Science.gov

Sample records for biodiesel viib weroli

  1. Biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative diesel fuel derived from vegetable oils such as soybean oil or other sources such as animal fats and waste frying oils. This article gives a brief overview of issues affecting biodiesel, including sources, production, properties, comparison to petrodiesel and commercial ...

  2. Biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is a renewable alternative to petrodiesel that is prepared from plant oils or animal fats. Biodiesel is prepared via transesterification and the resulting fuel properties must be compliant with international fuel standards such as ASTM D6751 and EN 14214. Numerous catalysts, methods, and l...

  3. Biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biofuels are continuously gaining importance in light of the dependence on diminishing and imported petroleum, coupled with rising energy prices, environmental issues and the need to strengthen the domestic agricultural economy. Biodiesel, which is obtained from vegetable oils, animal fats or used ...

  4. Biodiesel Basics

    SciTech Connect

    2014-07-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends and specifications. It also covers how biodiesel compares to diesel fuel in terms of performance (including in cold weather) and whether there are adverse effects on engines or other systems. Finally, it discusses biodiesel fuel quality and standards, and compares biodiesel emissions to those of diesel fuel.

  5. Biodiesel Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  6. Biodiesel Emissions Analysis Program

    EPA Pesticide Factsheets

    Using existing data, the EPA's biodiesel emissions analysis program sought to quantify the air pollution emission effects of biodiesel for diesel engines that have not been specifically modified to operate on biodiesel.

  7. Biodiesel fuels

    USDA-ARS?s Scientific Manuscript database

    The mono-alkyl esters, most commonly the methyl esters, of vegetable oils, animal fats or other materials consisting mainly of triacylglycerols, often referred to as biodiesel, are an alternative to conventional petrodiesel for use in compression-ignition engines. The fatty acid esters that thus com...

  8. Biodiesel and its properties

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is a bio-based alternative to conventional diesel fuel derived from petroleum. It consists mainly of the fatty acid esters of vegetable oils or other triacylglycerol feedstocks. This chapter provides a background on biodiesel as well as an overview of biodiesel production, analysis, and pr...

  9. Harmonization of Biodiesel Specifications

    SciTech Connect

    Alleman, T. L.

    2008-02-01

    Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.

  10. Supercritical synthesis of biodiesel.

    PubMed

    Bernal, Juana M; Lozano, Pedro; García-Verdugo, Eduardo; Burguete, M Isabel; Sánchez-Gómez, Gregorio; López-López, Gregorio; Pucheault, Mathieu; Vaultier, Michel; Luis, Santiago V

    2012-07-23

    The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.

  11. Biodiesel and Biodiesel Blend Properties Related to EPAct Use

    DTIC Science & Technology

    2003-09-01

    characterize selected biodiesel samples (identified in market survey, TARDEC Technical Report No. 13801) and biodiesel (B20) blends made with diesel fuels...characterize selected biodiesel samples (identified in market survey, TARDEC Technical Report No. 13801) and biodiesel (B20) blends made with diesel fuels. The...impact of biodiesel is available and should be checked. INTRODUCTION The Federal Government has taken the lead in establishing a market for AFVs by

  12. Catalysis in biodiesel processing

    USDA-ARS?s Scientific Manuscript database

    A substantial industry has grown in recent years to achieve the industrial scale production of biodiesel, a renewable replacement for petroleum-derived diesel fuel. The prevalent technology for biodiesel production at this time involves use of the long known single-use catalysts sodium hydroxide (o...

  13. NMR analysis of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  14. Biodiesel from conventional feedstocks.

    PubMed

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted.

  15. Biodiesel from microalgae.

    PubMed

    Chisti, Yusuf

    2007-01-01

    Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Biodiesel derived from oil crops is a potential renewable and carbon neutral alternative to petroleum fuels. Unfortunately, biodiesel from oil crops, waste cooking oil and animal fat cannot realistically satisfy even a small fraction of the existing demand for transport fuels. As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Like plants, microalgae use sunlight to produce oils but they do so more efficiently than crop plants. Oil productivity of many microalgae greatly exceeds the oil productivity of the best producing oil crops. Approaches for making microalgal biodiesel economically competitive with petrodiesel are discussed.

  16. Biodiesel Fuel Quality and the ASTM Biodiesel Standard

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is usually produced from vegetable oils, animal fats and used cooking oils with alternative feedstocks such as algae receiving increasing interest. The transesterification reaction which produces biodiesel also produces glycerol and proceeds stepwise via mono- and diacylglycerol intermedi...

  17. Business management for biodiesel producers

    SciTech Connect

    Gerpen, Jon Van

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  18. Biodiesel Performance, Costs, and Use

    EIA Publications

    2004-01-01

    Biodiesel fuel for diesel engines is produced from vegetable oil or animal fat by the chemical process of esterification. This paper presents a brief history of diesel engine technology and an overview of biodiesel, including performance characteristics, economics, and potential demand. The performance and economics of biodiesel are compared with those of petroleum diesel.

  19. Biodiesel Performance, Costs, and Use

    EIA Publications

    2004-01-01

    Biodiesel fuel for diesel engines is produced from vegetable oil or animal fat by the chemical process of esterification. This paper presents a brief history of diesel engine technology and an overview of biodiesel, including performance characteristics, economics, and potential demand. The performance and economics of biodiesel are compared with those of petroleum diesel.

  20. Biodiesel Handling and Use Guide (Fifth Edition)

    SciTech Connect

    Alleman, Teresa L.; McCormick, Robert L.; Christensen, Earl D.; Fioroni, Gina; Moriarty, Kristi; Yanowitz, Janet

    2016-11-08

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It provides basic information on the proper and safe use of biodiesel and biodiesel blends in engines and boilers, and is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels.

  1. Biodiesel Handling and Use Guide (Fifth Edition)

    SciTech Connect

    Alleman, Teresa L.; McCormick, Robert L.; Christensen, Earl D.; Fioroni, Gina; Moriarty., Kristi; Yanowitz, Janet

    2016-11-08

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It provides basic information on the proper and safe use of biodiesel and biodiesel blends in engines and boilers, and is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels.

  2. Biodiesel: an alternative fuel.

    PubMed

    Manzanera, Maximino; Molina-Muñoz, Maria L; González-López, Jesús

    2008-01-01

    Biodiesel is an alternative energy source and could be a substitute for petroleum-based diesel fuel. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. Most of the sources, methods and apparatus to produce biodiesel are reviewed here. Some of the patents propose the use of oils and fats of animal or vegetal origin and other kind of sources. Many others focus on the methods for the production or oxidation stability of the biofuel in order to make its production economically competitive. Several apparatus comprising reactors and refineries are also presented. This review article summarizes recent and important patents relating to the production of biodiesel to make its production a viable alternative.

  3. Why Teach about Biodiesel?

    ERIC Educational Resources Information Center

    Lawrence, Richard

    2002-01-01

    Proposes that study of biodiesel as a healthier alternative to petroleum diesel be included in the curriculum. Suggests that teachers will play a critical role during the transition away from fossil fuel technologies. Provides background information and web-based resources. (DLH)

  4. Analysis of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is a biogenic alternative to diesel fuel derived from petroleum. It is produced by a transesterification reaction from materials consisting largely of triacylglycerols such as vegetable and other plant oils, animal fats, used cooking oils, and “alternative” feedstocks such as algal oils. T...

  5. Why Teach about Biodiesel?

    ERIC Educational Resources Information Center

    Lawrence, Richard

    2002-01-01

    Proposes that study of biodiesel as a healthier alternative to petroleum diesel be included in the curriculum. Suggests that teachers will play a critical role during the transition away from fossil fuel technologies. Provides background information and web-based resources. (DLH)

  6. Costilla County Biodiesel Pilot Project

    SciTech Connect

    Doon, Ben; Quintana, Dan

    2011-08-25

    The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

  7. Biodiesel production using heterogeneous catalysts.

    PubMed

    Semwal, Surbhi; Arora, Ajay K; Badoni, Rajendra P; Tuli, Deepak K

    2011-02-01

    The production and use of biodiesel has seen a quantum jump in the recent past due to benefits associated with its ability to mitigate greenhouse gas (GHG). There are large number of commercial plants producing biodiesel by transesterification of vegetable oils and fats based on base catalyzed (caustic) homogeneous transesterification of oils. However, homogeneous process needs steps of glycerol separation, washings, very stringent and extremely low limits of Na, K, glycerides and moisture limits in biodiesel. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The present report is review of the progress made in development of heterogeneous catalysts suitable for biodiesel production. This review shall help in selection of suitable catalysts and the optimum conditions for biodiesel production.

  8. Biodiesel lubricity and other properties

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, is an “alternative” diesel fuel that is becoming accepted in a steadily growing number of countries worldwide. Since the source of biodiesel varies with the location, and other sources such as recycled oils are continuousl...

  9. The State High Biodiesel Project

    ERIC Educational Resources Information Center

    Heasley, Paul L.; Van Der Sluys, William G.

    2009-01-01

    Through a collaborative project in Pennsylvania, high school students developed a method for converting batches of their cafeteria's waste fryer oil into biodiesel using a 190 L (50 gal) reactor. While the biodiesel is used to supplement the school district's heating and transportation energy needs, the byproduct--glycerol--is used to make hand…

  10. The State High Biodiesel Project

    ERIC Educational Resources Information Center

    Heasley, Paul L.; Van Der Sluys, William G.

    2009-01-01

    Through a collaborative project in Pennsylvania, high school students developed a method for converting batches of their cafeteria's waste fryer oil into biodiesel using a 190 L (50 gal) reactor. While the biodiesel is used to supplement the school district's heating and transportation energy needs, the byproduct--glycerol--is used to make hand…

  11. Predicting various biodiesel fuel properties

    USDA-ARS?s Scientific Manuscript database

    Several essential fuel properties of biodiesel are largely determined by the properties of the fatty esters which are its main components. These include cetane number, kinematic viscosity, oxidative stability, and cold flow which are contained in almost all biodiesel standards but also other propert...

  12. Biodiesel from microalgae beats bioethanol.

    PubMed

    Chisti, Yusuf

    2008-03-01

    Renewable biofuels are needed to displace petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel and bioethanol are the two potential renewable fuels that have attracted the most attention. As demonstrated here, biodiesel and bioethanol produced from agricultural crops using existing methods cannot sustainably replace fossil-based transport fuels, but there is an alternative. Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely displace petroleum-derived transport fuels without adversely affecting supply of food and other crop products. Most productive oil crops, such as oil palm, do not come close to microalgae in being able to sustainably provide the necessary amounts of biodiesel. Similarly, bioethanol from sugarcane is no match for microalgal biodiesel.

  13. Enzymatic approach to biodiesel production.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2007-10-31

    The need for alternative energy sources that combine environmental friendliness with biodegradability, low toxicity, renewability, and less dependence on petroleum products has never been greater. One such energy source is referred to as biodiesel. This can be produced from vegetable oils, animal fats, microalgal oils, waste products of vegetable oil refinery or animal rendering, and used frying oils. Chemically, they are known as monoalkyl esters of fatty acids. The conventional method for producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to alcoholysis, a form of transesterification reaction, or through an interesterification (ester interchange) reaction. Protein engineering can be useful in improving the catalytic efficiency of lipases as biocatalysts for biodiesel production. The use of recombinant DNA technology to produce large quantities of lipases, and the use of immobilized lipases and immobilized whole cells, may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. In addition, the enzymatic approach is environmentally friendly, considered a "green reaction", and needs to be explored for industrial production of biodiesel.

  14. Lipases as biocatalyst for biodiesel production.

    PubMed

    Fan, Xiaohu; Niehus, Xochitl; Sandoval, Georgina

    2012-01-01

    The global shortages of fossil fuels, significant increase in the price of crude oil, and increased environmental concerns have stimulated the rapid growth in biodiesel production. Biodiesel is generally produced through transesterification reaction catalyzed either chemically or enzymatically. Enzymatic transesterification draws high attention because that process shows certain advantages over the chemical catalysis of transesterification and it is "greener." This paper reviews the current status of biodiesel production with lipase-biocatalysis approach, including sources of lipases, kinetics, and reaction mechanism of biodiesel production using lipases, and lipase immobilization techniques. Factors affecting biodiesel production and economic feasibility of biodiesel production using lipases are also covered.

  15. Toxicology of Biodiesel Combustion products

    EPA Science Inventory

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  16. Toxicology of Biodiesel Combustion products

    EPA Science Inventory

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  17. Biodiesel Fuel Quality and the ASTM Standard

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is usually produced from vegetable oils, animal fats and used cooking oils with alternative feedstocks such as algae receiving increasing interest. The transesterification reaction which produces biodiesel also produces glycerol and proceeds stepwise via mono- and diacylglycerol intermedia...

  18. Biodiesel Analytical Methods: August 2002--January 2004

    SciTech Connect

    Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is receiving great attention worldwide. The material contained in this book is intended to provide the reader with information about biodiesel engines and fuels, analytical methods used to measure fuel properties, and specifications for biodiesel quality control.

  19. Biodiesel Production from Spent Coffee Grounds

    NASA Astrophysics Data System (ADS)

    Blinová, Lenka; Bartošová, Alica; Sirotiak, Maroš

    2017-06-01

    The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.

  20. Anaerobic Biodegradation of Soybean Biodiesel and Diesel ...

    EPA Pesticide Factsheets

    Biotransformation of soybean biodiesel and the inhibitory effect of petrodiesel were studied under methanogenic conditions. Biodiesel removal efficiency of more than 95% was achieved in a chemostat with influent biodiesel concentrations up to 2.45 g/L. The kinetics of anaerobic biodegradation of soybean biodiesel B100 (biodiesel only) with different petrodiesel loads were studied using biomass pre-acclimated to B100 and B80 (80% biodiesel and 20 petrodiesel). The results indicated that the biodiesel fraction of the blend could be effectively biodegraded, whereas petrodiesel was not biodegraded at all under methanogenic conditions. The presence of petrodiesel in blends with biodiesel had a greater inhibitory effect on the rate of biodegradation than the biodegradation efficiency (defined as the efficiency of methane production). Both the biodegradation rate coefficient and the methane production efficiency increased almost linearly with the increasing fraction of biodiesel. With the increasing fraction of petrodiesel, the biodegradation rate and efficiency were correlated with the concentration of soluble FAMEs in the water. The objective of this study was to investigate the anaerobic biodegradation of soybean biodiesel blends under methanogenic conditions. Biological methane potential (BMP) tests were conducted in serum bottles to determine the anaerobic biodegradation kinetics of biodiesel in the absence and presence of different concentrations of petrod

  1. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.

    SciTech Connect

    Pauls, R. E.

    2011-05-01

    This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

  2. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    PubMed

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  3. Biodegradation of biodiesel fuels

    SciTech Connect

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  4. Accelerated oxidation processes is biodiesel

    SciTech Connect

    Canakci, M.; Monyem, A.; Van Gerpen, J.

    1999-12-01

    Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feedstocks such as vegetable oil and animal fats. These feedstocks are reacted with an alcohol to produce alkyl monoesters that can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This article reports the results of experiments to track the chemical and physical changes that occur in biodiesel as it oxidizes. These results show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are explored also. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq/kg ester, the acid value and viscosity increase monotonically as oxidation proceeds.

  5. Mississippi State Biodiesel Production Project

    SciTech Connect

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese

  6. Industrial Products from Biodiesel Glycerol

    USDA-ARS?s Scientific Manuscript database

    The rise in cost of petroleum fuels has caused an increased interest in alternative fuels. This has resulted in a worldwide surge in the use of biodiesel, a renewable fuel derived from oils and fats, with world production projected to approach 1 billion gallons by the end of 2006. This rapid growt...

  7. Process optimization for biodiesel production.

    PubMed

    Singh, Veena; Solanki, Kusum; Gupta, Munishwar N

    2008-01-01

    Biodiesel is an alkyl ester of long chain fatty acids and is considered to leave smaller footprint on the environment. It is produced by transesterification of a fat/oil with a short chain primary alcohol like methanol or ethanol. The three routes to its preparation are: alkali catalyzed, acid catalyzed and lipase-catalyzed transesterification. This review summarizes the key patents filed over the last few decades. The chemistry used in these patents is one of the three routes mentioned above. In few patents, heterogeneous catalysts have been used for catalyzing the transesterification process. The innovations mostly concern fine-tuning of the reaction conditions, plant design to improve logistics and use of glycerol produced as a by-product during biodiesel production. There is a concern that biofuels like biodiesel cut into resources like land meant for food crop production. Life cycle studies also create doubt about there being energy efficient fuels. Judicious choices that would differ with different regions are recommended. For the next few decades till better alternatives like hydrogen become viable, biodiesel would continue to be an important "alternative fuel".

  8. Biodiesel research progress 1992-1997

    SciTech Connect

    Tyson, K.S.

    1998-04-01

    The US Department of Energy (DOE) Office of Fuels Development began evaluating the potential of various alternative fuels, including biodiesel, as replacement fuels for traditional transportation fuels. Biodiesel is derived from a variety of biological materials from waste vegetable grease to soybean oil. This alkyl ester could be used as a replacement, blend, or additive to diesel fuel. This document is a comprehensive summary of relevant biodiesel and biodiesel-related research, development demonstration, and commercialization projects completed and/or started in the US between 1992 and 1997. It was designed for use as a reference tool to the evaluating biodiesel`s potential as a clean-burning alternative motor fuel. It encompasses, federally, academically, and privately funded projects. Research projects are presented under the following topical sections: Production; Fuel characteristics; Engine data; Regulatory and legislative activities; Commercialization activities; Economics and environment; and Outreach and education.

  9. Genetic engineering of microorganisms for biodiesel production.

    PubMed

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.

  10. Genetic engineering of microorganisms for biodiesel production

    PubMed Central

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  11. Correlating Engine NOx Emission with Biodiesel Composition

    NASA Astrophysics Data System (ADS)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2016-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  12. Correlating Engine NOx Emission with Biodiesel Composition

    NASA Astrophysics Data System (ADS)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2017-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  13. Understanding Biodiesel Fuel Quality and Performances

    SciTech Connect

    Weiksner, P. E., J.M. Sr.

    2003-12-12

    The purpose of this paper is to provide the reader with sufficient information to understand Biodiesel fuel quality and the effect various quality parameters have on diesel equipment performance. Biodiesel is produced from vegetable oils, recycled cooking greases and animal fat. The American Society of Testing Material test methods are used as a basis for drawing comparisons between regular diesel fuel and Biodiesel. Failure to control the processes for manufacturing, blending and storage of Biodiesel can lead to performance problems in all types of diesel fueled equipment.

  14. Genetic Engineering Strategies for Enhanced Biodiesel Production.

    PubMed

    Hegde, Krishnamoorthy; Chandra, Niharika; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Veeranki, Venkata Dasu

    2015-07-01

    The focus on biodiesel research has shown a tremendous growth over the last few years. Several microbial and plant sources are being explored for the sustainable biodiesel production to replace the petroleum diesel. Conventional methods of biodiesel production have several limitations related to yield and quality, which led to development of new engineering strategies to improve the biodiesel production in plants, and microorganisms. Substantial progress in utilizing algae, yeast, and Escherichia coli for the renewable production of biodiesel feedstock via genetic engineering of fatty acid metabolic pathways has been reported in the past few years. However, in most of the cases, the successful commercialization of such engineering strategies for sustainable biodiesel production is yet to be seen. This paper systematically presents the drawbacks in the conventional methods for biodiesel production and an exhaustive review on the present status of research in genetic engineering strategies for production of biodiesel in plants, and microorganisms. Further, we summarize the technical challenges need to be tackled to make genetic engineering technology economically sustainable. Finally, the need and prospects of genetic engineering technology for the sustainable biodiesel production and the recommendations for the future research are discussed.

  15. Effect of Biodiesel on Thermal NO Formation

    NASA Astrophysics Data System (ADS)

    Thangaraja, J.; Mehta, P. S.

    2015-04-01

    Biodiesel is an attractive alternative to diesel fuel which is renewable in nature. This fuel has excellent lubricity, low smoke and potential for replacement of fossil diesel without major engine modifications or requirement of any additives. However, a higher nitric oxide (NO) emission from biodiesel is widely cited as their undesired emission characteristics. The present study analyses and describes the various reasons for higher NO formation with biodiesel relative to diesel fuel. To explore this so called biodiesel NO penalty, experiments were conducted on a four cylinder compression ignition engine with neat Karanja biodiesel and fossil diesel. Neat Karanja implies an unblended pure biodiesel. The experimental NO concentration with biodiesel and diesel fuel is validated using extended Zeldovich mechanism. Results suggest that the increase in NO emission with biodiesel fuel could not be opined to a change in a single fuel property but rather, it is the result of a number of coupled pathways whose effects may dominate or cancel one another under different conditions, depending on biodiesel compositional characteristics.

  16. WSF Biodiesel Demonstration Project Final Report

    SciTech Connect

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30

    In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and

  17. Biodiesel/Cummins CRADA Report

    DTIC Science & Technology

    2014-07-01

    WORDS) As an element in the Coast Guard’s compliance strategy for decreasing greenhouse gases (GHG), and increasing the use of alternative fuels...are included in the report. 17. Key Words 18. Distribution Statement biodiesel, B100, gelling, emissions, alternative fuel, greenhouse gas, GHG...additional attention towards reducing energy use and Greenhouse Gas (GHG) emissions, and increasing the use of renewable energy sources. Two prominent

  18. Development of biodiesel slurry fuels

    SciTech Connect

    Suppes, G.J.; Ng, C.; Srinivasan, B.

    1994-12-31

    As an alternative to diesel, the DOE has recently supported research which developed coal-water-slurries to the extent that they have demonstrated in low-, medium-, and high-speed diesel engines. Coal-water-slurry (CWS) fuels would be an American-made alternative to diesel distilled from imported crude oil. Such alternatives to imported oil are particularly desirable as 1994 crude oil imports will most likely exceed those disastrously high levels of the early 1980`s which led to a major recession. This paper is on the testing and development of biodiesel slurry fuels (e.g. corn flour and water) as an alternative to diesel for use in a modified diesel engine. While the economics for CWS`s are not favorable until bulk, tax-free diesel prices exceed $0.80 per gallon, a preliminary analysis of biodiesel slurries shows economic viability at today`s diesel prices. This paper presents advantages of biodiesel slurries over CWS`s due to different ash compositions and economics specific to applications on farm tractors. Engine modifications, fuel costs, fuel processing, fuel performance, and on-going research are discussed.

  19. Biodiesel surrogates: achieving performance demands.

    PubMed

    Sarin, Rakesh; Kumar, Ravindra; Srivastav, Bhawana; Puri, S K; Tuli, D K; Malhotra, R K; Kumar, Anand

    2009-06-01

    Synthesis of surrogate molecules is particularly useful for generating in sight of structural-activity relationships, understanding processes and improving the performance. In order to improve upon the physico-chemical properties of biodiesel, methyl, ethyl, isopropyl and n-butyl esters of beta-branched fatty acid have been synthesized, initiating from beta-branched alcohols. Beta-branched alcohols upon oxidation gave corresponding acids, which were converted to their esters. The synthesized esters have substantially better oxidative stability, exhibited by Rancimat oxidation induction period of more than 24 h. The cloud point of synthesized esters is < -36 degrees C, pour point is < -42 degrees C and CFPP is < -21 degrees C, which is substantially better than fatty acid methyl esters. Besides achieving the objective of better oxidative stability and improved low temperature properties, the synthesized surrogate esters have viscosity in the range of 4.2-4.6 cSt at 40 degrees C, meeting the international diesel and biodiesel standards. The cetane number of synthesized esters is 62-69, which is much better than diesel and biodiesel. The blends of the synthesized esters in diesel at 5% and 10% meet Indian standards of diesel.

  20. Successful Urban Biodiesel Partnership Model for ...

    EPA Pesticide Factsheets

    2016-04-27

    EPA awarded a grant to a group of business and government organizations in Santa Cruz, CA in 2006 to fund an innovative pilot project to convert restaurant waste grease into biodiesel for local fleets. Ecology Action, a nonprofit organization, lead this pilot, the first community-based biodiesel production initiative in the United States. Santa Cruz's Department of Public Works, Ecology Action,

  1. Anaerobic Biodegradation of soybean biodiesel and diesel ...

    EPA Pesticide Factsheets

    Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and 20% petrodiesel). Results indicate that the biodiesel could be effectively biodegraded in the presence or absence of petrodiesel, whereas petrodiesel could not be biodegraded at all under sulfate-reducing conditions. The kinetics of biodegradation of individual Fatty Acid Methyl Ester (FAME) compounds and their accompanying sulfate-reduction rates were studied using a serum bottle test. As for the biodegradation of individual FAME compounds, the biodegradation rates for the saturated FAMEs decreased with increasing carbon chain length. For unsaturated FAMEs, biodegradation rates increased with increasing number of double bonds. The presence of petrodiesel had a greater effect on the rate of biodegradation of biodiesel than on the extent of removal. The objective of this study was to investigate anaerobic biodegradation of soybean biodiesel and petrodiesel blends in a sulfate-reducing environment, which is a prevalent condition in anaerobic sediments.

  2. Promoting Scientific and Technological Literacy: Teaching Biodiesel.

    ERIC Educational Resources Information Center

    Eilks, Ingo

    2000-01-01

    Describes a unit on biodiesel from a socio-critical chemistry teaching approach aimed at improving student participation and decision making. Explores the use of biodiesel (chemically changed vegetable oils), especially in Europe. The unit proved to be successful as students participated enthusiastically and social and scientific goals were…

  3. Lubricity studies with biodiesel and related compounds

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, the alkyl esters of vegetable oils or animal fats, possesses excellent lubricity. This feature has rendered biodiesel of special interest for blending with ultra-low sulfur diesel fuels with poor lubricity. However, some minor components, mainly free fatty acids and monoacylglycerols, of ...

  4. Comparative toxicity and mutagenicity of biodiesel exhaust

    EPA Science Inventory

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  5. Biodiesel and Renewable Diesel: A Critical Comparison

    USDA-ARS?s Scientific Manuscript database

    Several types of fuels can be obtained from lipid feedstocks. These include biodiesel and what is termed renewable diesel. While biodiesel retains the ester moiety occurring in triacylglycerols in converted form as mono-alkyl esters, the composition of renewable diesel, hydrocarbons, emulates that ...

  6. Antioxidants for improving storage stability of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative diesel fuel made from vegetable oil or animal fat that may be burned in a compression-ignition (diesel) engine. The chemical nature of biodiesel makes it more susceptible to oxidation or autoxidation during long-term storage than conventional petroleum-based diesel (petr...

  7. Cold weather properties and performance of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative fuel made from vegetable oil or animal fat that can be employed in compression-ignition (diesel) engines. Biodiesel is more prone to start-up and operability problems during cold weather than conventional diesel fuels (petrodiesel). This work reviews impacts that exposu...

  8. Promoting Scientific and Technological Literacy: Teaching Biodiesel.

    ERIC Educational Resources Information Center

    Eilks, Ingo

    2000-01-01

    Describes a unit on biodiesel from a socio-critical chemistry teaching approach aimed at improving student participation and decision making. Explores the use of biodiesel (chemically changed vegetable oils), especially in Europe. The unit proved to be successful as students participated enthusiastically and social and scientific goals were…

  9. Comparative toxicity and mutagenicity of biodiesel exhaust

    EPA Science Inventory

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  10. Algal biodiesel economy and competition among bio-fuels.

    PubMed

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry.

  11. Biodiesel production from municipal secondary sludge.

    PubMed

    Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar

    2016-09-01

    In the present study, feasibility of biodiesel production from freeze dried sewage sludge was studied and its yield was enhanced by optimization of the in situ transesterification conditions (temperature, catalyst and concentration of sludge solids). Optimized conditions (45°C, 5% catalyst and 0.16g/mL sludge solids) resulted in a 20.76±0.04% biodiesel yield. The purity of biodiesel was ascertained by GC-MS, FT-IR and NMR ((1)H and (13)C) spectroscopy. The biodiesel profile obtained revealed the predominance of methyl esters of fatty acids such as oleic, palmitic, myristic, stearic, lauric, palmitoleic and linoleic acids indicating potential use of sludge as a biodiesel feedstock.

  12. Microbial recycling of glycerol to biodiesel.

    PubMed

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production.

  13. Process development for scum to biodiesel conversion.

    PubMed

    Bi, Chong-hao; Min, Min; Nie, Yong; Xie, Qing-long; Lu, Qian; Deng, Xiang-yuan; Anderson, Erik; Li, Dong; Chen, Paul; Ruan, Roger

    2015-06-01

    A novel process was developed for converting scum, a waste material from wastewater treatment facilities, to biodiesel. Scum is an oily waste that was skimmed from the surface of primary and secondary settling tanks in wastewater treatment plants. Currently scum is treated either by anaerobic digestion or landfilling which raised several environmental issues. The newly developed process used a six-step method to convert scum to biodiesel, a higher value product. A combination of acid washing and acid catalyzed esterification was developed to remove soap and impurities while converting free fatty acids to methyl esters. A glycerol washing was used to facilitate the separation of biodiesel and glycerin after base catalyzed transesterification. As a result, 70% of dried and filtered scum was converted to biodiesel which is equivalent to about 134,000 gallon biodiesel per year for the Saint Paul waste water treatment plant in Minnesota.

  14. Spray Behavior and Atomization Characteristics of Biodiesel

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.

  15. Determination of the biodiesel content in diesel/biodiesel blends: a method based on fluorescence spectroscopy.

    PubMed

    Scherer, Marisa D; Oliveira, Samuel L; Lima, Sandro M; Andrade, Luis H C; Caires, Anderson R L

    2011-05-01

    Blends of biodiesel and diesel are being used increasingly worldwide because of environmental, economic, and social considerations. Several countries use biodiesel blends with different blending limits. Therefore, it is necessary to develop or improve methods to quantify the biodiesel level in a diesel/biodiesel blend, to ensure compliance with legislation. The optical technique based on the absorption of light in the mid-infrared has been successful for this application. However, this method presents some challenges that must be overcome. In this paper, we propose a novel method, based on fluorescence spectroscopy, to determine the biodiesel content in the diesel/biodiesel blend, which allows in loco measurements by using portable systems. The results showed that this method is both practical and more sensitive than the standard optical method. © Springer Science+Business Media, LLC 2011

  16. Biodiesel production by transesterification using immobilized lipase.

    PubMed

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  17. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  18. Biodiesel: Small Scale Production and Quality Requirements

    NASA Astrophysics Data System (ADS)

    van Gerpen, Jon

    Biodiesel is produced by reacting vegetable oils or animal fats with alcohol in the presence of an alkaline catalyst. The resulting methyl esters, which are the biodiesel fuel, are separated from the by-product glycerin, and then washed with water and dehydrated to produce fuel that must meet standardized specifications. Degraded oils containing high levels of free fatty acids can also be converted to biodiesel, but pretreatment with acid-catalyzed esterification is required. The resulting fuel is suitable for use as a neat fuel in diesel engines or blended with conventional diesel fuel.

  19. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  20. Biodiesel: small scale production and quality requirements.

    PubMed

    Van Gerpen, Jon

    2009-01-01

    Biodiesel is produced by reacting vegetable oils or animal fats with alcohol in the presence of an alkaline catalyst. The resulting methyl esters, which are the biodiesel fuel, are separated from the by-product glycerin, and then washed with water and dehydrated to produce fuel that must meet standardized specifications. Degraded oils containing high levels of free fatty acids can also be converted to biodiesel, but pretreatment with acid-catalyzed esterification is required. The resulting fuel is suitable for use as a neat fuel in diesel engines or blended with conventional diesel fuel.

  1. Ehlers-Danlos syndrome type VIIB. Morphology of type I collagen fibrils formed in vivo and in vitro is determined by the conformation of the retained N-propeptide.

    PubMed

    Holmes, D F; Watson, R B; Steinmann, B; Kadler, K E

    1993-07-25

    Previously we showed that fibrils generated from collagen and pNcollagen-ex6 from fibroblasts of an individual with Ehlers-Danlos syndrome (EDS) type VIIB were hieroglyphic in cross-section and all N-propeptides were located at the fibril surface. Hieroglyphs were resolved to near-cylindrical fibrils (that were similar in appearance to the fibrils seen in the tissues of individuals with EDS type VIIB) by treatment with N-proteinase which cleaved the pN alpha 1(I) chains but not the pN alpha 2(I)-ex6 chains (Watson, R. B., Wallis, G. A., Holmes, D. F., Viljoen, D., Byers, P. H., and Kadler, K. E. (1992) J. Biol. Chem. 267, 9093-9100). Here, quantitative scanning transmission electron microscopy (STEM) showed that N-propeptides in hieroglyphs were in a "bent-back" conformation and thus located exclusively in the overlap zone of the fibril D-period (D = 67 nm). In contrast, STEM of fibrils from the dermis of an individual with EDS type VIIB showed that partially cleaved N-propeptides (in which cleaved pN alpha 1(I) remained in noncovalent association with pN alpha 2(I)-ex6 chains) were distributed equally between the gap and overlap zones of the fibrils. Comparison of experimental data with theoretical mass distributions of the fibril based on amino acid sequence data gave a consistent value of 33 nm for the total axial extent for the N-propeptides in hieroglyphic and tissue fibrils irrespective of the location of N-propeptides to the gap or overlap zone. These data exclude the possibility that N-propeptides adopt a random configuration, but rather, that they locate to specific sites in the gap and overlap zones. The results demonstrated that cleavage of pN alpha 1(I) chains in vivo releases the N-propeptides from the constraints of the bent-back conformation. Co-distribution of partially cleaved N-propeptides between gap and overlap zones allows a higher surface packing density of N-propeptides and explains how circularity of large diameter fibrils can be achieved

  2. Engineering challenges in biodiesel production from microalgae.

    PubMed

    Aguirre, Ana-Maria; Bassi, Amarjeet; Saxena, Priyanka

    2013-09-01

    In recent years, the not too distant exhaustion of fossil fuels is becoming apparent. Apart from this, the combustion of fossil fuels leads to environmental concerns, the emission of greenhouse gases and issues with global warming and health problems. Production of biodiesel from microalgae may represent an attractive solution to the above mentioned problems, and can offer a renewable source of fuel with fewer pollutants. This review presents a compilation of engineering challenges related to microalgae as a source of biodiesel. Advantages and current limitations for biodiesel production are discussed; some aspects of algae cells biology, with emphasis on cell wall composition, as it represents a barrier for fatty acid extraction and lipid droplets are also presented. In addition, recent advances in the different stages of the manufacturing process are included, starting from the strain selection and finishing in the processing of fatty acids into biodiesel.

  3. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored.

  4. Survey of alternative feedstocks for biodiesel production

    USDA-ARS?s Scientific Manuscript database

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  5. Microbial degradation of palm (Elaeis guineensis) biodiesel.

    PubMed

    Lutz, Giselle; Chavarría, Max; Arias, María Laura; Mata-Segreda, Julio F

    2006-03-01

    The kinetics of biodegradation of palm-derived fatty methyl and ethyl esters (Elaeis guineensis biodiesel) by a wild-type aerobic bacterial population was measured at 20 degrees C, as the rate of oxygen uptake by a manometric technique. The methyl and ethyl biodiesels were obtained by potassium-hydroxide catalysed trans-esterification of palm oil, respectively. The bacterial flora included the genera Bacillus, Proteus, Pseudomonas, Citrobacter and Enterobacter. The rate of oxygen uptake for palm biodiesel is similar to the quantity observed in the biodegradation of 1.0 mM solutions of simple substrates such as carbohydrates or amino acids. Palm methyl or ethyl biodiesel is subjected to facile aerobic biodegradation by wild-type bacteria commonly present in natural open environments. This result should lessen any environmental concern for its use as alternative fuel, solvent or lubricant.

  6. Current status of biodiesel development in Brazil.

    PubMed

    Ramos, Luiz Pereira; Wilhelm, Helena Maria

    2005-01-01

    In recent years, the concept of producing biodiesel from renewable lipid sources has regained international attention. In Brazil, a national program was launched in 2002 to evaluate the technical, economic, and environmental competitiveness of biodiesel in relation to the commercially available diesel oil. Several research projects were initiated nationwide to investigate and/or optimize biodiesel production from renewable lipid sources and ethanol derived from sugarcane (ethyl esters). Once implemented, this program will not only decrease our dependence on petroleum derivatives but also create new market opportunities for agribusiness, opening new jobs in the countryside, improving the sustainability of our energy matrix, and helping the Brazilian government to support important actions against poverty. This article discusses the efforts to develop the Brazilian biodiesel program in the context of technical specifications as well as potential oilseed sources.

  7. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.

    SciTech Connect

    KRISHNA,C.R.

    2001-12-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

  8. Butter as a feedstock for biodiesel production.

    PubMed

    Haas, Michael J; Adawi, Nadia; Berry, William W; Feldman, Elaine; Kasprzyk, Stephen; Ratigan, Brian; Scott, Karen; Landsburg, Emily Bockian

    2010-07-14

    Fatty acid methyl esters (FAME) were produced from cow's milk (Bostaurus) butter by esterification/transesterification in the presence of methanol. The product was assayed according to the Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels (ASTM D 6751). The preparation failed to meet the specifications for flash point, free and total glycerin contents, total sulfur, and oxidation stability. Failures to meet the flash point and free/total glycerin specifications were determined to be due to interference with standard assays for these parameters by short-chain-length fatty acid esters. The oxidation stability of the butterfat FAME was improved by supplementation with a commercial antioxidant formulation. Approximately 725 ppm of antioxidant was required to meet the ASTM-specified stability value for biodiesel. This work indicates that, without further purification to reduce a slightly excessive sulfur content, fatty acid ester preparations produced from butter are unacceptable as sole components of a biodiesel fuel. However, it is possible that even without further purification a butter-based ester preparation could be mixed with biodiesel from other feedstocks to produce a blend that meets the current quality standards for biodiesel. The results presented here also illustrate some potential weaknesses in the accepted methods for biodiesel characterization when employed in the analysis of FAME preparations containing mid- and short-chain fatty acid esters.

  9. Perspectives of microbial oils for biodiesel production.

    PubMed

    Li, Qiang; Du, Wei; Liu, Dehua

    2008-10-01

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed.

  10. Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield.

    PubMed

    Vicente, Gemma; Martínez, Mercedes; Aracil, José

    2007-07-01

    This study consists of the development and optimisation of the potassium hydroxide-catalysed synthesis of fatty acid methyl esters (biodiesel) from sunflower oil. A factorial design of experiments and a central composite design have been used. The variables chosen were temperature, initial catalyst concentration by weight of sunflower oil and the methanol:vegetable oil molar ratio, while the responses were biodiesel purity and yield. The initial catalyst concentration is the most important factor, having a positive influence on biodiesel purity, but a negative one on biodiesel yield. Temperature has a significant positive effect on biodiesel purity and a significant negative influence on biodiesel yield. The methanol:vegetable oil molar ratio is only significant for the biodiesel purity, having a positive influence. Second-order models were obtained to predict biodiesel purity and yield as a function of these variables. The best conditions are 25 degrees C, a 1.3%wt for the catalyst concentration and a 6:1 methanol:sunflower oil molar ratio.

  11. Five Approaches to Improving the Fuel Properties of Biodiesel Including "Designer" Biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is usually produced from vegetable oils or animal fats or used cooking oils by a transesterification reaction with an alcohol, usually methanol, to give the corresponding mono-alkyl esters with glycerol as co-product. With a few exceptions, most common biodiesel feedstocks possess fatty a...

  12. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect

    Chakravarthy, Veerathu K; McFarlane, Joanna; Daw, C Stuart; Ra, Youngchul; Griffin, Jelani K

    2008-01-01

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  13. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  14. Evaluation of hydrolysis-esterification biodiesel production from wet microalgae.

    PubMed

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Li, Shuhong; Kitamura, Yutaka

    2016-08-01

    Wet microalgae hydrolysis-esterification route has the advantage to avoid the energy-intensive units (e.g. drying and lipid extraction) in the biodiesel production process. In this study, techno-economic evaluation of hydrolysis-esterification biodiesel production process was carried out and compared with conventional (usually including drying, lipid extraction, esterification and transesterification) biodiesel production process. Energy and material balance of the conventional and hydrolysis-esterification processes was evaluated by Aspen Plus. The simulation results indicated that drying (2.36MJ/L biodiesel) and triolein transesterification (1.89MJ/L biodiesel) are the dominant energy-intensive stages in the conventional route (5.42MJ/L biodiesel). By contrast, the total energy consumption of hydrolysis-esterification route can be reduced to 1.81MJ/L biodiesel, and approximately 3.61MJ can be saved to produce per liter biodiesel.

  15. Biodiesel from alternative oilseed feedstocks: camelina and field pennycress

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, defined as mono-alkyl esters derived from plant oils or animal fats, is an environmentally attractive alternative to conventional petroleum diesel fuel (petrodiesel). Produced by transesterification with a monohydric alcohol, usually methanol, biodiesel possesses several technical advanta...

  16. Determinants of stakeholders' attitudes towards biodiesel.

    PubMed

    Amin, Latifah; Hashim, Hasrizul; Mahadi, Zurina; Ibrahim, Maznah; Ismail, Khaidzir

    2017-01-01

    Concern about the inevitable depletion of global energy resources is rising and many countries are shifting their focus to renewable energy. Biodiesel is one promising energy source that has garnered much public attention in recent years. Many believe that this alternative source of energy will be able to sustain the need for increased energy security while at the same time being friendly to the environment. Public opinion, as well as proactive measures by key players in industry, may play a decisive role in steering the direction of biodiesel development throughout the world. Past studies have suggested that public acceptance of biofuels could be shaped by critical consideration of the risk-benefit perceptions of the product, in addition to the impact on the economy and environment. The purpose of this study was to identify the relevant factors influencing stakeholders' attitudes towards biodiesel derived from crops such as palm oil for vehicle use, as well as to analyse the interrelationships of these factors in an attitude model. A survey of 509 respondents, consisting of various stakeholder groups in the Klang Valley region of Malaysia, was undertaken. The results of the study have substantiated the premise that the most important direct predictor of attitude to biodiesel is the perceived benefits (β = 0.80, p < 0.001). Attitude towards biodiesel also involves the interplay between other factors, such as engagement to biotechnology, trust of key players, attitude to technology, and perceived risk. Although perceived benefit has emerged as the main predictor of public support of biodiesel, the existence of other significant interactions among variables leads to the conclusion that public attitude towards biodiesel should be seen as a multi-faceted process and should be strongly considered prior to its commercialisation.

  17. Market penetration of biodiesel and ethanol

    NASA Astrophysics Data System (ADS)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  18. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...

  19. Biodiesel from Microalgae: Complementarity in a Fuel Development Strategy

    SciTech Connect

    Brown, L. M.

    1993-08-01

    Biodiesel produces fewer pollutants than petroleum diesel, and is virtually free of sulfur. These properties make biodiesel an attractive candidate to facilitate compliance with the Clean Air Act Amendments of 1990 (CAAA). This fuel is ordinarily considered to be derived from oilseeds, but an essentially identical biodiesel can be made from microalgae.

  20. Response surface modeling to predict biodiesel yield in a multi-feedstock biodiesel production plant.

    PubMed

    Pinzi, S; Lopez-Gimenez, F J; Ruiz, J J; Dorado, M P

    2010-12-01

    For economic reasons, multi-feedstock plants are preferred to produce biodiesel. However, the optimal conditions of the transesterification reaction depend on the raw material, thus making difficult the achievement of a high yield of biodiesel when different types of feedstock are used under the same operational settings. In the present work, a response surface methodology is proposed to both predict biodiesel yield when different raw materials are used to produce biodiesel and to determine the optimal operational conditions of a multi-feedstock plant. The optimization of the transesterification reaction of five vegetable oils consisting in a wide range of fatty acid profiles has been carried out. Results provided a compromise zone where all the experimental responses satisfied the imposed specifications to achieve the goals, where the best optimal combination of parameters was selected. According to this model, the tested properties of the produced biodiesel are within the limits of the EN 14214 standard. It can be concluded that this methodology provides the most suitable operational conditions to achieve the highest biodiesel yield in a multi-feedstock biodiesel plant, also considering the economics of the process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. A fuzzy goal programming model for biodiesel production

    NASA Astrophysics Data System (ADS)

    Lutero, D. S.; Pangue, EMU; Tubay, J. M.; Lubag, S. P.

    2016-02-01

    A fuzzy goal programming (FGP) model for biodiesel production in the Philippines was formulated with Coconut (Cocos nucifera) and Jatropha (Jatropha curcas) as sources of biodiesel. Objectives were maximization of feedstock production and overall revenue and, minimization of energy used in production and working capital for farming subject to biodiesel and non-biodiesel requirements, and availability of land, labor, water and machine time. All these objectives and constraints were assumed to be fuzzy. Model was tested for different sets of weights. Results for all sets of weights showed the same optimal allocation. Coconut alone can satisfy the biodiesel requirement of 2% per volume.

  2. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    PubMed

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  3. Biodiesel Basics (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    This Spanish-language fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  4. Anaerobic Biodegradation of soybean biodiesel and diesel blends under sulfate-reducing conditions

    EPA Science Inventory

    Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and ...

  5. Biodiesel production from heterotrophic microalgal oil.

    PubMed

    Miao, Xiaoling; Wu, Qingyu

    2006-04-01

    The present study introduced an integrated method for the production of biodiesel from microalgal oil. Heterotrophic growth of Chlorella protothecoides resulted in the accumulation of high lipid content (55%) in cells. Large amount of microalgal oil was efficiently extracted from these heterotrophic cells by using n-hexane. Biodiesel comparable to conventional diesel was obtained from heterotrophic microalgal oil by acidic transesterification. The best process combination was 100% catalyst quantity (based on oil weight) with 56:1 molar ratio of methanol to oil at temperature of 30 degrees C, which reduced product specific gravity from an initial value of 0.912 to a final value of 0.8637 in about 4h of reaction time. The results suggested that the new process, which combined bioengineering and transesterification, was a feasible and effective method for the production of high quality biodiesel from microalgal oil.

  6. Acute aquatic toxicity of biodiesel fuels

    SciTech Connect

    Wright, B.; Haws, R.; Little, D.; Reese, D.; Peterson, C.; Moeller, G.

    1995-12-31

    This study develops data on the acute aquatic toxicity of selected biodiesel fuels which may become subject to environmental effects test regulations under the US Toxic Substances Control Act (TSCA). The test substances are Rape Methyl Ester (RME), Rape Ethyl Ester (REE), Methyl Soyate (MS), a biodiesel mixture of 20% REE and 80% Diesel, a biodiesel mixture of 50% REE and diesel, and a reference substance of Phillips D-2 Reference Diesel. The test procedure follows the Daphnid Acute Toxicity Test outlined in 40 CFR {section} 797.1300 of the TSCA regulations. Daphnia Magna are exposed to the test substance in a flow-through system consisting of a mixing chamber, a proportional diluter, and duplicate test chambers. Novel system modifications are described that accommodate the testing of oil-based test substances with Daphnia. The acute aquatic toxicity is estimated by an EC50, an effective concentration producing immobility in 50% of the test specimen.

  7. Profitability and sustainability of small - medium scale palm biodiesel plant

    NASA Astrophysics Data System (ADS)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  8. Production and application of biodiesel from waste cooking oil

    NASA Astrophysics Data System (ADS)

    Tuly, S. S.; Saha, M.; Mustafi, N. N.; Sarker, M. R. I.

    2017-06-01

    Biodiesel has been identified as an alternative and promising fuel source to reduce the dependency on conventional fossil fuel in particular diesel. In this work, waste cooking oil (WCO) of restaurants is considered to produce biodiesel. A well-established transesterification reaction by sodium hydroxide (NaOH) catalytic and supercritical methanol (CH3OH) methods are applied to obtain biodiesel. In the catalytic transesterification process, biodiesel and glycerine are simultaneously produced. The impact of temperature, methanol/WCO molar ratio and sodium hydroxide concentration on the biodiesel formation were analysed and presented. It was found that the optimum 95% of biodiesel was obtained when methanol/WCO molar ratio was 1:6 under 873 K temperature with the presence of 0.2% NaOH as a catalyst. The waste cooking oil blend proportions were 10%, 15%, 20% and 25% and named as bio-diesel blends B-10, B-15, B-20, and B-25, respectively. Quality of biodiesel was examined according to ASTM 6751: biodiesel standards and testing methods. Important fuel properties of biodiesel, such as heating value, cetane index, viscosity, and others were also investigated. A four-stroke single cylinder naturally aspirated DI diesel engine was operated using in both pure form and as a diesel blend to evaluate the combustion and emission characteristics of biodiesel. Engine performance is examined by measuring brake specific fuel consumption and fuel conversion efficiency. The emission of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and others were measured. It was measured that the amount of CO2 increases and CO decreases both for pure diesel and biodiesel blends with increasing engine load. However, for same load, a higher emission of CO2 from biodiesel blends was recorded than pure diesel.

  9. Evaluation of Biodiesel Obtained from Cottonseed Oil

    USDA-ARS?s Scientific Manuscript database

    Esters from vegetable oils have attracted a great deal of interest as substitutes for petrodiesel to reduce dependence on imported petroleum and provide a fuel with more benign environmental properties. In this work biodiesel was prepared from cottonseed oil by transesterification with methanol, us...

  10. Alternate feedstocks and technologies for biodiesel production

    USDA-ARS?s Scientific Manuscript database

    U.S. biodiesel production is presently estimated at 800 million gallons annually, and this fuel is no longer a research curiosity - it is entering the nation’s fuel infrastructure. Some estimates are that production will reach nearly twice that value in the next 10 to 12 years. This would stress a...

  11. Microalgae harvesting and subsequent biodiesel conversion.

    PubMed

    Tran, Dang-Thuan; Le, Bich-Hanh; Lee, Duu-Jong; Chen, Ching-Lung; Wang, Hsiang-Yu; Chang, Jo-Shu

    2013-07-01

    Chlorella vulgaris ESP-31 containing 22.7% lipid was harvested by coagulation (using chitosan and polyaluminium chloride (PACl) as the coagulants) and centrifugation. The harvested ESP-31 was directly employed as the oil source for biodiesel production via transesterification catalyzed by immobilized Burkholderia lipase and by a synthesized solid catalyst (SrO/SiO2). Both enzymatic and chemical transesterification were significantly inhibited in the presence of PACl, while the immobilized lipase worked well with wet chitosan-coagulated ESP-31, giving a high biodiesel conversion of 97.6% w/w oil, which is at a level comparable to that of biodiesel conversion from centrifugation-harvested microalgae (97.1% w/w oil). The immobilized lipase can be repeatedly used for three cycles without significant loss of its activity. The solid catalyst SrO/SiO2 worked well with water-removed centrifuged ESP-31 with a biodiesel conversion of 80% w/w oil, but the conversion became lower (55.7-61.4% w/w oil) when using water-removed chitosan-coagulated ESP-31 as the oil source.

  12. Recent developments in the biodiesel area

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, continues to find increasing interest as an alternative to petrodiesel fuel. In this connection, a significant issue affecting more widespread use and commercialization has been that of supply and availability. This has le...

  13. Will biodiesel fuels derived from algae perform?

    USDA-ARS?s Scientific Manuscript database

    The issue of sufficient supply and availability of feedstock is one of the major non-technical issues affecting the widespread commercialization of biodiesel. Another aspect is the food vs. fuel issue that biofuels should not be produced from edible feedstocks. In these connections, lipid-producin...

  14. Room temperature synthesis of biodiesel using sulfonated ...

    EPA Pesticide Factsheets

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  15. Cetane numbers of biodiesel and its components

    USDA-ARS?s Scientific Manuscript database

    The cetane number is one of the prime fuel quality indicators of a petrodiesel or biodiesel fuel as it relates to the tendency of the fuel to ignite in the combustion chamber. It has been established that compound structure, including chain length, branching, and the presence of double bonds, is a m...

  16. Green chemistry: Biodiesel made with sugar catalyst

    NASA Astrophysics Data System (ADS)

    Toda, Masakazu; Takagaki, Atsushi; Okamura, Mai; Kondo, Junko N.; Hayashi, Shigenobu; Domen, Kazunari; Hara, Michikazu

    2005-11-01

    The production of diesel from vegetable oil calls for an efficient solid catalyst to make the process fully ecologically friendly. Here we describe the preparation of such a catalyst from common, inexpensive sugars. This high-performance catalyst, which consists of stable sulphonated amorphous carbon, is recyclable and its activity markedly exceeds that of other solid acid catalysts tested for `biodiesel' production.

  17. WI Biodiesel Blending Progream Final Report

    SciTech Connect

    Redmond, Maria E; Levy, Megan M

    2013-04-01

    The Wisconsin State Energy Office's (SEO) primary mission is to implement cost effective, reliable, balanced, and environmentally friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

  18. Microtox aquatic toxicity of petrodiesel and biodiesel blends: the role of biodiesel's autoxidation products.

    PubMed

    Yassine, Mohamad H; Wu, Shuyun; Suidan, Makram T; Venosa, Albert D

    2012-12-01

    The acute Microtox toxicity of the water accommodated fraction (WAF) of six commercial soybean biodiesel/petrodiesel blends was investigated at different oil loads. We analyzed five fatty acid methyl esters (FAMEs), C10-C24 n-alkanes, four aromatics, methanol, and total organic carbon (TOC) content. At high oil loads, the WAFs' toxicity was significantly higher for blends containing biodiesel. At the lowest load, the WAFs' toxicity decreased almost linearly with decreasing biodiesel in the blend. At intermediate loads, the WAFs of all the blends appeared to have a similar toxicity. Analysis of WAFs confirmed the presence of autoxidation byproducts of FAMEs at high oil loads. Pure unsaturated FAMEs and n-alkanes were nontoxic when present in water at their reported solubility limits. However, 24-h equilibrated WAFs of pure FAMEs were highly toxic for C18:1 and C18:3, but not for C18:2. The authors concluded that at high oil loads, the acute toxicity of the WAFs was caused by FAMEs' autoxidation byproducts, whereas at low oil loads, the toxicity appeared to be caused primarily by the aromatic compounds present in petrodiesel. The addition of a synthetic antioxidant in biodiesel did not appear to affect the concentration of autoxidation byproducts in the WAF but resulted in a slight decrease in its toxicity. The major autoxidation byproducts identified in the WAF of commercial biodiesel were present neither in the WAFs of pure unsaturated FAMEs nor in the WAF of a different soybean biodiesel that was transesterified in our laboratory, which was nontoxic. We concluded that the process of transesterification of biodiesel might be a more critical factor in determining the aquatic toxicity of the fuel than the source of feedstock itself. Copyright © 2012 SETAC.

  19. An updated comprehensive techno-economic analysis of algae biodiesel.

    PubMed

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality.

  20. Biodiesel production with special emphasis on lipase-catalyzed transesterification.

    PubMed

    Bisen, Prakash S; Sanodiya, Bhagwan S; Thakur, Gulab S; Baghel, Rakesh K; Prasad, G B K S

    2010-08-01

    The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

  1. Experimental Study of Additives on Viscosity biodiesel at Low Temperature

    NASA Astrophysics Data System (ADS)

    Fajar, Berkah; Sukarno

    2015-09-01

    An experimental investigation was performed to find out the viscosity of additive and biodiesel fuel mixture in the temperature range from 283 K to 318 K. Solutions to reduce the viscosity of biodiesel is to add the biodiesel with some additive. The viscosity was measured using a Brookfield Rheometer DV-II. The additives were the generic additive (Diethyl Ether/DDE) and the commercial additive Viscoplex 10-330 CFI. Each biodiesel blends had a concentration of the mixture: 0.0; 0.25; 0.5; 0.75; 1.0; and 1.25% vol. Temperature of biodiesel was controlled from 40°C to 0°C. The viscosity of biodiesel and additive mixture at a constant temperature can be approximated by a polynomial equation and at a constant concentration by exponential equation. The optimum mixture is at 0.75% for diethyl ether and 0.5% for viscoplex.

  2. Properties of various plants and animals feedstocks for biodiesel production.

    PubMed

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production.

  3. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    SciTech Connect

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  4. A First Law Thermodynamic Analysis of Biodiesel Production from Soybean

    ERIC Educational Resources Information Center

    Patzek, Tad W.

    2009-01-01

    A proper First Law energy balance of the soybean biodiesel cycle shows that the overall efficiency of biodiesel production is 0.18, i.e., only 1 in 5 parts of the solar energy sequestered as soya beans, plus the fossil energy inputs, becomes biodiesel. Soybean meal is produced with an overall energetic efficiency of 0.38, but it is not a fossil…

  5. A First Law Thermodynamic Analysis of Biodiesel Production from Soybean

    ERIC Educational Resources Information Center

    Patzek, Tad W.

    2009-01-01

    A proper First Law energy balance of the soybean biodiesel cycle shows that the overall efficiency of biodiesel production is 0.18, i.e., only 1 in 5 parts of the solar energy sequestered as soya beans, plus the fossil energy inputs, becomes biodiesel. Soybean meal is produced with an overall energetic efficiency of 0.38, but it is not a fossil…

  6. Biodiesel from soybean promotes cell proliferation in vitro.

    PubMed

    Gioda, Adriana; Rodríguez-Cotto, Rosa I; Amaral, Beatriz Silva; Encarnación-Medina, Jarline; Ortiz-Martínez, Mario G; Jiménez-Vélez, Braulio D

    2016-08-01

    Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100μgmL(-1). In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (hexane) fraction of biodiesel fuel (B100) represses cytokine release in lung cells. This was revealed by the use of the metal chelator. Results suggest that metals associated with biodiesel's organic constituents might play a significant role in molecular mechanisms associated to cellular proliferation and immune responses.

  7. A paler shade of green? The toxicology of biodiesel emissions ...

    EPA Pesticide Factsheets

    Background: Biodiesel produced primarily from plants and algal feedstocks is believed to have advantages for production and use compared to petroleum and to some other fuel sources. There is some speculation that exposure to biodiesel combustion emissions may not induce biological responses or health effects or at a minimum reduce the effects relative to other fuels. In evaluating the overall environmental and health effects of biodiesel production to end use scenario, empirical data or modeling data based on such data are needed.Scope of Review: This manuscript examines the available toxicology reports examining combustion derived biodiesel emissions since approximately 2007, when our last review of the topic occurred. Toxicity derived from other end uses of biodiesel- eg, spills, dermal absorption, etc- are not examined. Findings from biodiesel emissions are roughly divided into three areas: whole non-human animal model exposures; in vitro exposures of mammalian and bacterial cells (used for mutation studies primarily); and human exposures in controlled or other exposure fashions. Major Conclusions: Overall, these more current studies clearly demonstrate that biodiesel combustion emission exposure- to either 100% biodiesel or a blend in petroleum diesel- can induce biological effects. There are reports that show biodiesel exposure generally induces more effects or a greater magnitude of effect than petroleum diesel, however there are also a similar number

  8. A paler shade of green? The toxicology of biodiesel emissions ...

    EPA Pesticide Factsheets

    Background: Biodiesel produced primarily from plants and algal feedstocks is believed to have advantages for production and use compared to petroleum and to some other fuel sources. There is some speculation that exposure to biodiesel combustion emissions may not induce biological responses or health effects or at a minimum reduce the effects relative to other fuels. In evaluating the overall environmental and health effects of biodiesel production to end use scenario, empirical data or modeling data based on such data are needed.Scope of Review: This manuscript examines the available toxicology reports examining combustion derived biodiesel emissions since approximately 2007, when our last review of the topic occurred. Toxicity derived from other end uses of biodiesel- eg, spills, dermal absorption, etc- are not examined. Findings from biodiesel emissions are roughly divided into three areas: whole non-human animal model exposures; in vitro exposures of mammalian and bacterial cells (used for mutation studies primarily); and human exposures in controlled or other exposure fashions. Major Conclusions: Overall, these more current studies clearly demonstrate that biodiesel combustion emission exposure- to either 100% biodiesel or a blend in petroleum diesel- can induce biological effects. There are reports that show biodiesel exposure generally induces more effects or a greater magnitude of effect than petroleum diesel, however there are also a similar number

  9. Biodiesel production from waste frying oils and its quality control.

    PubMed

    Sabudak, T; Yildiz, M

    2010-05-01

    The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price. In the present study waste frying oils collected from several McDonald's restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH(3)ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards.

  10. Purification of biodiesel by choline chloride based deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Niawanti, Helda; Zullaikah, Siti; Rachimoellah, M.

    2017-05-01

    Purification is a crucial step in biodiesel production to meet the biodiesel standard. This study purified biodiesel using choline chloride based deep eutectic solvent (DES). DES was used to reduce unreacted oil and unsaponifiable matter in rice bran oil based biodiesel. The objective of this work was to study the effect of extraction time using DES on the content and yield of fatty acid methyl ester (FAME). Rice bran used in this work contains 16.49 % of oil with initial free fatty acids (FFA) of 44.75 %. Acid catalyzed methanolysis was employed to convert rice bran oil (RBO) into biodiesel under following operation conditions: T = 60 °C, t = 8 h, molar ratio of oil to methanol = 1/10, H2SO4 = 1% w/w of oil. Rice bran oil based biodiesel obtained contain 89.05 % of FAME with very low FFA content (0.05 %). DES was made from a mixture of choline chloride and ethylene glycol with molar ratio of 1/2. Molar ratio of crude biodiesel to DES were 1/2 and 1/4. Extraction time was varied from 15 minutes to 240 minutes at 30 °C. The highest FAME content was obtained after purification for 240 min. at molar ratio crude biodiesel to DES 1/4 was 96.60 %. This work shows that DES has potential to purify biodiesel from non-edible raw material, such as RBO.

  11. Moringa oleifera oil: a possible source of biodiesel.

    PubMed

    Rashid, Umer; Anwar, Farooq; Moser, Bryan R; Knothe, Gerhard

    2008-11-01

    Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a variety of less common oils. In this work, Moringa oleifera oil is evaluated for the first time as potential feedstock for biodiesel. After acid pre-treatment to reduce the acid value of the M. oleifera oil, biodiesel was obtained by a standard transesterification procedure with methanol and an alkali catalyst at 60 degrees C and alcohol/oil ratio of 6:1. M. oleifera oil has a high content of oleic acid (>70%) with saturated fatty acids comprising most of the remaining fatty acid profile. As a result, the methyl esters (biodiesel) obtained from this oil exhibit a high cetane number of approximately 67, one of the highest found for a biodiesel fuel. Other fuel properties of biodiesel derived from M. oleifera such as cloud point, kinematic viscosity and oxidative stability were also determined and are discussed in light of biodiesel standards such as ASTM D6751 and EN 14214. The 1H NMR spectrum of M. oleifera methyl esters is reported. Overall, M. oleifera oil appears to be an acceptable feedstock for biodiesel.

  12. [Preparation of biodiesel from waste edible oils and performance and exhaust emissions of engines fueled with blends of the biodiesel].

    PubMed

    Ge, Yun-shan; Lu, Xiao-ming; Gao, Li-ping; Han, Xiu-kun; Ji, Xing

    2005-05-01

    The purpose of this study is to evaluate the effect of biodiesel on environment and to investigate the effect of the biodiesel made of waste edible oils on the performance and emissions of engines. Life cycle assessment (LCA) of biodiesel and diesel was introduced and the results of the LCA of both the fuels were given. The technological process of biodiesel production from waste edible oils, which is called transesterification of waste oils and methanol catalyzed with NaOH, was presented. Two turbocharged DI engines fueled with different proportions of biodiesel and diesel, namely, B50 (50% biodiesel + 50% diesel) and B20 (20% biodiesel + 80% diesel), were chosen to conduct performance and emission tests on a dynamometer. The results of the study indicate that there was a slight increase in fuel consumption by 8% and a drop in power by 3% with the blends of biodiesel, compared with diesel, and that the best improvements in emissions of smoke, HC, CO and PM were 65%, 11%, 33% and 13% respectively, but NOx emission was increased. The study also shows that it is satisfied to fuel engines with the low proportion blends of the biodiesel, without modifying engines, in performance and emissions.

  13. Landfill gas, canola, and biodiesel. Working towards a sustainable system [Snohomish County Biodiesel Project

    SciTech Connect

    Chang, Terrill; Carveth, Deanna

    2010-02-01

    Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to grow this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

  14. Microalgae are possible source of biodiesel'' fuel

    SciTech Connect

    Baum, R.

    1994-04-04

    Researchers interested in developing renewable energy resources are investigating the use of single-celled algae--microalgae--as a potential source of lipids that could be converted into a diesel fuel substitute known as biodiesel. Progress in this effort was described at a symposium on photobiological and photochemical formation of fuels and chemicals sponsored by the Biotechnology Secretariat. The aim of NREL's Biodiesel from Aquatic Species Project is to develop the technology for large-scale production of oil-rich microalgae as well as methods to convert the microalgal lipids into liquid fuels needed for industry and transportation. A major goal is to use genetic engineering techniques to control the lipid production of microalgae. By manipulating culture conditions, researchers already can increase the lipid content of the microalgae cell from the 5 to 20% found in nature to more than 60% in the laboratory and more than 40% in outdoor culture.

  15. Fast gas chromatographic separation of biodiesel.

    SciTech Connect

    Pauls, R. E.

    2011-05-01

    A high-speed gas chromatographic method has been developed to determine the FAME distribution of B100 biodiesel. The capillary column used in this work has dimensions of 20 m x 0.100 mm and is coated with a polyethylene glycol film. Analysis times are typically on the order of 4-5 min depending upon the composition of the B100. The application of this method to a variety of vegetable and animal derived B100 is demonstrated. Quantitative results obtained with this method were in close agreement with those obtained by a more conventional approach on a 100 m column. The method, coupled with solid-phase extraction, was also found suitable to determine the B100 content of biodiesel-diesel blends.

  16. Corrosion Resistance of Stainless Steels in Biodiesel

    NASA Astrophysics Data System (ADS)

    Román, Alejandra S.; Méndez, Claudia M.; Ares, Alicia E.

    The aim of this work was to study the corrosion behavior of stainless steels in biodiesel of vegetal origin, at room temperature, evaluating its properties according to the differences in the structures (austenitic, ferritic and austenitic — ferritic) and compositions of the materials. The biodiesel employed was obtained by industrially manufactured based on soybean oil as main raw material. The stainless steels used as samples for the tests were: AISI 304L, Sea Cure and Duplex 2205. For obtaining the desired data potentiodynamic polarization and weight loss trials were carried out. These studies were complemented by observations using an optical microscope. The weight loss study allowed the identification of low corrosion rates to the three stainless steels studied.

  17. Light vehicle regulated and unregulated emissions from different biodiesels.

    PubMed

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    2009-05-01

    In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NO(x) emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NO(x) emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO(2) emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels.

  18. Mercaptans emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio Machado; Arbilla, Graciela

    Biodiesel and ethanol are fuels in clear growth and evidence, basically due to its relation with the greenhouse effect reduction. There are several works regarding regulated pollutants emissions, but there is a lack of reports in non-regulated emissions. In a previous paper (Corrêa and Arbilla, 2006) the emissions of aromatic hydrocarbons were reported and in 2007 another paper was published in 2008 focusing carbonyls emissions (Corrêa and Arbilla, 2008). In this work four mercaptans (methyl, ethyl, n-propyl and n-butyl mercaptans) were evaluated for a heavy-duty diesel engine, fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were carried using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, during a real use across the city. The exhaust gases were diluted near 20 times and the mercaptans were sampled with glass fiber filters impregnated with mercuric acetate. The chemical analyses were performed by gas chromatography with mass spectrometry detection. The results indicated that the mercaptans emissions exhibit a reduction with the increase of biodiesel content, but this reduction is lower as the mercaptan molar mass increases. For B20 results the emission reduction was 18.4% for methyl mercaptan, 18.1% for ethyl mercaptan, 16.3% for n-propyl mercaptan, and 9.6% for n-butyl mercaptan.

  19. Polyester Based On Biodiesel Industry Residues

    NASA Astrophysics Data System (ADS)

    Carvalho, Ricardo F.; Jose, Nadia M.; Carvalho, Adriana L. S.; Miranda, Cleidiene S.; Thomas, Natasha I. R.

    2011-12-01

    Biodiesel production is growing exponentially offering the energy network an alternative fuel from renewable sources. However, large quantities of crude glycerol are generated as a bi-product (10-30%) wt during the transesterification process of biodiesel. Although glycerol in its purified form has a number of uses, crude glycerol obtained from the biodiesel industry contains many impurities and requires expensive purification processes resulting in vast amounts of glycerol without adequate destination which are causing rise to many environmental concerns. Large scale applications of glycerol are necessary to accompany its production. Polyesters obtained via the polycondensation of glycerol with aromatic acids were prepared in different ratios. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate thermal stability. The composite structure was characterized by Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (DRX). These aromatic polyesters could offer a low cost environmentally compatible material for the production of components such as tiles, boards, sanitary vases and sinks for the construction industry.

  20. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... required Either “B-XX Biodiesel Blend” or “Biodiesel Blend” contains biomass-based diesel or biodiesel in quantities between 5 percent and 20 percent Blue Biomass-Based Diesel No label required Either “XX% Biomass-Based Diesel Blend” or “Biomass-Based Diesel Blend” contains biomass-based diesel or biodiesel in...

  1. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... required Either “B-XX Biodiesel Blend” or “Biodiesel Blend” contains biomass-based diesel or biodiesel in quantities between 5 percent and 20 percent Blue Biomass-Based Diesel No label required Either “XX% Biomass-Based Diesel Blend” or “Biomass-Based Diesel Blend” contains biomass-based diesel or biodiesel in...

  2. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... required Either “B-XX Biodiesel Blend” or “Biodiesel Blend” contains biomass-based diesel or biodiesel in quantities between 5 percent and 20 percent Blue Biomass-Based Diesel No label required Either “XX% Biomass-Based Diesel Blend” or “Biomass-Based Diesel Blend” contains biomass-based diesel or biodiesel in...

  3. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... required Either “B-XX Biodiesel Blend” or “Biodiesel Blend” contains biomass-based diesel or biodiesel in quantities between 5 percent and 20 percent Blue Biomass-Based Diesel No label required Either “XX% Biomass-Based Diesel Blend” or “Biomass-Based Diesel Blend” contains biomass-based diesel or biodiesel in...

  4. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... required Either “B-XX Biodiesel Blend” or “Biodiesel Blend” contains biomass-based diesel or biodiesel in quantities between 5 percent and 20 percent Blue Biomass-Based Diesel No label required Either “XX% Biomass-Based Diesel Blend” or “Biomass-Based Diesel Blend” contains biomass-based diesel or biodiesel in...

  5. 10 CFR 490.707 - Increasing the qualifying volume of the biodiesel component.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Increasing the qualifying volume of the biodiesel... TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.707 Increasing the qualifying volume of the biodiesel component. DOE may increase the qualifying volume of the biodiesel component of fuel for purposes of...

  6. 10 CFR 490.706 - Procedure for modifying the biodiesel component percentage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Procedure for modifying the biodiesel component percentage... TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.706 Procedure for modifying the biodiesel component percentage. (a) DOE may, by rule, lower the 20 percent biodiesel volume requirement of this subpart for...

  7. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel... alternative fueled vehicles which have been used to satisfy the alternative fueled vehicle acquisition...

  8. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel... alternative fueled vehicles which have been used to satisfy the alternative fueled vehicle acquisition...

  9. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel... alternative fueled vehicles which have been used to satisfy the alternative fueled vehicle acquisition...

  10. 10 CFR 490.703 - Biodiesel fuel use credit allocation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel... alternative fueled vehicles which have been used to satisfy the alternative fueled vehicle acquisition...

  11. Economic assessment of biodiesel production from waste frying oils.

    PubMed

    Araujo, Victor Kraemer Wermelinger Sancho; Hamacher, Silvio; Scavarda, Luiz Felipe

    2010-06-01

    Waste frying oils (WFO) can be a good source for the production of biodiesel because this raw material is not part of the food chain, is low cost and can be used in a way that resolves environmental problems (i.e. WFO is no longer thrown into the sewage network). The goal of this article is to propose a method to evaluate the costs of biodiesel production from WFO to develop an economic assessment of this alternative. This method embraces a logistics perspective, as the cost of collection of oil from commercial producers and its delivery to biodiesel depots or plants can be relevant and is an issue that has been little explored in the academic literature. To determine the logistics cost, a mathematical programming model is proposed to solve the vehicle routing problem (VRP), which was applied in an important urban center in Brazil (Rio de Janeiro), a relevant and potential center for biodiesel production and consumption. Eighty-one biodiesel cost scenarios were compared with information on the commercialization of biodiesel in Brazil. The results obtained demonstrate the economic viability of biodiesel production from WFO in the urban center studied and the relevance of logistics in the total biodiesel production cost. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Moringa Oleifera Oil: A Possible Source of Biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a v...

  13. Biodiesel: The clean, green fuel for diesel engines (fact sheet)

    SciTech Connect

    Tyson, K.S.

    2000-04-11

    Natural, renewable resources such as vegetable oils and recycled restaurant greases can be chemically transformed into clean-burning biodiesel fuels. As its name implies, biodiesel is like diesel fuel except that it's organically produced. It's also safe for the environment, biodegradable, and produces significantly less air pollution than diesel fuel.

  14. SVOC emissions from diesel trucks operating of biodiesel fuels

    EPA Science Inventory

    The U.S. currently produces roughly 5 billion liters of biodiesel per year. Use of biodiesel is projected to increase based on its potential economic, energy, and environmental benefits. Despite these benefits, there is public health concern about the possible direct and indirect...

  15. An investigation of biodiesel production from wastes of seafood restaurants.

    PubMed

    El-Gendy, Nour Sh; Hamdy, A; Abu Amr, Salem S

    2014-01-01

    This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield) and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst.

  16. Preparation of Biodiesel by Methanolysis of Crude Moringa Oleifera Oil

    USDA-ARS?s Scientific Manuscript database

    Biodiesel was prepared from the unconventional crude oil of Moringa oleifera by transesterification with methanol and alkali catalyst. Moringa oleifera oil is reported for the first time as potential feedstock for biodiesel. Moringa oleifera oil contains a high amount of oleic acid (>70%) with sat...

  17. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    SciTech Connect

    Naik, C V; Westbrook, C K

    2009-04-08

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  18. Comparisons of Biodiesel Produced from Oils of Various Peanut Cultivars

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is a renewable, clean burning alternative fuel that can be used in standard diesel engines with no engine modification and no perceptible loss in engine performance. Biodiesel production typically involves the transesterification of a seed oil feedstock, with soybean oil being the primary...

  19. Improving the cold flow properties of biodiesel by fractionation

    USDA-ARS?s Scientific Manuscript database

    Production of biodiesel is increasing world-wide and contributing to the growing development of renewable alternative fuels. Biodiesel has many fuel properties such as density, viscosity, lubricity, and cetane number that make it compatible for combustion in compression-ignition (diesel) engines. ...

  20. Designing a Biodiesel Fuel with Optimized Fatty Acid Composition

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative to petroleum-derived diesel fuel, although it can replace only a few percent of current petrodiesel production. It is technically competitive with petrodiesel. Technical problems with biodiesel are oxidative stability, cold flow increased nitrogen oxides (NOx) exhaust em...

  1. An Investigation of Biodiesel Production from Wastes of Seafood Restaurants

    PubMed Central

    El-Gendy, Nour Sh.; Hamdy, A.; Abu Amr, Salem S.

    2014-01-01

    This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield) and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst. PMID:25400665

  2. The impact of biodiesel on pollutant emissions and public health.

    PubMed

    McCormick, Robert L

    2007-09-01

    An overview of recent studies of the impact of biodiesel and biodiesel blends on air pollutant emissions and health effects is provided. Biodiesel blends of 20% produce reductions of 15% or higher (depending upon engine model and test cycle) in emissions of particulate matter, carbon monoxide, total hydrocarbons, and a group of toxic compounds including vapor-phase hydrocarbons from C1 to C12, aldehydes and ketones up to C8, and selected semivolatile and particle-phase PAH and NPAH. Based on the studies reviewed and recently acquired data, individual engines may show oxides of nitrogen increasing or decreasing, but on average there appears to be no net effect for blends of 20% biodiesel--the most common biodiesel blend. Exhaust from a diesel engine operating on 100% biodiesel was also shown to have only modest adverse effects in an animal exposure study. Studies of the impact of biodiesel on particle size have not produced consistent results and additional research in this area is needed. Biodiesel is also shown to significantly reduce life-cycle greenhouse gas emissions in comparison to petroleum diesel.

  3. Comments on the Manuscript, "Biodiesel Production from Freshwater Algae"

    USDA-ARS?s Scientific Manuscript database

    A recent publication (Vijayaragahavan, K.; Hemanathan, K., Biodiesel from freshwater algae, Energy Fuels, 2009, 23(11):5448-5453) on fuel production from algae is evaluated. It is discussed herein that the fuel discussed in that paper is not biodiesel, rather it probably consists of hydrocarbons. ...

  4. Modeling the Crystallization Behavior of Biodiesel at Low Temperatures

    USDA-ARS?s Scientific Manuscript database

    The most common form of biodiesel is made by transesterification of vegetable oil or animal fat fatty acids with methanol (FAME). Biodiesel from feedstocks such as palm oil (PME), rapeseed oil (RME), soybean oil (SME) or used cooking oil (UCOME) is susceptible to performance issues during cold weat...

  5. Direct transesterification of spent coffee grounds for biodiesel production

    USDA-ARS?s Scientific Manuscript database

    Studies of spent coffee grounds (SCGs) as a potential biodiesel feedstock in recent years mostly started from solvent extraction to obtain coffee oil, and then converted it into coffee biodiesel in two steps, acid esterification followed by alkaline transesterification. This paper presents a direct ...

  6. Methyl esters (biodiesel) from Pachyrhizus erosus seed oil

    USDA-ARS?s Scientific Manuscript database

    The search for additional or alternative feedstocks is one of the major areas of interest regarding biodiesel. In this paper, the fuel properties of Pachyrhizus erosus (commonly known as yam bean or Mexican potato or jicama) seed oil methyl esters were investigated by methods prescribed in biodiesel...

  7. Water Consumption Estimates of the Biodiesel Process in the US

    EPA Science Inventory

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  8. Partitioning Behavior of Petrodiesel/Biodiesel Blends in Water

    EPA Science Inventory

    The partitioning behavior of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100, where B100 is 100% unblended biodiesel) in water was investigated at various oil loads by the 10-fold dilution method. Five fatty acid methyl esters (FAMEs), C10 - C20 n

  9. Biodiesel: A fuel, a lubricant, and a solvent

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is well-known as a biogenic alternative to conventional diesel fuel derived from petroleum. It is produced from feedstocks such as plant oils consisting largely of triacylglycerols through transesterification with an alcohol such as methanol. The properties of biodiesel are largely compet...

  10. Partitioning Behavior of Petrodiesel/Biodiesel Blends in Water

    EPA Science Inventory

    The partitioning behavior of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100, where B100 is 100% unblended biodiesel) in water was investigated at various oil loads by the 10-fold dilution method. Five fatty acid methyl esters (FAMEs), C10 - C20 n

  11. Water Consumption Estimates of the Biodiesel Process in the US

    EPA Science Inventory

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  12. Improving Biodiesel Fuel Properties by Modifying Fatty Ester Composition

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative to petroleum-derived diesel fuel composed of alkyl esters of vegetable oils, animal fats or other feedstocks such as used cooking oils. The fatty acid profile of biodiesel corresponds to that of its feedstock. Most feedstocks possess fatty acid profiles consisting mainl...

  13. Biodiesel from Soybean Promotes Cell Proliferation in Vitro

    PubMed Central

    Gioda, Adriana; Rodríguez-Cotto, Rosa I.; Amaral, Beatriz Silva; Encarnación-Medina, Jarline; Ortiz-Martínez, Mario G.; Jiménez-Vélez, Braulio D.

    2016-01-01

    Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100 μg mL -1. In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (hexane) fraction of biodiesel fuel (B100) represses cytokine release in lung cells. This was revealed by the use of the metal chelator. Results suggest that metals associated with biodiesel’s organic constituents might play a significant role in molecular mechanisms associated to cellular proliferation and immune responses. PMID:27179667

  14. Biodiesel/ULSD blend ratios by analysis of fuel properties

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative fuel that is made from vegetable oil or animal fat. Biodiesel is often blended with ultra low sulfur diesel (ULSD; 15 mg/kg maximum sulfur content) in volumetric ratios (VBD) of up to 20 vol% (B20). Government tax credits and other regulatory requirements may depend on ac...

  15. Biodiesel production--current state of the art and challenges.

    PubMed

    Vasudevan, Palligarnai T; Briggs, Michael

    2008-05-01

    Biodiesel is a clean-burning fuel produced from grease, vegetable oils, or animal fats. Biodiesel is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. The transesterification reaction consists of transforming triglycerides into fatty acid alkyl esters, in the presence of an alcohol, such as methanol or ethanol, and a catalyst, such as an alkali or acid, with glycerol as a byproduct. Because of diminishing petroleum reserves and the deleterious environmental consequences of exhaust gases from petroleum diesel, biodiesel has attracted attention during the past few years as a renewable and environmentally friendly fuel. Since biodiesel is made entirely from vegetable oil or animal fats, it is renewable and biodegradable. The majority of biodiesel today is produced by alkali-catalyzed transesterification with methanol, which results in a relatively short reaction time. However, the vegetable oil and alcohol must be substantially anhydrous and have a low free fatty acid content, because the presence of water or free fatty acid or both promotes soap formation. In this article, we examine different biodiesel sources (edible and nonedible), virgin oil versus waste oil, algae-based biodiesel that is gaining increasing importance, role of different catalysts including enzyme catalysts, and the current state-of-the-art in biodiesel production.

  16. Progress and Challenges in Microalgal Biodiesel Production

    PubMed Central

    Mallick, Nirupama; Bagchi, Sourav K.; Koley, Shankha; Singh, Akhilesh K.

    2016-01-01

    The last decade has witnessed a tremendous impetus on biofuel research due to the irreversible diminution of fossil fuel reserves for enormous demands of transportation vis-a-vis escalating emissions of green house gasses (GHGs) into the atmosphere. With an imperative need of CO2 reduction and considering the declining status of crude oil, governments in various countries have not only diverted substantial funds for biofuel projects but also have introduced incentives to vendors that produce biofuels. Currently, biodiesel production from microalgal biomass has drawn an immense importance with the potential to exclude high-quality agricultural land use and food safe-keeping issues. Moreover, microalgae can grow in seawater or wastewater and microalgal oil can exceed 50–60% (dry cell weight) as compared with some best agricultural oil crops of only 5–10% oil content. Globally, microalgae are the highest biomass producers and neutral lipid accumulators contending any other terrestrial oil crops. However, there remain many hurdles in each and every step, starting from strain selection and lipid accumulation/yield, algae mass cultivation followed by the downstream processes such as harvesting, drying, oil extraction, and biodiesel conversion (transesterification), and overall, the cost of production. Isolation and screening of oleaginous microalgae is one pivotal important upstream factor which should be addressed according to the need of freshwater or marine algae with a consideration that wild-type indigenous isolate can be the best suited for the laboratory to large scale exploitation. Nowadays, a large number of literature on microalgal biodiesel production are available, but none of those illustrate a detailed step-wise description with the pros and cons of the upstream and downstream processes of biodiesel production from microalgae. Specifically, harvesting and drying constitute more than 50% of the total production costs; however, there are quite a less

  17. Progress and Challenges in Microalgal Biodiesel Production.

    PubMed

    Mallick, Nirupama; Bagchi, Sourav K; Koley, Shankha; Singh, Akhilesh K

    2016-01-01

    The last decade has witnessed a tremendous impetus on biofuel research due to the irreversible diminution of fossil fuel reserves for enormous demands of transportation vis-a-vis escalating emissions of green house gasses (GHGs) into the atmosphere. With an imperative need of CO2 reduction and considering the declining status of crude oil, governments in various countries have not only diverted substantial funds for biofuel projects but also have introduced incentives to vendors that produce biofuels. Currently, biodiesel production from microalgal biomass has drawn an immense importance with the potential to exclude high-quality agricultural land use and food safe-keeping issues. Moreover, microalgae can grow in seawater or wastewater and microalgal oil can exceed 50-60% (dry cell weight) as compared with some best agricultural oil crops of only 5-10% oil content. Globally, microalgae are the highest biomass producers and neutral lipid accumulators contending any other terrestrial oil crops. However, there remain many hurdles in each and every step, starting from strain selection and lipid accumulation/yield, algae mass cultivation followed by the downstream processes such as harvesting, drying, oil extraction, and biodiesel conversion (transesterification), and overall, the cost of production. Isolation and screening of oleaginous microalgae is one pivotal important upstream factor which should be addressed according to the need of freshwater or marine algae with a consideration that wild-type indigenous isolate can be the best suited for the laboratory to large scale exploitation. Nowadays, a large number of literature on microalgal biodiesel production are available, but none of those illustrate a detailed step-wise description with the pros and cons of the upstream and downstream processes of biodiesel production from microalgae. Specifically, harvesting and drying constitute more than 50% of the total production costs; however, there are quite a less number

  18. Potential niche markets for biodiesel and their effects on agriculture

    SciTech Connect

    Raneses, A.R.; Glaser, L.K.; Price, J.M.

    1996-12-31

    This analysis estimates possible biodiesel demand in three niche markets the biodiesel industry has identified as likely candidates for commercialization: federal fleets, mining, and marine/estuary areas. If a 20-percent biodiesel blend becomes a competitive alternative fuel in the coming years, these markets could demand as much as 379 million liters (100 million gallons) of biodiesel. The Food and Agricultural Policy Simulator, an econometric model of U.S. agriculture, was used to estimate the impacts of 76, 193, and 379 million liters (20, 50, and 100 million gallons) of soybean-oil-based biodiesel production on the agricultural sector. The results indicate the effect of increased soybean oil demand on the soybean complex (beans, oil, and meal) and U.S. farm income would be small, but livestock producers and consumers could benefit from low meat prices.

  19. Process simulation and economical evaluation of enzymatic biodiesel production plant.

    PubMed

    Sotoft, Lene Fjerbaek; Rong, Ben-Guang; Christensen, Knud V; Norddahl, Birgir

    2010-07-01

    Process simulation and economical evaluation of an enzymatic biodiesel production plant has been carried out. Enzymatic biodiesel production from high quality rapeseed oil and methanol has been investigated for solvent free and cosolvent production processes. Several scenarios have been investigated with different production scales (8 and 200 mio. kg biodiesel/year) and enzyme price. The cosolvent production process is found to be most expensive and is not a viable choice, while the solvent free process is viable for the larger scale production of 200 mio. kg biodiesel/year with the current enzyme price. With the suggested enzyme price of the future, both the small and large scale solvent free production proved viable. The product price was estimated to be 0.73-1.49 euro/kg biodiesel with the current enzyme price and 0.05-0.75 euro/kg with the enzyme price of the future for solvent free process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. The feasibility of converting Cannabis sativa L. oil into biodiesel.

    PubMed

    Li, Si-Yu; Stuart, James D; Li, Yi; Parnas, Richard S

    2010-11-01

    Cannabis sativa Linn, known as industrial hemp, was utilized for biodiesel production in this study. Oil from hemp seed was converted to biodiesel through base-catalyzed transesterification. The conversion is greater than 99.5% while the product yield is 97%. Several ASTM tests for biodiesel quality were implemented on the biodiesel product, including acid number, sulfur content, flash point, kinematic viscosity, and free and total glycerin content. In addition, the biodiesel has a low cloud point (-5 degrees C) and kinematic viscosity (3.48mm(2)/s). This may be attributed to the high content of poly-unsaturated fatty acid of hemp seed oil and its unique 3:1 ratio of linoleic to alpha-linolenic acid.

  1. Production and properties of biodiesel produced from Amygdalus pedunculata Pall.

    PubMed

    Chu, Jianmin; Xu, Xinqiao; Zhang, Yinglong

    2013-04-01

    The use of inexpensive vegetable oils as feedstock for biodiesel production is an effective way to reduce biodiesel costs. Here we report production and properties of biodiesel produced from Amygdalus pedunculata which is widespread in arid area in China. Biodiesel produced from A. pedunculata conformed EN 14214, ASTM D6751, and GB/T20828 standards, except for those cetane number and oxidative stability. Cold flow and transportation safety properties were excellent (cold filter plugging point -11°C, flash point 169°C). Additives and antioxidants would be required to meet cetane number and oxidative stability specifications. The addition of 500 ppm tert-butylhydroquinone resulted in a higher induction period (6.7 h), bringing oxidative stability into compliance with all three biodiesel standards. Copyright © 2012. Published by Elsevier Ltd.

  2. A Comparative Characteristic Study of Jatropha and Cardanol Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Pugazhenthi, R.; Chandrasekaran, M.; Muthuraman, R. K.; Vivek, P.; Parthiban, A.

    2017-03-01

    The demand in fuel needs and the depleting fossil fuels raised the need towards bio-fuels. The emerging trend in research field is highly focused on biodiesel production and their characteristic analysis. Since pollution is a major threat to the environment, emission parameter analyses are much important to be concentrated. As the entire world contains plenty of biofuels, it is necessary to explore them for its efficiency and analyze their parameters. In this experimental work jatropha and cashew nut shell biodiesel (Cardanol) was extracted and they were blended with diesel. The characteristics of jatropha and cardanol biodiesel were studied in the DI diesel engine by varying the load at the same speed. In brief, this experimental analysis is carried out to compare the emission characteristics between Jatropha biodiesel at 20% (B20) and 40% (B40) and Cardanol biodiesel blends at 20% (C20) and 40% (C40).

  3. Studies of Terminalia catappa L. oil: characterization and biodiesel production.

    PubMed

    Dos Santos, I C F; de Carvalho, S H V; Solleti, J I; Ferreira de La Salles, W; Teixeira da Silva de La Salles, K; Meneghetti, S M P

    2008-09-01

    Since the biodiesel program has been started in Brazil, the investigation of alternative sources of triacylglycerides from species adapted at semi-arid lands became a very important task for Brazilian researchers. Thus we initiated studies with the fruits of the Terminalia catappa L (TC), popularly known in Brazil as "castanhola", evaluating selected properties and chemical composition of the oil, as well any potential application in biodiesel production. The oil was obtained from the kernels of the fruit, with yields around 49% (% mass). Also, its fatty acid composition was quite similar to that of conventional oils. The crude oil of the TC was transesterified, using a conventional catalyst and methanol to form biodiesel. The studied physicochemical properties of the TC biodiesel are in acceptable range for use as biodiesel in diesel engines.

  4. Quantification of ethanol in ethanol-petrol and biodiesel in biodiesel-diesel blends using fluorescence spectroscopy and multivariate methods.

    PubMed

    Kumar, Keshav; Mishra, Ashok K

    2012-01-01

    Ethanol blended petrol and biodiesel blended diesel are being introduced in many countries to meet the increasing demand of hydrocarbon fuels. However, technological limitations of current vehicle engine do not allow ethanol and biodiesel percentages in the blended fuel to be increased beyond a certain level. As a result quantification of ethanol in blended petrol and biodiesel in blended diesel becomes an important issue. In this work, calibration models for the quantification of ethanol in the ethanol-petrol and biodiesel in the biodiesel-diesel blends of a particular batch were made using the combination of synchronous fluorescence spectroscopy (SFS) with principal component regression (PCR) and partial least square (PLS) and excitation emission matrix fluorescence (EEMF) with N-way Partial least square (N-PLS) and unfolded-PLS. The PCR, PLS, N-PLS and unfolded-PLS calibration models were evaluated through measures like root mean square error of cross-validation (RMSECV), root mean square error of calibration (RMSEC) and square of the correlation coefficient (R(2)). The prediction abilities of the models were tested using a testing set of ethanol-petrol and biodiesel-diesel blends of known ethanol and biodiesel concentrations, error in the predictions made by the models were found to be less than 2%. The obtained calibration models are highly robust and capable of estimating low as well as high concentrations of ethanol and biodiesel.

  5. Microtox Aquatic Toxcity of Petrodiesel and Biodiesel Blends: The Role of Biodiesel's Autoxidation Products

    EPA Science Inventory

    The acute Microtox toxicity of the water accommodated fraction (WAF) of six commercial soybean biodiesel/petrodiesel blends was investigated at different oil loads. We analyzed five fatty acid methyl esters (FAMEs), C10 - C24 n-alkanes, four aromatics, methanol, and tota...

  6. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol.

    PubMed

    Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen

    2010-01-15

    Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced.

  7. Microtox Aquatic Toxcity of Petrodiesel and Biodiesel Blends: The Role of Biodiesel's Autoxidation Products

    EPA Science Inventory

    The acute Microtox toxicity of the water accommodated fraction (WAF) of six commercial soybean biodiesel/petrodiesel blends was investigated at different oil loads. We analyzed five fatty acid methyl esters (FAMEs), C10 - C24 n-alkanes, four aromatics, methanol, and tota...

  8. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  9. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  10. Western Kentucky University Research Foundation Biodiesel Project

    SciTech Connect

    Pan, Wei-Ping; Cao, Yan

    2013-03-15

    Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the next 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily

  11. Improved Soybean Oil for Biodiesel Fuel

    SciTech Connect

    Tom Clemente; Jon Van Gerpen

    2007-11-30

    The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it is imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may

  12. Biodiesel from algae: challenges and prospects.

    PubMed

    Scott, Stuart A; Davey, Matthew P; Dennis, John S; Horst, Irmtraud; Howe, Christopher J; Lea-Smith, David J; Smith, Alison G

    2010-06-01

    Microalgae offer great potential for exploitation, including the production of biodiesel, but the process is still some way from being carbon neutral or commercially viable. Part of the problem is that there is little established background knowledge in the area. We should look both to achieve incremental steps and to increase our fundamental understanding of algae to identify potential paradigm shifts. In doing this, integration of biology and engineering will be essential. In this review we present an overview of a potential algal biofuel pipeline, and focus on recent work that tackles optimization of algal biomass production and the content of fuel molecules within the algal cell.

  13. Accidental poisoning with biodiesel preservative biocide

    PubMed Central

    Aslanidis, T; Ourailoglou, V; Boultoukas, E; Giannakou-Peftoulidou, M

    2014-01-01

    Although biodiesel fuels’ use is getting more and more popular, there are only few reports in the literature of poisoning with such agents, and none referring to their preservatives: biocides. We present the management of a 49-year-old Caucasian male who was admitted, after accidental ingestion of biocide solution, in the intensive care unit of a tertiary hospital. In spite of his devastating condition upon arrival to the hospital, he had a remarkable recovery with no local or systemic sequel due to multidisciplinary and early supportive approach of his care. PMID:25336882

  14. Biorefinery for Glycerol Rich Biodiesel Industry Waste.

    PubMed

    Kalia, Vipin Chandra; Prakash, Jyotsana; Koul, Shikha

    2016-06-01

    The biodiesel industry has the potential to meet the fuel requirements in the future. A few inherent lacunae of this bioprocess are the effluent, which is 10 % of the actual product, and the fact that it is 85 % glycerol along with a few impurities. Biological treatments of wastes have been known as a dependable and economical direction of overseeing them and bring some value added products as well. A novel eco-biotechnological strategy employs metabolically diverse bacteria, which ensures higher reproducibility and economics. In this article, we have opined, which organisms and what bioproducts should be the focus, while exploiting glycerol as feed.

  15. Thermally assisted sensor for conformity assessment of biodiesel production

    NASA Astrophysics Data System (ADS)

    Kawano, M. S.; Kamikawachi, R. C.; Fabris, J. L.; Muller, M.

    2015-02-01

    Although biodiesel can be intentionally tampered with, impairing its quality, ineffective production processes may also result in a nonconforming final fuel. For an incomplete transesterification reaction, traces of alcohol (ethanol or methanol) or remaining raw material (vegetable oil or animal fats) may be harmful to consumers, the environment or to engines. Traditional methods for biodiesel assessment are complex, time consuming and expensive, leading to the need for the development of new and more versatile processes for quality control. This work describes a refractometric fibre optic based sensor that is thermally assisted, developed to quantify the remaining methanol or vegetable oil in biodiesel blends. The sensing relies on a long period grating to configure an in-fibre interferometer. A complete analytical routine is demonstrated for the sensor allowing the evaluation of the biodiesel blends without segregation of the components. The results show the sensor can determine the presence of oil or methanol in biodiesel with a concentration ranging from 0% to 10% v/v. The sensor presented a resolution and standard combined uncertainty of 0.013% v/v and 0.62% v/v for biodiesel-oil samples, and 0.007% v/v and 0.22% v/v for biodiesel-methanol samples, respectively.

  16. An overview of the current status of biodiesel

    SciTech Connect

    Reed, T.B.

    1993-12-31

    Vegetable oils (and animal fats) have been used as lighting fuels since Egyptian times, but recent testing shows that they are not suitable for diesel engines, causing poor spray and coking. Transesterification of the oils with methanol cleaves the oil/fat molecule into 3 parts and removes the glycerine, yielding a viscosity and other properties comparable to that of diesel. The resulting esters have been given the generic name {open_quotes}biodiesel.{close_quotes} Biodiesel can be made from vegetable oils and animal fats by transesterification with methanol or ethanol using Acid or base catalysts. Only minor variations in characteristics such as Cetane number and pour point occur with various feedstocks. The heat of combustion of biodiesel is 95% of that for conventional diesel (on a volume basis). The viscosity is no more than double that of No. 2 diesel. Biodiesel has a Cetane number of 50--80 (compared to typically 42 for diesel). The Cetane number is important in determining emissions. Biodiesel fuel requires no engine modification for use in conventional diesel engines. The engine characteristics have been widely tested in engines and fleets in the US, Brazil, and in Europe. Reduced emissions (except NOX) are reported for both blends and neat. Vegetable oils cost typically $2--$4/gal, and so require a subsidy to compete economically with diesel today. It is expected that this cost can be reduced with improved species and improved yields. The cost of biodiesel can also be reduced by using waste vegetable cooking oils which typically contain 4-8% free fatty acids that must be removed. Processing costs are estimated to be $0.50 above the feedstock cost, so that $2/gal vegetable oils would give biodiesel at $2.50/gal biodiesel. Biodiesel is certainly the best candidate for an alternate diesel fuel.

  17. Fiber optic sensor for methanol quantification in biodiesel

    NASA Astrophysics Data System (ADS)

    Kawano, Marianne S.; Kamikawachi, Ricardo Canute; Fabris, José L.; Müller, Marcia

    2014-05-01

    In this work a refractometric sensor for assessment of methanol presence in biodiesel is reported. The transducer relies on the interference between the forward and back propagating modes of a single long period grating, written close to an end-face mirror optical fiber. The sensing method is thermally assisted in order to overcome the drawback caused by the high refractive index (close to the fiber cladding index) of methanol-biodiesel blends at low temperatures. Sensor showed a combined standard uncertainty of 0.6 % v/v of methanol in biodiesel for a confidence level of 68.27%, within the methanol concentration ranging from 0 to 25 % v/v.

  18. Alternative method to quantify biodiesel and vegetable oil in diesel-biodiesel blends through (1)H NMR spectroscopy.

    PubMed

    Shimamoto, Gustavo G; Bianchessi, Luis F; Tubino, Matthieu

    2017-06-01

    An alternative method is proposed for the quantitative analysis of biodiesel in diesel-biodiesel blends. It is based on hydrogen nuclear magnetic resonance ((1)H NMR) spectroscopy and applies univariate calibration, in which the integrals of the spectra are considered. Statistical comparisons between the results obtained from the method proposed here and from the infrared (IR) spectrometry method, which is recommended by the European Standard EN 14078, show that the (1)H NMR method offers equivalent results compared with standard ones. Furthermore, the proposed (1)H NMR method recognizes the difference between biodiesel and vegetable oil, whereas the IR method cannot. Therefore, the (1)H NMR method developed to quantify biodiesel in diesel-biodiesel blends is proposed here as a more practical and efficient alternative to the official method, because besides quantifying biodiesel in blends, it indicates adulteration with vegetable oil, either as the intentional and illegal addition of this raw material or because of a low degree of transesterification conversion during biodiesel synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. BACTERIAL COMMUNITY DYNAMICS AND ECOTOXICOLOGICAL ASSESSMENT DURING BIOREMEDIATION OF SOILS CONTAMINATED BY BIODIESEL AND DIESEL/BIODIESEL BLENDS.

    PubMed

    Matos, G I; Junior, C S; Oliva, T C; Subtil, D F; Matsushita, L Y; Chaves, A L; Lutterbach, M T; Sérvulo, E F; Agathos, S N; Stenuit, B

    2015-01-01

    The gradual introduction of biodiesel in the Brazilian energy landscape has primarily occurred through its blending with conventional petroleum diesel (e.g., B20 (20% biodiesel) and B5 (5% biodiesel) formulations). Because B20 and lower-level blends generally do not require engine modifications, their use as transportation fuel is increasing in the Brazilian distribution networks. However, the environmental fate of low-level biodiesel blends and pure biodiesel (B100) is poorly understood and the ecotoxicological-safety endpoints of biodiesel-contaminated environments are unknown. Using laboratory microcosms consisting of closed reactor columns filled with clay loam soil contaminated with pure biodiesel (EXPB100) and a low-level blend (EXPB5) (10% w/v), this study presents soil ecotoxicity assessement and dynamics of culturable heterotrophic bacteria. Most-probable-number (MPN) procedures for enumeration of bacteria, dehydrogenase assays and soil ecotoxicological tests using Eisenia fetida have been performed at different column depths over the course of incubation. After 60 days of incubation, the ecotoxicity of EXPB100-derived samples showed a decrease from 63% of mortality to 0% while EXPB5-derived samples exhibited a reduction from 100% to 53% and 90% on the top and at the bottom of the reactor column, respectively. The dehydrogenase activity of samples from EXPB100 and EXPB5 increased significantly compared to pristine soil after 60 days of incubation. Growth of aerobic bacterial biomass was only observed on the top of the reactor column while the anaerobic bacteria exhibited significant growth at different column depths in EXPB100 and EXPB5. These preliminary results suggest the involvement of soil indigenous microbiota in the biodegradation of biodiesel and blends. However, GC-FID analyses for quantification of fatty acid methyl esters (FAMEs) and aliphatic hydrocarbons and targeted sequencing of 16S rRNA tags using illumina platforms will provide important

  20. Biodiesel production using waste frying oil

    SciTech Connect

    Charpe, Trupti W.; Rathod, Virendra K.

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

  1. Digital image-based classification of biodiesel.

    PubMed

    Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Almeida, Valber Elias; Araújo, Thomas Souto Policarpo; Melo, Jessica Priscila; Diniz, Paulo Henrique Gonçalves Dias; Véras, Germano

    2015-07-01

    This work proposes a simple, rapid, inexpensive, and non-destructive methodology based on digital images and pattern recognition techniques for classification of biodiesel according to oil type (cottonseed, sunflower, corn, or soybean). For this, differing color histograms in RGB (extracted from digital images), HSI, Grayscale channels, and their combinations were used as analytical information, which was then statistically evaluated using Soft Independent Modeling by Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and variable selection using the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). Despite good performances by the SIMCA and PLS-DA classification models, SPA-LDA provided better results (up to 95% for all approaches) in terms of accuracy, sensitivity, and specificity for both the training and test sets. The variables selected Successive Projections Algorithm clearly contained the information necessary for biodiesel type classification. This is important since a product may exhibit different properties, depending on the feedstock used. Such variations directly influence the quality, and consequently the price. Moreover, intrinsic advantages such as quick analysis, requiring no reagents, and a noteworthy reduction (the avoidance of chemical characterization) of waste generation, all contribute towards the primary objective of green chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Genomic Prospecting for Microbial Biodiesel Production

    SciTech Connect

    Lykidis, Athanasios; Lykidis, Athanasios; Ivanova, Natalia

    2008-03-20

    Biodiesel is defined as fatty acid mono-alkylesters and is produced from triacylglycerols. In the current article we provide an overview of the structure, diversity and regulation of the metabolic pathways leading to intracellular fatty acid and triacylglycerol accumulation in three types of organisms (bacteria, algae and fungi) of potential biotechnological interest and discuss possible intervention points to increase the cellular lipid content. The key steps that regulate carbon allocation and distribution in lipids include the formation of malonyl-CoA, the synthesis of fatty acids and their attachment onto the glycerol backbone, and the formation of triacylglycerols. The lipid biosynthetic genes and pathways are largely known for select model organisms. Comparative genomics allows the examination of these pathways in organisms of biotechnological interest and reveals the evolution of divergent and yet uncharacterized regulatory mechanisms. Utilization of microbial systems for triacylglycerol and fatty acid production is in its infancy; however, genomic information and technologies combined with synthetic biology concepts provide the opportunity to further exploit microbes for the competitive production of biodiesel.

  3. Oil extraction from microalgae for biodiesel production.

    PubMed

    Halim, Ronald; Gladman, Brendan; Danquah, Michael K; Webley, Paul A

    2011-01-01

    This study examines the performance of supercritical carbon dioxide (SCCO(2)) extraction and hexane extraction of lipids from marine Chlorococcum sp. for lab-scale biodiesel production. Even though the strain of Chlorococcum sp. used in this study had a low maximum lipid yield (7.1 wt% to dry biomass), the extracted lipid displayed a suitable fatty acid profile for biodiesel [C18:1 (∼63 wt%), C16:0 (∼19 wt%), C18:2 (∼4 wt%), C16:1 (∼4 wt%), and C18:0 (∼3 wt%)]. For SCCO(2) extraction, decreasing temperature and increasing pressure resulted in increased lipid yields. The mass transfer coefficient (k) for lipid extraction under supercritical conditions was found to increase with fluid dielectric constant as well as fluid density. For hexane extraction, continuous operation with a Soxhlet apparatus and inclusion of isopropanol as a co-solvent enhanced lipid yields. Hexane extraction from either dried microalgal powder or wet microalgal paste obtained comparable lipid yields. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Application of thermal lens technique to measure the thermal diffusivity of biodiesel blend

    NASA Astrophysics Data System (ADS)

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Mehdipour, Lotf Ali; Noura, Amin; Mahdi, Mohd Adzir

    2015-04-01

    Thermal diffusivity of palm biodiesel blends was measured using a thermal lens double beam setup. Palm biodiesel blends were prepared from a mixture of normal palm oil biodiesel and diesel fuel with the percentage of the mixture set in the range of 10-90 %. The thermal diffusivity of the palm biodiesel blends consistently increased by increasing the concentration of palm biodiesel from 0.784 × 10-7 to 1.056 × 10-7 m2/s and average of measurement limitation was 0.629 × 10-7 m2/s. Hence, thermal lens technique is suitable and accurate to assess the thermal diffusivity of palm biodiesel.

  5. Continuous-flow biodiesel production using slit-channel reactors.

    PubMed

    Kalu, Egwu Eric; Chen, Ken S; Gedris, Tom

    2011-03-01

    Slit-channel reactors are reactors whose active surface areas are orders of magnitude higher than those of micro-reactors but have low fabrication costs relative to micro-reactors. We successfully produced biodiesel with different degrees of conversion using homogeneous catalyst in the slit-channel reactor. The reactor performance shows that percent conversion of soybean oil to biodiesel increases with channel depth, as expected, due to more efficient mixing. Shallow slit-channels require short average residence times for complete product conversion. Present results show that the slit-channel reactor provides an improved performance over traditional batch reactors using homogeneous sodium alkoxide catalyst. It is aimed to couple the reactors with solid catalysts in converting soybean oil to biodiesel and implementation method is suggested. The cost advantages resulting from the ease of fabrication of slit-channel reactors over micro-reactors and how these factors relate to the oil conversion efficiency to biodiesel are briefly noted and discussed.

  6. Polymeric efficiency in remove impurities during cottonseed biodiesel production

    NASA Astrophysics Data System (ADS)

    Lin, H. L.; Liang, Y. H.; Yan, J.; Lin, H. D.; Espinosa, A. R.

    2016-07-01

    This paper describes a new process for developing biodiesel by polymer from crude cottonseed oil. The study was conducted to examine the effectiveness of the alkali transesterification-flocculation-sedimentation process on fast glycerol and other impurities in the separation from biodiesel by using quaternary polyamine-based cationic polymers SL2700 and polyacylamide cationic polymer SAL1100. The settling velocity of glycerol and other impurities in biodiesel was investigated through settling test experiments; the quality of the biodiesel was investigated by evaluating the viscosity and density. The results revealed that SL2700, SAL1100 and their combination dramatically improved the settling velocity of glycerol and other impurities materials than traditional method. SL 2700 with molecular weight of 0.2 million Da and charge density of 50% then plus SAL1100 with molecular weight of 11 million Da and charge density of 10% induced observable particle aggregation with the best settling performance.

  7. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    SciTech Connect

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2016-12-19

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  8. Biodiesel production from low cost and renewable feedstock

    NASA Astrophysics Data System (ADS)

    Gude, Veera; Grant, Georgene; Patil, Prafulla; Deng, Shuguang

    2013-12-01

    Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.

  9. Using wet microalgae for direct biodiesel production via microwave irradiation.

    PubMed

    Cheng, Jun; Yu, Tao; Li, Tao; Zhou, Junhu; Cen, Kefa

    2013-03-01

    To address the large energy consumption of microalgae dewatering and to simplify the conventional two-step method (cellular lipid extraction and lipid transesterification) for biodiesel production, a novel process for the direct conversion of wet microalgae biomass into biodiesel by microwave irradiation is proposed. The influences of conventional thermal heating and microwave irradiation on biodiesel production from wet microalgae biomass were investigated. The effects of using the one-step (simultaneous lipid extraction and transesterification) and two-step methods were also studied. Approximately 77.5% of the wet microalgal cell walls were disrupted under microwave irradiation. The biodiesel production rate and yield from wet microalgae biomass obtained through the one-step process using microwave irradiation were 6-fold and 1.3-fold higher than those from wet microalgae obtained through the two-step process using conventional heating.

  10. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    NASA Astrophysics Data System (ADS)

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2016-12-01

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  11. Glycerol extracting dealcoholization for the biodiesel separation process.

    PubMed

    Ye, Jianchu; Sha, Yong; Zhang, Yun; Yuan, Yunlong; Wu, Housheng

    2011-04-01

    By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process.

  12. Upstream and downstream strategies to economize biodiesel production.

    PubMed

    Hasheminejad, Meisam; Tabatabaei, Meisam; Mansourpanah, Yaghoub; Khatami far, Mahdi; Javani, Azita

    2011-01-01

    In recent years biodiesel has drawn considerable amount of attention as a clean and renewable fuel. Biodiesel is produced from renewable sources such as vegetable oils and animal fat mainly through catalytic or non-catalytic transesterification method as well as supercritical method. However, as a consequence of disadvantages of these methods, the production cost increases dramatically. This article summarizes different biodiesel production methods with a focus on their advantages and disadvantages. The downstream and upstream strategies such as using waste cooking oils, application of non-edible plant oils, plant genetic engineering, using membrane separation technology for biodiesel production, separation and purification, application of crude glycerin as an energy supplement for ruminants, glycerin ultra-purification and their consequent roles in economizing the production process are fully discussed in this article. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    EPA Science Inventory

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  14. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    EPA Science Inventory

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  15. Production of bioethanol and biodiesel using instant noodle waste.

    PubMed

    Yang, Xiaoguang; Lee, Ja Hyun; Yoo, Hah Young; Shin, Hyun Yong; Thapa, Laxmi Prasad; Park, Chulhwan; Kim, Seung Wook

    2014-08-01

    Instant noodle manufacturing waste was used as feedstock to convert it into two products, bioethanol and biodiesel. The raw material was pretreated to separate it into two potential feedstocks, starch residues and palm oil, for conversion to bioethanol and biodiesel, respectively. For the production of bioethanol, starch residues were converted into glucose by α-amylase and glucoamylase. To investigate the saccharification process of the pretreated starch residues, the optimal pretreatment conditions were determined. The bioethanol conversion reached 98.5 % of the theoretical maximum by Saccharomyces cerevisiae K35 fermentation after saccharification under optimized pretreatment conditions. Moreover, palm oil, isolated from the instant noodle waste, was converted into valuable biodiesel by use of immobilized lipase (Novozym 435). The effects of four categories of alcohol, oil-to-methanol ratio, reaction time, lipase concentration and water content on the conversion process were investigated. The maximum biodiesel conversion was 95.4 %.

  16. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride.

    PubMed

    Baig, R B Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N; Varma, Rajender S

    2016-12-19

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  17. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  18. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    DOE PAGES

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; ...

    2016-12-01

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  19. Preparation and properties of biodiesel from Cynara cardunculus L. oil

    SciTech Connect

    Encinar, J.M.; Gonzalez, J.F.; Sabio, E.; Ramiro, M.J.

    1999-08-01

    A study was made of the reaction of transesterification of Cynara cardunculus L. oil by means of methanol, using sodium hydroxide, potassium hydroxide, and sodium methoxide as catalysts. The objective of the work was to characterize the methyl esters for use as biodiesels in internal combustion motors. The operation variables used were methanol concentration (5--21 wt %), catalyst concentration (0.1--1 wt %), and temperature (25--60 C). The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by determining its density, viscosity, high heating value, cetane index, cloud and pour points, Ramsbottom carbon residue, characteristics of distillation, and flash and combustion points according to ISO norms. The biodiesel with the best properties was obtained using 15% methanol, sodium methoxide as catalyst (1%), and 60 C temperature. This biodiesel has very similar properties to those of diesel No. 2.

  20. Biodiesel production from low cost and renewable feedstock

    NASA Astrophysics Data System (ADS)

    Gude, Veera G.; Grant, Georgene E.; Patil, Prafulla D.; Deng, Shuguang

    2013-12-01

    Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.

  1. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    PubMed Central

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2016-01-01

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. PMID:27991593

  2. Life cycle assessment of biodiesel production in China.

    PubMed

    Liang, Sai; Xu, Ming; Zhang, Tianzhu

    2013-02-01

    This study aims to evaluate energy, economic, and environmental performances of seven categories of biodiesel feedstocks by using the mixed-unit input-output life cycle assessment method. Various feedstocks have different environmental performances, indicating potential environmental problem-shift. Jatropha seed, castor seed, waste cooking oil, and waste extraction oil are preferred feedstocks for biodiesel production in the short term. Positive net energy yields and positive net economic benefits of biodiesel from these four feedstocks are 2.3-52.0% of their life cycle energy demands and 74.1-448.4% of their economic costs, respectively. Algae are preferred in the long term mainly due to their less arable land demands. Special attention should be paid to potential environmental problems accompanying feedstock choice: freshwater use, ecotoxicity potentials, photochemical oxidation potential, acidification potential and eutrophication potential. Moreover, key processes are identified by sensitivity analysis to direct future technology improvements. Finally, supporting measures are proposed to optimize China's biodiesel development.

  3. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  4. Cost implications of feedstock combinations for community sized biodiesel production

    SciTech Connect

    Weber, J.A.; Van Dyne, D.L.

    1993-12-31

    Biodiesel can be processed from oilseeds or animal fats and used in unmodified diesel engines. This fuel has been produced commercially in Europe for three years. Research indicates that biodiesel can replace diesel fuel without causing harmful effects to an unmodified engine and can reduce harmful emissions . Some European biodiesel plants operate at the community level effectively supplying both fuel and animal feeds. This study examines multiple feedstocks that could be utilized by a community sized biodiesel plant. The model plant used is a 500,000 gallon processing facility. The model plant is assumed to be installed in an existing grain handling facility or feed mill. Animal fats would be purchased from outside sources and oilseeds would be provided by area producers. Producers would retain ownership of the oilseeds and pay a processing fee to the cooperative. Oilseeds would be extruded before being separated into meal and crude oil. The crude oil would be esterified into biodiesel using continuous flow esterification technology. This study concludes under specific conditions, biodiesel can be processed economically at the community level. The results indicate that without farm program benefits to minor oilseeds, soybeans are the most economic feedstock to use in a community based operation. Realistic price information suggests that biodiesel (from soybeans) could be produced for $1.26 per gallon. If producers participate in government programs and are capable of growing minor oilseeds, canola may represent a better feedstock than soybeans. Achieving the lowest costs of production depends on the value assigned to co-product credits such as oilseed meal. The more producers pay for high protein meal for their livestock and poultry, the lower the residual price of biodiesel.

  5. Microbiological and Corrosivity Characterizations of Biodiesels and Advanced Diesel Fuels

    DTIC Science & Technology

    2009-01-01

    nature and extent of microbial contamination and the potential for microbiologically influenced corrosion in biodiesel (B100), ultra-low sulfur diesel...ULSD) and mixtures of the two (B5 and B20). In experiments with additions of distilled water, B100 has the highest propensity for biofouling while...the highest corrosion rates were measured in ultra-low-sulfur diesel. 15. SUBJECT TERMS corrosion, diesel, biodiesel, biofouling, MIC 16. SECURITY

  6. Brown Grease to Biodiesel Demonstration Project Report

    SciTech Connect

    San Francisco Public Utilities Commission; URS Corporation; Biofuels, Blackgold; Carollo Engineers

    2013-01-30

    Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a good example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas. The research goals are given below: To validate technology performance; To determine the costs and benefits [including economic, socioeconomic, and GHG emissions reduction] associated with co-locating this type of operation at a municipal wastewater treatment plant (WWTP); To develop a business case or model for replication of the

  7. Biodiesel exhaust: the need for a systematic approach to health effects research.

    PubMed

    Larcombe, Alexander N; Kicic, Anthony; Mullins, Benjamin J; Knothe, Gerhard

    2015-10-01

    Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure.

  8. Evaluation of Biodiesel Production, Engine Performance, and Emissions

    NASA Astrophysics Data System (ADS)

    Gürü, Metin; Keskïn, Ali

    2016-08-01

    Nowadays, to decrease environmental pollution and dependence on fossil-based fuels, research on alternative renewable energy sources has been increasing. One such renewable energy source is biodiesel, which is used as an alternative fuel for diesel engines. Biodiesel is renewable, nontoxic, biodegradable, and environmentally friendly. Biodiesel is domestically produced from vegetable oil (edible or nonedible), animal fat, and used cooking oils. In the biodiesel production process, oil or fat undergoes transesterification reaction through use of simple alcohols such as methanol, ethanol, propanol, butanol, etc. Use of methanol is most feasible because of its low cost, and physical and chemical advantages. Acid catalysis, alkali catalysis, and enzyme catalysis are usually used to improve the reaction rate and yield. Glycerol is a byproduct of the reaction and can be used as an industrial raw material. In this study, biodiesel production methods (direct use, pyrolysis, microemulsion, transesterification, supercritical processes, ultrasound- assisted, and microwave-assisted) and types of catalyst (homogeneous, heterogeneous, and enzyme) have been evaluated and compared. In addition, the effects of biodiesel and its blends on diesel engine performance and exhaust emissions are described and reviewed.

  9. Sustainable Energy Production from Jatropha Bio-Diesel

    NASA Astrophysics Data System (ADS)

    Yadav, Amit Kumar; Krishna, Vijai

    2012-10-01

    The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. This economic development has led to a huge demand for energy, where the major part of that energy is derived from fossil sources such as petroleum, coal and natural gas. Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies. There is a growing interest in using Jatropha curcas L. oil as the feedstock for biodiesel production because it is non-edible and thus does not compromise the edible oils, which are mainly used for food consumption. Further, J. curcas L. seed has a high content of free fatty acids that is converted in to biodiesel by trans esterification with alcohol in the presence of a catalyst. The biodiesel produced has similar properties to that of petroleum-based diesel. Biodiesel fuel has better properties than petro diesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future. Biodiesel has the potential to economically, socially, and environmentally benefit communities as well as countries, and to contribute toward their sustainable development.

  10. Effects of biodiesel on continuous regeneration DPF characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Xie, Hui; Gao, Guoyou; Wang, Wei; Hui, Chun

    2017-06-01

    A critical requirement for the implementation of DPF on a modern engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. In order to study the influence of biodiesel on the Regenerating Characteristics of Continuously Regeneration DPF, Bench test were carried out to investigate the BET of a continuously regeneration DPF assembled with a diesel engine fueled with neat diesel and biodiesel. Test results show that at the same engine operation conditions the fuel consumption is higher for biodiesel case, and also the intake air quantity and boost pressure are lower; the BET for the Diesel fuel is about 310 ° while it is about 250 ° for the Biodiesel case. When the engine is at the low torque and low exhaust temperature operation condition, CO conversion rate is extremely low, NO2/NOX ratio is small; with the increase of torque and exhaust temperature, CO conversion and NO2/NOX ratio increased significantly, and the maximum NO2/NOX ratio (about 35%) has been measured at 350 °. In addition, the DPF has better filtration efficiency for biodiesel PM, and the use of biodiesel to engine assembled with DPF has significant benefits.

  11. Biodiesel/Aquatic Species Project report, FY 1992

    SciTech Connect

    Brown, L.; Jarvis, E.; Dunahay, T.; Roessler, P.; Zeiler, K. ); Sprague, S. )

    1993-05-01

    The primary goal of the Biodiesel/Aquatic Species Project is to develop the technology for growing microalgae as a renewable biomass feedstock for the production of a diesel fuel substitute (biodiesel), thereby reducing the need for imported petroleum. Microalgae are of interest as a feedstock because of their high growth rates and tolerance to varying environmental conditions, and because the oils (lipids) they produce can be extracted and converted to substitute petroleum fuels such as biodiesel. Microalgae can be grown in arid and semi-arid regions with poor soil quality, and saline water from aquifers or the ocean can be used for growing microalgae. Biodiesel is an extremely attractive candidate to fulfill the need for a diesel fuel substitute. Biodiesel is a cleaner fuel than petroleum diesel; it is virtually free of sulfur, and emissions of hydrocarbons, carbon monoxide, and particulates during combustion are significantly reduced in comparison to emissions from petroleum diesel. Biodiesel provides essentially the same energy content and power output as petroleum-based diesel fuel.

  12. Supercritical biodiesel production and power cogeneration: technical and economic feasibilities.

    PubMed

    Deshpande, A; Anitescu, G; Rice, P A; Tavlarides, L L

    2010-03-01

    An integrated supercritical fluid technology with power cogeneration to produce biodiesel fuels, with no need for the costly separations involved with the conventional technology, is proposed, documented for technical and economic feasibility, and preliminarily designed. The core of the integrated system consists of the transesterification of various triglyceride sources (e.g., vegetable oils and animal fats) with supercritical methanol/ethanol. Part of the reaction products can be combusted by a diesel power generator integrated in the system which, in turn, provides the power needed to pressurize the system and the heat of the exhaust gases necessary in the transesterification step. The latter energy demand can also be satisfied by a fired heater, especially for higher plant capacities. Different versions of this system can be implemented based on the main target of the technology: biodiesel production or diesel engine applications, including power generation. The process options considered for biodiesel fuel production estimate break-even processing costs of biodiesel as low as $0.26/gal ($0.07/L) with a diesel power generator and $0.35/gal ($0.09/L) with a fired heater for a plant capacity of 15,000 gal/day (56,775 L/day). Both are significantly lower than the current processing costs of approximately $0.51/gal ($0.13/L) of biodiesel produced by conventional catalytic methods. A retail cost of biodiesel produced by the proposed method is likely to be competitive with the prices of diesel fuels.

  13. Breathing easier? The known impacts of biodiesel on air quality

    PubMed Central

    Traviss, Nora

    2013-01-01

    Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a ‘green’, more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure – defined in this instance as human contact with tailpipe emissions – is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health. PMID:23585814

  14. Breathing easier? The known impacts of biodiesel on air quality.

    PubMed

    Traviss, Nora

    2012-05-01

    Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a 'green', more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure - defined in this instance as human contact with tailpipe emissions - is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health.

  15. The ecology of algal biodiesel production.

    PubMed

    Smith, Val H; Sturm, Belinda S M; Denoyelles, Frank J; Billings, Sharon A

    2010-05-01

    Sustainable energy production represents one of the most formidable problems of the 21st century, and plant-based biofuels offer significant promise. We summarize the potential advantages of using pond-grown microalgae as feedstocks relative to conventional terrestrial biofuel crop production. We show how pond-based algal biofuel production, which requires significantly less land area than agricultural crop-based biofuel systems, can offer additional ecological benefits by reducing anthropogenic pollutant releases to the environment and by requiring much lower water subsidies. We also demonstrate how key principles drawn from the science of ecology can be used to design efficient pond-based microalgal systems for the production of biodiesel fuels.

  16. Characterization of crude glycerol from biodiesel plants.

    PubMed

    Hu, Shengjun; Luo, Xiaolan; Wan, Caixia; Li, Yebo

    2012-06-13

    Characterization of crude glycerol is very important to its value-added conversion. In this study, the physical and chemical properties of five biodiesel-derived crude glycerol samples were determined. Three methods, including iodometric-periodic acid method, high performance liquid chromatography (HPLC), and gas chromatography (GC), were shown to be suitable for the determination of glycerol content in crude glycerol. The compositional analysis of crude glycerol was successfully achieved by crude glycerol fractionation and characterization of the obtained fractions (aqueous and organic) using titrimetric, HPLC, and GC analyses. The aqueous fraction consisted mainly of glycerol, methanol, and water, while the organic fraction contained fatty acid methyl esters (FAMEs), free fatty acids (FFAs), and glycerides. Despite the wide variations in the proportion of their components, all raw crude glycerol samples were shown to contain glycerol, soap, methanol, FAMEs, water, glycerides, FFAs, and ash.

  17. Biochemical responses in armored catfish (Pterygoplichthys anisitsi) after short-term exposure to diesel oil, pure biodiesel and biodiesel blends.

    PubMed

    Nogueira, Lílian; da Silva, Danilo Grünig Humberto; Oliveira, Thiago Yukio Kikuchi; da Rosa, Joel Maurício Correa; Felício, Andréia Arantes; de Almeida, Eduardo Alves

    2013-09-01

    Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7d to 0.01mLL(-1) and 0.1mLL(-1) of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2'-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota.

  18. Soy Biodiesel Emissions Have Reduced Inflammatory Effects ...

    EPA Pesticide Factsheets

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrations of 50, 150, or 500 µg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoaeolar lavage (BAL) fluid 2 h after a single 4-h exposure to BO compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergc mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM­ allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among BO-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to BO, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of TH2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 µg/m(3)) can induce inflammation acutely in healthy m

  19. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants.

    PubMed

    Ryu, Kyunghyun

    2010-01-01

    The aim of this study is to investigate the effects of antioxidants on the oxidation stability of biodiesel fuel, the engine performance and the exhaust emissions of a diesel engine. Biodiesel fuel used in the study was derived from soybean oil. The results show that the efficiency of antioxidants is in the order TBHQ>PrG>BHA>BHT>alpha-tocopherol. The oxidative stability of biodiesel fuel attained the 6-h quality standard with 100 ppm TBHQ and with 300 ppm PrG in biodiesel fuel. Combustion characteristics and exhaust emissions in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. The BSFC of biodiesel fuel with antioxidants decreased more than that of biodiesel fuel without antioxidants, but no trends were observed according to the type or amount of antioxidant. Antioxidants had few effects on the exhaust emissions of a diesel engine running on biodiesel.

  20. The emission characteristics of a small D.I. diesel engine using biodiesel blended fuels.

    PubMed

    Lue, Y F; Yeh, Y Y; Wu, C H

    2001-05-01

    Biodiesel and biodiesel blends provide low emissions without modification on the fuel system of conventional diesel engines. This study aims to develop a new domestic biodiesel production procedure which makes use of waste fryer vegetable oil by transesterification method, and further investigates the emission characteristics of a small D.I. diesel engine using biodiesel blends and diesel fuels, respectively. The 20/80 and 30/70 blends of biodiesel to diesel fuel are used in this study. The emission characteristics include smoke emissions, gaseous emissions (CO, HC, NOx and SO2), particle size distributions and number concentrations at a variety of steady state engine speed points. We have found that diesel engine fueled with biodiesel blends emits more PM2 particle number concentrations than those with diesel fuel, and PM2 number concentration increases as biodiesel concentration increases. As for the smoke and gaseous emissions, such as CO, HC, NOx and SO2, the results favored biodiesel blends.

  1. Effect of biodiesel addition on microbial community structure in a simulated fuel storage system.

    PubMed

    Restrepo-Flórez, Juan-Manuel; Bassi, Amarjeet; Rehmann, Lars; Thompson, Michael R

    2013-11-01

    Understanding changes in microbial structure due to biodiesel storage is important both for protecting integrity of storage systems and fuel quality management. In this work a simulated storage system was used to study the effect of biodiesel (0%, 25%, 50%, 75% and 100%) on a microbial population, which was followed by community level physiological profiling (CLPP), 16s rDNA analysis and plating in selective media. Results proved that structure and functionality were affected by biodiesel. CLPP showed at least three populations: one corresponding to diesel, one to biodiesel and one to blends of diesel and biodiesel. Analysis of 16s rDNA revealed that microbial composition was different for populations growing in diesel and biodiesel. Genera identified are known for degradation of hydrocarbons and emulsifier production. Maximum growth was obtained in biodiesel; however, microbial counts in standard media were lower for this samples. Acidification of culture media was observed at high biodiesel concentration.

  2. Biodiesel forming reactions using heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Yijun

    Biodiesel synthesis from biomass provides a means for utilizing effectively renewable resources, a way to convert waste vegetable oils and animal fats to a useful product, a way to recycle carbon dioxide for a combustion fuel, and production of a fuel that is biodegradable, non-toxic, and has a lower emission profile than petroleum-diesel. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low molecular weight alcohols constitute the synthetic routes to prepare biodiesel from lipid feedstocks. This project was aimed at developing a better understanding of important fundamental issues involved in heterogeneous catalyzed biodiesel forming reactions using mainly model compounds, representing part of on-going efforts to build up a rational base for assay, design, and performance optimization of solid acids/bases in biodiesel synthesis. As FFA esterification proceeds, water is continuously formed as a byproduct and affects reaction rates in a negative manner. Using sulfuric acid (as a catalyst) and acetic acid (as a model compound for FFA), the impact of increasing concentrations of water on acid catalysis was investigated. The order of the water effect on reaction rate was determined to be -0.83. Sulfuric acid lost up to 90% activity as the amount of water present increased. The nature of the negative effect of water on esterification was found to go beyond the scope of reverse hydrolysis and was associated with the diminished acid strength of sulfuric acid as a result of the preferential solvation by water molecules of its catalytic protons. The results indicate that as esterification progresses and byproduct water is produced, deactivation of a Bronsted acid catalyst like H2SO4 occurs. Using a solid composite acid (SAC-13) as an example of heterogeneous catalysts and sulfuric acid as a homogeneous reference, similar reaction inhibition by water was demonstrated for homogeneous and heterogeneous catalysis. This similarity together with

  3. Dynamics of Peroxy and Alkenyl Radicals Undergoing Competing Rearrangements in Biodiesel Combustion

    SciTech Connect

    Dibble, Theodore S.

    2016-03-24

    Biodiesel fuel is increasingly being used worldwide. Although we have a fair understanding of the molecular details of the chemistry of peroxy radicals derived from alkanes, biodiesel fuels contain ester and olefin groups which significantly impact the thermodynamics and kinetics of biodiesel ignition. The broader goal of this research is to carry out systematic computational studies of the elementary kinetics of the chemistry of ROO•, QOOH and •OOQOOH compounds that are models for biodiesel ignition.

  4. Engineering an Escherichia coli platform to synthesize designer biodiesels.

    PubMed

    Wierzbicki, Michael; Niraula, Narayan; Yarrabothula, Akshitha; Layton, Donovan S; Trinh, Cong T

    2016-04-20

    Biodiesels, fatty acid esters (FAEs), can be synthesized by condensation of fatty acid acyl CoAs and alcohols via a wax ester synthase in living cells. Biodiesels have advantageous characteristics over petrodiesels such as biodegradability, a higher flash point, and less emission. Controlling fatty acid and alcohol moieties are critical to produce designer biodiesels with desirable physiochemical properties (e.g., high cetane number, low kinematic viscosity, high oxidative stability, and low cloud point). Here, we developed a flexible framework to engineer Escherichia coli cell factories to synthesize designer biodiesels directly from fermentable sugars. In this framework, we designed each FAE pathway as a biodiesel exchangeable production module consisting of acyl CoA, alcohol, and wax ester synthase submodules. By inserting the FAE modules in an engineered E. coli modular chassis cell, we generated E. coli cell factories to produce targeted biodiesels (e.g., fatty acid ethyl (FAEE) and isobutyl (FAIbE) esters) with tunable and controllable short-chain alcohol moieties. The engineered E. coli chassis carrying the FAIbE production module produced 54mg/L FAIbEs with high specificity, accounting for>90% of the total synthesized FAEs and ∼4.7 fold increase in FAIbE production compared to the wildtype. Fed-batch cultures further improved FAIbE production up to 165mg/L. By mixing ethanol and isobutanol submodules, we demonstrated controllable production of mixed FAEEs and FAIbEs. We envision the developed framework offers a flexible, alternative route to engineer designer biodiesels with tunable and controllable properties using biomass-derived fermentable sugars. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Biodiesel from lignocellulosic biomass--prospects and challenges.

    PubMed

    Yousuf, Abu

    2012-11-01

    Biodiesel can be a potential alternative to petroleum diesel, but its high production cost has impeded its commercialization in most parts of the world. One of the main drivers for the generation and use of biodiesel is energy security, because this fuel can be produced from locally available resources, thereby reducing the dependence on imported oil. Many countries are now trying to produce biodiesel from plant or vegetable oils. However, the consumption of large amounts of vegetable oils for biodiesel production could result in a shortage in edible oils and cause food prices to soar. Alternatively, the use of animal fat, used frying oils, and waste oils from restaurants as feedstock could be a good strategy to reduce the cost. However, these limited resources might not meet the increasing demand for clean, renewable fuels. Therefore, recent research has been focused the use of residual materials as renewable feedstock in order to lower the cost of producing biodiesel. Microbial oils or single cell oils (SCOs), produced by oleaginous microorganisms have been studied as promising alternatives to vegetable or seed oils. Various types of agro-industrial residues have been suggested as prospective nutritional sources for microbial cultures. Since the most abundant residue from agricultural crops is lignocellulosic biomass (LCB), this byproduct has been given top-priority consideration as a source of biomass for producing biodiesel. But the biological transformation of lignocellulosic materials is complicated due to their crystalline structure. So, pretreatment is required before they can be converted into fermentable sugar. This article compares and scrutinizes the extent to which various microbes can accumulate high levels of lipids as functions of the starting materials and the fermentation conditions. Also, the obstacles associated with the use of LCB are described, along with a potentially viable approach for overcoming the obstacles that currently preclude the

  6. Prediction of class membership of biodiesels using chemometrics.

    PubMed

    Mustafa, Zylia; Milina, Rumyana; Simeonova, Pavlina A; Tsakovski, Stefan L; Simeonov, Vasil D

    2015-01-01

    Recently, serious scientific and technological attention is paid to creation of alternative energy sources, including biofuels. The assessment of the quality of the biofuels produced and of the raw materials needed for the production technology is an important scientific challenge. One of the major sources for biodiesel production is plant oils material (sunflower, rapeseed, palm, soya etc.). Since plants are complex system from the biota it is not easy to find specific chemical components responsible for their ability to serve as biodiesels. The characterization and classification of plant sources as biofuel material could be reliably estimated only by the use of multivariate statistical approaches (chemometrics). The chemometric expertise makes it possible not only to classify different biofuel sources into similarity classes but also to predict the membership of unknown by origin chemically analyzed samples to already existing classes. The present study deals with the prediction of the class membership of several unknown by origin samples, which are included in a large data set with FAME profiles of biodiesel plant sources. Using a data set from chromatographic analysis of fatty acid methyl esters profiles (FAME) of different plant biodiesel sources and applying the chemometric technique know as partial least squares-discriminant analysis (PLS - DA) a pattern recognition procedure is developed to: I. Model classes of similarity of biodiesel plant sources using their FAME profiles not taking into account the samples with unknown origin; II. Classify correctly the samples with unknown origin to the previously defined classes of biodiesel sources (palm oil, soybean oil, peanut oil, rapeseed oil, sunflower oil and maize oil). The prediction is successfully achieved for all samples with previously unknown origin. This pattern recognition approach is applied for the first time in the field of biodiesel classification and modeling tasks.

  7. 10 CFR 490.706 - Procedure for modifying the biodiesel component percentage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Procedure for modifying the biodiesel component percentage. 490.706 Section 490.706 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.706 Procedure for modifying the biodiesel component...

  8. 10 CFR 490.706 - Procedure for modifying the biodiesel component percentage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Procedure for modifying the biodiesel component percentage. 490.706 Section 490.706 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.706 Procedure for modifying the biodiesel component...

  9. 10 CFR 490.706 - Procedure for modifying the biodiesel component percentage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Procedure for modifying the biodiesel component percentage. 490.706 Section 490.706 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.706 Procedure for modifying the biodiesel component...

  10. 10 CFR 490.706 - Procedure for modifying the biodiesel component percentage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Procedure for modifying the biodiesel component percentage. 490.706 Section 490.706 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.706 Procedure for modifying the biodiesel component...

  11. Aerobic Biodegradation Kinetics And Mineralization Of Six Petrodiesel/Soybean-Biodiesel Blends

    EPA Science Inventory

    The aerobic biodegradation kinetics and mineralization of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100), where B100 is 100% biodiesel, were investigated by acclimated cultures. The fatty acid methyl esters (FAMEs) of biodiesel were found to undergo ...

  12. Biodiesel From waste cooking oil for heating, lighting, or running diesel engines

    Treesearch

    Rico O. Cruz

    2009-01-01

    Biodiesel and its byproducts and blends can be used as alternative fuel in diesel engines and for heating, cooking, and lighting. A simple process of biodiesel production can utilize waste cooking oil as the main feedstock to the transesterification and cruzesterification processes. I currently make my own biodiesel for applications related to my nursery and greenhouse...

  13. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles

    EPA Science Inventory

    AbstractContext: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. Objectives: We compared the formation of covalent DNA adducts by the in vitro metabol...

  14. Predicting the concentration and specific gravity of biodiesel-diesel blends using near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Biodiesel made from different source materials usually have different physical and chemical properties and the concentration of biodiesel in biodiesel-diesel blends varies from pump to pump and from user to user; all these factors have significant effects on performance and efficiency of engines fue...

  15. Cold flow properties of biodiesel: A guide to getting an accurate analysis

    USDA-ARS?s Scientific Manuscript database

    Biodiesel has several advantages compared to conventional diesel fuel (petrodiesel). Nevertheless, biodiesel has poor cold flow properties that may restrict its use in moderate climates. It is essential that the cold flow properties of biodiesel and its blends with petrodiesel be measured as accurat...

  16. 76 FR 78290 - Cooperative Research and Development Agreement: Usage of Biodiesel Fuel Blends Within Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... SECURITY Coast Guard Cooperative Research and Development Agreement: Usage of Biodiesel Fuel Blends Within... technology enhancements, performance, costs, and other issues associated with using biodiesel fuel blends in... notice (investigating the use of biodiesel fuel blends in marine inboard engines) must reach the Docket...

  17. Quantitative Investigations of Biodiesel Fuel Using Infrared Spectroscopy: An Instrumental Analysis Experiment for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Ault, Andrew P.; Pomeroy, Robert

    2012-01-01

    Biodiesel has gained attention in recent years as a renewable fuel source due to its reduced greenhouse gas and particulate emissions, and it can be produced within the United States. A laboratory experiment designed for students in an upper-division undergraduate laboratory is described to study biodiesel production and biodiesel mixing with…

  18. Corrosion-Related Consequences of Biodiesel in Contact with Natural Seawater

    DTIC Science & Technology

    2010-03-01

    unprotected carbon steel exposed to natural KW seawater with biodiesel addition. However, the deepest pits were measured in biodiesel with PG seawater...presence of seawater influenced the chemistry of the biodiesel, contributing both sulfur and chloride. Keywords: seawater, carbon steel...day studies. The highest corrosion rates measured by electrochemical techniques were for unprotected carbon steel exposed to natural KW seawater with

  19. Factors Affecting the Stability of Biodiesel Sold in the United States

    SciTech Connect

    McCormick, R. L.; Ratcliff, M.; Moens, L.; Lawrence, R.

    2006-01-01

    As part of a survey of biodiesel quality and stability in the United States, 27 biodiesel (B100) samples were collected from blenders and distributor nationwide. For this sample set, 85% met all of the requirements of the industry standard for biodiesel, ASTM D6751.

  20. Aerobic Biodegradation Kinetics And Mineralization Of Six Petrodiesel/Soybean-Biodiesel Blends

    EPA Science Inventory

    The aerobic biodegradation kinetics and mineralization of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100), where B100 is 100% biodiesel, were investigated by acclimated cultures. The fatty acid methyl esters (FAMEs) of biodiesel were found to undergo ...

  1. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles

    EPA Science Inventory

    AbstractContext: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. Objectives: We compared the formation of covalent DNA adducts by the in vitro metabol...

  2. Quantitative Investigations of Biodiesel Fuel Using Infrared Spectroscopy: An Instrumental Analysis Experiment for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Ault, Andrew P.; Pomeroy, Robert

    2012-01-01

    Biodiesel has gained attention in recent years as a renewable fuel source due to its reduced greenhouse gas and particulate emissions, and it can be produced within the United States. A laboratory experiment designed for students in an upper-division undergraduate laboratory is described to study biodiesel production and biodiesel mixing with…

  3. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    PubMed

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  4. Complete utilization of spent coffee grounds to produce biodiesel, bio-oil and biochar

    USDA-ARS?s Scientific Manuscript database

    This study presents the complete utilization of spent coffee grounds to produce biodiesel, bio-oil and biochar. Lipids extracted from spent grounds were converted to biodiesel to evaluate neat and blended (B5 and B20) fuel properties against ASTM and EN standards. Although neat biodiesel displayed h...

  5. Effects of monoacylglycerols on low-temperature viscosity and cold filter plugging point of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is composed of mono-alkyl fatty acid esters made from the transesterification of vegetable oil or animal fat with methanol or ethanol. Biodiesel must meet rigorous standard fuel specifications (ASTM D 6751; CEN EN 14214) to be classified as an alternative fuel. Nevertheless, biodiesel that...

  6. Biodiesel Derived from a Feedstock Enriched in Palmitoleic Acid, Macadamia Nut Oil

    USDA-ARS?s Scientific Manuscript database

    Numerous vegetable oils, animal fats or other feedstocks have been investigated for obtaining biodiesel, defined as the mono alkyl esters of vegetable oils and animal fats. While biodiesel is competitive with petrodiesel, technical problems facing biodiesel include cold flow and oxidative stability...

  7. Anaerobic Biodegradation of Soybean Biodiesel and Diesel Blends under Methanogenic Conditions

    EPA Science Inventory

    Biotransformation of soybean biodiesel and the inhibitory effect of petrodiesel were studied under methanogenic conditions. Biodiesel removal efficiency of more than 95% was achieved in a chemostat with influent biodiesel concentrations up to 2.45 g/L. The kinetics of anaerobic...

  8. An experimental study on thermal stability of biodiesel fuel

    NASA Astrophysics Data System (ADS)

    Zhu, Yiying

    Biodiesel fuel, as renewable energy, has been used in conventional diesel engines in pure form or as biodiesel/diesel blends for many years. However, thermal stability of biodiesel and biodiesel/diesel blends has been minimally explored. Aimed to shorten this gap, thermal stability of biodiesel is investigated at high temperatures. In this study, batch thermal stressing experiments of biodiesel fuel were performed in stainless steel coils at specific temperature and residence time range from 250 to 425 °C and 3 to 63 minutes, respectively. Evidence of different pathways of biodiesel fuel degradation is demonstrated chromatographically. It was found that biodiesel was stable at 275 °C for a residence time of 8 minutes or below, but the cis-trans isomerization reaction was observed at 28 minutes. Along with isomerization, polymerization also took place at 300 °C at 63 minutes. Small molecular weight products were detected at 350 °C at 33 minutes resulting from pyrolysis reactions and at 360 °C for 33 minutes or above, gaseous products were produced. The formed isomers and dimers were not stable, further decomposition of these compounds was observed at high temperatures. These three main reactions and the temperature ranges in which they occurred are: isomerization, 275--400 °C; polymerization (Diels-Alder reaction), 300--425 °C; pyrolysis reaction, ≥350 °C. The longer residence time and higher temperature resulted in greater decomposition. As the temperature increased to 425 °C, the colorless biodiesel became brownish. After 8 minutes, almost 84% of the original fatty acid methyl esters (FAMEs) disappeared, indicating significant fuel decomposition. A kinetic study was also carried out subsequently to gain better insight into the biodiesel thermal decomposition. A three-lump model was proposed to describe the decomposition mechanism. Based on this mechanism, a reversible first-order reaction kinetic model for the global biodiesel decomposition was shown to

  9. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.

    PubMed

    Cerri, Carlos Eduardo Pellegrino; You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente

    2017-01-01

    Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51%) for B100 produced in integrated systems and the production stage (46-52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this

  10. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production

    PubMed Central

    You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente

    2017-01-01

    Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42–51%) for B100 produced in integrated systems and the production stage (46–52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in

  11. A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission

    NASA Astrophysics Data System (ADS)

    Madiwale, S.; Karthikeyan, A.; Bhojwani, V.

    2017-05-01

    Objectives:- To presents the literature review on effect of biodiesel additives on properties, performance and on emission. Method:-In the current paper reviews are taken from previous years paper which necessitates the need of addition of additives in the blends of biodiesel and studied the its effect on properties, performance and emissions. Emissions from the diesel powered vehicles mostly damaged the earth’s environment and also increased the overall earth’s temperature. This attracts the need of alternative fuels in the field of transportation sector. Past inventions and research showed that Biodiesel can be used as an alternative fuel for the diesel engine. Biodiesel have good combustion characteristics because of their long chain hydrocarbon structure. However biodiesel possesses few disadvantages such as lower heating value, higher flow ability, much high density and not able to flow at low temperature. Higher rate of fuel consumption is identified and higher level of NOx emissions when biodiesel used in an engine as an alternative fuels. Findings:-Different additives such as antioxidants, improvers for cetane number, cold flow properties improver, etc were investigated by the many researcher and scientists and added in the different feedstock of biodiesel or blends of biodiesel with diesel in different proportions. Directly or indirectly fuel additives can improve the reduction in the emissions, improve the fuel economy, and reduce the dependency of the one’s nation on other. Performances of biodiesel vehicles were drastically improved because of additioninthe blends of biodiesel with diesel fuel in specific percentages to meet the international emission standards. Addition of additives in the biodiesel or in the blends of biodiesel basically changes the high temperature and low temperature flow properties of blends of biodiesel. Current paper finds and compares properties of different additives and its effect on blends of biodiesel properties

  12. [Experimental study on characteristics of biodiesel exhausted particle].

    PubMed

    Ge, Yun-shan; He, Chao; Han, Xiu-kun; Wu, Si-jin; Lu, Xiao-ming

    2007-07-01

    A particle emission experiment of a direct-injection turbocharged diesel engine with biodiesel and diesel was carried out. A pump of 80 L/min and fiber glass filters with diameter of 90 mm was used to sample engine particles in exhaust pipe. The size distribution, soluble organic fraction (SOF) and 16 polycyclic aromatic hydrocarbons (PAHs) of particles were analyzed by a laser diffraction particle size analyzer and GC-MS. The results indicate that the volume weighted size distribution of biodiesel particle is single-peak and its median diameter d(0.5) and mean diameter d32 are decreased with the increasing speed. At the high speed the d32 and d(0.5) of biodiesel are larger than those of diesel, and quite the contrary at the low speed. SOF mass concentration and mass percentage of biodiesel are 12.3 - 31.5 mg/m3 and 38.2% - 58.0% respectively, which are much higher than those of diesel. The total PAHs emission concentration of biodiesel is 2.9 - 4.7 microg/m3 lower than that of diesel as much as 29.1% - 92.4%.

  13. Potential feedstock supply and costs for biodiesel production

    SciTech Connect

    Nelson, R.G.; Howell, S.A.; Weber, J.A.

    1994-12-31

    Without considering technology constraints, tallows and waste greases have definite potential as feedstocks for the production of biodiesel in the United States. These materials are less expensive than most oils produced from oilseed crops such as soybeans, sunflowers, canola and rapeseed. At current crude petroleum prices, biodiesel derived from any of these materials will be more expensive than diesel derived from petroleum. However, when compared to other clean burning alternate fuels, recent data suggest biodiesel blends produced from any of these feedstocks may be the lowest total cost alternative fuel in certain areas of the United States. Economic feasibility analyses were performed to investigate the cost of producing biodiesel ($/gallon) subject to variances in feedstock cost, by-product credit (glycerol and meal) and capital costs. Cost of production per gallon of esterified biodiesel from soybean, sunflower, tallow and yellow grease ranged from $0.96 to $3.39 subject to feedstock and chemical costs, by-product credit and system capital cost.

  14. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    SciTech Connect

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-12-31

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO{sub 2} and by observing the disappearance of test substance with gas chromatography. Additional BOD{sub 5} and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population.

  15. Conversion of lipid from food waste to biodiesel.

    PubMed

    Karmee, Sanjib Kumar; Linardi, Darwin; Lee, Jisoo; Lin, Carol Sze Ki

    2015-07-01

    Depletion of fossil fuels and environmental problems are encouraging research on alternative fuels of renewable sources. Biodiesel is a promising alternative fuel to be used as a substitute to the petroleum based diesel fuels. However, the cost of biodiesel production is high and is attributed mainly to the feedstock used which leads to the investigation of low cost feedstocks that are economically feasible. In this paper, we report on the utilization of lipid obtained from food waste as a low-cost feedstock for biodiesel production. Lipid from food waste was transesterified with methanol using base and lipase as catalysts. The maximum biodiesel yield was 100% for the base (KOH) catalyzed transesterification at 1:10M ratio of lipid to methanol in 2h at 60°C. Novozyme-435 yielded a 90% FAME conversion at 40°C and 1:5 lipid to methanol molar ratio in 24h. Lipid obtained from fungal hydrolysis of food waste is found to be a suitable feedstock for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ionic liquid supported acid/base-catalyzed production of biodiesel.

    PubMed

    Lapis, Alexandre A M; de Oliveira, Luciane F; Neto, Brenno A D; Dupont, Jairton

    2008-01-01

    The transesterification (alcoholysis) reaction was successfully applied to synthesize biodiesel from vegetable oils using imidazolium-based ionic liquids under multiphase acidic and basic conditions. Under basic conditions, the combination of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMINTf2), alcohols, and K2CO3 (40 mol %) results in the production of biodiesel from soybean oil in high yields (>98%) and purity. H2SO4 immobilized in BMINTf2 efficiently promotes the transesterification reaction of soybean oil and various primary and secondary alcohols. In this multiphase process the acid is almost completely retained in the ionic liquid phase, while the biodiesel forms a separate phase. The recovered ionic liquid containing the acid could be reused at least six times without any significant loss in the biodiesel yield or selectivity. In both catalytic processes (acid and base), the reactions proceed as typical multiphasic systems in which the formed biodiesel accumulates as the upper phase and the glycerol by-product is selectively captured by the alcohol-ionic liquid-acid/base phase. Classical ionic liquids such as 1-n-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate are not stable under these acidic or basic conditions and decompose.

  17. Biodiesel production from Jatropha curcas: a critical review.

    PubMed

    Abdulla, Rahmath; Chan, Eng Seng; Ravindra, Pogaku

    2011-03-01

    The fuel crisis and environmental concerns, mainly due to global warming, have led researchers to consider the importance of biofuels such as biodiesel. Vegetable oils, which are too viscous to be used directly in engines, are converted into their corresponding methyl or ethyl esters by a process called transesterification. With the recent debates on "food versus fuel," non-edible oils, such as Jatropha curcas, are emerging as one of the main contenders for biodiesel production. Much research is still needed to explore and realize the full potential of a green fuel from J. curcas. Upcoming projects and plantations of Jatropha in countries such as India, Malaysia, and Indonesia suggest a promising future for this plant as a potential biodiesel feedstock. Many of the drawbacks associated with chemical catalysts can be overcome by using lipases for enzymatic transesterification. The high cost of lipases can be overcome, to a certain extent, by immobilization techniques. This article reviews the importance of the J. curcas plant and describes existing research conducted on Jatropha biodiesel production. The article highlights areas where further research is required and relevance of designing an immobilized lipase for biodiesel production is discussed.

  18. Environmentally benign production of biodiesel using heterogeneous catalysts.

    PubMed

    Hara, Michikazu

    2009-01-01

    Fuelling the future: The production of esters of higher fatty acids from plant materials is of great interest for the manufacture of biodiesel. Heterogeneous catalysts can provide new routes for the environmentally benign production of biodiesel. Particulate heterogeneous catalysts can be readily separated from products following reaction allowing the catalyst to be reused, generating less waste, and consuming less energy. Diesel engines are simple and powerful, and exhibit many advantages in energy efficiency and cost. Therefore, the production of higher fatty acid esters from plant materials has become of interest in recent years for the manufacture of biodiesel, a clean-burning alternative fuel. The industrial production of biodiesel mostly proceeds in the presence of "soluble" catalysts such as alkali hydroxides and liquid acids. A considerable amount of energy is required for the purification of products and catalyst separation, and furthermore these catalysts are not reusable. This process results in substantial energy wastage and the production of large amounts of chemical waste. Particulate heterogeneous catalysts can be readily separated from products following reaction, allowing the catalyst to be reused and consuming less energy. This Minireview describes the environmentally benign production of biodiesel using heterogeneous catalysts such as solid bases, acid catalysts, and immobilized enzymes.

  19. Cultivation of freshwater microalgae in biodiesel wash water.

    PubMed

    Sassi, Patrícia Giulianna Petraglia; Calixto, Clediana Dantas; da Silva Santana, Jordana Kaline; Sassi, Roberto; Costa Sassi, Cristiane Francisca; Abrahão, Raphael

    2017-06-21

    Biodiesel wash water is a contaminating industrial effluent that must be treated prior to disposal. The use of this effluent as a low-cost alternative cultivation medium for microalgae could represent a viable supplementary treatment. We cultivated 11 microalgae species with potential use for biodiesel production to assess their growth capacities in biodiesel industrial washing waters. Only Monoraphidium contortum, Ankistrodesmus sp., Chlorococcum sp., and one unidentified Chlorophyceae species grew effectively in that effluent. M. contortum showed the highest growth capacity and had the second highest fatty acid content (267.9 mg g(-1) of DW), predominantly producing palmitic (20.9%), 7,10,13-hexadecatrienoic (14%), oleic (16.2%), linoleic (10.5%), and linolenic acids (23.2%). In the second phase of the experiment, the microalgae were cultivated in biodiesel wash water at 75% of its initial concentration as well as in WC (control) medium. After 21 days of cultivation, 25.8 and 7.2% of the effluent nitrate and phosphate were removed, respectively, and the chemical oxygen demand was diminished by 31.2%. These results suggest the possibility of cultivating biodiesel producing microalgae in industrial wash water effluents.

  20. Biodiesel from Forsythia suspense [(Thunb.) Vahl (Oleaceae)] seed oil.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Wei, Fu-Yao; Luo, Meng; Wang, Wei; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-09-01

    In the present work, Forsythia suspense seed oil (FSSO) was investigated for the first time as an alternative non-conventional feedstock for the preparation of biodiesel. The FSSO yield is 30.08±2.35% (dry weight of F. suspense seed basis), and the oil has low acid value (1.07 mg KOH/g). The fatty acid composition of FSSO exhibits the predominance of linoleic acid (72.89%) along with oleic acid (18.68%) and palmitic acid (5.65%), which is quite similar to that of sunflower oil. Moreover, microwave-assisted transesterification process of FSSO with methanol in the presence of potassium hydroxide catalyst was optimized and an optimal biodiesel yield (90.74±2.02%) was obtained. Furthermore, the fuel properties of the biodiesel product were evaluated as against ASTM D-6751 biodiesel standards and an acceptable agreement was observed except the cetane number. Overall, this study revealed the possibility of FSSO as a potential resource of biodiesel feedstock.

  1. An alternative fuel for urban buses-biodiesel blends

    SciTech Connect

    Schumacher, L.G.; Weber, J.A.; Russell, M.D.

    1995-11-01

    Qualitative and quantitative biodiesel fueling performance and operational data have been collected from urban mass transit buses at Bi-State Development Agency in St. Louis Missouri. A total of 10 vehicles were selected for fueling; 5-6V92 TA Detroit Diesel engines have been fueled with a 20/80 biodiesel/diesel fuel blend and 5-6V92 TA Detroit Diesel control vehicles have been fueled on petroleum based low sulfur diesel fuel (LSD). The real-world impact of a biodiesel blend on maintenance, reliability, cost, fuel economy and safety compared to LSD will be presented. In addition, engine exhaust emissions data collected by the University of West Virginia Department of Energy (DOE) sponsored mobile emissions laboratory will be presented. Operational data from Bi-State Development Agency is collected by the University of Missouri and quality control procedures are performed prior to placing the data in the Alternative Fuels Data Center (AFDC). The AFDC is maintained by the National Renewable Energy Laboratory in Golden, Colorado. This effort, which enables transit operators to review a real-world comparison of biodiesel and LSD, has been funded by the National Biodiesel Board with funds provided by the United Soybean Board with national checkoff dollars and the National Renewable Energy Laboratory.

  2. Enhancing clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel.

    PubMed

    Li, Qing; Cai, Hao; Hao, Bo; Zhang, Congling; Yu, Ziniu; Zhou, Shengde; Chenjuan, Liu

    2010-12-01

    The extractive acetone-butanol-ethanol (ABE) fermentations of Clostridium acetobutylicum were evaluated using biodiesel as the in situ extractant. The biodiesel preferentially extracted butanol, minimized product inhibition, and increased production of butanol (from 11.6 to 16.5 g L⁻¹) and total solvents (from 20.0 to 29.9 g L⁻¹) by 42% and 50%, respectively. The fuel properties of the ABE-enriched biodiesel obtained from the extractive fermentations were analyzed. The key quality indicators of diesel fuel, such as the cetane number (increased from 48 to 54) and the cold filter plugging point (decreased from 5.8 to 0.2 °C), were significantly improved for the ABE-enriched biodiesel. Thus, the application of biodiesel as the extractant for ABE fermentation would increase ABE production, bypass the energy intensive butanol recovery process, and result in an ABE-enriched biodiesel with improved fuel properties.

  3. Production of biodiesel from vegetable oils; Producción de biodiesel a partir de aceites vegetales

    DOE PAGES

    Ortiz, Dayna M.; Marquez, Francisco M.

    2014-06-10

    One of the major impacts that humans have had on the world is the consequence of the use of natural resources of the planet, whose purpose has been the energy supply for economic and technological development. This economic development has caused an increase in the demand for goods and services in industrialized countries, and in turn has led to an increase in per capita consumption of energy worldwide. For this reason, it is very important to develop new energy alternatives to reduce the actual dependence on petroleum and, at the same time, reduce the impact of emissions of greenhouse gasesmore » to the environment. An alternative to using fossil fuels is biodiesel, which is biodegradable, eco-friendly, and represents an economical source of energy. Biodiesel may be produced by the transesterification reaction of new or used vegetable oils (for example sunflower, corn, or olive oil) with a short chain alcohol (methanol) in the presence of a catalyst (NaOH). In the present work we have synthesized biodiesel from these three types of vegetable oils that have been subsequently characterized. Different chemical tests have been used to ensure the quality of the biodiesel obtained. The results indicate that sunflower oil provided better efficiency biodiesel, followed by corn and olive oils. CO2 emissions that could affect the environment were, in all cases, less than 4.1%.« less

  4. Production of biodiesel from vegetable oils; Producción de biodiesel a partir de aceites vegetales

    SciTech Connect

    Ortiz, Dayna M.; Marquez, Francisco M.

    2014-06-10

    One of the major impacts that humans have had on the world is the consequence of the use of natural resources of the planet, whose purpose has been the energy supply for economic and technological development. This economic development has caused an increase in the demand for goods and services in industrialized countries, and in turn has led to an increase in per capita consumption of energy worldwide. For this reason, it is very important to develop new energy alternatives to reduce the actual dependence on petroleum and, at the same time, reduce the impact of emissions of greenhouse gases to the environment. An alternative to using fossil fuels is biodiesel, which is biodegradable, eco-friendly, and represents an economical source of energy. Biodiesel may be produced by the transesterification reaction of new or used vegetable oils (for example sunflower, corn, or olive oil) with a short chain alcohol (methanol) in the presence of a catalyst (NaOH). In the present work we have synthesized biodiesel from these three types of vegetable oils that have been subsequently characterized. Different chemical tests have been used to ensure the quality of the biodiesel obtained. The results indicate that sunflower oil provided better efficiency biodiesel, followed by corn and olive oils. CO2 emissions that could affect the environment were, in all cases, less than 4.1%.

  5. Cleaning oiled shores: laboratory experiments testing the potential use of vegetable oil biodiesels.

    PubMed

    Pereira, M Glória; Mudge, Stephen M

    2004-01-01

    A series of laboratory experiments were carried out to test the potential of vegetable oil biodiesel for the cleaning of oiled shorelines. In batch experiments, biodiesel was shown to have a considerable capacity to dissolve crude oil, which appears to be dependent on the type of biodiesel used. Pure vegetable oil biodiesels (rapeseed and soybean) were significantly more effective in the cleanup of oiled sands (up to 96%) than recycled waste cooking oil biodiesel (70%). In microcosm and mesocosm experiments, oiled sediments were sprayed with biodiesel and subjected to simulated tides. Microcosm experiments revealed that, of those tested, the highest ratio of biodiesel to crude oil, had the highest effectiveness for cleaning fine sands, with ratios of 2:1 (biodiesel:crude oil) giving the best results. In the mesocosm experiments a ratio 1:1 of soybean biodiesel to crude oil removed 80% of the oil in cobbles and fine sands, 50% in coarse sand and 30% in gravel. Most of the oil was removed with the surface water, with only a small amount being flushed through the sediments. Particle size and pore size were important determinants in the cleanup and mobility of crude oil in the sediments in these static systems. It is expected that the biodiesel effectiveness should improve in the natural environment particularly in exposed beaches with strong wave action. However, more laboratory and field trials are required to confirm the operational use of biodiesel as a shoreline cleaner.

  6. Fuel for the Future: Biodiesel - A Case study

    NASA Astrophysics Data System (ADS)

    Lutterbach, Márcia T. S.; Galvão, Mariana M.

    High crude oil prices, concern over depletion of world reserves, and growing apprehension about the environment, encouraged the search for alternative energy sources that use renewable natural resources to reduce or replace traditional fossil fuels such as diesel and gasoline (Hill et al., 2006). Among renewable fuels, biodiesel has been attracting great interest, especially in Europe and the United States. Biodiesel is defined by the World Customs Organization (WCO) as 'a mixture of mono-alkyl esters of long-chain [C16-C18] fatty acids derived from vegetable oils or animal fats, which is a domestic renewable fuel for diesel engines and which meets the US specifications of ASTM D 6751'. Biodiesel is biodegradable and non toxic, produces 93% more energy than the fossil energy required for its production, reduces greenhouse gas emissions by 40% compared to fossil diesel (Peterson and Hustrulid, 1998; Hill et al., 2006) and stimulates agriculture.

  7. Biodiesel production in crude oil contaminated environment using Chlorella vulgaris.

    PubMed

    Xaaldi Kalhor, Aadel; Mohammadi Nassab, Adel Dabbagh; Abedi, Ehsan; Bahrami, Ahmad; Movafeghi, Ali

    2016-12-01

    Biodiesel is a valuable alternative to fossil fuels and many countries choose biodiesel as an unconventional energy source. A large number of investigations have been done on microalgae as a source of oil production. In recent years, wastewater pollutions have caused many ecological problems, and therefore, wastewater phycoremediation has attracted the international attention. This paper studied the cultivation of Chlorella vulgaris in a crude oil polluted environment for biodiesel production. Intended concentrations were 10 and 20gperliter (crude oil/water) at two times. The results showed that the growth of C. vulgaris was improved in wastewater and the maximum amount of dry mass and oil was produced at the highest concentration of crude oil (0.41g and 0.15g/l, respectively). In addition, dry mass and oil yield of the microalga were significantly enhanced by increasing the experiment duration.

  8. Alternative fuels in fire debris analysis: biodiesel basics.

    PubMed

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  9. Biodiesel production from microalgae oil catalyzed by a recombinant lipase.

    PubMed

    Huang, Jinjin; Xia, Ji; Jiang, Wei; Li, Ying; Li, Jilun

    2015-03-01

    A recombinant Rhizomucor miehei lipase was constructed and expressed in Pichia pastoris. The target enzyme was termed Lipase GH2 and it can be used as a free enzyme for catalytic conversion of microalgae oil mixed with methanol or ethanol for biodiesel production in an n-hexane solvent system. Conversion rates of two major types of biodiesel, fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE), reached maximal values (>90%) after 24h. The process of FAME production is generally more simple and economical than that of FAEE production, even though the two processes show similar conversion rates. In spite of the damaging effect of ethanol on enzyme activity, we successfully obtained ethyl ester by the enzymatic method. Our findings indicate that Lipase GH2 is a useful catalyst for conversion of microalgae oil to FAME or FAEE, and this system provides efficiency and reduced costs in biodiesel production.

  10. Life cycle assessment of biodiesel production from microalgae in ponds.

    PubMed

    Campbell, Peter K; Beer, Tom; Batten, David

    2011-01-01

    This paper analyses the potential environmental impacts and economic viability of producing biodiesel from microalgae grown in ponds. A comparative Life Cycle Assessment (LCA) study of a notional production system designed for Australian conditions was conducted to compare biodiesel production from algae (with three different scenarios for carbon dioxide supplementation and two different production rates) with canola and ULS (ultra-low sulfur) diesel. Comparisons of GHG (greenhouse gas) emissions (g CO(2)-e/tkm) and costs (¢/tkm) are given. Algae GHG emissions (-27.6 to 18.2) compare very favourably with canola (35.9) and ULS diesel (81.2). Costs are not so favourable, with algae ranging from 2.2 to 4.8, compared with canola (4.2) and ULS diesel (3.8). This highlights the need for a high production rate to make algal biodiesel economically attractive.

  11. Lipase-immobilized biocatalytic membranes for biodiesel production.

    PubMed

    Kuo, Chia-Hung; Peng, Li-Ting; Kan, Shu-Chen; Liu, Yung-Chuan; Shieh, Chwen-Jen

    2013-10-01

    Microbial lipase from Candida rugosa (Amano AY-30) has good transesterification activity and can be used for biodiesel production. In this study, polyvinylidene fluoride (PVDF) membrane was grafted with 1,4-diaminobutane and activated by glutaraldehyde for C. rugosa lipase immobilization. After immobilization, the biocatalytic membrane was used for producing biodiesel from soybean oil and methanol via transesterification. Response Surface Methodology (RSM) in combination with a 5-level-5-factor central composite rotatable design (CCRD) was employed to evaluate the effects of reaction time, reaction temperature, enzyme amount, substrate molar ratio and water content on the yield of soybean oil methyl ester. By ridge max analysis, the predicted and experimental yields under the optimum synthesis conditions were 97% and 95%, respectively. The lipase-immobilized PVDF membrane showed good reuse ability for biodiesel production, enabling operation for at least 165 h during five reuses of the batch, without significant loss of activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Whole-cell biocatalysts for biodiesel fuel production.

    PubMed

    Fukuda, H; Hama, S; Tamalampudi, S; Noda, H

    2008-12-01

    Biodiesel fuel (BDF), which refers to fatty acid alkyl esters, has attracted considerable attention as an environmentally friendly alternative fuel for diesel engines. Alkali catalysis is widely applied for the commercial production of BDF. However, enzymatic transesterification offers considerable advantages, including reducing process operations in biodiesel fuel production and an easy separation of the glycerol byproduct. The high cost of the lipase enzyme is the main obstacle for a commercially feasible enzymatic production of biodiesel fuels. To reduce enzyme associated process costs, the immobilization of fungal mycelium within biomass support particles (BSPs) as well as expression of the lipase enzyme on the surface of yeast cells has been developed to generate whole-cell biocatalysts for industrial applications.

  13. Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis.

    PubMed

    Bhangu, Sukhvir Kaur; Gupta, Shweta; Ashokkumar, Muthupandian

    2017-01-01

    The production of biodiesel was carried out from canola oil and methanol catalysed by lipase from Candida rugosa under different ultrasonic experimental conditions using horn (20kHz) and plate (22, 44, 98 and 300kHz) transducers. The effects of experimental conditions such as horn tip diameter, ultrasonic power, ultrasonic frequency and enzyme concentrations on biodiesel yield were investigated. The results showed that the application of ultrasound decreased the reaction time from 22-24h to 1.5h with the use of 3.5cm ultrasonic horn, an applied power of 40W, methanol to oil molar ratio of 5:1 and enzyme concentration of 0.23wt/wt% of oil. Low intensity ultrasound is efficient and a promising tool for the enzyme catalysed biodiesel synthesis as higher intensities tend to inactivate the enzyme and reduce its efficiency.

  14. Toward solar biodiesel production from CO2 using engineered cyanobacteria.

    PubMed

    Woo, Han Min; Lee, Hyun Jeong

    2017-04-12

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel.

  15. Extraction of oil from microalgae for biodiesel production: A review.

    PubMed

    Halim, Ronald; Danquah, Michael K; Webley, Paul A

    2012-01-01

    The rapid increase of CO(2) concentration in the atmosphere combined with depleted supplies of fossil fuels has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, microalgae have been identified as promising feedstocks for industrial-scale production of carbon-neutral biodiesel. This study examines the principles involved in lipid extraction from microalgal cells, a crucial downstream processing step in the production of microalgal biodiesel. We analyze the different technological options currently available for laboratory-scale microalgal lipid extraction, with a primary focus on the prospect of organic solvent and supercritical fluid extraction. The study also provides an assessment of recent breakthroughs in this rapidly developing field and reports on the suitability of microalgal lipid compositions for biodiesel conversion. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method.

    PubMed

    Kwangdinata, Raymond; Raya, Indah; Zakir, Muhammad

    2014-01-01

    A research on production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method has been done. In this research, we carried out a series of phytoplankton cultures to determine the optimum time of growth and biodiesel synthesis process from phytoplankton lipids. Process of biodiesel synthesis consists of two steps, that is, isolation of phytoplankton lipids and biodiesel synthesis from those lipids. Oil isolation process was carried out by ultrasonic extraction method using ethanol 96%, while biodiesel synthesis was carried out by transesterification reaction using methanol and KOH catalyst under sonication. Weight of biodiesel yield per biomass Chaetoceros calcitrans is 35.35%. Characterization of biodiesel was well carried out in terms of physical properties which are density and viscosity and chemical properties which are FFA content, saponification value, and iodine value. These values meet the American Society for Testing and Materials (ASTM D6751) standard levels, except for the viscosity value which was 1.14 g · cm(-3).

  17. Anaerobic biodegradation of soybean biodiesel and diesel blends under sulfate-reducing conditions.

    PubMed

    Wu, Shuyun; Yassine, Mohamad H; Suidan, Makram T; Venosa, Albert D

    2016-10-01

    Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and 20% petrodiesel). Results indicate that the biodiesel could be effectively biodegraded in the presence or absence of petrodiesel, whereas petrodiesel could not be biodegraded at all under sulfate-reducing conditions. The kinetics of biodegradation of individual Fatty Acid Methyl Ester (FAME) compounds and their accompanying sulfate-reduction rates were studied using a serum bottle test. As for the biodegradation of individual FAME compounds, the biodegradation rates for the saturated FAMEs decreased with increasing carbon chain length. For unsaturated FAMEs, biodegradation rates increased with increasing number of double bonds. The presence of petrodiesel had a greater effect on the rate of biodegradation of biodiesel than on the extent of removal.

  18. Biodiesel production from various feedstocks and their effects on the fuel properties.

    PubMed

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  19. The Influence of Non-Esterification Biodiesel in AN Indirect Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel as alternative energy source of the traditional petroleum fuels has increased interest, because environmental pollution based exhaust emissions from vehicle became serious. The advantage of biodiesel produced from esterification of vegetable and animal oils can be used without the modification of existing diesel engine, but glycerin is generated by production process. In this study, the usability of non-esterification biodiesel as an alternative fuel was investigated in an indirect injection diesel engine. The non-esterification biodiesel has not generated glycerin in esterification process and reduced the 20 percent of cost because it has not used methanol in the production process. Experiments were conducted by using the 5, 10 and 20 percentage of biodiesel and 4 and 8 percentage of biodiesel with 1 and 2 percentage of WDP in baseline diesel fuel. The smoke emission of biodiesel was reduced in comparison with diesel fuel, but power, torque and brake specific energy consumption was similar to diesel fuel.

  20. Characterization of Palm Oil as Biodiesel

    NASA Astrophysics Data System (ADS)

    Gorey, Neeraj; Ghosh, Shankha; Srivastava, Priyank; Kumar, Vivek

    2017-08-01

    The various sources of energy from which mechanical energy is obtained are non-renewable and are thus considered to be unsustainable. These sources include the various fossil fuels like the petroleum, coal and the natural gas. The burning of fossil fuels led to the production of the greenhouse gases increasing the levels of CO2 in the atmosphere. The adverse effects are the global warming and the ozone layer depletion. In a nation like India, where consumable oils are still transported in, it is advantageous to investigate the likelihood of utilising such non-palatable oils as a part of CI motors which are not by and by used as cooking oil. Palm oil (otherwise called dendê oil, from Portuguese) is a consumable vegetable oil got from the monocarp (ruddy mash) of the product of the oil palms. The major objective is to provide a cheap and effective alternative to diesel. This paper is an exploration of the capability of the palm oil as a practical, modest and effective hotspot for the generation of biodiesel. the paper is based on the characterisation of palm oil compare to diesel.

  1. Biofuel combustion chemistry: from ethanol to biodiesel.

    PubMed

    Kohse-Höinghaus, Katharina; Osswald, Patrick; Cool, Terrill A; Kasper, Tina; Hansen, Nils; Qi, Fei; Westbrook, Charles K; Westmoreland, Phillip R

    2010-05-10

    Biofuels, such as bio-ethanol, bio-butanol, and biodiesel, are of increasing interest as alternatives to petroleum-based transportation fuels because they offer the long-term promise of fuel-source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel-delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next-generation alternative fuels.

  2. Los Alamos National Laboratory considers the use of biodiesel.

    SciTech Connect

    Matlin, M. K.

    2002-01-01

    A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops, as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.

  3. Microwave irradiation biodiesel processing of waste cooking oil

    NASA Astrophysics Data System (ADS)

    Motasemi, Farough; Ani, Farid Nasir

    2012-06-01

    Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.

  4. Ultrasound assisted intensification of biodiesel production using enzymatic interesterification.

    PubMed

    Subhedar, Preeti B; Gogate, Parag R

    2016-03-01

    Ultrasound assisted intensification of synthesis of biodiesel from waste cooking oil using methyl acetate and immobilized lipase obtained from Thermomyces lanuginosus (Lipozyme TLIM) as a catalyst has been investigated in the present work. The reaction has also been investigated using the conventional approach based on stirring so as to establish the beneficial effects obtained due to the use of ultrasound. Effect of operating conditions such as reactant molar ratio (oil and methyl acetate), temperature and enzyme loading on the yield of biodiesel has been investigated. Optimum conditions for the conventional approach (without ultrasound) were established as reactant molar ratio of 1:12 (oil:methyl acetate), enzyme loading of 6% (w/v), temperature of 40 °C and reaction time of 24 h and under these conditions, 90.1% biodiesel yield was obtained. The optimum conditions for the ultrasound assisted approach were oil to methyl acetate molar ratio of 1:9, enzyme loading of 3% (w/v), and reaction time of 3 h and the biodiesel yield obtained under these conditions was 96.1%. Use of ultrasound resulted in significant reduction in the reaction time with higher yields and lower requirement of the enzyme loading. The obtained results have clearly established that ultrasound assisted interesterification was a fast and efficient approach for biodiesel production giving significant benefits, which can help in reducing the costs of production. Reusability studies for the enzyme were also performed but it was observed that reuse of the catalyst under the optimum experimental condition resulted in reduced enzyme activity and biodiesel yield.

  5. Partitioning behavior of petrodiesel/biodiesel blends in water.

    PubMed

    Yassine, Mohamad H; Wu, Shuyun; Suidan, Makram T; Venosa, Albert D

    2012-07-17

    The partitioning behavior of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100, where B100 is 100% unblended biodiesel) in water was investigated at various oil loads by the 10-fold dilution method. Five fatty acid methyl esters (FAMEs), C10-C20 n-alkanes, and four monoaromatic compounds were targeted for analysis. Only the aromatic compounds were partitioned according to Raoult's law at all oil loads. The partitioning of the FAMEs and n-alkanes at higher oil loads was found to be orders of magnitude higher than the reported aqueous solubilities of these compounds, and directly correlated with the amount of oil load applied. Depth filtration of the water-accommodated fractions (WAFs) significantly reduced the observed concentrations of the FAMEs and n-alkanes, but did not appreciably affect the aromatic compounds. The FAMEs and n-alkanes concentrations in the filtered WAFs agreed with the aqueous solubilities of those compounds reported in the literature, but the n-alkanes showed progressive deviations from those solubilities with the increase in the amount of biodiesel in the blends. Further dilution experiments on pure n-hexadecane confirmed the presence of a metastable colloidal phase that seems to be controlled by hydrophobic interactions and surface phenomena. The addition of biodiesel to the oil blend appeared to have a positive impact on the dissolved concentrations and the colloidal accommodation of the n-alkanes. Autoxidation of the biodiesel constituents was found to be significant, and increased with increasing oil loads. Chemical products such as hexanal, n-butyl acetate, diethylene glycol monobutyl ether, and diethylene glycol monobutyl ether acetate were positively identified among the FAMEs' autoxidation byproducts. Our data suggest a positive enhancement for biodiesel on the formation of the oil in water colloidal phase, possibly by forming a surfactant-cosurfactant-like pair of the FAMEs and their autoxidation byproducts.

  6. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel

  7. BioFacts: Fueling a stronger economy, Biodiesel. Revision 2

    SciTech Connect

    1995-01-01

    Biodiesel is a substitute for or an additive to diesel fuel that is derived from the oils and fats of plants. It is an alternative fuel that can be used in diesel engines and provides power similar to conventional diesel fuel. It is a biodegradable transportation fuel that contributes little, if any, net carbon dioxide or sulfur to the atmosphere, and is low in particulate emission. It is a renewable, domestically produced liquid fuel that can help reduce US dependence on foreign oil imports. This overview presents the resource potential, history, processing techniques, US DOE programs cost and utilization potential of biodiesel fuels.

  8. An Overview of Biodiesel and Petroleum Diesel Life Cycles

    SciTech Connect

    Sheehan, John; Camobreco, Vince; Duffield, James; Graboski, Michael; Shapouri, Housein

    1998-05-01

    This overview is extracted from a detailed, comprehensive report entitled Life Cycle Inventories of Biodiesel and Petroleum Diesel for Use in an Urban Bus. This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI comprehensively quantifies all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; and air, water, and solid waste emissions generated.

  9. Heterotrophic cultivation of microalgae for production of biodiesel.

    PubMed

    Mohamed, Mohd Shamzi; Wei, Lai Zee; Ariff, Arbakariya B

    2011-08-01

    High cell density cultivation of microalgae via heterotrophic growth mechanism could effectively address the issues of low productivity and operational constraints presently affecting the solar driven biodiesel production. This paper reviews the progress made so far in the development of commercial-scale heterotrophic microalgae cultivation processes. The review also discusses on patentable concepts and innovations disclosed in the past four years with regards to new approaches to microalgal cultivation technique, improvisation on the process flow designs to economically produced biodiesel and genetic manipulation to confer desirable traits leading to much valued high lipid-bearing microalgae strains.

  10. [Biodiesel-fuel: content, production, producers, contemporary biotechnology (review)].

    PubMed

    Feofilova, E P; Sergeeva, Ia E; Ivashechkin, A A

    2010-01-01

    The necessity of expanding studies on producing renewable biofuel is reviewed. Special attention is given to biodiesel, the history of its creation, and its advantages and disadvantages in comparison with diesel-fuel. The main part of the review is devoted to an analysis of diesel biofuel on the basis of bacterial lipids, filamentous fungi, yeasts, plants, photo- and heterotrophic algae. Biodiesel on the basis of filamentous fungi is studied in detail and the possibility of creation of the most perspective biotechnology using these producers is grounded. The contemporary state of biotechnology in Russia is discussed in connection with the development of energetics based on renewable biofuels.

  11. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  12. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  13. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    PubMed

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  14. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    PubMed Central

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production. PMID:24195081

  15. Effect of first and second generation biodiesel blends on engine performance and emission

    NASA Astrophysics Data System (ADS)

    Azad, A. K.; Rasul, M. G.; Bhuiya, M. M. K.; Islam, Rubayat

    2016-07-01

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. The study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NOx emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NOx emission for B5 waste cooking biodiesel was lower than soybean biodiesel.

  16. Non-Edible Plant Oils as New Sources for Biodiesel Production

    PubMed Central

    Chhetri, Arjun B.; Tango, Martin S.; Budge, Suzanne M.; Watts, K. Chris; Islam, M. Rafiqul

    2008-01-01

    Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi) and jatropha (jatropha curcas, L.) are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME) from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1% free FA, 84.43% triglycerides, 4.88% sterol and 1.59% others. Jatropha oil contains approximately 14% free FA, approximately 5% higher than soapnut oil. Soapnut oil biodiesel contains approximately 85% unsaturated FA while jatropha oil biodiesel was found to have approximately 80% unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97% conversion to FAME was achieved for both soapnut and jatropha oil. PMID:19325741

  17. Effect of first and second generation biodiesel blends on engine performance and emission

    SciTech Connect

    Azad, A. K. E-mail: a.k.azad@cqu.edu.au; Rasul, M. G. Bhuiya, M. M. K.; Islam, Rubayat

    2016-07-12

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. The study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NO{sub x} emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NO{sub x} emission for B5 waste cooking biodiesel was lower than soybean biodiesel.

  18. Biodiesel from Milo (Thespesia populnea L.) seed oil

    USDA-ARS?s Scientific Manuscript database

    There is a need to seek non-conventional seed oil sources for biodiesel production due to issues such as supply and availability, as well as food versus fuel. In this context, Milo (Thespesia populnea L.) seed oil was investigated for the first time as a potential non-conventional feedstock for the ...

  19. Biodiesel from Seeds: An Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Goldstein, Steven W.

    2014-01-01

    Plants can store the chemical energy required by their developing offspring in the form of triglycerides. These lipids can be isolated from seeds and then converted into biodiesel through a transesterification reaction. This second-year undergraduate organic chemistry laboratory experiment exemplifies the conversion of an agricultural energy…

  20. Biodiesel Synthesis and Evaluation: An Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Bucholtz, Ehren C.

    2007-01-01

    A new lab esterification reaction based on biodiesel preparation and viscosity, which provides a model experience of industrial process to understand oxidation of vicinal alcohols by periodic acid, is presented. This new desertification experiment and periodate analysis of glycerol for the introductory organic chemistry laboratory provides an…

  1. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-20

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  2. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-17

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  3. Biodiesel from waste cooking oil in Mexico City.

    PubMed

    Sheinbaum, Claudia; Balam, Marco V; Robles, Guillermo; Lelo de Larrea, Sebastian; Mendoza, Roberto

    2015-08-01

    The aim of this article is to evaluate the potential use of biodiesel produced from waste cooking oil in Mexico City. The study is divided in two main areas: the analysis of a waste cooking oil collection pilot project conducted in food markets of a Mexico City region; and the exhaust emissions performance of biodiesel blends measured in buses of the Mexico City public bus transportation network (RTP). Results from the waste cooking oil collection pilot project show that oil quantities disposed depend upon the type of food served and the operational practices in a cuisine establishment. Food markets' waste cooking oil disposal rate from fresh oil is around 10%, but with a very high standard deviation. Emission tests were conducted using the Ride-Along-Vehicle-Emissions-Measuring System in two different types of buses while travelling a regular route. Results shows that the use of biodiesel blends reduces emissions only for buses that have exhaust gas recirculation systems, as analysed by repeated measure analysis of variance. The potential use in Mexico City of waste cooking oil for biodiesel is estimated to cover 2175 buses using a B10 blend. © The Author(s) 2015.

  4. Anaerobic Metabolism of Biodiesel and Its Impact on Metal Corrosion

    DTIC Science & Technology

    2010-05-05

    stimulate biocorrosion suggest caution when integrating this alternate fuel with the existing infrastructure. Introduction Biodiesel is amixture...monitored by gas chromatography,15 and sulfate reduction was analyzed by ion chromatography.18 Electrochemical/Corrosion Experiments. Biocorrosion experi...indeed microbial lipids. To test whether anaerobic methyl ester biodegradation could accelerate the rate of biocorrosion , we immersed carbon steel

  5. Production of Biodiesel from Jatropha Curcas using Nano Materials

    NASA Astrophysics Data System (ADS)

    Khan, M. Bilal; Bahadar, Ali; Anjum, Waqas

    2009-09-01

    Biodiesel is proving to be a viable clean energy resource for conventional fuel as well as more exotic, value added jet fuel applications. Various non edible agriculture based sources are exploited to produce biodiesel with varying degrees of conversion and properties. Systematic studies carried out to date reveal that the oil extracted from Jatropha Curcas gives best results on yield basis (2800 kg oil/Hectare max). However the research is marred by the production of often undesirable and cumbersome byproducts, which needs multifarious purification steps with associated cost. Sponification step is a main hurdle in the old technology. We have made a paradigm shift by introducing nanomaterials which not only eliminate the cited side reactions/byproducts, but also yield higher conversion and lower costs. Typically we have reduced the reaction time from 90 min at 70° C to a gainful 5 min at ambient temperatures. The nanomaterial has been characterized by SEM and EDS (Electron Dispersion Scanning Analysis) which clearly shows bimodal distribution of the nonmaterial employed. Further characterization study was carried out by FTIR and the results are compared with petrodiesel and standard biodiesel in the important region of 2000-4000 cm-1. Perfect matching/finger printing was achieved. In this work we also report detailed comparative elemental and flash point analysis of the Biodiesel produced via various established roots.

  6. Manufacturing vegetable oil based biodiesel: An engineering management perspective

    USDA-ARS?s Scientific Manuscript database

    According to the USDA, 6.45 million tons of cottonseed was produced in 2007. Each ton will yield approximately 44 to 46 gallons unrefined oil. Cottonseed oil bio-diesel could have the potential to create a more competitive oil market for oil mills. The proposed cost model is based on an existing cot...

  7. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  8. Environmental Impacts of Jatropha curcas Biodiesel in India

    PubMed Central

    Gmünder, Simon; Singh, Reena; Pfister, Stephan; Adheloya, Alok; Zah, Rainer

    2012-01-01

    In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations. PMID:22919274

  9. Effects of monoacylglycerols on the cold flow properties of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is a renewable alternative fuel made from plant oils and animal fats that may be burned in a compression-ignition (diesel) engine. It is composed of mono-alkyl esters of fatty acid esters made from plant oils or animal fats mainly by transesterification with methanol or ethanol. This proce...

  10. Mutagenicity of Diesel and Soy Biodiesel Exhaust Particles

    EPA Science Inventory

    Mutagenicity Of Diesel And Soy Biodiesel Exhaust Particles E Mutlua,b' SH Warrenb, PP Matthewsb, CJ Kingb, B Prestonc, MD Haysb, DG Nashb,ct, WP Linakb, MI Gilmourb, and DM DeMarinib aUniversity of North Carolina, Chapel Hill, NC bU.S. Environmental Agency, Research Triangle Pa...

  11. Soybean Oil: Powering a High School Investigation of Biodiesel

    ERIC Educational Resources Information Center

    De La Rosa, Paul; Azurin, Katherine A.; Page, Michael F. Z.

    2014-01-01

    This laboratory investigation challenges students to synthesize, analyze, and compare viable alternative fuels to Diesel No. 2 using a renewable resource, as well as readily available reagents and supplies. During the experiment, students synthesized biodiesel from soybean oil in an average percent yield of 83.8 ± 6.3%. They then prepared fuel…

  12. A Simple, Safe Method for Preparation of Biodiesel

    ERIC Educational Resources Information Center

    Behnia, Mahin S.; Emerson, David W.; Steinberg, Spencer M.; Alwis, Rasika M.; Duenas, Josue A.; Serafino, Jessica O.

    2011-01-01

    An experiment suitable for organic chemistry students is described. Biodiesel, a "green" fuel, consists of methyl or ethyl esters of long-chain fatty acids called FAMES (fatty acid methyl esters) or FAEES (fatty acid ethyl esters). A quick way to make FAMES is a base-catalyzed transesterification of oils or fats derived from plants or from animal…

  13. Lipase-catalyzed transesterification to remove saturated monoacylglycerols from biodiesel

    USDA-ARS?s Scientific Manuscript database

    Saturated monoacylglycerols (SMG) are known to be present in fatty acid methyl esters (FAME) intended to be used as biodiesel. These SMG can strongly affect the properties of biofuels such as the cloud point, and they have been implicated in engine failure due to filter plugging. It is shown here th...

  14. Preparation of Jojoba Oil Ester Derivatives for Biodiesel Evaluation

    USDA-ARS?s Scientific Manuscript database

    As a result of the increase in commodity vegetable oil prices, it is imperative that non-food oils should be considered as alternative feedstocks for biodiesel production. Jojoba oil is unusual in that it is comprised of wax esters as opposed to the triglycerides found in typical vegetable oils. A...

  15. A Simple, Safe Method for Preparation of Biodiesel

    ERIC Educational Resources Information Center

    Behnia, Mahin S.; Emerson, David W.; Steinberg, Spencer M.; Alwis, Rasika M.; Duenas, Josue A.; Serafino, Jessica O.

    2011-01-01

    An experiment suitable for organic chemistry students is described. Biodiesel, a "green" fuel, consists of methyl or ethyl esters of long-chain fatty acids called FAMES (fatty acid methyl esters) or FAEES (fatty acid ethyl esters). A quick way to make FAMES is a base-catalyzed transesterification of oils or fats derived from plants or from animal…

  16. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2008-08-15

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels. (author)

  17. Process Intensification in Base-Catalyzed Biodiesel Production

    SciTech Connect

    McFarlane, Joanna; Birdwell Jr, Joseph F; Tsouris, Costas; Jennings, Hal L

    2008-01-01

    Biodiesel is considered a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. Recent interest has resulted in biodiesel manufacture becoming more widely undertaken by commercial enterprises that are interested in minimizing the cost of feedstock materials and waste production, as well as maximizing the efficiency of production. Various means to accelerate batch processing have been investigated. Oak Ridge National Laboratory has experience in developing process intensification methods for nuclear separations, and this paper will discuss how technologies developed for very different applications have been modified for continuous reaction/separation of biodiesel. In collaboration with an industrial partner, this work addresses the aspect of base-catalyzed biodiesel production that limits it to a slow batch process. In particular, we have found that interfacial mass transfer and phase separation control the transesterification process and have developed a continuous two-phase reactor for online production of a methyl ester and glycerol. Enhancing the mass transfer has additional benefits such as being able to use an alcohol-to-oil phase ratio closer to stoichiometric than in conventional processing, hence minimizing the amount of solvent that has to be recycled and reducing post-processing clean up costs. Various technical issues associated with the application of process intensification technology will be discussed, including scale-up from the laboratory to a pilot-scale undertaking.

  18. Environmental impacts of Jatropha curcas biodiesel in India.

    PubMed

    Gmünder, Simon; Singh, Reena; Pfister, Stephan; Adheloya, Alok; Zah, Rainer

    2012-01-01

    In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations.

  19. Applications of 1H-NMR to Biodiesel Research

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  20. Biodiesel sensing using silicon-on-insulator technologies

    NASA Astrophysics Data System (ADS)

    Casas Bedoya, Alvaro; Ling, Meng Y.; Brouckaert, Joost; Yebo, Nebiyu A.; Van Thourhout, Dries; Baets, Roel G.

    2009-05-01

    By measuring the transmission of Biodiesel/Diesel mixtures in the near- and far-infrared wavelength ranges, it is possible to predict the blend level with a high accuracy. Conventional photospectrometers are typically large and expensive and have a performance that often exceeds the requirements for most applications. For automotive applications for example, what counts is size, robustness and most important cost. As a result the miniaturization of the spectrometer can be seen as an attractive implementation of a Biodiesel sensor. Using Silicon-on-Insulator (SOI) this spectrometer miniaturization can be achieved. Due to the large refractive index contrast of the SOI material system, photonic devices can be made very compact. Moreover, they can be manufactured on high-quality SOI substrates using waferscale CMOS fabrication tools, making them cheap for the market. In this paper, we show that it is possible to determine Biodiesel blend levels using an SOI spectrometer-on-a-chip. We demonstrate absorption measurements using spiral shaped waveguides and we also present the spectrometer design for on-chip Biodiesel blend level measurements.

  1. BIODIESEL EXHAUST: THE NEED FOR HUMAN HEALTH EFFECTS RESEARCH

    EPA Science Inventory

    Biodiesel is a diesel fuel alternative that has shown potential of becoming a commercially accepted part of the United States energy infrastructure. In November of 2004, the signing of the Jobs Creation Bill HR4520 marked an important turning point for the future production of bi...

  2. A Review of Microwave-Assisted Reactions for Biodiesel Production.

    PubMed

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-06-15

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society's increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  3. A Review of Microwave-Assisted Reactions for Biodiesel Production

    PubMed Central

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-01-01

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective. PMID:28952536

  4. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    NASA Astrophysics Data System (ADS)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  5. Mutagenicity of Diesel and Soy Biodiesel Exhaust Particles

    EPA Science Inventory

    Mutagenicity Of Diesel And Soy Biodiesel Exhaust Particles E Mutlua,b' SH Warrenb, PP Matthewsb, CJ Kingb, B Prestonc, MD Haysb, DG Nashb,ct, WP Linakb, MI Gilmourb, and DM DeMarinib aUniversity of North Carolina, Chapel Hill, NC bU.S. Environmental Agency, Research Triangle Pa...

  6. Composition and Toxicity of Biodiesel versus Conventional Diesel

    EPA Science Inventory

    Increasing production of biodiesel (BD) fuel at the local, national, and global levels raise important issues related to the impact and potential adverse health outcome related to BD exposures. Studies on the toxicity of BD combustion emissions are very limited. Emission co...

  7. Biodiesel Synthesis and Evaluation: An Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Bucholtz, Ehren C.

    2007-01-01

    A new lab esterification reaction based on biodiesel preparation and viscosity, which provides a model experience of industrial process to understand oxidation of vicinal alcohols by periodic acid, is presented. This new desertification experiment and periodate analysis of glycerol for the introductory organic chemistry laboratory provides an…

  8. Soybean Oil: Powering a High School Investigation of Biodiesel

    ERIC Educational Resources Information Center

    De La Rosa, Paul; Azurin, Katherine A.; Page, Michael F. Z.

    2014-01-01

    This laboratory investigation challenges students to synthesize, analyze, and compare viable alternative fuels to Diesel No. 2 using a renewable resource, as well as readily available reagents and supplies. During the experiment, students synthesized biodiesel from soybean oil in an average percent yield of 83.8 ± 6.3%. They then prepared fuel…

  9. Coalition Cooperation Defines Roadmap for E85 and Biodiesel

    SciTech Connect

    Not Available

    2007-06-01

    This Clean Cities success story relates how Colorado's Colorado Biofuels Coalition was formed and provides guidance on forming other such coalitions. This Colorado's coalition sucessfully increase the number of fueling stations providing biofuels and has goals to the number even more. Plans also include assisting with financing infrastructure, making alternative fuels available to more fleets, and educating about E85 and biodiesel use.

  10. Biodiesel from non-food alternative feed-stock

    USDA-ARS?s Scientific Manuscript database

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  11. BIODIESEL EXHAUST: THE NEED FOR HUMAN HEALTH EFFECTS RESEARCH

    EPA Science Inventory

    Biodiesel is a diesel fuel alternative that has shown potential of becoming a commercially accepted part of the United States energy infrastructure. In November of 2004, the signing of the Jobs Creation Bill HR4520 marked an important turning point for the future production of bi...

  12. Life-cycle assessment of biodiesel production from microalgae.

    PubMed

    Lardon, Laurent; Hélias, Arnaud; Sialve, Bruno; Steyer, Jean-Philippe; Bernard, Olivier

    2009-09-01

    This paper provides an analysis of the potential environmental impacts of biodiesel production from microalgae. High production yields of microalgae have called forth interest of economic and scientific actors but it is still unclear whether the production of biodiesel is environmentally interesting and which transformation steps need further adjustment and optimization. A comparative LCA study of a virtual facility has been undertaken to assessthe energetic balance and the potential environmental impacts of the whole process chain, from the biomass production to the biodiesel combustion. Two different culture conditions, nominal fertilizing or nitrogen starvation, as well as two different extraction options, dry or wet extraction, have been tested. The best scenario has been compared to first generation biodiesel and oil diesel. The outcome confirms the potential of microalgae as an energy source but highlights the imperative necessity of decreasing the energy and fertilizer consumption. Therefore control of nitrogen stress during the culture and optimization of wet extraction seem to be valuable options. This study also emphasizes the potential of anaerobic digestion of oilcakes as a way to reduce external energy demand and to recycle a part of the mineral fertilizers.

  13. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  14. Composition and Toxicity of Biodiesel versus Conventional Diesel

    EPA Science Inventory

    Increasing production of biodiesel (BD) fuel at the local, national, and global levels raise important issues related to the impact and potential adverse health outcome related to BD exposures. Studies on the toxicity of BD combustion emissions are very limited. Emission co...

  15. Biodiesel from Seeds: An Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Goldstein, Steven W.

    2014-01-01

    Plants can store the chemical energy required by their developing offspring in the form of triglycerides. These lipids can be isolated from seeds and then converted into biodiesel through a transesterification reaction. This second-year undergraduate organic chemistry laboratory experiment exemplifies the conversion of an agricultural energy…

  16. The modification of ion exchange heterogeneous catalysts for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Hartono, R.; Mulia, B.; Sahlan, M.; Utami, T. S.; Wijanarko, Anondho; Hermansyah, Heri

    2017-03-01

    Conventionally, biodiesel is produced by using the homogeneous catalyst which has difficulty in high cost of the separation process. The heterogeneous catalysts ion exchange resin by its Solid phase can make an easier separation process, able to be reactivated and used repeatedly. In this research, the heterogeneous catalyst from various source such as Lewatit macro porous resin, Amberlite gel resin and natural zeolite bayah was investigated their performance to produced biodiesel from used cooking oil. Initially, the preparation of the ion exchange process with variations in time, temperature, the concentration of HCl and NaOH solution was investigated. Then, the activity of heterogeneous catalyst to produced biodiesel under the variation of stirring rate, zeolite particle size, and comparison of different ion exchange catalysts were also investigated. Finally, the stability test and regeneration treatment were also investigated. The optimum operating conditions of biodiesel synthesis process is at the temperature of 60 °C for 2 h with a stirring speed of 700 rpm. Natural zeolite Bayah with 6 M of NaOH solution produced 16.19%, Amberlite gel with 6 M HCL produced 65.22% of biodiesel yield and material Lewatit macro porous with 6 M of NaOH solution produced 85.94% as the maximum result. As the best result, Material Lewatit macro porous selected as the material which was used in the variation of stirring speed, temperature, and reaction time, the concentration of base and stability test. According to the results of analysis, calculations yield methyl oleic HPLC produced by Lewatit macro porous with 6 M NaOH at 62.95%.

  17. Acceleration of biodiesel-glycerol decantation through NaCl-assisted gravitational settling: a strategy to economize biodiesel production.

    PubMed

    Shirazi, Mohammad Mahdi A; Kargari, Ali; Tabatabaei, Meisam; Mostafaeid, Boyuk; Akia, Mandana; Barkhi, Mohammad; Shirazi, Mohammad Javad A

    2013-04-01

    When making biodiesel, slow separation of glycerol; the main by-product of the transesterification reaction, could lead to longer operating times, bigger equipment and larger amount of steel and consequently increased production cost. Therefore, acceleration of glycerol/biodiesel decantation could play an important role in the overall biodiesel refinery process. In this work, NaCl-assisted gravitational settling was considered as an economizing strategy. The results obtained indicated that the addition of conventional NaCl salt decreased the glycerol settling time significantly up to more than five times. However, NaCl inclusion rates of more than 3g to the mixture (i.e. 5 and 10 g) resulted in significantly less methyl ester purity due to the occurrence of miniemulsion phenomenon. Overall, addition of 1g NaCl/100 ml glycerol-biodiesel mixture was found as optimal by accelerating the decantation process by 100% while maintaining the methyl ester purity as high as the control (0 g NaCl). Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion

    NASA Astrophysics Data System (ADS)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the

  19. Industrial Fermentation of Auxenochlorella protothecoides for Production of Biodiesel and Its Application in Vehicle Diesel Engines

    PubMed Central

    Xiao, Yibo; Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60-m3 fermentor that produced biomass at 3.81 g L−1 day−1 with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural drying, and ball milling methods to harvest, dry, and extract oil from the cells at low cost. Additionally, algal biodiesel was produced for a vehicle engine test, which indicated that the microalgal biodiesel was comparable to fossil diesel but resulted in fewer emissions of particulate matter, carbon monoxide, and hydrocarbon. Altogether, our data suggested that the heterotrophic fermentation of A. protothecoides could have the potential for the future industrial production of biodiesel. PMID:26539434

  20. Stabilization of Neem Oil Biodiesel with Corn Silk Extract during Long-term Storage.

    PubMed

    Ali, Rehab Farouk M; El-Anany, Ayman M

    2017-02-01

    The current study aimed to evaluate the antioxidant efficiency of different extracts of corn silk. In addition, the impact of corn silk extract on oxidative stability of neem biodiesel during storage was studied. The highest phenolics, DPPH radical scavenging and reducing power activities were recorded for methanol-water extract. The longest oxidation stability (10 h) was observed for biodiesel samples blended with 1000 ppm of corn silk extract (CSE). At the end of storage period the induction time of biodiesel samples mixed with 1000 ppm of CSE or butylated hydroxytoluene (BHT) were about 6.72 and 5.63 times as high as in biodiesel samples without antioxidants. Biodiesel samples blended with 1000 ppm of CSE had the lowest acidity at the end of storage period. Peroxide value of biodiesel samples containing 1000 ppm of CSE was about 4.28 times as low as in control sample without antioxidants.

  1. Studies on crude oil removal from pebbles by the application of biodiesel.

    PubMed

    Xia, Wen-xiang; Xia, Yan; Li, Jin-cheng; Zhang, Dan-feng; Zhou, Qing; Wang, Xin-ping

    2015-02-15

    Oil residues along shorelines are hard to remove after an oil spill. The effect of biodiesel to eliminate crude oil from pebbles alone and in combination with petroleum degrading bacteria was investigated in simulated systems. Adding biodiesel made oil detach from pebbles and formed oil-biodiesel mixtures, most of which remained on top of seawater. The total petroleum hydrocarbon (TPH) removal efficiency increased with biodiesel quantities but the magnitude of augment decreased gradually. When used with petroleum degrading bacteria, the addition of biodiesel (BD), nutrients (NUT) and BD+NUT increased the dehydrogenase activity and decreased the biodegradation half lives. When BD and NUT were replenished at the same time, the TPH removal efficiency was 7.4% higher compared to the total improvement of efficiency when BD and NUT was added separately, indicating an additive effect of biodiesel and nutrients on oil biodegradation.

  2. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.

    PubMed

    Huang, Wen-Can; Park, Chan Woo; Kim, Jong-Duk

    2017-02-01

    Although microalgae are considered promising renewable sources of biodiesel, the high cost of the downstream process is a significant obstacle in large-scale biodiesel production. In this study, a novel approach for microalgal biodiesel production was developed by using the biodiesel as an extractant. First, wet microalgae with 70% water content were incubated with a mixture of biodiesel/methanol and penetration of the mixture through the cell membrane and swelling of the lipids contained in microalgae was confirmed. Significant increases of lipid droplets were observed by confocal microscopy. Second, the swelled lipid droplets in microalgae were squeezed out using mechanical stress across the cell membrane and washed with methanol. The lipid extraction efficiency reached 68%. This process does not require drying of microalgae or solvent recovery, which the most energy-intensive step in solvent-based biodiesel production.

  3. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.

    PubMed

    Cheng, Jun; Huang, Rui; Li, Tao; Zhou, Junhu; Cen, Kefa

    2014-10-01

    A chloroform-free novel process for the efficient production of biodiesel from wet microalgae is proposed. Crude biodiesel is produced through extraction with hexane after microwave-assisted transesterification (EHMT) of lipids in wet microalgae. Effects of different parameters, including reaction temperature, reaction time, methanol dosage, and catalyst dosage, on fatty acids methyl esters (FAMEs) yield are investigated. The yield of FAME extracted into the hexane from the wet microalgae is increased 6-fold after the transesterification of lipids. The yield of FAME obtained through EHMT of lipids in wet microalgae is comparable to that obtained through direct transesterification of dried microalgae biomass with chloroform; however, FAME content in crude biodiesel obtained through EHMT is 86.74%, while that in crude biodiesel obtained through the chloroform-based process is 75.93%. EHMT ensures that polar pigments present in microalgae are not extracted into crude biodiesel, which leads to a 50% reduction in nitrogen content in crude biodiesel.

  4. Biodiesel production from wet municipal sludge: evaluation of in situ transesterification using xylene as a cosolvent.

    PubMed

    Choi, O K; Song, J S; Cha, D K; Lee, J W

    2014-08-01

    This study proposes a method to produce biodiesel from wet wastewater sludge. Xylene was used as an alternative cosolvent to hexane for transesterification in order to enhance the biodiesel yield from wet wastewater sludge. The water present in the sludge could be separated during transesterification by employing xylene, which has a higher boiling point than water. Xylene enhanced the biodiesel yield up to 8.12%, which was 2.5 times higher than hexane. It was comparable to the maximum biodiesel yield of 9.68% obtained from dried sludge. Xylene could reduce either the reaction time or methanol consumption, when compared to hexane for a similar yield. The fatty acid methyl esters (FAMEs) content of the biodiesel increased approximately two fold by changing the cosolvent from hexane to xylene. The transesterification method using xylene as a cosolvent can be applied effectively and economically for biodiesel recovery from wet wastewater sludge without drying process.

  5. Emergy Analysis and Sustainability Efficiency Analysis of Different Crop-Based Biodiesel in Life Cycle Perspective

    PubMed Central

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna; Fedele, Andrea; Scipioni, Antonio

    2013-01-01

    Biodiesel as a promising alternative energy resource has been a hot spot in chemical engineering nowadays, but there is also an argument about the sustainability of biodiesel. In order to analyze the sustainability of biodiesel production systems and select the most sustainable scenario, various kinds of crop-based biodiesel including soybean-, rapeseed-, sunflower-, jatropha- and palm-based biodiesel production options are studied by emergy analysis; soybean-based scenario is recognized as the most sustainable scenario that should be chosen for further study in China. DEA method is used to evaluate the sustainability efficiencies of these options, and the biodiesel production systems based on soybean, sunflower, and palm are considered as DEA efficient, whereas rapeseed-based and jatropha-based scenarios are needed to be improved, and the improved methods have also been specified. PMID:23766723

  6. Electrochemical method for producing a biodiesel mixture comprising fatty acid alkyl esters and glycerol

    DOEpatents

    Lin, YuPo J; St. Martin, Edward J

    2013-08-13

    The present invention relates to an integrated method and system for the simultaneous production of biodiesel from free fatty acids (via esterification) and from triglycerides (via transesterification) within the same reaction chamber. More specifically, one preferred embodiment of the invention relates to a method and system for the production of biodiesel using an electrodeionization stack, wherein an ion exchange resin matrix acts as a heterogeneous catalyst for simultaneous esterification and transesterification reactions between a feedstock and a lower alcohol to produce biodiesel, wherein the feedstock contains significant levels of free fatty acid. In addition, because of the use of a heterogeneous catalyst, the glycerol and biodiesel have much lower salt concentrations than raw biodiesel produced by conventional transesterification processes. The present invention makes it much easier to purify glycerol and biodiesel.

  7. Industrial Fermentation of Auxenochlorella protothecoides for Production of Biodiesel and Its Application in Vehicle Diesel Engines.

    PubMed

    Xiao, Yibo; Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    Microalgae-derived biodiesel has been regarded as a promising alternative for fossil diesel. However, the commercial production of microalgal biodiesel was halted due to its high cost. Here, we presented a pilot study on the industrial production of algal biodiesel. We began with the heterotrophic cultivation of Auxenochlorella protothecoides in a 60-m(3) fermentor that produced biomass at 3.81 g L(-1) day(-1) with a neutral lipid content at 51%. Next, we developed plate-frame filter, natural drying, and ball milling methods to harvest, dry, and extract oil from the cells at low cost. Additionally, algal biodiesel was produced for a vehicle engine test, which indicated that the microalgal biodiesel was comparable to fossil diesel but resulted in fewer emissions of particulate matter, carbon monoxide, and hydrocarbon. Altogether, our data suggested that the heterotrophic fermentation of A. protothecoides could have the potential for the future industrial production of biodiesel.

  8. Emergy analysis and sustainability efficiency analysis of different crop-based biodiesel in life cycle perspective.

    PubMed

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna; Fedele, Andrea; Scipioni, Antonio

    2013-01-01

    Biodiesel as a promising alternative energy resource has been a hot spot in chemical engineering nowadays, but there is also an argument about the sustainability of biodiesel. In order to analyze the sustainability of biodiesel production systems and select the most sustainable scenario, various kinds of crop-based biodiesel including soybean-, rapeseed-, sunflower-, jatropha- and palm-based biodiesel production options are studied by emergy analysis; soybean-based scenario is recognized as the most sustainable scenario that should be chosen for further study in China. DEA method is used to evaluate the sustainability efficiencies of these options, and the biodiesel production systems based on soybean, sunflower, and palm are considered as DEA efficient, whereas rapeseed-based and jatropha-based scenarios are needed to be improved, and the improved methods have also been specified.

  9. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.

    PubMed

    Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun

    2011-01-01

    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.

  10. Application of near infrared spectroscopy and multivariate control charts for monitoring biodiesel blends.

    PubMed

    de Oliveira, Ingrid Komorizono; Rocha, Wérickson F de Carvalho; Poppi, Ronei J

    2009-05-29

    Multivariate control charts in conjunction with near infrared spectroscopy were developed to verify the quality of biodiesel blends (2% of biodiesel and 98% of diesel). The control charts were built using the net analyte signal method, generating three charts: the NAS chart that corresponds to the analyte of interest (biodiesel in this case), the interference chart that corresponds to the contribution of other compounds in the sample (diesel in this case) and the residual chart that corresponds to nonsystematic variations. For each chart, statistical limits were developed using samples inside the quality specifications. It was possible to identify biodiesel blend samples that were out of specifications relative to biodiesel content, biodiesel contaminated with vegetable oil and diesel contaminated with naphtha.

  11. Effect of Biodiesel on Diesel Engine Nitrogen Oxide and Other Regulated Emissions

    DTIC Science & Technology

    2007-12-01

    development of cost-effective alternative fuels, such as biodiesel . Biodiesel is a nontoxic, biodegradable fuel made from organic fats and oils and serves...use of alternative transportation fuels such as biodiesel . The purpose of these initiatives is to reduce the nation’s oil imports. The Federal Fleet...is a renewable, clean burning, oxygenated fuel for diesel powered engines or boilers that is made from soybean oil , other vegetable oils , or animal

  12. Application of waste eggshell as low-cost solid catalyst for biodiesel production.

    PubMed

    Wei, Ziku; Xu, Chunli; Li, Baoxin

    2009-06-01

    Waste eggshell was investigated in triglyceride transesterification with a view to determine its viability as a solid catalyst for use in biodiesel synthesis. Effect of calcination temperature on structure and activity of eggshell catalysts was investigated. Reusability of eggshell catalysts was also examined. It was found that high active, reusable solid catalyst was obtained by just calcining eggshell. Utilization of eggshell as a catalyst for biodiesel production not only provides a cost-effective and environmental friendly way of recycling this solid eggshell waste, significantly reducing its environmental effects, but also reduces the price of biodiesel to make biodiesel competitive with petroleum diesel.

  13. Production and Characterization of Biodiesel Using Nonedible Castor Oil by Immobilized Lipase from Bacillus aerius

    PubMed Central

    Narwal, Sunil Kumar; Saun, Nitin Kumar; Dogra, Priyanka; Chauhan, Ghanshyam

    2015-01-01

    A novel thermotolerant lipase from Bacillus aerius was immobilized on inexpensive silica gel matrix. The immobilized lipase was used for the synthesis of biodiesel using castor oil as a substrate in a solvent free system at 55°C under shaking in a chemical reactor. Several crucial parameters affecting biodiesel yield such as incubation time, temperature, substrate molar ratio, and amount of lipase were optimized. Under the optimized conditions, the highest biodiesel yield was up to 78.13%. The characterization of synthesized biodiesel was done through FTIR spectroscopy, 1H NMR spectra, and gas chromatography. PMID:25874205

  14. Anaerobic biodegradation of soybean biodiesel and diesel blends under methanogenic conditions.

    PubMed

    Wu, Shuyun; Yassine, Mohamad H; Suidan, Makram T; Venosa, Albert D

    2015-12-15

    Biotransformation of soybean biodiesel and the inhibitory effect of petrodiesel were studied under methanogenic conditions. Biodiesel removal efficiency of more than 95% was achieved in a chemostat with influent biodiesel concentrations up to 2.45 g/L. The kinetics of anaerobic biodegradation of soybean biodiesel B100 (biodiesel only) with different petrodiesel loads was studied using biomass pre-acclimated to B100 and B80 (80% biodiesel and 20% petrodiesel). The results indicated that the biodiesel fraction of the blend could be effectively biodegraded, whereas petrodiesel was not biodegraded at all under methanogenic conditions. The presence of petrodiesel in blends with biodiesel had a greater inhibitory effect on the rate of biodegradation than the biodegradation efficiency (defined as the efficiency of methane production). Both the biodegradation rate coefficient and the methane production efficiency increased almost linearly with the increasing fraction of biodiesel. With the increasing fraction of petrodiesel, the biodegradation rate and efficiency were correlated with the concentration of soluble FAMEs in the water.

  15. Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil in solvent-free system.

    PubMed

    Go, A-Ra; Lee, Youngrak; Kim, Young Hwan; Park, Sehkyu; Choi, Joongso; Lee, Jinwon; Han, Sung Ok; Kim, Seung Wook; Park, Chulhwan

    2013-08-15

    The enzymatic coproduction of biodiesel and glycerol carbonate by transesterification of soybean oil and dimethyl carbonate (DMC) has been studied in a solvent-free system. The effects on biodiesel and glycerol carbonate conversion of reaction conditions including the kind of enzyme, the amount of enzyme, the molar ratio of DMC to soybean oil, the reaction temperature, and water addition were investigated. The optimal conditions for biodiesel and glycerol carbonate were 20% Novozym 435, 10:1 molar ratio of DMC to soybean oil, and 0.7% water addition. Under these conditions, the conversions of 96.4% biodiesel and 92.1% glycerol carbonate have been achieved after 48h.

  16. Application of red mud as a basic catalyst for biodiesel production.

    PubMed

    Liu, Qiang; Xin, Ruirui; Li, Chengcheng; Xu, Chunli; Yang, Jun

    2013-04-01

    Red mud was investigated in triglyceride transesterification with a view to determine its viability as a basic catalyst for use in biodiesel synthesis. The effect of calcination temperature on the structure and activity of red mud catalysts was investigated. It was found that highly active catalyst was obtained by simply drying red mud at 200 degrees C. Utilization of red mud as a catalyst for biodiesel production not only provides a cost-effective and environmentally friendly way of recycling this solid red mud waste, significantly reducing its environmental effects, but also reduces the price of biodiesel to make biodiesel competitive with petroleum diesel.

  17. Thermal lens spectroscopy for the differentiation of biodiesel-diesel blends.

    PubMed

    Ventura, M; Simionatto, E; Andrade, L H C; Lima, S M

    2012-04-01

    Thermal lens (TL) spectroscopy was applied to biofuels to test its potential to distinguish diesel from biodiesel in blended fuels. Both the heat and mass diffusion effects observed using a TL procedure provide significant information about biodiesel concentrations in blended fuels. The results indicate that the mass diffusivity decreases 32% between diesel and the blend with 10% biodiesel added to the diesel. This simple TL procedure has the potential to be used for in loco analyses to certify the mixture and quality of biodiesel-diesel blends. © 2012 American Institute of Physics

  18. Thermal lens spectroscopy for the differentiation of biodiesel-diesel blends

    NASA Astrophysics Data System (ADS)

    Ventura, M.; Simionatto, E.; Andrade, L. H. C.; Lima, S. M.

    2012-04-01

    Thermal lens (TL) spectroscopy was applied to biofuels to test its potential to distinguish diesel from biodiesel in blended fuels. Both the heat and mass diffusion effects observed using a TL procedure provide significant information about biodiesel concentrations in blended fuels. The results indicate that the mass diffusivity decreases 32% between diesel and the blend with 10% biodiesel added to the diesel. This simple TL procedure has the potential to be used for in loco analyses to certify the mixture and quality of biodiesel-diesel blends.

  19. Production and characterization of biodiesel using nonedible castor oil by immobilized lipase from Bacillus aerius.

    PubMed

    Narwal, Sunil Kumar; Saun, Nitin Kumar; Dogra, Priyanka; Chauhan, Ghanshyam; Gupta, Reena

    2015-01-01

    A novel thermotolerant lipase from Bacillus aerius was immobilized on inexpensive silica gel matrix. The immobilized lipase was used for the synthesis of biodiesel using castor oil as a substrate in a solvent free system at 55°C under shaking in a chemical reactor. Several crucial parameters affecting biodiesel yield such as incubation time, temperature, substrate molar ratio, and amount of lipase were optimized. Under the optimized conditions, the highest biodiesel yield was up to 78.13%. The characterization of synthesized biodiesel was done through FTIR spectroscopy, (1)H NMR spectra, and gas chromatography.

  20. Production of tung oil biodiesel and variation of fuel properties during storage.

    PubMed

    Shang, Qiong; Lei, Jiao; Jiang, Wei; Lu, Houfang; Liang, Bin

    2012-09-01

    The crude Tung oil with 4.72 mg KOH/g of acid value (AV) was converted by direct transesterification, and the reaction mixture was quantified. The phase distribution data showed that 38.24% of excess methanol, 11.76% of KOH, 10.13% of soap and 4.36% of glycerol were in the biodiesel phase; 0.35% of biodiesel dissolved in the glycerol phase. Tung oil biodiesel as well as its blends with 0(#) diesel was investigated under different storage conditions. The results indicated that higher temperature greatly influenced the storage stability, especially when the volume fraction of Tung oil biodiesel is increased in the blends.

  1. Hydrocarbon emissions speciation in diesel and biodiesel exhausts

    NASA Astrophysics Data System (ADS)

    Payri, Francisco; Bermúdez, Vicente R.; Tormos, Bernardo; Linares, Waldemar G.

    Diesel engine emissions are composed of a long list of organic compounds, ranging from C 2 to C 12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic. The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed. Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed. The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum

  2. Synthesis and Tribological Studies of Branched Alcohol Derived Epoxidized Biodiesel

    PubMed Central

    Ren, Qinggong; Pan, Jingjing; Zhou, Jie; Na, Yinna; Chen, Changle; Li, Weimin

    2015-01-01

    The optimization and kinetics of the ring-opening reaction of an epoxidized biodiesel (epoxidized rapeseed oil methyl ester) (EBD) with 2-ethyl hexanol (2-EH) were studied. The determined optimum conditions were 4:1 2-EH/oil molar ratio, 90 °C, 18 h, and 7 wt % of Amberlyst D001 (dry) catalyst; the product’s oxirane oxygen content was 0.081% with 38.32 mm2/s viscosity at 40 °C. The catalyst retained its high catalytic power after recycling five times. Furthermore, the determined non-catalyzed activation energy was 76 kJ·mol−1 and 54 kJ·mol−1 with the D001 resin catalyst. The product’s chemical structure was investigated through FT-IR and 1H NMR. The viscosity, flash point, pour point, and anti-wear properties of the product were improved compared with those of epoxidized biodiesel. PMID:28793587

  3. Investigation of microwave dielectric properties of biodiesel components.

    PubMed

    Muley, Pranjali D; Boldor, Dorin

    2013-01-01

    Advanced microwave technology has the potential to significantly enhance the biodiesel production process. Knowledge of dielectric properties of materials plays a major role in microwave design for any process. Dielectric properties (ε' and ε") of biodiesel precursors: soybean oil, alcohols and catalyst and their different mixtures were measured using a vector network analyzer and a slim probe in an open ended coaxial probe method at four different temperatures (30, 45, 60 and 75 °C) and in the frequency range of 280 MHz to 4.5 GHz. Results indicate that the microwave dielectric properties depend significantly on both temperature and frequency. Addition of catalyst significantly affected the dielectric properties. Dielectric properties behaved differently when oil, alcohol and catalyst was mixed at room temperature before heating and when the oil and the alcohol catalyst mixture was heated separately to a pre-determined temperature before mixing. These results can be used in designing microwave based transesterification system.

  4. Missouri Soybean Association Biodiesel Demonstration Project: Final Report

    SciTech Connect

    Ludwig, Dale; Hamilton, Jill

    2011-10-27

    The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry education program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to

  5. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.

    PubMed

    Blatti, Jillian L; Michaud, Jennifer; Burkart, Michael D

    2013-06-01

    Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock.

  6. Preparation of Heterogeneous CaO Catalysts for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Darmawan, T.; Hadiyanto, H.; Rosyid, R. Ar

    2017-07-01

    The objective of this research was to develop heterogeneous catalysts from three CaO sources for biodiesel synthesis. The CaO catalyst were prepared from limestone, calcium hydroxide and calciun carbonate with thermal processing in a muffle furnace at 900°C.. The results showed that CaO catalyst from limestone has better characteristic than catalyst from Calcium Hydroxide and Calcium Carbonate. From morphology testing, the CaO catalyst derived from limestone formed a crystal, while The X-ray difraction analysis showed that the amount of CaO contained in limestone was the highest among the others. The yield of biodiesel obtained from the experiment was 89.98% for the catalyst from limestone; 85.15% for the catalyst Ca (OH)2; and 78.71% for CaCO3 catalyst.

  7. Waste shells of mollusk and egg as biodiesel production catalysts.

    PubMed

    Viriya-Empikul, N; Krasae, P; Puttasawat, B; Yoosuk, B; Chollacoop, N; Faungnawakij, K

    2010-05-01

    The solid oxide catalysts derived from waste shells of egg, golden apple snail, and meretrix venus were employed to produce biodiesel from transesterification of palm olein oil. The shell materials were calcined in air at 800 degrees C with optimum time of 2-4h to transform calcium species in the shells into active CaO catalysts. All catalysts showed the high biodiesel production activity over 90% fatty acid methyl ester (FAME) in 2h, whilst the eggshell-derived catalyst showed comparable activity to the one derived from commercial CaCO(3). The catalytic activity was in accordance with the surface area of and the Ca content in the catalysts.

  8. Examination of the oxidation behavior of biodiesel soot

    SciTech Connect

    Song, Juhun; Alam, Mahabubul; Boehman, Andre L.; Kim, Unjeong

    2006-09-15

    In this work, we expand upon past work relating the nanostructure and oxidative reactivity of soot. This work shows that the initial structure alone does not dictate the reactivity of diesel soot and rather the initial oxygen groups have a strong influence on the oxidation rate. A comparison of the complete oxidation behavior and burning mode was made to address the mechanism by which biodiesel soot enhances oxidation. Diesel soot derived from neat biodiesel (B100) is far more reactive during oxidation than soot from neat Fischer-Tropsch diesel fuel (FT100). B100 soot undergoes a unique oxidation process leading to capsule-type oxidation and eventual formation of graphene ribbon structures. The results presented here demonstrate the importance of initial properties of the soot, which lead to differences in burning mode. Incorporation of greater surface oxygen functionality in the B100 soot provides the means for more rapid oxidation and drastic structural transformation during the oxidation process. (author)

  9. Catalytic applications in the production of biodiesel from vegetable oils.

    PubMed

    Sivasamy, Arumugam; Cheah, Kien Yoo; Fornasiero, Paolo; Kemausuor, Francis; Zinoviev, Sergey; Miertus, Stanislav

    2009-01-01

    The predicted shortage of fossil fuels and related environmental concerns have recently attracted significant attention to scientific and technological issues concerning the conversion of biomass into fuels. First-generation biodiesel, obtained from vegetable oils and animal fats by transesterification, relies on commercial technology and rich scientific background, though continuous progress in this field offers opportunities for improvement. This review focuses on new catalytic systems for the transesterification of oils to the corresponding ethyl/methyl esters of fatty acids. It also addresses some innovative/emerging technologies for the production of biodiesel, such as the catalytic hydrocracking of vegetable oils to hydrocarbons. The special role of the catalyst as a key to efficient technology is outlined, together with the other important factors that affect the yield and quality of the product, including feedstock-related properties and various system conditions.

  10. Ultrasound-assisted biodiesel production from Camelina sativa oil.

    PubMed

    Sáez-Bastante, J; Ortega-Román, C; Pinzi, S; Lara-Raya, F R; Leiva-Candia, D E; Dorado, M P

    2015-06-01

    The main drawbacks of biodiesel production are high reaction temperatures, stirring and time. These could be alleviated by aiding transesterification with alternative energy sources, i.e. ultrasound (US). In this study, biodiesel was obtained from Camelina sativa oil, aided with an ultrasonic probe (20kHz, 70% duty cycle, 50% amplitude). Design of experiments included the combination of sonication and agitation cycles, w/wo heating (50°C). To gain knowledge about the implications of the proposed methodology, conventional transesterification was optimized, resulting in higher needs on catalyst concentration and reaction time, compared to the proposed reaction. Although FAME content met EN 14103 standard, FAME yields were lower than those provided by US-assisted transesterification. Energy consumption measurements showed that ultrasound assisted transesterification required lower energy, temperature, catalyst and reaction time.

  11. Ultrasonic assisted biodiesel production of microalgae by direct transesterification

    NASA Astrophysics Data System (ADS)

    Kalsum, Ummu; Mahfud, Mahfud; Roesyadi, Achmad

    2017-03-01

    Microalgae are considered as the third generation source of biofuel and an excellent candidate for biofuel production to replace the fossil energy. The use of ultrasonic in producing biodiesel by direct transesterification of Nannochloropsis occulata using KOH as catalyst and methanol as a solvent was investigated. The following condition were determined as an optimum by experimental evaluates:: 1: 15 microalga to methanol (molar ratio); 3% catalyst concentration at temperature 40°C after 30 minute of ultrasonication. The highest yield of biodiesel produced was 30.3%. The main components of methyl ester from Nannochloropsis occulata were palmitic (C16 :0),, oleic (C18:1), stearic (C18;0), arahidic (C20:0) and myristic (C14:0). This stated that the application of ultrasounic for direct transesterificaiton of microalgae effectively reduced the reaction time compared to the reported values of conventional heating systems.

  12. The Emission Effects by the Use of Biodiesel Fuel

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hun; Oh, Younhtaig

    The smoke emission of diesel engine is being recognized as the main cause for the serious air pollution related problem affecting our environment. In this study, we investigated the possibility of biodiesel fuel to reduce smoke emission as an alternative fuel for diesel engine. Additionally, gas chromatography was used to analyze not only total amount of HC(hydrocarbon) but also the amount of HC components from C1 to C6 in the exhaust gas to determine the exact source responsible for the remarkable reduction in the amount of smoke emission. Because biodiesel fuel has about 10 vol-% oxygen content, the combustion process of the diesel engine is improved and exhausted smoke emission density especially decreased.

  13. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  14. Hydrogen production from biodiesel byproduct by immobilized Enterobacter aerogenes.

    PubMed

    Han, Jinmi; Lee, Dohoon; Cho, Jinku; Lee, Jeewon; Kim, Sangyong

    2012-01-01

    The recent rapid growth of the biodiesel industry has generated a significant amount of glycerol as a byproduct. As a result, the price of glycerol is currently relatively low, making it an attractive starting material for the production of chemicals with higher values. Crude glycerol can be directly converted through microbial fermentation into various chemicals such as hydrogen. In this study, we optimized immobilization of a facultative hydrogen producing microorganism, Enterobacter aerogenes, with the goal of developing biocatalysts that was appropriate for the continuous hydrogen production from glycerol. Several carriers were tested and agar was found to be the most effective. In addition, it was clearly shown that variables such as the carrier content and cell loading should be controlled for the immobilization of biocatalysts with high hydrogen productivity, stability, and reusability. After optimization of these variables, we were able to obtain reusable biocatalysts that could directly convert the byproduct stream from biodiesel processes into hydrogen in continuous processes.

  15. PAH emissions and energy efficiency of palm-biodiesel blends fueled on diesel generator

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Hou, Hsiao-Chung

    This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potencies (BaP eq) and particulate matter (PM), fuel consumption and energy efficiency from the generator under steady state for seven test fuels: P0 (Premium Diesel Fuel), P10 (10% palm biodiesel+90% P0), P20, P30, P50, P75 and P100. Experimental results indicated that PAH emission decreased with increasing palm-biodiesel blends due to small PAH content in biodiesel. The mean reduction fraction of total PAHs emission factor (P0=1110 μg L -1) from the exhaust of diesel generator were 13.2%, 28.0%, 40.6%, 54.4%, 61.89% and 98.8% for P10, P20, P30, P50, P75 and P100, respectively, compared with P0. The mean reduction fraction of total BaP eq (P0=1.65 μg L -1) from the exhaust of diesel generator were 15.2%, 29.1%, 43.3%, 56.4%, 58.2% and 97.6% for P10, P20, P30, P50, P75 and P100, respectively, compared with P0. PM emission decreased as the palm-biodiesel blends increased from 0% to 10%, and increased as the palm-biodiesel blends increased from 10% to 100% because the soluble organic fraction of PM emission was high in blends with high palm-biodiesel content. The brake specific fuel consumption rose with rising palm-biodiesel blends due to the low gross heat value of palm-biodiesel. The increasing fraction of BSFC of palm-biodiesel was lower than those of soy-, soapstock-, brassica-carinate and rapeseed-biodiesel. Palm-biodiesel seems to be the most feasible biodiesel. The best energy efficiency occurred between P10 and P20, close to P15. The curve dropped as the palm-biodiesel content rose above P20. Above results revealed that palm-biodiesel was an oxygenated fuel appropriate for use in diesel engines to promote combustion efficiency and decrease PAH emission. However, adding an excess of palm-biodiesel to P0 leaded to incomplete combustion in the diesel-engine generator and inhibited the release of energy in the fuel.

  16. Effect of Algae-Derived Biodiesel on Ignition Delay, Combustion Process and Emission

    NASA Astrophysics Data System (ADS)

    Kumaran, Mahendran; Khalid, Amir; Salleh, Hamidon; Razali, Azahari; Sapit, Azwan; Jaat, Norrizam; Sunar, Norshuhaila

    2016-11-01

    Algae oil methyl esters produced from algae oil were blended with diesel at various volumetric percentages to evaluate the variations in the fuel properties. Microalgae biodiesel production has received much interest in an effort for sustainable development as the microalgae seem to be an attractive way to produce the biodiesel due to their ability to accumulate lipids and their very high actual photosynthetic yields. Correlations between fuel properties, including the calorific heat, density, kinematic viscosity, and oxidation stability of the Algae oil-diesel blends, and the blending ratio of the algae biodiesel have been established. As a result, low blending ratio of the Algae oil with diesel was recommended up to 2vol % in comparison with other type of biodiesel-diesel blends. The objective of this research is to investigate effect of biodiesel blending ratio on ignition delay, combustion process and emission for different type of biodiesel. The combustion tests of the Algae-Derived biodiesel blends were performed in a Rapid Compression Machine (RCM). The combustion tests were carried out at injection pressure of 130 MPa and ambient temperature were varied between 750 K and 1100 K. The result from the experiment is compared with Palm-Oil biodiesel which are varied in biodiesel percentage from 5vol% to 15vol% and jatropha biodiesel. Higher ignition delay period were clearly observed with higher blending ratio. It seems that increasing blending ratio exhibits relatively weakens in fuel ignitibility and therefore prolongs the ignition delay of algae biodiesel. A2 had the lowest ignition delay period when compared with J2, B5, B10 and B15 due to lower density that present in A2 molecules.The concentration of carbon dioxide and nitrogen monoxide in the exhaust gas increased with higher blending ratio while the concentration of carbon monoxide and hydrocarbon decreased.

  17. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel.

    PubMed

    Imdadul, H K; Zulkifli, N W M; Masjuki, H H; Kalam, M A; Kamruzzaman, M; Rashed, M M; Rashedul, H K; Alwi, Azham

    2017-01-01

    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.

  18. Particle emissions from microalgae biodiesel combustion and their relative oxidative potential.

    PubMed

    Rahman, M M; Stevanovic, S; Islam, M A; Heimann, K; Nabi, M N; Thomas, G; Feng, B; Brown, R J; Ristovski, Z D

    2015-09-01

    Microalgae are considered to be one of the most viable biodiesel feedstocks for the future due to their potential for providing economical, sustainable and cleaner alternatives to petroleum diesel. This study investigated the particle emissions from a commercially cultured microalgae and higher plant biodiesels at different blending ratios. With a high amount of long carbon chain lengths fatty acid methyl esters (C20 to C22), the microalgal biodiesel used had a vastly different average carbon chain length and level of unsaturation to conventional biodiesel, which significantly influenced particle emissions. Smaller blend percentages showed a larger reduction in particle emission than blend percentages of over 20%. This was due to the formation of a significant nucleation mode for the higher blends. In addition measurements of reactive oxygen species (ROS), showed that the oxidative potential of particles emitted from the microalgal biodiesel combustion were lower than that of regular diesel. Biodiesel oxygen content was less effective in suppressing particle emissions for biodiesels containing a high amount of polyunsaturated C20-C22 fatty acid methyl esters and generated significantly increased nucleation mode particle emissions. The observed increase in nucleation mode particle emission is postulated to be caused by very low volatility, high boiling point and high density, viscosity and surface tension of the microalgal biodiesel tested here. Therefore, in order to achieve similar PM (particulate matter) emission benefits for microalgal biodiesel likewise to conventional biodiesel, fatty acid methyl esters (FAMEs) with high amounts of polyunsaturated long-chain fatty acids (≥C20) may not be desirable in microalgal biodiesel composition.

  19. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification.

    PubMed

    Lee, Adam F; Bennett, James A; Manayil, Jinesh C; Wilson, Karen

    2014-11-21

    Concern over the economics of accessing fossil fuel reserves, and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting such carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Here we discuss catalytic esterification and transesterification solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands.

  20. University of Idaho tests engines with biodiesel from waste oil

    SciTech Connect

    Peterson, C.; Fleischman, G.

    1995-12-31

    This article reports on preliminary work at the University of Idaho that investigates the possibilities of capitalizing on Idaho`s large volumes of waste oil and potatoes-generated ethanol to produce biodiesel fuel. This fuel would be hydrogenated soy ethyl ester, MySEE for short, made through a reaction between waste oil and ethanol made from potato waste. Address for full report is given.

  1. Preparation and Viscosity of Biodiesel from New and Used Vegetable Oil: An Inquiry-Based Environmental Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clarke, Nathan R.; Casey, John Patrick; Brown, Earlene D.; Oneyma, Ezenwa; Donaghy, Kelley J.

    2006-01-01

    A synthesis is developed to make biodiesel from vegetable oils such as soybean, sunflower, and corn oil, as an exercise in the laboratory. Viscosity measurements were used to gain an understanding of an intermolecular property of the biodiesel and that has limited the implementation of biodiesel on a wide scale basis, solidification at low…

  2. Preparation and Viscosity of Biodiesel from New and Used Vegetable Oil: An Inquiry-Based Environmental Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clarke, Nathan R.; Casey, John Patrick; Brown, Earlene D.; Oneyma, Ezenwa; Donaghy, Kelley J.

    2006-01-01

    A synthesis is developed to make biodiesel from vegetable oils such as soybean, sunflower, and corn oil, as an exercise in the laboratory. Viscosity measurements were used to gain an understanding of an intermolecular property of the biodiesel and that has limited the implementation of biodiesel on a wide scale basis, solidification at low…

  3. Analyses of extracted biodiesel and petroleum diesel exhaust particle and the effects on endothelial cell toxicity and antioxidant response.

    EPA Science Inventory

    Biodiesel (BD) is a renewable energy source and is readily substituted in diesel engines. Combustion of biodiesel is cleaner due to the efficiency of the fuel to completely combust. Biodiesel combustion emissions contain less CO, PAHs, aldehydes, and particulate matter (PM) mas...

  4. Cuphea Oil as Source of Biodiesel with Improved Fuel Properties Caused by High Content of Methyl Decanoate

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, defined as the mono-alkyl esters of vegetable oils and animal fats, is an alternative to conventional petroleum-based diesel fuel. Biodiesel has been prepared from numerous common vegetable oils or fats as well as new or less common feedstocks. Major issues facing biodiesel include seve...

  5. Analyses of extracted biodiesel and petroleum diesel exhaust particle and the effects on endothelial cell toxicity and antioxidant response.

    EPA Science Inventory

    Biodiesel (BD) is a renewable energy source and is readily substituted in diesel engines. Combustion of biodiesel is cleaner due to the efficiency of the fuel to completely combust. Biodiesel combustion emissions contain less CO, PAHs, aldehydes, and particulate matter (PM) mas...

  6. Coagulation-flocculation of marine Chlorella sp. for biodiesel production.

    PubMed

    Sanyano, Naruetsawan; Chetpattananondh, Pakamas; Chongkhong, Sininart

    2013-11-01

    Harvesting of marine Chlorella sp. by autoflocculation and flocculation by addition of coagulant with pH adjustment was investigated in this study. Autoflocculation provided low efficiency. Response surface methodology was employed to optimize the coagulant dosage and pH for flocculation. Aluminium sulfate and ferric chloride were investigated coagulants. The empirical models from RSM are in a good agreement with the experimental results. The optimum flocculation was achieved at ferric chloride dosage 143 mg/L, pH 8.1 and settling time 40 min. Biomass concentration also presented the significant effect on harvesting efficiency. Lipid extracted from marine Chlorella sp. cultivated in urea fertilizer medium with hexane as a solvent is suitable to produce biodiesel according to it contains high proportion of saturated fatty acids. The crude lipid should be purified to remove some impurities before making biodiesel. As the free fatty acid content was higher than 1% a two-step biodiesel production is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Oil palm for biodiesel in Brazil—risks and opportunities

    NASA Astrophysics Data System (ADS)

    Englund, Oskar; Berndes, Göran; Persson, U. Martin; Sparovek, Gerd

    2015-04-01

    Although mainly used for other purposes, and historically mainly established at the expense of tropical forests, oil palm can be the most land efficient feedstock for biodiesel. Large parts of Brazil are suitable for oil palm cultivation and a series of policy initiatives have recently been launched to promote oil palm production. These initiatives are however highly debated both in the parliament and in academia. Here we present results of a high resolution modelling study of opportunities and risks associated with oil palm production for biodiesel in Brazil, under different energy, policy, and infrastructure scenarios. Oil palm was found to be profitable on extensive areas, including areas under native vegetation where establishment would cause large land use change (LUC) emissions. However, some 40-60 Mha could support profitable biodiesel production corresponding to approximately 10% of the global diesel demand, without causing direct LUC emissions or impinging on protected areas. Pricing of LUC emissions could make oil palm production unprofitable on most lands where conversion would impact on native ecosystems and carbon stocks, if the carbon price is at the level 125/tC, or higher.

  8. A review on production of biodiesel using catalyzed transesterification

    NASA Astrophysics Data System (ADS)

    Dash, Santosh Kumar; Lingfa, Pradip

    2017-07-01

    Biodiesel is arguably an important fuel for compression ignition engine as far as sustainability and environmental issues are concerned. It can be produced from both edible and non-edible vegetable oils and animal fats. Owing to higher viscosity, the utilization of crude vegetable oil is not advisable as it results engine failure. For reducing the viscosity and improving the other fuel characteristics comparable to that of diesel fuel, different approaches have been developed. However, transesterification process is very reliable, less costly and easy method compared to other methods. Due to more free fatty acids content in most of the non-edible vegetable oils, a pretreatment is employed to convert the acids to ester, then transesterified with suitable alcohol. Primarily yield of biodiesel depends upon the molar ratio of oil/alcohol, reaction temperature, reaction time, amount of catalyst, type of catalyst, stirring speed. Both homogeneous and heterogeneous catalysts are used for synthesis purposes. Heterogeneous catalysts are less costly, environmental benign and can be derived from natural resources. Enzymatic catalysts are more environmental benign than heterogeneous catalysts but are costly, which hinders its widespread research and utilization. This article reviews the results of prominent works and researches in the field of production of biodiesel via catalyzed transesterification process.

  9. Optimization of biodiesel production process using recycled vegetable oil

    NASA Astrophysics Data System (ADS)

    Lugo, Yarely

    Petro diesel toxic emissions and its limited resources have created an interest for the development of new energy resources, such as biodiesel. Biodiesel is traditionally produced by a transesterification reaction between vegetable oil and an alcohol in the presence of a catalyst. However, this process is slow and expensive due to the high cost of raw materials. Low costs feedstock oils such as recycled and animal fats are available but they cannot be transesterified with alkaline catalysts due to high content of free fatty acids, which can lead to undesirable reactions such as saponification. In this study, we reduce free fatty acids content by using an acid pre-treatment. We compare sulfuric acid, hydrochloric acid and ptoluenesulfonic acid (PTSA) to pre-treat recycled vegetable oil. PTSA removes water after 60 minutes of treatment at room temperature or within 15 minutes at 50°C. The pretreatment was followed by a transesterification reaction using alkaline catalyst. To minimize costs and accelerate reaction, the pretreatment and transesterification reaction of recycle vegetable oil was conducted at atmospheric pressure in a microwave oven. Biodiesel was characterized using a GC-MS method.

  10. Utilization of Biodiesel By-Products for Biogas Production

    PubMed Central

    Kolesárová, Nina; Hutňan, Miroslav; Bodík, Igor; Špalková, Viera

    2011-01-01

    This contribution reviews the possibility of using the by-products from biodiesel production as substrates for anaerobic digestion and production of biogas. The process of biodiesel production is predominantly carried out by catalyzed transesterification. Besides desired methylesters, this reaction provides also few other products, including crude glycerol, oil-pressed cakes, and washing water. Crude glycerol or g-phase is heavier separate liquid phase, composed mainly by glycerol. A couple of studies have demonstrated the possibility of biogas production, using g-phase as a single substrate, and it has also shown a great potential as a cosubstrate by anaerobic treatment of different types of organic waste or energy crops. Oil cakes or oil meals are solid residues obtained after oil extraction from the seeds. Another possible by-product is the washing water from raw biodiesel purification, which is an oily and soapy liquid. All of these materials have been suggested as feasible substrates for anaerobic degradation, although some issues and inhibitory factors have to be considered. PMID:21403868

  11. Microbial biodiesel production by direct methanolysis of oleaginous biomass.

    PubMed

    Thliveros, Panagiotis; Uçkun Kiran, Esra; Webb, Colin

    2014-04-01

    Biodiesel is usually produced by the transesterification of vegetable oils and animal fats with methanol, catalyzed by strong acids or bases. This study introduces a novel biodiesel production method that features direct base-catalyzed methanolysis of the cellular biomass of oleaginous yeast Rhodosporidium toruloides Y4. NaOH was used as catalyst for transesterification reactions and the variables affecting the esterification level including catalyst concentration, reaction temperature, reaction time, solvent loading (methanol) and moisture content were investigated using the oleaginous yeast biomass. The most suitable pretreatment condition was found to be 4gL(-1) NaOH and 1:20 (w/v) dried biomass to methanol ratio for 10h at 50°C and under ambient pressure. Under these conditions, the fatty acid methyl ester (FAME) yield was 97.7%. Therefore, the novel method of direct base-catalyzed methanolysis of R. toruloides is a much simpler, less tedious and time-consuming, process than the conventional processes with higher FAME (biodiesel) conversion yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. PERFORMANCE OF THE CAPSTONE C30 MICROTURBINE ON BIODIESEL BENDS.

    SciTech Connect

    KRISHNA,C.R.

    2007-01-01

    This report will describe the tests of biodiesel blends as a fuel in a Capstone oil fired microturbine (C30) with a nominal rating of 30 kW. The blends, in ASTM No. 2 heating oil, ranged from 0% to 100% biodiesel. No changes were made to the microturbine system for operation on the blends. Apart from the data that the control computer acquires on various turbine parameters, measurements were made in the hot gas exhaust from the turbine. The results from this performance testing and from the atomization tests reported previously provide some insight into the use of biodiesel blends in microturbines of this type. The routine use of such blends would need more tests to establish that the life of the critical components of the microturbine are not diminished from what they are on the baseline diesel or heating fuel. Of course, the extension to 'widespread' use of such blends in generating systems based on the microturbine is also determined by economic and other considerations.

  13. Microwave-assisted enzymatic synthesis of beef tallow biodiesel.

    PubMed

    Rós, Patrícia C M Da; Castro, Heizir F de; Carvalho, Ana K F; Soares, Cleide M F; Moraes, Flavio F de; Zanin, Gisella M

    2012-04-01

    Optimal conditions for the microwave-assisted enzymatic synthesis of biodiesel have been developed by a full 2² factorial design leading to a set of seven runs with different combinations of molar ratio and temperature. The main goal was to reduce the reaction time preliminarily established by a process of conventional heating. Reactions yielding biodiesel, in which beef tallow and ethanol used as raw materials were catalyzed by lipase from Burkholderia cepacia immobilized on silica-PVA and microwave irradiations within the range of 8-15 W were performed to reach the reaction temperature. Under optimized conditions (1:6 molar ratio of beef tallow to ethanol molar ratio at 50°C) almost total conversion of the fatty acid presented in the original beef tallow was converted into ethyl esters in a reaction that required 8 h, i.e., a productivity of about 92 mg ethyl esters g⁻¹ h⁻¹. This represents an increase of sixfold for the process carried out under conventional heating. In general, the process promises low energy demand and higher biodiesel productivity. The microwave assistance speeds up the enzyme catalyzed reactions, decreases the destructive effects on the enzyme of the operational conditions such as, higher temperature, stability, and specificity to its substrate, and allows the entire reaction medium to be heated uniformly.

  14. Microalga Scenedesmus obliquus as a potential source for biodiesel production.

    PubMed

    Mandal, Shovon; Mallick, Nirupama

    2009-08-01

    Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely replace the petroleum-derived transport fuels. Therefore, improving lipid content of microalgal strains could be a cost-effective second generation feedstock for biodiesel production. Lipid accumulation in Scenedesmus obliquus was studied under various culture conditions. The most significant increase in lipid reached 43% of dry cell weight (dcw), which was recorded under N-deficiency (against 12.7% under control condition). Under P-deficiency and thiosulphate supplementation the lipid content also increased up to 30% (dcw). Application of response surface methodology in combination with central composite rotary design (CCRD) resulted in a lipid yield of 61.3% (against 58.3% obtained experimentally) at 0.04, 0.03, and 1.0 g l(-1) of nitrate, phosphate, and sodium thiosulphate, respectively for time culture of 8 days. Scenedesmus cells pre-grown in glucose (1.5%)-supplemented N 11 medium when subjected to the above optimized condition, the lipid accumulation was boosted up to 2.16 g l(-1), the value approximately 40-fold higher with respect to the control condition. The presence of palmitate and oleate as the major constituents makes S. obliquus biomass a suitable feedstock for biodiesel production.

  15. MCFC integrated system in a biodiesel production process

    NASA Astrophysics Data System (ADS)

    Urbani, F.; Freni, S.; Galvagno, A.; Chiodo, V.

    2011-03-01

    The continuous increasing in biodiesel production by transesterification process is leading to an excess of glycerol production as a byproduct. The utilization of this huge amount of glycerol appears as a not easy solvable problem and thus several authors have proposed alternative ways. The integration of the main production process with a glycerol feed molten carbonate fuel cells bottoming cycle, to satisfy plant energy requirements, seems to be one of the most promising one. The proposed paper reports the main results obtained by authors in the framework of an investigation on a possible use of glycerol as energy sources for a real pilot plant for biodiesel production. An overall evaluation of worldwide biodiesel production plants was made and especially about the production capacity in European Union in the last decade. To make a more detailed study, authors were taken into account a real production plant. After a preliminary step, purported to plant mass and energy flows determination, authors considered the integration of a bottoming cycle based on: (i) steam reforming of glycerol for syn-gas production; (ii) molten carbonate fuel cells (MCFC) system supplied by syn-gas for heat and electricity production. A mathematical model, based on experimental data, has been developed to calculate mass and energy balances for the proposed plant lay-out as well as plant energy efficiency enhancement has been determined. Results have evidenced the feasibility of this process and demonstrated that plant integrated with bottoming cycle can reach a very high level of energy self-production.

  16. Biodiesel production from microalgae: co-location with sugar mills.

    PubMed

    Lohrey, Christian; Kochergin, Vadim

    2012-03-01

    Co-location of algae production facilities with cane sugar mills can be a technically advantageous path towards production of biodiesel. Algal biodiesel production was integrated with cane sugar production in the material and energy balance simulation program Sugars™. A model was developed that allowed comparison of production scenarios involving dewatering the algae to 20% ds (dry solids) or 30% ds prior to thermal drying. The net energy ratio, E(R) (energy produced/energy consumed) of the proposed process was found to be 1.5. A sensitivity analysis showed that this number ranged from 0.9 to 1.7 when the range of values for oil content, CO(2) utilization, oil conversion, and harvest density reported in the literature were evaluated. By utilizing available waste-resources from a 10,000 ton/d cane sugar mill, a 530 ha algae farm can produce 5.8 million L of biodiesel/yr and reduce CO(2) emissions of the mill by 15% without the need for fossil fuels.

  17. 10 CFR 490.707 - Increasing the qualifying volume of the biodiesel component.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... component. 490.707 Section 490.707 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.707 Increasing the qualifying volume of the biodiesel... annual alternative fuel use in light duty vehicles by fleets and covered persons exceeds 450 gallons or...

  18. 10 CFR 490.707 - Increasing the qualifying volume of the biodiesel component.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... component. 490.707 Section 490.707 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.707 Increasing the qualifying volume of the biodiesel... annual alternative fuel use in light duty vehicles by fleets and covered persons exceeds 450 gallons or...

  19. 10 CFR 490.707 - Increasing the qualifying volume of the biodiesel component.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... component. 490.707 Section 490.707 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.707 Increasing the qualifying volume of the biodiesel... annual alternative fuel use in light duty vehicles by fleets and covered persons exceeds 450 gallons or...

  20. 10 CFR 490.707 - Increasing the qualifying volume of the biodiesel component.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... component. 490.707 Section 490.707 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.707 Increasing the qualifying volume of the biodiesel... annual alternative fuel use in light duty vehicles by fleets and covered persons exceeds 450 gallons or...

  1. Biodiesel from Citrus reticulata (Mandarin orange) seed oil, a potential non-food feedstock

    USDA-ARS?s Scientific Manuscript database

    Oil extracted from Citrus reticulata (Mandarin orange) seeds was investigated as a potential feedstock for the production of biodiesel. The biodiesel fuel was prepared by sodium methoxide-catalyzed transesterification of the oil with methanol. Fuel properties that were determined include cetane numb...

  2. Analysis of biodiesel and frying vegetable oils by means of FTIR photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Lima, S. M.; Izida, T.; Figueiredo, M. S.; Andrade, L. H. C.; Del Ré, P. V.; Jorge, N.; Buba, E.; Aristone, F.

    2008-01-01

    Fourier Transform Infrared Photoacoustic Spectroscopy was used to determine the mid-infrared vibrational modes of biodiesel and vegetable oils. Our results indicate that this method can contribute significantly to the biodiesel wash process during the sample preparation. Besides, by analyzing the spectra of vegetable oils used to fry snacks we could to monitor the degradation in function of the fried time.

  3. Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids

    USDA-ARS?s Scientific Manuscript database

    For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...

  4. Clean Air Act Settlement Reduces Air Emissions and Improves Chemical Safety at Rhode Island Biodiesel Plant

    EPA Pesticide Factsheets

    The U.S. EPA & U.S. Department of Justice have settled an environmental enforcement case with Newport Biodiesel, Inc., resulting in reduced air emissions and improved safety controls at the company’s biodiesel manufacturing plant in Newport, Rhode Island.

  5. Cold Flow Properties of Biodiesel by Automatic and Manual Analysis Methods

    USDA-ARS?s Scientific Manuscript database

    Biodiesel from most common feedstocks has inferior cold flow properties compared to conventional diesel fuel. Blends with as little as 10 vol% biodiesel content typically have significantly higher cloud point (CP), pour point (PP) and cold filter plugging point (CFPP) than No. 2 grade diesel fuel (...

  6. Soy Biodiesel Emissions Have Reduced Inflammatory Effects Compared to Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrat...

  7. Determination of the Heat of Combustion of Biodiesel Using Bomb Calorimetry: A Multidisciplinary Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Akers, Stephen M.; Conkle, Jeremy L.; Thomas, Stephanie N.; Rider, Keith B.

    2006-01-01

    Biodiesel was synthesized by transesterification of waste vegetable oil using common glassware and reagents, and characterized by measuring heat of combustion, cloud point, density and measuring the heat of combustion and density together allows the student the energy density of the fuel. Analyzing the biodiesel can serve as a challenging and…

  8. Biodiesel Supply and Consumption in the Short-Term Energy Outlook

    EIA Publications

    2009-01-01

    The historical biodiesel consumption data published in the Energy Information Administration's Monthly Energy Review March 2009 edition were revised to account for imports and exports. Table 10.4 of the Monthly Energy Review was expanded to display biodiesel imports, exports, stocks, stock change, and consumption. Similar revisions were made in the April 2009 edition of the Short-Term Energy Outlook (STEO).

  9. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    PubMed Central

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  10. Developing sustainable strategies for biodiesel synthesis using high fatty acid feedstock

    USDA-ARS?s Scientific Manuscript database

    Biodiesel (typically fatty acid methyl esters (FAME)) has received much attention because it is a renewable biofuel that contributes little to global warming compared to petroleum-based diesel fuel. The most common methods used for biodiesel production are based on the alkali-catalyzed transesterif...

  11. Comparative Toxicity of Biodiesel Exhaust and Petroleum Diesel Exhaust Particulate Matter Using WKY Rat Alveolar Machrophages

    EPA Science Inventory

    Exposure to fine ambient particulate matter <2.5um (PM2.5) can induce airway inflammation, cardiopulmonary morbidity and mortality. Combustion of petroleum diesel and biodiesel contributes to PM2.5. Possible toxicity caused by inhalation of biodiesel emission particles (BioDEP) h...

  12. Escherichia coli as a fatty acid and biodiesel factory: current challenges and future directions.

    PubMed

    Rahman, Ziaur; Rashid, Naim; Nawab, Javed; Ilyas, Muhammad; Sung, Bong Hyun; Kim, Sun Chang

    2016-06-01

    Biodiesel has received widespread attention as a sustainable, environment-friendly, and alternative source of energy. It can be derived from plant, animal, and microbial organisms in the form of vegetable oil, fats, and lipids, respectively. However, biodiesel production from such sources is not economically feasible due to extensive downstream processes, such as trans-esterification and purification. To obtain cost-effective biodiesel, these bottlenecks need to be overcome. Escherichia coli, a model microorganism, has the potential to produce biodiesel directly from ligno-cellulosic sugars, bypassing trans-esterification. In this process, E. coli is engineered to produce biodiesel using metabolic engineering technology. The entire process of biodiesel production is carried out in a single microbial cell, bypassing the expensive downstream processing steps. This review focuses mainly on production of fatty acid and biodiesel in E. coli using metabolic engineering approaches. In the first part, we describe fatty acid biosynthesis in E. coli. In the second half, we discuss bottlenecks and strategies to enhance the production yield. A complete understanding of current developments in E. coli-based biodiesel production and pathway optimization strategies would reduce production costs for biofuels and plant-derived chemicals.

  13. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel.

    PubMed

    Berman, Paula; Leshem, Adi; Etziony, Oren; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2013-04-16

    Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution.

  14. Biodiesel Supply and Consumption in the Short-Term Energy Outlook

    EIA Publications

    2009-01-01

    The historical biodiesel consumption data published in the Energy Information Administration's Monthly Energy Review March 2009 edition were revised to account for imports and exports. Table 10.4 of the Monthly Energy Review was expanded to display biodiesel imports, exports, stocks, stock change, and consumption. Similar revisions were made in the April 2009 edition of the Short-Term Energy Outlook (STEO).

  15. Effects of Minor Constituents on Cold Flow Properties and Performance of Biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative fuel or extender made from renewable agricultural lipids that may be burned in a compression-ignition (diesel) engine. It is defined as the mono-alkyl esters of fatty acids derived from domestically available plant oils or animal fats. Biodiesel has many important techn...

  16. Synthesis and analysis of an alkenone-free biodiesel from Isochrysis sp.

    USDA-ARS?s Scientific Manuscript database

    Some marine microalgae, such as Isochrysis sp., produce high-melting (~70 ºC) lipids known as long-chain alkenones that detrimentally affect biodiesel fuel quality. A method has been developed for the production of an alkenone-free Isochrysis biodiesel. This material was prepared on sufficient scale...

  17. Biodiesel: Fuel properties, its “Design” and a source of “Designer” fuel

    USDA-ARS?s Scientific Manuscript database

    The fuel properties of biodiesel, a biogenic alternative to petrodiesel, are largely determined by its component fatty acid alkyl esters, most commonly methyl esters. These esters have vastly different properties. The properties of biodiesel are an aggregate of the properties of its components and t...

  18. Improved oxidative stability of biodiesel via alternative processing methods using cottonseed oil

    USDA-ARS?s Scientific Manuscript database

    Biodiesel from waste cooking oil (WCO) requires antioxidants to meet oxidation stability specifications set forth in ASTM D6751 or EN 14214. In contrast, unrefined cottonseed oil (CSO), containing tocopherols and gossypol, produces biodiesel of higher oxidation stability. However, only a portion of ...

  19. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    ERIC Educational Resources Information Center

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  20. DNA adducts induced by in vitro activation of diesel and biodiesel exhaust extracts

    EPA Science Inventory

    The abstract reports the results of studies assessing the relative DNA damage potential of extracts of exhaust particles resulting from the combustion of petroleum diesel, biodiesel, and petroleum diesel-biodiesel blends. Results indicate that the commercially available B20 petr...

  1. The Bus Stops Here: The Case for Biodiesel in School Buses.

    ERIC Educational Resources Information Center

    Rao, Steven T.

    2002-01-01

    Suggests that diesel exhaust from most of the nation's school buses may be hazardous to children's health. Documents studies on the nature and potential magnitude of the risk to children and proposes replacing petroleum diesel with biodiesel as the fuel for school buses. Presents the merits and practicality of switching to biodiesel as a healthier…

  2. Comparative Toxicity of Soy Biodiesel and Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity from combustion of 100% soy-based biodiesel (B100) was compared to that of petrodiesel (B0) or a 20% biodiesel / 80% petrodiesel mix (B20) in healthy and house dust mite (HDM)-allergic Balb/cJ mice. Exhaust from combustion of B0, B20, or B100 was diluted to target conce...

  3. Improving the cold flow properties of biodiesel by skeletal isomerization of fatty acid chains

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is defined as the mono-alkyl fatty acid esters made from vegetable oil or animal fat lipids. Despite its many advantages, biodiesel from most lipid feedstocks has generally poor cold flow properties. The present study evaluates the fuel related properties of branched-chain fatty acid methy...

  4. Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and ...

  5. Oxidative Stress, Inflammatory and Immune Response after Inhalation Exposure to Biodiesel Exhaust

    EPA Science Inventory

    Biodiesel (BD) is an advanced fuel produced from renewable domestic sources. The broad uses of BD in different industries including mining may lead to potential health effects. We hypothesized that the toxicity of biodiesel exhaust (BDE) is dependent at least on three major mecha...

  6. Instrumental Analysis of Biodiesel Content in Commercial Diesel Blends: An Experiment for Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Buchman, Joseph T.

    2012-01-01

    The potential of replacing petroleum fuels with renewable biofuels has drawn significant public interest. Many states have imposed biodiesel mandates or incentives to use commercial biodiesel blends. We present an inquiry-driven experiment where students are given the tasks to gather samples, develop analytical methods using various instrumental…

  7. Studies on the preparation of biodiesel from Zanthoxylum bungeanum Maxim seed oil.

    PubMed

    Yang, Fang-Xia; Su, Yin-Quan; Li, Xiu-Hong; Zhang, Qiang; Sun, Run-Cang

    2008-09-10

    To reduce the cost of biodiesel production, the feasibility of Zanthoxylum bungeanum Maxim seed oil (ZBMSO) was studied to produce biodiesel. A methyl ester biodiesel was produced from ZBMSO using methanol, sulfuric acid, and potassium hydroxide in a two-stage process. The main variables that affect the process were investigated. The high level of free fatty acids in ZBMSO was reduced to < 1% by an acid-catalyzed (2% H2SO4) esterification with methanol to oil molar ratios of 20-25:1 for 1 h. A maximum yield of 96% of methyl esters in ZBMSO biodiesel was achieved using a 6.5:1 molar ratio of methanol to oil, 0.9% KOH (percent oil), and reaction time of 0.5 h at 55 degrees C. Further investigation has also been devoted to the assessment of some important fuel properties of ZBMSO biodiesel produced under the optimized conditions according to specifications for biodiesel as fuel in diesel engines. The fuel properties of the ZBMSO biodiesel obtained are similar to those of no. 0 petroleum diesel fuel, and most of the parameters comply with the limits established by specifications for biodiesel.

  8. Characterising vehicle emissions from the burning of biodiesel made from vegetable oil.

    PubMed

    Zou, L; Atkinson, S

    2003-10-01

    Biodiesel manufactured from canola oil was blended with diesel and used as fuel in two diesel vehicles. This study aimed to test the emissions of diesel engines using blends of 100%, 80%, 60%, 40% , 20% biodiesel and 100% petroleum diesel, and characterise the particulate matter and gaseous emissions, with particular attention to levels of polycyclic aromatic hydrocarbons (PAHs) which are harmful to humans. A real time dust monitor was also used to monitor the continuous dust emissions during the entire testing cycle. The ECE(Euro 2) drive cycle was used for all emission tests. It was found that the particle concentration was up to 33% less when the engine burnt 100% biodiesel, compared to 100% diesel. Particle emission reduced with increased percentages of biodiesel in the fuel blends. Reductions of NOx, HC and CO were limited to about 10% when biodiesel was burned. Levels of CO2 emissions from the use of biodiesel and diesel were similar. Eighteen EPA priority PAHs were targeted, with only 6 species detected in the gaseous phase from the samples. 9 PAHs were detected in particulate phases at much lower levels than gaseous PAHs. Some marked reductions were observed for less toxic gaseous PAHs such as naphthalene when burning 100% biodiesel, but the particulate PAH emissions, which have more implications to adverse health effects, were virtually unchanged and did not show a statistically significant reduction. These findings are useful to gain an understanding of the emissions and environmental impacts of biodiesel.

  9. Biodiesel production by the green microalga Scenedesmus obliquus in a recirculatory aquaculture system.

    PubMed

    Mandal, Shovon; Mallick, Nirupama

    2012-08-01

    Biodiesel production was examined with Scenedesmus obliquus in a recirculatory aquaculture system with fish pond discharge and poultry litter to couple with waste treatment. Lipid productivity of 14,400 liter ha(-1) year(-1) was projected with 11 cultivation cycles per year. The fuel properties of the biodiesel produced adhered to Indian and international standards.

  10. Determination of the Heat of Combustion of Biodiesel Using Bomb Calorimetry: A Multidisciplinary Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Akers, Stephen M.; Conkle, Jeremy L.; Thomas, Stephanie N.; Rider, Keith B.

    2006-01-01

    Biodiesel was synthesized by transesterification of waste vegetable oil using common glassware and reagents, and characterized by measuring heat of combustion, cloud point, density and measuring the heat of combustion and density together allows the student the energy density of the fuel. Analyzing the biodiesel can serve as a challenging and…

  11. Biodiesel Clears the Air in Underground Mines, Clean Cities, Fact Sheet, June 2009

    SciTech Connect

    Not Available

    2009-06-01

    Mining companies are using biodiesel in their equipment to help clear the air of diesel particulate matter (DPM). This action improves air quality and protects miners' lungs. Though using biodiesel has some challenges in cold weather, tax incentives, and health benefits make it a viable option.

  12. Comparative Toxicity of Biodiesel Exhaust and Petroleum Diesel Exhaust Particulate Matter Using WKY Rat Alveolar Machrophages

    EPA Science Inventory

    Exposure to fine ambient particulate matter <2.5um (PM2.5) can induce airway inflammation, cardiopulmonary morbidity and mortality. Combustion of petroleum diesel and biodiesel contributes to PM2.5. Possible toxicity caused by inhalation of biodiesel emission particles (BioDEP) h...

  13. Soy Biodiesel Emissions Have Reduced Inflammatory Effects Compared to Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrat...

  14. Effect of soybean oil fatty acid composition and selenium application on biodiesel properties

    USDA-ARS?s Scientific Manuscript database

    Biodiesel consisting of principally monounsaturated fatty acid methyl esters (FAME) has been reported to strike the best balance between cold flow properties and oxidative stability, therefore producing a superior fuel. In addition, treating biodiesel with antioxidants such as selenium also increas...

  15. Coriander Seed Oil Methyl Esters as Biodiesel Fuel: Unique Fatty Acid Composition and Excellent Oxidative Stability

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid (FA) hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt %) acid. Most of the remaining FA...

  16. Biodiesel from corn distillers dried grains with solubles: preparation, evaluation and properties

    USDA-ARS?s Scientific Manuscript database

    Corn distillers’ dried grains with solubles (DDGS) is a co-product of dry-grind ethanol fermentation and represents a low-cost feedstock with potential to improve process economics and logistics of biodiesel manufacture through integration of biodiesel and ethanol production. Oil extracted from DDGS...

  17. Will biodiesel derived from algal oils live up to its promise? A fuel property assessment

    USDA-ARS?s Scientific Manuscript database

    Algae have been attracting considerable attention as a source of biodiesel recently. This attention is largely due to the claimed high production potential of algal oils while circumventing the food vs. fuel issue. However, the properties of biodiesel fuels derived from algal oils have been only spa...

  18. Comparative Toxicity of Soy Biodiesel and Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity from combustion of 100% soy-based biodiesel (B100) was compared to that of petrodiesel (B0) or a 20% biodiesel / 80% petrodiesel mix (B20) in healthy and house dust mite (HDM)-allergic Balb/cJ mice. Exhaust from combustion of B0, B20, or B100 was diluted to target conce...

  19. Oxidative Stress, Inflammatory and Immune Response after Inhalation Exposure to Biodiesel Exhaust

    EPA Science Inventory

    Biodiesel (BD) is an advanced fuel produced from renewable domestic sources. The broad uses of BD in different industries including mining may lead to potential health effects. We hypothesized that the toxicity of biodiesel exhaust (BDE) is dependent at least on three major mecha...

  20. Instrumental Analysis of Biodiesel Content in Commercial Diesel Blends: An Experiment for Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Buchman, Joseph T.

    2012-01-01

    The potential of replacing petroleum fuels with renewable biofuels has drawn significant public interest. Many states have imposed biodiesel mandates or incentives to use commercial biodiesel blends. We present an inquiry-driven experiment where students are given the tasks to gather samples, develop analytical methods using various instrumental…

  1. DNA adducts induced by in vitro activation of diesel and biodiesel exhaust extracts

    EPA Science Inventory

    The abstract reports the results of studies assessing the relative DNA damage potential of extracts of exhaust particles resulting from the combustion of petroleum diesel, biodiesel, and petroleum diesel-biodiesel blends. Results indicate that the commercially available B20 petr...

  2. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    ERIC Educational Resources Information Center

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  3. The Bus Stops Here: The Case for Biodiesel in School Buses.

    ERIC Educational Resources Information Center

    Rao, Steven T.

    2002-01-01

    Suggests that diesel exhaust from most of the nation's school buses may be hazardous to children's health. Documents studies on the nature and potential magnitude of the risk to children and proposes replacing petroleum diesel with biodiesel as the fuel for school buses. Presents the merits and practicality of switching to biodiesel as a healthier…

  4. A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel

    USDA-ARS?s Scientific Manuscript database

    The increased interest in and use of biodiesel renders the availability of a sufficient supply of feedstock ever more urgent. While commodity vegetable oils such as soybean, rapeseed (canola), palm and sunflower may be seen as "classical" biodiesel feedstocks, additional feedstocks are needed to me...

  5. Thermodynamic Study on the Effects of Minor Constituents on Cold Weather Performance of Biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative diesel fuel made from vegetable oils, animal fats and other lipid feedstocks. Fuel properties and performance of biodiesel during cold weather are influenced by factors related to its feedstock, namely fatty acid composition and trace concentrations of monoacylglycerols,...

  6. Biodiesel development: New markets for conventional and genetically modified agricultural products

    SciTech Connect

    Duffield, J.; Shapouri, H.; Graboski, M.; McCormick, R.; Wilson, R.

    1998-09-01

    With environmental and energy source concerns on the rise, using agricultural fats and oils as fuel in diesel engines has captured increasing attention. Substituting petroleum diesel with biodiesel may reduce air emissions, increase the domestic supply of fuel, and create new markets for farmers. US agricultural fats and oils could support a large amount of biodiesel, but high production costs and competing uses of biodiesel feedstocks will likely prevent mass adoption of biodiesel fuel. Higher-priced niche markets could develop for biodiesels as a result of environmental regulations. Biodiesel has many environmental advantages relative to petroleum diesel, such as lower CO, CO{sub 2}, SO{sub x}, and particulate matter emissions. Enhancing fuel properties by genetically modifying oil crops could improve NO{sub x} emissions, cold flow, and oxidative stability, which have been identified as potential problems for biodiesel. Research activities need to be directed toward cost reduction, improving fuel properties, and analyzing the economic effects of biodiesel development on US agriculture.

  7. The effects of minor constituents on biodiesel cold flow properties: Differential scanning calorimetry (DSC) analyses

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative diesel fuel made from vegetable oils, animal fats and other lipid feedstocks. Fuel properties and performance of biodiesel during cold weather are influenced by factors related to lipid feedstock as well as small concentrations of monoacylglycerols and other minor constit...

  8. Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends

    USDA-ARS?s Scientific Manuscript database

    Several biodiesel fuels along with neat fatty acid methyl esters (FAMEs) commonly encountered in biodiesel were blended with ultra-low sulfur diesel (ULSD) fuel at low blend levels permitted by ASTM D975 (B1-B5) and cold flow properties such as cloud point (CP), cold filter plugging point (CFPP), an...

  9. Biodiesel Derived from a Source Enriched in Palmitoleic Acid, Macadamia Nut Oil

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative diesel fuel commonly produced from commodity vegetable oils such as palm, rapeseeed (canola) and soybean. These oils generally have fatty acid profiles that vary within the range of C16 and C18 fatty acids. Thus, the biodiesel fuels derived from these oils possess the c...

  10. Biodiesel Production by the Green Microalga Scenedesmus obliquus in a Recirculatory Aquaculture System

    PubMed Central

    Mandal, Shovon

    2012-01-01

    Biodiesel production was examined with Scenedesmus obliquus in a recirculatory aquaculture system with fish pond discharge and poultry litter to couple with waste treatment. Lipid productivity of 14,400 liter ha−1 year−1 was projected with 11 cultivation cycles per year. The fuel properties of the biodiesel produced adhered to Indian and international standards. PMID:22660702

  11. A process model to estimate biodiesel production costs.

    PubMed

    Haas, Michael J; McAloon, Andrew J; Yee, Winnie C; Foglia, Thomas A

    2006-03-01

    'Biodiesel' is the name given to a renewable diesel fuel that is produced from fats and oils. It consists of the simple alkyl esters of fatty acids, most typically the methyl esters. We have developed a computer model to estimate the capital and operating costs of a moderately-sized industrial biodiesel production facility. The major process operations in the plant were continuous-process vegetable oil transesterification, and ester and glycerol recovery. The model was designed using contemporary process simulation software, and current reagent, equipment and supply costs, following current production practices. Crude, degummed soybean oil was specified as the feedstock. Annual production capacity of the plant was set at 37,854,118 l (10 x 10(6)gal). Facility construction costs were calculated to be US dollar 11.3 million. The largest contributors to the equipment cost, accounting for nearly one third of expenditures, were storage tanks to contain a 25 day capacity of feedstock and product. At a value of US dollar 0.52/kg (dollar 0.236/lb) for feedstock soybean oil, a biodiesel production cost of US dollar 0.53/l (dollar 2.00/gal) was predicted. The single greatest contributor to this value was the cost of the oil feedstock, which accounted for 88% of total estimated production costs. An analysis of the dependence of production costs on the cost of the feedstock indicated a direct linear relationship between the two, with a change of US dollar 0.020/l (dollar 0.075/gal) in product cost per US dollar 0.022/kg (dollar 0.01/lb) change in oil cost. Process economics included the recovery of coproduct glycerol generated during biodiesel production, and its sale into the commercial glycerol market as an 80% w/w aqueous solution, which reduced production costs by approximately 6%. The production cost of biodiesel was found to vary inversely and linearly with variations in the market value of glycerol, increasing by US dollar 0.0022/l (dollar 0.0085/gal) for every US

  12. Sand tank experiment of a large volume biodiesel spill

    NASA Astrophysics Data System (ADS)

    Scully, K.; Mayer, K. U.

    2015-12-01

    Although petroleum hydrocarbon releases in the subsurface have been well studied, the impacts of subsurface releases of highly degradable alternative fuels, including biodiesel, are not as well understood. One concern is the generation of CH4­ which may lead to explosive conditions in underground structures. In addition, the biodegradation of biodiesel consumes O2 that would otherwise be available for the degradation of petroleum hydrocarbons that may be present at a site. Until now, biodiesel biodegradation in the vadose zone has not been examined in detail, despite being critical to understanding the full impact of a release. This research involves a detailed study of a laboratory release of 80 L of biodiesel applied at surface into a large sandtank to examine the progress of biodegradation reactions. The experiment will monitor the onset and temporal evolution of CH4 generation to provide guidance for site monitoring needs following a biodiesel release to the subsurface. Three CO2 and CH4 flux chambers have been deployed for long term monitoring of gas emissions. CO2 fluxes have increased in all chambers over the 126 days since the start of the experiment. The highest CO2 effluxes are found directly above the spill and have increased from < 0.5 μmol m-2 s-1 to ~3.8 μmol m-2 s-1, indicating an increase in microbial activity. There were no measurable CH4 fluxes 126 days into the experiment. Sensors were emplaced to continuously measure O2, CO2, moisture content, matric potential, EC, and temperature. In response to the release, CO2 levels have increased across all sensors, from an average value of 0.1% to 0.6% 126 days after the start of the experiment, indicating the rapid onset of biodegradation. The highest CO2 values observed from samples taken in the gas ports were 2.5%. Average O2 concentrations have decreased from 21% to 17% 126 days after the start of the experiment. O2 levels in the bottom central region of the sandtank declined to approximately 12%.

  13. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    SciTech Connect

    Handayani, Prima Astuti; Abdullah; Hadiyanto, Dan

    2015-12-29

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  14. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    NASA Astrophysics Data System (ADS)

    Handayani, Prima Astuti; Abdullah, dan Hadiyanto

    2015-12-01

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  15. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite.

    PubMed

    You, Qinghong; Yin, Xiulian; Zhao, Yuping; Zhang, Yan

    2013-11-01

    Lipase from Burkholderia cepacia was immobilized on modified attapulgite by cross-linking reaction for biodiesel production with jatropha oil as feedstock. Effects of various factors on biodiesel production were studied by single-factor experiment. Results indicated that the best conditions for biodiesel preparation were: 10 g jatropha oil, 2.4 g methanol (molar ratio of oil to methanol is 1:6.6) being added at 3h intervals, 7 wt% water, 10 wt% immobilized lipase, temperature 35°C, and time 24h. Under these conditions, the maximum biodiesel yield reached 94%. The immobilized lipase retained 95% of its relative activity during the ten repeated batch reactions. The half-life time of the immobilized lipase is 731 h. Kinetics was studied and the Vmax of the immobilized lipases were 6.823 mmol L(-1). This immobilized lipase catalyzed process has potential industrial use for biodiesel production to replace chemical-catalyzed method.

  16. A novel process for low-sulfur biodiesel production from scum waste.

    PubMed

    Ma, Huan; Addy, Min M; Anderson, Erik; Liu, Weiwei; Liu, Yuhuan; Nie, Yong; Chen, Paul; Cheng, Beijiu; Lei, Hanwu; Ruan, Roger

    2016-08-01

    Scum is an oil-rich waste from the wastewater treatment plants with a high-sulfur level. In this work, a novel process was developed to convert scum to high quality and low sulfur content biodiesel. A combination of solvent extraction and acid washing as pretreatment was developed to lower the sulfur content in the scum feedstock and hence improve biodiesel conversion yield and quality. Glycerin esterification was then employed to convert free fatty acids to glycerides. Moreover, a new distillation process integrating the traditional reflux distillation and adsorptive desulfurization was developed to further remove sulfur from the crude biodiesel. As a result, 70% of the filtered and dried scum was converted to biodiesel with sulfur content lower than 15ppm. The fatty acid methyl ester profiles showed that the refined biodiesel from the new process exhibited a higher quality and better properties than that from traditional process reported in previous studies.

  17. Lipase coated clusters of iron oxide nanoparticles for biodiesel synthesis in a solvent free medium.

    PubMed

    Mukherjee, Joyeeta; Gupta, Munishwar Nath

    2016-06-01

    Methyl or ethyl esters of long chain fatty acids are called biodiesel. Biodiesel is synthesized by the alcoholysis of oils/fats. In this work, lipase from Thermomyces lanuginosus was precipitated over the clusters of Fe3O4 nanoparticles. This biocatalyst preparation was used for obtaining biodiesel from soybean oil. After optimization of both immobilization conditions and process parameters, complete conversion to biodiesel was obtained in 3h and on lowering the enzyme amount, as little as 1.7U of lipase gave 96% conversion in 7h. The solvent free media with oil:ethanol (w/w) of 1:4 and 40°C with 2% (w/w) water along with 20% (w/w) silica (for facilitating acyl migration) were employed for reaching this high % of conversion. The biocatalyst design enables one to use a rather small amount of lipase. This should help in switching over to a biobased production of biodiesel.

  18. Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge.

    PubMed

    Olkiewicz, Magdalena; Torres, Carmen M; Jiménez, Laureano; Font, Josep; Bengoa, Christophe

    2016-08-01

    Municipal wastewater sludge is a promising lipid feedstock for biodiesel production, but the need to eliminate the high water content before lipid extraction is the main limitation for scaling up. This study evaluates the economic feasibility of biodiesel production directly from liquid primary sludge based on experimental data at laboratory scale. Computational tools were used for the modelling of the process scale-up and the different configurations of lipid extraction to optimise this step, as it is the most expensive. The operational variables with a major influence in the cost were the extraction time and the amount of solvent. The optimised extraction process had a break-even price of biodiesel of 1232 $/t, being economically competitive with the current cost of fossil diesel. The proposed biodiesel production process from waste sludge eliminates the expensive step of sludge drying, lowering the biodiesel price.

  19. Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis.

    PubMed

    Naureen, Rizwana; Tariq, Muhammad; Yusoff, Ismail; Chowdhury, Ahmed Jalal Khan; Ashraf, Muhammad Aqeel

    2015-05-01

    Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR ((1)H and (13)C). The chemical composition of sunflower oil biodiesel was determined by GC-MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by (1)H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%.

  20. Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis

    PubMed Central

    Naureen, Rizwana; Tariq, Muhammad; Yusoff, Ismail; Chowdhury, Ahmed Jalal Khan; Ashraf, Muhammad Aqeel

    2014-01-01

    Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR (1H and 13C). The chemical composition of sunflower oil biodiesel was determined by GC–MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by 1H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%. PMID:25972756

  1. Pyrolytic characteristics of biodiesel prepared from lipids accumulated in diatom cells with growth regulation.

    PubMed

    Cheng, Jun; Feng, Jia; Ge, Tingting; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2015-08-01

    Dynamic compositions of lipids accumulated in two diatoms Chaetoceros gracilis and Nitzschia closterium cultured with nitrogen and silicon deprivation were studied. It was found that short-chain fatty acids (C14-C16) content was much higher than long-chain fatty acids (C18-C20) content in lipids of two diatoms. The pyrolytic characteristics of biodiesel made from two diatoms and two plant seeds were compared by thermogravimetric analysis. The highest activation energy of 46.68 kJ mol(-1) and the minimum solid residue of 25.18% were obtained in the pyrolysis of biodiesel made from C. gracilis cells, which were cultured with 0.5 mmol L(-1) of nitrogen (no silicon) and accumulated the minimum polyunsaturated fatty acid (C20:5). The pyrolysis residue percentage of C. gracilis biodiesel was lower than that of N. closterium biodiesel and higher than those of plant (Cormus wilsoniana and Pistacia chinensis) biodiesels.

  2. Transesterification catalyzed by Lipozyme TLIM for biodiesel production from low cost feedstock

    NASA Astrophysics Data System (ADS)

    Halim, Siti Fatimah Abdul; Hassan, Hamizura; Amri, Nurulhuda; Bashah, Nur Alwani Ali

    2015-05-01

    The development of new strategies to efficiently synthesize biodiesel is of extreme important. This is because biodiesel has been accepted worldwide as an alternative fuel for diesel engines. Biodiesel as alkyl ester derived from vegetable oil has considerable advantages in terms of environmental protection. The diminishing petroleum reserves are the major driving force for researchers to look for better strategies in producing biodiesel. The main hurdle to commercialization of biodiesel is the cost of the raw material. Biodiesel is usually produced from food-grade vegetable oil that is more expensive than diesel fuel. Therefore, biodiesel produced from food-grade vegetable oil is currently not economically feasible. Use of an inexpensive raw material such as waste cooking palm oil and non edible oil sea mango are an attractive option to lower the cost of biodiesel. This study addresses an alternative method for biodiesel production which is to use an enzymatic approach in producing biodiesel fuel from low cost feedstock waste cooking palm oil and unrefined sea mango oil using immobilized lipase Lipozyme TL IM. tert-butanol was used as the reaction medium, which eliminated both negative effects caused by excessive methanol and glycerol as the byproduct. Two variables which is methanol to oil molar ratio and enzyme loading were examine in a batch system. Transesterification of waste cooking palm oil reach 65% FAME yield (methanol to oil molar ratio 6:1 and 10% Novozyme 435 based on oil weight), while transesterification of sea mango oil can reach 90% FAME yield (methanol to oil molar ratio 6:1 and 10% Lipozyme TLIM based on oil weight).

  3. Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends.

    PubMed

    Bugarski, Aleksandar D; Janisko, Samuel J; Cauda, Emanuele G; Patts, Larry D; Hummer, Jon A; Westover, Charles; Terrillion, Troy

    2014-10-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck's contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13-29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends.

  4. Aerosols and Criteria Gases in an Underground Mine That Uses FAME Biodiesel Blends

    PubMed Central

    Bugarski, Aleksandar D.; Janisko, Samuel J.; Cauda, Emanuele G.; Patts, Larry D.; Hummer, Jon A.; Westover, Charles; Terrillion, Troy

    2015-01-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck’s contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13–29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends. PMID:25060241

  5. Aerobic biodegradation kinetics and mineralization of six petrodiesel/soybean-biodiesel blends.

    PubMed

    Yassine, Mohamad H; Wu, Shuyun; Suidan, Makram T; Venosa, Albert D

    2013-05-07

    The aerobic biodegradation kinetics and mineralization of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100), where B100 is 100% biodiesel, were investigated by acclimated cultures. The fatty acid methyl esters (FAMEs) of biodiesel were found to undergo rapid abiotic transformation in all experiments. The C10-C21 n-alkanes of petrodiesel were metabolized at significantly higher microbial utilization rates in the presence of biodiesel. The rates of mineralization of the blends were also enhanced in the presence of biodiesel; yet a similar enhancement in the extent of mineralization was not observed. Abiotic fuel-blends/aqueous-phase equilibration experiments revealed that the FAMEs of biodiesel were capable of cosolubilizing the n-alkanes of petrodiesel, a mechanism that fully explains the faster utilization and mineralization kinetics of petrodiesel in the presence of biodiesel without necessarily enhancing the extent of biomineralization. The biodegradation of six targeted aromatic compounds present in petrodiesel was also influenced by the amount of biodiesel in a blend. While toluene, o-xylene, and tetralin were not degraded in the B0 and B20 treatments, all of the targeted aromatic compounds were degraded to below detection limits in the B40 and B80 treatments. Biomass acclimated to B60, however, was unable to degrade most of the aromatic compounds. These results indicate that the amount of biodiesel in a blend significantly affects the absolute and relative abundance of the dissolved and bioavailable constituents of biodiesel and petrodiesel in a way that can considerably alter the biodegrading capacity of microbial cultures.

  6. Biodiesel production using alkaline ionic liquid and adopted as lubricity additive for low-sulfur diesel fuel.

    PubMed

    Luo, Hui; Fan, Weiyu; Li, Yang; Nan, Guozhi

    2013-07-01

    Preparation of biodiesel from vegetable oils, such as rapeseed oil, soybean oil and sunflower oil, catalyzed by an alkaline ionic liquid 1-butyl-3-methylimidazolium imidazolide ([Bmim]Im) was investigated in this work. The results demonstrated that [Bmim]Im exhibited high activity and the yield of biodiesel was up to 95% or more when molar ratio of methanol to vegetable oil was 6:1, ionic liquid dosage was 6 wt.%, reaction temperature was 60°C, and reaction time was 60 min. After [Bmim]Im was used for the sixth time, the yield of biodiesel still remained at about 95%. The effects of the biodiesels on the lubricity of low-sulfur diesel fuel were also investigated using the High Frequency Reciprocating Rig method, and the results showed that sunflower biodiesel and soybean biodiesel had higher lubrication performance than that of rapeseed biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Mechanistic analysis of cavitation assisted transesterification on biodiesel characteristics.

    PubMed

    Sajjadi, Baharak; Abdul Aziz, A R; Ibrahim, Shaliza

    2015-01-01

    The influence of sonoluminescence transesterification on biodiesel physicochemical properties was investigated and the results were compared to those of traditional mechanical stirring. This study was conducted to identify the mechanistic features of ultrasonication by coupling statistical analysis of the experiments into the simulation of cavitation bubble. Different combinations of operational variables were employed for alkali-catalysis transesterification of palm oil. The experimental results showed that transesterification with ultrasound irradiation could change the biodiesel density by about 0.3kg/m(3); the viscosity by 0.12mm(2)/s; the pour point by about 1-2°C and the flash point by 5°C compared to the traditional method. Furthermore, 93.84% of yield with alcohol to oil molar ratio of 6:1 could be achieved through ultrasound assisted transesterification within only 20min. However, only 89.09% of reaction yield was obtained by traditional macro mixing/heating under the same condition. Based on the simulated oscillation velocity value, the cavitation phenomenon significantly contributed to generation of fine micro emulsion and was able to overcome mass transfer restriction. It was found that the sonoluminescence bubbles reached the temperature of 758-713K, pressure of 235.5-159.55bar, oscillation velocity of 3.5-6.5cm/s, and equilibrium radius of 17.9-13.7 times greater than its initial size under the ambient temperature of 50-64°C at the moment of collapse. This showed that the sonoluminescence bubbles were in the condition in which the decomposition phenomena were activated and the reaction rate was accelerated together with a change in the biodiesel properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Mitigating cold flow problems of biodiesel: Strategies with additives

    NASA Astrophysics Data System (ADS)

    Mohanan, Athira

    The present thesis explores the cold flow properties of biodiesel and the effect of vegetable oil derived compounds on the crystallization path as well as the mechanisms at play at different stages and length scales. Model systems including triacylglycerol (TAG) oils and their derivatives, and a polymer were tested with biodiesel. The goal was to acquire the fundamental knowledge that would help design cold flow improver (CFI) additives that would address effectively and simultaneously the flow problems of biodiesel, particularly the cloud point (CP) and pour point (PP). The compounds were revealed to be fundamentally vegetable oil crystallization modifiers (VOCM) and the polymer was confirmed to be a pour point depressant (PPD). The results obtained with the VOCMs indicate that two cis-unsaturated moieties combined with a trans-/saturated fatty acid is a critical structural architecture for depressing the crystallization onset by a mechanism wherein while the straight chain promotes a first packing with the linear saturated FAMEs, the kinked moieties prevent further crystallization. The study of model binary systems made of a VOCM and a saturated FAME with DSC, XRD and PLM provided a complete phase diagram including the thermal transformation lines, crystal structure and microstructure that impact the phase composition along the different crystallization stages, and elicited the competing effects of molecular mass, chain length mismatch and isomerism. The liquid-solid boundary is discussed in light of a simple thermodynamic model based on the Hildebrand equation and pair interactions. In order to test for synergies, the PP and CP of a biodiesel (Soy1500) supplemented with several VOCM and PLMA binary cocktails were measured using a specially designed method inspired by ASTM standards. The results were impressive, the combination of additives depressed CP and PP better than any single additive. The PLM and DSC results suggest that the cocktail additives are most

  9. Chemometric analysis of cow dung ash as an adsorbent for purifying biodiesel from waste cooking oil.

    PubMed

    Avinash, A; Murugesan, A

    2017-08-25

    Taraditionally, the water-soluble contaminants of biodiesel are treated by water wash method. However, water wash method ends up in an aqueous effluent, which might then cause a harmful environmental impact. As a consequence, waterless purification of biodiesel has triggered primary interest in biodiesel manufacturing process. To address this issue, an endeavour has been made in this work to investigate the waterless purification of biodiesel from waste cooking oil using cow dung ash at different concentration of 1, 2, 3 and 4 wt/wt %. The optimum concentration of cow dung ash for biodiesel purification was found through chemometric analysis by comparing the Fourier transform infrared transmission (FTIR) spectral characteristics of cow dung ash with the water treated FTIR. It was observed from the experimental study that 1 wt/wt % of cow dung ash exhibited similar structural characteristics as that of traditional water treated method of biodiesel purification. Therefore, bio-waste cow dung ash is an effective adsorbent in purifying biodiesel analogous to traditional water washing technology.

  10. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.

    2016-04-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.

  11. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    SciTech Connect

    Hill, J. |; Tilman, D.; Polasky, S.; Tiffany, D.

    2006-07-25

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. The authors use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3% and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

  12. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  13. Screening of biodiesel production from waste tuna oil (Thunnus sp.), seaweed Kappaphycus alvarezii and Gracilaria sp.

    NASA Astrophysics Data System (ADS)

    Alamsjah, Mochammad Amin; Abdillah, Annur Ahadi; Mustikawati, Hutami; Atari, Suci Dwi Purnawa

    2017-09-01

    Biodiesel has several advantages over solar. Compared to solar, biodiesel has more eco-friendly characteristic and produces lower greenhouse gas emissions. Biodiesel that is made from animal fats can be produced from fish oil, while other alternative sources from vegetable oils are seaweed Kappaphycus alvarezii and Gracilaria sp. Waste tuna oil (Thunnus sp.) in Indonesia is commonly a side product of tuna canning industries known as tuna precook oil; on the other hand, seaweed Gracilaria sp. and Kappaphycus alvarezii are commonly found in Indonesia's seas. Seaweed waste that was used in the present study was 100 kg and in wet condition, and the waste oil was 10 liter. The seaweed was extracted with soxhletation method that used n-hexane as the solvent. To produce biodiesel, trans esterification was performed on the seaweed oil that was obtained from the soxhletation process and waste tuna oil. Biodiesel manufactured from seaweed K. alvarezii obtained the best score in flash point, freezing point, and viscosity test. However, according to level of manufacturing efficiency, biodiesel from waste tuna oil is more efficient and relatively easier compared to biodiesel from waste K. alvarezii and Gracilaria sp.

  14. Life-Cycle Assessment of Biodiesel Produced from Grease Trap Waste.

    PubMed

    Hums, Megan E; Cairncross, Richard A; Spatari, Sabrina

    2016-03-01

    Grease trap waste (GTW) is a low-quality waste material with variable lipid content that is an untapped resource for producing biodiesel. Compared to conventional biodiesel feedstocks, GTW requires different and additional processing steps for biodiesel production due to its heterogeneous composition, high acidity, and high sulfur content. Life-cycle assessment (LCA) is used to quantify greenhouse gas emissions, fossil energy demand, and criteria air pollutant emissions for the GTW-biodiesel process, in which the sensitivity to lipid concentration in GTW is analyzed using Monte Carlo simulation. The life-cycle environmental performance of GTW-biodiesel is compared to that of current GTW disposal, the soybean-biodiesel process, and low-sulfur diesel (LSD). The disposal of the water and solid wastes produced from separating lipids from GTW has a high contribution to the environmental impacts; however, the impacts of these processed wastes are part of the current disposal practice for GTW and could be excluded with consequential LCA system boundaries. At lipid concentrations greater than 10%, most of the environmental metrics studied are lower than those of LSD and comparable to soybean biodiesel.

  15. Human health impacts of biodiesel use in on-road heavy duty diesel vehicles in Canada.

    PubMed

    Rouleau, Mathieu; Egyed, Marika; Taylor, Brett; Chen, Jack; Samaali, Mehrez; Davignon, Didier; Morneau, Gilles

    2013-11-19

    Regulatory requirements for renewable content in diesel fuel have been adopted in Canada. Fatty acid alkyl esters, that is, biodiesel, will likely be used to meet the regulations. However, the impacts on ambient atmospheric pollutant concentrations and human health outcomes associated with the use of biodiesel fuel blends in heavy duty diesel vehicles across Canada have not been evaluated. The objective of this study was to assess the potential human health implications of the widespread use of biodiesel in Canada compared to those from ultralow sulfur diesel (ULSD). The health impacts/benefits resulting from biodiesel use were determined with the Air Quality Benefits Assessment Tool, based on output from the AURAMS air quality modeling system and the MOBILE6.2C on-road vehicle emissions model. Scenarios included runs for ULSD and biodiesel blends with 5 and 20% of biodiesel by volume, and compared their use in 2006 and 2020. Although modeling and data limitations exist, the results of this study suggested that the use of biodiesel fuel blends compared to ULSD was expected to result in very minimal changes in air quality and health benefits/costs across Canada, and these were likely to diminish over time.

  16. Impact of policy on greenhouse gas emissions and economics of biodiesel production.

    PubMed

    Olivetti, Elsa; Gülşen, Ece; Malça, João; Castanheira, Erica; Freire, Fausto; Dias, Luis; Kirchain, Randolph

    2014-07-01

    As an alternative transportation fuel to petrodiesel, biodiesel has been promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of biodiesel were a driver behind extensive government support in the form of financial incentives for the industry. However, studies consistently report a high degree of uncertainty in these emissions estimates, raising questions concerning the carbon benefits of biodiesel. Furthermore, the implications of feedstock blending on GHG emissions uncertainty have not been explicitly addressed despite broad practice by the industry to meet fuel quality standards and to control costs. This work investigated the impact of feedstock blending on the characteristics of biodiesel by using a chance-constrained (CC) blend optimization method. The objective of the optimization is minimization of feedstock costs subject to fuel standards and emissions constraints. Results indicate that blending can be used to manage GHG emissions uncertainty characteristics of biodiesel, and to achieve cost reductions through feedstock diversification. Simulations suggest that emissions control policies that restrict the use of certain feedstocks based on their GHG estimates overlook blending practices and benefits, increasing the cost of biodiesel. In contrast, emissions control policies which recognize the multifeedstock nature of biodiesel provide producers with feedstock selection flexibility, enabling them to manage their blend portfolios cost effectively, potentially without compromising fuel quality or emissions reductions.

  17. Using the GREET model to analyze algae as a feedstock for biodiesel production

    NASA Astrophysics Data System (ADS)

    Tatum, Christopher

    There is a growing interest in renewable, carbon-neutral biofuels such as ethanol and biodiesel. A life-cycle analysis is conducted in this study to determine the viability of using algae as a feedstock for biodiesel. The method involves assessing energy use, fossil fuel use, greenhouse gas emissions, and criteria pollutant emissions using a simulation developed by Argonne National Laboratory. The energy and emissions of algae-derived biodiesel are compared to those of soybean biodiesel, corn ethanol, conventional gasoline, and low-sulfur diesel. Results show that there are sizeable greenhouse gas emission benefits attributed to the production of both types of biodiesel as compared to petroleum fuels. Energy expenditures are much larger when producing algae biodiesel than compared to the other four fuels. The alternative scenario of growing algae at a wastewater treatment plant is also evaluated and is proven to reduce fossil fuel consumption by 17%. The results suggest that producing biodiesel from algae, while not yet competitive regarding energy use, does have many benefits and is worthy of further research and development.

  18. Production of Biodiesel from Lipid of Phytoplankton Chaetoceros calcitrans through Ultrasonic Method

    PubMed Central

    Kwangdinata, Raymond; Raya, Indah; Zakir, Muhammad

    2014-01-01

    A research on production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method has been done. In this research, we carried out a series of phytoplankton cultures to determine the optimum time of growth and biodiesel synthesis process from phytoplankton lipids. Process of biodiesel synthesis consists of two steps, that is, isolation of phytoplankton lipids and biodiesel synthesis from those lipids. Oil isolation process was carried out by ultrasonic extraction method using ethanol 96%, while biodiesel synthesis was carried out by transesterification reaction using methanol and KOH catalyst under sonication. Weight of biodiesel yield per biomass Chaetoceros calcitrans is 35.35%. Characterization of biodiesel was well carried out in terms of physical properties which are density and viscosity and chemical properties which are FFA content, saponification value, and iodine value. These values meet the American Society for Testing and Materials (ASTM D6751) standard levels, except for the viscosity value which was 1.14 g·cm−3. PMID:24688372

  19. An identification and characterization of biodiesel fatty acid based by using dielectric sensor

    NASA Astrophysics Data System (ADS)

    Rahmawati; Djatna, T.; Noor, E.; Irzaman

    2017-05-01

    The fatty acids composition is identified by a gas chromatography mass spectrometer (GC-MS), then it is characterized in saturated and unsaturated components. This paper investigates biodiesel fatty acid by using dielectric constant measurements and focuses on dielectric sensor based on biodiesel chemical properties characterization. The objectives of this paper are identification fatty acids and determination of correlation dielectric properties and biodiesel fatty acid characterization. The proposed method is dielectric constant by using capacitance sensor are applied to determine the response dielectric sensor from the fatty acid composition. Sixteen fatty acid methyl esters were identified and two characterizations the amount of saturated and unsaturated fatty ester fractions. The model parameter was determined by regression analysis for estimating the relationships among fatty acid content and dielectric properties. The results show that measurements of electrical properties, successfully used for the characterization of fatty acids. The dielectric constant of biodiesel was found increasing as the saturated decreases. This relationship becomes calibration for the assessment of the quality of biodiesel based on the dielectric sensor. The model reveals that the fatty acid composition affects the value of the biodiesel dielectric and show that dielectric sensor potentially to handle for characterization of biodiesel fatty acid content.

  20. Membrane technology as a promising alternative in biodiesel production: a review.

    PubMed

    Shuit, Siew Hoong; Ong, Yit Thai; Lee, Keat Teong; Subhash, Bhatia; Tan, Soon Huat

    2012-01-01

    In recent years, environmental problems caused by the use of fossil fuels and the depletion of petroleum reserves have driven the world to adopt biodiesel as an alternative energy source to replace conventional petroleum-derived fuels because of biodiesel's clean and renewable nature. Biodiesel is conventionally produced in homogeneous, heterogeneous, and enzymatic catalysed processes, as well as by supercritical technology. All of these processes have their own limitations, such as wastewater generation and high energy consumption. In this context, the membrane reactor appears to be the perfect candidate to produce biodiesel because of its ability to overcome the limitations encountered by conventional production methods. Thus, the aim of this paper is to review the production of biodiesel with a membrane reactor by examining the fundamental concepts of the membrane reactor, its operating principles and the combination of membrane and catalyst in the catalytic membrane. In addition, the potential of functionalised carbon nanotubes to serve as catalysts while being incorporated into the membrane for transesterification is discussed. Furthermore, this paper will also discuss the effects of process parameters for transesterification in a membrane reactor and the advantages offered by membrane reactors for biodiesel production. This discussion is followed by some limitations faced in membrane technology. Nevertheless, based on the findings presented in this review, it is clear that the membrane reactor has the potential to be a breakthrough technology for the biodiesel industry. Copyright © 2012 Elsevier Inc. All rights reserved.