/30) due to the action of mold fungi. The fillers chemical composition, dimensional parameters and biodegradability have been analyzed as factors exert a considerable impact on composite materials biodeterioration. It has been found that the principal factor determining the biodeterioration of polyethylene/filler composites by mold fungi is chemical composition of a filler and, in turn, its biodegradability. The excess of holocellulose content over lignin content and high protein content in a filler are able to induce biofouling of the polymeric composite materials. The presence of soluble and easy hydrolysed fraction in a filler increases its availability in a polymeric matrix. According to the study results, most effective natural fillers as additives stimulating polyethylene composites biodegradability are milled straw of seed flax and hydrolyzed keratin of bird’s feather.
Contributions of in situ microscopy to the current understanding of stone biodeterioration.
de Los Ríos, Asunción; Ascaso, Carmen
2005-09-01
In situ microscopy consists of simultaneously applying several microscopy techniques without separating the biological component from its habitat. Over the past few years, this strategy has allowed characterization of the biofilms involved in biodeterioration processes affecting stone monuments and has revealed the biogeophysical and biogeochemical impact of the microbiota present. In addition, through in situ microscopy diagnosis, appropriate treatments can be designed to resolve the problems related to microbial colonization of stone monuments.
Cappitelli, Francesca; Nosanchuk, Joshua D.; Casadevall, Arturo; Toniolo, Lucia; Brusetti, Lorenzo; Florio, Sofia; Principi, Pamela; Borin, Sara; Sorlini, Claudia
2007-01-01
Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks. PMID:17071788
Cappitelli, Francesca; Nosanchuk, Joshua D; Casadevall, Arturo; Toniolo, Lucia; Brusetti, Lorenzo; Florio, Sofia; Principi, Pamela; Borin, Sara; Sorlini, Claudia
2007-01-01
Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks.
Biodeterioration of the Cement Composites
NASA Astrophysics Data System (ADS)
Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana
2016-10-01
The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising
Biodeterioration of materials in water reclamation systems
NASA Technical Reports Server (NTRS)
Ford, Tim; Maki, James S.; Mitchell, Ralph
1992-01-01
The chemicals produced by the microbial processes involved in the 'biofilms' which form on the surfaces of manned spacecraft water reclamation systems encompass both metals and organic poisons; both are potential hazards to astronaut health and the growth of the plants envisioned for closed-cycle life support systems. Image analysis is here shown to be a very useful technique for the study of biofilm formation on candidate water-processor materials for Space Station Freedom. The biodeterioration of materials exposed to biofilms can be swiftly evaluated by means of electrochemical impedance spectroscopy.
Karakasidou, Kiriaki; Nikolouli, Katerina; Amoutzias, Grigoris D; Pournou, Anastasia; Manassis, Christos; Tsiamis, George; Mossialos, Dimitris
2018-02-27
Paper documents in archives, libraries, and museums often undergo biodeterioration by microorganisms. Fungi and less often bacteria have been described to advance paper staining, so called "foxing" and degradation of paper substrates. In this study, for the first time, the fungal and bacterial diversity in biodeteriorated paper documents of Hellenic General State Archives dating back to the 19th and 20th century has been assessed by culture-dependent and independent methods. The internally transcribed spacer (ITS) region and 16S rRNA gene were amplified by PCR from fungal and bacterial isolates and amplicons were sequenced. Sequence analysis and phylogeny revealed fungal phylotypes like Penicillium sp., Cladosporium sp., Penicillium citrinum, Alternaria infectoria, Alternaria alternata, Epicoccum nigrum, and Penicillium chrysogenum which are often implicated in paper deterioration. Bacterial phylotypes closely related to known biodeteriogenic bacteria such as Bacillus spp., Micrococcus spp., Kocuria sp. in accordance with previous studies were characterized. Among the fungal phylotypes described in this study are included well-known allergens such as Penicillium spp., Alternaria spp., and Cladosporium spp. that impose a serious health threat on staff members and scholars. Furthermore, fungal isolates such as Chalastospora gossypii and Trametes ochracea have been identified and implicated in biodeterioration of historical paper manuscripts in this study for the first time. Certain new or less known fungi and bacteria implicated in paper degradation were retrieved, indicating that particular ambient conditions, substrate chemistry, or even location might influence the composition of colonizing microbiota. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro
2012-01-01
Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage.
Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro
2012-01-01
Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage. PMID:23762760
Lavin, Paola; de Saravia, Sandra Gómez; Guiamet, Patricia
2016-04-01
Fungi produce pigments and acids, generating particular local conditions which modify the physicochemical properties of materials. The aims of this work are (i) to investigate bioadhesion, foxing production and biofilm formation by Scopulariopsis sp. and Fusarium sp. isolated from document collections under laboratory conditions; (ii) to verify attack on cellulose fibres and (iii) to study the possibility of reducing fungal growth using natural products. Biofilm formation and extracellular polymeric substance (EPS) production by fungi were demonstrated in laboratory assays and by scanning electron microscopy (SEM) observations. The biocidal activity of two essential oils of Origanum vulgare L. and Thymus vulgaris L. was evaluated using the microatmosphere method. SEM observations showed that these strains were able to attach to paper and form biofilms, causing damage on them, which demonstrates the biodeterioration ability of these microorganisms. Scopulariopsis sp. and Fusarium sp. isolated from paper books showed the formation of fox-like reddish-brown colour spots, attack to the paper structure and pigment production on aged paper samples. The strains tested produced a decrease in the pH of one unit. This would substantiate the effect of the strains in paper biodeterioration. The microatmosphere method showed that volatile compounds of the essential oils have antifungal activity.
PVC biodeterioration and DEHP leaching by DEHP-degrading bacteria
Latorre, Isomar; Hwang, Sangchul; Sevillano, Maria; Montalvo-Rodriguez, Rafael
2012-01-01
Newly isolated, not previously reported, di-(2-ethylhexyl) phthalate (DEHP)-degraders were augmented to assess their role in polyvinyl chloride (PVC) shower curtain deterioration and DEHP leaching. The biofilms that developed on the surfaces of the bioaugmented shower curtains with Gram-positive strains LHM1 and LHM2 were thicker than those of the biostimulated and Gram-negative strain LHM3-augmented shower curtains. The first derivative thermogravimetric (DTG) peaks of the bioaugmented shower curtains with the Gram-positive bacteria were observed at ~287°C, whereas the control and Gram-negative strain LHM3-augmented shower curtains were detected at ~283°C. This slight delay in the first DTG peak temperature is indicative of lower plasticizer concentrations in the shower curtains that were bioaugmented with Gram positive bacteria. Despite bioaugmentation with DEHP-degraders, aqueous solutions of the bioaugmentation reactors were not DEHP-free due probably to the presence of co-solutes that must have supported microbial growth. Generally, the bioaugmented reactors with the Gram-positive strains LHM1 and LHM2 had greater aqueous DEHP concentrations in the first-half (<3 wk) of the biodeterioration experiment than the biostimulated and strain LHM3-augmented reactors. Therefore, strains LHM1 and LHM2 may play an important role in DEHP leaching to the environment and PVC biodeterioration. PMID:22736894
Treatability of Aqueous Film-Forming Foams Used for Fire Fighting.
BIODETERIORATION, *FIRE EXTINGUISHING AGENTS, SURFACE ACTIVE SUBSTANCES, FLUORINATED HYDROCARBONS, FOAM , ACTIVATED SLUDGE PROCESS, ACTIVATED CARBON, TOXICITY, WASTE DISPOSAL, TABLES(DATA), ADSORPTION.
Biodeterioration of marble in an underwater environment.
Cámara, Beatriz; de Buergo, Mónica Álvarez; Bethencourt, Manuel; Fernández-Montblanc, Tomás; La Russa, Mauro F; Ricca, Michela; Fort, Rafael
2017-12-31
This study examines the deterioration of geomaterials used throughout history that today may be found lying on the ocean floor. Submerged archaeological sites including cargoes from shipwrecks or ancient city ruins have been a topic of interest from a perspective of in situ musealization, as a way of making underwater cultural heritage accessible to the public. In an experimental study conducted at an underwater archaeological site in the Bay of Cádiz (SW Spain), we subjected two types of marble (Carrara and Macael) to three conditions to which submerged archaeological objects are often exposed: full exposure to the water column, natural processes of burial and unearthing, or permanent burial. After an 18-month study period, the factor found to mostly affect these materials was their biological colonization. This factor was assessed by estimating total surface biocover and the rate of surface biocolonization, and also through the identification of skeletons and associated alteration forms by light microscopy, and scanning electron microscopy (SEM). Biofouling and bioerosion were the main causes of biodeterioration and dependent on the position of the marble specimens in the seawater. The response of both materials was similar, though dolomite crystals in the Carrara marble acted as a protective barrier against actively penetrating microorganisms. These investigations have allowed the study of tracers left by epilithic encrusting organisms and endolithic bioeroders on marbles intentionally exposed to seawater, providing new insights to the understanding of the biodeterioration processes occurring in cultural heritage stones, with significant implications when they are part of underwater archaeological remains. Copyright © 2017 Elsevier B.V. All rights reserved.
Carol A. Clausen
2010-01-01
Under proper conditions, wood will give centuries of service. However, under conditions that permit the development of wood-degrading organisms, protection must be provided during processing, merchandising, and use. The organisms that can degrade wood are principally fungi, insects, bacteria, and marine borers.
Characterization and mediation of microbial deterioration of concrete bridge structures.
DOT National Transportation Integrated Search
2013-04-01
Samples obtained from deteriorated bridge structures in Texas were cultured in growth medium containing thiosulfate as an energy source and investigated for acid production, type of acid produced by microbes and the bio-deterioration of concrete cyli...
S. N. Kartal; Frederick Green; Carol A. Clausen
2009-01-01
Nanotechnology has the potential to affect the field of wood preservation through the creation of new and unique metal biocides with improved properties. This study evaluated leachability and efficacy of southern yellow pine wood...
López-Miras, María del Mar; Martín-Sánchez, Inés; Yebra-Rodríguez, África; Romero-Noguera, Julio; Bolívar-Galiano, Fernando; Ettenauer, Jörg; Sterflinger, Katja; Piñar, Guadalupe
2013-01-01
In this study, we investigated the microbial community (bacteria and fungi) colonising an oil painting on canvas, which showed visible signs of biodeterioration. A combined strategy, comprising culture-dependent and -independent techniques, was selected. The results derived from the two techniques were disparate. Most of the isolated bacterial strains belonged to related species of the phylum Firmicutes, as Bacillus sp. and Paenisporosarcina sp., whereas the majority of the non-cultivable members of the bacterial community were shown to be related to species of the phylum Proteobacteria, as Stenotrophomonas sp. Fungal communities also showed discrepancies: the isolated fungal strains belonged to different genera of the order Eurotiales, as Penicillium and Eurotium, and the non-cultivable belonged to species of the order Pleosporales and Saccharomycetales. The cultivable microorganisms, which exhibited enzymatic activities related to the deterioration processes, were selected to evaluate their biodeteriorative potential on canvas paintings; namely Arthrobacter sp. as the representative bacterium and Penicillium sp. as the representative fungus. With this aim, a sample taken from the painting studied in this work was examined to determine the stratigraphic sequence of its cross-section. From this information, “mock paintings,” simulating the structure of the original painting, were prepared, inoculated with the selected bacterial and fungal strains, and subsequently examined by micro-Fourier Transform Infrared spectroscopy, in order to determine their potential susceptibility to microbial degradation. The FTIR-spectra revealed that neither Arthrobacter sp. nor Penicillium sp. alone, were able to induce chemical changes on the various materials used to prepare “mock paintings.” Only when inoculated together, could a synergistic effect on the FTIR-spectra be observed, in the form of a variation in band position on the spectrum. PMID:24312203
Liu, Zijun; Wang, Yu; Pan, Xiaoxuan; Ge, Qinya; Ma, Qinglin; Li, Qiang; Fu, Tongtong; Hu, Cuiting; Zhu, Xudong; Pan, Jiao
2017-01-01
The Mausoleum of the Dingtao King (termed ‘M2’) is a large-scale huangchang ticou tomb that dates to the Western Han Dynasty (206 B.C.–25 A.D.). It is the highest-ranking Han Dynasty tomb discovered to date. However, biodeterioration on the surface of the tomb M2 is causing severe damage to its wooden materials. The aim of the present study was to give insight into the fungal communities colonized the wooden tomb. For this purpose, seven samples were collected from different sections of the tomb M2 which exhibited obvious biodeterioration in the form of white spots. Microbial structures associated with the white spots were observed with scanning electron microscopy. Fungal community structures were assessed for seven samples via a combination of high-throughput sequencing and culture-dependent techniques. Sequencing analyses identified 114 total genera that belonged to five fungal phyla. Hypochnicium was the most abundant genus across all samples and accounted for 98.61–99.45% of the total community composition. Further, Hypochnicium sp. and Mortierella sp. cultures were successfully isolated from the tomb samples, and were distinguished as Hypochnicium sp. WY-DT1 and Mortierella sp. NK-DT1, respectively. Cultivation-dependent experiments indicated that the dominant member, Hypochnicium sp. WY- DT1, could grow at low temperatures and significantly degraded cellulose and lignin. Thus, our results taken together suggest that this fungal strain must be regarded as a serious threat to the preservation of the wooden tomb M2. The results reported here are useful for informing future contamination mitigation efforts for the tomb M2 as well as other similar cultural artifacts. PMID:28890715
Determination of indoor air quality in archives and biodeterioration of the documentary heritage.
Borrego, Sofía; Lavin, Paola; Perdomo, Ivette; Gómez de Saravia, Sandra; Guiamet, Patricia
2012-01-01
Documentary heritage is permanently subject to suffering from physical, chemical, and/or biological alterations. Biological deterioration by microorganisms (bacteria and fungi) causes undesirable changes on material properties. Microorganisms affect different organic, natural or synthetic substrates (cellulose, polycarbonates), metals, and compounds of optical and magnetic devices (CD, VHS). Paper made by vegetal fibers, functional additives (glue, optical polishers, consolidating agents), and inks with organic bindings are used as sources of nutrients. The environmental microorganisms that form the microbial charge of indoor air at repositories (archives, libraries) storing cultural heritage can deteriorate the different supports of heritage importance and affect human health as allergies and skin affections. The aims of this research were to study microbial contamination of the environment and its influence on biodeterioration by the biofilm formation and to analyze the relationship between environment microbiota and biofilm formation in materials stored at three archives in Argentina and in two repositories of the National Archive of the Republic of Cuba.
Crookes-Goodson, Wendy J; Bojanowski, Caitlin L; Kay, Michelle L; Lloyd, Pamela F; Blankemeier, Andrew; Hurtubise, Jennifer M; Singh, Kristi M; Barlow, Daniel E; Ladouceur, Harold D; Matt Eby, D; Johnson, Glenn R; Mirau, Peter A; Pehrsson, Pehr E; Fraser, Hamish L; Russell, John N
2013-01-01
Microbial biofilms cause the deterioration of polymeric coatings such as polyurethanes (PUs). In many cases, microbes have been shown to use the PU as a nutrient source. The interaction between biofilms and nutritive substrata is complex, since both the medium and the substratum can provide nutrients that affect biofilm formation and biodeterioration. Historically, studies of PU biodeterioration have monitored the planktonic cells in the medium surrounding the material, not the biofilm. This study monitored planktonic and biofilm cell counts, and biofilm morphology, in long-term growth experiments conducted with Pseudomonas fluorescens under different nutrient conditions. Nutrients affected planktonic and biofilm cell numbers differently, and neither was representative of the system as a whole. Microscopic examination of the biofilm revealed the presence of intracellular storage granules in biofilms grown in M9 but not yeast extract salts medium. These granules are indicative of nutrient limitation and/or entry into stationary phase, which may impact the biodegradative capability of the biofilm.
Rebecca Ibach; Stan T. Lebow
2012-01-01
Most wood species used in commercial and residential construction have little natural biological durability and will suffer from biodeterioration when exposed to moisture. Historically, this problem has been overcome by treating wood for outdoor use with toxic wood preservatives. As societal acceptance of chemical use changes, there is continual pressure to develop and...
Preservative treatments for building components
Stan Lebow
2007-01-01
The wood species most commonly used in construction have little natural durability Thus, they are treated with preservatives when used in conditions that favor biodeterioration. The type of preservative used varies with the type of wood product, exposure condition, and specific agent of deterioration. This paper discusses the characteristics of several preservative...
Guide for Use of Wood Preservatives in Historic Structures
Stan Lebow; Ronald W. Anthony
2012-01-01
This document provides guidance on wood preservation options in the context of historic preservation. Preserving wooden building materials is critical to historic preservation practitioners. Biodeterioration can be minimized through design, construction practices, maintenance, and, if necessary, by use of wood preservatives. Moisture is the primary cause of...
Terry L. Highley
1999-01-01
Under proper conditions, wood will give centuries of service. However, if conditions exist that permit the development of wood-degrading organisms, protection must be provided during processing, merchandising, and use. The principal organisms that can degrade wood are fungi, insects, bacteria, and marine borers. Molds, most sapwood stains, and decay are caused by fungi...
Innovations in Wood Protection in the age of Nanotechnology
Carol A. Clausen
2014-01-01
Advances in wood protection based on nanotechnology are being developed to improve resistance of wood products to biodeterioration, reduce environmental impacts from chemical leaching and resist UV degradation of in-service wood. A number of different approaches have been explored. First, the nanometals zinc oxide and copper oxide were evaluated as preservative...
Detecting decay fungi with antibody-based tests and immunoassays
Carol A. Clausen
2003-01-01
Early detection of wood decay can prolong the service life of wood. Antibodies are the ideal probe for detecting fungi that cause biodeterioration because they are highly specific and can quantitatively determine the fungal antigen concentration from highly complex structures, such as wood. Polyclonal antibodies recognize multiple chemical sites of the targeted...
USDA-ARS?s Scientific Manuscript database
Globally, grain mold is a major hurdle affecting sorghum productivity and quality. This disease is caused by complex fungal pathogens, among them Fusarium thapsinum and Curvularia lunata are the major fungi prevalent in many sorghum growing regions. This study examined the effect of inoculating a ...
Piotrowska, Małgorzata; Otlewska, Anna; Rajkowska, Katarzyna; Koziróg, Anna; Hachułka, Mariusz; Nowicka-Krawczyk, Paulina; Wolski, Grzegorz J; Gutarowska, Beata; Kunicka-Styczyńska, Alina; Zydzik-Białek, Agnieszka
2014-01-01
The paper presents the results of a study conducted at the Auschwitz-Birkenau State Museum in Oświęcim on the occurrence of biodeterioration. Visual assessment of the buildings revealed signs of deterioration of the buildings in the form of dampness, bulging and crumbling plaster, and wood fiber splitting. The external surfaces, and especially the concrete strips and ground immediately adjoining the buildings, were colonized by bryophytes, lichens, and algae. These organisms developed most intensively close to the ground on the northern sides of the buildings. Inside the buildings, molds and bacteria were not found to develop actively, while algae and wood-decaying fungi occurred locally. The factors conducive to biological corrosion in the studied buildings were excessive dampness of structural partitions close to the ground and a relative air humidity of above 70%, which was connected to ineffective moisture insulation. The influence of temperature was smaller, as it mostly affected the quantitative composition of the microorganisms and the qualitative composition of the algae. Also the impact of light was not very strong, but it was conducive to algae growth.
Ettenauer, Jörg D.; Jurado, Valme; Piñar, Guadalupe; Miller, Ana Z.; Santner, Markus; Saiz-Jimenez, Cesareo; Sterflinger, Katja
2014-01-01
A number of mural paintings and building materials from monuments located in central and south Europe are characterized by the presence of an intriguing rosy discolouration phenomenon. Although some similarities were observed among the bacterial and archaeal microbiota detected in these monuments, their origin and nature is still unknown. In order to get a complete overview of this biodeterioration process, we investigated the microbial communities in saline environments causing the rosy discolouration of mural paintings in three Austrian historical buildings using a combination of culture-dependent and -independent techniques as well as microscopic techniques. The bacterial communities were dominated by halophilic members of Actinobacteria, mainly of the genus Rubrobacter. Representatives of the Archaea were also detected with the predominating genera Halobacterium, Halococcus and Halalkalicoccus. Furthermore, halophilic bacterial strains, mainly of the phylum Firmicutes, could be retrieved from two monuments using special culture media. Inoculation of building materials (limestone and gypsum plaster) with selected isolates reproduced the unaesthetic rosy effect and biodeterioration in the laboratory. PMID:25084531
NASA Astrophysics Data System (ADS)
Hwang, S.; Latorre, I.; Caban, M.; Soto, B.; Montalvo-Rodríguez, R.; Hernández-Maldonado, A.
2012-12-01
Bioleaching of Di-(2-ethylhexyl) phthalate (DEHP) from PVC sheets was studied with newly isolated, Gram-positive strains LHM1 and LHM2 capable of growing on DEHP as the sole carbon source. According to 16S rRNA gene analysis, strains LHM1 and LHM2 were closely related (more than 97% similarity) to Chryseomicrobium imtechense MW 10(T) and Lysinibacillus fusiformis NBRC 15717(T), respectively. The biodeteriorated PVC sheets by the strains LHM1 and LHM2 had thicker biofilm development. Despite their metabolic capability of degrading DEHP as the sole carbon source, the strains LHM1 and LHM2 did not metabolize all DEHP leached out of the PVC sheets. Thermogravimetric analysis (TGA) showed that the biodeterioration by strains LHM1 and LHM2 resulted in less amount of and weakly bonded DEHP present in PVC sheets, in comparison to the virgin PVC sheet. Therefore, PVC biodeterioration by strains LHM1 and LHM2 might play an important role in stability of PVC sheets and fate and effect of leached DEHP on the environmental receptors. In response to this, an advanced adsorption with SBA-15 was assessed as a potential alternative DEHP remediation with arsenic as a co-contaminant. SBA-15 had an excellent arsenic adsorption showing >90% arsenic removal when arsenic was present as a singular contaminant. Adsorption effectiveness was irrelevant to the solid/liquid (S/L) ratio. However, when arsenic was present together with DEHP, arsenic adsorption to bare SBA-15 was reduced by 10 - 40%, with lesser S/L ratio having greater arsenic removal. On the contrary, bare SBA-15 only adsorbed ~30% of DEHP on average. When DEHP was present as a co-solute with arsenic, DEHP adsorption to bare SBA-15 was increased. For SBA-15 regeneration, adsorbed arsenic was recovered with EDTA elution, whereas adsorbed DEHP was destructed with Fenton oxidation.
AWPA biodeterioration hazard map revisited
Grant T. Kirker; Amy B. Bishell; William J. Hickey
2017-01-01
The fungal decay hazard map used by the American Wood Protection Association (AWPA) currently describes regional decay hazards in ground contact for North America and is based on condition assessments of utility poles from the 1970âs. Current work at the USDA Forest Service, Forest Products Laboratory is underway to analyze soil and wood samples from several National...
Measuring wood quality in standing trees--a review
Mark Rudnicki; Xiping Wang; Robert J. Ross; R. Bruce Allison; Kevin Perzynski
2017-01-01
This report summarizes a state-of-the-art review conducted on the topic of field measurement of the quality of wood in trees. The foundation science of micro-resistance drilling and acoustic-based techniques for use with woody materials is presented, and use of these techniques for the detection of biodeterioration in wood is discussed. Quantification of the physical...
Rate My Stake: Interpretation of Ordinal Stake Ratings
Patricia Lebow; Grant Kirker
2014-01-01
Ordinal rating systems are commonly employed to evaluate biodeterioration of wood exposed outdoors over long periods of time. The purpose of these ratings is to compare the durability of test systems to nondurable wood products or known durable wood products. There are many reasons why these systems have evolved as the chosen method of evaluation, including having an...
Simon R. Przewloka; Douglas M. Crawford; Douglas R. Rammer; Donald L. Buckner; Bessie M. Woodward; Gan Li; Darrel D. Nicholas
2008-01-01
Demand for the development of environmentally benign wood preservatives has increased significantly. To reduce the evaluation time of prospective candidates, reliable accelerated decay methodologies are necessary for laboratory screening of potential preservatives. Ongoing research at Mississippi State University has focused upon utilizing custom built equipment to...
Bibliography on Fouling, Biodeterioration and their Control.
1981-06-01
Related Compounds as Anti-Borer, Anti-Fungal, and Anti- Termitic Agents" Intl. Biodet. Bull. Vol. 15, No. 1, pp 19-27 (1979) R-6 82. Burnett, R. F. "Modern...Controlled Release of a Crustacean Sex Pheromone . Amer. Zool. Vol. 14, No. 4, p 1266 (1974) 117. Chromy, L. and K. Uhacz, "Antifouling Paints Based on
Carol A. Clausen; Vina W. Yang; Rachel A. Arango; Laura E. Hasburgh; Patricia K. Lebow; Richard S. Reiner
2015-01-01
Protecting wood products from biodeterioration has been a dynamic area of research in the past decade with an emphasis on the development of non-arsenical wood preservatives. Naturally occurring cellulose nanomaterials that are reported to have unique chemical properties, high strength, and stiffness were evaluated for the potential to improve durability of wood either...
Piotrowska, Małgorzata; Otlewska, Anna; Rajkowska, Katarzyna; Koziróg, Anna; Hachułka, Mariusz; Nowicka-Krawczyk, Paulina; Wolski, Grzegorz J.; Gutarowska, Beata; Kunicka-Styczyńska, Alina; Żydzik-Białek, Agnieszka
2014-01-01
The paper presents the results of a study conducted at the Auschwitz-Birkenau State Museum in Oświęcim on the occurrence of biodeterioration. Visual assessment of the buildings revealed signs of deterioration of the buildings in the form of dampness, bulging and crumbling plaster, and wood fiber splitting. The external surfaces, and especially the concrete strips and ground immediately adjoining the buildings, were colonized by bryophytes, lichens, and algae. These organisms developed most intensively close to the ground on the northern sides of the buildings. Inside the buildings, molds and bacteria were not found to develop actively, while algae and wood-decaying fungi occurred locally. The factors conducive to biological corrosion in the studied buildings were excessive dampness of structural partitions close to the ground and a relative air humidity of above 70%, which was connected to ineffective moisture insulation. The influence of temperature was smaller, as it mostly affected the quantitative composition of the microorganisms and the qualitative composition of the algae. Also the impact of light was not very strong, but it was conducive to algae growth. PMID:25279789
Reproducing stone monument photosynthetic-based colonization under laboratory conditions.
Miller, Ana Zélia; Laiz, Leonila; Gonzalez, Juan Miguel; Dionísio, Amélia; Macedo, Maria Filomena; Saiz-Jimenez, Cesareo
2008-11-01
In order to understand the biodeterioration process occurring on stone monuments, we analyzed the microbial communities involved in these processes and studied their ability to colonize stones under controlled laboratory experiments. In this study, a natural green biofilm from a limestone monument was cultivated, inoculated on stone probes of the same lithotype and incubated in a laboratory chamber. This incubation system, which exposes stone samples to intermittently sprinkling water, allowed the development of photosynthetic biofilms similar to those occurring on stone monuments. Denaturing gradient gel electrophoresis (DGGE) analysis was used to evaluate the major microbial components of the laboratory biofilms. Cyanobacteria, green microalgae, bacteria and fungi were identified by DNA-based molecular analysis targeting the 16S and 18S ribosomal RNA genes. The natural green biofilm was mainly composed by the Chlorophyta Chlorella, Stichococcus, and Trebouxia, and by Cyanobacteria belonging to the genera Leptolyngbya and Pleurocapsa. A number of bacteria belonging to Alphaproteobacteria, Bacteroidetes and Verrucomicrobia were identified, as well as fungi from the Ascomycota. The laboratory colonization experiment on stone probes showed a colonization pattern similar to that occurring on stone monuments. The methodology described in this paper allowed to reproduce a colonization equivalent to the natural biodeteriorating process.
Anke Schirp; Rebecca E. Ibach; David E. Pendleton; Michael P. Wolcott
2008-01-01
Much of the research on wood-plastic composites (WPC) has focused on formulation development and processing while high biological durability of the material was assumed. The gap between assumption and knowledge in biodeterioration of WPC needs to be reduced. Although some information on the short-term resistance of WPC against biological degradation is available, long-...
Oceanic Chemistry and Biology Group (ONR Code 422CB) Program Science Report, FY 81,
1982-03-01
instruments to provide the tools needed by the marine chemical conmunity to address small scale length features and rapidly f evolving phenomena. Underway...Through a combined application of field and laboratory studies an attempt is being made to identify the marine abiotic processes which are potentially...Biodeterioration Dissolved Organics Particulate Matter Bioluminescence HEBBLE Sediment Traps Bioturbation Marine Biology STIE Boring Organisms Marine Chemistry
International Biodeterioration Symposium (5th), Aberdeen, Scotland, 7-11 September 1981.
1981-12-02
Scopulariopsi8 brevicauli8 isolates obtained from broiler litter. S.K. Ogundana & N. Onwubuya (Nigeria): Fungal deterioration of maize in Butler storage. A...Anaerobic digestion of paper mill sludges, a potential sources of energy. A. Maccubbin, R. Benner & R.E. Hodson (US): Interaction of pulp mill effluents...with microbial populations in coastal waters and sediments. R.M. Madden and P. Forget (France): Anaerobic digestion of paper mill effluent. Thursday 10
Piñar, Guadalupe; Piombino-Mascali, Dario; Maixner, Frank; Zink, Albert; Sterflinger, Katja
2013-01-01
The Capuchin Catacombs of Palermo contain over 1800 preserved bodies dating from the 16th to 20th centuries AD and showing evidence of biodeterioration. An extensive microbiological and molecular investigation was recently performed. Samples were taken from skin, muscle, hair, bone, stuffing materials, clothes, and surrounding walls as well as from the indoor air. In this study, we witnessed that the different degradation phenomena observed on the variety of materials located at the Capuchin Catacombs of Palermo are biological in origin. Molecular techniques showed the dominance of halophilic species of the domains Bacteria and Archaea on the walls and – as a result of salt emanating from the walls – on the mummies themselves. Nevertheless, specialized microorganisms belonging to taxa well-known for their cellulolytic and proteolytic activities were detected on clothes and stuffing material, and on skin, muscle, hair, and bone, respectively. This specialized microbiota is threatening the conservation of the mummies themselves. Additionally, sequences related to the human skin microbiome and to some pathogenic Bacteria (order Clostridiales) and fungi (genus Phialosimplex) were identified on samples derived from the mummies. Furthermore, a phosphate-reducing fungus, Penicillium radicum, was detected on bone. Finally, the high concentration of airborne fungal spores is not conducive to the conservation of the human remains and is posing a potential health risk for visitors. PMID:23772650
Pangallo, Domenico; Bučková, Maria; Kraková, Lucia; Puškárová, Andrea; Šaková, Nikoleta; Grivalský, Tomaš; Chovanová, Katarina; Zemánková, Milina
2015-02-01
During the 20th century, synthetic polymers were greatly used in the field of art. In particular, the epoxy resins were used for both conservation and for creating sculptures. The biodeterioration of these polymers has not been adequately studied. The aim of this investigation was to examine the microflora responsible for the deterioration of an epoxy statue exposed to outdoor conditions. Fungal and bacterial microflora were isolated from the art object, clustered by fluorescence-ITS (internal transcribed spacer), identified by ITS and 16S rRNA sequencing and tested for their lipolytic abilities by three agar assays. Different algal, bacterial, cyanobacterial and fungal clone libraries were constructed. The surrounding airborne microflora was analyzed using culture-dependent and culture-independent approaches. The results indicated the presence, on the statue surface, of an interesting and differentiate microbial community composed of rock-inhabiting members, algal photobionts (Trebouxia spp., Chloroidium ellipsoideum and Chlorella angustoellipsoidea), Cyanobacteria (Leptolyngbya sp., Phormidium sp., Cylindrospermum stagnale, Hassallia byssoidea and Geitlerinema sp.), black yeasts related to the species Friedmanniomyces endolithicus, Pseudotaeniolina globosa, Phaeococcomyces catenatus and Catenulostroma germanicum and several plant-associated fungi. This investigation provides new information on the potential microfloral inhabitants of epoxy resin discovering a new ecological niche, occupied mainly by several members of rock-colonizing microbial species. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
An, Kwang-Deuk; Kiyuna, Tomohiko; Kigawa, Rika; Sano, Chie; Miura, Sadatoshi; Sugiyama, Junta
2009-11-01
Penicillium appeared as the major dweller in the Takamatsuzuka Tumulus (TT) and Kitora Tumulus (KT) stone chambers, both located in the village of Asuka, Nara Prefecture, in relation to the biodeterioration of the 1,300-year-old mural paintings, plaster walls and ceilings. Of 662 Penicillium isolates from 373 samples of the TT (sampling period, May 2004-2007) and the KT (sampling period, June 2004-Sep 2007), 181 were phenotypically assigned as Penicillium sp. 1 which shared similar phenotypic characteristics of sect. Roqueforti in Penicillium subg. Penicillium. Fifteen representative isolates of Penicillium sp. 1, 13 from TT and 2 from KT, were selected for molecular phylogenetic analysis. The 28S rDNA D1/D2, ITS, beta-tubulin, and lys2 gene sequence-based phylogenies clearly demonstrated that the three known species P. roqueforti, P. carneum and P. paneum in sect. Roqueforti, and all TT and KT isolates grouped together. In addition to this, TT and KT isolates formed a monophyletic group with the ex-holotype strain CBS 101032 of P. paneum Frisvad with very strong bootstrap supports. So far, P. paneum has been isolated only from mouldy rye breads, other foods, and baled grass silage. Therefore, this is the first report of P. paneum isolation from samples relating to the biodeteriorated cultural properties such as mural paintings on plaster walls.
Adamiak, Justyna; Bonifay, Vincent; Otlewska, Anna; Sunner, Jan A.; Beech, Iwona B.; Stryszewska, Teresa; Kańka, Stanisław; Oracz, Joanna; Żyżelewicz, Dorota; Gutarowska, Beata
2017-01-01
The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS). As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS) to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels), MgSO4, Mg(NO3)2), were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity. PMID:29321766
Fungi Associated with Materials’ Biodeterioration in the Humid Tropics
1983-01-01
Cephalosphorium sp and Rhizopus sp. The mineral salts cultures again showed the presence of Trichoderma sp and Cephalosporium sp. The fungus Fusarium sp was... Trichoderma SD #1 A/ Ce halosvorium sp a Curvlara sp Phoma SD Unkn-own #? Tropicalized Cotton Cephalosporlum sp a/ Trichoderna SD #1 a! (2 weeks...sp Cotton None Trichoderma sp #2 a usarium SD i/ Phoma SD A/ Te-iFaosorium SD Cotton Cephaloseoriun sD a/ Fusariun SD a/ (2 weeks additional Aroasidu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Highley, T.L.; Clausen, C.A.; Croan, S.C.
1994-03-01
Growing concerns about the environment present an urgent need for new approaches to preserving wood. Some commonly used preservatives have been banned or restricted in several countries. The research paper first describes current knowledge about how white-and-brown rot fungi decay wood and then delineates research in to problem areas: (1) control of wood decay through targeting biosynthetic and degradative pathways, and (2) biological control (biocontrol) of wood decay through non-decay micro-organisms.
1990-06-01
MARINE MUSSELS (MYTILUS EDULIS) IN FIVE POPULATIONS OVER A FIVE YEAR TIME PERIOD ........... 24 3 SECTION OF 90:10 COPPER-NICKEL PIPE FROM THE AFT...the world’s oceans. 3 NAVSWC TR 90-176 Most marine fouling invertebrates have a larval or pseudolarval form that is released into the water and...34The Attachment of Macrofouling Invertebrates ," in Costlow, J. D. and Tipper, R. C., Eds, Marine Biodeterioration: An Interdisci- plinary Study, Naval
Biswas, Jayant; Sharma, Kavita; Harris, K K; Rajput, Yogita
2013-09-01
In the last few decades, losses of our cultural heritage due to biodeteriorationare beinghighly recognized. From museum objects to rock monuments, the microbial biodeterioration agents are found to be the most destructive. Possibilities for proper preservative measure(s) are always more when it is only a monument, statue, museum article, or pre-historic art in any small subterranean cave. Nevertheless, preservation/protection of the footprints occupying a big area, lying scattered in a very negligible manner requires safeguard against several deterioration factors; right from various physical, chemical and biological agents which are indeed interrelated to each other. In the present study, some microbial communities possibly responsible for deteriorating the rocks of Kabra-pahad, where the most famous pre-historic rock paints of India prevail have been identified. The diversity of fungi and bacteria present in the stone crust of the infected areas has been studied by employing standard laboratory methods. The cultivated cultures confirmed total fifteen fungal species, among which Aspergillus group were the most dominant. Among bacteria, total 80 numbers of colonies were observed that dominated by two major groups; Micrococcus.spp and Staphylococcus spp. The pre-historic footprint in the form of rock paints in Kabra-pahad of district Raigarh, Chhattisgarh, India is lying in a very deteriorated manner. In the present study, we have tried to identify few major deteriorating factors that are responsible for such degradation of our existing pre-historic footprints.
Cámara, Beatriz; De los Ríos, Asuncion; Urizal, Marta; de Buergo, Mónica Alvarez; Varas, Maria Jose; Fort, Rafael; Ascaso, Carmen
2011-08-01
This study examines the microbial colonization of three fronts of an abandoned dolostone quarry (Redueña, Madrid, Spain) exposed to atmospheric conditions for different time periods since Roman times to the present. Through scanning electron microscopy in backscattered electron mode (SEM-BSE), endolithic colonization was predominantly detected in the most recently exposed front, while in the longer exposed quarry fronts, epilithic forms of growth were most often observed. These observations were confirmed by denaturing gradient gel electrophoresis (DGGE) analysis. Based on the distribution pattern of microbial colonization in the different quarry fronts, we then established a sequence of colonization events that took place over this long time frame. Bioalteration processes related to this sequential colonization were also identified. Characterizing these sequential processes can be useful for interpreting biodeterioration processes in historic dolostone monuments, especially those affecting constructions in the area of the Redueña stone quarry. In a second experimental stage, different biocide treatments were tested on this quarry rock to find the best way to avoid the microbial colonization effects identified. Through combined SEM-BSE/DGGE analysis, the efficacy of several biocides against the microorganisms inhabiting the dolostones was assessed after 4 and 16 months treatment. In general, all treatments were effective at reducing around 80% of the lichen cover, although effects on endolithic lithobiontic communities were dependent on how well the rock surface had been mechanically cleaned prior to treatment and gradually disappeared over time.
Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration.
Alakomi, H-L; Paananen, A; Suihko, M-L; Helander, I M; Saarela, M
2006-07-01
Gram-negative bacteria play an important role in the formation and stabilization of biofilm structures on stone surfaces. Therefore, the control of growth of gram-negative bacteria offers a way to diminish biodeterioration of stone materials. The effect of potential permeabilizers on the outer membrane (OM) properties of gram-negative bacteria was investigated and further characterized. In addition, efficacy of the agents in enhancing the activity of a biocide (benzalkonium chloride) was assessed. EDTA, polyethylenimine (PEI), and succimer (meso-2,3-dimercaptosuccinic) were shown to be efficient permeabilizers of the members of Pseudomonas and Stenotrophomonas genera, as indicated by an increase in the uptake of a hydrophobic probe (1-N-phenylnaphthylamine) and sensitization to hydrophobic antibiotics. Visualization of Pseudomonas cells treated with EDTA or PEI by atomic force microscopy revealed damage in the outer membrane structure. PEI especially increased the surface area and bulges of the cells. Topographic images of EDTA-treated cells were compatible with events assigned for the effect of EDTA on outer membranes, i.e., release of lipopolysaccharide and disintegration of OM structure. In addition, the effect of EDTA treatment was visualized in phase-contrast images as large areas with varying hydrophilicity on cell surfaces. In liquid culture tests, EDTA and PEI supplementation enhanced the activity of benzalkonium chloride toward the target strains. Use of permeabilizers in biocide formulations would enable the use of decreased concentrations of the active biocide ingredient, thereby providing environmentally friendlier products.
Piñar, Guadalupe; Piombino-Mascali, Dario; Maixner, Frank; Zink, Albert; Sterflinger, Katja
2013-11-01
The Capuchin Catacombs of Palermo contain over 1800 preserved bodies dating from the 16th to 20th centuries AD and showing evidence of biodeterioration. An extensive microbiological and molecular investigation was recently performed. Samples were taken from skin, muscle, hair, bone, stuffing materials, clothes, and surrounding walls as well as from the indoor air. In this study, we witnessed that the different degradation phenomena observed on the variety of materials located at the Capuchin Catacombs of Palermo are biological in origin. Molecular techniques showed the dominance of halophilic species of the domains Bacteria and Archaea on the walls and - as a result of salt emanating from the walls - on the mummies themselves. Nevertheless, specialized microorganisms belonging to taxa well-known for their cellulolytic and proteolytic activities were detected on clothes and stuffing material, and on skin, muscle, hair, and bone, respectively. This specialized microbiota is threatening the conservation of the mummies themselves. Additionally, sequences related to the human skin microbiome and to some pathogenic Bacteria (order Clostridiales) and fungi (genus Phialosimplex) were identified on samples derived from the mummies. Furthermore, a phosphate-reducing fungus, Penicillium radicum, was detected on bone. Finally, the high concentration of airborne fungal spores is not conducive to the conservation of the human remains and is posing a potential health risk for visitors. © 2013 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.
A multiproxy approach to evaluate biocidal treatments on biodeteriorated majolica glazed tiles.
Coutinho, M L; Miller, A Z; Martin-Sanchez, P M; Mirão, J; Gomez-Bolea, A; Machado-Moreira, B; Cerqueira-Alves, L; Jurado, V; Saiz-Jimenez, C; Lima, A; Phillips, A J L; Pina, F; Macedo, M F
2016-12-01
The Fishing House located on the grounds of the Marquis of Pombal Palace, Oeiras, Portugal, was built in the 18th century. During this epoch, Portuguese gardens, such as the one surrounding the Fishing House, were commonly ornamented with glazed wall tile claddings. Currently, some of these outdoor tile panels are covered with dark colored biofilms, contributing to undesirable aesthetic changes and eventually inducing chemical and physical damage to the tile surfaces. Phylogenetic analyses revealed that the investigated biofilms are mainly composed of green algae, cyanobacteria and dematiaceous fungi. With the aim of mitigating biodeterioration, four different biocides (TiO 2 nanoparticles, Biotin ® T, Preventol ® RI 80 and Albilex Biostat ® ) were applied in situ to the glazed wall tiles. Their efficacy was monitored by visual examination, epifluorescence microscopy and DNA-based analysis. Significant changes in the microbial community composition were observed 4 months after treatment with Preventol ® RI 80 and Biotin ® T. Although the original community was inactivated after these treatments, an early stage of re-colonization was detected 6 months after the biocide application. TiO 2 nanoparticles showed promising results due to their self-cleaning effect, causing the detachment of the biofilm from the tile surface, which remained clean 6 and even 24 months after biocide application. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L; Brauer, Jonathan I; Duncan, Kathleen E; Adamiak, Justyna; Sunner, Jan A; Beech, Iwona B
2015-01-01
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.
Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L.; Brauer, Jonathan I.; Duncan, Kathleen E.; Adamiak, Justyna; Sunner, Jan A.; Beech, Iwona B.
2015-01-01
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II–Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes. PMID:26483760
Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo).
Groth, I; Vettermann, R; Schuetze, B; Schumann, P; Saiz-Jimenez, C
1999-05-01
A variety of isolation procedures were carried out to study the involvement of bacteria in the colonisation and biodeterioration of Spanish caves with paleolithic rock art (Altamira and Tito Bustillo). The applied techniques mainly aimed to isolate heterotrophic bacteria such as streptomycetes, nocardioform and coryneform actinomycetes, and other gram-positive and gram-negative bacteria. The results demonstrated that actinomycetes were the most abundant gram-positive bacteria in the caves. Actinomycetes revealed a great taxonomic diversity with the predominant isolates belonging to the genus Streptomyces. Members of the genera Nocardia, Rhodococcus, Nocardioides, Amycolatopsis, Saccharothrix, Brevibacterium, Microbacterium, and coccoid actinomycetes (family Micrococcaceae) were also found.
Microbiologically induced deterioration of concrete - A Review
Wei, Shiping; Jiang, Zhenglong; Liu, Hao; Zhou, Dongsheng; Sanchez-Silva, Mauricio
2013-01-01
Microbiologically induced deterioration (MID) causes corrosion of concrete by producing acids (including organic and inorganic acids) that degrade concrete components and thus compromise the integrity of sewer pipelines and other structures, creating significant problems worldwide. Understanding of the fundamental corrosion process and the causal agents will help us develop an appropriate strategy to minimize the costs in repairs. This review presents how microorganisms induce the deterioration of concrete, including the organisms involved and their colonization and succession on concrete, the microbial deterioration mechanism, the approaches of studying MID and safeguards against concrete biodeterioration. In addition, the uninvestigated research area of MID is also proposed. PMID:24688488
Pseudomonas - current and emerging issues.
Pearson, Susan
2016-01-01
Susan Pearson reports on some of the most interesting presentations at an International Biodeterioration and Biodegradation Society (IBBS) and Public Health England conference on 'Water microbiology - current and emerging issues in healthcare', held at the University of Winchester in early September. Two and a half years after the publication of the Addendum to HTM 04-01 - which gave advice on controlling and minimising the risk of morbidity and mortality due to P. aeruginosa in augmented care units - a major focus at the event was on how well the Addendum had been working for those 'at the frontline of infection control', and what improvements, if any, might be needed.
Biotechnology/materials: The growing interface
NASA Astrophysics Data System (ADS)
Decker, Raymond F.
1986-01-01
The biotechnology/materials interaction dates back 3.5 billion years, yet today offers novel challenges for human creativity. The materials cycle practiced by microorganisms is compared to that recently practiced by humans. The processes of the biotechnology materials cycle are biogenesis, bioleaching, biofouling, biocorrosion, biodeterioration, and bioaccumulation. Each process is examined for mechanisms, scale of effect, and opportunity for creative human intervention or utilization. More than 50 of our metallic elements are bio-processed in nature. A like number of biogenic materials have been identified, with some at production rates of trillions of kg per annum (p.a.). Microorganisms can substitute for energy, capital, and labor. Over the eons, microorganisms have gained special attributes that now offer creative humans a new era of partnership in materials processing.
NASA Astrophysics Data System (ADS)
Hemdan, R. Elmitwalli; Fatma, Helmi M.; Rizk, Mohammed A.; Hagrassy, Abeer F.
Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.
Microorganisms meet solid minerals: interactions and biotechnological applications.
Ng, Daphne H P; Kumar, Amit; Cao, Bin
2016-08-01
In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications.
NASA Technical Reports Server (NTRS)
Colwell, R. R.; Zachary, A.
1979-01-01
The surface of the reusable solid rocket boosters (SRB), which are jettisoned from the Shuttle Orbiter to parachute in the sea, are studied for colonization by marine life. Techniques for monitoring the marine microbial fouling of SRB materials are presented. An assessment of the nature and degree of the biofouling expected on the SRB materials in the recovery zone is reported. A determination of the degree and the effects of seasonal variation occurring on microbial fouling in the retrieval zone waters is made. The susceptibility of the SRB parachute recovery system to microbial fouling and biodeterioration is investigated. The development of scanning electron microscopy and epifluorescence microscopic observation techniques for rapid assessment of microbial fouling is discussed.
Microbiological Analysis of Surfaces of Leonardo Da Vinci's Atlantic Codex: Biodeterioration Risk.
Tarsitani, Gianfranco; Moroni, Catia; Cappitelli, Francesca; Pasquariello, Giovanna; Maggi, Oriana
2014-01-01
Following the discovery of discoloration on some pages of the Atlantic Codex (AC) of Leonardo da Vinci kept in the Biblioteca Ambrosiana in Milan, some investigations have been carried out to verify the presence of microorganisms, such as bacteria and fungi. To verify the presence of microorganisms a noninvasive method of sampling has been used that was efficient and allowed us to highlight the microbial facies of the material that was examined using conventional microbiological techniques. The microclimatic conditions in the storage room as well as the water content of the volume were also assessed. The combined observations allowed the conclusion that the discoloration of suspected biological origin on some pages of AC is not related to the presence or current attack of microbial agents.
Microbiological Analysis of Surfaces of Leonardo Da Vinci's Atlantic Codex: Biodeterioration Risk
Moroni, Catia; Pasquariello, Giovanna; Maggi, Oriana
2014-01-01
Following the discovery of discoloration on some pages of the Atlantic Codex (AC) of Leonardo da Vinci kept in the Biblioteca Ambrosiana in Milan, some investigations have been carried out to verify the presence of microorganisms, such as bacteria and fungi. To verify the presence of microorganisms a noninvasive method of sampling has been used that was efficient and allowed us to highlight the microbial facies of the material that was examined using conventional microbiological techniques. The microclimatic conditions in the storage room as well as the water content of the volume were also assessed. The combined observations allowed the conclusion that the discoloration of suspected biological origin on some pages of AC is not related to the presence or current attack of microbial agents. PMID:25574171
Matumba, Limbikani; Singano, Lazarus; Pungulani, Lawrent; Mvula, Naomi; Matumba, Annie; Singano, Charles; Matita, Grey
2017-05-01
Aflatoxin contamination and biodeterioration were examined in 302 samples of dry cowpeas and pigeon peas that were randomly purchased from 9 districts of the Southern Region of Malawi during July and November 2015. Further, the impact of flotation/washing on aflatoxin levels on the pulses was elucidated. Aflatoxin analyses involved immunoaffinity column (IAC) clean-up and HPLC quantification with fluorescence detection (FLD) while legume biodeterioration assessments were done by visual inspection. Aflatoxins were frequently detected in cowpea (24%, max., 66 μg/kg) and pigeon pea (22%, max., 80 μg/kg) samples that were collected in the month of July. Lower aflatoxin incidence of 15% in cowpeas (max., 470 μg/kg) and 14% in pigeon peas (max., 377 μg/kg) was recorded in the November collection. Overall, aflatoxin levels were significantly higher in the pulses that were collected in November. However, there were no significant differences in the total aflatoxin (aflatoxin B 1 (AFB 1 ) + AFB 2 + AFG 1 + AFG 2 ) levels between the two types of pulses. Remarkably, in 76.2% of the aflatoxin positive cowpea and in 41.7% of the aflatoxin positive pigeon pea samples, aflatoxin G 1 concentration exceeded aflatoxin B 1. Insect damage percentage averaged at 18.1 ± 18.2% (mean ± SD) in the cowpeas and 16.1 ± 19.4% in pigeon peas. Mean discolouration percentage (number of pulses) of the cowpeas and pigeon peas was found to be at 6.7 ± 4.9 and 8.7 ± 6.2%, respectively. Washing and discarding the buoyant fraction was highly efficient in reducing aflatoxin levels; only 5.2 ± 11.1% of the initial aflatoxin level was found in the cleaned samples. In conclusion, cowpeas and pigeon peas sold on the local market in Malawi may constitute a hazard especially if floatation/washing step is skipped.
Garvie, Laurence A J; Knauth, L Paul; Bungartz, Frank; Klonowski, Stan; Nash, Thomas H
2008-08-01
Verrucaria rubrocincta Breuss is an endolithic lichen that inhabits caliche plates exposed on the surface of the Sonoran Desert. Caliche surface temperatures are regularly in excess of 60 degrees C during the summer and approach 0 degrees C in the winter. Incident light intensities are high, with photosynthetically active radiation levels typically to 2,600 micromol/m(2) s(-1) during the summer. A cross-section of rock inhabited by V. rubrocincta shows an anatomical zonation comprising an upper micrite layer, a photobiont layer containing clusters of algal cells, and a pseudomedulla embedded in the caliche. Hyphae of the pseudomedulla become less numerous with depth below the rock surface. Stable carbon and oxygen isotopic data for the caliche and micrite fall into two sloping, well-separated arrays on a delta(13)C-delta(18)O plot. The delta(13)C(PDB) of the micrite ranges from 2.1 to 8.1 and delta(18)O(SMOW) from 25.4 to 28.9, whereas delta(13)C(PDB) of the caliche ranges from -4.7 to 0.7 and delta(18)O(SMOW) from 23.7 to 29.2. The isotopic data of the micrite can be explained by preferential fixing of (12)C into the alga, leaving local (13)C enrichment and evaporative enrichment of (18)O in the water. The (14)C dates of the micrite range from recent to 884 years b.p., indicating that "dead" carbon from the caliche is not a significant source for the lichen-precipitated micrite. The endolithic growth is an adaptation to the environmental extremes of exposed rock surfaces in the hot desert. The micrite layer is highly reflective and reduces light intensity to the algae below and acts as an efficient sunscreen that blocks harmful UV radiation. The micrite also acts as a cap to the lichen and helps trap moisture. The lichen survives by the combined effects of biodeterioration and biomineralization. Biodeterioration of the caliche concomitant with biomineralization of a protective surface coating of micrite results in the distinctive anatomy of V. rubrocincta.
Sterflinger, Katja; Pinzari, Flavia
2012-03-01
Hyphomycetous fungi - so called 'mould'- are the most important agents of biodeterioration in museums, museums' storage rooms, in libraries, collections and restoration studios. Fungi are able to live at low water activities, they are perfectly adapted to indoor environments and thrive in microclimatic niches caused by condensation, lack of ventilation or water retention by hygroscopic materials. Fungi spoil valuable pieces of art aesthetically, mechanically, chemically and by degradation of organic components. Historical material made of paper and oil paintings with high amounts of organic binders are especially susceptible to fungal deterioration. In order to prevent fungal contamination or to treat already contaminated objects an integrated approach including climate control, material-specific cleaning and application of carefully selected biocides is necessary. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Incident rainfall in Rome and its relation to biodeterioration of buildings
NASA Astrophysics Data System (ADS)
Caneva, G.; Gori, E.; Danin, A.
Intensity and distribution of incident rainfall in Rome, and degree of lithobiont cover of building walls, were estimated, and their correlation was discussed. Rainfall and wind data over 10 years for the Rome Meteorological Observatory of Torre Calandrelli (UCEA) were used to calculate the actual hydrocontribution received over walls at various exposures. The biological colonization by lithobionts was evaluated on a sample of 14 buildings in various places of the city, using a phytosociological scale for quantifying their total cover. During all seasons the rainfall shows a significant peak in the south and the southeast exposures, where the highest cover of lithobionts is found. These results show the role of incident rainfall in the climatic conditions of Rome as the main driving factor for the growth of lithobionts on walls where rainfall is their principal source of water.
Biodeterioration of medical-grade silicone rubber used for voice prostheses: a SEM study.
Neu, T R; Van der Mei, H C; Busscher, H J; Dijk, F; Verkerke, G J
1993-05-01
Silicone voice prostheses used for rehabilitation of speech after total laryngectomy are inserted in an non-sterile habitat. Deposits on explanted Groningen Button voice prostheses revealed a biofilm, due to heavy colonization of the silicone surface by bacteria and yeasts. Furthermore, it was demonstrated by scanning electron microscopy on sectioned explants that the silicone material was deteriorated by filamentous and vegetative yeast cells. The different explants showed a variety of sharp-edged, discrete yeast colonies. The yeasts grew just under the silicone surface and up to 700 microns into the silicone material. Finally, nine different types of defects in the silicone material created by the yeasts are described. This deterioration of the silicone by yeasts seems to be the main reason for the failure and the frequent replacement of the prostheses. The mechanisms of silicone deterioration are still hypothetical.
The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes
Ma, Yantian; Zhang, He; Du, Ye; Tian, Tian; Xiang, Ting; Liu, Xiande; Wu, Fasi; An, Lizhe; Wang, Wanfu; Gu, Ji-Dong; Feng, Huyuan
2015-01-01
In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes. PMID:25583346
The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes.
Ma, Yantian; Zhang, He; Du, Ye; Tian, Tian; Xiang, Ting; Liu, Xiande; Wu, Fasi; An, Lizhe; Wang, Wanfu; Gu, Ji-Dong; Feng, Huyuan
2015-01-13
In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes.
NASA Astrophysics Data System (ADS)
Briški, Felicita; Vuković Domanovac, Marija
2017-10-01
For most people, microorganisms are out of sight and therefore out of mind but they are large, extremely diverse group of organisms, they are everywhere and are the dominant form of life on planet Earth. Almost every surface is colonized by microorganisms, including our skin; however most of them are harmless to humans. Some microorganisms can live in boiling hot springs, whereas others form microbial communities in frozen sea ice. Among their many roles, microorganisms are necessary for biogeochemical cycling, soil fertility, decomposition of dead plants and animals and biodegradation of many complex organic compounds present in the environment. Environmental microbiology is concerned with the study of microorganisms in the soil, water and air and their application in bioremediation to reduce environmental pollution through the biological degradation of pollutants into non-toxic or less toxic substances. Field of environmental microbiology also covers the topics such as microbially induced biocorrosion, biodeterioration of constructing materials and microbiological quality of outdoor and indoor air.
Auta, H S; Emenike, C U; Jayanthi, B; Fauziah, S H
2018-02-01
Interest in the biodegradation of microplastics is due to their ubiquitous distribution, availability, high persistence in the environment and deleterious impact on marine biota. The present study evaluates the growth response and mechanism of polypropylene (PP) degradation by Bacillus sp. strain 27 and Rhodococcus sp. strain 36 isolated from mangrove sediments upon exposure to PP microplastics. Both bacteria strains were able to utilise PP microplastic for growth as confirmed by the reduction of the polymer mass. The weight loss was 6.4% by Rhodococcus sp. strain 36 and 4.0% by Bacillus sp. strain 27 after 40days of incubation. PP biodegradation was further confirmed using Fourier-transform infrared spectroscopy and scanning electron microscopy analyses, which revealed structural and morphological changes in the PP microplastics with microbial treatment. These analyses showed that the isolates can colonise, modify and utilise PP microplastics as carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil
Oliveira, Helena M.B.; Santos, Cledir; Paterson, R. Russell M.; Gusmão, Norma B.; Lima, Nelson
2016-01-01
Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife—Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens. PMID:27005653
Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil.
Oliveira, Helena M B; Santos, Cledir; Paterson, R Russell M; Gusmão, Norma B; Lima, Nelson
2016-03-09
Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife-Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.
Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site.
McNamara, Christopher J; Perry, Thomas D; Bearce, Kristen A; Hernandez-Duque, Guillermo; Mitchell, Ralph
2006-01-01
Biodeterioration of archaeological sites and historic buildings is a major concern for conservators, archaeologists, and scientists involved in preservation of the world's cultural heritage. The Maya archaeological sites in southern Mexico, some of the most important cultural artifacts in the Western Hemisphere, are constructed of limestone. High temperature and humidity have resulted in substantial microbial growth on stone surfaces at many of the sites. Despite the porous nature of limestone and the common occurrence of endolithic microorganisms in many habitats, little is known about the microbial flora living inside the stone. We found a large endolithic bacterial community in limestone from the interior of the Maya archaeological site Ek' Balam. Analysis of 16S rDNA clones demonstrated disparate communities (endolithic: >80% Actinobacteria, Acidobacteria, and Low GC Firmicutes; epilithic: >50% Proteobacteria). The presence of differing epilithic and endolithic bacterial communities may be a significant factor for conservation of stone cultural heritage materials and quantitative prediction of carbonate weathering.
Calvo, Ana Maria Del Carmen; Docters, Andrea; Miranda, María Virginia; Saparrat, Mario Carlos Nazareno
2017-02-01
The use of gamma radiation for treating biodeteriorated cultural heritage on paper has been studied at the Comisión Nacional de Energía Atómica-CNEA (Argentina) since 2001. In order to preserve books, publications, and documents that have been attacked by insects or fungi, gamma radiation techniques have been used at CNEA. The activities include basic research as well as their applications in infected documents and papers currently used in libraries and archives. New papers were subjected to accelerated ageing in order to evaluate the effects of gamma radiation on their physical and mechanical properties. Current studies include resistance to radiation in two batches of highly cellulolytic fungi, associated with indoor environment. They are present in papers and adhesives used for conservation purposes at the Laboratory of Preventive Conservation and Restoration of Documents. A joint study has been started in CNEA with the National University of La Plata.
Biosynthesized silver nanoparticles to control fungal infections in indoor environments
NASA Astrophysics Data System (ADS)
Deyá, Cecilia; Bellotti, Natalia
2017-06-01
Fungi grow especially in dark and moist areas, deteriorating the indoor environment and causing infections that particularly affect immunosuppressed individuals. Antimicrobial coatings have as principal objective to prevent biofilm formation and infections by incorporation of bioactive additives. In this sense, metallic nanoparticles, such as silver, have proven to be active against different microorganisms specially bacteria. Biosynthesized method is a promising environmentally friendly option to obtain nanoparticles. The aim of this research was assess the employment of plants extracts of Aloysia triphylla (cedrón), Laurelia sempervirens (laurel) and Ruta chalepensis (ruda) to obtain silver nanoparticles to be used as an antimicrobial additive to a waterborne coating formulation. The products obtained were assessed against fungal isolates from biodeteriorated indoor coatings. The fungi were identified by conventional and molecular techniques as Chaetomium globosum and Alternaria alternate. The results revealed that the coating with silver nanoparticles obtained with L. sempervirens extract at 60 °C with a size of 9.8 nm was the most efficient against fungal biofilm development.
Nature and origin of the violet stains on the walls of a Roman tomb.
Dominguez-Moñino, Irene; Diaz-Herraiz, Marta; Jurado, Valme; Laiz, Leonila; Miller, Ana Z; Santos, Juan Luis; Alonso, Esteban; Saiz-Jimenez, Cesareo
2017-11-15
The Circular Mausoleum tomb (Roman Necropolis of Carmona, Spain) dates back from the first century AD and is characterized by a dense microbial (phototrophic) colonization on the walls and ceiling. However, some walls exhibited an important number of violet stains of unknown origin. The microbial communities of these violet stains are mainly composed of cyanobacteria, streptomycetes and fungi. A strain of Streptomyces parvus, isolated from the walls, produces a violet pigment in culture media. High performance liquid chromatography-mass spectrometry of the culture extracts obtained from this Streptomyces revealed the presence of a few granaticins, pigments with a benzoisochromanequinone structure. When metabolically active in the tomb, S. parvus synthesizes the pigments that diffuse into the mortar. During rain and/or wetting periods, the pigments are solubilized by alkaline waters and elute from the starting position to the surrounding mortar, enlarging the pigmented area and thus contributing to this exceptional biodeterioration phenomenon. Copyright © 2017 Elsevier B.V. All rights reserved.
Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications
NASA Astrophysics Data System (ADS)
Fierascu, Irina; Fierascu, Radu Claudiu; Somoghi, Raluca; Ion, Rodica Mariana; Moanta, Adriana; Avramescu, Sorin Marius; Damian, Celina Maria; Ditu, Lia Mara
2018-04-01
Inorganic antimicrobial materials can be viable for multiple applications (related to its use for new buildings with special requirements related to microbiological loading, such as hospital buildings and for consolidation of cultural heritage constructions); also the use of substituted hydroxyapatites for protection of stone artefacts against environmental factors (acidic rain) and biodeterioration it's an option to no longer use of toxic substances. This paper presents methods of synthesis and characterization of the material from the point of view of the obtained structures and final applications. The materials were characterized in terms of composition and morphology (using X-ray Diffraction, X-ray Fluorescence, Inductively coupled plasma-atomic emission spectrometry, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, Surface area and pore size determination). Antimicrobial activity was tested against filamentous fungi strains and pathogenic bacteria strains, using both spot on lawn qualitative method (on agar medium) and serial microdilution quantitative method (in broth medium). Further, it was evaluated the anti-biofilm activity of the tested samples toward the most important microbial strains implicated in biofilm development, using crystal violet stained biofilms microtiter assay, followed by spectrophotometric quantitative evaluation.
Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi
2014-01-01
In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.
Electron beam for preservation of biodeteriorated cultural heritage paper-based objects
NASA Astrophysics Data System (ADS)
Chmielewska-Śmietanko, Dagmara; Gryczka, Urszula; Migdał, Wojciech; Kopeć, Kamil
2018-02-01
Unsuitable storage conditions or accidents such as floods can present a serious threat for large quantities of book making them prone to attack by harmful microorganisms. The microbiological degradation of archives and book collections can be efficiently inhibited with irradiation processing. Application of EB irradiation to book and archive collections can also be a very effective alternative to the commonly used ethylene oxide treatment, which is toxic to the human and natural environment. In this study was evaluated the influence of EB irradiation used for microbiological decontamination process on paper-based objects. Three different kinds of paper (Whatman CHR 1, office paper and newsprint paper) were treated with 0.4, 1, 2, 5, 10 and 25 kGy electron beam irradiation. Optical and mechanical properties of different sorts of paper treated with e-beam, before and after the radiation process were studied. These results, which correlated with absorbed radiation doses effective for the elimination of Aspergillus niger (A. niger) allowed to determine that EB irradiation with absorbed radiation dose of 5 kGy ensures safe decontamination of different sorts of paper-based objects.
Bellotti, N; Salvatore, L; Deyá, C; Del Panno, M T; del Amo, B; Romagnoli, R
2013-04-01
Microbial growth in indoor environments creates health problems, especially in people with asthma; approximately 80% of these patients are allergic to mold. Antimicrobial coatings are formulated to generate surfaces that are easy to clean and may also incorporate active agents, commonly called biocides, which inhibit microbial colonization, subsequent growth and bio-deterioration of the substrates. Some research lines seek to replace traditional organometallic and organochlorines biocides with environmentally acceptable ones. The aim of this research was, primarily, to explore the possible application of different compounds used in food industry like preservatives to be used as antimicrobial additives for antimicrobial coatings. Four biocides were tested against two different ambient molds isolated from an interior painted wall (Chaetomium globosum and Alternaria alternate). The selected biocides were zinc salicylate, zinc benzoate, calcium benzoate and potassium sorbate. The resulting paints were subjected to biological and physical tests (viscosity, hiding power, humidity absorption and biocides leaching rate). Bioassays revealed that zinc benzoate and zinc salicylate resulted active against both fungi. Copyright © 2012 Elsevier B.V. All rights reserved.
Mazzoli, Roberto; Giuffrida, Maria Gabriella; Pessione, Enrica
2018-06-04
Microbial deterioration accounts for a significant percentage of the degradation processes that occur on archeological/historical objects and artworks, and identifying the causative agents of such a phenomenon should therefore be a priority, in consideration of the need to conserve these important cultural heritage items. Diverse microbiological approaches, such as microscopic evaluations, cultural methods, metabolic- and DNA-based techniques, as well as a combination of the aforementioned methods, have been employed to characterize the bacterial, archaeal, and fungal communities that colonize art objects. The purpose of the present review article is to report the interactions occurring between the microorganisms and nutrients that are present in stones, bones, wood, paper, films, paintings, and modern art specimens (namely, collagen, cellulose, gelatin, albumin, lipids, and hydrocarbons). Some examples, which underline that a good knowledge of these interactions is essential to obtain an in depth understanding of the factors that favor colonization, are reported. These data can be exploited both to prevent damage and to obtain information on historical aspects that can be decrypted through the study of microbial population successions.
A biological survey on the Ottoman Archive papers and determination of the D10 value
NASA Astrophysics Data System (ADS)
Kantoğlu, Ömer; Ergun, Ece; Ozmen, Dilan; Halkman, Hilal B. D.
2018-03-01
The Ottoman Archives have one of the richest archive collections in the world. However, not all the archived documents are well preserved and some undergo biodeterioration. Therefore, a rapid and promising treatment method is necessary to preserve the collection for following generations as heritage. Radiation presents as an alternative for the treatment of archival materials for this purpose. In this study, we conducted a survey to determine the contamination species and the D10 values of the samples obtained from the shelves of the Ottoman Archives. The samples also included several insect pests collected at using a pheromone trap placed in the archive storage room. With the exception of few localized problems, no active pest presence was observed. The D10 values of mold contamination and reference mold (A. niger) were found to be 1.0 and 0.68 kGy, respectively. Based on these results, it can be concluded that an absorbed dose of 6 kGy is required to remove the contamination from the materials stored in the Ottoman Archives.
A novel extremophile strategy studied by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Edwards, Howell G. M.
2007-12-01
A case is made for the classification of the colonisation by Dirina massiliensis forma sorediata of pigments on ancient wall-paintings as extremophilic behaviour. The lichen encrustations studied using FT-Raman spectroscopy have yielded important molecular information which has assisted in the identification of the survival strategy of the organism in the presence of significant levels of heavy metal toxins. The production of a carotenoid, probably astaxanthin, at the surface of the lichen thalli is identified from its characteristic biomolecular signatures in the Raman spectrum, whereas the presence of calcium oxalate dihydrate (weddellite) has been identified at both the upper and lower surfaces of the thalli and in core samples taken from depths of up to 10 mm through the encrustation into the rock substrate. The latter observation explains the significant disintegrative biodeteriorative effect of the colonisation upon the integrity of the wall-paintings and can be used to direct conservatorial and preservation efforts of the art work. A surprising result proved to be the absence of Raman spectroscopic evidence for the complexation of the metal pigments by the oxalic acid produced by the metabolic action of the organisms, unlike several cases that have been reported in the literature.
2016-01-01
The literature of environmental microbiology broadly discusses issues associated with microbial hazards in archives, but these publications are mainly devoted to paper documents. There are few articles on historical parchment documents, which used to be very important for the development of literature and the art of writing. These studies present a broad spectrum of methods for the assessment of biodeterioration hazards of the parchment document in question. They are based on both conventional microbiological methods and advanced techniques of molecular biology. Here, a qualitative analysis was conducted, based on genetic identification of bacteria and fungi present on the document as well as denaturing gradient gel electrophoresis profiling and examining the destructive potential of isolated microbes. Moreover, the study involved a quantitative and qualitative microbiological assessment of the indoor air in the room where the parchment was kept. The microbes with the highest destructive potential that were isolated from the investigated item were Bacillus cereus and Acinetobacter lwoffii bacteria and Penicillium chrysogenum, Chaetomium globosum, and Trichoderma longibrachiatum fungi. The presence of the B. cereus strain was particularly interesting since, under appropriate conditions, it leads to complete parchment degradation within several days. PMID:26896133
Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax
NASA Astrophysics Data System (ADS)
Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; João Trigo, Maria; Ferreira, Armando; Manuela Carolino, Maria; Portugal, António; Luísa Botelho, Maria
2012-12-01
Parchments are important documents that give testimony for History; therefore these materials should be respected and preserved. Considering incremental biodeterioration problems that have to be faced daily, the Archive of the University of Coimbra (AUC) is involved in different scientific projects in order to evaluate and determine new methods for document decontamination and preservation. The aim of this study was to evaluate gamma radiation effects on the colour and texture of the AUC parchment documents. The assessment of these effects was used to estimate the maximum gamma radiation dose (Dmax) that could guarantee parchment documents' decontamination treatment, without significant alteration of their physical properties. Parchment samples were exposed to gamma radiation doses ranging from 10 to 30 kGy. The texture and colour of samples were assessed before and after the irradiation procedure, using a texture analyser and an electronic colorimeter. Hardness and springiness were determined based on texture spectra. Lightness (L*), Chroma (C), greenness vs. redness (a*) and yellowness vs. blueness (b*) values were obtained from colorimetric measures. Results indicate no significant effects of gamma radiation on the texture and colour of parchment for the studied doses.
Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata
2014-01-01
As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.
Calparsoro, Estefanía; Maguregui, Maite; Giakoumaki, Anastasia; Morillas, Héctor; Madariaga, Juan Manuel
2017-04-01
In the present work, several building materials suffering from black crusts and soiled surfaces were evaluated by scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDS) and micro-Raman spectroscopy. The goal was to examine the elemental and molecular composition, the distribution on the samples, and the morphology of endogenous and exogenous compounds on those black crusts and soiled surfaces. The black crusts were deposited over different building materials such as limestone, sandstone, and brick that constitute a small construction called "malacate" as well as over a limestone substrate of a cemetery gate. Both constructions are dated back to the beginning of the twentieth century. The samples of soiling were taken from the façade of a building constructed in the 1980s. The analytical evaluation allowed in a first stage the determination of the composition and the observation of the morphology of soiling and black crusts. In addition, the evaluation of the compositions of the soiling and black crusts of different grade and formation allowed the assessment of the main weathering phenomena that the buildings have suffered, which were found to be sulfate impact, marine aerosol impact, depositions of metallic particles, crustal particulate matter depositions, carbonaceous particles, biodeterioration, and vandalism.
Koziróg, Anna; Rajkowska, Katarzyna; Otlewska, Anna; Piotrowska, Małgorzata; Kunicka-Styczyńska, Alina; Brycki, Bogumił; Nowicka-Krawczyk, Paulina; Kościelniak, Marta; Gutarowska, Beata
2016-08-22
The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%-2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2-6% solution; Rocima 101-8%; Preventol R 80-12%; Acticide 706 LV-15% and Boramon-30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration.
Hazardous Metal Pollution in the Republic of Fiji and the Need to Elicit Human Exposure
Park, Eun-Kee; Choi, Hyun-Ju; Wilson, Colleen Turaga; Ueno, Susumu
2013-01-01
The fact that hazardous metals do not bio-degrade or bio-deteriorate translates to long-lasting environmental effects. In the context of evidently rapid global industrialization, this ought to warrant serious caution, particularly in developing countries. In the Republic of Fiji, a developing country in the South Pacific, several different environmental studies over the past 20 years have shown levels of lead, copper, zinc and iron in sediments of the Suva Harbor to be 6.2, 3.9, 3.3 and 2.1 times more than the accepted background reference levels, respectively. High levels of mercury have also been reported in lagoon shellfish. These data inevitably warrant thorough assessment of the waste practices of industries located upstream from the estuaries, but in addition, an exposure and health impact assessment has never been conducted. Relevant government departments are duty-bound, at least to the general public that reside in and consume seafood from the vicinities of the Suva Harbor, to investigate possible human effects of the elevated hazardous metal concentrations found consistently in 20 years of surface sediment analysis. Furthermore, pollution of the intermediate food web with hazardous metals should be investigated, regardless of whether human effects are eventually confirmed present or not. PMID:24498594
Koziróg, Anna; Rajkowska, Katarzyna; Otlewska, Anna; Piotrowska, Małgorzata; Kunicka-Styczyńska, Alina; Brycki, Bogumił; Nowicka-Krawczyk, Paulina; Kościelniak, Marta; Gutarowska, Beata
2016-01-01
The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%–2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2—6% solution; Rocima 101—8%; Preventol R 80—12%; Acticide 706 LV—15% and Boramon—30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration. PMID:27556450
Migliore, Luciana; Thaller, Maria Cristina; Vendittozzi, Giulia; Mejia, Astrid Yazmine; Mercuri, Fulvio; Orlanducci, Silvia; Rubechini, Alessandro
2017-09-07
Ancient parchments are commonly attacked by microbes, producing purple spots and detachment of the superficial layer. Neither standard cultivation nor molecular methods (DGGE) solved the issue: causative agents and colonization model are still unknown. To identify the putative causal agents, we describe the 16 S rRNA gene analysis (454-pyrosequencing) of the microbial communities colonizing a damaged parchment roll dated 1244 A.D. (A.A. Arm. I-XVIII 3328, Vatican Secret Archives). The taxa in damaged or undamaged areas of the same document were different. In the purple spots, marine halotolerant Gammaproteobacteria, mainly Vibrio, were found; these microorganisms are rare or absent in the undamaged areas. Ubiquitous and environmental microorganisms were observed in samples from both damaged and undamaged areas. Pseudonocardiales were the most common, representing the main colonizers of undamaged areas. We hypothesize a successional model of biodeterioration, based on metagenomic data and spectroscopic analysis of pigments, which help to relate the damage to a microbial agent. Furthermore, a new method (Light Transmitted Analysis) was utilized to evaluate the kind and entity of the damage to native collagen. These data give a significant advance to the knowledge in the field and open new perspectives to remediation activity on a huge amount of ancient document.
Lech, Tomasz
2016-05-01
The literature of environmental microbiology broadly discusses issues associated with microbial hazards in archives, but these publications are mainly devoted to paper documents. There are few articles on historical parchment documents, which used to be very important for the development of literature and the art of writing. These studies present a broad spectrum of methods for the assessment of biodeterioration hazards of the parchment document in question. They are based on both conventional microbiological methods and advanced techniques of molecular biology. Here, a qualitative analysis was conducted, based on genetic identification of bacteria and fungi present on the document as well as denaturing gradient gel electrophoresis profiling and examining the destructive potential of isolated microbes. Moreover, the study involved a quantitative and qualitative microbiological assessment of the indoor air in the room where the parchment was kept. The microbes with the highest destructive potential that were isolated from the investigated item were Bacillus cereus and Acinetobacter lwoffii bacteria and Penicillium chrysogenum,Chaetomium globosum, and Trichoderma longibrachiatum fungi. The presence of the B. cereuss train was particularly interesting since, under appropriate conditions, it leads to complete parchment degradation within several days. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mediaeval cantorals in the Valladolid Biblioteca: FT-Raman spectroscopic study.
Edwards, H G; Farwell, D W; Rull Perez, F; Medina Garcia, J
2001-03-01
Raman spectroscopic studies of three mediaeval cantorals in the Biblioteca of the University of Valladolid has revealed information about the pigments used on these large manuscripts. Although executed in a simple colour palette, very pure cinnabar was used as the major colourant, offsetting the carbon black of the verses and script. A dark blue colour was achieved using a mixture of azurite (basic copper carbonate) and carbon, whereas a light blue colour was azurite alone. A grey colour was achieved using azurite, carbon particles and a calcareous 'limewash'. A yellow pigment, used sparely in the cantorals was ascribed to saffron; unusually, there was no evidence for the presence of the yellow mineral pigments orpiment, realgar and massicot. In several regions of the vellum specimens, evidence for biodeterioration was observed through the signatures of hydrated calcium oxalate. We report for the first time the Raman spectra of pigment in situ on a vellum fragment, which also shows evidence of substrate bands; comparison of black and red pigmented regions of vellum specimens has shown the presence of calcium oxalate in the black pigmented script but not in the red pigment regions, which suggests that the cinnabar in the red-pigmented regions acts as a toxic protectant for the vellum substrate against biological colonisation processes.
Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile.
Ortiz, Rodrigo; Párraga, Mario; Navarrete, José; Carrasco, Ivo; de la Vega, Eduardo; Ortiz, Manuel; Herrera, Paula; Jurgens, Joel A; Held, Benjamin W; Blanchette, Robert A
2014-04-01
The use of wood in construction has had a long history and Chile has a rich cultural heritage of using native woods for building churches and other important structures. In 2000, UNESCO designated a number of the historic churches of Chiloé, built entirely of native woods, as World Heritage Sites. These unique churches were built in the late 1700 s and throughout the 1800 s, and because of their age and exposure to the environment, they have been found to have serious deterioration problems. Efforts are underway to better understand these decay processes and to carryout conservation efforts for the long-term preservation of these important structures. This study characterized the types of degradation taking place and identified the wood decay fungi obtained from eight historic churches in Chiloé, seven of them designated as UNESCO World Heritage sites. Micromorphological observations identified white, brown and soft rot in the structural woods and isolations provided pure cultures of fungi that were identified by sequencing of the internal transcribed region of rDNA. Twenty-nine Basidiomycota and 18 Ascomycota were found. These diverse groups of fungi represent several genera and species not previously reported from Chile and demonstrates a varied microflora is causing decay in these historic buildings.
Liu, Zijun; Fu, Tongtong; Hu, Cuiting; Shen, Dawa; Macchioni, Nicola; Sozzi, Lorena; Chen, Yue; Liu, Jie; Tian, Xingling; Ge, Qinya; Feng, Zhengteng; Liu, Huiru; Zhang, Zhiguo; Pan, Jiao
2018-05-08
Wooden shipwrecks are a significant part of the underwater cultural heritage. In 2007, the Nanhai No. 1 shipwreck was salvaged from the seabed and moved into the Marine Silk Road Museum, where it is still stored in a water tank. We analysed the microbial communities colonizing the hull surface of the Nanhai No. 1 shipwreck during storage. Six samples exposed to air were collected from different spots of the ship that exhibited obvious microbial plaques. High-throughput sequencing revealed the bacterial community includes both aquatic and terrestrial species, while in the fungal community, Fusarium was the most abundant genus across all samples and accounted for 84.91% to 98.40% of the total community composition. Two Fusarium species were isolated from the samples and were identified as F. solani and F. oxysporum. Both of the isolates were able to degrade cellulose, but only F. solani had the ability to degrade lignin. Antimicrobial efficacy in inhibiting the growth of Fusarium was assessed with five kinds of biocides, and isothiazolinones exhibited specific inhibition of Fusarium growth. These results provide critical background information to protect and reduce the biodegradation and destruction of this important historical shipwreck, and inform efforts to protect other similar artifacts.
Gomoiu, Ioana; Chatzitheodoridis, Elias; Vadrucci, Sonia; Walther, Isabelle
2013-01-01
The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U. chartarum was chosen for the spaceflight experiment because it is well known to be involved in biodeterioration of organic and inorganic substrates covered with organic deposits and expected to be a possible contaminant in Spaceships. Colonies grown on the International Space Station (ISS) and on Earth were analysed post-flight. This study clearly indicates that U. chartarum is able to grow under spaceflight conditions developing, as a response, a complex colony morphotype never mentioned previously. We observed that spaceflight reduced the rate of growth of aerial mycelium, but stimulated the growth of submerged mycelium and of new microcolonies. In Spaceships and Space Stations U. chartarum and other fungal species could find a favourable environment to grow invasively unnoticed in the depth of surfaces containing very small amount of substrate, posing a risk factor for biodegradation of structural components, as well as a direct threat for crew health. The colony growth cycle of U. chartarum provides a useful eukaryotic system for the study of fungal growth under spaceflight conditions. PMID:23637980
Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp.
Lin, Johnson; Madida, Bafana B
2015-10-01
The biodeterioration of metals have detrimental effects on the environment with economic implications. The deterioration of metals is of great concern to industry. In this study, mild steel coupons which were immersed in a medium containing Gram-positive Bacillus spp. and different nutrient sources were compared with the control in sterile deionized water. The weight loss of the coupons in the presence of Bacillus spp. alone was lower than the control and was further reduced when additional carbon sources, especially fructose, were added. The level of metal corrosion was significantly increased in the presence of nitrate with or without bacteria. There was a significant strong correlation between the weight loss and biofilm level (r = 0.64; p < 0.05). The addition of nitrate and Bacillus spp. produced more biofilms on the coupons and resulted in greater weight loss compared to that with Bacillus spp. only under the same conditions. However, Bacillus spp. enriched with carbon sources formed less biofilms and results in lower weight loss compared to that with Bacillus spp. only. The production of biofilm by Bacillus spp. influences the level of metal corrosion under different environmental conditions, thereby, supporting the development of a preventive strategy against corrosion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Giacomucci, Lucia; Bertoncello, Renzo; Salvadori, Ornella; Martini, Ilaria; Favaro, Monica; Villa, Federica; Sorlini, Claudia; Cappitelli, Francesca
2011-08-01
The Grande Albergo Ausonia & Hungaria (Venice Lido, Italy) has an Art Nouveau polychrome ceramic coating on its façade, which was restored in 2007. Soon after the conservation treatment, many tiles of the façade decoration showed coloured alterations putatively attributed to the presence of microbial communities. To confirm the presence of the biological deposit and the stratigraphy of the Hungaria tiles, stereomicroscope, optical and environmental scanning electron microscope observations were made. The characterisation of the microbial community was performed using a PCR-DGGE approach. This study reported the first use of a culture-independent approach to identify the total community present in biodeteriorated artistic tiles. The case study examined here reveals that the coloured alterations on the tiles were mainly due to the presence of cryptoendolithic cyanobacteria. In addition, we proved that the microflora present on the tiles was generally greatly influenced by the environment of the Hungaria hotel. We found several microorganisms related to the alkaline environment, which is in the range of the tile pH, and related to the aquatic environment, the presence of the acrylic resin Paraloid B72® used during the 2007 treatment and the pollutants of the Venice lagoon.
NASA Astrophysics Data System (ADS)
Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.
2012-04-01
Built between the walls of Herculaneum excavations, one of the world's most important archaeological sites, and the sea in the early 1st cent. AD, the Suburban Bath is one of the best thermal complexes better preserved in ancient times. The entrance opens onto a large courtyard that leads into a hallway well lit by a skylight, impluvium, with a portrait of "Apollo". From this room you can access various parts of the thermae, all beautifully preserved. A single room, mostly occupied by the pool, serving both apodyterium (dressing room) that frigidarium. Among tepidarium and frigidarium there's a room elegantly decorated with stucco and marble. The vestibule opens to the right, through a corridor, onto a waiting room with a floor in signinum opus and into a praefurnium (oven for heating). A large pool of tepidarium, connected with laconicum, a small circular room for the baths sweat, is also present. The calidarium, as usual, has a small tank for hot water and a basin for washing in cold water. Behind the calidarium is the praefurnium, an environment with the boiler for heating the bath. Although the suburban baths are well preserved, unfortunately in you can observe the development of visible microbial coatings. During the biodeterioration process, secondary colonization of wall is due to heterotrophic bacteria and fungi that induce deterioration cause structural as well as aesthetic damage such as the discoloration of materials, the formation of crusts on surfaces and the loss of material. This investigation was carried out sampling the surfaces of walls of different rooms in the Suburban Thermae according to Italian legal procedures. Depending on the samples typology, sampling was carry out using sterile nitrocellulose membranes pressed on the surface of the walls, sterile swabs or with sterile tweezers by tearing out surface material. The samples were suspended in physiological solution and immediately refrigerated until analysis. Isolated colonies grown on PCA plates were purified in the same growth medium by streaking and differentiated by assessing their morphological (phase-contrast microscopy) and biochemical characteristics (Gram-stains KOH-lysis and catalase activity). Cultural-based method allow us to identify by 16S and 26S rRNA partial sequence analysis, heterotrophic bacteria belonging to different genera as Bacillus, Pseudomonas, Aeromonas and Microbacterium. By using this approach, Bacillus-related species (B. benzoevorans, B. megaterium and B. pumilis and B. megaterium/B. simplex group) as well as Aeromonas sobria/Aeromonas salmonicida/Aeromonas hydrophila group, Pseudomonas plecoglossicida and Microbacterium esteraromaticum were isolated in different sample points analysed. DGGE analysis of PCR amplified V3 region of rDNA from DNA directly recovered from samples of biofilms and patina, enabled identification of bacterial species not found using culturable technology, as those closest related to Aeromonas, Paenibacillus, Brevibacterium, Exiguobacterium, Microbacterium, Brevibacterium, Stenothophomonas and Streptomyces. Combination of culture-dependent and independent methods provide a better characterization of heterotrophic microbiota that colonize the surface of ancient decorated walls and can contribute to understand the potential of biodeterioration activity by heterotrophic microorganisms.
NASA Astrophysics Data System (ADS)
Pottage, Thomas; Walker, James; Bennett, Allan; Vrublevskis, John; Hovland, Scott
This study, funded by the European Space Agency (ESA) and undertaken by the Health Protec-tion Agency, UK supported by Systems Engineering and Assessment Ltd., was devised to select suitable current decontamination technologies for development for future manned missions to the Moon and Mars. There is a requirement to decontaminate the habitat module due to the concerns about astronaut ill health, microbial deterioration of materials and potential forward contamination in the case of Mars. In the case of the MIR space station, biodeterioration of components and materials occurred, and dangerous levels of airborne microorganisms were detected during air sampling procedures which lead to the introduction of microbial exposure limits (as MORD SSP 50260) to ensure the health of the crew. COSPAR planetary protection guidelines highlight the need to reduce any potential forward or backwards contamination issues that may occur through the use of Extra Vehicular Activity (EVA) suits whilst on Mars. Decontamination of the suit exterior must be completed before any EVA activity on Mars, whilst a further decontamination cycle must be completed after entry to the airlock following EVA. Technologies and techniques have also been investigated for the microbial reduction of the interior surfaces of the EVA suit to stop biodeterioration of the materials and protect the user from pathogenic microbe accumulation. The first work package reviewed the systems description and requirements as detailed in the statement of work. The requirements were broken down into 12 further requirement sections, where they were updated and expanded, resulted in Technical Note (TN) 1 which was then used as the base document for WP2 and WP3. WP2 investigated the current technologies available for the decontamination of the habitat module interior on missions of up to 6 months and missions that have durations of greater than 6 months. A comprehensive review was carried out for the different methods that could be employed singularly and in combination to decontaminate the habitat. From this review a trade off matrix was compiled scoring each technology on a determined set of parameters. The highest score indicated the most suitable technology. For missions up to 6 months surface cleaning using disinfectant wipes were recommended in combination with an air disinfection/filtration system. For missions greater than 6 months these techniques would be complemented by the addition of a gaseous decontamination system, which could be periodically used to reduce microbial load from inaccessible surfaces. WP3 reviewed the current technologies that could be used for the decontamination of the EVA suit, both external surfaces (after use on the Lunar and Martian surfaces) and internal surfaces. Trade off matrices were constructed to reflect the new parameters for these uses. Only physical decontamination of the exterior surface of the EVA suit is needed for Lunar mission, but for Martian missions this must be enhanced with a gaseous disinfection technology. The interior of the suit can be decontaminated using passive antimicrobial fabrics and active cleaning using disinfectant wipes. WP4 summarised the previous TNs, and included estimates of costs and timelines for the development, based on technology readiness levels, of technologies that need to be flight proven before use on a mission.
Li, Qiang; Zhang, Bingjian; He, Zhang; Yang, Xiaoru
The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D.) and Qing dynasties (1636-1912 A.D.) and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.
Investigation of the effects of plasma treatments on biodeteriorated ancient paper
NASA Astrophysics Data System (ADS)
Laguardia, L.; Vassallo, E.; Cappitelli, F.; Mesto, E.; Cremona, A.; Sorlini, C.; Bonizzoni, G.
2005-11-01
Deterioration of paper-based materials is mainly due to the degradation of cellulose caused by a lot of factors such as chemical attack due to acidic hydrolysis, oxidative agent, light, air pollution and biological attack and also due to the presence of microorganisms like bacteria and fungi. It is therefore desirable to focus the research activities on restoration and conservation techniques to develop appropriate treatments. The aim of this paper is the removal or reduction of the microbial contamination and paper consolidation by means of plasma treatment. For plasma processes, different gas mixtures are utilised, and the different gas mixtures are compared as a function of pressure, power, and treatment time. To demonstrate the efficiency of the sterilisation treatment, two fungi: Aspergillus niger and Penicillium funiculosum, commonly found in libraries and archives were spread on naturally aged paper (19th century). Microorganisms were let to grow by using the organic compounds found in the historical records as a sole source of carbon and energy. The microbial abatement was measured before and after the plasma treatment by using the standard plate count method. Surface chemical and morphological characterisation of paper before and after plasma treatment has been carried out by X-ray photoelectron spectroscopy (XPS) and ATR infrared spectroscopy (ATR FTIR). The tensile strength of the plasma-treated papers was also determined. CNR Patent, n° Mi2004A000068, 21/01/2004.
Review of concrete biodeterioration in relation to nuclear waste.
Turick, Charles E; Berry, Christopher J
2016-01-01
Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. Copyright © 2015. Published by Elsevier Ltd.
The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, China
He, Dongpeng; Gu, Ji-Dong; Feng, Huyuan; Chen, Tuo; Liu, Guangxiu; An, Lizhe
2017-01-01
In this study, a culture-independent Illumina MiSeq sequencing strategy was applied to investigate the microbial communities colonizing the ancient painted sculptures of the Maijishan Grottoes, a famous World Cultural Heritage site listed by UNESCO in China. Four mixed samples were collected from Cave 4–4 of the Maijishan Grottoes, the so-called Upper Seven Buddha Pavilion, which was built during the Northern Zhou Dynasty (557-581AD). The 16/18S rRNA gene-based sequences revealed a rich bacterial diversity and a relatively low fungal abundance, including the bacterial groups Actinobacteria, Acidobacteria, Bacteroidetes, Cyanobacteria, Chloroflexi, Firmicutes, Proteobacteria and Verrucomicrobia and the fungal groups Ascomycota, Basidiomycota and Chytridiomycota. Among them, the bacteria genera of Pseudonocardia and Rubrobacter and unclassified fungi in the order of Capnodiales were dominant. The relative abundance of Pseudonocardia in the painted layer samples was higher than that in the dust sample, while Cyanobacteria dominated in the dust sample. Many of them have been discovered at other cultural heritage sites and associated with the biodeterioration of cultural relics. The presence and activity of these pioneering microorganisms may lead to an unexpected deterioration of the painted sculptures that are preserved in this heritage site. Thus, proper management strategies and potential risk monitoring should be used in the Maijishan Grottoes to improve the conservation of these precious painted sculptures. PMID:28678844
NASA Astrophysics Data System (ADS)
Yang, Fan; Chen, Minning
2018-06-01
The reclaimed water containing high salinity, great amounts of organic matters and high nutrients can easily lead to growth of biofilms in reclaimed water distribution systems (RWDSs). The microbes colonize the cement surface and microbial metabolites can cause cement biodeterioration. To understand the effect of microbial involvement in the degradation, this study investigated the transformation characteristics of cement-mortar lining and microbial biomass in the simulated RWDS for 1 year by X-ray diffractometer (XRD), X-Ray Fluorescenc (XRF), Heterophic bacteria count (HPC) and DAPI staining. Microbial metabolites were analyzed by GC/MS. The result shows that the carbonation reaction took place in the surface of the eroded cement-mortar lining where the content of CaCO3 was continuously increasing while the content of hydrated compounds were decreasing. The depositing layer of CaSO4·2H2O, CaAl2Si2O8·4H2O and Mg4Al2(OH)14·3H2O on the lining surface were formed by minerals such as Ca, Si, Al and Mg lost from the degraded hydrated compounds. Microbial biomass in the RWDS has maintained an increasing trend during the study. The main microbial metabolites of the biofilm on the cement surface are fatty acids, amino acids, and carbohydrate.
Singh, V; Singh, B; Sharma, A; Kaur, K; Gupta, A P; Salar, R K; Hallan, V; Pati, P K
2017-01-01
The present work investigates the implication of leaf spot disease on the antioxidant potential and commercial value of pharmaceutically important constituents of Withania somnifera, a high-valued medicinal plant. Leaf spot disease was induced in W. somnifera by inoculating Alternaria alternata (Fr.) Keiss. pathogen. Total polyphenolic content and antioxidant potential showed a significant decrease during leaf spot disease. Evaluation of pharmaceutically active constituents withaferin A, withanone and withanolide A utilizing high-performance liquid chromatography showed a significant decrease in diseased samples as compared to healthy ones. Quantitative expression of major genes involved in withanolide biosynthesis also showed down-regulation in diseased samples. Alterations in the ultra-structure of chloroplasts were also analysed under transmission electron microscopy to get a better insight into the changes of withanolide biosynthesis in leaf during disease infestation. The present work suggests that when the pathogenic fungus invades the host plants, it evokes multiple responses, which could be studied at various levels. The knowledge gained from this work will provide appropriate rationale for controlling the bio-deterioration of the pharmaceutically active metabolites in W. somnifera and development of suitable strategies against leaf spot disease. This is the first study to investigate the effect of leaf spot disease on the human health-promoting constituents and withanolide biosynthesis in this high-valued medicinal plant. © 2016 The Society for Applied Microbiology.
Studies On Marine Wood-Borers Of Kali Estuary, Karwar, Karnataka, India
NASA Astrophysics Data System (ADS)
Sanagoudra, S. N.; Neelakanton, K. B.
2008-05-01
The damage caused to underwater timber construction in Marine environment by Molluscan and Crustaceans borers is well known and is of great economic significance to all maritime countries having an expanding shipping and fishing industry. Biodeterioration of marine structure, fishing crafts and living in mangrove vegetation is quite severe along the Karwar coast. The destruction is caused by atleast 14 species and 1 variety of borers belonging to the moluscan and crustacean families of the Teredinidae, Pholadidae and Sphaeromatidae. The following species have been so far recorded: Dicyathifer manni, Lyrodus pedicellaatus, L.Massa, Bankia rochi, B. campanellata, Mausitora hedleyi,Martesia striata, M.NMairi,Sphaeroma terebrans, S.annandalei, S. annandalei travancorensis. These borers, particularly, the molluscs have prodigenous fecundity producing enormous number of young ones in one brood. They have unlimited appetite attacking any type woodly materials exposed in the sea. They attack in heavy intensity and, because of their fast rate of growth, destroy timber with in a short time of few months. All this together with their other highly specialized. Adaptations make marine wood borers man's number one enemy in the sea. Along Karwar costs borer damage to timber structure is heavy throughout the year, highest in September to November and lowest in June and July. Ecological and biological aspects of the borers are also discussed. Ref: L.N.Shantakumaran, Sawant S.G., Nair N.B., Anil Angre, Nagabhushanan R. STUDIES ON MARINE WOOD-BORERS OF KALI ESTUARY, KARWAR, KARNATAKA, INDIA
Fajardo-Cavazos, Patricia; Nicholson, Wayne
2006-01-01
As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ∼500 cultivable Bacillus spores and ∼104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted. PMID:16597992
Time-frequency analysis of GPR data to investigate the damage of monumental buildings
NASA Astrophysics Data System (ADS)
Leucci, Giovanni; Masini, Nicola; Persico, Raffaele
2012-08-01
The presence of particular microclimatic conditions inside monumental buildings is responsible for bio-deterioration processes. In many cases, efflorescence and moulds are visible on the facades of several monuments of historical importance. In many other cases, the effects of decay processes are not visible, thus making difficult the diagnosis and the consequent setup of effective rehabilitation and preservation interventions, especially in the presence of a complex geometry and/or a large variability of construction materials. In such cases, a valuable contribution could be provided by geophysical methods (such as electrical resistivity, electromagnetic conductivity, ground-penetrating radar (GPR), etc), which have been proved to be successful tools for sub-surface investigation and characterization of historical buildings. In old monumental buildings, the masonry structures frequently exhibit cracks, voids, detachments and high moisture contrasts that can give rise to reflection events in radar signals. However, the complexity of the geometry and the structural heterogeneity that characterize these old structures often make the GPR results difficult to analyse and interpret. In particular, the spatial variation in GPR signal attenuation can provide important information about the electrical properties of the investigated materials that, in turn, can be used to assess the physical parameters associated with damage. In this paper, we propose an approach that analyses the data in the form of ‘frequency maps’ to evidence absorption losses probably linked to higher moisture content. Two real case histories back up the proposed method.
Dual phylogenetic staining protocol for simultaneous analysis of yeast and bacteria in artworks
NASA Astrophysics Data System (ADS)
González-Pérez, Marina; Brinco, Catarina; Vieira, Ricardo; Rosado, Tânia; Mauran, Guilhem; Pereira, António; Candeias, António; Caldeira, Ana Teresa
2017-02-01
The detection and analysis of metabolically active microorganisms are useful to determine those directly involved in the biodeterioration of cultural heritage (CH). Fluorescence in situ hybridization with oligonucleotide probes targeted at rRNA (RNA-FISH) has demonstrated to be a powerful tool for signaling them. However, more efforts are required for the technique to become a vital tool for the analysis of CH's microbiological communities. Simultaneous analysis of microorganisms belonging to different kingdoms, by RNA-FISH in-suspension approach, could represent an important progress: it could open the door for the future use of the technique to analyze the microbial communities by flow cytometry, which has shown to be a potent tool in environmental microbiology. Thus, in this work, various already implemented in-suspension RNA-FISH protocols for ex situ analysis of yeast and bacteria were investigated and adapted for allowing the simultaneous detection of these types of microorganisms. A deep investigation of the factors that can affect the results was carried out, focusing particular attention on the selection of the fluorochromes used for labelling the probe set. The resultant protocol, involving the use of EUK516-6-FAM/EUB338-Cy3 probes combination, was validated using artificial consortia and gave positive preliminary results when applied in samples from a real case study: the Paleolithic archaeological site of Escoural Cave (Alentejo, Portugal). This approach represents the first dual-staining RNA-FISH in-suspension protocol developed and applied for the simultaneous investigation of CH biodeteriogenic agents belonging to different kingdoms.
Abdel-Kareem, Omar
2010-01-01
Fungal deterioration is one of the highest risk factors for damage of historical textile objects in Egypt. This paper represents both a study case about the fungal microflora deteriorating historical textiles in the Egyptian Museum and the Coptic museum in Cairo, and evaluation of the efficacy of several combinations of polymers with fungicides for the reinforcement of textiles and their prevention against fungal deterioration. Both cotton swab technique and biodeteriorated textile part technique were used for isolation of fungi from historical textile objects. The plate method with the manual key was used for identification of fungi. The results show that the most dominant fungi isolated from the tested textile samples belong to Alternaria, Aspergillus, Chaetomium, Penicillium and Trichoderma species. Microbiological testing was used for evaluating the usefulness of the suggested conservation materials (polymers combined with fungicides) in prevention of the fungal deterioration of ancient Egyptian textiles. Textile samples were treated with 4 selected polymers combined with two selected fungicides. Untreated and treated textile samples were deteriorated by 3 selected active fungal strains isolated from ancient Egyptian textiles. This study reports that most of the tested polymers combined with the tested fungicides prevented the fungal deterioration of textiles. Treatment of ancient textiles by suggested polymers combined with the suggested fungicides not only reinforces these textiles, but also prevents fungal deterioration and increases the durability of these textiles. The tested polymers without fungicides reduce the fungal deterioration of textiles but do not prevent it completely.
Three dimensional tracking of exploratory behavior of barnacle cyprids using stereoscopy.
Maleschlijski, S; Sendra, G H; Di Fino, A; Leal-Taixé, L; Thome, I; Terfort, A; Aldred, N; Grunze, M; Clare, A S; Rosenhahn, B; Rosenhahn, A
2012-12-01
Surface exploration is a key step in the colonization of surfaces by sessile marine biofoulers. As many biofouling organisms can delay settlement until a suitable surface is encountered, colonization can comprise surface exploration and intermittent swimming. As such, the process is best followed in three dimensions. Here we present a low-cost transportable stereoscopic system consisting of two consumer camcorders. We apply this novel apparatus to behavioral analysis of barnacle larvae (≈800 μm length) during surface exploration and extract and analyze the three-dimensional patterns of movement. The resolution of the system and the accuracy of position determination are characterized. As a first practical result, three-dimensional swimming trajectories of the cypris larva of the barnacle Semibalanus balanoides are recorded in the vicinity of a glass surface and close to PEG2000-OH and C(11)NMe(3)(+)Cl(-) terminated self-assembled monolayers. Although less frequently used in biofouling experiments due to its short reproductive season, the selected model species [Marechal and Hellio (2011), Int Biodeterior Biodegrad, 65(1):92-101] has been used following a number of recent investigations on the settlement behavior on chemically different surfaces [Aldred et al. (2011), ACS Appl Mater Interfaces, 3(6):2085-2091]. Experiments were scheduled to match the availability of cyprids off the north east coast of England so that natural material could be used. In order to demonstrate the biological applicability of the system, analysis of parameters such as swimming direction, swimming velocity and swimming angle are performed.
ZnO and ZnTiO3 nanopowders for antimicrobial stone coating
NASA Astrophysics Data System (ADS)
Ruffolo, S. A.; La Russa, M. F.; Malagodi, M.; Oliviero Rossi, C.; Palermo, A. M.; Crisci, G. M.
2010-09-01
In the past a great variety of biocidal compounds and persistent organic pesticides were applied on a large scale for preventive measures aimed at the long-term preservation of our cultural heritage. Only recently, public and expert attention has started to focus increasingly on the risks resulting from these treatments on human health, works of art and environment in general. The work done in this field demonstrated that the most effective way for inactivation can be achieved by using highly efficient photocatalysts with the illumination of UV radiation. Following this direction our group focused its attention on well-known photocatalysts, ZnO and ZnTiO3, in the degradation and complete mineralisation of environmental pollutants. This explorative work deals with an experimental investigation on biocidal efficient of ZnO and ZnTiO3. In particular micro-quantities of the two nanopowdered photocatalysts were spread on plated dishes. They were filled by the MEA (Malt Extract Agar) medium containing given quantities of Aspergillus Niger (a chromogen filamentous fungus involved in biodeterioration). At the same time the two oxides were dispersed in different polymeric matrices, acrylic and fluorinated, in order to obtain a new coating technology, with hydrophobic, consolidant and biocidal properties for the restoration of building stone material. The mixtures obtained were applied on marble samples and capillary water absorption, simulated solar ageing, colourimetric measurements and contact angle measurements have been performed to evaluate its properties.
Treatment with activated water by GlidArc technology of bacteria producing Biofouling
NASA Astrophysics Data System (ADS)
Hnatiuc, B.; Ghita, S.; Sabau, A.; Hnatiuc, M.; Dumitrache, C. L.; Wartel, M.
2015-02-01
Corrosion in marine environment is an actual problem, being a complex dynamic process influenced mainly by physical, chemical, microbiological and mechanical parameters. Around 70% of the maintenance costs of a ship are associated with the corrosion protection. Times for maintenance related to this phenomenon are greater than 80% of the total repair. Reducing this cost would be a significant saving, and an effective treatment can reduce times related to ships repairing. Biofouling is a main cause of corrosion and for its reduction different methods could be applied, especially in the first part of its production. The atmospheric pressure non-thermal plasmas have been gaining an ever increasing interest for different biodecontamination applications and present potential utilisation in the control of biofouling and biodeterioration. They have a high efficiency of the antimicrobial treatment, including capacity to eradicate microbial biofilms. The adhesion microbial biofilm is mainly influenced by presence of bacteria from the liquid environment. That is why this work concerns the study of annihilation of maximum amount of bacteria from sea water, by using GlidArc technology that produces non-thermal plasma. Bacteria suspended in sea water are placed in contact with activated water. This water is activated by using GlidArc working in humid air. Experimental results refer to the number of different activated and inactivated marine organisms and their evolution, present in solution at certain time intervals after mixing different amounts of seawater with plasma activated water.
Veneranda, Marco; Prieto-Taboada, Nagore; de Vallejuelo, Silvia Fdez-Ortiz; Maguregui, Maite; Morillas, Hector; Marcaida, Iker; Castro, Kepa; Madariaga, Juan Manuel; Osanna, Massimo
2017-08-01
This work was focused on the study of the biodegradation processes jeopardizing a mural painting conserved in the basement of Ariadne House (archaeological site of Pompeii, Italy). The fresco stood out for its peculiar state of preservation: the upper part, recovered in 1988, was just barely colonized by microorganisms. On the contrary, the lower part (excavated in 2005) was almost completely covered by extensive biological patinas. The genomic characterization carried out by polymerase chain reaction (PCR) highlighted the presence of seven different fungi strains on the mural surface. Beside, in situ and laboratory analyses were performed with the purpose of identifying the causes of the heterogeneous spatial distribution of the biopatinas. The in situ Raman spectroscopy and energy dispersive X-ray fluorescence (ED-XRF) spectroscopy measurements excluded any link between the heterogeneous colonization and the original materials present in the wall. On the other side, X-ray diffraction (XRD) and scanning electron microscopy (SEM) on microsamples proved the presence of a thin volcanic material layer overlying the lower part of the fresco. Considering that most of the biofilms of the studied mural painting only growth over these residues, it was confirmed the role of volcanic material as a suitable support for biological colonization. Thanks to the obtained results, this research helped to understand more in depth an important degradation pathway threatening the artworks from one of the most important archaeological sites in the world.
Piñar, Guadalupe; Garcia-Valles, Maite; Gimeno-Torrente, Domingo; Fernandez-Turiel, Jose Luis; Ettenauer, Jörg; Sterflinger, Katja
2013-01-01
We investigated the decayed historical church window glasses of two Catalonian churches, both under Mediterranean climate. Glass surfaces were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD). Their chemical composition was determined by wavelength-dispersive spectrometry (WDS) microprobe analysis. The biodiversity was investigated by molecular methods: DNA extraction from glass, amplification by PCR targeting the16S rRNA and ITS regions, and fingerprint analyses by denaturing gradient gel electrophoresis (DGGE). Clone libraries containing either PCR fragments of the bacterial 16S rDNA or the fungal ITS regions were screened by DGGE. Clone inserts were sequenced and compared with the EMBL database. Similarity values ranged from 89 to 100% to known bacteria and fungi. Biological activity in both sites was evidenced in the form of orange patinas, bio-pitting, and mineral precipitation. Analyses revealed complex bacterial communities consisting of members of the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Fungi showed less diversity than bacteria, and species of the genera Cladosporium and Phoma were dominant. The detected Actinobacteria and fungi may be responsible for the observed bio-pitting phenomenon. Moreover, some of the detected bacteria are known for their mineral precipitation capabilities. Sequence results also showed similarities with bacteria commonly found on deteriorated stone monuments, supporting the idea that medieval stained glass biodeterioration in the Mediterranean area shows a pattern comparable to that on stone. PMID:24092957
Greenhalgh, Richard; Greenhalgh, Malcolm; Alshareef, Fadwa; Robson, Geoffrey D
2017-10-01
Industrial antimicrobials have been extensively used to control unwanted microbial growth by incorporation into a variety of products such as plastics and paints, reducing biodeterioration and biofouling and extending the lifespan of the product. Industrial antimicrobials generally have broad sites of action affecting core cellular functions such as central metabolism, enzyme function, cell wall or DNA synthesis and can either be biocidal or biostatic. In addition, susceptibility can be affected by the metabolic state of the microbe, with metabolically inactive cells generally more resistant than metabolically active cells. Previously it was demonstrated that cytosolically expressed green fluorescent protein could be used as a real-time viability indicator in the yeast Aureobasidium pullulans based on the pH dependent fluorescence of GFP and the collapse of the proton gradient across the cell membrane during cell death. In this study we report on the development and validation of an equivalent GFP fluorescence viability assay in Escherichia coli and used this assay to study the effect of five antimicrobials commonly used in plastics; 4,5-dichloro-2-octyl-isothiazol-3-one (DCOIT), sodium pyrithione, 1,2-benzisothiazol-3-one (BIT), 2-octyl-isothiazol-3-one (OIT) and n-butyl-1,2-benzisothiazol-3-one (BBIT). The results demonstrate broad differences amongst the antimicrobials in both relative efficacy, rate of effect and for some antimicrobials, marked differences in sensitivity toward growing and non-growing cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Jong-Myong; Park, Sung-Jin; Ghim, Sa-Youl
2013-09-28
Crack remediation on the surface of cement mortar using microbiological calcium carbonate (CaCO3) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-CaCl2 media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed CaCO3 precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.
Detection of endolithic spatial distribution in marble stone.
Casanova Municchia, A; Percario, Z; Caneva, G
2014-10-01
The penetration of endolithic microorganisms, which develop to depths of several millimetres or even centimetres into the stone, and the diffusion of their extracellular substances speeds up the stone deterioration process. The aim of this study was to investigate, using a confocal laser scanning microscopy with a double-staining, a marble rock sample by observing the endolithic spatial distribution and quantifying the volume they occupied within the stone, in order to understand the real impact of these microorganisms on the conservation of stone monuments. Often the only factors taken into account by biodeterioration studies regarding endolithic microorganisms, are spread and depth of penetration. Despite the knowledge of three-dimensional spatial distribution and quantification of volume, it is indispensable to understand the real damage caused by endolithic microorganisms to stone monuments. In this work, we analyze a marble rock sample using a confocal laser scanning microscopy stained with propidium iodide and Concavalin-A conjugate with the fluorophore Alexa Fluor 488, comparing these results with other techniques (SEM microscope, microphotographs of polished cross-sections and thin-section, PAS staining methods), An image analysis approach has also been applied. The use of confocal laser scanning microscopy with double staining shows clear evidence of the presence of endolithic microorganisms (cyanobacteria and fungi) as well as the extracellular polymeric substance matrix in a three-dimensional architecture as part of the rock sample, this technique, therefore, seems very useful when applied to restoration interventions on stone monuments when endolithic growth is suspected. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride
Webb, Jeremy S.; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Robson, Geoffrey D.; Handley, Pauline S.
2000-01-01
Significant substratum damage can occur when plasticized PVC (pPVC) is colonized by microorganisms. We investigated microbial colonization of pPVC in an in situ, longitudinal study. Pieces of pPVC containing the plasticizers dioctyl phthalate and dioctyl adipate (DOA) were exposed to the atmosphere for up to 2 years. Fungal and bacterial populations were quantified, and colonizing fungi were identified by rRNA gene sequencing and morphological characteristics. Aureobasidium pullulans was the principal colonizing fungus, establishing itself on the pPVC between 25 and 40 weeks of exposure. A group of yeasts and yeast-like fungi, including Rhodotorula aurantiaca and Kluyveromyces spp., established themselves on the pPVC much later (after 80 weeks of exposure). Numerically, these organisms dominated A. pullulans after 95 weeks, with a mean viable count ± standard error of 1,000 ± 200 yeast CFU cm−2, compared to 390 ± 50 A. pullulans CFU cm−2. No bacterial colonization was observed. We also used in vitro tests to characterize the deteriogenic properties of fungi isolated from the pPVC. All strains of A. pullulans tested could grow with the intact pPVC formulation as the sole source of carbon, degrade the plasticizer DOA, produce extracellular esterase, and cause weight loss of the substratum during growth in vitro. In contrast, several yeast isolates could not grow on pPVC or degrade DOA. These results suggest that microbial succession may occur during the colonization of pPVC and that A. pullulans is critical to the establishment of a microbial community on pPVC. PMID:10919769
Monitoring the effects of different conservation treatments on paper-infecting fungi
Michaelsen, Astrid; Pinzari, Flavia; Barbabietola, Nicoletta; Piñar, Guadalupe
2013-01-01
Fungi are among the most degradative organisms inducing biodeterioration of paper-based items of cultural heritage. Appropriate conservation measures and restoration treatments to deal with fungal infections include mechanical, chemical, and biological methods, which entail effects on the paper itself and health hazards for humans. Three different conservation treatments, namely freeze-drying, gamma rays, and ethylene oxide fumigation, were compared and monitored to assess their short- (one month, T1) and long-term (one year, T2) effectiveness to inhibit fungal growth. After the inoculation with fungi possessing cellulose hydrolysis ability — Chaetomium globosum, Trichoderma viride, and Cladosporium cladosporioides — as single strains or as a mixture, different quality paper samples were treated and screened for fungal viability by culture-dependent and -independent techniques. Results derived from both strategies were contradictory. Both gamma irradiation and EtO fumigation showed full efficacy as disinfecting agents when evaluated with cultivation techniques. However, when using molecular analyses, the application of gamma rays showed a short-term reduction in DNA recovery and DNA fragmentation; the latter phenomenon was also observed in a minor degree in samples treated with freeze-drying. When RNA was used as an indicator of long-term fungal viability, differences in the RNA recovery from samples treated with freeze-drying or gamma rays could be observed in samples inoculated with the mixed culture. Only the treatment with ethylene oxide proved negative for both DNA and RNA recovery. Therefore, DNA fragmentation after an ethylene oxide treatment can hamper future paleogenetic and archaeological molecular studies on the objects. PMID:24092956
Impact of organosulfur content on diesel fuel stability and implications for carbon steel corrosion.
Lyles, Christopher N; Aktas, Deniz F; Duncan, Kathleen E; Callaghan, Amy V; Stevenson, Bradley S; Suflita, Joseph M
2013-06-04
Ultralow sulfur diesel (ULSD) fuel has been integrated into the worldwide fuel infrastructure to help meet a variety of environmental regulations. However, desulfurization alters the properties of diesel fuel in ways that could potentially impact its biological stability. Fuel desulfurization might predispose ULSD to biodeterioration relative to sulfur-rich fuels and in marine systems accelerate rates of sulfate reduction, sulfide production, and carbon steel biocorrosion. To test such prospects, an inoculum from a seawater-compensated ballast tank was amended with fuel from the same ship or with refinery fractions of ULSD, low- (LSD), and high sulfur diesel (HSD) and monitored for sulfate depletion. The rates of sulfate removal in incubations amended with the refinery fuels were elevated relative to the fuel-unamended controls but statistically indistinguishable (∼50 μM SO4/day), but they were found to be roughly twice as fast (∼100 μM SO4/day) when the ship's own diesel was used as a source of carbon and energy. Thus, anaerobic hydrocarbon metabolism likely occurred in these incubations regardless of fuel sulfur content. Microbial community structure from each incubation was also largely independent of the fuel amendment type, based on molecular analysis of 16S rRNA sequences. Two other inocula known to catalyze anaerobic hydrocarbon metabolism showed no differences in fuel-associated sulfate reduction or methanogenesis rates between ULSD, LSD, and HSD. These findings suggest that the stability of diesel is independent of the fuel organosulfur compound status and reasons for the accelerated biocorrosion associated with the use of ULSD should be sought elsewhere.
NASA Astrophysics Data System (ADS)
Pournou, Anastasia
2017-09-01
Archaeological wood cannot be found preserved in the marine ecosystem unless it is buried in anoxic or dysoxic sediments. These habitats do not allow the growth and activity of wood degraders, and thus wooden shipwrecks can survive within these environments for centuries. However, due to natural factors or anthropogenic interventions wood can be re-exposed to the oxygenated water column, where it disintegrates rapidly. In such cases, in situ preservation becomes a main priority, as lifting and conservation are not usually feasible. One of the most common in situ preservation methods is the covering of wood with geotextiles. To date however, even though this method has been used worldwide the past decades, its long-term performance and effectiveness hasn't been evaluated. This work presents, for the first time, results on the efficacy of geotextiles used for 12 years on a shipwreck found in the Mediterranean. Fabric performance was evaluated based on wreck timbers condition, its physical, mechanical and hydraulic properties and the ecological and hydrographical profile of the underwater site created, following its application. Obtained results demonstrated that wreck timbers covered with geotextiles did not show signs of attack during the 12 years of in situ preservation. Geotextiles properties were found to be adequately retained when compared with properties of new unused geotextiles. The fabric had entrapped sediment and was colonised by the local flora and fauna, re-establishing anoxic conditions. This work showed that geotextiles can successfully preserve in situ wooden shipwrecks in high biodeterioration risk environments for at least a 10 year period.
Monitoring the effects of different conservation treatments on paper-infecting fungi.
Michaelsen, Astrid; Pinzari, Flavia; Barbabietola, Nicoletta; Piñar, Guadalupe
2013-10-01
Fungi are among the most degradative organisms inducing biodeterioration of paper-based items of cultural heritage. Appropriate conservation measures and restoration treatments to deal with fungal infections include mechanical, chemical, and biological methods, which entail effects on the paper itself and health hazards for humans. Three different conservation treatments, namely freeze-drying, gamma rays, and ethylene oxide fumigation, were compared and monitored to assess their short- (one month, T1) and long-term (one year, T2) effectiveness to inhibit fungal growth. After the inoculation with fungi possessing cellulose hydrolysis ability - Chaetomium globosum , Trichoderma viride, and Cladosporium cladosporioides - as single strains or as a mixture, different quality paper samples were treated and screened for fungal viability by culture-dependent and -independent techniques. Results derived from both strategies were contradictory. Both gamma irradiation and EtO fumigation showed full efficacy as disinfecting agents when evaluated with cultivation techniques. However, when using molecular analyses, the application of gamma rays showed a short-term reduction in DNA recovery and DNA fragmentation; the latter phenomenon was also observed in a minor degree in samples treated with freeze-drying. When RNA was used as an indicator of long-term fungal viability, differences in the RNA recovery from samples treated with freeze-drying or gamma rays could be observed in samples inoculated with the mixed culture. Only the treatment with ethylene oxide proved negative for both DNA and RNA recovery. Therefore, DNA fragmentation after an ethylene oxide treatment can hamper future paleogenetic and archaeological molecular studies on the objects.
NASA Astrophysics Data System (ADS)
Pournou, Anastasia
2018-04-01
Archaeological wood cannot be found preserved in the marine ecosystem unless it is buried in anoxic or dysoxic sediments. These habitats do not allow the growth and activity of wood degraders, and thus wooden shipwrecks can survive within these environments for centuries. However, due to natural factors or anthropogenic interventions wood can be re-exposed to the oxygenated water column, where it disintegrates rapidly. In such cases, in situ preservation becomes a main priority, as lifting and conservation are not usually feasible. One of the most common in situ preservation methods is the covering of wood with geotextiles. To date however, even though this method has been used worldwide the past decades, its long-term performance and effectiveness hasn't been evaluated. This work presents, for the first time, results on the efficacy of geotextiles used for 12 years on a shipwreck found in the Mediterranean. Fabric performance was evaluated based on wreck timbers condition, its physical, mechanical and hydraulic properties and the ecological and hydrographical profile of the underwater site created, following its application. Obtained results demonstrated that wreck timbers covered with geotextiles did not show signs of attack during the 12 years of in situ preservation. Geotextiles properties were found to be adequately retained when compared with properties of new unused geotextiles. The fabric had entrapped sediment and was colonised by the local flora and fauna, re-establishing anoxic conditions. This work showed that geotextiles can successfully preserve in situ wooden shipwrecks in high biodeterioration risk environments for at least a 10 year period.
Dwivedy, Abhishek Kumar; Prakash, Bhanu; Chanotiya, Chandan Singh; Bisht, Deepa; Dubey, Nawal Kishore
2017-08-01
The study reports Mentha cardiaca essential oil (EO) as plant based preservative against fungal and aflatoxin contamination of stored dry fruits. Mycoflora analysis of the dry fruits revealed Aspergillus favus LHP-PV-1 as the most aflatoxigenic isolate with highest Aflatoxin B 1 content. M. cardiaca EO showed broad fungitoxic spectrum inhibiting the tested moulds contaminating dry fruits. It's minimum inhibitory concentration (MIC), minimum aflatoxin inhibitory concentration (MAIC) and minimum fungicidal concentration (MFC) against A. favus LHP-PV-1 were recorded to be 1.25, 1.0 and 2.25 µL/mL respectively. The EO caused decrease in ergosterol content and enhanced leakage of Ca 2+ , K + and Mg 2+ ions from treated fungal cells, depicting fungal plasma membrane as the site of antifungal action. The EO showed promising DPPH free radical scavenging activity (IC 50 value:15.89 µL/mL) and favourable safety profile with LD 50 value (7133.70 mg/kg body wt.) when estimated through acute oral toxicity on mice. Carvone (61.62%) was recorded as the major component of the oil during chemical characterisation through GC-MS. Based on strong antifungal, antiaflatoxigenic and antioxidant potential, the chemically characterised M. cardiaca EO may be recommended as safe plant based preservative and shelf life enhancer of food items. This is the first report on antifungal and antiaflatoxigenic activity of M. cardiaca EO. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nowicka-Krawczyk, Paulina; Żelazna-Wieczorek, Joanna; Otlewska, Anna; Koziróg, Anna; Rajkowska, Katarzyna; Piotrowska, Małgorzata; Gutarowska, Beata; Żydzik-Białek, Agnieszka
2014-09-15
Aerial phototrophs colonize materials of anthropogenic origin, thus contributing to their biodeterioration. Structures preserved at the former Auschwitz II-Birkenau concentration and extermination camp show signs of degradation by cyanobacteria and algae. In order to protect the Auschwitz-Birkenau Memorial Site, diversity of aerial phototrophs growing on the historic buildings has been studied. Analyses of cyanobacterial and algal biofilms growing on various construction substrates were carried out in summer and winter. Multivariate data analyses were used to: characterize the diversity of cyanobacteria and algae growing in brick and wooden camp buildings depending on the research season, indicate preferences of cyanobacteria and algae in colonizing substrates, and to predict the environmental factor that most determines the growth of phototrophs. The biofilms were formed mainly by cyanobacteria, green algae and diatoms. The amount of cyanobacteria and algae in the biofilms was varied, which resulted from changes in climatic conditions, the type of substrate and the height at which the biofilms developed. In the summer, the ratio of cyanobacteria and algae groups was balanced, while in the winter, green algae and diatoms were dominant. Green algae showed a preference for colonizing plaster, wood and concrete, of which the walls and doors of the buildings were made. Their participation was correlated with a height gradient. Cyanobacteria and diatoms grew on bricks and soil on the floor of the buildings and temperature and relative humidity were the factors that modified their amount. Green algae were more cosmopolitan-occurred in dry places, potentially inaccessible to other organisms; therefore, they have been identified as the pioneer group in the prevailing climatic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of gamma irradiation on Korean traditional multicolored paintwork
NASA Astrophysics Data System (ADS)
Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon
2015-10-01
Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.
Singh, Varinder; Singh, Baldev; Joshi, Robin; Jaju, Puneet
2017-01-01
Withania somnifera is a high value medicinal plant which is used against large number of ailments. The medicinal properties of the plant attributes to a wide array of important secondary metabolites. The plant is predominantly infected with leaf spot pathogen Alternaria alternata, which leads to substantial biodeterioration of pharmaceutically important metabolites. To develop an effective strategy to combat this disease, proteomics based approach could be useful. Hence, in the present study, three different protein extraction methods tris-buffer based, phenol based and trichloroacetic acid-acetone (TCA-acetone) based method were comparatively evaluated for two-dimensional electrophoresis (2-DE) analysis of W. somnifera. TCA-acetone method was found to be most effective and was further used to identify differentially expressed proteins in response to fungal infection. Thirty-eight differentially expressed proteins were identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry (MALDI TOF/TOF MS/MS). The known proteins were categorized into eight different groups based on their function and maximum proteins belonged to energy and metabolism, cell structure, stress and defense and RNA/DNA categories. Differential expression of some key proteins were also crosschecked at transcriptomic level by using qRT-PCR and were found to be consistent with the 2-DE data. These outcomes enable us to evaluate modifications that take place at the proteomic level during a compatible host pathogen interaction. The comparative proteome analysis conducted in this paper revealed the involvement of many key proteins in the process of pathogenesis and further investigation of these identified proteins could assist in the discovery of new strategies for the development of pathogen resistance in the plant. PMID:28575108
Influence of wavelength on the laser removal of lichens colonizing heritage stone
NASA Astrophysics Data System (ADS)
Sanz, M.; Oujja, M.; Ascaso, C.; Pérez-Ortega, S.; Souza-Egipsy, V.; Fort, R.; de los Rios, A.; Wierzchos, J.; Cañamares, M. V.; Castillejo, M.
2017-03-01
Laser irradiation of lichen thalli on heritage stones serves for the control of epilithic and endolithic biological colonizations. In this work we investigate rock samples from two quarries traditionally used as source of monumental stone, sandstone from Valonsadero (Soria, Spain) and granite from Alpedrete (Madrid, Spain), in order to find conditions for efficient laser removal of lichen thalli that ensure preservation of the lithic substrate. The samples presented superficial areas colonized by different types of crustose lichens, i.e. Candelariella vitellina, Aspicilia viridescens, Rhizocarpon disporum and Protoparmeliopsis muralis in Valonsadero samples and P. cf. bolcana and A. cf. contorta in Alpedrete samples. A comparative laser cleaning study was carried out on the mentioned samples with ns Q-switched Nd:YAG laser pulses of 1064 nm (fundamental radiation), 355 nm (3rd harmonic) and 266 nm (4th harmonic) and sequences of IR-UV pulses. A number of techniques such as UV-Vis absorption spectroscopy, stereomicroscopy, scanning electron microscopy (SEM) at low vacuum, SEM with backscattered electron imaging (SEM-BSE), electron dispersive spectroscopy (EDS) and FT-Raman spectroscopy were employed to determine the best laser irradiation conditions and to detect possible structural, morphological and chemical changes on the irradiated surfaces. The results show that the laser treatment does not lead to the complete removal of the studied lichen thalli, although clearly induces substantial damage, in the form of loss of the lichen upper cortex and damage to the algal layer. In the medium term these alterations could result in the destruction of the lichen thalli, thus providing a degree of control of the biodeterioration processes of the lithic substrate and reducing the chances of subsequent lichen recolonization.
Piñar, Guadalupe; Dalnodar, Dennis; Voitl, Christian; Reschreiter, Hans; Sterflinger, Katja
2016-01-01
The prosperity of Hallstatt (Salzkammergut region, Austria) is based on the richness of salt in the surrounding mountains and salt mining, which is documented as far back as 1500 years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has been discovered, with a wooden staircase (1108 B.C.) being one of the most impressive and well preserved finds. However, after its discovery, fungal mycelia have been observed on the surface of the staircase, most probably due to airborne contamination after its find. As a basis for the further preservation of this valuable object, the active micro-flora was examined to investigate the presence of potentially biodegradative microorganisms. Most of the strains isolated from the staircase showed to be halotolerant and halophilic microorganisms, due to the saline environment of the mine. Results derived from culture-dependent assays revealed a high fungal diversity, including both halotolerant and halophilic fungi, the most dominant strains being members of the genus Phialosimplex (synonym: Aspergillus). Additionally, some typical cellulose degraders, namely Stachybotrys sp. and Cladosporium sp. were detected. Numerous bacterial strains were isolated and identified as members of 12 different genera, most of them being moderately halophilic species. The most dominant isolates affiliated with species of the genera Halovibrio and Marinococcus. Halophilic archaea were also isolated and identified as species of the genera Halococcus and Halorubrum. Molecular analyses complemented the cultivation assays, enabling the identification of some uncultivable archaea of the genera Halolamina, Haloplanus and Halobacterium. Results derived from fungi and bacteria supported those obtained by cultivation methods, exhibiting the same dominant members in the communities. The results clearly showed the presence of some cellulose degraders that may become active if the requirements for growth and the environmental conditions turn suitable; therefore, these microorganisms must be regarded as a threat to the wood.
Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C; Berry, C.
Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in thismore » field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.« less
Biogenic Cracks in Porous Rock
NASA Astrophysics Data System (ADS)
Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.
2014-12-01
Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.
Phototrophic microorganisms in biofilm samples from Vernjika Cave, Serbia
NASA Astrophysics Data System (ADS)
Popović, Slađana; Jovanović, Jelena; Predojević, Dragana; Trbojević, Ivana; Blagojević, Ana; Subakov Simić, Gordana
2016-04-01
Caves represent specific natural monuments in terms of structure, complexity and beauty which can be found worldwide. Even though they are considered extreme environments, they are still a unique habitat for a large number of organisms that grow and proliferate here. Often can be seen that the cave walls are differently coloured as a consequence of the biofilm development. Biofilms represent complex communities of microorganisms that can develop on different kind of surfaces, including various rock surfaces. Each microbe species play a different role in a community, but their development on stone surfaces can cause substantial damage to the substrates through different mechanisms of biodeterioration and degradation. There is an increased interest in the phototrophic component of biofilms (aerophytic cyanobacteria and algae), especially cyanobacteria, an ancient microorganisms capable to survive the most diverse extreme conditions. These phototrophs can easily be found at cave entrances illuminated by direct or indirect sunlight and areas near artificial lights. Cyanobacteria and algae were investigated in biofilm samples taken from the entrance of Vernjika Cave in Eastern Serbia. Cyanobacteria, Chlorophyta and Bacillariophyta were documented, with Cyanobacteria as a group with the highest number of recorded taxa. Chroococcalean species were the most diverse with the most frequently encountered species from the genus Gloeocapsa. Phormidium and Nostoc species were commonly recorded Oscillatoriales and Nostocles, respectively. Among Oscillatoriales species, it was noticed that one Phormidium species precipitates CaCO3 on it's sheats. Trebouxia sp. and Desmococcus olivaceus were frequently documented Chlorophyta, and representatives of Bacillariophyta were exclusively aerophytic taxa, mostly belonging to the genera Luticola and Humidophila. Measured ecological parameters, temperature and relative humidity, were influenced by the external climatic changes, while light intensity values showed significant differences among sampling sites, even though sampling sites were relatively close to each other. Chlorophyll a, water content and content of organic and inorganic matter were determined from each biofilm sample. Chlorophyll a content showed positive correlation with the content of the organic matter. Since cave microbiology is recognized as a growing interdisciplinary field, the exploration of phototrophic diversity is considered to be a contribution to this issue and the basis for further research that will include more experimental studies.
Biogeochemical Activity of Siderophilic Cyanobacteria: Implications for Paleobiogeochemistry
NASA Technical Reports Server (NTRS)
Brown, Igor I.; Sarkisova, Svetlana A.; Auyeung, Weng S.; Garrison, Dan; Allen, Carlton C.; McKay, David S.
2007-01-01
Understanding the patterns of iron oxidation by cyanobacteria (CB) has tremendous importance for paleobiogeochemistry, since cyanobacteria are presumed to have been involved in the global oxidation of ferrous iron during the Precambrian (Cloud, 1973). B.K. Pierson (1999, 2000) first proposed to study iron deposition in iron-depositing hot springs (ID HS) as a model for Precambrian Fe(2+) oxidation. However, neither the iron-dependent physiology of individual species of CB inhabiting iron-depositing hot springs nor their interactions with minerals enriched with iron have been examined thoroughly. Such study could shed light on ancient iron turnover. Cyanobacterial species isolated from ID HS demonstrate elevated tolerance to colloidal Fe(3+) (= 1 mM), while a concentration of 0.4 mM proved toxic for mesophilic Synechocystis PCC 6803. Isolates from ID HS require 0.4-0.6 mM Fe3+ for maximal growth while the iron requirement for Synechocystis is approximately one order of magnitude lower. We have also demonstrated that thick polysaccharide sheaths around cells of CB isolated from ID HS serve as repositories for precipitated iron. The growth of the mesophilic cyanobacteria Phromidium aa in iron-saturated (0.6 mM) DH medium did not lead to iron precipitation on its filament surfaces. However, a 14.3 fil.2 culture, isolated from an ID HS and incubated under the same conditions, was covered with dense layer of precipitated iron. Our results, taken together with Pierson s data concerning the ability of Fe2+ to stimulate photosynthesis in natural CB mats in ID HS, suggest that CB inhabiting ID HS may constitute a new group of the extremophiles - siderophilic CB. Our recent experiments have revealed for the first time that CB isolates from ID HS are also capable of biodeterioration - the etching of minerals, in particular glasses enriched with Fe, Al, Ti, O, and Si. Thus, Precambrian siderophilic cyanobacteria and their predecessors could have been involved not only in iron deposition but also in the global release of elements. The ability of siderophilic CB to participate in iron turnover make them appropriate candidates for biotechnological processes.
Pereira, António; Caldeira, Ana Teresa; Maduro, Belmira; Vandenabeele, Peter; Candeias, António
2016-01-01
The study and preservation of museum collections requires complete knowledge and understanding of constituent materials that can be natural, synthetic, or semi-synthetic polymers. In former times, objects were incorporated in museum collections and classified solely by their appearance. New studies, prompted by severe degradation processes or conservation-restoration actions, help shed light on the materiality of objects that can contradict the original information or assumptions. The selected case study presented here is of a box dating from the beginning of the 20th century that belongs to the Portuguese National Ancient Art Museum. Museum curators classified it as a tortoiseshell box decorated with gold applications solely on the basis of visual inspection and the information provided by the donor. This box has visible signs of degradation with white veils, initially assumed to be the result of biological degradation of a proteinaceous matrix. This paper presents the methodological rationale behind this study and proposes a totally non-invasive methodology for the identification of polymeric materials in museum artifacts. The analysis of surface leachates using (1)H and (13)C nuclear magnetic resonance (NMR) complemented by in situ attenuated total reflection infrared spectroscopy (ATR FT-IR) allowed for full characterization of the object s substratum. The NMR technique unequivocally identified a great number of additives and ATR FT-IR provided information about the polymer structure and while also confirming the presence of additives. The pressure applied during ATR FT-IR spectroscopy did not cause any physical change in the structure of the material at the level of the surface (e.g., color, texture, brightness, etc.). In this study, variable pressure scanning electron microscopy (VP-SEM-EDS) was also used to obtain the elemental composition of the metallic decorations. Additionally, microbiologic and enzymatic assays were performed in order to identify the possible biofilm composition and understand the role of microorganisms in the biodeterioration process. Using these methodologies, the box was correctly identified as being made of cellulose acetate plastic with brass decorations and the white film was identified as being composed mainly of polymer exudates, namely sulphonamides and triphenyl phosphate. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Roman, Monsi C.; Mittelman, Marc W.
2010-01-01
The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the mid 1980s, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in open, semi-closed and closed loop life support system. The biofilm and biodeterioration studies that were performed during the design and test periods will be presented in a future publication.
NASA Astrophysics Data System (ADS)
Lebental, Bérengère; Angelescu, Dan; Bourouina, Tarik; Bourquin, Frédéric; Cojocaru, Costel-Sorin; Derkx, François; Dumoulin, Jean; Ha, Thi-Lan; Robine, Enric; Van Damme, Henri
2013-04-01
While today's galloping urbanization weighs heavily on both People and Environment, the massive instrumentation of urban spaces appears a landmark toward sustainability. Collecting massively distributed information requires the use of high-performance communication systems as well as sensors with very small ecological footprint. Because of their high sensitivity, the wide range of their observables, their energetic self-sufficiency and their low cost, micro- and nano- sensors are particularly well suited to urban metrology. A 8 years, 9 M€ equipment project funded by the French "Programme d'Investissement d'Avenir" starting in 2012, the Sense-City project will offer a suite of high-quality facilities for the design, prototyping and performance assessment of micro- and nanosensors devoted to sustainable urbanization. The scientific program of Sense-City is built around four programs, environmental monitoring, structural health monitoring, energy performances monitoring and people health and exposure monitoring. We present the activities of the consortium partners, IFSTTAR, ESIEE-Paris, CSTB, LPICM, and the prospects brought by Sense-City equipment in terms of sensor prototyping, benchmarking and operation validation. We discuss how the various sensors developed by LPICM and ESIEE (for instance conformable chemical and gas microsensors using nanomaterials at LPICM, miniaturized gas chromatographs or microfluidic lab-on-chip for particles analysis at ESIEE-Paris) can be integrated by IFSTTAR into sensors networks tested by IFSTTAR and CSTB in both lab and urban settings. The massively distributed data are interpreted using advanced physical models and inverse methods in order to monitor water, air or soil quality, infrastructure and network safety, building energy performances as well as people health and exposure. We discuss the shortcomings of evaluating the performances of sensors only in lab conditions or directly in real, urban conditions. As a solution, Sense-City will provide an environment of intermediate complexity for the testing of environmental sensors, a realistic urban test space in climatic conditions, both far more complex than clean rooms and far more controllable than actual cities. References: [1] Joblin Y et al., International Biodeterioration & Biodegradation 2010, 64, 210-217 [2] Lee C S et al., Nanotechnology 2012, accepted [3] Nachef K et al., IEEE/ASME Journal of Microelectromechanical Systems 2102, 21
Fungal Spores Viability on the International Space Station
NASA Astrophysics Data System (ADS)
Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.
2016-11-01
In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the long term experiment lost the outer layer of their coat without affecting the viability since they were still protected by the middle and the inner layer of the coating. This research highlights a new protocol to perform spaceflight experiments inside the ISS with fungal spores in microgravity conditions, under the additional effect of possible cosmic radiation. According to this protocol the results are expressed in terms of viability, microscopic and morphological changes.
Fungal Spores Viability on the International Space Station.
Gomoiu, I; Chatzitheodoridis, E; Vadrucci, S; Walther, I; Cojoc, R
2016-11-01
In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the long term experiment lost the outer layer of their coat without affecting the viability since they were still protected by the middle and the inner layer of the coating. This research highlights a new protocol to perform spaceflight experiments inside the ISS with fungal spores in microgravity conditions, under the additional effect of possible cosmic radiation. According to this protocol the results are expressed in terms of viability, microscopic and morphological changes.
Development of protocol for determination of natural stone bioreceptivity
NASA Astrophysics Data System (ADS)
Mauko Pranjić, Alenka; Mulec, Janez; Mesojedec, Mojca; Zalar Serjun, Vesna; Mladenovič, Ana
2017-04-01
Biodeterioration of stone surfaces in modern structures and cultural heritage is a problem that does not only affect the aesthetic appearance of stone elements but also changes their functionality due to material degradation and has indirectly a significant influence on the economy. The term bioreceptivity describes a material's susceptibility for the population of living organisms (Guiliette, 1995). Methods for bioreceptivity determination are usually based on a quantification of a grown microbiological mass on an exposed stone surface which was artificially inoculated with a pioneer organism (Guillitte and Dreesen, 1995; Miller et al, 2012). In our study a protocol for bioreceptivity determination was implemented based on an image analysis of autofluorescing pioneer organisms on sample surfaces exposed in growth chamber under specific laboratory conditions. The method is primarily meant for assessing the direct influence of intrinsic features of a rock on the rock's sensitivity for organism growth. Bioreceptivity has been determined on fifteen frequently used commercial types of natural stone for construction purposes in Slovenia. Mineral composition was determined with the help of microscopy and x-ray diffraction. Inoculated were three autotrophic organisms: Chlorella vulgaris, Chroococcus minutus and Pseudococcomyxa sp. Due to the fastest growth and insensitivity, the most appropriate microorganism for the laboratory experiment of bioreceptivity proved to be Chlorella vulgaris. It was established that different natural stones have a different bioreceptivity which depends on their mineral composition, roughness and physical features, e.g. type of porosity. In case of dry surface samples, the soaking of the surface and the capillary-type pores have the greatest influence. On the other hand, results of biorecepivity analysis examinations of water saturated samples show the prevalence of other mechanisms where the influence of mineral composition of a rock and grain size is likely to be higher. Literature Guillitte, O. Bioreceptivity: a new concept for building ecology studies. Sci Total Environ 1995; 167: 215-220. Guillitte, O., Dreesen, R. Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tools of building materials. Sci Total Environ 1995; 167: 365-374. Miller, A.Z., Sanmartin, P., Pereira-Pardo, L.,Dionisio, A., Saiz-jimenez, C., Macedo, M.F., Prieto, B. 2012, Bioreceptivity of building stones: A review. Science of The Total Enviroment, 426: 1-12. Acknwnoledgments This study was supported by the Slovenian Research Agency under the project L1-5453.
X-ray sterilization of insects and microorganisms for cultural heritage applications
NASA Astrophysics Data System (ADS)
Borgognoni, F.; Vadrucci, M.; Bazzano, G.; Ferrari, P.; Massa, S.; Moretti, R.; Calvitti, M.; Ronsivalle, C.; Moriani, A.; Picardi, L.
2017-09-01
The APAM (Development of Particle Accelerators and Medical Applications) Laboratory of the ENEA Frascati Research Center is engaged in the preservation of cultural heritage as part of the COBRA (Sviluppo e diffusione di metodi, tecnologie e strumenti avanzati per la COnservazione dei Beni culturali, basati sull'applicazione di Radiazioni e di tecnologie Abilitanti) project addressed to the transfer of innovative technologies and methodologies from research to small and medium enterprises involved in the restorative measures. This work aims to demonstrate the effectiveness of ionizing radiation on the disinfection of biodegraded art objects. The conventional methods for the disinfestation of works of art, using chemicals toxic to humans and environment, might cause some damage to the treated material even on micrometric scale (i. e. either cellulose degradation). Ionizing radiations interact with the infesting biological material causing an irreversible DNA degradation. For this reason, they are certainly suitable for removal treatments of both macro organisms and bacterial colonies. A 4.8 MeV electron linear accelerator, normally dedicated to the characterization of dose detectors and radiographies, has been employed to produce Bremsstrahlung X-rays through a lead converter. The spectral fluence of the radiation source has been calculated using the Monte Carlo MCNPX code. The dosimetric characterization of the radiation field has been made using radiochromic films sensitive in the dose range of our interest (from 50 to 500 Gy) calibrated with a Markus ionization chamber. The irradiation of the artifact prototypes are made within a lead shielded room at a variable distance from the X-rays source. Samples subjected to irradiation consist of a soil bacterium, Agrobacterium rhizogenes, and an insect, Stegobium paniceum, that are found as wall paintings invasive coloniser and as a pest of books, wood works and paintings, respectively. Tests of irradiation have been performed on pest organisms as well as on woods mock-ups to evaluate potential damage to the material during the sterilization. The growing capacity of the treated bacterial cells re-cultured at the end of the treatment was evaluated on the bacterial sample and resulted to strongly inhibit cell growth during post-irradiation incubation, so that after incubation periods at 28 °C, no significant cell growth was observed. The induced levels of insect mortality and sterility vs absorbed dose and operative conditions have been also evaluated, demonstrating the induction of full sterility since the lower dose and 40% mortality by two days after the higher dose treatment. The experiments proved the ability to efficaciously treat objects of cultural heritage with X-rays in order to prevent the increase of the biodeterioration without damaging the materials: in fact, mechanical tests on both irradiated and not irradiated woods have demonstrated the absence of any induced degradation after the radiation exposition.