Science.gov

Sample records for bioenergy production capacity

  1. Global bioenergy capacity as constrained by observed biospheric productivity rates

    NASA Astrophysics Data System (ADS)

    Smith, W. K.; Zhao, M.; Running, S. W.

    2011-12-01

    Virtually all global energy forecasts include an expectation that bioenergy will be a substantial energy source for the future. Multiple current estimates of global bioenergy potential (GBP) range from 500-1,500 EJ yr-1 or 100-300% of 2009 global primary energy consumption (GPEC09), suggesting bioenergy could conceivably replace fossil fuels entirely. However, these estimates are based on extrapolation of plot-level production rates which largely neglect complex global climatic and land-use constraints. We estimated GBP using satellite-derived, observed global primary productivity data from 2000-2006, which integrates global climate data and detects seasonal vegetation dynamics. Land-use constraints were then applied to account for current crop and forestry harvest requirements, human-controlled pasturelands, remote regions, and nature conservation areas. We show GBP is limited to 52-248 EJ yr-1 or 10-49% of GPEC09, a range lower than many current GBP estimates by a factor of four. Even attaining the low-end of this range requires utilization of all harvest residues over 31 million km2 (Mkm2), while the high-end requires additional harvest over 41 Mkm2, an area roughly three times current global cropland extent. Although, exploitation of pasture and remote land could significantly contribute to GBP, the availability of these land areas remains controversial due to critical concerns regarding indirect land-use change and carbon debt. Future energy policy is of unparalleled importance to humanity, and our results are critical in estimating quantitative limitations on the overall potential for global bioenergy production.

  2. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax

    PubMed Central

    Webster, Richard J.; Driever, Steven M.; Kromdijk, Johannes; McGrath, Justin; Leakey, Andrew D. B.; Siebke, Katharina; Demetriades-Shah, Tanvir; Bonnage, Steve; Peloe, Tony; Lawson, Tracy; Long, Stephen P.

    2016-01-01

    Arundo donax has attracted interest as a potential bioenergy crop due to a high apparent productivity. It uses C3 photosynthesis yet appears competitive with C4 grass biomass feedstock’s and grows in warm conditions where C4 species might be expected to be that productive. Despite this there has been no systematic study of leaf photosynthetic properties. This study determines photosynthetic and photorespiratory parameters for leaves in a natural stand of A. donax growing in southern Portugal. We hypothesise that A. donax has a high photosynthetic potential in high and low light, stomatal limitation to be small and intrinsic water use efficiency unusually low. High photosynthetic rates in A. donax resulted from a high capacity for both maximum Rubisco (Vc,max 117 μmol CO2 m−2 s−1) and ribulose-1:5-bisphosphate limited carboxylation rate (Jmax 213 μmol CO2 m−2 s−1) under light-saturated conditions. Maximum quantum yield for light-limited CO2 assimilation was also high relative to other C3 species. Photorespiratory losses were similar to other C3 species under the conditions of measurement (25%), while stomatal limitation was high (0.25) resulting in a high intrinsic water use efficiency. Overall the photosynthetic capacity of A. donax is high compared to other C3 species, and comparable to C4 bioenergy grasses. PMID:26860066

  3. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax.

    PubMed

    Webster, Richard J; Driever, Steven M; Kromdijk, Johannes; McGrath, Justin; Leakey, Andrew D B; Siebke, Katharina; Demetriades-Shah, Tanvir; Bonnage, Steve; Peloe, Tony; Lawson, Tracy; Long, Stephen P

    2016-02-10

    Arundo donax has attracted interest as a potential bioenergy crop due to a high apparent productivity. It uses C3 photosynthesis yet appears competitive with C4 grass biomass feedstock's and grows in warm conditions where C4 species might be expected to be that productive. Despite this there has been no systematic study of leaf photosynthetic properties. This study determines photosynthetic and photorespiratory parameters for leaves in a natural stand of A. donax growing in southern Portugal. We hypothesise that A. donax has a high photosynthetic potential in high and low light, stomatal limitation to be small and intrinsic water use efficiency unusually low. High photosynthetic rates in A. donax resulted from a high capacity for both maximum Rubisco (Vc,max 117 μmol CO2 m(-2) s(-1)) and ribulose-1:5-bisphosphate limited carboxylation rate (Jmax 213 μmol CO2 m(-2) s(-1)) under light-saturated conditions. Maximum quantum yield for light-limited CO2 assimilation was also high relative to other C3 species. Photorespiratory losses were similar to other C3 species under the conditions of measurement (25%), while stomatal limitation was high (0.25) resulting in a high intrinsic water use efficiency. Overall the photosynthetic capacity of A. donax is high compared to other C3 species, and comparable to C4 bioenergy grasses.

  4. Seasonal energy storage using bioenergy production from abandoned croplands

    NASA Astrophysics Data System (ADS)

    Campbell, J. Elliott; Lobell, David B.; Genova, Robert C.; Zumkehr, Andrew; Field, Christopher B.

    2013-09-01

    Bioenergy has the unique potential to provide a dispatchable and carbon-negative component to renewable energy portfolios. However, the sustainability, spatial distribution, and capacity for bioenergy are critically dependent on highly uncertain land-use impacts of biomass agriculture. Biomass cultivation on abandoned agriculture lands is thought to reduce land-use impacts relative to biomass production on currently used croplands. While coarse global estimates of abandoned agriculture lands have been used for large-scale bioenergy assessments, more practical technological and policy applications will require regional, high-resolution information on land availability. Here, we present US county-level estimates of the magnitude and distribution of abandoned cropland and potential bioenergy production on this land using remote sensing data, agriculture inventories, and land-use modeling. These abandoned land estimates are 61% larger than previous estimates for the US, mainly due to the coarse resolution of data applied in previous studies. We apply the land availability results to consider the capacity of biomass electricity to meet the seasonal energy storage requirement in a national energy system that is dominated by wind and solar electricity production. Bioenergy from abandoned croplands can supply most of the seasonal storage needs for a range of energy production scenarios, regions, and biomass yield estimates. These data provide the basis for further down-scaling using models of spatially gridded land-use areas as well as a range of applications for the exploration of bioenergy sustainability.

  5. Carbon debt and carbon sequestration parity in forest bioenergy production

    Treesearch

    S.R. Mitchell; M.E. Harmon; K.B. O' Connell

    2012-01-01

    The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...

  6. Bioenergy

    SciTech Connect

    2014-11-20

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  7. Bioenergy

    ScienceCinema

    None

    2016-07-12

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  8. Sustainable bioenergy production from Missouri's Ozark forests

    Treesearch

    Henry E. Stelzer; Chris Barnett; Verel W. Bensen

    2008-01-01

    The main source of wood fiber for energy resides in Missouri's forests. Alternative bioenergy systems that can use forest thinning residues are electrical energy, thermal energy, and liquid bio-fuel. By applying a thinning rule and accounting for wood fiber that could go into higher value wood products to all live biomass data extracted from the U.S. Forest...

  9. Wood bioenergy and soil productivity research

    Treesearch

    D. Andrew Scott; Deborah S. Page-Dumroese

    2016-01-01

    Timber harvesting can cause both short- and long-term changes in forest ecosystem functions, and scientists from USDA Forest Service (USDA FS) have been studying these processes for many years. Biomass and bioenergy markets alter the amount, type, and frequency at which material is harvested, which in turn has similar yet specific impacts on sustainable productivity....

  10. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  11. East Kentucky Bioenergy Capacity Assessment Project

    SciTech Connect

    Phillips, J. Michael; Montross, Michael; Mark, Tyler

    2013-03-31

    When you look across the landscape of Kentucky you will find a very diverse topography. In the western portions of the state you will find fertile and gently rolling soils that are prime land for traditional row crop production. As you move east towards the Appalachian Mountains the terrain becomes increasing roughed and less productive soils. One of the primary objectives of Morehead State University is to serve the eastern Kentucky population of Kentucky. Fitting within that mission is identifying new opportunities for people living in this region. With the passing of the Renewable Fuels Standard in 2005 there was a focus put on the production of biomass crops that can be used in the production of ethanol and cellulosic ethanol. The majority of US ethanol production is derived from corn. The eastern portion of Kentucky is not well suited for corn production, but might be a location for other biomass crops to be produced. Additionally, many farmers in the region were looking for alternative crops to tobacco that might be well suited for the region.

  12. Biomass production on marginal lands - catalogue of bioenergy crops

    NASA Astrophysics Data System (ADS)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  13. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  14. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  15. Recent advances in membrane technologies for biorefining and bioenergy production.

    PubMed

    He, Yi; Bagley, David M; Leung, Kam Tin; Liss, Steven N; Liao, Bao-Qiang

    2012-01-01

    The bioeconomy, and in particular, biorefining and bioenergy production, have received considerable attention in recent years as a shift to renewable bioresources to produce similar energy and chemicals derived from fossil energy sources, represents a more sustainable path. Membrane technologies have been shown to play a key role in process intensification and products recovery and purification in biorefining and bioenergy production processes. Among the various separation technologies used, membrane technologies provide excellent fractionation and separation capabilities, low chemical consumption, and reduced energy requirements. This article presents a state-of-the-art review on membrane technologies related to various processes of biorefining and bioenergy production, including: (i) separation and purification of individual molecules from biomass, (ii) removal of fermentation inhibitors, (iii) enzyme recovery from hydrolysis processes, (iv) membrane bioreactors for bioenergy and chemical production, such as bioethanol, biogas and acetic acid, (v) bioethanol dehydration, (vi) bio-oil and biodiesel production, and (vii) algae harvesting. The advantages and limitations of membrane technologies for these applications are discussed and new membrane-based integrated processes are proposed. Finally, challenges and opportunities of membrane technologies for biorefining and bioenergy production in the coming years are addressed.

  16. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Reed, Sasha C.; Smith, William K.; Cleveland, Cory C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    Background/Question/Methods Currently, the United States (U.S.) supplies roughly half the world’s biofuel (secondary bioenergy), with the Energy Independence and Security Act of 2007 (EISA) stipulating an additional three-fold increase in annual production by 2022. Implicit in such energy targets is an associated increase in annual biomass demand (primary bioenergy) from roughly 2.9 to 7.4 exajoules (EJ; 1018 Joules). Yet, many of the factors used to estimate future bioenergy potential are relatively unresolved, bringing into question the practicality of the EISA’s ambitious bioenergy targets. Here, our objective was to constrain estimates of primary bioenergy potential (PBP) for the conterminous U.S. using satellite-derived net primary productivity (NPP) data (measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S) as the most geographically explicit measure of terrestrial growth capacity. Results/Conclusions We show that the annual primary bioenergy potential (PBP) of the conterminous U.S. realistically ranges from approximately 5.9 (± 1.4) to 22.2 (± 4.4) EJ, depending on land use. The low end of this range represents current harvest residuals, an attractive potential energy source since no additional harvest land is required. In contrast, the high end represents an annual harvest over an additional 5.4 million km2 or 75% of vegetated land in the conterminous U.S. While we identify EISA energy targets as achievable, our results indicate that meeting such targets using current technology would require either an 80% displacement of current croplands or the conversion of 60% of total rangelands. Our results differ from previous evaluations in that we use high resolution, satellite-derived NPP as an upper-envelope constraint on bioenergy potential, which removes the need for extrapolation of plot-level observed yields over large spatial areas. Establishing realistically constrained estimates of bioenergy potential seems a

  17. The South's outlook for sustainable forest bioenergy and biofuels production

    Treesearch

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  18. Field windbreaks for bioenergy production and carbon sequestration

    USDA-ARS?s Scientific Manuscript database

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  19. Optimizing Nutrient Management for Sustainable Bio-energy Feedstock Production

    USDA-ARS?s Scientific Manuscript database

    Corn grain and stover are both being evaluated as feedstock sources for bio-energy production. To meet current and future demands for corn, both short- and long-term effects on nutrient cycling, physical properties, and biological activity in soils must be understood. Our project goal was to increas...

  20. Best practices guidelines for managing water in bioenergy feedstock production

    Treesearch

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  1. Review of Sorghum Production Practices: Applications for Bioenergy

    SciTech Connect

    Turhollow Jr, Anthony F; Webb, Erin; Downing, Mark

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  2. A life-cycle approach to low-invasion potential bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for energy has increased economic incentives to develop and deploy novel bioenergy crops for biomass production. Similarities in plant traits between many candidate bioenergy crops and known invasive species have raised concerns about the potential for bioenergy crops to escape pro...

  3. Irrigation with Treated Urban Wastewater for Bioenergy Crop Production in the Far West Texas

    NASA Astrophysics Data System (ADS)

    Ganjegunte, G. K.; Clark, J. A.; Wu, Y.

    2011-12-01

    In the recent years, interest in biobased fuels is increasing and the congressionally mandated goal is to use at least 36 billion gallons of bio-based transportation fuels by 2022. However, in 2009 the U.S. produced about 10.75 billion gallons of ethanol, primarily as corn starch ethanol and 550 million gallons of biodiesel. Thus, there is a huge gap between the current capacity and the mandated goal. USDA estimates that about 27 million acres of land has to be brought under bioenergy crops to produce 36 billion gallons of bio-based fuels. Meeting the challenge of bridging this huge gap requires a comprehensive regional strategy that includes bringing addition area from different regions within the country under bioenergy crops. In the southwest U.S. region such as west Texas or southern New Mexico, bringing vast abandoned crop lands and areas having permeable soils under bioenergy crops can be a part of such a regional strategy. While the region has adequate supply of land, finding reliable source of water to produce bioenergy crops is the main challenge. This challenge can be met by developing marginal quality water sources for bioenergy crops production. Use of marginal quality waters such as treated urban wastewater/saline groundwater to irrigate bioenergy crops may prove beneficial, if the bioenergy crops can grow under elevated salinity and the effects on soil and shallow groundwater can be minimized by appropriate management. The region has enormous potential for marginal quality water irrigation to produce bioenergy crops for a greater farm return. For example, at present, in El Paso alone, the total volume of treated municipal and industrial wastewater is about 65,000 acre-feet/year, of which only 13% is being reused for industrial processes and irrigating urban landscapes. The major concern associated with treated wastewater irrigation is its salinity (electrical conductivity or EC which measures salinity ranges from 1.8 to 2.1 dS m-1) and sodicity

  4. Roadmap for Bioenergy and Biobased Products in the United States

    DTIC Science & Technology

    2007-10-01

    arise. Wild Rose manure digester facility in Wisconsin, Dairyland Power Cooperative Roadmap for Bioenergy and Biobased Products in the United States...all stages of biomass tech- nology, this Roadmap update discusses policy measures and related efforts to assist with market penetration of biofuels...barriers be overcome in all stages of the life cycle of developing biomass feedstocks and converting them to biobased fuels, power, and products

  5. Alternative Bioenergy: Small Scale Pellet Production from Forest Residues

    NASA Astrophysics Data System (ADS)

    Cochran, Audra S.

    Forests can readily supply feedstock for alternative bioenergy production. Feedstock removal has the potential to benefit forest health and provide ecosystem services, while also generating profit for landowners, contractors and forest managers. However, many landowners are faced with the challenge of managing forest residuals to meet slash compliances and fire regulations. Currently, most residuals are burned or left on site to decompose. Every year, the north-central Idaho region produces over 16 million dry tons of unutilized forest residues. In a time where alternative energy sources are growing in demand, new approaches to utilize these residuals for bioenergy production are being examined. One approach is a portable, small-scale wood pellet mill that can be taken directly to the logging site. Utilizing forest residues for pellet production reduces residue burning and its potential negative impacts on air quality. This presentation focuses on the quality of wood pellets manufactured by a portable wood pellet mill utilizing various forms of forest residuals.

  6. Invasive plants as feedstock for biochar and bioenergy production.

    PubMed

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time.

  7. Tradeoffs in ecosystem services of prairies managed for bioenergy production

    NASA Astrophysics Data System (ADS)

    Jarchow, Meghann Elizabeth

    The use of perennial plant materials as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. Currently, the production of energy from agricultural products is primarily in the form of ethanol from corn grain, which used more than 45% of the domestic U.S. corn crop in 2011. Concomitantly, using corn grain to produce ethanol has promoted landscape simplification and homogenization through conversion of Conservation Reserve Program grasslands to annual row crops, and has been implicated in increasing environmental damage, such as increased nitrate leaching into water bodies and increased rates of soil erosion. In contrast, perennial prairie vegetation has the potential to be used as a bioenergy feedstock that produces a substantial amount of biomass as well as numerous ecosystem services. Reincorporating prairies to diversify the landscape of the Midwestern U.S. at strategic locations could provide more habitat for animals, including beneficial insects, and decrease nitrogen, phosphorus, and sediment movement into water bodies. In this dissertation, I present data from two field experiments that examine (1) how managing prairies for bioenergy production affects prairie ecology and agronomic performance and (2) how these prairie systems differ from corn systems managed for bioenergy production. Results of this work show that there are tradeoffs among prairie systems and between corn and prairie systems with respect to the amount of harvested biomass, root production, nutrient export, feedstock characteristics, growing season utilization, and species and functional group diversity. These results emphasize the need for a multifaceted approach to fully evaluate bioenergy feedstock production systems.

  8. Bioenergy Sustainability in China: Potential and Impacts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Gentry, Randall W.; Yu, Gui-Rui; Sayler, Gary S.; Bickham, John W.

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China’s bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  9. Bioenergy sustainability in China: potential and impacts.

    PubMed

    Zhuang, Jie; Gentry, Randall W; Yu, Gui-Rui; Sayler, Gary S; Bickham, John W

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China's bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  10. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    SciTech Connect

    Dickson, Timothy L.; Gross, Katherine L.

    2015-09-11

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity

  11. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    DOE PAGES

    Dickson, Timothy L.; Gross, Katherine L.

    2015-09-11

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studiesmore » of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of

  12. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    PubMed

    Dickson, Timothy L; Gross, Katherine L

    2015-01-01

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments

  13. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    PubMed Central

    Dickson, Timothy L.; Gross, Katherine L.

    2015-01-01

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments

  14. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  15. Fostering the Bioeconomic Revolution in Biobased Products and Bioenergy: An Environmental Approach

    SciTech Connect

    none,

    2001-01-01

    This document is a product of the Biomass Research and Development Board and presents a high-level summary of the emerging national strategy for biobased products and bioenergy. It provides the first integrated approach to policies and procedures that will promote R&D and demonstration leading to accelerated production of biobased products and bioenergy.

  16. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  17. SRWC bioenergy productivity and economic feasibility on marginal lands.

    PubMed

    Ghezehei, Solomon B; Shifflett, Shawn D; Hazel, Dennis W; Nichols, Elizabeth Guthrie

    2015-09-01

    Evolving bioenergy markets necessitate consideration of marginal lands for woody biomass production worldwide particularly the southeastern U.S., a prominent wood pellet exporter to Europe. Growing short rotation woody crops (SRWCs) on marginal lands minimizes concerns about using croplands for bioenergy production and reinforces sustainability of wood supply to existing and growing global biomass markets. We estimated mean annual aboveground green biomass increments (MAIs) and assessed economic feasibility of various operationally established (0.5 ha-109 ha) SRWC stands on lands used to mitigate environmental liabilities of municipal wastewater, livestock wastewater and sludge, and subsurface contamination by petroleum and pesticides. MAIs (Mg ha(-1) yr(-1)) had no consistent relationship with stand density or age. Non-irrigated Populus, Plantanus occidentalis L. and Pinus taeda L. stands produced 2.4-12.4 Mg ha(-1) yr(-1). Older, irrigated Taxodium distchum L., Fraxinus pennsylvanica L., and coppiced P. occidentalis stands had higher MAIs (10.6-21.3 Mg ha(-1) yr(-1)) than irrigated Liquidambar styraciflua L. and non-coppiced, irrigated P. occidentalis (8-18 Mg ha(-1) yr(-1)). Natural hardwood MAIs at 20-60 years were less than hardwood and P. taeda productivities at 5-20 years. Unlike weed control, irrigation and coppicing improved managed hardwood productivity. Rotation length affected economic outcomes although the returns were poor due to high establishment and maintenance costs, low productivities and low current stumpage values, which are expected to quickly change with development of robust global markets.

  18. Effects of bioenergy production on European nature conservation options

    NASA Astrophysics Data System (ADS)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    To increase security of energy supply and reduce greenhouse gas (GHG) emissions the European Commission set out a long-term strategy for renewable energy in the European Union (EU). Bioenergy from forestry and agriculture plays a key role for both. Since the last decade a significant increase of biomass energy plantations has been observed in Europe. Concurrently, the EU agreed to halt the loss of biodiversity within its member states. One measure is the Natura2000 network of important nature sites that actually covers about 20% of the EU land surface. However, to fulfil the biodiversity target more nature conservation and restoration sites need to be designated. There are arising concerns that an increased cultivation of bioenergy crops will decrease the land available for nature reserves and for "traditional" agriculture and forestry. In the following the economic and ecological impacts of structural land use changes are demonstrated by two examples. First, a case study of land use changes on the Eiderstedt peninsula in Schleswig-Holstein/Germany evaluates the impacts of grassland conversion into bioenergy plantations under consideration of selected meadow birds. Scenarios indicate not only a quantitative loss of habitats but also a reduction of habitat quality. The second study assesses the role of bioenergy production in light of possible negative impacts on potential wetland conservation sites in Europe. By coupling the spatial wetland distribution model "SWEDI" (cf. SCHLEUPNER 2007) to the European Forest and Agricultural Sector Optimization Model (EUFASOM; cf. SCHNEIDER ET AL. 2008) economic and environmental aspects of land use are evaluated simultaneously. This way the costs and benefits of the appropriate measures and its consequences for agriculture and forestry are investigated. One aim is to find the socially optimal balance between alternative wetland uses by integrating biological benefits - in this case wetlands - and economic opportunities - here

  19. Water quality assessment of bioenergy production

    Treesearch

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  20. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    SciTech Connect

    Wallace Tyner

    2012-05-30

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  1. Cellulose factories: advancing bioenergy production from forest trees.

    PubMed

    Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A

    2012-04-01

    Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.

  2. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    SciTech Connect

    Capareda, Sergio; El-Halwagi, Mahmoud; Hall, Kenneth R.; Holtzapple, Mark; Searcy, Royce; Thompson, Wayne H.; Baltensperger, David; Myatt, Robert; Blumenthal, Jurg

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  3. [Bioenergy production from waste: examples of biomethane and biohydrogen].

    PubMed

    Aceves-Lara, César Arturo; Trably, Eric; Bastidas-Oyenadel, Juan-Rodrigo; Ramirez, Ivan; Latrille, Eric; Steyer, Jean-Philippe

    2008-01-01

    This new century addresses several environmental challenges among which distribution of drinking water, global warming and availability of novel renewable energy sources to substitute for fossil fuels are of utmost importance. The last two concerns are closely related because the major part of carbon dioxide (CO(2)), considered as the main cause of the greenhouse effect, is widely produced from fossil fuel combustion. Renewable energy sources fully balanced in CO(2) are therefore of special interest, especially the issue of biological production from organic wastes. Among the possibilities of bioenergy production from wastes, two approaches are particularly interesting: The first one is relatively old and related to the production of biomethane by anaerobic digestion while the second one, more recent and innovative, relies on biohydrogen production by microbial ecosystems.

  4. Microbial nitrogen cycling response to forest-based bioenergy production.

    PubMed

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  5. Applications of microalgal biofilms for wastewater treatment and bioenergy production.

    PubMed

    Miranda, Ana F; Ramkumar, Narasimhan; Andriotis, Constandino; Höltkemeier, Thorben; Yasmin, Aneela; Rochfort, Simone; Wlodkowic, Donald; Morrison, Paul; Roddick, Felicity; Spangenberg, German; Lal, Banwari; Subudhi, Sanjukta; Mouradov, Aidyn

    2017-01-01

    Microalgae have shown clear advantages for the production of biofuels compared with energy crops. Apart from their high growth rates and substantial lipid/triacylglycerol yields, microalgae can grow in wastewaters (animal, municipal and mining wastewaters) efficiently removing their primary nutrients (C, N, and P), heavy metals and micropollutants, and they do not compete with crops for arable lands. However, fundamental barriers to the industrial application of microalgae for biofuel production still include high costs of removing the algae from the water and the water from the algae which can account for up to 30-40% of the total cost of biodiesel production. Algal biofilms are becoming increasingly popular as a strategy for the concentration of microalgae, making harvesting/dewatering easier and cheaper. We have isolated and characterized a number of natural microalgal biofilms from freshwater, saline lakes and marine habitats. Structurally, these biofilms represent complex consortia of unicellular and multicellular, photosynthetic and heterotrophic inhabitants, such as cyanobacteria, microalgae, diatoms, bacteria, and fungi. Biofilm #52 was used as feedstock for bioenergy production. Dark fermentation of its biomass by Enterobacter cloacae DT-1 led to the production of 2.4 mol of H2/mol of reduced sugar. The levels and compositions of saturated, monosaturated and polyunsaturated fatty acids in Biofilm #52 were target-wise modified through the promotion of the growth of selected individual photosynthetic inhabitants. Photosynthetic components isolated from different biofilms were used for tailoring of novel biofilms designed for (i) treatment of specific types of wastewaters, such as reverse osmosis concentrate, (ii) compositions of total fatty acids with a new degree of unsaturation and (iii) bio-flocculation and concentration of commercial microalgal cells. Treatment of different types of wastewaters with biofilms showed a reduction in the concentrations of

  6. Biomass production from native warm-season grass monocultures and polycultures managed for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Switchgrass monocultures grown for Bioenergy lack plant species diversity and may not optimize ecosystem services. However, switchgrass monocultures are generally perceived to be more productive and provide fewer establishment and management challenges than polycultures. Our objective was to compare...

  7. Economic and life cycle assessments of biomass utilization for bioenergy products

    DOE PAGES

    Liu, Weiguo; Wang, Jingxin; Richard, Tom L.; ...

    2017-05-04

    A modeling process was developed to examine the economic and environmental benefits of utilizing energy crops for biofuels and bioproducts. Three energy crops (hybrid willow, switchgrass and miscanthus) that can potentially grow on marginal agricultural land or abandoned mine land in the northeastern United States were considered in the analytical process for the production of biofuels, biopower and pellet fuel. The supply chain components for both the economic analysis and life cycle modeling processes included feedstock establishment, harvest, transportation, storage, preprocessing, conversion, distribution and final usage. Sensitivity analysis was also conducted to assess the effects of energy crop yield, transportationmore » distance, conversion rate, facility capacity and internal rate of return (IRR) on the production of bioenergy products. The required selling price (RSP) ranged from $ 7.7/GJ to $ 47.9/GJ for different bioproducts. The production of biopower had the highest RSP and pellet fuel had the lowest. The results also indicated that bioenergy production using hybrid willow demonstrated lower RSP than the two perennial grass feedstocks. Pellet production presented the lowest greenhouse gas (GHG) emissions (less than 10 kg CO2 eq per 1,000 MJ) and fossil energy consumption (less than 150 MJ per 1,000 MJ). The production of biofuel resulted in the highest GHG emissions. Sensitivity analysis indicated that IRR was the most sensitive factor to RSP and followed by conversion rate for biofuel and biopower production. As a result, conversion rate and transportation distance of feedstock presented a significant effect on environmental impacts during the production of the bioproducts.« less

  8. The Importance of Seedlings Quality in Timber and Bio-energy Production on marginal lands

    NASA Astrophysics Data System (ADS)

    Fragkiskakis, Nikitas; Kiourtsis, Fotios; Keramitzis, Dimitrios; Papatheodorou, Ioannis; Georgiadou, Margarita; Repmann, Frank; Gerwin, Werner

    2017-04-01

    One of the main issues that the forest sector is facing is to achieve a balance between the demand for biomass &wood production and the need to preserve the sustainability and biodiversity of forest ecosystems. The purposes of the new approaches are to ensure more efficient management of ecosystems and implement intensive forestry that will increase biomass production & timber yields. To achieve this, we need to determine the macroeconomic potential of the various options available, including the use of biotechnology and genetics. The success of the forests plantations capacity may be solved through forest certification, based on: a) Stabilization of the forests and soils structure. b) Hierarchy of biomass production in the forest's management process. c) Οrganization and implementation of effective plantation on marginal lands. d) Maintenance or increase of forest productivity by introducing new items as and when they are required. It is important to evaluate of the influence of factors such as the quality of soils of plantation areas, the utilization of the genetic resources and the management of forest operations with the environmental economic criteria such as net present value of benefits (NPV) and the corresponding flow annuities (EACF).The existing evaluations studies showed that the quality of the plantation areas has the most influence and through validated quality seed production can generate an increase in the NPV up to 73%. The importance of seedlings quality in timber and bio-energy production on marginal lands based on the literature it is estimated according to the heredity of the characteristics of the wood structure (except shrinkage). This clearly indicate that seedlings with the appropriate morphological characteristics can significantly improve the growth performance and help to support the development of biomass plantations oriented in tailor-made timber and bio-energy production.

  9. The Interplay of Bioenergy Crop Production and Water Resource Availability in the US

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.

    2014-12-01

    Large-scale growing of bioenergy crops, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus), may introduce new challenges for water resource availability in the US. However, the strength of the interplay between bioenergy crop production and water resource availability is highly uncertain at the spatial scale and determined by (1) the spatial distribution of land cover types; (2) availability of soil water resources; (3) climate conditions and (4) biophysical characteristics of different bioenergy crops, such as water use efficiency (WUE), tolerances to extreme water and thermal conditions (dry, high temperature, low temperature etc.) and photoperiod adaptability, etc. To address potential water availability concerns the spatial distribution of bioenergy crops needs to be optimized by considering the maximum WUE and the minimum dependence and impact on water resource availability. To address this objective, we apply a coupled biophysical and biogeochemical model (ISAM), to investigate spatial variability in the interplay between water resources and bioenergy crop production in the US. The bioenergy crops considered in this study include Miscanthus, Cave-in-Rock and Alamo switchgrasses, and corn (grain and stover). The interplay between bioenergy crop and corn production with water resources is quantitatively evaluated by calculating WUE and average water stress for different bioenergy crops and change in plant available soil water between bioenergy crops and natural vegetation. Our results indicate that low soil water availability limits production of bioenergy grasses in central and eastern Great Plains. Growing energy grasses here strengthens water depletion and limits its potential production. Miscanthus has the highest WUE in the central Midwest, followed by corn stover and Cave-in-Rock. However, growing Miscanthus and Cave-in-Rock here strengthens soil water depletion and induces water stress on their production. Though production

  10. Impact of bioenergy production on ecosystem dynamics and services-a case study on U.K. Heathlands.

    PubMed

    Martinez-Hernandez, Elias; Leach, Matthew; Yang, Aidong

    2015-05-05

    For sustainability's sake, the establishment of bioenergy production can no longer overlook the interactions between ecosystem and technological processes, to ensure the preservation of ecosystem functions that provide energy and other goods and services to the human being. In this paper, a bioenergy production system based on heathland biomass is investigated with the aim to explore how a system dynamics approach can help to analyze the impact of bioenergy production on ecosystem dynamics and services and vice versa. The effect of biomass harvesting on the heathland dynamics, ecosystem services such as biomass production and carbon capture, and its capacity to balance nitrogen inputs from atmospheric deposition and nitrogen recycling were analyzed. Harvesting was found to be beneficial for the maintenance of the heathland ecosystem if the biomass cut fraction is higher than 0.2 but lower than 0.6, but this will depend on the specific conditions of nitrogen deposition and nitrogen recycling. With 95% recycling of nitrogen, biomass production was increased by up to 25% for a cut fraction of 0.4, but at the expense of higher nitrogen accumulation and the system being less capable to withstand high atmospheric nitrogen deposition.

  11. Predicting the impacts of bioenergy production on farmland birds.

    PubMed

    Rivas Casado, Monica; Mead, Andrew; Burgess, Paul J; Howard, David C; Butler, Simon J

    2014-04-01

    Meeting European renewable energy production targets is expected to cause significant changes in land use patterns. With an EU target of obtaining 20% of energy consumption from renewable sources by 2020, national and local policy makers need guidance on the impact of potential delivery strategies on ecosystem goods and services to ensure the targets are met in a sustainable manner. Within agroecosystems, models are available to explore consequences of such policy decisions for food, fuel and fibre production but few can describe the effect on biodiversity. This paper describes the integration and application of a farmland bird population model within a geographical information system (GIS) to explore the consequences of land use changes arising from different strategies to meet renewable energy production targets. Within a 16,000 ha arable dominated case study area in England, the population growth rates of 19 farmland bird species were predicted under baseline land cover, a scenario maximising wheat production for bioethanol, and a scenario focused on mix of bioenergy sources. Both scenarios delivered renewable energy production targets for the region (>12 kWh per person per day) but, despite differences in resultant landscape composition, the response of the farmland bird community as a whole to each scenario was small and broadly similar. However, this similarity in overall response masked significant intra- and inter-specific variations across the study area and between scenarios suggesting contrasting mechanisms of impact and highlighting the need for context dependent, species-level assessment of land use change impacts. This framework provides one of the first systematic attempts to spatially model the effect of policy driven land use change on the population dynamics of a suite of farmland birds. The GIS framework also facilitates its integration with other ecosystem service models to explore wider synergies and trade offs arising from national or local

  12. Quantifying tradeoffs between water availability, water quality, food production and bioenergy production in a Central German Catchment

    NASA Astrophysics Data System (ADS)

    Volk, M.; Lautenbach, S.; Strauch, M.; Whittaker, G. W.

    2012-04-01

    Worldwide increasing bioenergy production is on the political agenda. It is well known that bioenergy production comes at a cost - several trade-offs with food production, water quality and quantity issues, biodiversity and ecosystem services are known. However, a quantification of these trade-offs is still missing. Hence, our study presents an analysis of trade-offs between water availability, water quality, bioenergy production and production in a Central German agricultural catchment. Our analysis is based on using SWAT and a multi-objective genetic algorithm (NSGA II). The genetic algorithm is used to find Pareto optimal configurations of crop rotation schemes. The Pareto-optimality describes solutions in which an objective cannot be improved without decreasing other objectives. This allows us to quantify the costs at which several levels of increase in bioenergy production come and to derive recommendations for policy makers.

  13. Synergies between agriculture and bioenergy in Latin American countries: A circular economy strategy for bioenergy production in Ecuador.

    PubMed

    Vega-Quezada, Cristhian; Blanco, María; Romero, Hugo

    2017-10-25

    This study quantifies the synergies between agriculture and bioenergy considering biodiesel production as part of a set of systemic initiatives. We present a case study in Ecuador taking into account the recent government measures aimed at developing the bioenergy sector. Four scenarios have been evaluated through a newly designed systemic scheme of circular-economy initiatives. These scenarios encompass three production pathways covering three energy crops: palm oil (PO), microalgae in open ponds (M1) and microalgae in laminar photobioreactors (M2). We have applied Benefit-Cost Analysis (BCA) methodology considering the Net Present Value (NPV) and the Benefit-Cost Ratio (BCR) as the main evaluation criteria. In terms of private investment, biodiesel production from PO is more attractive than from M2. However, regarding efficiency and effectiveness of public funds, M2 is superior to PO because the public BCR and NPV are higher, and the pressure on agricultural land is lower. Moreover, M2 as part of a systemic approach presents a better carbon balance. These findings show that, under a systemic approach based on circular economy, strategies like the one analyzed in this study are economically feasible and may have a promising future. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Treesearch

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  15. Exploring the Potential for Sustainable Future Bioenergy Production in the Arkansas-White-Red River Basin

    NASA Astrophysics Data System (ADS)

    Baskaran, L.; Jager, H.; Kreig, J.

    2016-12-01

    Bioenergy production in the US has been projected to increase in the next few years and this has raised concerns over environmentally sustainable production. Specifically, there are concerns that managing lands to produce bioenergy feedstocks in the Mississippi-Atchafalaya River Basin (MARB) may have impacts over the water quality in the streams draining these lands and hamper with efforts to reduce the size of the Gulf of Mexico's "Dead Zone" (hypoxic waters). However, with appropriate choice of feedstocks and good conservation practices, bioenergy production systems can be environmentally and economically sustainable. We evaluated opportunities for producing 2nd generation cellulosic feedstocks that are economically sustainable and improve water quality in the Arkansas-White-Red (AWR) river basin, which is major part of the MARB. We generated a future bioenergy landscape by downscaling county-scale projections of bioenergy crop production produced by an economic model, POLYSYS, at a market price of $60 per dry ton and a 1% annual yield increase. Our future bioenergy landscape includes perennial grasses (switchgrass and miscanthus), short-rotated woody crops (poplar and willow) and annual crops (high yield sorghum, sorghum stubble, corn stover and wheat straw). Using the Soil and Water Assessment Tool (SWAT) we analyzed changes in water quality and quantity by simulating a baseline scenario with the current landscape (2014 land cover) and a future scenario with the bioenergy landscape. Our results over the AWR indicate decreases in median nutrient and sediment loadings from the baseline scenario. We also explored methods to evaluate if conservation practices (such as reducing fertilizer applications, incorporating filter strips, planting cover crops and moving to a no-till system) can improve water quality, while maintaining biomass yield. We created a series of SWAT simulations with varying levels of conservation practices by crop and present our methods towards

  16. Ecological Modernisation and Discourses on Rural Non-Wood Bioenergy Production in Finland from 1980 to 2005

    ERIC Educational Resources Information Center

    Huttunen, Suvi

    2009-01-01

    Rural bioenergy production is currently a much debated question worldwide. It is closely connected to questions of environmental protection and rural development in both developing and industrial world. In Finland, rural bioenergy production has traditionally meant the production of wood fuels for heating purposes. The utilisation of forest…

  17. Ecological Modernisation and Discourses on Rural Non-Wood Bioenergy Production in Finland from 1980 to 2005

    ERIC Educational Resources Information Center

    Huttunen, Suvi

    2009-01-01

    Rural bioenergy production is currently a much debated question worldwide. It is closely connected to questions of environmental protection and rural development in both developing and industrial world. In Finland, rural bioenergy production has traditionally meant the production of wood fuels for heating purposes. The utilisation of forest…

  18. Sorghum as a Versatile Feedstock for Bioenergy Production

    USDA-ARS?s Scientific Manuscript database

    World economy development, population increase, and urban expansion accelerate the depletion of naturally preserved energy (fossil fuel), reduction in arable land, and trend of global climate change. Bioenergy, the forms of energy produced from materials of living organisms, holds special promise in...

  19. Simulation of biomass yield and soil organic carbon under bioenergy sorghum production.

    PubMed

    Dou, Fugen; Wight, Jason P; Wilson, Lloyd T; Storlien, Joseph O; Hons, Frank M

    2014-01-01

    Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0-50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha-1, while the simulated SOC was from 56.3 to 67.3 Mg C ha-1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management.

  20. Simulation of Biomass Yield and Soil Organic Carbon under Bioenergy Sorghum Production

    PubMed Central

    Dou, Fugen; Wight, Jason P.; Wilson, Lloyd T.; Storlien, Joseph O.; Hons, Frank M.

    2014-01-01

    Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0–50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha−1, while the simulated SOC was from 56.3 to 67.3 Mg C ha−1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management. PMID:25531758

  1. An outlook for sustainable forest bioenergy production in the Lake States

    Treesearch

    Dennis R. Becker; Kenneth Skog; Allison Hellman; Kathleen E. Halvorsen; Terry Mace

    2009-01-01

    The Lake States region of Minnesota, Wisconsin and Michigan offers significant potential for bioenergy production. We examine the sustainability of regional forest biomass use in the context of existing thermal heating, electricity, and biofuels production, projected resource needs over the next decade including existing forest product market demand, and impacts on...

  2. Bioenergy production and forest landscape change in the southeastern United States

    USGS Publications Warehouse

    Costanza, Jennifer K.; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2016-01-01

    Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose-grown woody crops grown on marginal lands. Results reveal trade-offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business-as-usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose-grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose-grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land-use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for

  3. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    PubMed

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  4. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments

    PubMed Central

    Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Background Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Results Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Conclusion Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production. PMID:25187788

  5. Conservation Considerations for Sustainable Bioenergy Feedstock Production: If, What, Where, and How Much?

    USDA-ARS?s Scientific Manuscript database

    Increased awareness of the need to achieve energy independence and security has resulted in many questions regarding the use of agricultural products as feedstock for bioenergy production. Initial efforts with grain crops, though successful, raised many more questions regarding sustainability and po...

  6. The Economic Impacts of Bioenergy Crop Production on U.S. Agriculture

    SciTech Connect

    Dr. Daniel De La Torre Ugarte

    2000-07-01

    The oil embargoes of the 1970s raised concerns about energy security. Large scale production of bioenergy crops could have significant impacts on the US agricultural sector in terms of quantities, prices and production location of traditional crops as well as farm income. USDA, UT and ORNL modified an agricultural sector model to include switchgrass, hybrid poplar, and willow.

  7. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    USDA-ARS?s Scientific Manuscript database

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demands on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustaina...

  8. Soil quality impacts of perennial bioenergy crops on marginally-productive lands

    USDA-ARS?s Scientific Manuscript database

    Dedicated perennial energy crops grown on marginally-productive croplands can provide a sustainable supply of bioenergy feedstock while improving soil quality and enhancing ecosystem services. Because marginally-productive croplands typically are at higher risk of degradation, growing highly produc...

  9. Bioenergy potential of the United States constrained by satellite observations of existing productivity.

    PubMed

    Smith, W Kolby; Cleveland, Cory C; Reed, Sasha C; Miller, Norman L; Running, Steven W

    2012-03-20

    United States (U.S.) energy policy includes an expectation that bioenergy will be a substantial future energy source. In particular, the Energy Independence and Security Act of 2007 (EISA) aims to increase annual U.S. biofuel (secondary bioenergy) production by more than 3-fold, from 40 to 136 billion liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2.9 to 7.4 EJ yr(-1). However, our understanding of many of the factors used to establish such energy targets is far from complete, introducing significgant uncertainty into the feasibility of current estimates of bioenergy potential. Here, we utilized satellite-derived net primary productivity (NPP) data-measured for every 1 km(2) of the 7.2 million km(2) of vegetated land in the conterminous U.S.-to estimate primary bioenergy potential (PBP). Our results indicate that PBP of the conterminous U.S. ranges from roughly 5.9 to 22.2 EJ yr(-1), depending on land use. The low end of this range represents the potential when harvesting residues only, while the high end would require an annual biomass harvest over an area more than three times current U.S. agricultural extent. While EISA energy targets are theoretically achievable, we show that meeting these targets utilizing current technology would require either an 80% displacement of current crop harvest or the conversion of 60% of rangeland productivity. Accordingly, realistically constrained estimates of bioenergy potential are critical for effective incorporation of bioenergy into the national energy portfolio.

  10. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    United States (U.S.) energy policy includes an expectation that bioenergy will be a substantial future energy source. In particular, the Energy Independence and Security Act of 2007 (EISA) aims to increase annual U.S. biofuel (secondary bioenergy) production by more than 3-fold, from 40 to 136 billion liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2.9 to 7.4 EJ yr–1. However, our understanding of many of the factors used to establish such energy targets is far from complete, introducing significgant uncertainty into the feasibility of current estimates of bioenergy potential. Here, we utilized satellite-derived net primary productivity (NPP) data—measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S.—to estimate primary bioenergy potential (PBP). Our results indicate that PBP of the conterminous U.S. ranges from roughly 5.9 to 22.2 EJ yr–1, depending on land use. The low end of this range represents the potential when harvesting residues only, while the high end would require an annual biomass harvest over an area more than three times current U.S. agricultural extent. While EISA energy targets are theoretically achievable, we show that meeting these targets utilizing current technology would require either an 80% displacement of current crop harvest or the conversion of 60% of rangeland productivity. Accordingly, realistically constrained estimates of bioenergy potential are critical for effective incorporation of bioenergy into the national energy portfolio.

  11. Global impacts of U.S. bioenergy production and policy: A general equilibrium perspective

    NASA Astrophysics Data System (ADS)

    Evans, Samuel Garner

    The conversion of biomass to energy represents a promising pathway forward in efforts to reduce fossil fuel use in the transportation and electricity sectors. In addition to potential benefits, such as greenhouse gas reductions and increased energy security, bioenergy production also presents a unique set of challenges. These challenges include tradeoffs between food and fuel production, distortions in energy markets, and terrestrial emissions associated with changing land-use patterns. Each of these challenges arises from market-mediated responses to bioenergy production, and are therefore largely economic in nature. This dissertation directly addresses these opportunities and challenges by evaluating the economic impacts of U.S. bioenergy production and policy, focusing on both existing and future biomass-to-energy pathways. The analysis approaches the issue from a global, economy-wide perspective, reflecting two important facts. First, that large-scale bioenergy production connects multiple sectors of the economy due to the use of agricultural land resources for biomass production, and competition with fossil fuels in energy markets. Second, markets for both agricultural and energy commodities are highly integrated globally, causing domestic policies to have international effects. The reader can think of this work as being comprised of three parts. Part I provides context through an extensive review of the literature on the market-mediated effects of conventional biofuel production (Chapter 2) and develops a general equilibrium modeling framework for assessing the extent to which these phenomenon present a challenge for future bioenergy pathways (Chapter 3). Part II (Chapter 4) explores the economic impacts of the lignocellulosic biofuel production targets set in the U.S. Renewable Fuel Standard on global agricultural and energy commodity markets. Part III (Chapter 5) extends the analysis to consider potential inefficiencies associated with policy

  12. Best management practices: Managing cropping systems for soil protection and bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  13. A synthesis of biomass utilization for bioenergy production in the Western United States.

    Treesearch

    David L. Nicholls; Robert A. Monserud; Dennis P. Dykstra

    2008-01-01

    We examine the use of woody residues, primarily from forest harvesting or wood products manufacturing operations (and to a limited degree from urban wood wastes), as a feedstock for direct-combustion bioenergy systems for electrical or thermal power applications. We examine opportunities for utilizing biomass for energy at several scales, with an emphasis on larger...

  14. Fluid fertilizer's role in sustaining soils used for bio-energy feedstock production

    USDA-ARS?s Scientific Manuscript database

    The use of corn (Zea mays L.) as a bio-energy feedstock has attracted the attention of many producers. Recently, the focus has shifted from grain-based to cellulose-based ethanol production. In addition to biological conversion of corn stover to ethanol, thermal conversion (pyrolysis) of stover is b...

  15. Forage and bioenergy feedstock production from hybrid forage sorghum and sorghum x sudangrass hybrids

    USDA-ARS?s Scientific Manuscript database

    As the bioenergy industry expands, producers choosing to shift current forage crop production to dedicated biomass crops will find it advantageous to grow low risk multi-purpose crops that maximize management options. Hybrid forage sorghums (HFS) and sorghum by sudangrass hybrids (SSG) are capable...

  16. Topographic and soil influences on root productivity of three bioenergy cropping systems

    Treesearch

    Todd A. Ontl; Kirsten S. Hofmockel; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka

    2013-01-01

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern...

  17. Land conversion to bioenergy production: water budget and sediment output in a semiarid grassland

    USDA-ARS?s Scientific Manuscript database

    Switchgrass based bioenergy production has been considered a feasible alternative of land use for the mixed-grass prairie and marginal croplands in the High Plains. However, little is known of the effect of this land use change on the water cycle and associated sediment output in this water controll...

  18. Whole system analysis of second generation bioenergy production and Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2017-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy that has higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by current climate change. It is important to establish how second generation bioenergy crops (Miscanthus, SRC willow and poplar) can contribute by closing the gap between reducing fossil fuel use and increasing the use of other renewable sources in a sustainable way. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). We will present estimated yields for the above named crops in Europe using the ECOSSE, DayCent, SalixFor and MiscanFor models. These yields will be brought into context with a whole system analysis, detailing trade-offs and synergies for land use change, food security, GHG emissions and soil and water security. Methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be used to estimate and visualise the impacts of increased use of second generation bioenergy crops on the above named ecosystem services. The results will be linked to potential yields to generate "inclusion or exclusion areas" in Europe in order to establish suitable areas for bioenergy crop production and the extent of use possible. Policy is an important factor for using second generation bioenergy crops in a sustainable way. We will present how whole system analysis can be used to create scenarios for countries or on a continental scale. As an

  19. Short and Long Term Impacts of Forest Bioenergy Production on Atmospheric Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Hudiburg, T.; Law, B. E.; Luyssaert, S.; Thornton, P. E.

    2011-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. The benefit of managing forests for bioenergy substitution of fossil fuels versus potential carbon sequestration by reducing harvest needs to be evaluated. This study uses a combination of Federal Forest Inventory data (FIA), remote sensing, and a coupled carbon-nitrogen ecosystem process model (CLM4-CN) to predict net atmospheric CO2 emissions from forest thinning for bioenergy production in Oregon under varying future management and climate scenarios. We use life-cycle assessment (LCA) incorporating both the forest and forest product sinks and sources of carbon dioxide. Future modeled results are compared with a reduced harvest scenario to determine the potential for increased carbon sequestration in forest biomass. We find that Oregon forests are a current strong sink of 7.5 ± 1.7 Tg C yr-1 or 61 g C m-2 yr-1. (NBP; NEP minus removals from fire and harvest). In the short term, we find that carbon dynamics following harvests for fire prevention and large-scale bioenergy production lead to 2-15% higher emissions over the next 20 years compared to current management, assuming 100% effectiveness of fire prevention. Given the current sink strength, analysis of the forest sector in Oregon demonstrates that increasing harvest levels by all practices above current business-as-usual levels increases CO2 emissions to the atmosphere as long as the region's sink persists. In the long-term, we find that projected changes in

  20. Bioenergy production and sustainable development: science base for policymaking remains limited.

    PubMed

    Robledo-Abad, Carmenza; Althaus, Hans-Jörg; Berndes, Göran; Bolwig, Simon; Corbera, Esteve; Creutzig, Felix; Garcia-Ulloa, John; Geddes, Anna; Gregg, Jay S; Haberl, Helmut; Hanger, Susanne; Harper, Richard J; Hunsberger, Carol; Larsen, Rasmus K; Lauk, Christian; Leitner, Stefan; Lilliestam, Johan; Lotze-Campen, Hermann; Muys, Bart; Nordborg, Maria; Ölund, Maria; Orlowsky, Boris; Popp, Alexander; Portugal-Pereira, Joana; Reinhard, Jürgen; Scheiffle, Lena; Smith, Pete

    2017-03-01

    The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited scientific basis for policymaking. Our results indicate that knowledge on the sustainable development impacts of bioenergy production is concentrated in a few well-studied countries, focuses on environmental and economic impacts, and mostly relates to dedicated agricultural biomass plantations. The scope and methodological approaches in studies differ widely and only a small share of the studies sufficiently reports on context and/or baseline conditions, which makes it difficult to get a general understanding of the attribution of impacts. Nevertheless, we identified regional patterns of positive or negative impacts for all categories - environmental, economic, institutional, social and technological. In general, economic and technological impacts were more frequently reported as positive, while social and environmental impacts were more frequently reported as negative (with the exception of impacts on direct substitution of GHG emission from fossil fuel). More focused and transparent research is needed to validate these patterns and develop a strong science underpinning for establishing policies and governance agreements that prevent/mitigate negative and promote positive impacts from bioenergy production.

  1. The Interplay Between Bioenergy Grass Production and Water Resources in the United States of America.

    PubMed

    Song, Yang; Cervarich, Matthew; Jain, Atul K; Kheshgi, Haroon S; Landuyt, William; Cai, Ximing

    2016-03-15

    We apply a land surface model to evaluate the interplay between potential bioenergy grass (Miscanthus, Cave-in-Rock, and Alamo) production, water quantity, and nitrogen leaching (NL) in the Central and Eastern U.S. Water use intensity tends to be lower where grass yields are modeled to be high, for example in the Midwest for Miscanthus and Cave-in-Rock and the upper southeastern U.S. for Alamo. However, most of these regions are already occupied by crops and forests and substitution of these biome types for ethanol production implies trade-offs. In general, growing Miscanthus consumes more water, Alamo consumes less water, and Cave-in-Rock consumes approximately the same amount of water as existing vegetation. Bioenergy grasses can maintain high productivity over time, even in water limited regions, because their roots can grow deeper and extract the water from the deep, moist soil layers. However, this may not hold where there are frequent and intense drought events, particularly in regions with shallow soil depths. One advantage of bioenergy grasses is that they mitigate nitrogen leaching relative to row crops and herbaceous plants when grown without applying N fertilizer; and bioenergy grasses, especially Miscanthus, generally require less N fertilizer application than row crops and herbaceous plants.

  2. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    PubMed

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  3. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.

    PubMed

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik; Astrup, Thomas

    2012-12-18

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. For each, four conversion pathways were assessed against a fossil fuel reference: (I) anaerobic co-digestion with manure, (II) gasification, (III) combustion in small-to-medium scale biomass combined heat and power (CHP) plants and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow and Miscanthus co-firing, allowed for an improvement as compared with the reference (-82 and -45 t CO₂-eq. ha⁻¹, respectively). The indirect land use changes impact was quantified as 310 ± 170 t CO₂-eq. ha⁻¹, representing a paramount average of 41% of the induced greenhouse gas emissions. The uncertainty analysis confirmed the results robustness and highlighted the indirect land use changes uncertainty as the only uncertainty that can significantly change the outcome of the LCA results.

  4. Legal framework for a sustainable biomass production for bioenergy on Marginal Lands

    NASA Astrophysics Data System (ADS)

    Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    The EU H2020 funded project SEEMLA is aiming at the sustainable exploitation of biomass for bioenergy from marginal lands in Europe. Partners from Germany, Italy, Ukraine and Greece are involved in this project. Whereas Germany can be considered as well-established and leading country with regard to the production of bioenergy, directly followed by Italy and Greece, Ukraine is doing its first steps in becoming independent from fossil energy resources, also heading for the 2020+ goals. A basic, overarching regulation is the Renewable Energy Directive (RED) which has been amended in 2015; these amendments will be set in force in 2017. A new proposal for the period after 2020, the so called RED II, is under preparation. With cross-compliance and greening, the Common Agricultural Policy (CAP) offers measures for an efficient and ecological concept for a sustainable agriculture in Europe. In country-specific National Renewable Energy Action Plans (NREAP) a concept for 2020 targets is given for practical implementation until 2030 which covers e.g. individual renewable energy targets for electricity, heating and cooling, and transport sectors, the planned mix of different renewables technologies, national policies to develop biomass resources, and measures to ensure that biofuels are used to meet renewable energy targets are in compliance with the EU's sustainability criteria. While most of the NREAP have been submitted in 2010, the Ukrainian NREAP was established in 2014. In addition, the legal framework considering the protection of nature, e.g. Natura 2000, and its compartments soil, water, and atmosphere are presented. The SEEMLA approach will be developed in agreement with this already existing policy framework, following a sustainable principle for growing energy plants on marginal lands (MagL). Secondly, legislation regarding bioenergy and biomass potentials in the EU-28 and partner countries is introduced. For each SEEMLA partner an overview of regulatory

  5. Sustainable bioenergy production from marginal lands in the US Midwest.

    PubMed

    Gelfand, Ilya; Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, R César; Gross, Katherine L; Robertson, G Philip

    2013-01-24

    Legislation on biofuels production in the USA and Europe is directing food crops towards the production of grain-based ethanol, which can have detrimental consequences for soil carbon sequestration, nitrous oxide emissions, nitrate pollution, biodiversity and human health. An alternative is to grow lignocellulosic (cellulosic) crops on 'marginal' lands. Cellulosic feedstocks can have positive environmental outcomes and could make up a substantial proportion of future energy portfolios. However, the availability of marginal lands for cellulosic feedstock production, and the resulting greenhouse gas (GHG) emissions, remains uncertain. Here we evaluate the potential for marginal lands in ten Midwestern US states to produce sizeable amounts of biomass and concurrently mitigate GHG emissions. In a comparative assessment of six alternative cropping systems over 20 years, we found that successional herbaceous vegetation, once well established, has a direct GHG emissions mitigation capacity that rivals that of purpose-grown crops (-851 ± 46 grams of CO(2) equivalent emissions per square metre per year (gCO(2)e m(-2) yr(-1))). If fertilized, these communities have the capacity to produce about 63 ± 5 gigajoules of ethanol energy per hectare per year. By contrast, an adjacent, no-till corn-soybean-wheat rotation produces on average 41 ± 1 gigajoules of biofuel energy per hectare per year and has a net direct mitigation capacity of -397 ± 32 gCO(2)e m(-2) yr(-1); a continuous corn rotation would probably produce about 62 ± 7 gigajoules of biofuel energy per hectare per year, with 13% less mitigation. We also perform quantitative modelling of successional vegetation on marginal lands in the region at a resolution of 0.4 hectares, constrained by the requirement that each modelled location be within 80 kilometres of a potential biorefinery. Our results suggest that such vegetation could produce about 21 gigalitres of ethanol per year from

  6. Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee

    DOE PAGES

    Parish, Esther S.; Dale, Virginia H.; English, Burton C.; ...

    2016-02-26

    This paper connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning six environmental, three economic, and three social categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations. A recent demonstration-scale switchgrass-to-ethanol production system located in East Tennessee is used to assess the availability of sustainability indicator data and associated measurements for the feedstock production and logistics portions of the biofuel supply chain. Knowledge pertaining to the available indicators is distributed within a hierarchical decision tree framework to generate an assessment ofmore » the overall sustainability of this no-till switchgrass production system relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The relative contributions of the social, economic and environmental information are determined for the overall trajectory of this bioenergy system s sustainability under each scenario. Within this East Tennessee context, switchgrass production shows potential for improving environmental and social sustainability trajectories without adverse economic impacts, thereby leading to potential for overall enhancement in sustainability within this local agricultural system. Given the early stages of cellulosic ethanol production, it is currently difficult to determine quantitative values for all 35 sustainability indicators across the entire biofuel supply chain. This case study demonstrates that integration of qualitative sustainability indicator ratings may increase holistic understanding of a bioenergy system in the absence of complete information.« less

  7. Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee

    SciTech Connect

    Parish, Esther S.; Dale, Virginia H.; English, Burton C.; Jackson, Samuel W.; Tyler, Donald D.

    2016-02-26

    This paper connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning six environmental, three economic, and three social categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations. A recent demonstration-scale switchgrass-to-ethanol production system located in East Tennessee is used to assess the availability of sustainability indicator data and associated measurements for the feedstock production and logistics portions of the biofuel supply chain. Knowledge pertaining to the available indicators is distributed within a hierarchical decision tree framework to generate an assessment of the overall sustainability of this no-till switchgrass production system relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The relative contributions of the social, economic and environmental information are determined for the overall trajectory of this bioenergy system s sustainability under each scenario. Within this East Tennessee context, switchgrass production shows potential for improving environmental and social sustainability trajectories without adverse economic impacts, thereby leading to potential for overall enhancement in sustainability within this local agricultural system. Given the early stages of cellulosic ethanol production, it is currently difficult to determine quantitative values for all 35 sustainability indicators across the entire biofuel supply chain. This case study demonstrates that integration of qualitative sustainability indicator ratings may increase holistic understanding of a bioenergy system in the absence of complete information.

  8. Sustainable bioenergy production with little carbon debt in the Loess Plateau of China.

    PubMed

    Liu, Wei; Peng, Cheng; Chen, Zhifen; Liu, Yue; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a key strategy for mitigating global climate change, bioenergy production by reducing CO2 emissions plays an important role in ensuring sustainable development. However, land-use change by converting natural ecosystems into energy crop field could create a carbon debt at the beginning. Thus, the potential carbon debt calculation is necessary for determining a promising bioenergy crop production, especially in the region rich of marginal land. Here, we used high-resolution historical land-use data to identify the marginal land available and to evaluate the carbon debt of planting Miscanthus in the Loess Plateau, China. We found that there were 27.6 Mha for energy production and 9.7 Mha for ecological restoration, with total annual production of 0.41 billion tons of biomass. We also found that soil carbon sequestration and total CO2 mitigation were 9.3 Mt C year(-1) and 542 Mt year(-1), respectively. More importantly, the result showed that planting Miscanthus on marginal land in the Loess Plateau only took 0.97 years on average to repay the carbon debt. Our study demonstrated that Miscanthus production in suitable marginal land in the Loess Plateau can offer considerable renewable energy and mitigate climate change with little carbon debt. These results suggested that bioenergy production in the similar arid and semiarid region worldwide would contribute to carbon sequestration in the context of rapid climate change.

  9. Developing tools to identify marginal lands and assess their potential for bioenergy production

    NASA Astrophysics Data System (ADS)

    Galatsidas, Spyridon; Gounaris, Nikolaos; Dimitriadis, Elias; Rettenmaier, Nils; Schmidt, Tobias; Vlachaki, Despoina

    2017-04-01

    The term "marginal land" is currently intertwined in discussions about bioenergy although its definition is neither specific nor firm. The uncertainty arising from marginal land classification and quantification is one of the major constraining factors for its potential use. The clarification of political aims, i.e. "what should be supported?" is also an important constraining factor. Many approaches have been developed to identify marginal lands, based on various definitions according to the management goals. Concerns have been frequently raised regarding the impacts of marginal land use on environment, ecosystem services and sustainability. Current tools of soil quality and land potentials assessment fail to meet the needs of marginal land identification and exploitation for biomass production, due to the lack of comprehensive analysis of interrelated land functions and their quantitative evaluation. Land marginality is determined by dynamic characteristics in many cases and may therefore constitute a transitional state, which requires reassessment in due time. Also, marginal land should not be considered simply a dormant natural resource waiting to be used, since it may already provide multiple benefits and services to society relating to wildlife, biodiversity, carbon sequestration, etc. The consequences of cultivating such lands need to be fully addressed to present a balanced view of their sustainable potential for bioenergy. This framework is the basis for the development of the SEEMLA tools, which aim at supporting the identification, assessment, management of marginal lands in Europe and the decision-making for sustainable biomass production of them using appropriate bioenergy crops. The tools comprise two applications, a web-based one (independent of spatial data) and a GIS-based application (land regionalization on the basis of spatial data), which both incorporate: - Land resource characteristics, restricting the cultivation of agricultural crops but

  10. Considering the air quality impacts of bioenergy crop production: a case study involving Arundo donax.

    PubMed

    Porter, William C; Barsanti, Kelley C; Baughman, Eowyn C; Rosenstiel, Todd N

    2012-09-04

    The expanding production of bioenergy crops may impact regional air quality through the production of volatile organic compounds such as isoprene. To investigate the effects of isoprene-emitting crops on air quality, specifically ozone (O(3)) and secondary organic aerosol (SOA) formation, we performed a series of model runs using the Weather Research and Forecasting model with Chemistry (WRF/Chem) coupled with the Model of Emissions of Gases and Aerosols from Nature (MEGAN) simulating a proposed cropland conversion to the giant cane Arundo donax for biomass production. Cultivation of A. donax in the relatively clean air of northeastern Oregon resulted in an average increase in 8 h O(3) levels of 0.52 ppb, while SOA was largely unaffected (<+0.01 μg m(-3)). Conversions in U.S. regions with reduced air quality (eastern Texas and northern Illinois) resulted in average 8 h O(3) increases of 2.46 and 3.97 ppb, respectively, with daily increases up to 15 ppb in the Illinois case, and daytime SOA increases up to 0.57 μg m(-3). While cultivation of isoprene-emitting bioenergy crops may be appropriate at some scales and in some regions, other areas may experience increased O(3) and SOA, highlighting the need to consider isoprene emissions when evaluating potential regional impacts of bioenergy crop production.

  11. Greenhouse gas fluxes and root productivity in a switchgrass and loblolly pine intercropping system for bioenergy production

    Treesearch

    Paliza Shrestha; John R. Seiler; Brian D. Strahm; Eric B. Sucre; Zakiya H. Leggett

    2015-01-01

    This study is part of a larger collaborative effort to determine the overall environmental sustainability of intercropping pine (Pinus taeda L.) and switchgrass (Panicum virgatum L.), both of which are promising feedstock for bioenergy production in the Lower Coastal Plain in North Carolina.

  12. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    Growing crops for bioenergy is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. The debate should shift from "food or fuel" to the more challenging target: how the increasing demand for food and energy can be met in the future, particularly when water and land availability will be limited. As for food crops, also for bioenergy crops it is questioned whether it is preferable to manage cultivation to enhance ecosystem services ("land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand ("land sparing" strategy). Energy crop production systems differ greatly in the supply of ecosystem services. The use of perennial biomass (e.g. Switchgrass, Mischantus, Giant reed) for energy production is considered a promising way to reduce net carbon emissions and mitigate climate change. In addition, regulating and supporting ecosystem services could be provided when specific management of bioenergy crops is implemented. The idea of HEDGE-BIOMASS* project is to convert the arable field margins to bioenergy crop production fostering a win-win strategy at landscape level. Main objective of the project is to improve land management to generate environmental benefits and increase farmer income. The various options available in literature for an improved field boundary management are presented. The positive/unknown/negative effects of growing perennial bioenergy crops on field margins will be discussed relatively to the following soil-related ecosystem services: (I) biodiversity conservation and enhancement, (II) soil nutrient cycling, (III) climate regulation (reduction of GHG emissions and soil carbon sequestration/stabilization, (IV) water regulation (filtering and buffering), (V) erosion regulation, (VI) pollination and pest regulation. From the analysis of available

  13. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    SciTech Connect

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran; Nichols, Dr Jeff A; Post, Wilfred M; Brandt, Craig C; Wullschleger, Stan D; Wei, Yaxing; Singh, Nagendra

    2013-01-01

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

  14. The availability and economic analyses of using marginal land for bioenergy production in China

    NASA Astrophysics Data System (ADS)

    Yuqi, Chen; Xudong, Guo; Chunyan, Lv

    2017-04-01

    In recent years, China has witnessed rapid increase in the dependence of foreign oil import. In 2015, the primary energy consumption of China is 543 million tons, of which 328 million tons was imported. The total amount of imported foreign oil increased from 49.8% in 2008 to 60.41% in 2016. To address the national energy security and GHG emission reduction, China has made considerable progress in expanding renewable energy portfolio, especially liquid biofuels. However, under the pressure of high population and vulnerable food security, China's National Development and Reform Commission (NDRC) ruled that bioenergy is only allowed to be produced using non-cereal feedstock. In addition, the energy crops can only be planted on marginal land, which is the land not suitable for growing field crops due to edaphic and/or climatic limitations, and other environmental risks. Although there have been a number of studies about estimating the marginal land for energy plants' cultivation in China, as to the different definition of marginal land and land use data, the results are quite different. Furthermore, even if there is enough marginal land suitable for energy plants' cultivation, economic viability of cultivating energy plants on marginal land is critical. In order to analyze the availability and economic analyses of the marginal land for bioenergy production strategy, firstly, by using of the latest and most authoritative land use data, this study focused on the assessment of marginal land resources and bioenergy potential by planting five species of energy plants including Cassava, Jatropha curcas, Helianthus tuberous L, Pistacia chinensis, Xanthoceras sorbifolia Bunge. The results indicate that there are 289.71 million ha marginal land can be used for these five energy plants' cultivation, which can produce 24.45 million tons bioethanol and 8.77 million tons of biodiesel. Secondly, based on field survey data and literature reviews, we found that, from the farmers

  15. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    SciTech Connect

    Nair, S. Surendran; Nichols, Jeff A. {Cyber Sciences}; Post, Wilfred M; Wang, Dali; Wullschleger, Stan D; Kline, Keith L; Wei, Yaxing; Singh, Nagendra; Kang, Shujiang

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  16. Stakeholder engagement in scenario development process - bioenergy production and biodiversity conservation in eastern Finland.

    PubMed

    Haatanen, Anniina; den Herder, Michael; Leskinen, Pekka; Lindner, Marcus; Kurttila, Mikko; Salminen, Olli

    2014-03-15

    In this study participatory approaches were used to develop alternative forest resource management scenarios with particular respect to the effects on increased use of forest bioenergy and its effect on biodiversity in Eastern Finland. As technical planning tools, we utilized a forest management planning system (MELA) and the Tool for Sustainability Impact Assessment (ToSIA) to visualize the impacts of the scenarios. We organized a stakeholder workshop where group discussions were used as a participatory method to get the stakeholder preferences and insights concerning forest resource use in the year 2030. Feedback from the workshop was then complemented with a questionnaire. Based on the results of the workshop and a questionnaire we developed three alternative forest resource scenarios: (1) bioenergy 2030 - in which energy production is more centralized and efficient; (2) biodiversity 2030 - in which harvesting methods are more nature friendly and protected forests make up 10% of the total forest area; and (3) mixed bioenergy + biodiversity 2030 scenario - in which wood production, recreation and nature protection are assigned to the most suitable areas. The study showed that stakeholder engagement combined with the MELA and ToSIA tools can be a useful approach in scenario development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production

    PubMed Central

    Pujol Pereira, Engil Isadora; Suddick, Emma C.; Six, Johan

    2016-01-01

    By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration. PMID:26963623

  18. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production.

    PubMed

    Pujol Pereira, Engil Isadora; Suddick, Emma C; Six, Johan

    2016-01-01

    By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.

  19. Topographic and soil influences on root productivity of three bioenergy cropping systems.

    PubMed

    Ontl, Todd A; Hofmockel, Kirsten S; Cambardella, Cynthia A; Schulte, Lisa A; Kolka, Randall K

    2013-08-01

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern agroecosystem. Using ingrowth cores to measure annual root production, we tested for the effects of topography and 11 soil characteristics on root productivity. Root production significantly differed among cropping systems. Switchgrass root productivity was lowest on the floodplain position, but root productivity of annual crops was not influenced by topography or soil properties. Greater switchgrass root production was associated with high percent sand, which explained 45% of the variation. Percent sand was correlated negatively with soil C and nitrogen and positively with bulk density, indicating this variable is a proxy for multiple important soil properties. Our results suggest that easily measured soil parameters can be used to improve model predictions of root productivity in bioenergy switchgrass, but the edaphic factors we measured were not useful for predicting root productivity in annual crops. These results can improve C cycling modeling efforts by revealing the influence of cropping system and soil properties on root productivity.

  20. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana.

    PubMed

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Sieverts Nielsen, Per; Pedro Nunes, Clemente

    2014-12-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana's energy demands. Major rice growing regions of Ghana have 70-90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5 MWe straw combustion plant were 39.01, 47.52 and 47.89 USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25 MWe husk gasification plant (with roundtrip distance 10 km) was 2.64 USD/t in all regions. Capital cost (66-72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46-48% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, D. N.; Smith, P.; Davies, C.; McNamara, N. P.

    2016-12-01

    Bioenergy crops are an important source of renewable energy and likely to play a major role in transitioning to a lower CO2 energy system. There is, however, uncertainty about the impacts of the growth of bioenergy crops on broader sustainability encompassed by ecosystem services, further enhanced by ongoing climate change. The goal of this project is to develop a comprehensive model that covers ecosystem services at a continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC; willow and poplar) was modelled using ECOSSE, DayCent, SalixFor and MiscanFor models. In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models are utilised. We will present results for synergies and trade-offs between land use change and ecosystem services, impact on food security and land management. Further, we will show modelled yield maps for different cultivars of Miscanthus, willow and poplar in Europe and constraint/opportunity maps based on projected yield and other factors e.g. total economic value, technical potential, current land use, climate change and trade-offs and synergies. It will be essential to include multiple ecosystem services when assessing the potential for bioenergy production/expansion that does not impact other land uses or provisioning services. Considering that the soil GHG balance is dominated by change in soil organic carbon (SOC) and the difference among Miscanthus and SRC is largely determined by yield, an important target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation. This research could inform future policy decisions on bioenergy crops in

  2. Comparing bioenergy production sites in the Southeastern US regarding ecosystem service supply and demand.

    PubMed

    Meyer, Markus A; Chand, Tanzila; Priess, Joerg A

    2015-01-01

    Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS). This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification schemes are governance

  3. Comparing Bioenergy Production Sites in the Southeastern US Regarding Ecosystem Service Supply and Demand

    PubMed Central

    Meyer, Markus A.; Chand, Tanzila; Priess, Joerg A.

    2015-01-01

    Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS). This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification schemes are governance

  4. Environmental and economic suitability of forest biomass-based bioenergy production in the Southern United States

    NASA Astrophysics Data System (ADS)

    Dwivedi, Puneet

    This study attempts to ascertain the environmental and economic suitability of utilizing forest biomass for cellulosic ethanol production in the Southern United States. The study is divided into six chapters. The first chapter details the background and defines the relevance of the study along with objectives. The second chapter reviews the existing literature to ascertain the present status of various existing conversion technologies. The third chapter assesses the net energy ratio and global warming impact of ethanol produced from slash pine (Pinus elliottii Engelm.) biomass. A life-cycle assessment was applied to achieve the task. The fourth chapter assesses the role of emerging bioenergy and voluntary carbon markets on the profitability of non-industrial private forest (NIPF) landowners by combining the Faustmann and Hartmann models. The fifth chapter assesses perceptions of four stakeholder groups (Non-Government Organization, Academics, Industries, and Government) on the use of forest biomass for bioenergy production in the Southern United States using the SWOT-AHP (Strength, Weakness, Opportunity, and Threat-Analytical Hierarchy Process) technique. Finally, overall conclusions are made in the sixth chapter. Results indicate that currently the production of cellulosic ethanol is limited as the production cost of cellulosic ethanol is higher than the production cost of ethanol derived from corn. However, it is expected that the production cost of cellulosic ethanol will come down in the future from its current level due to ongoing research efforts. The total global warming impact of E85 fuel (production and consumption) was found as 10.44 tons where as global warming impact of an equivalent amount of gasoline (production and consumption) was 21.45 tons. This suggests that the production and use of ethanol derived from slash pine biomass in the form of E85 fuel in an automobile saves about 51% of carbon emissions when compared to gasoline. The net energy ratio

  5. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.

    PubMed

    Kataki, Sampriti; Hazarika, Samarendra; Baruah, D C

    2017-01-01

    Alternative fertilizer resources have drawn attention in recent times in order to cope up with ever increasing demand for fertilizer. By-products of bioenergy system are considered favourable as organic fertilizer due to their ability to recycle plant nutrients. Present study evaluates fertilizer suitability of by-products of two bioenergy systems viz. 3 types of anaerobic digestion by-products (digestate) from local surplus biomass such as cowdung, Ipomoea carnea:cowdung (60:40) and ricestraw:green gram stover:cowdung (30:30:40) and one gasification by-product (biochar) from rice husk. Digestates were assessed considering 4 different application options of each viz. whole, solid, liquid and ash from solid digestates. Digestate characteristics (organic matter, macronutrients, micronutrients and heavy metal content) were found to be a function of feedstock and processing (solid liquid separation and ashing). Ipomoea carnea based digestates in all application options showed comparatively higher N, P, K, NH4(+)-N, Ca, Mg, S and micro nutrient content than other digestates. Separation concentrated plant nutrients and organic matter in solid digestates, making these suitable both as organic amendments and fertilizer. Separated liquid digestate shared larger fraction of ammonium nitrogen (61-91% of total content), indicating their suitability as readily available N source. However, fertilizer application of liquid digestate may not match crop requirements due to lower total nutrient concentration. Higher electrical conductivity of the liquid digestates (3.4-9.3mScm(-1)) than solid digestates (1.5-2mScm(-1)) may impart phyto-toxic effect upon fertilization due to salinity. In case of by-products with unstable organic fraction i.e. whole and solid digestates of rice straw:green gram stover:cowdung digestates (Humification index 0.7), further processing (stabilization, composting) may be required to maximize their fertilizer benefit. Heavy metal contents of the by-products

  6. Bioenergy: America's Energy Future

    ScienceCinema

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2016-07-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  7. Bioenergy: America's Energy Future

    SciTech Connect

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  8. Bioenergy and African transformation.

    PubMed

    Lynd, Lee R; Sow, Mariam; Chimphango, Annie Fa; Cortez, Luis Ab; Brito Cruz, Carlos H; Elmissiry, Mosad; Laser, Mark; Mayaki, Ibrahim A; Moraes, Marcia Afd; Nogueira, Luiz Ah; Wolfaardt, Gideon M; Woods, Jeremy; van Zyl, Willem H

    2015-01-01

    Among the world's continents, Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern bioenergy production in Africa. Here we consider bioenergy as an enabler for development, and provide an overview of modern bioenergy technologies with a comment on application in an Africa context. Experience with bioenergy in Africa offers evidence of social benefits and also some important lessons. In Brazil, social development, agricultural development and food security, and bioenergy development have been synergistic rather than antagonistic. Realizing similar success in African countries will require clear vision, good governance, and adaptation of technologies, knowledge, and business models to myriad local circumstances. Strategies for integrated production of food crops, livestock, and bioenergy are potentially attractive and offer an alternative to an agricultural model featuring specialized land use. If done thoughtfully, there is considerable evidence that food security and economic development in Africa can be addressed more effectively with modern bioenergy than without it. Modern bioenergy can be an agent of African transformation, with potential social benefits accruing to multiple sectors and extending well beyond energy supply per se. Potential negative impacts also cut across sectors. Thus, institutionally inclusive multi-sector legislative structures will be more effective at maximizing the social benefits of bioenergy compared to institutionally exclusive, single-sector structures.

  9. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar N.; Smith, Pete; Davies, Christian; McNamara, Niall P.

    2015-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy with higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by the unpredictable climate change currently going on. The goal of this project is to develop a comprehensive model that covers as many ecosystem services as possible at a Continental level including biodiversity, water, GHG emissions, soil, and cultural services. The distribution and production of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC) and Short Rotation Forestry (SRF), is currently being modelled, and ecosystem models will be used to examine the impacts of these crops on ecosystem services. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be utilised. Research will focus on optimisation of land use change feedbacks on ecosystem services and biodiversity, and weighting of the importance of the individual ecosystem services. Energy crops will be modelled using low, medium and high climate change scenarios for the years between 2015 and 2050. We will present first results for GHG emissions and soil organic carbon change after different land use change scenarios (e.g. arable to Miscanthus, forest to SRF), and with different climate warming scenarios. All this will be complemented by the presentation of a matrix

  10. Sustainable bioenergy production from marginal lands in the US Midwest

    SciTech Connect

    Gelfand, Ilya; Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gross, Katherine L.; Robertson, G. P.

    2013-01-24

    Long-term measurements of global warming impact coupled with spatially explicit modeling suggests that both climate benefits and the production potential of cellulosic crops grown on marginal lands of the US North Central region are substantial but will be insufficient to meet long-term biofuel needs.

  11. Bioenergy grass feedstock production in the southern Coastal Plain

    USDA-ARS?s Scientific Manuscript database

    The Renewable Fuels Standard within the Energy Independence and Security Act of 2007 (EISA)(Pub L.) requires that by the year 2022, 36 billion gallons of biofuels be added to gasoline and that 21 billion gallons would come from non-cornstarch products such as sugar or cellulosic feedstock. The Sout...

  12. A Landscape Vision for Sustainable Bioenergy Feedstock Production

    USDA-ARS?s Scientific Manuscript database

    Feedstock production for biofuel and other bioproducts is poised to rejuvenate rural economies, but may lead to long-term degradation of soil resources or other adverse and unintended environmental consequences if the practices are not developed in a sustainable manner. This presentation will examin...

  13. Preface: Biocatalysis and Bioenergy

    USDA-ARS?s Scientific Manuscript database

    This book was assembled with the intent of bringing together current advances and in-depth review of biocatalysis and bioenergy with emphasis on biodiesel, bioethanol, biohydrogen and industrial products. Biocatalysis and bioenergy defined in this book include enzyme catalysis, biotransformation, b...

  14. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production

    SciTech Connect

    Lijó, Lucía; González-García, Sara; Bacenetti, Jacopo; Negri, Marco; Fiala, Marco; Feijoo, Gumersindo; Moreira, María Teresa

    2015-07-15

    Highlights: • Anaerobic monodigestion and codigestion were compared. • The environmental advantages of suitable waste management were proved. • The use of cereal crops as feedstock improves biogas yield. • Cultivation step implies the most important environmental hotspot. • Digestate management options were evaluated. - Abstract: The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions.

  15. Arundo donax L.: a non-food crop for bioenergy and bio-compound production.

    PubMed

    Corno, Luca; Pilu, Roberto; Adani, Fabrizio

    2014-12-01

    Arundo donax L., common name giant cane or giant reed, is a plant that grows spontaneously in different kinds of environments and that it is widespread in temperate and hot areas all over the world. Plant adaptability to different kinds of environment, soils and growing conditions, in combination with the high biomass production and the low input required for its cultivation, give to A. donax many advantages when compared to other energy crops. A. donax can be used in the production of biofuels/bioenergy not only by biological fermentation, i.e. biogas and bio-ethanol, but also, by direct biomass combustion. Both its industrial uses and the extraction of chemical compounds are largely proved, so that A. donax can be proposed as the feedstock to develop a bio-refinery. Nowadays, the use of this non-food plant in both biofuel/bioenergy and bio-based compound production is just beginning, with great possibilities for expanding its cultivation in the future. To this end, this review highlights the potential of using A. donax for energy and bio-compound production, by collecting and critically discussing the data available on these first applications for the crop.

  16. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production.

    PubMed

    Lijó, Lucía; González-García, Sara; Bacenetti, Jacopo; Negri, Marco; Fiala, Marco; Feijoo, Gumersindo; Moreira, María Teresa

    2015-07-01

    The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions.

  17. Limitations and prospects of natural photosynthesis for bioenergy production.

    PubMed

    Larkum, A W D

    2010-06-01

    Solar energy is clearly a major future source of energy for humans. While solar photovoltaic and thermal harvesting are attractive there will be a need for biofuels to replace fossil fuels. Natural photosynthesis offers a means to do this, but photosynthesis is inherently inefficient. Terrestrial plants have already been used as a source of biofuels and this use will increase in the future, despite a number of attendant problems. Microalgae as a source of biofuels have to be technically proven and artificial photosynthesis/biohydrogen production lies further into the future. Consideration of these approaches must be weighed against (i) crop production in a hungry, as well as a fuel-hungry, world and (ii) the need to sustain biodiversity. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for Bioenergy Production

    PubMed Central

    Wohlbach, Dana J.; Rovinskiy, Nikolay; Lewis, Jeffrey A.; Sardi, Maria; Schackwitz, Wendy S.; Martin, Joel A.; Deshpande, Shweta; Daum, Christopher G.; Lipzen, Anna; Sato, Trey K.; Gasch, Audrey P.

    2014-01-01

    Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors—including toxic byproducts from biomass pretreatment and poor fermentation of xylose and other pentose sugars—currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to stress conditions relevant to industrial biofuel production, through genome and transcriptome sequencing analysis. All stress resistant strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these phenotypes. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore, genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included stress-responsive signaling factors. Comparison of the strains’ transcriptomic responses to heat and ethanol treatment—two stresses relevant to industrial bioethanol production—pointed to physiological processes that were related to particular stress resistance profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains. PMID:25364804

  19. Biogeochemical and biophysical climate regulation services from converting native grassland to bioenergy production in the US Midwest

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhao, K.; Abraha, M.; Gelfand, I.; Izaurralde, R. C.; Thomson, A. M.; Hamilton, S. K.; Chen, J.; Robertson, P.; Xu, M.; Liang, X. Z.

    2015-12-01

    Land use conversion to bioenergy crops production not only alters biogeochemical cycles, but also modifies surface biophysics, such as albedo and and leaf area. These biophysical perturbations subsequently change radiation budget at land surface and land-atmosphere exchange in water and energy, and ultimately influence local/regional climate. Here, we combine long-term in situ field measurements, remote sensing observations, and regional earth system modeling to improve our understanding of changes in biophysical climate regulation services from converting native grassland to perennial bioenergy crops. In the US Midwest, albedo change as a result of cultivating native grassland for cellulosic bioenergy feedstocks could enhance the net greenhouse gases (GHGs) mitigation benefit of cellulosic bioenergy production (116.5 MgCO2 ha-1) by 20% over a time horizon of 50 years. With an integrated climate-agroecosystem model, parameterized with in situ and remote sensing data, we further demonstrate that cultivating native grassland may result in noticeable difference in simulated regional climate (e.g. precipitation, temperature, and radiation budget), highlighting the importance of additionally including biophysical climate services in evaluating land-based climate mitigation activities, such as bioenergy production.

  20. Impact of bioenergy production on carbon storage and soil functions

    NASA Astrophysics Data System (ADS)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  1. Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production

    PubMed Central

    Reza, M. Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan

    2014-01-01

    Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only. PMID:24962786

  2. Potential bioenergy production and climate change mitigation in marginal lands of the United States

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Zhuang, Q.

    2013-12-01

    Growing feedstocks from marginal lands is becoming an increasingly attractive choice for producing biofuel as an alternative energy to fossil fuels. Here we used a biogeochemical model to estimate bioenergy potential and greenhouse gas (GHG) emissions from bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops, switchgrass and Miscanthus, were assumed to be grown on the abandoned land and mixed crop-vegetation land with marginal productivity. Production of biomass and biofuel as well as net carbon exchange and nitrous oxide emissions were estimated in a spatially explicit manner. We found that, cellulosic crops, especially Miscanthus, could produce a considerable amount of biomass, thus ethanol on these marginal lands. For every hectare of marginal land, switchgrass and Miscanthus could produce 1.4-2.3 kL and 4.1-6.9 kL ethanol, respectively. The actual amount of ethanol production depends on nitrogen fertilization rate and biofuel conversion efficiency. Switchgrass has high global warming intensity (100-190 g CO2eq L-1 ethanol), in terms of GHG emissions per unit ethanol produced. Miscanthus, however, emits only 21-36 g CO2eq to produce every liter of ethanol. To reach the mandated cellulosic ethanol target of 21 billion gallons by 2022 in the United States, growing Miscanthus on the marginal lands could save a large amount of land and reduce GHG emissions in comparison to growing switchgrass.

  3. Evaluation of integrated anaerobic digestion and hydrothermal carbonization for bioenergy production.

    PubMed

    Reza, M Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan

    2014-06-15

    Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only.

  4. Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration

    Treesearch

    Kristin McElligott; Debbie Dumroese; Mark Coleman

    2011-01-01

    Bioenergy production from forest biomass offers a unique solution to reduce wildfire hazard fuel while producing a useful source of renewable energy. However, biomass removals raise concerns about reducing soil carbon and altering forest site productivity. Biochar additions have been suggested as a way to mitigate soil carbon loss and cycle nutrients back into forestry...

  5. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    NASA Astrophysics Data System (ADS)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  6. Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution?

    PubMed

    Debez, Ahmed; Belghith, Ikram; Friesen, Jan; Montzka, Carsten; Elleuche, Skander

    2017-01-01

    Due to steadily growing population and economic transitions in the more populous countries, renewable sources of energy are needed more than ever. Plant biomass as a raw source of bioenergy and biofuel products may meet the demand for sustainable energy; however, such plants typically compete with food crops, which should not be wasted for producing energy and chemicals. Second-generation or advanced biofuels that are based on renewable and non-edible biomass resources are processed to produce cellulosic ethanol, which could be further used for producing energy, but also bio-based chemicals including higher alcohols, organic acids, and bulk chemicals. Halophytes do not compete with conventional crops for arable areas and freshwater resources, since they grow naturally in saline ecosystems, mostly in semi-arid and arid areas. Using halophytes for biofuel production may provide a mid-term economically feasible and environmentally sustainable solution to producing bioenergy, contributing, at the same time, to making saline areas - which have been considered unproductive for a long time - more valuable. This review emphasises on halophyte definition, global distribution, and environmental requirements. It also examines their enzymatic valorization, focusing on salt-tolerant enzymes from halophilic microbial species that may be deployed with greater advantage compared to their conventional mesophilic counterparts for faster degradation of halophyte biomass.

  7. A platform for high-throughput bioenergy production phenotype characterization in single cells

    PubMed Central

    Kelbauskas, Laimonas; Glenn, Honor; Anderson, Clifford; Messner, Jacob; Lee, Kristen B.; Song, Ganquan; Houkal, Jeff; Su, Fengyu; Zhang, Liqiang; Tian, Yanqing; Wang, Hong; Bussey, Kimberly; Johnson, Roger H.; Meldrum, Deirdre R.

    2017-01-01

    Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers. PMID:28349963

  8. Integrated bioenergy complex for the production of power, heat and bio-ethanol

    SciTech Connect

    Taviani, M.; Chiaramonti, D.; Tondi, G.; Grassi, G.

    1998-07-01

    In this paper an integrated bioenergy complex for the production of power, heat and bio-ethanol is presented. Ethanol, in fact, has been recognized as a high-quality transportation fuel. The reduction of petroleum consumption, especially for transport, is a strategic goal especially for those countries that already have or will experience an intensive industrial development in the next future. For these motivations, the production of bio-ethanol from Sweet Sorghum (which is now one of the most promising crop for this application in term of productivity, inputs demand, and flexibility) is of great interest in most of countries. The proposed integrated complex produces power, heat and bio-ethanol: the produced power and heat are partly used for bio-ethanol processing and biomass pre-treatment, partly to be sold to the market. This system has important innovations allowing a decentralized energy and ethanol production and creating new local jobs. The small power plant is based upon a steam cycle with an advanced low emission combustor, capable of burning different biomass resources with a modest decrease in the efficiency value. The Bioenergy Complex, suitable to satisfy the needs of a 3,000 inhabitants village, is composed by the following sub-systems: (1) Sweet Sorghum plantation (250 ha); the main products are: dry bagasse (approximately 3,900 Ton/year), grains (1,300 Ton/y) and sugar (1,850 Ton/y); (2) Cane crushing--sugar juice extraction system; (3) Sugar juice fermentation and distillation ethanol production (approx. 835 Ton/y); (4) Biomass pre-treatment components (grinding, drying, briquetting, storage, etc.); and (5) Cogeneration unit--the expansion unit is constituted by a last generation reciprocating steam engine, coupled with a 500 kWe alternator; the heat of the expanded flow is removed in the condenser, with an available thermal power of approximately 2,000 kWt.

  9. Use of the SWAT model to evaluate the sustainability of bioenergy production at a National scale

    SciTech Connect

    Baskaran, Latha Malar; Jager, Yetta; Schweizer, Peter E; Srinivasan, Raghavan

    2009-01-01

    As the US begins to integrate biomass crops and residues into its mix of energy feedstocks, tools are needed to measure the long-term sustainability of these feedstocks. Two aspects of sustainability are long-term potential for profitably producing energy and protection of ecosystems influenced by energy-related activities. The Soil and Water Assessment Tool (SWAT) is an important model used in the efforts to quantify both aspects. To quantify potential feedstock production, they used SWAT to estimate switchgrass yields at a national scale. The results from this analysis produced a map of the potential switchgrass yield along its natural eastern range. To quantify ecological protection, they are using the SWAT model to forecast changes in water quality and fish richness as a result of landscape alterations due to incorporating bioenergy crops. They have implemented the SWAT model in the Arkansas-Red-White region, which drains into the Mississippi River, and they present their methods here. They identified two sub-watersheds for sensitivity analysis and calibration of the water quality results, and then, explored ways to apply the calibration results to the whole region and validate the model setup. They also present an overview of their research in which results from the calibrated regional SWAT model were used to analyze potential changes in fish biodiversity. Only by evaluating the energy and environmental implications of landscape changes can we make informed decisions about bioenergy at the national scale, and the SWAT model will enable us to reach that goal.

  10. Impacts of bioenergy feedstock production on environmental factors in the Central U.S. using an agroecosystem model (Invited)

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Vanloocke, A. D.; Williams, M.; Bernacchi, C.

    2010-12-01

    The Renewable Fuel Standard in the Energy Independence and Security Act of 2007 requires annual U.S. production of 36 billion gallons of renewable fuels by 2022, nearly half of this from cellulosic biofuels. We have little guidance as to where to grow bioenergy feedstocks to maximize yield without competing for food resources, and little understanding of the environmental and economic impacts of their production. Furthermore, it is unclear how bioenergy feedstocks might be incorporated into the current landscape to minimize environmental consequences. Numerical models allow us to predict environmental impacts across large spatial domains and long time periods by simulating the response of potential feedstocks to drivers such as soil type and climate. We used the Agro-IBIS (Integrated Biosphere Simulator, agricultural version) model to quantify the impacts on Midwest U.S. water and energy budgets from land use for bioenergy production. We analyzed effects of changes in land cover (e.g., from current crops to perennial grasses) as well as changes in management (e.g., removal of crop residues for fuel). Our analyses indicate that perennial grasses can substantially increase evapotranspiration (water transport to the atmosphere) in locations where fraction cover is greater than 25%. This change in evapotranspiration is lowest in regions where current crops and grasses are highly productive and evapotranspiration is large, and is highest in semi-arid regions where productivity is lower. These results imply that growing bioenergy feedstocks on marginal lands could have substantial effects on water resources.

  11. Eroding forest carbon sinks following thinning for combined fire prevention and bioenergy production

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Law, B. E.; Luyssaert, S.

    2010-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. Using Forest Inventory Analysis (FIA) plot data, regional supplemental plot data, and remote sensing products we determined the carbon stocks and fluxes of West Coast forests under current and proposed management scenarios for a 20 year treatment period. Varying biofuels thinning treatments designed to meet multiple objectives emphasizing fire prevention, economic gain, or energy production were applied to determine the resulting net carbon balance and bioenergy potential. Contrary to the management objectives, we find that increased removals result in substantial decreases in forest carbon stocks and Net Biome Production (NBP) and increased emissions. Thinning forests for energy production is not carbon neutral. Emissions are estimated to increase over the 20-year period because preventive thinning removals exceed the CO2 that would have been emitted due to wildfires, fossil fuel inputs are required for harvest and manufacturing, and use of woody biomass in short-lived products emits large quantities of CO2 to the atmosphere. It has the net effect of releasing otherwise sequestered carbon to the atmosphere, which may effectively reduce ongoing carbon uptake by forests and as a result, increase net greenhouse gas emissions, undermining the objective of greenhouse gas reductions over the next several decades.

  12. Enhanced accumulation of fatty acids and triacylglycerols in transgenic tobacco stems for enhanced bioenergy production.

    PubMed

    Nookaraju, Akula; Pandey, Shashank K; Fujino, Takeshi; Kim, Ju Young; Suh, Mi Chung; Joshi, Chandrashekhar P

    2014-07-01

    We report a novel approach for enhanced accumulation of fatty acids and triacylglycerols for utilization as biodiesel in transgenic tobacco stems through xylem-specific expression of Arabidopsis DGAT1 and LEC2 genes. The use of plant biomass for production of bioethanol and biodiesel has an enormous potential to revolutionize the global bioenergy outlook. Several studies have recently been initiated to genetically engineer oil production in seeds of crop plants to improve biodiesel production. However, the "food versus fuel" issues have also sparked some studies for enhanced accumulation of oils in vegetative tissues like leaves. But in the case of bioenergy crops, use of woody stems is more practical than leaves. Here, we report the enhanced accumulation of fatty acids (FAs) and triacylglycerols (TAGs) in stems of transgenic tobacco plants expressing Arabidopsis diacylglycerol acyltransferase 1 (DGAT1) and leafy cotyledon2 (LEC2) genes under a developing xylem-specific cellulose synthase promoter from aspen trees. The transgenic tobacco plants accumulated significantly higher amounts of FAs in their stems. On an average, DGAT1 and LEC2 overexpression showed a 63 and 80% increase in total FA production in mature stems of transgenic plants over that of controls, respectively. In addition, selected DGAT1 and LEC2 overexpression lines showed enhanced levels of TAGs in stems with higher accumulation of 16:0, 18:2 and 18:3 TAGs. In LEC2 lines, the relative mRNA levels of the downstream genes encoding plastidic proteins involved in FA synthesis and accumulation were also elevated. Thus, here, we provide a proof of concept for our approach of enhancing total energy yield per plant through accumulation of higher levels of FAs in transgenic stems for biodiesel production.

  13. Consequences of increasing bioenergy demand on wood and forests: an application of the global forest products model

    Treesearch

    Joseph Buongiorno; Ronald Raunikar; Shushuai Zhu

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial...

  14. Evaluating the uncertainty in optimal crop management placements for bioenergy crop production

    NASA Astrophysics Data System (ADS)

    Sudheer, K. P.; Krishnan, N.; Chaubey, I.; Raj, C.

    2016-12-01

    Watershed scale simulation models are used to evaluate various `what if' questions and to make informed decisions. These mathematical models include many empirical and/or non-empirical parameters to represent various eco-hydrological processes. Parameter uncertainty is a major issue in mathematical model simulations, as often the actual parameter values are not available or are measurable. The model parameter uncertainty can affect simulation results and consequent decisions. The objective of the study was to evaluate parameter uncertainty of Soil and Water Assessment Tool (SWAT), and to evaluate potential impacts of uncertainty in model simulations on the decisions suggested for land use planning. An optimization based land use planning case study was developed to identify optimal cropping pattern including bioenergy crops in the St Joseph River watershed, IN, USA. The objective function for land use optimization included biomass production of 3,581 metric tons per day (under thermochemical conversion) minimum feasible production for a biomass processing plant, with minimum biomass production cost and maximum environmental benefits. Parameter uncertainty of the SWAT model is assessed using Shuffled Complex Evolutionary Metropolis Algorithm (SCEM). Five representative parameter sets were selected from the prediction uncertainty interval to represent the parameter uncertainty. The SWAT model was linked with AMALGAM optimizer to derive at an optimal cropping pattern for the watershed. Five sets of land use optimizations were conducted considering the five sets of parameter values, and the effects of parameter uncertainty on optimization results were quantified. The preliminary results showed that the simulation optimization results had some level of uncertainty that needed to be included in making land use decisions for bioenergy crop production.

  15. Applying consequential LCA to support energy policy: land use change effects of bioenergy production.

    PubMed

    Vázquez-Rowe, Ian; Marvuglia, Antonino; Rege, Sameer; Benetto, Enrico

    2014-02-15

    Luxembourg aims at complying with the EU objective of attaining a 14% use of bioenergy in the national grid by 2020. The increase of biomethane production from energy crops could be a valuable option in achieving this objective. However, the overall environmental benefit of such option is yet to be proven. Consequential Life Cycle Assessment (CLCA) has shown to be a useful tool to evaluate the environmental suitability of future energy scenarios and policies. The objective of this study was, therefore, to evaluate the environmental consequences of modifying the Luxembourgish agricultural system to increase maize production for biomethane generation. A total of 10 different scenarios were modelled using a partial equilibrium (PE) model to identify changes in land cultivation based on farmers' revenue maximisation, which were then compared to the baseline scenario, i.e. the state of the agricultural sector in 2009. The results were divided into three different consequential decision contexts, presenting differing patterns in terms of land use changes (LUCs) but with minor shifts in environmental impacts. Nevertheless, energy from maize production would imply substantially higher environmental impacts when compared with the current use of natural gas, mainly due to increases in climate change and agricultural land occupation impacts. The results are discussed based on the consequences they may generate on the bioenergy policy, the management of arable land, the changes in import-export flows in Luxembourg and LUCs in the domestic agricultural system. In addition, the specific PE+LCA method presented intends to be of use for other regional studies in which a high level of site-specific data is available.

  16. Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production.

    PubMed

    da Silva, Michele Jorge; Pastina, Maria Marta; de Souza, Vander Fillipe; Schaffert, Robert Eugene; Carneiro, Pedro Crescêncio Souza; Noda, Roberto Willians; Carneiro, José Eustáquio de Souza; Damasceno, Cynthia Maria Borges; Parrella, Rafael Augusto da Costa

    2017-01-01

    Sweet sorghum [Sorghum bicolor (L.) Moench] is a type of cultivated sorghum characterized by the accumulation of high levels of sugar in the stems and high biomass accumulation, making this crop an important feedstock for bioenergy production. Sweet sorghum breeding programs that focus on bioenergy have two main goals: to improve quantity and quality of sugars in the juicy stem and to increase fresh biomass productivity. Genetic diversity studies are very important for the success of a breeding program, especially in the early stages, where understanding the genetic relationship between accessions is essential to identify superior parents for the development of improved breeding lines. The objectives of this study were: to perform phenotypic and molecular characterization of 100 sweet sorghum accessions from the germplasm bank of the Embrapa Maize and Sorghum breeding program; to examine the relationship between the phenotypic and the molecular diversity matrices; and to infer about the population structure in the sweet sorghum accessions. Morphological and agro-industrial traits related to sugar and biomass production were used for phenotypic characterization, and single nucleotide polymorphisms (SNPs) were used for molecular diversity analysis. Both phenotypic and molecular characterizations revealed the existence of considerable genetic diversity among the 100 sweet sorghum accessions. The correlation between the phenotypic and the molecular diversity matrices was low (0.35), which is in agreement with the inconsistencies observed between the clusters formed by the phenotypic and the molecular diversity analyses. Furthermore, the clusters obtained by the molecular diversity analysis were more consistent with the genealogy and the historic background of the sweet sorghum accessions than the clusters obtained through the phenotypic diversity analysis. The low correlation observed between the molecular and the phenotypic diversity matrices highlights the

  17. Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production

    PubMed Central

    Pastina, Maria Marta; de Souza, Vander Fillipe; Schaffert, Robert Eugene; Carneiro, Pedro Crescêncio Souza; Noda, Roberto Willians; Carneiro, José Eustáquio de Souza; Damasceno, Cynthia Maria Borges; Parrella, Rafael Augusto da Costa

    2017-01-01

    Sweet sorghum [Sorghum bicolor (L.) Moench] is a type of cultivated sorghum characterized by the accumulation of high levels of sugar in the stems and high biomass accumulation, making this crop an important feedstock for bioenergy production. Sweet sorghum breeding programs that focus on bioenergy have two main goals: to improve quantity and quality of sugars in the juicy stem and to increase fresh biomass productivity. Genetic diversity studies are very important for the success of a breeding program, especially in the early stages, where understanding the genetic relationship between accessions is essential to identify superior parents for the development of improved breeding lines. The objectives of this study were: to perform phenotypic and molecular characterization of 100 sweet sorghum accessions from the germplasm bank of the Embrapa Maize and Sorghum breeding program; to examine the relationship between the phenotypic and the molecular diversity matrices; and to infer about the population structure in the sweet sorghum accessions. Morphological and agro-industrial traits related to sugar and biomass production were used for phenotypic characterization, and single nucleotide polymorphisms (SNPs) were used for molecular diversity analysis. Both phenotypic and molecular characterizations revealed the existence of considerable genetic diversity among the 100 sweet sorghum accessions. The correlation between the phenotypic and the molecular diversity matrices was low (0.35), which is in agreement with the inconsistencies observed between the clusters formed by the phenotypic and the molecular diversity analyses. Furthermore, the clusters obtained by the molecular diversity analysis were more consistent with the genealogy and the historic background of the sweet sorghum accessions than the clusters obtained through the phenotypic diversity analysis. The low correlation observed between the molecular and the phenotypic diversity matrices highlights the

  18. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  19. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2016-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy with higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by the unpredictable climate change currently going on. The goal of this project is to develop a comprehensive model that covers high impact, policy relevant ecosystem services at a Continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC) with willow, poplar, eucalyptus and other broadleaf species and Short Rotation Forestry (SRF), is currently being modelled using ECOSSE, DayCent, SalixFor and MiscanFor, and ecosystem models will be used to examine the impacts of these crops on ecosystem services. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be utilised. Research will focus on optimisation of land use change feedbacks on above named ecosystem services, impact on food security, land management practices and impacts from climate change. We will present results for GHG emissions and soil organic carbon change after different land use change scenarios (e.g. arable to Miscanthus, forest to SRF), and

  20. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies.

    PubMed

    Vasco-Correa, Juliana; Khanal, Sami; Manandhar, Ashish; Shah, Ajay

    2017-09-05

    Anaerobic digestion (AD) is a mature technology that can transform organic matter into a bioenergy source - biogas (composed mainly of methane and carbon dioxide), while stabilizing waste. AD implementation around the world varies significantly, from small-scale household digesters in developing countries to large farm-scale or centralized digesters in developed countries. These differences in the implementation of AD technology are due to a complex set of conditions, including economic and environmental implications of the AD technology, and stimulus provided by a variety of polices and incentives related to agricultural systems, waste management, and renewable energy production. This review explores the current status of the AD technology worldwide and some of the environmental, economic and policy-related drivers that have shaped the implementation of this technology. The findings show that the regulations and incentives have been the primary factor influencing the steady growth of this technology, in both developing and developed countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas

    NASA Astrophysics Data System (ADS)

    Gollany, Hero T.; Titus, Brian D.; Scott, D. Andrew; Asbjornsen, Heidi; Resh, Sigrid C.; Chimner, Rodney A.; Kaczmarek, Donald J.; Leite, Luiz F. C.; Ferreira, Ana C. C.; Rod, Kenton A.; Hilbert, Jorge; Galdos, Marcelo V.; Cisz, Michelle E.

    2015-12-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.

  2. Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas.

    PubMed

    Gollany, Hero T; Titus, Brian D; Scott, D Andrew; Asbjornsen, Heidi; Resh, Sigrid C; Chimner, Rodney A; Kaczmarek, Donald J; Leite, Luiz F C; Ferreira, Ana C C; Rod, Kenton A; Hilbert, Jorge; Galdos, Marcelo V; Cisz, Michelle E

    2015-12-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.

  3. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    PubMed

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, Azotobacter chroococcum, Azotobacter beijerincki, methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli, have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas production is

  4. Influence of Three Citrus Herbicides on Potential Production of Sorghum bicolor 'Topper 76-6' as a Bioenergy Crop.

    PubMed

    Wilson, Patrick C; Gruber, Barrett; Lin, Youjian; Kumar, Prem; Niebch, David; Wilson, Sandra

    2016-11-01

    Planting bioenergy crops on land previously used for citrus production may offer an alternative source of revenue for growers looking for alternative-to-citrus crops. However, residual herbicides used in citrus production may adversely affect alternative crops. This study evaluated effects of three herbicides (bromacil, norflurazon, and simazine) commonly used in citrus production on the bioenergy crop Sorghum bicolor 'Topper 76-6'. Plants were exposed to herbicides in soil for 1-5 weeks and observations of effects on photosynthetic quantum yield, leaf greenness, height, and biomass were made. Results indicate that concentrations of bromacil and norflurazon greater than 0.09 and 0.07 mg/kg and simazine >0.46 mg/kg will impair growth and development in similar soils. Concentrations below these may also be toxic.

  5. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    SciTech Connect

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    2016-05-02

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems, and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.

  6. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE PAGES

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    2016-05-02

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  7. Watershed scale impacts bioenergy production on hydrology and water quality using SWAT model

    NASA Astrophysics Data System (ADS)

    RAJ, C.; Chaubey, I.; Engel, B.; Trybula, E.

    2011-12-01

    The currently enforced US biofuel scenario to meet the cap of 36 billion gallons of ethanol by 2022 can potentially alter existing land use and crop management practices. The crop residues, such as, corn stover and cellulosic perennial energy crops are expected to play a significant role in meeting ethanol production goals. The possible land use and land management practice changes induce concerns over the environmental impacts of these bioenergy crop production scenarios both in terms of water availability and water quality. This study aims to estimate potential impacts of various plausible land and crop management scenarios for biofuel production, on watershed scale hydrology and water quality. The scenarios for evaluation includes impacts of corn stover removal at different removal rates and likely energy crop scenarios such as, (1) energy crops in pasture and range land use areas (2) energy crops in highly erodible soils (3) energy crops in low row crop productive fields (marginal lands); and (4) combinations of these scenarios. The distributed hydrological model SWAT (Soil and Water Assessment Tool) will be used to simulate energy crops growth, hydrology and water quality. The watershed scale analysis will be done in Wildcat Creek basin, which is located in North-Central Indiana, USA.

  8. Coupling microbial fuel cells with a membrane photobioreactor for wastewater treatment and bioenergy production.

    PubMed

    Tse, Hei Tsun; Luo, Shuai; Li, Jian; He, Zhen

    2016-11-01

    Microbial fuel cells (MFCs) and membrane photobioreactors are two emerging technologies for simultaneous wastewater treatment and bioenergy production. In this study, those two technologies were coupled to form an integrated treatment system, whose performance was examined under different operating conditions. The coupled system could achieve 92-97 % removal of soluble chemical oxygen demand (SCOD) and nearly 100 % removal of ammonia. Extending the hydraulic retention time (HRT) of the membrane photobioreactor to 3.0 days improved the production of algal biomass from 44.4 ± 23.8 to 133.7 ± 12.9 mg L(-1) (based on the volume of the treated water). When the MFCs were operated in a loop mode, their effluent (which was the influent to the algal reactor) contained nitrate and had a high pH, leading to the decreased algal production in the membrane photobioreactor. Energy analysis showed that the energy consumption was mainly due to the recirculation of the anolyte and the catholyte in the MFCs and that decreasing the recirculation rates could significantly reduce energy consumption. The energy production was dominated by indirect electricity generation from algal biomass. The highest energy production of 0.205 kWh m(-3) was obtained with the highest algal biomass production, resulting in a theoretically positive energy balance of 0.033 kWh m(-3). Those results have demonstrated that the coupled system could be an alternative approach for energy-efficient wastewater treatment and using wastewater effluent for algal production.

  9. Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production.

    PubMed

    Xiao, Li; Young, Erica B; Berges, John A; He, Zhen

    2012-10-16

    An integrated photobioelectrochemical (IPB) system was developed by installing a microbial fuel cell (MFC) inside an algal bioreactor. This system achieves the simultaneous removal from a synthetic solution of organics (in the MFC) and nutrients (in the algal bioreactor), and the production of bioenergy in electricity and algal biomass through bioelectrochemical and microbiological processes. During the one-year operation, the IPB system removed more than 92% of chemical oxygen demand, 98% of ammonium nitrogen, and 82% of phosphate and produced a maximum power density of 2.2 W/m(3) and 128 mg/L of algal biomass. The algal growth provided dissolved oxygen to the cathode reaction of the MFC, whereas electrochemical oxygen reduction on the MFC cathode buffered the pH of the algal growth medium (which was also the catholyte). The system performance was affected by illumination and dissolved oxygen. Initial energy analysis showed that the IPB system could theoretically produce enough energy to cover its consumption; however, further improvement of electricity production is desired. An analysis of the attached and suspended microbes in the cathode revealed diverse bacterial taxa typical of aquatic and soil bacterial communities with functional roles in contaminant degradation and nutrient cycling.

  10. Environmental and economic assessment of integrated systems for dairy manure treatment coupled with algae bioenergy production.

    PubMed

    Zhang, Yongli; White, Mark A; Colosi, Lisa M

    2013-02-01

    Life cycle assessment (LCA) and life cycle costing (LCC) are used to investigate integrated algae bioenergy production and nutrient management on small dairy farms. Four cases are considered: a reference land-application scenario (REF), anaerobic digestion with land-application of liquid digestate (AD), and anaerobic digestion with recycling of liquid digestate to either an open-pond algae cultivation system (OPS) or an algae turf scrubber (ATS). LCA indicates that all three "improved" scenarios (AD, OPS, and ATS) are environmentally favorable compared to REF, exhibiting increases in net energy output up to 854GJ/yr, reductions in net eutrophication potential up to 2700kg PO(4)-eq/yr, and reductions in global warming potential up to 196Mg CO(2)-eq/yr. LCC reveals that the integrated algae systems are much more financially attractive than either AD or REF, whereby net present values (NPV) are as follows: $853,250 for OPS, $790,280 for ATS, -$62,279 for REF, and -$211,126 for AD. However, these results are highly dependent on the sale price for nutrient credits. Comparison of LCA and LCC results indicates that robust nutrient credit markets or other policy tools are required to align financial and environmental preferability of energy production systems and foster widespread adoption of sustainable nutrient management systems.

  11. Alternative Land-Use Scenarios for Bioenergy Production in the U.S. and Brazil

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Spak, S.; Tsao, C. C.; Mena, M.; Chen, Y.

    2015-12-01

    Agriculture is historically a dominant form of global environmental degradation, and the potential for increased future degradation may be enhanced by growing demand for biofuels. Here, we apply high-resolution cropland inventories and agronomic models to characterize land-use impacts and mitigation scenarios for bioenergy production in the U.S. and Brazil. In the U.S., our gridded historical cropland maps show potential for production in the U.S. on 68 Mha of abandoned croplands in the U.S. which is as much as 70% larger than previous estimates due to a reduction in aggregation effects. In Brazil, a critical land-use impact is associated with non-GHG air pollutants from the management and expansion of sugarcane feedstocks. Our bottom-up estimate for these Brazilian land-use emissions is seven times larger than estimated from remote-sensing data due to the improved spatial resolution of our approach. While current land-use policies in Brazil and the U.S. seek to reduce life-cycle biofuel emissions, these policies may not support the mitigation alternatives identified here.

  12. Impact of bio-energy production and climate change on soil organic matter reproduction in Central Germany

    NASA Astrophysics Data System (ADS)

    Franko, Uwe; Volk, Martin; Witing, Felix; Jäckel, Greta

    2014-05-01

    For the region of Central Germany global change scenarios lead to the prediction of a growing risk of declining amounts of soil organic matter (SOM). The production of bioenergy is one strategy to counteract the growing anthropogenic CO2-emissions. Both issues have a close connection: SOM is one important base of soil productivity and requires a steady reproduction flux. Bioenergy production requires productive soils and partly consumes plant biomass carbon thus reducing the available amount for SOM reproduction. This study delivers a methodology for the identification of areas with possible conflicts between bioenergy production and SOM reproduction based on i) the prediction of climate change impact on SOM reproduction and ii) an analysis of the regional distribution of biogas plants. The proposed algorithm is applied for the region of Central Germany as a pilot region. The quantification of climate change impact was based on regionalized climate data from the IPCC scenarios A1B, A2 and B1 as prognosis for 2001 - 2100 in relation to the retrospective C20 data for 1961-2000 calculations. For downscaling we used the regional climate models REMO and WETTREG, the latter with 3 different subsets for wet, normal and moist conditions. For all resulting datasets the annual sum of rainfall and the average of air temperature were calculated. Soil impact is represented by means of the top soil texture that has been taken from the German soil map (BUEK1000; scale 1:1,000,000). The map shows 71 different soil mapping units in the study area. Each soil unit has been assigned a characteristic soil profile ("Leitprofil") where soil texture was derived by using the guidelines for soil mapping (KA4). Results indicate a growing demand (10%-30%) of fresh organic carbon for SOM production. The analysis reveals that bioenergy carbon demand is not evenly distributed over the study region. There is no significant correlation between matter demand for bioenergy and carbon amount required

  13. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    PubMed Central

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  14. Household anaerobic digester for bioenergy production in developing countries: opportunities and challenges.

    PubMed

    Surendra, K C; Takara, Devin; Jasinski, Jonas; Khanal, Samir Kumar

    2013-01-01

    Access to clean and affordable energy is vital for advancing development objectives, particularly in rural areas of developing countries. There are some three billion people in these regions, however, who lack consistent access to energy and rely on traditional solid fuels such as firewood, cattle manure, and crop residues for meeting cooking and heating needs. Excessive use of such highly polluting resources creates serious environmental, social and public health issues. In this context, household digesters (which convert readily available feedstocks such as cattle manure, human excreta, and crop residues into biogas) have the potential to play a significant role in supplying methane as a clean, renewable energy resource for remote geographies. In addition to bioenergy production, the slurry generated from anaerobic digestion is rich in nutrients and can improve the physical, chemical, and biological attributes of soil when applied to agricultural land. This type of approach has the potential to significantly reduce greenhouse gas emissions while simultaneously improving the quality of life. Despite a long history of research and innovation for the development and optimization of household digesters, little is known and has been reported for the application of these systems in decentralized communities. The primary purpose of this paper seeks to review the dearth of literature pertaining to small-scale anaerobic digesters in remote geographies and in regions where much of the world's population reside.

  15. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.

    PubMed

    Schmer, Marty R; Vogel, Kenneth P; Varvel, Gary E; Follett, Ronald F; Mitchell, Robert B; Jin, Virginia L

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels.

  16. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential

    PubMed Central

    Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M. Cata

    2014-01-01

    Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet. PMID:26479885

  17. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    SciTech Connect

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  18. The role of bioenergy in a climate-changing world

    DOE PAGES

    Souza, Glaucia Mendes; Ballester, Maria Victoria R.; de Brito Cruz, Carlos Henrique; ...

    2017-02-24

    Bioenergy has been under intense scrutiny over the last ten years with significant research efforts in many countries taking place to define and measure sustainable practices. We describe here the main challenges and policy issues and provide policy recommendations for scaling up sustainable bioenergy approaches globally. The 2016 Intended Nationally Determined Contributions (INDCs defined under the UN Framework Convention on Climate Change) (UNFCCC) Conference of the Parties (COP21) will not reach global Greenhouse Gas (GHG) emission targets of 2 °C. Sustainable biomass production can make a significant contribution. Substantive evidence exists that many bioenergy cropping systems can bring multiple benefitsmore » and off-set environmental problems associated with fossil fuels usage as well as intensive food production and urbanization. We provide evidence that there are many approaches to land use for bioenergy expansion that do not lead to competition for food or other needs. We should focus on how to manage these approaches on a synergistic basis and how to reduce tradeoffs at landscape scales. Priorities include successful synergies between bioenergy and food security (integrated resource management designed to improve both food security and access to bioenergy), investments in technology, rural extension, and innovations that build capacity and infrastructure, promotion of stable prices to incentivize local production and use of double cropping and flex crops (plants grown for both food and non-food markets) that provide food and energy as well as other services. The sustainable production of biomass requires appropriate policies to secure long-term support to improve crop productivity and also to ensure environmental as well as economic and social benefits of bioenergy cropping systems. Continuous support for cropping, infrastructure, agricultural management and related policies is needed to foster positive synergies between food crops and bioenergy

  19. Decision support framework for evaluating the operational environment of forest bioenergy production and use: Case of four European countries.

    PubMed

    Pezdevšek Malovrh, Špela; Kurttila, Mikko; Hujala, Teppo; Kärkkäinen, Leena; Leban, Vasja; Lindstad, Berit H; Peters, Dörte Marie; Rhodius, Regina; Solberg, Birger; Wirth, Kristina; Zadnik Stirn, Lidija; Krč, Janez

    2016-09-15

    Complex policy-making situations around bioenergy production and use require examination of the operational environment of the society and a participatory approach. This paper presents and demonstrates a three-phase decision-making framework for analysing the operational environment of strategies related to increased forest bioenergy targets. The framework is based on SWOT (strengths, weaknesses, opportunities and threats) analysis and the Simple Multi-Attribute Rating Technique (SMART). Stakeholders of four case countries (Finland, Germany, Norway and Slovenia) defined the factors that affect the operational environments, classified in four pre-set categories (Forest Characteristics and Management, Policy Framework, Technology and Science, and Consumers and Society). The stakeholders participated in weighting of SWOT items for two future scenarios with SMART technique. The first scenario reflected the current 2020 targets (the Business-as-Usual scenario), and the second scenario contained a further increase in the targets (the Increase scenario). This framework can be applied to various problems of environmental management and also to other fields where public decision-making is combined with stakeholders' engagement. The case results show that the greatest differences between the scenarios appear in Germany, indicating a notably negative outlook for the Increase scenario, while the smallest differences were found in Finland. Policy Framework was a highly rated category across the countries, mainly with respect to weaknesses and threats. Intensified forest bioenergy harvesting and utilization has potentially wide country-specific impacts which need to be anticipated and considered in national policies and public dialogue.

  20. Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions.

    PubMed

    Khoo, H H; Koh, C Y; Shaik, M S; Sharratt, P N

    2013-09-01

    An investigation of the potential to efficiently convert lipid-depleted residual microalgae biomass using thermochemical (gasification at 850 °C, pyrolysis at 550 °C, and torrefaction at 300 °C) processes to produce bioenergy derivatives was made. Energy indicators are established to account for the amount of energy inputs that have to be supplied to the system in order to gain 1 MJ of bio-energy output. The paper seeks to address the difference between net energy input-output balances based on a life cycle approach, from "cradle-to-bioenergy co-products", vs. thermochemical processes alone. The experimental results showed the lowest results of Net Energy Balances (NEB) to be 0.57 MJ/MJ bio-oil via pyrolysis, and highest, 6.48 MJ/MJ for gas derived via torrefaction. With the complete life cycle process chain factored in, the energy balances of NEBLCA increased to 1.67 MJ/MJ (bio-oil) and 7.01 MJ/MJ (gas). Energy efficiencies and the life cycle CO2 emissions were also calculated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Bioenergy as a biodiversity management tool and the potential of a mixed species feedstock for bioenergy production in Wales.

    PubMed

    Corton, John; Bühle, Lutz; Wachendorf, Michael; Donnison, Iain S; Fraser, Mariecia D

    2013-02-01

    A cutting management regime maintains high levels of biodiversity in semi-natural habitats across Europe. We utilise three years of annual yield data from Welsh semi-natural areas to calculate the mean feedstock production from cutting management to be 1.05×10(6) t DM annum(-1). Using formulae based upon Fischer Tropsch (FT) fuel process models, we predict that 2.12×10(5) t of FT fuel annum(-1) could be produced. That represents 38% of the Welsh transport sector's green house gas (GHG) reduction target for 2020. Alternatively, predictive formulae reveal that methane yields from anaerobic digestion of the feedstock could reduce GHG emissions by 11% of the domestic sector's reduction target for 2020. Electricity generation from methane is also explored. The results presented encourage further investigation into the contribution of this resource to sustainable domestic energy supply. Furthermore, the proposed system would potentially protect a broad range of ecosystem services and maintain biodiversity.

  2. The Giant Knotweed (Fallopia sachalinensis var. Igniscum) as a new plant resource for biomass production for bioenergy

    NASA Astrophysics Data System (ADS)

    Lebzien, S.; Veste, M.; Fechner, H.; Koning, L.; Mantovani, D.; Freese, D.

    2012-04-01

    The cultivation of bioenergy crop for energetic biomass production and biogas will increase in the next decades in Europe and the world. In Germany maize is the most commonly used energy crops for biogas. To optimize the sustainability of bioenergy crop production new land management systems and crop species are needed. Herbaceous perennials have a great potential to fulfill this requirement. A new species for bioenergy production is the Giant Knotweed or Sakhalin Knotweed (Fallopia sachalinensis F. Schmidt ex Maxim., Fam. Polygonaceae) The knotweed is originated from Sakhalin, Korea and Japan .The plant is characterized by a high annual biomass production and can reach heights up to 3-4 m. As a new bioenergy crop the new cultivars IGNISCUM Basic (R) and IGNISCUM Candy (R) were cultured from the wild form and commercially used. Important is that both cultivars are not invasive. IGNISCUM Basic is used for combined heat and power plants. IGNISCUM Candy can be harvested 2-3 times during the growing season and the green biomass can be used for biogas production. Comprehensive test series are carried out to analyze the biogas. First results from lab investigations and experiments in biogas plants show that fresh matter of IGNISCUM Candy can well substitute maize as substrate in biogas power plants. Yields per hectare and the amount of biogas per ton of organic dry matter can be considered as almost equal to maize. Concerning the wooden biomass of IGNISCUM Basic values of combustion can be compared with wood chips from forest trees. For a sustainable and optimal production of biomass we develop cultivation technology for this species. Field experiments are arranged under different climatic and soil conditions across Germany from Schleswig-Holstein to southern Germany to investigate the plant growth and biomass production on the field scale. Physiological parameters are determined for the relations between growth stages, chlorophyll content, photosynthesis and plant

  3. Bioenergy Crop Breeding and Production Research in the Southeast, Final Report for 1996 to 2001

    SciTech Connect

    Bouton, J.H.

    2003-05-30

    Switchgrass (Panicum virgatum L.) is a native grass species to much of the US. It has shown great potential for use in production of fuel ethanol from cellulosic biomass (Lynd et al., 1991). Work in Alabama demonstrated very high dry matter yields can be achieved with switchgrass (Maposse et al. 1995) in the southeastern US. Therefore, this region is thought to be an excellent choice for development of a switchgrass cropping system where farmers can produce the grass for either biomass or forage. Another report has shown success with selection and breeding to develop high yielding germplasm from adapted cultivars and ecotypes of switchgrass (Moser and Vogel 1995). In the mid 1990s, however, there was little plant breeding effort for switchgrass with a potential for developing a cultivar for the southeast region. The main goal of the project was to develop adaptive, high-yielding switchgrass cultivars for use in cropping systems for bioenergy production in the southeastern US. A secondary objective was to assess the potential of alternate herbaceous species such as bermudagrass (Cynodon dactylon L.), bahiagrass (Paspalum notatum Flugge.), and napiergrass (Pennisetum purpureum Schumach.) that may compete with switchgrass for herbaceous bioenergy production in the southeast. During the conduct of the project, another goal of developing molecular markers useful for genetic mapping was added. The ''lowland'' cultivars, Alamo and Kanlow, were found to be the highest yielding switchgrass cultivars. Although most summers during the project period were hot and dry, their annual dry matter yield continue to outperform the best ''upland'' cultivars such as Cave-in-Rock, Shawnee, NE Late, and Trailblazer. The use of a breeding procedure based on the ''honeycomb design'' and multi-location progeny testing, coupled with the solid heritability and genetic gain estimates for dry matter yield in lowland type switchgrass germplasm, indicated excellent potential to isolate parental

  4. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    PubMed

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG

  5. Evaluation of biomass quality in short-rotation bamboo (Phyllostachys pubescens) for bioenergy products.

    PubMed

    Wi, Seung Gon; Lee, Dae-Seok; Nguyen, Quynh Anh; Bae, Hyeun-Jong

    2017-01-01

    In order to improve the availability of biomass, the concept of growing high yield biomass with short rotations and intensive culture has been introduced. Bamboo has become a feedstock of potential interest for future energy production due to its high productivity and short rotation time. The growth age of biomass is an important factor affecting the efficiency of bioconversion and pretreatment for bioenergy production. In this regard, more information is required on the morphology and chemical composition of bamboo for short-rotation biomass production. In this study, we used a compositional assay to compare a bamboo of two different growth ages. Bamboo of two different ages showed characteristics patterns of morphology, chemical composition, and bioconversion. In young-age (2-month-old) bamboo, the pattern of tissue organization was similar to that of old-age (3-year-old) bamboo, indicating that the former had reached its full height. There were significant differences between young-age and old-age bamboo in terms of chemical composition. The glucose contents in old-age bamboo did not differ significantly among its internodes. For young-age bamboo, the lignin contents were 14.6-18.3%, whereas those of old-age bamboo were considerably higher, ranging from 25.4 to 27.1% with increasing syringyl-to-guaiacyl ratio. The yield of total sugars following enzymatic hydrolysis of young-age bamboo was approximately eight times. However, following hydrogen peroxide-acetic acid pretreatment, the results of separate hydrolysis and fermentation and simultaneous saccharification and fermentation did not differ significantly between young- and old-age bamboo. However, ethanol production was higher in 2-month old than in 3-year old from initial raw biomass. Our data show that the production of total sugar from raw material was high in young bamboo with low lignin content. With respect to short-rotation biomass, bamboo culm harvested after termination of height growth is more

  6. Harvest residue removal and soil compaction impact forest productivity and recovery: Potential implications for bioenergy harvests

    Treesearch

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Understanding the effects of management on forest structure and function is increasingly important in light of projected increases in both natural and anthropogenic disturbance severity and frequency with global environmental change. We examined potential impacts of the procurement of forest-derived bioenergy, a change in land use that has been suggested as a climate...

  7. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    USDA-ARS?s Scientific Manuscript database

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  8. Effect of fertilization on N2O emissions from a marginal soil used for perennial grass bioenergy production

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Karim, Imtiaz; Mason, Cedric; Tadipatri, Dhanya; Cary, Ian; Crawford, Ryan; Hansen, Julie; Crawford, Jamie; Mayton, Hilary; Steenhuis, Tammo; Richards, Brian

    2014-05-01

    Marginal lands constitute the primary land base available for development of bioenergy feedstocks in New York and the northeastern USA. Many of these soils are marginal because seasonal wetness prevents profitable row crop cultivation, but they are potentially suitable for perennial bioenergy feedstocks like switchgrass. Using these frequently wet soils for bioenergy production has multiple environmental and socio-economic benefits, yet little is known about how sustainable this practice is regarding greenhouse gas emissions - particularly in relation to the application of fertilizers. In a 2.2-ha field study near Ithaca, NY, USA, we are therefore monitoring greenhouse gas production from marginal silty clay loam soils cultivated with switchgrass. Here, we present results of our 2013 monitoring campaign, in which we assessed the effect of surface-applied granular ammonium sulfate-fertilizer (0, 56 and 112 kg N/ha) on N2O emissions along a natural catena from organic matter-rich wet lowland soil to drier midslope and upslope soils with higher rock fragment content. Sampling was done at 1 /2-week intervals around fertilization in June extending to 3-week intervals around harvest in September, giving a total of 15 sampling events. Emissions were sampled in a factorial design using four replicate static chambers per plot, and soil moisture, soil temperature and perched water table depth was assessed likewise. As expected, N2O emissions increased with N-fertilizer application. This effect of fertilization was much stronger than the effect of soil type or slope position. The greatest N2O fluxes were observed a few days after fertilization; we will explore and present the effects of rainfall, air temperature, soil moisture and soil temperature as potential drivers of smaller peaks occurring post-fertilization. Since the non-fertilized plots had negligible N2O emissions while still producing switchgrass at 6 Mg/ha, unfertilized switchgrass production is naturally most

  9. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential.

    PubMed

    Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M Cata

    2014-03-05

    The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.

  10. Characterisation and evaluation of a novel feedstock, Manihot glaziovii, Muell. Arg, for production of bioenergy carriers: Bioethanol and biogas.

    PubMed

    Moshi, Anselm P; Crespo, Carla F; Badshah, Malik; Hosea, Ken M M; Mshandete, Anthony Manoni; Elisante, Emrode; Mattiasson, Bo

    2014-11-01

    The objective of this study was to characterise and evaluate a wild inedible cassava species, Manihot glaziovii as feedstock for bioenergy production. Tubers obtained from 3 different areas in Tanzania were characterised and evaluated for bioethanol and biogas production. These bioenergy carriers were produced both separately and sequentially and their energy values evaluated based on these two approaches. Composition analysis demonstrated that M. glaziovii is a suitable feedstock for both bioethanol and biogas production. Starch content ranged from 77% to 81%, structural carbohydrates 3-16%, total crude protein ranged from 2% to 8%. Yeast fermentation achieved ethanol concentration of up to 85g/L at a fermentation efficiency of 89%. The fuel energy of the bioethanol and methane from flour-peels mix ranged from 5 to 13 and 11 to 14MJ/kgVS, respectively. Co-production of bioethanol and biogas in which the peels were added to the fermentation residue prior to anaerobic digestion produced maximum fuel energy yield of (15-23MJ/kgVS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    PubMed

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return.

  12. Modelling the ecological consequences of whole tree harvest for bioenergy production

    NASA Astrophysics Data System (ADS)

    Skår, Silje; Lange, Holger; Sogn, Trine

    2013-04-01

    There is an increasing demand for energy from biomass as a substitute to fossil fuels worldwide, and the Norwegian government plans to double the production of bioenergy to 9% of the national energy production or to 28 TWh per year by 2020. A large part of this increase may come from forests, which have a great potential with respect to biomass supply as forest growth increasingly has exceeded harvest in the last decades. One feasible option is the utilization of forest residues (needles, twigs and branches) in addition to stems, known as Whole Tree Harvest (WTH). As opposed to WTH, the residues are traditionally left in the forest with Conventional Timber Harvesting (CH). However, the residues contain a large share of the treés nutrients, indicating that WTH may possibly alter the supply of nutrients and organic matter to the soil and the forest ecosystem. This may potentially lead to reduced tree growth. Other implications can be nutrient imbalance, loss of carbon from the soil and changes in species composition and diversity. This study aims to identify key factors and appropriate strategies for ecologically sustainable WTH in Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) forest stands in Norway. We focus on identifying key factors driving soil organic matter, nutrients, biomass, biodiversity etc. Simulations of the effect on the carbon and nitrogen budget with the two harvesting methods will also be conducted. Data from field trials and long-term manipulation experiments are used to obtain a first overview of key variables. The relationships between the variables are hitherto unknown, but it is by no means obvious that they could be assumed as linear; thus, an ordinary multiple linear regression approach is expected to be insufficient. Here we apply two advanced and highly flexible modelling frameworks which hardly have been used in the context of tree growth, nutrient balances and biomass removal so far: Generalized Additive Models (GAMs) and

  13. Our Commitment to Bioenergy Sustainability

    SciTech Connect

    2011-07-01

    This fact sheet describes how the Biomass Program and its partners combine advanced analysis with applied research to understand and address the potential environmental, economic, and social impacts of bioenergy production.

  14. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process.

    PubMed

    Luo, Gang; Xie, Li; Zhou, Qi; Angelidaki, Irini

    2011-09-01

    The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3d for hydrogen reactor and 12d for methane reactor, obtained 11% higher energy compared to a single-stage methanogenic process (HRT 15 d) under organic loading rate (OLR) 3 gVS/(L d). The two-stage process was still stable when the OLR was increased to 4.5 gVS/(Ld), while the single-stage process failed. The study further revealed that by changing the HRT(hydrogen):HRT(methane) ratio of the two-stage process from 3:12 to 1:14, 6.7%, more energy could be obtained. Microbial community analysis indicated that the dominant bacterial species were different in the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) and methane reactors (Clostridium thermocellum-like species). The changes of substrates and HRT did not change the dominant species. The archaeal community structures in methane reactors were similar both in single- and two- stage reactors, with acetoclastic methanogens Methanosarcina acetivorans-like organisms as the dominant species.

  15. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    SciTech Connect

    Papoutsakis, Elefterios

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome

  16. Economic and energetic feasibility and environmental impact associated with large-scale bioenergy production for electricity in Kansas

    SciTech Connect

    King, J.E.; Nelson, R.G.

    1999-07-01

    A detailed investigation of switchgrass and black locust yields, edge-of-field cost per million Btu, energy-profit ratios (EPR's), and environmental impacts associated with the production of these energy crops for large-scale electricity production in Kansas was performed for each of 315 soil series in 74 countries. Average annual yields (dry tons/acre) ranged from 1.4--9.0 and 1.1--4.5 respectively for switchgrass and black locust depending upon soil type, climate, and required fertilizer use. Production costs ($/Mbtu) ranged from 11.2--18.2 and were 16.6--59.2 for black locust. Reductions in soil erosion due to rainfall, runoff, and nutrient (N and P) loss with sediment due to switchgrass and black locust production generally exceeded 90%. This paper examines the approach used to determine the economic and energetic feasibilities and environmental impacts associated with bioenergy crop use.

  17. Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium.

    PubMed

    Chinnasamy, Senthil; Bhatnagar, Ashish; Claxton, Ronald; Das, K C

    2010-09-01

    Improved wastewater management with beneficial utilization will result in enhanced sustainability and enormous cost savings in industries. Algae cultivation systems viz. raceway ponds, vertical tank reactors (VTR) and polybags were evaluated for mass production of algal consortium using carpet industry (CI) untreated wastewater. Overall areal biomass productivity of polybags (21.1 g m(-2)d(-1)) was the best followed by VTR (8.1 g m(-2)d(-1)) and raceways (5.9 g m(-2)d(-1)). An estimated biomass productivity of 51 and 77 tons ha(-1)year(-1) can be achieved using 20 and 30 L capacity polybags, respectively with triple row arrangement. Biomass obtained from algal consortium was rich in proteins (approximately 53.8%) and low in carbohydrates (approximately 15.7%) and lipids (approximately 5.3%). Consortium cultivated in polybags has the potential to produce 12,128 m(3) of biomethane ha(-1)year(-1). To be economically viable, the capital expenditure for polybag reactors needs to be reduced to $10 m(-2) for bioenergy/biofuel production.

  18. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production

    PubMed Central

    Ribeiro, Bernardo Dias; de Castro, Aline Machado; Coelho, Maria Alice Zarur; Freire, Denise Maria Guimarães

    2011-01-01

    Lipases represent one of the most reported groups of enzymes for the production of biofuels. They are used for the processing of glycerides and fatty acids for biodiesel (fatty acid alkyl esters) production. This paper presents the main topics of the enzyme-based production of biodiesel, from the feedstocks to the production of enzymes and their application in esterification and transesterification reactions. Growing technologies, such as the use of whole cells as catalysts, are addressed, and as concluding remarks, the advantages, concerns, and future prospects of enzymatic biodiesel are presented. PMID:21785707

  19. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model

    USGS Publications Warehouse

    Buongiorno, J.; Raunikar, R.; Zhu, S.

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial roundwood by nearly 30% in 2030. The price of sawnwood and panels would be 15% higher. The price of paper would be 3% higher. Concurrently, the demand for all manufactured wood products would be lower in all countries, but the production would rise in countries with competitive advantage. The global value added in wood processing industries would be 1% lower in 2030. The forest stock would be 2% lower for the world and 4% lower for Asia. These effects varied substantially by country. ?? 2011 Department of Forest Economics, SLU Ume??, Sweden.

  20. Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production

    PubMed Central

    Ookawa, Taiichiro; Inoue, Kazuya; Matsuoka, Makoto; Ebitani, Takeshi; Takarada, Takeshi; Yamamoto, Toshio; Ueda, Tadamasa; Yokoyama, Tadashi; Sugiyama, Chisato; Nakaba, Satoshi; Funada, Ryo; Kato, Hiroshi; Kanekatsu, Motoki; Toyota, Koki; Motobayashi, Takashi; Vazirzanjani, Mehran; Tojo, Seishu; Hirasawa, Tadashi

    2014-01-01

    Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, ‘Leaf Star’, with superior lodging resistance and a gh phenotype similar to one of its parents, ‘Chugoku 117’. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety. PMID:25298209

  1. Finnish bioenergy research

    SciTech Connect

    Malinen, H.

    1993-12-31

    Finland is one of the leading countries in the use of biofuels. The share of wood derived fuels of the total primary energy requirement was about 14% (ca. 4 million toe) and peat about 5% (1.4 million toe). The possibilities for increasing the use of biofuels in Finland are significant. There is theoretically about 10 million m{sup 3}/a (about 2 million toe/a) of harvestable wood. Areas suitable for fuel peat production (0.5 million ha) could produce ca. 420 million toe of peat. At present rates of use, the peat reserves are adequate for centuries. During the next few years 0.5--1 million hectares of fields withdrawn from farming could be used for biofuel production. The production potential of this field area is estimated to be about 0.2--0.5 million toe. In addition, the use of wastes in energy production could be increased. The aim of the new Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. New economically competitive biofuels, new equipment and methods for production, handling and use of biofuels will also be developed. The main research areas are production of wood fuels, peat production, use of bioenergy and conversion of biomass.

  2. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.

    PubMed

    Carmo-Silva, A Elizabete; Salvucci, Michael E

    2012-11-01

    The temperature optimum of photosynthesis coincides with the average daytime temperature in a species' native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO(2) assimilation rate (A) under atmospheric conditions was 30-32 °C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO(2) concentration was consistent with Rubisco limiting A at ambient CO(2). Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63 % reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35 °C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.

  3. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches.

    PubMed

    Glithero, N J; Ramsden, S J; Wilson, P

    2012-06-01

    Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in 'first generation' biofuels was observed, however 'food competition' concerns have generated interest in second generation biofuels (SGBs). These SGBs can be produced from co-products (e.g. cereal straw) or energy crops (e.g. miscanthus), with the former largely negating food competition concerns. In order to assess the sustainability of feedstock supply for SGBs, the financial, environmental and energy costs and benefits of the farm system must be quantified. Previous research has captured financial costs and benefits through linear programming (LP) approaches, whilst environmental and energy metrics have been largely been undertaken within life cycle analysis (LCA) frameworks. Assessing aspects of the financial, environmental and energy sustainability of supplying co-product second generation biofuel (CPSGB) feedstocks at the farm level requires a framework that permits the trade-offs between these objectives to be quantified and understood. The development of a modelling framework for Managing Energy and Emissions Trade-Offs in Agriculture (MEETA Model) that combines bio-economic process modelling and LCA is presented together with input data parameters obtained from literature and industry sources. The MEETA model quantifies arable farm inputs and outputs in terms of financial, energy and emissions results. The model explicitly captures fertiliser: crop-yield relationships, plus the incorporation of straw or removal for sale, with associated nutrient impacts of incorporation/removal on the following crop in the rotation. Key results of crop-mix, machinery use, greenhouse gas (GHG) emissions per kg of crop product and energy use per hectare are in line with previous

  4. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches

    PubMed Central

    Glithero, N.J.; Ramsden, S.J.; Wilson, P.

    2012-01-01

    Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in ‘first generation’ biofuels was observed, however ‘food competition’ concerns have generated interest in second generation biofuels (SGBs). These SGBs can be produced from co-products (e.g. cereal straw) or energy crops (e.g. miscanthus), with the former largely negating food competition concerns. In order to assess the sustainability of feedstock supply for SGBs, the financial, environmental and energy costs and benefits of the farm system must be quantified. Previous research has captured financial costs and benefits through linear programming (LP) approaches, whilst environmental and energy metrics have been largely been undertaken within life cycle analysis (LCA) frameworks. Assessing aspects of the financial, environmental and energy sustainability of supplying co-product second generation biofuel (CPSGB) feedstocks at the farm level requires a framework that permits the trade-offs between these objectives to be quantified and understood. The development of a modelling framework for Managing Energy and Emissions Trade-Offs in Agriculture (MEETA Model) that combines bio-economic process modelling and LCA is presented together with input data parameters obtained from literature and industry sources. The MEETA model quantifies arable farm inputs and outputs in terms of financial, energy and emissions results. The model explicitly captures fertiliser: crop-yield relationships, plus the incorporation of straw or removal for sale, with associated nutrient impacts of incorporation/removal on the following crop in the rotation. Key results of crop-mix, machinery use, greenhouse gas (GHG) emissions per kg of crop product and energy use per hectare are in line with

  5. Bioenergy: Potentials and limitations

    NASA Astrophysics Data System (ADS)

    Schulze, E.-D.; Canadell, J. G.

    2015-08-01

    In this lecture we explain 1) the biochemical basis for photosynthesis and plant production and 2) the future demands on biomass for human use. Summing all physiological processes, the efficiency of converting solar energy into biomass is < 1.6% in the tropics, and between 0.4 and 0.8% for the temperate regions. In view of the present and future high demand on biomass for food, bioeconomics, fiber, construction material, only a relatively small fraction of plant production will be available for bioenergy. We estimate this fraction to be between 3 and 8% of the global energy demand by 2050. The contribution of bioenergy is at the higher end in tropical regions and in the less industrialized parts of the world, but may even be < 3% in industrialized nations.

  6. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    PubMed

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands

    USDA-ARS?s Scientific Manuscript database

    Agave species are known as high-yielding crassulacean acid metabolism (CAM) plants, some of which have been grown commercially in the past and are recognized as potential bioenergy species for dry regions of the world. This study is the first field trial of Agave species for bioenergy in the United ...

  8. Pectins, Endopolygalacturonases, and Bioenergy

    PubMed Central

    Latarullo, Mariana B. G.; Tavares, Eveline Q. P.; Maldonado, Gabriel P.; Leite, Débora C. C.; Buckeridge, Marcos S.

    2016-01-01

    The precise disassembly of the extracellular matrix of some plant species used as feedstocks for bioenergy production continues to be a major barrier to reach reasonable cost effective bioethanol production. One solution has been the use of pretreatments, which can be effective, but increase even more the cost of processing and also lead to loss of cell wall materials that could otherwise be used in industry. Although pectins are known to account for a relatively low proportion of walls of grasses, their role in recalcitrance to hydrolysis has been shown to be important. In this mini-review, we examine the importance of pectins for cell wall hydrolysis highlighting the work associated with bioenergy. Here we focus on the importance of endopolygalacturonases (EPGs) discovered to date. The EPGs cataloged by CAZy were screened, revealing that most sequences, as well as the scarce structural work performed with EPGs, are from fungi (mostly Aspergillus niger). The comparisons among the EPG from different microorganisms, suggests that EPGs from bacteria and grasses display higher similarity than each of them with fungi. This compilation strongly suggests that structural and functional studies of EPGs, mainly from plants and bacteria, should be a priority of research regarding the use of pectinases for bioenergy production purposes. PMID:27703463

  9. Pectins, Endopolygalacturonases, and Bioenergy.

    PubMed

    Latarullo, Mariana B G; Tavares, Eveline Q P; Maldonado, Gabriel P; Leite, Débora C C; Buckeridge, Marcos S

    2016-01-01

    The precise disassembly of the extracellular matrix of some plant species used as feedstocks for bioenergy production continues to be a major barrier to reach reasonable cost effective bioethanol production. One solution has been the use of pretreatments, which can be effective, but increase even more the cost of processing and also lead to loss of cell wall materials that could otherwise be used in industry. Although pectins are known to account for a relatively low proportion of walls of grasses, their role in recalcitrance to hydrolysis has been shown to be important. In this mini-review, we examine the importance of pectins for cell wall hydrolysis highlighting the work associated with bioenergy. Here we focus on the importance of endopolygalacturonases (EPGs) discovered to date. The EPGs cataloged by CAZy were screened, revealing that most sequences, as well as the scarce structural work performed with EPGs, are from fungi (mostly Aspergillus niger). The comparisons among the EPG from different microorganisms, suggests that EPGs from bacteria and grasses display higher similarity than each of them with fungi. This compilation strongly suggests that structural and functional studies of EPGs, mainly from plants and bacteria, should be a priority of research regarding the use of pectinases for bioenergy production purposes.

  10. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    PubMed

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  11. Production of high-capacity adenovirus vectors.

    PubMed

    Kreppel, Florian

    2014-01-01

    High-capacity adenoviral vectors (HC-Ad), also known as "helper-dependent" (HD-Ad), "gutless", "gutted", or "third-generation" Ad vectors, are devoid of all viral coding sequences and have shown promising potential for a wide variety of different applications-from classic gene therapy to genetic vaccination and tumor treatment. However, compared to first-generation adenoviral vectors their production is more complex and requires specific in-depth knowledge. This chapter delivers a detailed protocol for the successful production of HC-Ad vectors to high titers.

  12. Maintaining site productivity during biofuel harvest operations

    Treesearch

    Deborah Page-Dumoese; Mark Kimsey

    2012-01-01

    Demand for forest biomass for bioenergy production and other uses is expected to increase to four times the current level in the next one to five years. The search for alternative energy sources, including forest bioenergy, increases pressure on the productive capacity of our western forestlands. The questions are: Can forest soils in the western U.S. support more...

  13. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems

    SciTech Connect

    Duran, Brianna E. L.; Duncan, David S.; Oates, Lawrence G.; Kucharik, Christopher J.; Jackson, Randall D.

    2016-03-18

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3 -) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18- species restored prairie responded to annual fertilizer applications of 56 kg N ha-1 in a fieldscale agronomic trial in south-central Wisconsin over a 2-year period.We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3 - concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. In conclusion, our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.

  14. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems

    DOE PAGES

    Duran, Brianna E. L.; Duncan, David S.; Oates, Lawrence G.; ...

    2016-03-18

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3 -) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18- species restored prairie responded to annual fertilizer applications ofmore » 56 kg N ha-1 in a fieldscale agronomic trial in south-central Wisconsin over a 2-year period.We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3 - concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. In conclusion, our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.« less

  15. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems

    PubMed Central

    Duran, Brianna E. L.; Duncan, David S.; Oates, Lawrence G.; Kucharik, Christopher J.; Jackson, Randall D.

    2016-01-01

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3-) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha-1 in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3- concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization. PMID:26991790

  16. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems.

    PubMed

    Duran, Brianna E L; Duncan, David S; Oates, Lawrence G; Kucharik, Christopher J; Jackson, Randall D

    2016-01-01

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3(-)) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha(-1) in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3(-) concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.

  17. Establishing and managing perennial grasses for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum) is native to every U.S. state east of the Rocky Mountains, is the most advanced herbaceous perennial bioenergy feedstock, and best management practices (BMPs) have been developed for bioenergy production in most agro-ecoregions. Additionally, big bluestem (Andropogon g...

  18. Land-Use Change and Bioenergy

    SciTech Connect

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  19. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    PubMed

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.

  20. Communicating about bioenergy sustainability

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Perla, Dr. Donna; Lucier, Dr. Al

    2013-01-01

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives, including problems and opportunities in various bioenergy production pathways. Scientists also need to develop approaches that contribute information relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports, and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that nonscientists can understand; and (3) the implications of methods, assumptions and limitations should be clear. The scientists job is to analyze information in order to build a better understanding of environmental, cultural and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on Sustainability of Bioenergy Systems: Cradle to Grave because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the

  1. Perennial Forages as Second Generation Bioenergy Crops

    PubMed Central

    Sanderson, Matt A.; Adler, Paul R.

    2008-01-01

    The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.). An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production. PMID:19325783

  2. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system.

    PubMed

    Gismondi, Alessandra; Pippo, Francesca Di; Bruno, Laura; Antonaroli, Simonetta; Congestri, Roberta

    2016-09-01

    In the present study a closed incubator, designed for biofilm growth on artificial substrata, was used to grow three isolates of biofilm-forming heterocytous cyanobacteria using an artificial wastewater secondary effluent as the culture medium. We evaluated biofilm efficiency in removing phosphorus, by simulating biofilm-based tertiary wastewater treatment and coupled this process with biodiesel production from the developed biomass. The three strains were able to grow in the synthetic medium and remove phosphorus in percentages, between 6 and 43%, which varied between strains and also among each strain according to the biofilm growth phase. Calothrix sp. biofilm turned out to be a good candidate for tertiary treatment, showing phosphorus reducing capacity (during the exponential biofilm growth) at the regulatory level for the treated effluent water being discharged into natural water systems. Besides phosphorus removal, the three cyanobacterial biofilms produced high quality lipids, whose profile showed promising chemical stability and combustion behavior. Further integration of the proposed processes could include the integration of oil extracted from these cyanobacterial biofilms with microalgal oil known for high monounsaturated fatty acids content, in order to enhance biodiesel cold flow characteristics.

  3. Sustainability Impact Assessment of two forest-based bioenergy production systems related to mitigation and adaption to Climate Change

    NASA Astrophysics Data System (ADS)

    Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Tuomasjukka, Diana

    2016-04-01

    New forest management strategies are necessary to resist and adapt to Climate Change (CC) and to maintain ecosystem functions such as forest productivity, water storage and biomass production. The increased use of forest-based biomass for energy generation as well as the application of combustion or pyrolysis co-products such as ash or biochar back into forest soils is being suggested as a CC mitigation and adaptation strategy while trying to fulfil the targets of both: (i) Europe 2020 growth strategy in relation to CC and energy sustainability and (ii) EU Action Plan for the Circular Economy. The energy stored in harvested biomass can be released through combustion and used for energy generation to enable national energy security (reduced oil dependence) and the substitution of fossil fuel by renewable biomass can decrease the emission of greenhouse gases.In the end, the wood-ash produced in the process can return to the forest soil to replace the nutrients exported by harvesting. Another way to use biomass in this green circular framework is to pyrolyse it. Pyrolysis of the biomass produce a carbon-rich product (biochar) that can increase carbon sequestration in the soils and liquid and gas co-products of biomass pyrolysis can be used for energy generation or other fuel use thereby offsetting fossil fuel consumption and so avoiding greenhouse gas emissions. Both biomass based energy systems differ in the amount of energy produced, in the co-product (biochar or wood ash) returned to the field, and in societal impacts they have. The Tool for Sustainability Impact Assessment (ToSIA) was used for modelling both energy production systems. ToSIA integrates several different methods, and allows a quantification and objective comparison of economic, environmental and social impacts in a sustainability impact assessment for different decision alternatives/scenarios. We will interpret the results in order to support the bioenergy planning in temperate forests under the

  4. Evaluating the effects of woody biomass production for bioenergy on water quality and hydrology in the southeastern United States

    Treesearch

    Natalie Griffiths; C. Rhett Jackson; Menberu Bitew; Enhao Du; Kellie Vache' ; Jeffrey J. McDonnell; Julian Klaus; Benjamin M. Rau

    2016-01-01

    Forestry is a dominant industry in the southeastern United States, and there is interest in sustainably growing woody feedstocks for bioenergy in this region. Our project is evaluating the environmental sustainability (water quality, quantity) of growing and managing short-rotation (10-12 yrs) loblolly pine for bioenergy using watershed-scale experimental and modeling ...

  5. Comparing soil functions for a wide range of agriculture soils focusing on production for bioenergy using a combined isotope-based observation and modelling approach

    NASA Astrophysics Data System (ADS)

    Leistert, Hannes; Herbstritt, Barbara; Weiler, Markus

    2017-04-01

    Increase crop production for bioenergy will result in changes in land use and the resulting soil functions and may generate new chances and risks. However, detailed data and information are still missing how soil function may be altered under changing crop productions for bioenergy, in particular for a wide range of agricultural soils since most data are currently derived from individual experimental sites studying different bioenergy crops at one location. We developed a new, rapid measurement approach to investigate the influence of bioenergy plants on the water cycle and different soil functions (filter and buffer of water and N-cycling). For this approach, we drilled 89 soil cores (1-3 m deep) in spring and fall at 11 sites with different soil properties and climatic conditions comparing different crops (grass, corn, willow, poplar, and other less common bioenergy crops) and analyzing 1150 soil samples for water content, nitrate concentration and stable water isotopes. We benchmarked a soil hydrological model (1-D numerical Richards equation, ADE, water isotope fractionation including liquid and vapor composition of isotopes) using longer-term climate variables and water isotopes in precipitation to derive crop specific parameterization and to specifically validate the differences in water transport and water partitioning into evaporation, transpiration and groundwater recharge among the sites and crops using the water isotopes in particular. The model simulation were in good agreement with the observed isotope profiles and allowed us to differentiate among the different crops. We defined different indicators for the soil functions considered in this study. These indicators included the proportion of groundwater recharge, transit time of water (different percentiles) though the upper 2m and nutrient leaching potential (e.g. nitrate) during the dormant season from the rooting zone. The parameterized model was first used to calculate the indicators for the

  6. Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): Effect on organic matter solubilization, biodegradability and bioenergy production.

    PubMed

    Nava-Valente, Noemí; Alvarado-Lassman, Alejandro; Nativitas-Sandoval, Liliana S; Mendez-Contreras, Juan M

    2016-01-01

    Thermal pretreatment effect of a mixture of organic wastes (physicochemical sludge, excreta of broiler chickens and sugarcane wastes (SCW)) in the solubilization and biodegradability organic matter as well as bioenergy production by anaerobic digestion was evaluated. Two different mixtures of physicochemical sludge, excreta of broiler chickens and SCW (70%, 15%, 15% and 60%, 20%, 20% of VS, respectively) were treated at different temperatures (80 °C, 85 °C and 90 °C) and contact time (30, 60 and 90 min). Results indicate that, organic matter solubilization degree increased from 1.14 to 6.56%; subsequently, in the anaerobic digestion process, an increase of 50% in the volatile solids removal and 10% in biogas production was observed, while, retention time decreased from 23 up to 9 days. The results obtained were similar to pilot-scale. In both experimental scales it showed that the synergy produced by the simultaneous anaerobic digestion of different substrates could increase bioenergy production up to 1.3 L bio g(-1) VS removed and 0.82 L CH4 g(-1) VS removed. The treatment conditions presented in this study allow for large residue quantities to be treated and large bioenergy quantities to be produced (10% higher than during conventional treatment) without increasing the anaerobic digester volume.

  7. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    SciTech Connect

    Doust, Andrew, N.

    2011-11-11

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  8. Cytokine production capacity in depression and anxiety

    PubMed Central

    Vogelzangs, N; de Jonge, P; Smit, J H; Bahn, S; Penninx, B W

    2016-01-01

    Recent studies have suggested that immune function may be dysregulated in persons with depressive and anxiety disorders. Few studies examined the expression of cytokines in response to ex vivo stimulation of blood by lipopolysaccharide (LPS) to study the innate production capacity of cytokines in depression and anxiety. To investigate this, baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including persons (18–65 years; 66% women) with current (that is, past month; N=591) or remitted (N=354) DSM-IV depressive or anxiety disorders and healthy controls (N=297). Depressive and anxiety symptoms were measured by means of the Inventory of Depressive Symptomatology (IDS) and the Beck Anxiety Inventory (BAI). Using Multi-Analyte Profiling technology, plasma levels of 13 cytokines were assayed after whole blood stimulation by addition of LPS. Basal plasma levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α were also available. A basal and a LPS summary index were created. Results show that LPS-stimulated inflammation was associated with increased odds of current depressive/anxiety disorders (odds ratio (OR)=1.28, P=0.009), as was the case for basal inflammation (OR=1.28, P=0.001). These associations were no longer significant after adjustment for lifestyle and health (OR=1.13, P=0.21; OR=1.07, P=0.45, respectively). After adjustment for lifestyle and health, interleukin-8 was associated with both remitted (OR=1.25, P=0.02) and current (OR=1.28, P=0.005) disorders. In addition, LPS-stimulated inflammation was associated with more severe depressive (β=0.129, P<0.001) and anxiety (β=0.165, P<0.001) symptoms, as was basal inflammation. Unlike basal inflammation, LPS-stimulated inflammation was still associated with (anxiety) symptom severity after adjustment for lifestyle and health (IDS: IL-8, MCP-1, MMP2; BAI: LPS index, IL-6, IL-8, IL-10, IL-18, MCP-1, MMP2, TNF-β). To conclude, lifestyle and health factors may

  9. Invertebrate community response to coarse woody debris removal for bioenergy production from intensively managed forests.

    PubMed

    Grodsky, Steven M; Moorman, Christopher E; Fritts, Sarah R; Campbell, Joshua W; Sorenson, Clyde E; Bertone, Matthew A; Castleberry, Steven B; Wigley, T Bently

    2017-09-26

    Increased market viability of harvest residues as forest bioenergy feedstock may escalate removal of coarse woody debris in managed forests. Meanwhile, many forest invertebrates use coarse woody debris for cover, food, and reproduction. Few studies have explicitly addressed effects of operational-scale woody biomass harvesting on invertebrates following clearcutting. Therefore, we measured invertebrate community response to large-scale harvest residue removal and micro-site manipulations of harvest residue availability in recently clearcut, intensively managed loblolly pine (Pinus taeda) forests in North Carolina (NC; n = 4) and Georgia (GA; n = 4), USA. We captured 39,794 surface-active invertebrates representing 171 taxonomic groups using pitfall traps situated among micro-site locations (i.e., purposefully retained piles of hardwood stems and piles of conifer stems and areas without coarse woody debris in NC; windrows and no windrows in GA). Micro-site locations were located within six, large-scale treatments (7.16 - 14.3 ha) in clearcuts. Large-scale treatments represented intensive harvest residue removal, 15% and 30% harvest residue retention, and no harvest residue removal. In NC, ground beetles (Coleoptera: Carabidae) and crickets (Orthoptera: Gryllidae) were three times more abundant in treatments with no harvest residue removal than those with the most intensive harvest residue removal and were reduced in treatments that retained 15% or 30% of harvest residues, although not significantly. Invertebrate taxa richness was greater at micro-site locations with retained hardwood and pine (Pinus spp.) harvest residues than those with minimal amounts of coarse woody debris. In both states, relative abundances of several invertebrate taxa, including cave crickets (Orthoptera: Rhaphidophoridae), fungus gnats (Diptera: Mycetophilidae and Sciaridae), millipedes (Diplopoda), and wood roaches (Blattodea: Ectobiidae), were greater at micro-site locations with retained

  10. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  11. Reconciling food security and bioenergy: priorities for action

    DOE PAGES

    Kline, Keith L.; Msangi, Siwa; Dale, Virginia H.; ...

    2016-06-14

    Addressing the challenges of understanding and managing complex interactions among food security, biofuels, and land management requires a focus on specific contextual problems and opportunities. The United Nations 2030 Sustainable Development Goals prioritize food and energy security and bioenergy links these two priorities. Effective food security programs begin by clearly defining the problem and asking, What options will be effective to assist people at high risk? Headlines and cartoons that blame biofuels for food insecurity reflect good intentions but mislead the public and policy makers because they obscure or miss the main drivers of local food insecurity and opportunities formore » biofuels to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near- and long- term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy do not compete for land but food and bioenergy systems can and do work together to improve resource management, (3) investing in innovations to build capacity and infrastructure such as rural agricultural extension and technology, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders in identifying and assessing specific opportunities for biofuels to improve food security. In conclusion, systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.« less

  12. Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test.

    PubMed

    Kataki, Sampriti; Hazarika, Samarendra; Baruah, D C

    2017-03-09

    higher content of K, Ca, P, Na and Mg than their respective solid phase. Application of ash digestates and char is likely to improve adsorptive capacity of soil for water and nutrient due to presence of relatively uniformly distributed porous particles. Liquid fraction of Ipomoea digestates exhibited inhibitory effect on seed germination of greengram (Vigna radiate) with significant reduction of germination index. Inhibitory effects of by-products were found to correlate negatively with their electrical conductivity and ammonia-nitrogen content. Understanding on spectroscopic, morphological and phytotoxic properties of different application options of bioenergy by-products would be useful for assessment of their appropriate use in agriculture.

  13. 2013 Bioenergy Market Report

    SciTech Connect

    Schwab, Amy; Moriarty, Kristi; Milbrandt, Anelia; Geiger, Jesse; Lewis, John

    2016-03-28

    This report provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of 2013. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

  14. Research about Short- Term Production Capacity Decision-Making

    NASA Astrophysics Data System (ADS)

    bi-xi, Zhang; jing, Song; xiu-li, Yu

    Under the circumstances of uncertain fluctuation of market demand, the degree of matching between production capacity and customers demand can affect the cost, the efficiency and the profits of an enterprise. Choosing the appropriate production capacity level is an important task for decision makers. The paper analyzes the characters of the short-term demand variation, the matching between the capacity and the demand, and its influence on the enterprise. Supposing the short-term demand varies seasonally, and the objective is minimum the loss of mismatch between the production capacity and market demand.Then,short-term production capacity decision model has been developed.Based on the model, this paper has probed into the mismatching loss of three strategies: fixed capacity strategy, subsection adjustment capacity strategy and dynamic adjustment capacity strategy,and an optimal capacity strategy is provided. By fixing the capacity-demand mismatching loss and changing the capacity adjustment rate, this paper also studies the sensitivity of the capacity strategy. The result shows that, firstly, as the capacity adjustment rate is less than a certain numerical value, the dynamic adjustment capacity is the optimal choice; secondly, as the capacity adjustment rate exceeds a certain numerical value, the optimal one is fixed capacity strategy; finally, as the rate falls in some specific area, the optimal one is subsection adjustment capacity strategy. One practical example is provided to prove the model's validity.

  15. Halophytes As Bioenergy Crops

    PubMed Central

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K.

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops. PMID:27679645

  16. Trends in capacity utilization for therapeutic monoclonal antibody production.

    PubMed

    Langer, Eric S

    2009-01-01

    The administration of high doses of therapeutic antibodies requires large-scale, efficient, cost effective manufacturing processes. An understanding of how the industry is using its available production capacity is important for production planning, and facility expansion analysis. Inaccurate production planning for therapeutic antibodies can have serious financial ramifications. In the recent 5(th) Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production, 434 qualified respondents from 39 countries were asked to indicate, among other manufacturing issues, their current trends and future predictions with respect to the production capacity utilization of monoclonal antibodies in mammalian cell culture systems. While overall production of monoclonals has expanded dramatically since 2003, the average capacity utilization for mammalian cell culture systems, has decreased each year since 2003. Biomanufacturers aggressively attempt to avoid unanticipated high production demands that can create a capacity crunch. We summarize trends associated with capacity utilization and capacity constraints which indicate that biopharmaceutical manufacturers are doing a better job planning for capacity. The results have been a smoothing of capacity use shifts and an improved ability to forecast capacity and outsourcing needs. Despite these data, today, the instability and financial constraints caused by the current global economic crisis are likely to create unforeseen shifts in our capacity utilization and capacity expansion trends. These shifts will need to be measured in subsequent studies.

  17. A modeling approach to soil type and precipitation seasonality interactions on bioenergy crop production

    USDA-ARS?s Scientific Manuscript database

    Precipitation limits primary production by affecting soil moisture, and soil type interacts with soil moisture to determine soil water availability to plants. We used ALMANAC, a process-based model, to simulate switchgrass (Panicum virgatum var. Alamo) biomass production in Central Texas under thre...

  18. Evaluation of sweet sorghum as a feedstock by multiple harvests for sustainable bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Sweet sorghum has become an important feedstock for bioethanol production. Total sugar yield and multiple harvests can directly affect ethanol production cost. Little is known about stem traits and multiple harvests that contribute to sugar yield in sweet sorghum. Stem traits were evaluated from 25 ...

  19. Evaluating Future Land-use Change Scenarios: Trade-offs between Bio-energy Demand, Food Production, and Carbon Emission

    NASA Astrophysics Data System (ADS)

    Kato, E.; Yamagata, Y.

    2012-12-01

    In the construction of consistent future climate scenario, land use scenario has important role through both biogeochemical and biogeophysical effects on climate change. In terms of carbon emissions by the land-use change, relative importance may be high in the lower radiative forcing and lower carbon emission scenarios, which may use large amount of bio-energy with carbon capture and storage (BECCS). In this study, we first evaluated the CO2 emissions by land-use change in the 21st century using each RCPs scenarios. We use an offline terrestrial biogeochemical model VISIT, with book-keeping consideration of the carbon emission from deforested biomass and the regrowing uptake from abandoned cropland and pasture employing the gridded transition land-use data from RCPs. Effect of CO2 fertilization, land-use transition itself, and climate change are evaluated in the analysis. We found that constructing consistent land-use change carbon emission scenario with the gridded land-use change data requires precise considerations of effects of CO2 fertilization and climate change particularly for the regrowing uptake. Also, our result showed more emission of CO2 by the land-use change than the assumption in the integrated assessment model for RCP2.6 scenario. Then, we estimated the land-use area required to sustain the required biofuel production to match the assumption of BECCS use in RCPs with a global process based crop model. In the evaluation, we also estimated the further changes in carbon emissions by the required land-use change due to differences in crop yield assumptions, which also take into account of climate change. The trade-offs between land-use for crop, biocrop, and natural vegetation low-carbon scenario are discussed using the integrated terrestrial modeling approach.

  20. Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios

    PubMed Central

    Bennett, Ashley B.; Meehan, Timothy D.; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation. PMID:25365559

  1. Modeling pollinator community response to contrasting bioenergy scenarios.

    PubMed

    Bennett, Ashley B; Meehan, Timothy D; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation.

  2. Microfabricated devices in microbial bioenergy sciences.

    PubMed

    Han, Arum; Hou, Huijie; Li, Lei; Kim, Hyun Soo; de Figueiredo, Paul

    2013-04-01

    Microbes provide a platform for the synthesis of clean energy from renewable resources. Significant investments in discovering new microbial systems and capabilities, discerning the molecular mechanisms that mediate microbial bioenergy production, and optimizing existing microbial bioenergy systems have been made. However, further development is needed to achieve the economically feasible large-scale production of value-added energy products. Microfabricated lab-on-a-chip systems provide cost- and time-efficient opportunities for analyzing microbe-mediated bioenergy synthesis. Here, we review developments in the application of lab-on-a-chip systems to the bioenergy sciences. We focus on systems that support the analysis of microbial generation of bioelectricity, biogas, and liquid transportation fuels. We conclude by suggesting possible future directions.

  3. Bioenergy and Biodiversity: Key Lessons from the Pan American Region.

    PubMed

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L; Medeiros, Rodrigo; Oliveira, Camila Ortolan F; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  4. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    NASA Astrophysics Data System (ADS)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  5. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bioenergy and products from thermal pyrolysis of rice straw using plasma torch.

    PubMed

    Shie, Je-Lueng; Tsou, Feng-Ju; Lin, Kae-Long; Chang, Ching-Yuan

    2010-01-01

    The aim of this work was to study the feasibility and operation performance of plasma torch pyrolysis of biomass wastes, taking rice straw as the target material. This novel method has several advantages including high heating rate, short heating time, no viscous tar and low residual char (7.45-13.78 wt.%) or lava. The productions of CO and H(2) are the major components (91.85-94.14 vol.%) in the gas products with relatively high reaction rates. The maximum concentrations of gaseous products occurring times are all below 1 min. Almost 90% of gaseous products were appeared in 4 min reaction time. The yield of H(2) increases with the increase of input power or temperature. With the increase of moisture (5-55 wt.%), the mass yields of H(2) and CO(2) also increase from the H(2)O decomposition. However, due to the CO(2) production, the accumulated volume fraction of syngas decreases with the increase of moisture.

  7. Bioenergy for sustainable development: An African context

    NASA Astrophysics Data System (ADS)

    Mangoyana, Robert Blessing

    This paper assesses the sustainability concerns of bioenergy systems against the prevailing and potential long term conditions in Sub-Saharan Africa with a special attention on agricultural and forestry waste, and cultivated bioenergy sources. Existing knowledge and processes about bioenergy systems are brought into a “sustainability framework” to support debate and decisions about the implementation of bioenergy systems in the region. Bioenergy systems have been recommended based on the potential to (i) meet domestic energy demand and reduce fuel importation (ii) diversify rural economies and create employment (iii) reduce poverty, and (iv) provide net energy gains and positive environmental impacts. However, biofuels will compete with food crops for land, labour, capital and entrepreneurial skills. Moreover the environmental benefits of some feedstocks are questionable. These challenges are, however, surmountable. It is concluded that biomass energy production could be an effective way to achieve sustainable development for bioenergy pathways that (i) are less land intensive, (ii) have positive net energy gains and environmental benefits, and (iii) provide local socio-economic benefits. Feasibility evaluations which put these issues into perspective are vital for sustainable application of agricultural and forest based bioenergy systems in Sub-Saharan Africa. Such evaluations should consider the long run potential of biofuels accounting for demographic, economic and technological changes and the related implications.

  8. Ecological sustainability of alternative biomass feedstock production for environmental benefits and bioenergy

    Treesearch

    Ronald S., Jr. Zalesny; Jill A. Zalesny; Edmund O. Bauer

    2007-01-01

    The incorporation of intensive forestry with waste management fills a much-needed niche throughout numerous phytotechnology applications. There is a growing opportunity to incorporate sustainable recycling of waste waters as irrigation and fertilization for alternative biomass feedstock production systems. However, the success of short rotation woody crops is largely...

  9. Assessing bioenergy harvest risks: Geospatially explicit tools for maintaining soil productivity in western US forests

    Treesearch

    Mark Kimsey; Deborah Page-Dumroese; Mark Coleman

    2011-01-01

    Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research...

  10. Fostering the Bioeconomic Revolution ... in Biobased Products and Bioenergy: An Environmental Approach

    DTIC Science & Technology

    2001-01-01

    soaps, detergents, wetting agents, and foaming agents. Taxol: an anticancer drug used for treating ovarian (and possibly other) cancers . Extracted...filler for auto fenders, and panels for vehicle liners 16 Pharmaceuticals and veterinary products Taxol for cancer treatment There will also be...vegetable oils, or microalgae oils. bioeconomic: an economy based on biological sci- ences and advances in related engineering disciplines and

  11. Integrating phytotechnologies with energy crop production for biofuels, bioenergy, and bioproducts

    Treesearch

    Ronald S. Jr. Zalesny

    2009-01-01

    Forest biomass constitutes ~30% of the total biomass that can be produced in the United States, making adequate woody feedstock availability necessary for environmental and economic sustainability. Woody feedstock production is vital for achieving our National goal of 16 billion gallons of cellulosic ethanol by 2022.

  12. Characterization of some useful traits in sweet sorghum for bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Multiple yearly harvests can increase crop productivity but the crop may encounter different environmental challenges (such as early-spring cold or late-fall frost) depending on cultivation zones. Sweet sorghum as a feedstock may be planted early to get a double harvest or be rotated with sugarcane ...

  13. Soil organic matter fractions in loblolly pine forests of Coastal North Carolina managed for bioenergy production

    Treesearch

    Kevan J. Minick; Brian D. Strahm; Thomas R. Fox; Eric B. Surce; Zakiya H. Leggett

    2015-01-01

    Dependence on foreign oil continues to increase, and concern over rising atmospheric CO2 and other greenhouse gases has intensified research into sustainable biofuel production. Intercropping switchgrass (Panicum virgatum L.) between planted rows of loblolly pine (Pinus taeda L.) offers an opportunity to utilize inter-row space that typically contains herbaceous and...

  14. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    SciTech Connect

    Huang, Shi; Fulbright, Scott P; Zeng, Xiaowei; Yates, Tracy; Wardle, Greg; Chisholm, Stephen T; Xu, Jian; Lammers, Peter

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We

  15. Carbon Fluxes And Yield Of Bioenergy Sorghum In An Extreme Desert Production Environment

    NASA Astrophysics Data System (ADS)

    Grantz, D. A.; Oikawa, P. Y.; Jenerette, D.

    2012-12-01

    Carbon accumulation and agronomic yield of tropical C4 grasses are high under irrigated conditions in low desert, western U.S. production areas. These are candidate production systems for purpose-grown biofuel feedstocks. Here we report fluxes of carbon at leaf and canopy scales, along with above-ground biomass yield, in an irrigated, fertilized field (5.26 ha) in the low desert (Imperial Valley) of California. This is an uncommonly productive but environmentally extreme growth environment with typical Tsoil > 55 C and Tair > 42 C during the growing season. We monitored a single field under fallow conditions, followed by planting, growth, harvest, and re-growth from stubble of Sorghum bicolor. Carbon accumulation is one aspect of our developing sustainability metric that characterizes land use conversion to biofuel production. Following 96 days of growth from seed, the canopy was harvested by cutting at 15 cm above the soil surface, yielding 33.8 ± 2.4 dry ton/ha. Over the growth period this represents 35 g m-2 day-1 of average dry matter accumulation, including the cool early season. A second and third cutting are anticipated during the production year suggesting annualized yields more typical of tropical than temperate environments. Tower fluxes of C obtained by eddy covariance suggest maximal rates of C accumulation increased with temperature and canopy development from -17 μmol m-2 s-1 in March to -57 μmol m-2 s-1 in July. Leaf level C assimilation in July exceeded 40 μmol m-2 s-1 in sunlit leaves. Neither EC nor leaf level photosynthetic measurements indicated inhibition of carbon assimilation by the prevailing high temperatures, although it is anticipated that low temperatures will terminate the season. As with unmanaged systems in this environment, fluxes are highly sensitive to pulsed water availability, in this case through irrigation. These data will be used to constrain process models of canopy response to these unusual environmental conditions, in

  16. Products and bioenergy from the pyrolysis of rice straw via radio frequency plasma and its kinetics.

    PubMed

    Tu, Wen-Kai; Shie, Je-Lung; Chang, Ching-Yuan; Chang, Chiung-Fen; Lin, Cheng-Fang; Yang, Sen-Yeu; Kuo, Jing T; Shaw, Dai-Gee; You, Yii-Der; Lee, Duu-Jong

    2009-03-01

    The radio frequency plasma pyrolysis technology, which can overcome the disadvantages of common pyrolysis methods such as less gas products while significant tar formation, was used for pyrolyzing the biomass waste of rice straw. The experiments were performed at various plateau temperatures of 740, 813, 843 and 880K with corresponding loading powers of 357, 482, 574 and 664W, respectively. The corresponding yields of gas products (excluding nitrogen) from rice straw are 30.7, 56.6, 62.5 and 66.5wt.% with respect to the original dried sample and the corresponding specific heating values gained from gas products are about 4548, 4284, 4469 and 4438kcalkg(-1), respectively, for the said cases. The corresponding combustible portions remained in the solid residues are about 64.7, 35, 28.2 and 23.5wt.% with specific heating values of 4106, 4438, 4328 and 4251kcalkg(-1) with respective to solid residues, while that in the original dried sample is 87.2wt.% with specific heating value of 4042kcalkg(-1). The results indicated that the amount of combustibles converted into gas products increases with increasing plateau temperature. The kinetic model employed to describe the pyrolytic conversion of rice straw at constant temperatures agrees well with the experimental data. The best curve fittings render the frequency factor of 5759.5s(-1), activation energy of 74.29kJ mol(-1) and reaction order of 0.5. Data and information obtained are useful for the future design and operation of pyrolysis of rice straw via radio frequency plasma.

  17. Bioenergy production via microbial conversion of residual oil to natural gas.

    PubMed

    Gieg, Lisa M; Duncan, Kathleen E; Suflita, Joseph M

    2008-05-01

    World requirements for fossil energy are expected to grow by more than 50% within the next 25 years, despite advances in alternative technologies. Since conventional production methods retrieve only about one-third of the oil in place, either large new fields or innovative strategies for recovering energy resources from existing fields are needed to meet the burgeoning demand. The anaerobic biodegradation of n-alkanes to methane gas has now been documented in a few studies, and it was speculated that this process might be useful for recovering energy from existing petroleum reservoirs. We found that residual oil entrained in a marginal sandstone reservoir core could be converted to methane, a key component of natural gas, by an oil-degrading methanogenic consortium. Methane production required inoculation, and rates ranged from 0.15 to 0.40 micromol/day/g core (or 11 to 31 micromol/day/g oil), with yields of up to 3 mmol CH(4)/g residual oil. Concomitant alterations in the hydrocarbon profile of the oil-bearing core revealed that alkanes were preferentially metabolized. The consortium was found to produce comparable amounts of methane in the absence or presence of sulfate as an alternate electron acceptor. Cloning and sequencing exercises revealed that the inoculum comprised sulfate-reducing, syntrophic, and fermentative bacteria acting in concert with aceticlastic and hydrogenotrophic methanogens. Collectively, the cells generated methane from a variety of petroliferous rocks. Such microbe-based methane production holds promise for producing a clean-burning and efficient form of energy from underutilized hydrocarbon-bearing resources.

  18. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    DOE PAGES

    Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.; ...

    2015-10-03

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes

  19. Engineering Brevibacterium flavum for the production of renewable bioenergy: C4-C5 advanced alcohols.

    PubMed

    Su, HaiFeng; Lin, JiaFu; Wang, YuanHong; Chen, Qiao; Wang, GuangWei; Tan, FuRong

    2017-09-01

    Biosynthesis of advanced biofuels by engineered non-natural microorganisms has been proposed to be the most promising approach for the replacement of dwindling fossil fuel resources. Brevibacterium flavum (Bf) is a model brevibacterium aerobe which lacks basic and applied research that could enable this species to produce biofuels. There are no reports regarding engineering this microorganism to produce advanced alcohols before. Here, for the first time, we developed the bacterium as a novel biosynthetic platform for advanced alcohols production via the mutagenesis and engineering to produce 2-ketoacids derived alcohols. In order to enhance the strain's capability of producing advanced alcohols, we preferentially improved intrinsic metabolism ability of the strain to obtain improved expression host (IEH) via generating mutagenesis libraries by whole cell mutagenesis (WCM). The IEH was determined via screening out the mutant strain with the highest production of branched-chain organic acids (BCOA) using high throughput screening method.. Subsequently, a novel vector system for Bf was established, and the corresponding biosynthetic pathway of directing carbon flux into the target advanced alcohols was recruited to make the bacterium possess the capability of producing advanced alcohols and further enhance the production using the IEH. Specifically, we generated bioengineered strains that were able to synthesize up to the highest 5362 and 4976 mg/L isobutanol, 1945 and 1747 mg/L 2-methyl-1-butanol (2 MB), and 785.34 and 781 mg/L 3-methyl-1-butanol (3 MB) from pure glucose and duckweed substrates, respectively. Our findings confirmed the feasibility and potential of using Bf as a novel biosynthetic platform to generate advanced biofuels with glucose and inexpensive renewable feedstock-duckweed as a fermentation substrate. Biotechnol. Bioeng. 2017;114: 1946-1958. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production.

    PubMed

    Gelfand, Ilya; Zenone, Terenzio; Jasrotia, Poonam; Chen, Jiquan; Hamilton, Stephen K; Robertson, G Philip

    2011-08-16

    Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn-soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt of 10.6 Mg CO(2) equivalents (CO(2)e)·ha(-1) that included agronomic inputs, changes in C stocks, altered N(2)O and CH(4) fluxes, and foregone C sequestration less a fossil fuel offset credit. Total debt, which includes future debt created by additional changes in soil C stocks and the loss of substantial future soil C sequestration, can be constrained to 68 Mg CO(2)e·ha(-1) if subsequent crops are under permanent no-till management. If tilled, however, total debt triples to 222 Mg CO(2)e·ha(-1) on account of further soil C loss. Projected C debt repayment periods under no-till management range from 29 to 40 y for corn-soybean and continuous corn, respectively. Under conventional tillage repayment periods are three times longer, from 89 to 123 y, respectively. Alternatively, the direct use of existing CRP grasslands for cellulosic feedstock production would avoid C debt entirely and provide modest climate change mitigation immediately. Incentives for permanent no till and especially permission to harvest CRP biomass for cellulosic biofuel would help to blunt the climate impact of future CRP conversion.

  1. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems.

    PubMed

    Morris, Geoffrey P; Hu, Zhenbin; Grabowski, Paul P; Borevitz, Justin O; de Graaff, Marie-Anne; Miller, R Michael; Jastrow, Julie D

    2016-09-01

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008-2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars - under low or high species diversity, with or without nitrogen inputs - and quantified establishment, biomass yield, and biomass composition. In one experiment ('agronomic trial'), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment ('diversity gradient'), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in

  2. The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production.

    PubMed

    Yang, Linxi; He, Quan Sophia; Corscadden, Kenneth; Udenigwe, Chibuike C

    2015-03-01

    Jerusalem artichoke, a native plant to North America has recently been recognized as a promising biomass for bioeconomy development, with a number of advantages over conventional crops such as low input cultivation, high crop yield, wide adaptation to climatic and soil conditions and strong resistance to pests and plant diseases. A variety of bioproducts can be derived from Jerusalem artichoke, including inulin, fructose, natural fungicides, antioxidant and bioethanol. This paper provides an overview of the cultivation of Jerusalem artichoke, derivation of bioproducts and applicable production technologies, with an expectation to draw more attention on this valuable crop for its applications as biofuel, functional food and bioactive ingredient sources.

  3. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products.

    PubMed

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.

  4. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production.

    PubMed

    Hoffmann, Jessica; Rudra, Souman; Toor, Saqib S; Holm-Nielsen, Jens Bo; Rosendahl, Lasse A

    2013-02-01

    Initial process studies carried out in Aspen Plus on an integrated thermochemical conversion process are presented herein. In the simulations, a hydrothermal liquefaction (HTL) plant is combined with a biogas plant (BP), such that the digestate from the BP is converted to a biocrude in the HTL process. This biorefinery concept offers a sophisticated and sustainable way of converting organic residuals into a range of high-value biofuel streams in addition to combined heat and power (CHP) production. The primary goal of this study is to provide an initial estimate of the feasibility of such a process. By adding a diesel-quality-fuel output to the process, the product value is increased significantly compared to a conventional BP. An input of 1000 kg h(-1) manure delivers approximately 30-38 kg h(-1) fuel and 38-61 kg h(-1) biogas. The biogas can be used to upgrade the biocrude, to supply the gas grid or for CHP. An estimated 62-84% of the biomass energy can be recovered in the biofuels.

  5. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources.

    PubMed

    Cho, Sunja; Lee, Nakyeong; Park, Seonghwan; Yu, Jaecheul; Luong, Thanh Thao; Oh, You-Kwan; Lee, Taeho

    2013-03-01

    In order to reduce input cost for microalgal cultivation, we investigated the feasibility of wastewater taken from a municipal WWTP in Busan, Korea as wastewater nutrients. The wastewaters used in this study were the effluent from a primary settling tank (PS), the effluent from an anaerobic digestion tank (AD), the conflux of wastewaters rejected from sludge-concentrate tanks and dewatering facilities (CR), and two combined wastewaters of AD:PS (10:90, v/v) and AD:CR (10:90, v/v). Chlorella sp. ADE5, which was isolated from the AD, was selected for the feasibility test. The highest biomass production (3.01 g-dry cell weight per liter) of the isolate was obtained with the combined wastewater ADCR, and it was 1.72 times higher than that with BG 11 medium. Interestingly, the cells cultivated with wastewater containing PS wastewater were easily separated from the culture and improved lipid content, especially oleic acid content, in their cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production.

    PubMed

    Roger, M; de Poulpiquet, A; Ciaccafava, A; Ilbert, M; Guiral, M; Giudici-Orticoni, M T; Lojou, E

    2014-02-01

    How the redox proteins and enzymes involved in bioenergetic pathways are organized is a relevant fundamental question, but our understanding of this is still incomplete. This review provides a critical examination of the electrochemical tools developed in recent years to obtain knowledge of the intramolecular and intermolecular electron transfer processes involved in metabolic pathways. Furthermore, better understanding of the electron transfer processes associated with energy metabolism will provide the basis for the rational design of biotechnological devices such as electrochemical biosensors, enzymatic and microbial fuel cells, and hydrogen production factories. Starting from the redox complexes involved in two relevant bacterial chains, i.e., from the hyperthermophile Aquifex aeolicus and the acidophile Acidithiobacillus ferrooxidans, examination of protein-protein interactions using electrochemistry is first reviewed, with a focus on the orientation of a protein on an electrochemical interface mimic of a physiological interaction between two partners. Special attention is paid to current research in the electrochemistry of essential membrane proteins, which is one mandatory step toward the understanding of energy metabolic pathways. The complex and challenging architectures built to reconstitute a membrane-like environment at an electrode are especially considered. The role played by electrochemistry in the attempt to consider full bacterial metabolism is finally emphasized through the study of whole cells immobilized at electrodes as suspensions or biofilms. Before the performances of biotechnological devices can be further improved to make them really attractive, questions remain to be addressed in this particular field of research. We discuss the bottlenecks that need to be overcome in the future.

  7. Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production.

    PubMed

    Ahmed, Rajper Aftab; He, Meilin; Aftab, Rajper Asma; Zheng, Shiyan; Nagi, Mostafa; Bakri, Ramadan; Wang, Changhai

    2017-08-14

    The biofuels are receiving considerable attention as a substitute for petro diesel. For microalgae, the cell density or biomass and lipid contents are key components for biodiesel production. This study was conducted to develop favorable culture conditions for Dunaliella salina to maximize its biomass and lipid accumulation. The effect of salinity (0.5 to 2.5 M NaCl) on the cell population, biochemical composition, and lipid output of Dunaliella salina was examined under a controlled environment for 21 days. Maximum growth (6.57 × 10(7) to 7.17 × 10(7)cells mL(-1)) potentials were observed at 1.5 to 2 M NaCl. The photosynthetic pigments and carbohydrates also showed trends similar to growth. The maximum carotenoid level (5.16 mg L(-1)) was recorded at 2 M NaCl. Almost all physicochemical parameters increased with increases in salinity, biomass (1231.66 ± 1.26 mg L(-1)) and lipid content (248.33 mg L(-1)), as recorded at 2 M NaCl. Based on fluorescence intensity, the highest values (11.84 × 10(7)cells/ml) of neutral lipids and total lipids (22.28%) were recorded at optimum salinity levels. The present study suggests that a high biomass and lipid accumulation of Dunaliella salina SA 134 could be obtained at the 2 M NaCl level.

  8. Criterion 2: Maintenance of productive capacity of forest ecosystems

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    People rely on forests, directly and indirectly, for a wide range of goods and services. Measures of forest productive capacity are indicators of the ability of forests to sustainably supply goods and services over time. An ongoing emphasis on maintaining productive capacity of forests can help ensure that utilization of forest resources does not impair long term...

  9. Soil carbon changes for bioenergy crops.

    SciTech Connect

    Andress, D.

    2004-04-22

    Bioenergy crops, which displace fossil fuels when used to produce ethanol, biobased products, and/or electricity, have the potential to further reduce atmospheric carbon levels by building up soil carbon levels, especially when planted on lands where these levels have been reduced by intensive tillage. The purpose of this study is to improve the characterization of the soil carbon (C) sequestration for bioenergy crops (switchgrass, poplars, and willows) in the Greenhouse gases, Regulated Emissions, and Energy Use in Transportation (GREET) model (Wang 1999) by using the latest results reported in the literature and by Oak Ridge National Laboratory (ORNL). Because soil carbon sequestration for bioenergy crops can play a significant role in reducing greenhouse gas (GHG) emissions for cellulosic ethanol, it is important to periodically update the estimates of soil carbon sequestration from bioenergy crops as new and better data become available. We used the three-step process described below to conduct our study.

  10. [Preface for special issue on bioenergy (2015)].

    PubMed

    Liu, Dehua; Li, Changzhu

    2015-10-01

    Research and industrial application of bioenergy have developed quickly with the systematic and multifocal trends in recent years. The 4th International Conference on Biomass Energy Technologies-8th World Bioenergy Symposium (ICBT-WBS 2014) and Joint Biomass Energy Symposium of Chinese Renewable Energy Society (CRES) were held in Changsha, China, 17-19 October, 2014, with American Institute of Chemical Engineers (AIChE), Biomass Energy Innovation Alliance, European Biomass Industry Association, AIChE and United Nations Development Programme (UNDP). This special issue on bioenergy is based on selected excellent papers from the submissions, together with free submissions. The special issue consists of reviews and original papers, mainly involving the aspects closely related to the bioenergy and related fields, including resource analyses, pretreatment, fuel/chemicals production, byproduct disposal and strategy investigation.

  11. Industrial production, capacity utilization, and electric power tape. Data file

    SciTech Connect

    Not Available

    1990-01-01

    The industrial production index is a measure of the physical output of the nation's factories, mines, and electric and gas utilities expressed as a percentage of production in a base period, currently 1987. Capacity indexes, based on the Federal Reserve's industrial production indexes, are estimated for total industry, which covers manufacturing, mining, and utilities industries. Both the capacity and output indexes are expressed as a percentage of 1987 output. Utilization rates are then derived by dividing the capacity index into the associated production indexes.

  12. A bioenergy feedstock/vegetable double-cropping system

    USDA-ARS?s Scientific Manuscript database

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  13. Creating dedicated bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    Bioenergy is one of the current mechanisms of producing renewable energy to reduce our use of nonrenewable fossil fuels and to reduce carbon emissions into the atmosphere. Humans have been using bioenergy since we first learned to create and control fire - burning manure, peat, and wood to cook food...

  14. Enthalphyand Heat Capacity of Several Candy Products,

    DTIC Science & Technology

    They are three types of chocolate : ’Extra with Milk,’ ’Sport,’ and ’Soy Bean’ without ground nuts and sugar. For a caloric investigation of the candy products an adiabatic calorimeter was used.

  15. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits

    PubMed Central

    2012-01-01

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities. PMID:23122416

  16. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits.

    PubMed

    Feltus, Frank Alex; Vandenbrink, Joshua P

    2012-11-02

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities.

  17. Investment risk in bioenergy crops

    SciTech Connect

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; Sanford, Gregg; Thelen, Kurt D.

    2015-11-18

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn (Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk into three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.

  18. Investment risk in bioenergy crops

    DOE PAGES

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; ...

    2015-11-18

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn (Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk into threemore » components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  19. Dietary fiber and antioxidant capacity in Fucus vesiculosus products.

    PubMed

    Díaz-Rubio, M Elena; Pérez-Jiménez, Jara; Saura-Calixto, Fulgencio

    2009-01-01

    Several nutraceutical products have been developed from Fucus vesiculosus, a brown edible seaweed, rich in dietary fiber and polyphenolic antioxidants (phlorotannins). The aim of this work was to compare the antioxidant capacity and polysaccharide composition of raw Fucus with those of some common commercial nutraceuticals. All tested products contained a high percentage of dietary fiber (45-59%), raw Fucus powder being the sample with the highest content. Also, raw Fucus powder exhibited significantly higher antioxidant capacity (determined by FRAP, ABTS and ORAC assays) than the commercial fucoidans and commercial antioxidant extracts. Polyphenols (phlorotannins) seem to be the main contributors to Fucus' antioxidant capacity in both raw powder and commercial fucoidans.

  20. Willow bioenergy plantation research in the Northeast

    SciTech Connect

    White, E.H.; Abrahamson, L.P.; Kopp, R.F.; Nowak, C.A.

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are now being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.

  1. Bioenergy systems report: The AID (Agency for International Development) approach. Using agricultural and forestry wastes for the production of energy in support of rural development

    SciTech Connect

    Not Available

    1989-04-01

    The Biomass Energy Systems and Technology project (BEST) seeks to integrate natural resources, private sector expertise, and financial support in order to convert biomass into marketable energy products at existing agro-processing facilities. This report documents BEST's approach to biomass promotion and includes sections on: the rationale for the project's commodity focus (sugar cane, rice, and wood); the relevant U.S. biomass experience with rice, cane, and wood residues, etc., which BEST draws upon; A.I.D.'s experience in the field application of rice, wood, and cane residue bioenergy systems; economic analyses of biomass systems (using examples from Indonesia and Costa Rica); research initiatives to develop off-season fuels for sugar mills, advanced biomass conversion systems, and energy efficiency in sugar factories; and the environmental aspects of biomass (including its ability to be used without increasing global warming).

  2. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  3. NPR (New Production Reactor) capacity cost evaluation

    SciTech Connect

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  4. Development of sustainable, native grass-based bioenergy production systems in the prairie region of Minnesota: Biomass production and plant community response to fertilizer and harvest treatments

    USDA-ARS?s Scientific Manuscript database

    Native perennial plants are emerging as an alternative, low-carbon, bioenergy feedstock. Land restored from crop monocultures to diverse, native plantings has the potential to provide a host of ecological services, as well as farm income. However, best management practices for maintaining a diverse,...

  5. Development Of Sustainable Biobased Products And Bioenergy In Cooperation With The Midwest Consortium For Sustainable Biobased Products And Energy

    SciTech Connect

    Michael Ladisch; Randy Woodson

    2009-03-18

    Collaborative efforts of Midwest Consortium have been put forth to add value to distiller's grains by further processing them into fermentable sugars, ethanol, and a protein rich co-product consistent with a pathway to a biorenewables industry (Schell et al, 2008). These studies were recently published in the enclosed special edition (Volume 99, Issue 12) of Bioresource Technology journal. Part of them have demonstrated the utilization of distillers grains as additional feedstock for increased ethanol production in the current dry grind process (Kim et al., 2008a, b; Dien et al.,2008, Ladisch et al., 2008a, b). Results showed that both liquid hot water (LHW) pretreatment and ammonia fiber expansion (AFEX) were effective for enhancing digestibility of distiller's grains. Enzymatic digestion of distiller's grains resulted in more than 90% glucose yield under standard assay conditions, although the yield tends to drop as the concentration of dry solids increases. Simulated process mass balances estimated that hydrolysis and fermentation of distillers grains can increase the ethanol yield by 14% in the current dry milling process (Kim et al., 2008c). Resulting co-products from the modified process are richer in protein and oil contents than conventional distiller's grains, as determined both experimentally and computationally. Other research topics in the special edition include water solubilization of DDGS by transesterification reaction with phosphite esters (Oshel el al., 2008) to improve reactivity of the DDGS to enzymes, hydrolysis of soluble oligomers derived from DDGS using functionalized mesoporous solid catalysts (Bootsma et al., 2008), and ABE (acetone, butanol, ethanol) production from DDGS by solventogenic Clostridia (Ezeji and Blaschek, 2008). Economic analysis of a modified dry milling process, where the fiber and residual starch is extracted and fermented to produce more ethanol from the distillers grains while producing highly concentrated protein co-product

  6. The Endurance Bioenergy Reactor

    SciTech Connect

    Laible, Philip

    2012-01-01

    Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor—a device that contains bacteria that can convert energy from the sun into fuel molecules.

  7. The productive cellulase binding capacity of cellulosic substrates.

    PubMed

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Bioenergy as a Mitigation Measure

    NASA Astrophysics Data System (ADS)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  9. Indicators to support environmental sustainability of bioenergy systems

    SciTech Connect

    McBride, Allen; Dale, Virginia H; Baskaran, Latha Malar; Downing, Mark; Eaton, Laurence M; Efroymson, Rebecca Ann; Garten Jr, Charles T; Kline, Keith L; Jager, Yetta; Mulholland, Patrick J; Parish, Esther S; Schweizer, Peter E; Storey, John Morse

    2011-01-01

    Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems.

  10. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2004-07-28

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  11. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  12. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  13. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2005-01-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  14. It Systems Supporting the Management of Production Capacity

    NASA Astrophysics Data System (ADS)

    Milewska, Elżbieta

    2017-03-01

    The paper presents the problem of manufacturing process flexibility in view of a company's material and information flow stream management. The author of the article has described the functions of a production process control system and presented the characteristics of production capacity intensive and extensive reserves. The MRP II/ERP, MES and APS class IT tools supporting the process of production planning, organization and control have also been discussed.

  15. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    SciTech Connect

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; Weston, David; Cottingham, Robert; Hartwell, James; Davis, Sarah C.; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul E.; Stewart, J. Ryan; Guo, Hao -Bo; Nair, Sujithkumar S.; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W. M.; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A.; Petereit, Juli; Casey, Erin; Hettich, Robert L.; Ceusters, John; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Reyes-Garcia, Casandra; Andrade, Jose Luis; Freschi, Luciano; Beltran, Juan D.; Dever, Louisa V.; Boxall, Susanna F.; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F.; Aguilar, Cristobal N.; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A.M.

    2015-07-07

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.

  16. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world.

    PubMed

    Yang, Xiaohan; Cushman, John C; Borland, Anne M; Edwards, Erika J; Wullschleger, Stan D; Tuskan, Gerald A; Owen, Nick A; Griffiths, Howard; Smith, J Andrew C; De Paoli, Henrique C; Weston, David J; Cottingham, Robert; Hartwell, James; Davis, Sarah C; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul; Stewart, J Ryan; Guo, Hao-Bo; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W M; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A; Petereit, Juli; Nair, Sujithkumar S; Casey, Erin; Hettich, Robert L; Ceusters, Johan; Ranjan, Priya; Palla, Kaitlin J; Yin, Hengfu; Reyes-García, Casandra; Andrade, José Luis; Freschi, Luciano; Beltrán, Juan D; Dever, Louisa V; Boxall, Susanna F; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F; Aguilar, Cristobal N; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A M

    2015-08-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.

  17. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    DOE PAGES

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; ...

    2015-07-07

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAMmore » crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.« less

  18. Sustainable Forest Bioenergy Initiative

    SciTech Connect

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the state’s Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nation’s first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the state’s RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the state’s carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact

  19. How can land-use modelling tools inform bioenergy policies?

    PubMed

    Davis, Sarah C; House, Joanna I; Diaz-Chavez, Rocio A; Molnar, Andras; Valin, Hugo; Delucia, Evan H

    2011-04-06

    Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished.

  20. How can land-use modelling tools inform bioenergy policies?

    PubMed Central

    Davis, Sarah C.; House, Joanna I.; Diaz-Chavez, Rocio A.; Molnar, Andras; Valin, Hugo; DeLucia, Evan H.

    2011-01-01

    Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID

  1. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2003-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  2. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2002-07-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  3. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2002-11-01

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  4. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.

    PubMed

    Dale, Virginia H; Kline, Keith L; Wright, Lynn L; Perlack, Robert D; Downing, Mark; Graham, Robin L

    2011-06-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  5. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Wright, Lynn L; Perlack, Robert D; Downing, Mark; Graham, Robin Lambert

    2011-01-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  6. The water footprint of bioenergy

    PubMed Central

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Y.; van der Meer, Theo H.

    2009-01-01

    All energy scenarios show a shift toward an increased percentage of renewable energy sources, including biomass. This study gives an overview of water footprints (WFs) of bioenergy from 12 crops that currently contribute the most to global agricultural production: barley, cassava, maize, potato, rapeseed, rice, rye, sorghum, soybean, sugar beet, sugar cane, and wheat. In addition, this study includes jatropha, a suitable energy crop. Since climate and production circumstances differ among regions, calculations have been performed by country. The WF of bioelectricity is smaller than that of biofuels because it is more efficient to use total biomass (e.g., for electricity or heat) than a fraction of the crop (its sugar, starch, or oil content) for biofuel. The WF of bioethanol appears to be smaller than that of biodiesel. For electricity, sugar beet, maize, and sugar cane are the most favorable crops [50 m3/gigajoule (GJ)]. Rapeseed and jatropha, typical energy crops, are disadvantageous (400 m3/GJ). For ethanol, sugar beet, and potato (60 and 100 m3/GJ) are the most advantageous, followed by sugar cane (110 m3/GJ); sorghum (400 m3/GJ) is the most unfavorable. For biodiesel, soybean and rapeseed show to be the most favorable WF (400 m3/GJ); jatropha has an adverse WF (600 m3/GJ). When expressed per L, the WF ranges from 1,400 to 20,000 L of water per L of biofuel. If a shift toward a greater contribution of bioenergy to energy supply takes place, the results of this study can be used to select the crops and countries that produce bioenergy in the most water-efficient way. PMID:19497862

  7. The water footprint of bioenergy.

    PubMed

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Y; van der Meer, Theo H

    2009-06-23

    All energy scenarios show a shift toward an increased percentage of renewable energy sources, including biomass. This study gives an overview of water footprints (WFs) of bioenergy from 12 crops that currently contribute the most to global agricultural production: barley, cassava, maize, potato, rapeseed, rice, rye, sorghum, soybean, sugar beet, sugar cane, and wheat. In addition, this study includes jatropha, a suitable energy crop. Since climate and production circumstances differ among regions, calculations have been performed by country. The WF of bioelectricity is smaller than that of biofuels because it is more efficient to use total biomass (e.g., for electricity or heat) than a fraction of the crop (its sugar, starch, or oil content) for biofuel. The WF of bioethanol appears to be smaller than that of biodiesel. For electricity, sugar beet, maize, and sugar cane are the most favorable crops [50 m(3)/gigajoule (GJ)]. Rapeseed and jatropha, typical energy crops, are disadvantageous (400 m(3)/GJ). For ethanol, sugar beet, and potato (60 and 100 m(3)/GJ) are the most advantageous, followed by sugar cane (110 m(3)/GJ); sorghum (400 m(3)/GJ) is the most unfavorable. For biodiesel, soybean and rapeseed show to be the most favorable WF (400 m(3)/GJ); jatropha has an adverse WF (600 m(3)/GJ). When expressed per L, the WF ranges from 1,400 to 20,000 L of water per L of biofuel. If a shift toward a greater contribution of bioenergy to energy supply takes place, the results of this study can be used to select the crops and countries that produce bioenergy in the most water-efficient way.

  8. Association of Bio-energy Processing-Induced Protein Molecular Structure Changes with CNCPS-Based Protein Degradation and Digestion of Co-products in Dairy Cows.

    PubMed

    Li, Xinxin; Zhang, Yonggen; Yu, Peiqiang

    2016-05-25

    The primary objective of this study was to develop a model to predict Cornell Net Carbohydrate Protein System (CNCPS) protein degradation and digestion based on protein molecular structure changes induced by bio-energy processing in different types of co-products (CoPR, CoPC, CoPS = co-products from bioprocessing of rapeseed, canola seed, and soybean, respectively). The results showed that the inherent structure changes induced by the processing had a close relationship with CNCPS predicted protein degradable, undegradable, and digestible contents. The amide I to II ratio and α-helix to β-sheet ratio could be used to predict total degradable protein (R(2) = 0.99, RSD = 0.84, P < 0.001). Total CNCPS intestinal digestible protein could be predicted by protein structure α-helix to β-sheet ratio (R(2) = 0.93, RSD = 0.33, P < 0.001). In conclusion, the processing-induced protein molecular structure changes were highly linked to protein nutritive value of the co-products and could be used as predictors for CNCPS protein degradation and digestion in dairy cattle.

  9. Criterion III: Maintenance of rangeland productive capacity [Chapter 4

    Treesearch

    G. R. Evans; R. A. Washmgton-Allen; R. D. Child; J. E. Mitchell; B. R. Bobowskl; R. V. Loper; B. H. Allen-Diaz; D. W. Thompson; G. R. Welling; T. B. Reuwsaat

    2010-01-01

    Maintenance of rangeland productive capacity is one of five criteria established by the Sustainable Rangelands Roundtable (SRR) to monitor and assess rangeland sustainable management. Within this criterion, six indicators were developed through the Delphi Process and the expert opinions of academicians, rangeland scientists, rangeland management agency personnel, non-...

  10. Insect pests and diseases in bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    Louisiana sugarcane, Saccharum spp., and other grassy crops (e.g., grain sorghum, Sorghum bicolor (L.) Moench, and hybrids involving sugarcane; sorghum; sudangrass, Sorghum bicolor ssp. drummondii (Nees ex Steud.) de Wet and Harlan, and others) with potential for bioenergy production are susceptible...

  11. Lignocellulosic Biofuels: Bioenergy Research at ARS

    USDA-ARS?s Scientific Manuscript database

    The growth and long-term viability of bioenergy production in the Nation are impeded by a number of technical and commercial barriers. Agricultural Research Service (ARS) addresses technical barriers and does so by leveraging its strengths and unique capabilities to (1) pursue technical barriers th...

  12. Global bioenergy resources

    NASA Astrophysics Data System (ADS)

    Slade, Raphael; Bauen, Ausilio; Gross, Robert

    2014-02-01

    Using biomass to provide energy services is a strategically important option for increasing the global uptake of renewable energy. Yet the practicalities of accelerating deployment are mired in controversy over the potential resource conflicts that might occur, particularly over land, water and biodiversity conservation. This calls into question whether policies to promote bioenergy are justified. Here we examine the assumptions on which global bioenergy resource estimates are predicated. We find that there is a disjunct between the evidence that global bioenergy studies can provide and policymakers' desire for estimates that can straightforwardly guide policy targets. We highlight the need for bottom-up assessments informed by empirical studies, experimentation and cross-disciplinary learning to better inform the policy debate.

  13. Developing Switchgrass as a Bioenergy Crop

    SciTech Connect

    Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

    1998-11-08

    The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the

  14. Estimation of gross primary production capacity from global satellite observations

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Thanyapraneedkul, Juthasinee; Furumi, Shinobu; Soyama, Noriko; Daigo, Motomasa

    2012-10-01

    To estimate gross primary production (GPP), the process of photosynthesis was considered as two separate phases: capacity and reduction. The reduction phase is influenced by environmental conditions such as soil moisture and weather conditions such as vapor pressure differences. For a particular leaf, photosynthetic capacity mainly depends on the amount of chlorophyll and the RuBisCO enzyme. The chlorophyll content can be estimated by the color of the leaf, and leaf color can be detected by optical sensors. We used the chlorophyll content of leaves to estimate the level of GPP. A previously developed framework for GPP capacity estimation employs a chlorophyll index. The index is based on the linear relationship between the chlorophyll content of a leaf and the maximum photosynthesis at PAR =2000 (μmolm -2s-1) on a light-response curve under low stress conditions. As a first step, this study examined the global distribution of the index and found that regions with high chlorophyll index values in winter corresponded to tropical rainforest areas. The seasonal changes in the chlorophyll index differed from those shown by the normalized difference vegetation index. Next, the capacity of GPP was estimated from the light-response curve using the index. Most regions exhibited a higher GPP capacity than that estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, except in areas of tropical rainforest, where the GPP capacity and the MODIS GPP estimates were almost identical.

  15. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT

    USDA-ARS?s Scientific Manuscript database

    Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeeds...

  16. Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production

    DOE PAGES

    Woodbury, Peter B.; Kemanian, Armen R.; Jacobson, Michael; ...

    2017-02-03

    Replacing row crops with perennial bioenergy crops may reduce nitrogen (N) loading to surface waters. We estimated the benefits, costs, and potential for replacing maize with switchgrass to meet required N loading reduction targets for the Chesapeake Bay (CB) of 26.9 Gg-1. After subtracting the potential reduction in N loading due to improved N fertilizer practices for maize, a further 22.8 Gg reduction is required. Replacing maize with fertilized switchgrass could reduce N loading to the CB by 18 kg ha-1 y-1, meeting 31% of the N reduction target. The break-even price of fertilized switchgrass to provide the same profitmore » as maize in the CB is 111 $Mg-1 (oven-dry basis throughout). Growers replacing maize with switchgrass could receive an ecosystem service payment of 148 ha-1 based on the price paid in Maryland for planting a rye cover crop. For our estimated average switchgrass yield of 9.9 Mg ha-1, and the greater N loading reduction of switchgrass compared to a cover crop, this equates to 24 dollars Mg-1. The annual cost of this ecosystem service payment to induce switchgrass planting is 13.29 dollars kg-1 of N. Using the POLYSYS model to account for competition among food, feed, and biomass markets, we found that with the ecosystem service payment for switchgrass of 25 $ Mg-1 added to a farm-gate price of 111 dollars Mg-1, 11% of the N loading reduction target could be met while also producing 1.3 Tg of switchgrass, potentially yielding 420 dam3 y-1 of ethanol.« less

  17. Incorporating bioenergy into sustainable landscape designs

    SciTech Connect

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.; Volk, Timothy A.; Smith, C. Tattersall; Stupak, Inge

    2015-12-30

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along the bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.

  18. Incorporating bioenergy into sustainable landscape designs

    DOE PAGES

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.; ...

    2015-12-30

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along themore » bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.« less

  19. DOE's bioenergy program sets optimistic goals

    SciTech Connect

    Not Available

    1981-01-01

    The Pacific Northwest Bioenergy Program aims to produce the Btu equivalent of 1000 megawatts of electricity from wood and solid waste fuels by 1985-87. The group aims to promote the commercial use of bioenergy from direct combustion of wood, industrial cogeneration, and gasification. Two strategies will be to support projects that demonstrate the economic viability of using wood fuel, and to identify and overcome barriers and constraints. Other activities will include providing technical assistance and information. Data gathered since the beginning of the Bioenergy Program 1979 have indicated the availability of a large biomass resource base (10 to 28 million dry tons of wood per year). Use of the biomass resource has been shown to be economically competitive (40-50 mills per kWh for new thermal capacity). Top priority of the program is to determine how to get the estimated 200 megawatts of unused installed capacity in existing mills on-line as soon as possible. The 16 industrial facilities identified in a Rocket Reserach report as having a capacity of 272 to 359 megawatts will also be prime targets for the increased cogeneration effort. Compared to other power options, cogeneration facilities can be on-line more quickly, are more economically competitive and are more environmentally acceptable. They also have lower capital costs, shorter construction time, and higher energy efficiency.

  20. Forest Carbon Accounting Considerations in US Bioenergy Policy

    Treesearch

    Reid A. Miner; Robert C. Abt; Jim L. Bowyer; Marilyn A. Buford; Robert W. Malmsheimer; Jay O' Laughlin; Elaine E. Oneil; Roger A. Sedjo; Kenneth E. Skog

    2014-01-01

    Four research-based insights are essential to understanding forest bioenergy and “carbon debts.” (1) As long as wood-producing land remains in forest, long-lived wood products and forest bioenergy reduce fossil fuel use and long-term carbon emission impacts. (2) Increased demand for wood can trigger investments that increase forest area and forest productivity and...

  1. Natural gas productive capacity for the lower 48 states 1985 through 1997

    SciTech Connect

    1996-12-01

    This publication presents information on wellhead productive capacity and a projection of gas production requirements. A history of natural gas production and productive capacity at the wellhead, along with a projection of the same, is illustrated.

  2. Bioenergy: Agricultural Crop Residues

    USDA-ARS?s Scientific Manuscript database

    The increasing cost of fossil fuels especially natural gas and petroleum as well as a desire to curtail greenhouse gas emissions are driving the expansion of bioenergy. Plant biomass (woody, grain and nongrain) is a potential energy source. Prior to the Industrial Revolution, plant biomass was a maj...

  3. Bioenergy applications for DDGS

    USDA-ARS?s Scientific Manuscript database

    Over the last several years there has been growing interest in producing bioenergy from many biomass feedstocks, including ethanol coproducts. In fact, many have asked about the possibility of burning DDGS. More specifically, some have proposed that ethanol plant efficiencies and energy balances c...

  4. Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: Establishment of electrochemically active bacteria community on anode.

    PubMed

    Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Li, Yihao; Yan, Denghua; Bai, Junhong

    2016-12-01

    The constructed wetland coupled with microbial fuel cell (CW-MFC) systems operated at different substrate concentration and pH influents were evaluated for bioelectricity generation, contaminant removal and microbial community structure. Performance of CW-MFC was evaluated at organic loading rate of 75.3gCODm(-3)d(-1) and pH gradients of (5.18±0.14, 7.31±0.13, and 8.75±0.12) using carbon fiber felt as electrodes. Peak power density was observed at slightly neutral influent condition. Compared with the open circuit CW-MFC, average COD and NO3-N removal efficiency in CW-MFC increased by 8.3% and 40.2% respectively under slightly neutral pH of influents. However, the removal efficiency and bioenergy production have been inhibited with acidic influents. The relative abundance of beta-Proteobacteria, nitrobacteria and denitrifying bacteria was significantly promoted in closed-circuit CW-MFC. Using of CW-MFC as a biochemical method for nitrate removal and bioelectricity generation under slightly neutral and alkaline influent conditions was a promising technology.

  5. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    PubMed Central

    Blank, Peter J.; Sample, David W.; Williams, Carol L.; Turner, Monica G.

    2014-01-01

    Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes. PMID:25299593

  6. Bird communities and biomass yields in potential bioenergy grasslands.

    PubMed

    Blank, Peter J; Sample, David W; Williams, Carol L; Turner, Monica G

    2014-01-01

    Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  7. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and

  8. Increased Capacity for Work and Productivity After Breast Reduction.

    PubMed

    Cabral, Isaias Vieira; Garcia, Edgard da Silva; Sobrinho, Rebecca Neponucena; Pinto, Natália Lana Larcher; Juliano, Yara; Veiga-Filho, Joel; Ferreira, Lydia Masako; Veiga, Daniela Francescato

    2017-01-01

    Breast hypertrophy is a prevalent condition among women worldwide, which can affect different aspects of their quality of life. The physical and emotional impact of breast hypertrophy may harm daily activities, including work. To assess the impact of reduction mammaplasty on the ability to work and productivity of women with breast hypertrophy. A total of 60 patients with breast hypertrophy, already scheduled for breast reduction, aged 18 to 60 years and who had formal or autonomous employment were prospectively enrolled. The Brazilian versions of two validated tools, Work Productivity and Activity Impairment - General Health (WPAI-GH) and Work Limitations Questionnaire (WLQ) were self-administered at the preoperative evaluation and six months following surgery. The median age was 33 years, median body mass index was 24 kg/m(2), and the median total weight of resected breast tissue was 617.5 g. According to the Brazilian classification of occupation, most patients (53%) had technical, scientific, artistic and similar occupations. There was a significant improvement in work capacity and productivity six months after the reduction mammaplasty, denoted by a decrease in presenteeism, absenteeism, and WLQ Productivity Loss Score (Wilcoxon analysis of variance: P < .0001 for each of these domains). Reduction mammaplasty increases the work capacity and productivity of Brazilian women with breast hypertrophy. LEVEL OF EVIDENCE 4. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  9. GWPs and GTPs for forest bioenergy and products with global coverage at 0.5° x 0.5° spatial resolution

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Huijbrets, Mark; Kindermann, Georg; Bright, Ryan; Van Zelm, Rosalie; Van Der Velde, Marijn; Strømman, Anders

    2014-05-01

    The effects on climate of various greenhouse gas (GHG) emissions can be aggregated in common units through a variety of emission metrics. The Global Warming Potential (GWP), introduced by the IPCC in 1990, is based on the integrated radiative forcing of a pulse emission divided by an equivalent integration for the reference gas, usually CO2, at an arbitrary time horizon (TH). The Global Temperature change Potential (GTP) is the ratio between the temperature response to a GHG emission pulse at a certain point in time and the temperature response for a reference gas. Other metrics like the integrated GTP (iGTP), TEMP, and metrics embedding economic considerations or a dynamic, target-specific TH are used in the literature. Recent studies developed impulse response functions and emission metrics for CO2 emissions from biomass combustion or oxidation for applications in bioenergy and harvested wood products (HWP) analyses. As the resulting metrics depend on the resource turnover time and hence on site specific characteristics like the type of biomass species, local climate, site productivity and other factors, these metrics are today available only for a limited number of cases and selected locations. In this work, we provide spatially-explicit GWPs and GTPs for bioenergy and HWP sourced from renewable forests with a global coverage of forest areas at a resolution of 0.5 degrees x 0.5 degrees. The Global Forest Model (G4M) developed at IIASA is used to provide the mean annual increments (MAI), rotation periods and above ground carbon of the forests of the globe. G4M uses a dynamic Net Primary Production (NPP) model to simulate how growth rates are affected by changes in temperature, precipitation, radiation, and CO2 concentrations. NPP post harvest dynamics are then modeled using tree-specific functions combined with the grid-specific MAI. Heterotrophic respiration (Rh) is exogenously modeled with the YASSO model. NPP and Rh are then combined in a Net Ecosystem

  10. Bird communities in future bioenergy landscapes of the Upper Midwest

    PubMed Central

    Meehan, Timothy D.; Hurlbert, Allen H.; Gratton, Claudio

    2010-01-01

    Mandates for biofuel and renewable electricity are creating incentives for biomass production in agricultural landscapes of the Upper Midwest. Different bioenergy crops are expected to vary in their effects on biodiversity and ecosystem services. Here, we use data from the North American Breeding Bird Survey to forecast the impact of potential bioenergy crops on avian species richness and the number of bird species of conservation concern in Midwestern landscapes. Our analysis suggests that expanded production of annual bioenergy crops (e.g., corn and soybeans) on marginal land will lead to declines in avian richness between 7% and 65% across 20% of the region, and will make managing at-risk species more challenging. In contrast, replacement of annual with diverse perennial bioenergy crops (e.g., mixed grasses and forbs) is expected to bring increases in avian richness between 12% and 207% across 20% of the region, and possibly aid the recovery of several species of conservation concern. PMID:20921398

  11. Bird communities in future bioenergy landscapes of the Upper Midwest.

    PubMed

    Meehan, Timothy D; Hurlbert, Allen H; Gratton, Claudio

    2010-10-26

    Mandates for biofuel and renewable electricity are creating incentives for biomass production in agricultural landscapes of the Upper Midwest. Different bioenergy crops are expected to vary in their effects on biodiversity and ecosystem services. Here, we use data from the North American Breeding Bird Survey to forecast the impact of potential bioenergy crops on avian species richness and the number of bird species of conservation concern in Midwestern landscapes. Our analysis suggests that expanded production of annual bioenergy crops (e.g., corn and soybeans) on marginal land will lead to declines in avian richness between 7% and 65% across 20% of the region, and will make managing at-risk species more challenging. In contrast, replacement of annual with diverse perennial bioenergy crops (e.g., mixed grasses and forbs) is expected to bring increases in avian richness between 12% and 207% across 20% of the region, and possibly aid the recovery of several species of conservation concern.

  12. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  13. Influence of roundabout capacity enhancement on emission production

    NASA Astrophysics Data System (ADS)

    Kocianova, Andrea; Drliciak, Marek; Pitlova, Eva

    2017-09-01

    Secondary effects of intersections insufficient capacity in urban areas are negative impacts on environment out of acceleration and deceleration of vehicles moving in long queues. The positive influence of increased intersection performance to reduce delays and queues, as well as negative impacts on the atmosphere is presented in this paper. The case study includes two single-lane roundabouts located close to each other in Žilina. Both roundabouts do not comply with the current traffic loads. This results in long queues and delays lasting not just during the peak hours. The solution to this problem is a new type of roundabout – turbo-roundabout. Capacity characteristics of both the current and new state are determined by microsimulation using PTV Vissim software. Obtained main characteristics of traffic flows are used as inputs to establish emission productions of NOx, CO and HC at the roundabout entries. The paper shows that proposed basic turbo-roundabout provides significant higher capacity performance compared with current state. Waiting times and queue lengths decrease about ten times. Due to this reduction, emission productions decrease about 50-60%.

  14. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    NASA Astrophysics Data System (ADS)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  15. Comparison of bee products based on assays of antioxidant capacities

    PubMed Central

    Nakajima, Yoshimi; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Mishima, Satoshi; Hara, Hideaki

    2009-01-01

    Background Bee products (including propolis, royal jelly, and bee pollen) are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP), its main constituents, water-soluble royal jelly (RJ), and an ethanol extract of bee pollen. Methods The hydrogen peroxide (H2O2)-, superoxide anion (O2·-)-, and hydroxyl radical (HO·)- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) or aminophenyl fluorescein (APF). Results The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA) had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC) or vitamin C. Conclusion On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects. PMID:19243635

  16. Alluvial diamond resource potential and production capacity assessment of Guinea

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Van Bockstael, Mark; Diaby, Mamadou; Cissé, Kabinet; Diallo, Thierno Amadou; Sano, Mahmoud

    2012-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that export shipments of rough diamonds were free of conflict concerns. Outcomes of the meeting were formally supported later in December of 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. The goal of this study was to estimate the alluvial diamond resource endowment and the current production capacity of the alluvial diamond mining sector of Guinea. A modified volume and grade methodology was used to estimate the remaining diamond reserves within Guinea's diamondiferous regions, while the diamond-production capacity of these zones was estimated by inputting the number of artisanal miners, the number of days artisans work per year, and the average grade of the deposits into a formulaic expression. Guinea's resource potential was estimated to be approximately 40 million carats, while the production capacity was estimated to lie within a range of 480,000 to 720,000 carats per year. While preliminary results have been produced by integrating historical documents, five fieldwork campaigns, and remote sensing and GIS analysis, significant data gaps remain. The artisanal mining sector is dynamic and is affected by a variety of internal and external factors. Estimates of the number of artisans and deposit variables, such as grade, vary from site to site and from zone to zone. This report has been developed on the basis of the most detailed information available at this time. However, continued fieldwork and evaluation of artisanally mined deposits would increase the accuracy of the results.

  17. Hydrological and sedimentation implications of landscape changes in a Himalayan catchment due to bioenergy cropping

    NASA Astrophysics Data System (ADS)

    Remesan, Renji; Holman, Ian; Janes, Victoria

    2015-04-01

    There is a global effort to focus on the development of bioenergy and energy cropping, due to the generally increasing demand for crude oil, high oil price volatility and climate change mitigation challenges. Second generation energy cropping is expected to increase greatly in India as the Government of India has recently approved a national policy of 20 % biofuel blending by 2017; furthermore, the country's biomass based power generation potential is estimated as around ~24GW and large investments are expected in coming years to increase installed capacity. In this study, we have modelled the environmental influences (e.g.: hydrology and sediment) of scenarios of increased biodiesel cropping (Jatropha curcas) using the Soil and Water Assessment Tool (SWAT) in a northern Indian river basin. SWAT has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream flow modelling. The model evaluation statistics for daily river flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). The study has applied two land use change scenarios of (1) increased bioenergy cropping in marginal (grazing) lands in the lower and middle regions of catchment (2) increased bioenergy cropping in low yielding areas of row crops in the lower and middle regions of the catchment. The presentation will describe the improved understanding of the hydrological, erosion and sediment delivery and food production impacts arising from the introduction of a new cropping variety to a marginal area; and illustrate the potential prospects of bioenergy production in Himalayan valleys.

  18. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  19. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  20. Bioenergy crop models: Descriptions, data requirements and future challenges

    SciTech Connect

    Nair, S. Surendran; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando; Izaurralde, Dr. R. Cesar; Post, Wilfred M; Dietze, Michael; Lynd, L.; Wullschleger, Stan D

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  1. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, S. E.; Shurpali, N. J.; Peltola, O.; Mammarella, I.; Hyvönen, N.; Maljanen, M.; Räty, M.; Virkajärvi, P.; Martikainen, P. J.

    2015-10-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinaceae L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured during three years using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the studied period, cumulative NEE was -575 g C m-2. When compared to the published data for RCG on an organic soil, the cultivation of this crop on a mineral soil had higher capacity to take up CO2 from the atmosphere.

  2. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect

    Yin, Hengfu; Chen, Rick; Yang, Jun; Weston, David; Chen, Jay; Muchero, Wellington; Ye, Ning; Tschaplinski, Timothy J; Wullschleger, Stan D; Cheng, Zong-Ming; Tuskan, Gerald A; Yang, Xiaohan

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  3. Redefining Agricultural Residues as Bioenergy Feedstocks

    PubMed Central

    Caicedo, Marlon; Barros, Jaime; Ordás, Bernardo

    2016-01-01

    The use of plant biomass is a sustainable alternative to the reduction of CO2 emissions. Agricultural residues are interesting bioenergy feedstocks because they do not compete with food and add extra value to the crop, which might help to manage these residues in many regions. Breeding crops for dual production of food and bioenergy has been reported previously, but the ideal plant features are different when lignocellulosic residues are burnt for heat or electricity, or fermented for biofuel production. Stover moisture is one of the most important traits in the management of agricultural waste for bioenergy production which can be modified by genetic improvement. A delayed leaf senescence or the stay-green characteristic contributes to higher grain and biomass yield in standard, low nutrient, and drought-prone environments. In addition, the stay-green trait could be favorable for the development of dual purpose varieties because this trait could be associated with a reduction in biomass losses and lodging. On the other hand, the stay-green trait could be detrimental for the management of agricultural waste if it is associated with higher stover moisture at harvest, although this hypothesis has been insufficiently tested. In this paper, a review of traits relevant to the development of dual purpose varieties is presented with particular emphasis on stover moisture and stay-green, because less attention has been paid to these important traits in the literature. The possibility of developing new varieties for combined production is discussed from a breeding perspective. PMID:28773750

  4. Joint BioEnergy Institute

    SciTech Connect

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  5. Joint BioEnergy Institute

    ScienceCinema

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2016-07-12

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  6. Communicating about bioenergy sustainability.

    PubMed

    Dale, Virginia H; Kline, Keith L; Perla, Donna; Lucier, Al

    2013-02-01

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which

  7. Communicating About Bioenergy Sustainability

    NASA Astrophysics Data System (ADS)

    Dale, Virginia H.; Kline, Keith L.; Perla, Donna; Lucier, Al

    2013-02-01

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which

  8. Results of the Finnish bioenergy research programme

    SciTech Connect

    Asplund, D.A.; Helynen, S.A.

    1995-11-01

    The aim of the Finnish Bioenergy Research Programme for the period 1993-1998 is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of biofuels. The main research areas are production methods of wood fuels, peat production, use of bioenergy and conversion of biomass to bio-oils. The total funding of the Bioenergy Research Programme is estimated to be 50 million USD which includes the public funding and also funding from the industrial sources. The total number of the projects in 1994 were 60, and 23 of them were at universities and research institutes, 20 industrial and 17 demonstration projects. The integrated harvesting methods, which would produce both wood raw material for pulp mills and wood fuel for energy production, have been further developed and partly demonstrated. The Massahake method, based on several different successive separation phases, has showed a debarking result for birch and bark content below 1% and economical calculations show that the method can be profitable. A full scale Massahake demonstration plant started during the spring 1995. Feeding of solid fuel into high pressure is an essential part of the pressurized power plant processes. Two new pressurized piston feeders, which could substitute lock-hopper systems and high inert gas consumption, have been designed and tested. IGCC (Integrated Gasification Combined Cycle)-concepts for biomass need require a low moisture content of the fuel. A new dryer concept based on a fixed bed dryer ha been developed and tested. In research on conversion technology, new results have been created related to pyrolysis oil and upgrading processes for different pulp industry raw material producing bio-oils. Economical calculations showed that pyrolysis oil could be competitive compared to light fuel oil.

  9. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  10. Using wastewater and high-rate algal ponds for nutrient removal and the production of bioenergy and biofuels.

    PubMed

    Batten, David; Beer, Tom; Freischmidt, George; Grant, Tim; Liffman, Kurt; Paterson, David; Priestley, Tony; Rye, Lucas; Threlfall, Greg

    2013-01-01

    This paper projects a positive outcome for large-scale algal biofuel and energy production when wastewater treatment is the primary goal. Such a view arises partly from a recent change in emphasis in wastewater treatment technology, from simply oxidising the organic matter in the waste (i.e. removing the biological oxygen demand) to removing the nutrients - specifically nitrogen and phosphorus - which are the root cause of eutrophication of inland waterways and coastal zones. A growing need for nutrient removal greatly improves the prospects for using new algal ponds in wastewater treatment, since microalgae are particularly efficient in capturing and removing such nutrients. Using a spreadsheet model, four scenarios combining algae biomass production with the making of biodiesel, biogas and other products were assessed for two of Australia's largest wastewater treatment plants. The results showed that super critical water reactors and anaerobic digesters could be attractive pathway options, the latter providing significant savings in greenhouse gas emissions. Combining anaerobic digestion with oil extraction and the internal economies derived from cheap land and recycling of water and nutrients on-site could allow algal oil to be produced for less than US$1 per litre.

  11. Improvement of Stand Jig Sealer and Its Increased Production Capacity

    NASA Astrophysics Data System (ADS)

    Soebandrija, K. E. N.; Astuti, S. W. D.

    2014-03-01

    This paper has the objective to prove that improvement of Stand Jig Sealer can lead to the cycle time target as part of Improvement efforts and its Productivity. Prior researches through prior journals both classics journal such as Quesnay (1766) and Solow (1957) and updated journal such as Reikard (2011) researches, are mentioned and elaborated. Precisely, the research is narrowed down and specified into automotive industry and eventually the software related of SPSS and Structural Equation Modeling ( SEM ). The analysis and its method are conducted through the calculation working time. The mentioned calculation are reinforced with the hypothesis test using SPSS Version 19 and involve parameters of production efficiency, productivity calculation, and the calculation of financial investments. The results obtained are augmented achievement of cycle time target ≤ 80 seconds posterior to improvement stand jig sealer. The result from calculation of SPSS-19 version comprise the following aspects: the one-sided hypothesis test is rejection of Ho:μ≥80 seconds, the correlation rs=0.84, regression y = 0.159+0.642x, validity R table = 0.4438, reliability value of Cronbach's alpha = 0.885>0.70, independence (Chi Square) Asymp. Sig=0.028<0.05, 95% efficiency, increase productivity 11%, financial analysis (NPV 2,340,596>0, PI 2.04>1, IRR 45.56%>i=12.68%, PP=1.86). The Mentioned calculation results support the hypothesis and ultimately align with the objective of this paper to prove that improvement of Stand Jig Sealer and its relation toward the cycle time target. Precisely, the improvement of production capacity of PT. Astra Daihatsu Motor.

  12. Modeling carbon dynamics and social drivers of bioenergy agroecosystems

    NASA Astrophysics Data System (ADS)

    Hunt, Natalie D.

    Meeting society's energy needs through bioenergy feedstock production presents a significant and urgent challenge, as it can aid in achieving energy independence goals and mitigating climate change. With federal biofuel production standards to be met within the next decade, and with no commercial scale production or markets currently in place, many questions regarding the sustainability and social feasibility of bioenergy still persist. Clarifying these uncertainties requires the incorporation of biogeochemical, biophysical, and socioeconomic modeling tools. Chapter 2 validated the biogeochemical cycling model AGRO-BGC by comparing model estimates with empirical observations from corn and perennial C4 grass systems across Wisconsin and Illinois. AGRO-BGC, in its first application to an annual cropping system, was found to be a robust model for simulating carbon dynamics of an annual cropping system. Chapter 3 investigated the long-term implications of bioenergy feedstock harvest on soil productivity and erosion in annual corn and perennial switchgrass agroecosystems using AGRO-BGC and the soil erosion model RUSLE2. Modeling environments included biophysical landscape characteristics and management practices of bioenergy feedstock production systems. This study found that intensifying aboveground residue harvest reduces soil productivity over time, and the magnitude of these losses is greater in corn than in switchgrass systems. Results of this study will aid in the design of sustainable bioenergy feedstock management practices. Chapter 4 provided evidence that combining biophysical crop canopy characteristics with satellite-derived vegetation indices offers suitable estimates of crop canopy phenology for corn and soybeans in Southwest Wisconsin farms. LANDSAT based vegetation indices, when combined with a light use efficiency model, provide yield estimates in agreement with farmer reports, providing an efficient and accurate means of estimating crop yields from

  13. The Biogeochemistry of Bioenergy Landscapes: Carbon, Nitrogen, and Water Considerations

    USDA-ARS?s Scientific Manuscript database

    The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well-known, increasingl...

  14. Biomethane production as an alternative bioenergy source from codigesters treating municipal sludge and organic fraction of municipal solid wastes.

    PubMed

    Ersahin, M Evren; Gomec, Cigdem Yangin; Dereli, R Kaan; Arikan, Osman; Ozturk, Izzet

    2011-01-01

    Energy recovery potential of a mesophilic co-digester treating OFMSW and primary sludge at an integrated biomethanization plant was investigated based on feasibility study results. Since landfilling is still the main solid waste disposal method in Turkey, land scarcity will become one of the most important obstacles. Restrictions for biodegradable waste disposal to sanitary landfills in EU Landfill Directive and uncontrolled long-term contamination with gas emissions and leachate necessitate alternative management strategies due to rapid increase in MSW production. Moreover, since energy contribution from renewable resources will be required more in the future with increasing oil prices and dwindling supplies of conventional energy sources, the significance of biogas as a renewable fuel has been increased in the last decade. Results indicated that almost 93% of annual total cost can be recovered if 100% renewable energy subsidy is implemented. Besides, considering the potential revenue when replacing transport fuels, about 26 heavy good vehicles or 549 cars may be powered per year by the biogas produced from the proposed biomethanization plant (PE = 100,000; X(PS) = 61 g TS/PE·day; X(SS-OFMSW) = 50 g TS/PE·day).

  15. Biomethane Production as an Alternative Bioenergy Source from Codigesters Treating Municipal Sludge and Organic Fraction of Municipal Solid Wastes

    PubMed Central

    Ersahin, M. Evren; Yangin Gomec, Cigdem; Dereli, R. Kaan; Arikan, Osman; Ozturk, Izzet

    2011-01-01

    Energy recovery potential of a mesophilic co-digester treating OFMSW and primary sludge at an integrated biomethanization plant was investigated based on feasibility study results. Since landfilling is still the main solid waste disposal method in Turkey, land scarcity will become one of the most important obstacles. Restrictions for biodegradable waste disposal to sanitary landfills in EU Landfill Directive and uncontrolled long-term contamination with gas emissions and leachate necessitate alternative management strategies due to rapid increase in MSW production. Moreover, since energy contribution from renewable resources will be required more in the future with increasing oil prices and dwindling supplies of conventional energy sources, the significance of biogas as a renewable fuel has been increased in the last decade. Results indicated that almost 93% of annual total cost can be recovered if 100% renewable energy subsidy is implemented. Besides, considering the potential revenue when replacing transport fuels, about 26 heavy good vehicles or 549 cars may be powered per year by the biogas produced from the proposed biomethanization plant (PE = 100,000; XPS = 61 g TS/PE·day; XSS-OFMSW = 50 g TS/PE·day). PMID:21274432

  16. Our Commitment to Bioenergy Sustainability

    SciTech Connect

    2015-06-18

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO’s Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a result, the area is critical to achieving BETO’s overall goals.

  17. Land-Use and Environmental Pressures Resulting from Current and Future Bioenergy Crop Expansion: A Review

    ERIC Educational Resources Information Center

    Miyake, Saori; Renouf, Marguerite; Peterson, Ann; McAlpine, Clive; Smith, Carl

    2012-01-01

    Recent energy and climate policies, particularly in the developed world, have increased demand for bioenergy as an alternative, which has led to both direct and indirect land-use changes and an array of environmental and socio-economic concerns. A comprehensive understanding of the land-use dynamics of bioenergy crop production is essential for…

  18. Land-Use and Environmental Pressures Resulting from Current and Future Bioenergy Crop Expansion: A Review

    ERIC Educational Resources Information Center

    Miyake, Saori; Renouf, Marguerite; Peterson, Ann; McAlpine, Clive; Smith, Carl

    2012-01-01

    Recent energy and climate policies, particularly in the developed world, have increased demand for bioenergy as an alternative, which has led to both direct and indirect land-use changes and an array of environmental and socio-economic concerns. A comprehensive understanding of the land-use dynamics of bioenergy crop production is essential for…

  19. Multi-utilization of swine manure as a bioenergy feedstock: Carbonization and combustion

    USDA-ARS?s Scientific Manuscript database

    The use of animal manure and other organic-based waste products as bioenergy feedstocks is gaining interest for waste-to-bioenergy conversion processes. While thermochemical conversion of animal manure via combustion, pyrolysis, and gasification is becoming a new frontier of manure treatment; there ...

  20. IEA Bioenergy Countries' Report: Bioenergy policies and status of implementation

    SciTech Connect

    Bacovsky, Dina; Ludwiczek, Nikolaus; Pointner, Christian; Verma, Vijay Kumar

    2016-08-05

    This report was prepared from IEA statistical data, information from IRENA, and IEA Bioenergy Tasks’ country reports, combined with data provided by the IEA Bioenergy Executive Committee. All individual country reports were reviewed by the national delegates to the IEA Bioenergy Executive Committee, who have approved the content. In the first section of each country report, national renewable energy targets are presented (first table in each country report), and the main pieces of national legislation are discussed. In the second section of each country report the total primary energy supply (TPES) by resources and the contribution of bioenergy are presented. All data is taken from IEA statistics for the year 2014. Where 2014 data was not available, 2013 data was used. It is worth noting that data reported in national statistics can differ from the IEA data presented, as the reporting categories and definitions are different. In the third section of each country report, the research focus related to bioenergy is discussed. Relevant funding programs, major research institutes and projects are described. In the fourth section, recent major bioenergy developments are described. Finally, in the fifth section, links to sources of information are provided.

  1. Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)

    DOE Data Explorer

    The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNL’s capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

  2. Impact of bioenergy on regionalized nitrogen balances

    NASA Astrophysics Data System (ADS)

    Häußermann, Uwe; Klement, Laura; Bach, Martin

    2017-04-01

    Results of regionalized and overall net-N-balances are used to fulfil different reporting obligations, as well as input data for nitrate leaching modelling (Bach et al. 2014). For Germany, these regionalized net-N-balances are calculated for 402 administrative units on the NUTS-III-level (Landkreise and kreisfreie Städte in Germany), 16 administrative units on the NUTS-I-level (Bundesländer in Germany) and the whole country for every year from 1995 to 2015. The so far existing net-N-balancing method includes nitrogen inputs and outputs of crop production and animal husbandry, however, not the utilization of crops and farmyard manure for energy production (Bach et al. 2014). Due to the introduction of guaranteed feed in tariffs for electricity production from biomass by the German renewable energy law in 2000 and the introduction of more favourable conditions for electricity production from biogas in 2004 (EEG 2000, EEG 2004) in the frame of the German policy of energy transition towards renewable energies („Energiewende"), the electric capacity of biogas plants had a steep increase in the years afterwards, the installed electric capacity increased from 149 MW in 2004 to 5080 MW in 2015 (BMWi and AGEE Stat 2016). The cropping area for the production of energy cops for biogas production increased as well from 0.4 Mio ha in 2007 to 1.393 Mio ha in 2015 (Statista 2017). We introduced a method to calculate the nitrogen input via energy crops, farmyard manure and organic waste, output via biogas digestates and gaseous nitrogen losses via NH3, N2O, NOx and N2 during the anaerobic digestion, digestate storage and spreading on the field, the emission factors for these nitrogen species are obtained from the report on methods and data for the agricultural part of the German national greenhouse gas inventory and informative inventory report (Haenel et al. 2016). To obtain highly resolved information on the distribution and capacity of biogas plants on NUTS-III-level, we

  3. Isobutanol production from bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    Isobutanol has particularly received strong attention due to its attributes as a potential fuel, such as relatively high energy content, diminished flammability and hygroscopicity, high octane value, and compatibility with gasoline. Whereas isobutanol is produced industrially via carbonylation (inc...

  4. MODELING WORLD BIOENERGY CROP POTENTIAL

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kensuke; Hanasaki, Naota; Kanae, Shinjiro

    Bioenergy is regarded as clean energy due to its characteristics and expected to be a new support of world energy de¬mand, but there are few integrated assessments of the potential of bioenergy considering sustainable land use. We esti¬mated the global bioenergy potential with an integrated global water resources model, the H08. It can simulate the crop yields on global-scale at a spatial resolution of 0.50.5. Seven major crops in the world were considered; namely, maize, sugar beet, sugar cane, soybean, rapeseed, rice, and wheat, of which the first 5 are commonly used to produce biofuel now. Three different land-cover types were chosen as potential area for cultivation of biofuel-producing crop: fallow land, grassland, and portion of forests (excluding areas sensitive for biodiversity such as frontier forest). We attempted to estimate the maximum global bioenergy potential and it was estimated to be 1120EJ. Bioenergy potential depends on land-use limitations for the protection of bio-diversity and security of food. In another condition which assumed more land-use limitations, bioenergy potential was estimated to be 70-233EJ.

  5. Determination of optimal lot size and production rate for multi-production channels with limited capacity

    NASA Astrophysics Data System (ADS)

    Huang, Yeu-Shiang; Wang, Ruei-Pei; Ho, Jyh-Wen

    2015-07-01

    Due to the constantly changing business environment, producers often have to deal with customers by adopting different procurement policies. That is, manufacturers confront not only predictable and regular orders, but also unpredictable and irregular orders. In this study, from the perspective of upstream manufacturers, both regular and irregular orders are considered in coping with the situation in which an uncertain demand is faced by the manufacturer, and a capacity confirming mechanism is used to examine such demand. If the demand is less than or equal to the capacity of the ordinary production channel, the general supply channel is utilised to fully account for the manufacturing process, but if the demand is greater than the capacity of the ordinary production channel, the contingency production channel would be activated along with the ordinary channel to satisfy the upcoming high demand. Besides, the reproductive property of the probability distribution is employed to represent the order quantity of the two types of demand. Accordingly, the optimal production rates and lot sizes for both channels are derived to provide managers with insights for further production planning.

  6. DEVELOPMENT OF GENOMIC AND GENETIC TOOLS FOR FOXTAIL MILLET, AND USE OF THESE TOOLS IN THE IMPROVEMENT OF BIOMASS PRODUCTION FOR BIOENERGY CROPS

    SciTech Connect

    Chen, Xinlu; Zale, Janice; Chen, Feng

    2013-01-22

    Foxtail millet (Setaria italica L.) is a warm-season, C4 annual crop commonly grown for grain and forage worldwide. It has a relatively short generation time, yet produces hundreds of seeds per inflorescence. The crop is inbred and it has a small-size genome (~500 Mb). These features make foxtail millet an attractive grass model, especially for bioenergy crops. While a number of genomic tools have been established for foxtail millet, including a fully sequenced genome and molecular markers, the objectives of this project were to develop a tissue culture system, determine the best explant(s) for tissue culture, optimize transient gene expression, and establish a stable transformation system for foxtail millet cultivar Yugu1. In optimizing a tissue culture medium for the induction of calli and somatic embryos from immature inflorescences and mature seed explants, Murashige and Skoog medium containing 2.5 mg l-1 2,4-dichlorophenoxyacetic acid and 0.6 mg l-1 6- benzylaminopurine was determined to be optimal for callus induction of foxtail millet. The efficiency of callus induction from explants of immature inflorescences was significantly higher at 76% compared to that of callus induction from mature seed explants at 68%. The calli induced from this medium were regenerated into plants at high frequency (~100%) using 0.2 mg l-1 kinetin in the regeneration media. For performing transient gene expression, immature embryos were first isolated from inflorescences. Transient expression of the GUS reporter gene in immature embryos was significantly increased after sonication, a vacuum treatment, centrifugation and the addition of L-cysteine and dithiothreitol, which led to the efficiency of transient expression at levels greater than 70% after Agrobacterium inoculation. Inoculation with Agrobacterium was also tested with germinated seeds. The radicals of germinated seeds were pierced with needles and dipped into Agrobacterium solution. This method achieved a 10% transient

  7. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed.

  8. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided.

  9. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque

    2017-10-01

    This review includes works published in the general scientific literature during 2016 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques are discussed along with policies and economics.

  10. A model for deploying switchgrass for bioenergy in an intensive agricultural landscape

    USDA-ARS?s Scientific Manuscript database

    Switchgrass bioenergy research has been conducted in Nebraska since 1990. In that time, significant progress has been made in switchgrass breeding and genetics, molecular genetics, establishment, fertility management, production economics, production energetics, harvest and storage management, ecos...

  11. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.

    PubMed

    Yang, William C; Lu, Jiuyi; Kwiatkowski, Chris; Yuan, Hang; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2014-01-01

    Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N-1 duration, reaching >40 × 10(6) vc/mL at the end of the perfusion N-1 stage. The cultures were subsequently split into high-seed (10 × 10(6) vc/mL) fed-batch production cultures. This strategy significantly shortened the culture duration. The high-seed fed-batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low-seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N-1 and high-seed fed-batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low-seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers.

  12. Worldwide gas processing: Capacities as of January 1, 1997, and average production

    SciTech Connect

    1997-06-02

    Tables are presented on the capacity for and average production of ethane, propane, isobutane, butane, liquid petroleum gases, natural gas liquids, and natural gasoline. Data are presented by country and by company within each country, state, or province. Another table presents data on sulfur production by company within each country, state, or province. Design capacity, production, desulfurization process, and sulfur source are listed.

  13. Neutron Technologies for Bioenergy Research

    SciTech Connect

    Langan, Paul

    2012-01-01

    Neutron scattering is a powerful technique that can be used to probe the structures and dynamics of complex systems. It can provide a fundamental understanding of the processes involved in the production of biofuels from lignocellulosic biomass. A variety of neutron scattering technologies are available to elucidate both the organization and deconstruction of this complex composite material and the associations and morphology of the component polymers and the enzymes acting on them, across multiple length scales ranging from Angstroms to micrometers and time scales from microseconds to picoseconds. Unlike most other experimental techniques, neutron scattering is uniquely sensitive to hydrogen (and its isotope deuterium), an atom abundantly present throughout biomass and a key effector in many biological, chemical, and industrial processes for producing biofuels. Sensitivity to hydrogen, the ability to replace hydrogen with deuterium to alter scattering levels, the fact that neutrons cause little or no direct radiation damage, and the ability of neutrons to exchange thermal energies with materials, provide neutron scattering technologies with unique capabilities for bioenergy research. Further, neutrons are highly penetrating, making it possible to employ sample environments that are not suitable for other techniques. The true power of neutron scattering is realized when it is combined with computer simulation and modeling and contrast variation techniques enabled through selective deuterium labeling.

  14. Biomass feedstock production systems: economic and environmental benefits

    Treesearch

    Mark D. Coleman; John A. Stanturf

    2006-01-01

    The time is ripe for expanding bioenergy production capacity and developing a bio-based economy. Modern society has created unprecedented demands for energy and chemical products that are predominately based on geologic sources. However, there is a growing consensus that constraints on the supply of petroleum and the negative environmental consequences of burning...

  15. The 2015 global production capacity of seasonal and pandemic influenza vaccine.

    PubMed

    McLean, Kenneth A; Goldin, Shoshanna; Nannei, Claudia; Sparrow, Erin; Torelli, Guido

    2016-10-26

    A global shortage and inequitable access to influenza vaccines has been cause for concern for developing countries who face dire consequences in the event of a pandemic. The Global Action Plan for Influenza Vaccines (GAP) was launched in 2006 to increase global capacity for influenza vaccine production to address these concerns. It is widely recognized that well-developed infrastructure to produce seasonal influenza vaccines leads to increased capacity to produce pandemic influenza vaccines. This article summarizes the results of a survey administered to 44 manufacturers to assess their production capacity for seasonal influenza and pandemic influenza vaccine production. When the GAP was launched in 2006, global production capacity for seasonal and pandemic vaccines was estimated to be 500million and 1.5billion doses respectively. Since 2006 there has been a significant increase in capacity, with the 2013 survey estimating global capacity at 1.5billion seasonal and 6.2billion pandemic doses. Results of the current survey showed that global seasonal influenza vaccine production capacity has decreased since 2013 from 1.504billion doses to 1.467billion doses. However, notwithstanding the overall global decrease in seasonal vaccine capacity there were notable positive changes in the distribution of production capacity with increases noted in South East Asia (SEAR) and the Western Pacific (WPR) regions, albeit on a small scale. Despite a decrease in seasonal capacity, there has been a global increase of pandemic influenza vaccine production capacity from 6.2 billion doses in 2013 to 6.4 billion doses in 2015. This growth can be attributed to a shift towards more quadrivalent vaccine production and also to increased use of adjuvants. Pandemic influenza vaccine production capacity is at its highest recorded levels however challenges remain in maintaining this capacity and in ensuring access in the event of a pandemic to underserved regions.

  16. [Reflection on developing bio-energy industry of large oil company].

    PubMed

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  17. ACMECS Bioenergy Network: Implementing a transnational science-based policy network on bioenergy

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor J.; Haruthaithanasan, Maliwan; Kraxner, Florian; Brenner, Anna

    2017-04-01

    Despite the currently low prices for fossil energy resulting from a number of geopolitical reasons, intergovernmental efforts are being made towards a transition to a sustainable bio-economy. The main reasons for this include climate change mitigation, decreasing dependencies fossil fuel imports and hence external market fluctuations, diversification of energy generation and feedstock production for industrial processes. Since 2012, the ACMECS bioenergy network initiative leads negotiations and organizes workshops to set up a regional bioenergy network in Indochina, with the aim to promote biomass and -energy markets, technology transfer, rural development and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO) Task Force "Sustainable Forest Bioenergy Network". In this paper, we highlight the achievements so far and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDP's). We found that traditional fuelwood is still the most important resource for generating thermal energy in the region, especially in rural settings, and it will remain an important resource even in 25 years. However, less fuelwood will be sourced from natural forests as compared to today. NBDP's have a focus on market development, technology transfer and funding possibilities of a regional bioenergy strategy, while the responses of the questionnaire favored more altruistic goals, i.e. sustainable resource management, environmental protection and climate change mitigation, generation of rural income and community involvement etc. This is surprising, since a sub-population of the (anonymous) questionnaire respondents was actually responsible drafting the NBDP's. We therefore suggest the following measures to ensure regulations that represent the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use

  18. Alluvial diamond resource potential and production capacity assessment of Mali

    USGS Publications Warehouse

    Chirico, Peter G.; Barthelemy, Francis; Kone, Fatiaga

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. Over 70 countries were included as members of the KPCS at the end of 2007. To prevent trade in "conflict diamonds" while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was (1) to assess the naturally occurring endowment of diamonds in Mali (potential resources) based on geological evidence, previous studies, and recent field data and (2) to assess the diamond-production capacity and measure the intensity of mining activity. Several possible methods can be used to estimate the potential diamond resource. However, because there is generally a lack of sufficient and consistent data recording all diamond mining in Mali and because time to conduct fieldwork and accessibility to the diamond mining areas are limited, four different methodologies were used: the cylindrical calculation of the primary kimberlitic deposits, the surface area methodology, the volume and grade approach, and the content per kilometer approach. Approximately 700,000 carats are estimated to be in the alluvial deposits of the Kenieba region, with 540,000 carats calculated to lie within the concentration grade deposits. Additionally, 580,000 carats are estimated to have

  19. DETERMINISTIC PRODUCTION PLANNING WITH CONCAVE COSTS AND CAPACITY CONSTRAINTS.

    DTIC Science & Technology

    INDUSTRIAL PRODUCTION , MANAGEMENT PLANNING AND CONTROL), (*PRODUCTION CONTROL, DYNAMIC PROGRAMMING), INVENTORY ANALYSIS, SCHEDULING, COST EFFECTIVENESS, STORAGE, MANPOWER, OPTIMIZATION, MATHEMATICAL MODELS, ALGORITHMS

  20. Capacity, production, and manufacturing of woodbased panels in North America

    Treesearch

    Henry Spelter

    1994-01-01

    This report is an informational report about four wood-based panel industries: particleboard, oriented strandboard, medium density fiberboard, and Southern Pine plywood. Items highlighted are trends in manufacturing and new plant costs, industry manufacturing capacity, and location. Recent data show the greatest amount of growth taking place in the oriented strandboard...

  1. Selection for uterine capacity improves lifetime productivity of sows

    USDA-ARS?s Scientific Manuscript database

    Selection for 11 generations for uterine capacity (UC) increased litter size in gilts by 1.6 more fully formed pigs at birth compared to an unselected control line (CO) despite averaging 1 less ova shed. Our objective was to quantify line-by-parity interactions and characterize litter performance tr...

  2. Bio-energy: A taxonomy of land use impacts

    NASA Astrophysics Data System (ADS)

    Parsons, V. K. B.

    1981-02-01

    Potential land use impacts are identified from each of the four major bio-energy technology classes: anaerobic digestion; fermentation; gasification; and direct combustion. Each technology class is discussed with respect to each of the five major land use categories in the US: production of food and fiber; energy, industry, and commerce; housing and community; transportation and recreation; and open space.

  3. The Impact of Water Scarcity on Food, Bioenergy and Deforestation

    NASA Astrophysics Data System (ADS)

    Winchester, N.; Ledvina, K.; Strzepek, K. M.; Reilly, J. M.

    2016-12-01

    We evaluate the impact of explicitly representing irrigated land and water scarcity in an economy-wide model on food prices, bioenergy production and deforestation both with and without a global carbon policy. The analysis develops supply functions of irrigable land from a water resource model resolved at 282 river basins and applies them within a global economy-wide model of energy and food production, land-use change and greenhouse gas emissions. The irrigable land supply curves are built on basin-level estimates of water availability, and the costs of improving irrigation efficiency and increasing water storage, and include other water requirements within each basin. The analysis reveals two key findings. First, explicitly representing irrigated land at has a small impact on food, bioenergy and deforestation outcomes. This is because this modification allows more flexibility in the expansion of crop land (i.e. irrigated and rainfed land can expand in different proportions) relative to when a single type of crop land is represented, which counters the effect of rising marginal costs for the expansion of irrigated land. Second, due to endogenous irrigation and storage responses, changes in water availability have small impacts on food prices, bioenergy production, land-use change and the overall economy, even with large scale ( 150 exajoules) bioenergy production.

  4. Wood to energy: using southern interface fuels for bioenergy

    Treesearch

    C. Staudhammer; L.A. Hermansen; D. Carter; Ed Macie

    2011-01-01

    This publications aims to increase awareness of potential uses for woody biomass in the southern wildland-urban interface (WUI) and to disseminate knowledge about putting bioenergy production systems in place, while addressing issues unique to WUI areas. Chapter topics include woody biomass sources in the wildland-urban interface; harvesting, preprocessing and delivery...

  5. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    NASA Astrophysics Data System (ADS)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional

  6. Global warming potential impact of bioenergy systems

    NASA Astrophysics Data System (ADS)

    Tonini, D.; Hamelin, L.; Wenzel, H.; Astrup, T.

    2012-10-01

    Reducing dependence on fossil fuels and mitigation of GHG emissions is a main focus in the energy strategy of many Countries. In the case of Demark, for instance, the long-term target of the energy policy is to reach 100% renewable energy system. This can be achieved by drastic reduction of the energy demand, optimization of production/distribution and substitution of fossil fuels with biomasses. However, a large increase in biomass consumption will finally induce conversion of arable and currently cultivated land into fields dedicated to energy crops production determining significant environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction.

  7. Natural gas productive capacity for the lower 48 States, 1980 through 1995

    SciTech Connect

    Not Available

    1994-07-14

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

  8. Control of Effective Productive Capacity with a Level of Total Production Inventory in a Business Fluctuation Period

    NASA Astrophysics Data System (ADS)

    Ishitani, Shigeki; Mitsumori, Sadamichi

    This paper analyzes a relation between level of total production inventory and effective production capacity in a production process, and proposes a method of controlling effective production capacity in a business fluctuations period. They are based on the property: “effective production capacity = capacity of production facilities - total changeover loss", where changeover loss is a decreasing function of level of total production inventory. Although the effective production capacity can be controlled by an increase or decrease of production facilities, its cost is too expensive. It must be done only in the case that an increase or decrease in demand is confirmed. Therefore, the effective production capacity must be controlled by the level of total inventory. In a business recovery or recession period, two kinds of production time have to be controlled. The first the production-time control for the increase or decrease in demand, and the second is that for an increase or decrease in the level of total inventory. Even if an increasing or decreasing rate in demand is constant, the value of the total control time decreases at first and then increases exponentially. This is the reason why inventory control is difficult in a business fluctuations period.

  9. Watershed-scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model

    DOE PAGES

    Cibin, Raj; Trybula, Elizabeth; Chaubey, Indrajeet; ...

    2016-01-08

    Cellulosic bioenergy feedstock such as perennial grasses and crop residues are expected to play a significant role in meeting US biofuel production targets. Here, we used an improved version of the Soil and Water Assessment Tool (SWAT) to forecast impacts on watershed hydrology and water quality by implementing an array of plausible land-use changes associated with commercial bioenergy crop production for two watersheds in the Midwest USA. Watershed-scale impacts were estimated for 13 bioenergy crop production scenarios, including: production of Miscanthus 9 giganteus and upland Shawnee switchgrass on highly erodible landscape positions, agricultural marginal land areas and pastures, removal ofmore » corn stover and combinations of these options. We also measured water quality as erosion and sediment loading; this was forecasted to improve compared to baseline when perennial grasses were used for bioenergy production, but not with stover removal scenarios. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet was reduced between 0 and 8% across these bioenergy crop production scenarios compared to baseline across the study watersheds. Our results indicate that bioenergy production scenarios that incorporate perennial grasses reduced the nonpoint source pollutant load at the watershed outlet compared to the baseline conditions (0–20% for nitrate-nitrogen and 3–56% for mineral phosphorus); but, the reduction rates were specific to site characteristics and management practices.« less

  10. Root biomass and soil carbon response to growing perennial grasses for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Dedicated bioenergy crops such as switchgrass (Panicum virgatum L.), miscanthus [Miscanthus x giganteus (Mxg)], indiangrass [Sorghastrum nutans (L.) Nash], and big bluestem (Andropogon gerardii Vitman) can provide cellulosic feedstock for biofuel production while maintaining or improving soil and en...

  11. Design and development of synthetic microbial platform cells for bioenergy.

    PubMed

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy.

  12. Design and development of synthetic microbial platform cells for bioenergy

    PubMed Central

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588

  13. Bioenergy crop models: Descriptions, data requirements and future challenges

    SciTech Connect

    Surendran Nair, Sujith; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando; Izaurralde, Roberto C.; Post, W. M.; Dietze, Michael; Lynd, Lee R.; Wullschleger, Stan D.

    2012-03-15

    Field studies that address the production of lignocellulosic biomass as a potential source of renewable energy are making available critical information for the development, validation, and use of bioenergy crop models. A literature survey revealed that 14 models have been developed and validated for herbaceous and woody bioenergy crops, and for Crassulacean acid metabolism (CAM) crops adapted to arid lands. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane as plant function types at regional scales (Agro-IBIS and LPJmL). A model of biomass production in CAM plants has been developed (EPI), but lacks the sophistication of the other models. Except for CAM plants, all the models include representations of leaf area dynamics, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few of the models are capable of simulating soil water, nutrient, and carbon cycle processes, making them especially useful for assessing environmental consequences (e.g., erosion and nutrient losses) associated with the field-scale deployment of bioenergy crops. Similar to other process-based models, simulations are challenged by computing and data management issues and an integrated framework for model testing and inter-comparison is needed. Considerable work remains concerning the development of models for unconventional bioenergy crops like CAM plants, generation and distribution of high-quality field data for model development and validation, and development of an integrated framework for efficient execution of large-scale simulations for use in planning regional to global sustainable bioenergy production systems.

  14. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, Saara E.; Shurpali, Narasinha J.; Peltola, Olli; Mammarella, Ivan; Hyvönen, Niina; Maljanen, Marja; Räty, Mari; Virkajärvi, Perttu; Martikainen, Pertti J.

    2016-03-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinacea L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured from July 2009 until the end of 2011 using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the study period from July 2009 until the end of 2011, cumulative NEE was -575 g C m-2. Carbon balance and its regulatory factors were compared to the published results of a comparison site on drained organic soil cultivated with RCG in the same climate. On this mineral soil site, the RCG had higher capacity to take up CO2 from the atmosphere than on the comparison site.

  15. Assessing the soil carbon, biomass production, and nitrous oxide emission impact of corn stover management for bioenergy feedstock production using DAYCENT

    USDA-ARS?s Scientific Manuscript database

    Harvesting crop residue needs to be managed such that agroecosystem health and productivity are protected. DAYCENT, a process-based modeling tool, may be suited to accommodate region-specific factors and provide regional predictions for a broad array of agroecosystem impacts associated with corn sto...

  16. Corn stalk as a bioenergy resource

    NASA Astrophysics Data System (ADS)

    Haney, Paul E., Jr.

    Waste corn stalk has the potential to help reduce the nation's dependence upon foreign sources of petroleum by becoming a major bioenergy resource. There are many sources of biomass that could also be utilized for this endeavor. It is estimated that over 100 million tons of agricultural waste are produced in the United States alone. This represents a significant source of energy. Through gasification, this waste could be used to generate power, fuels, and/or products. This dissertation shows that the gasification of corn stalk can produce char, heat, synthesis gases (CO and H2), and can also be used for work to dry moist biomass. Through the integration of drying, gasification, and carbon production, waste corn stalk can be used as a significant bioenergy resource. Novel concepts included in this dissertation include: (1) using corn stalk as a gasification fuel, (2) using corn stalk to generate activated carbon, (3) using activated carbon from corn stalk to adsorb organic pollutants, (4) using the gasification of corn stalk in a new process to dry moist biomass, (5) using the "partial" gasification of moist corn stalk in another new process to dry moist biomass in a single step. Each concept could be integrated with existing gasification technology to increase the efficient utilization of energy from biomass.

  17. Bioenergy Sustainability at the Regional Scale

    SciTech Connect

    Kline, Keith L; Dale, Virginia H; Mulholland, Patrick J; Lowrance, Richard; Robertson, G. Phillip

    2010-11-01

    To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.

  18. The global technical potential of bio-energy in 2050 considering sustainability constraints.

    PubMed

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-12-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows.

  19. The global technical potential of bio-energy in 2050 considering sustainability constraints

    PubMed Central

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-01-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets (‘technical potential’). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160–270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization (‘cascade utilization’) of biomass flows. PMID:24069093

  20. Greenhouse gas fluxes during growth of different bioenergy crops

    NASA Astrophysics Data System (ADS)

    Walter, K.; Don, A.; Flessa, H.

    2012-04-01

    Bioenergy crops are expected to contribute to greenhouse gas mitigation by substituting fossil fuels. However, during production, processing and transport of bioenergy crops greenhouse gas emissions are generated that have to be taken into account when evaluating the role of bioenergy for climate mitigation. Especially nitrous oxide (N2O) emissions during feedstock production determine the greenhouse gas balance of bioenergy due to its strong global warming potential. This fact has often been ignored due to insufficient data and knowledge on greenhouse gas emission from cropland soils under bioenergy production. Therefore, we started to investigate the greenhouse gas emissions of major bioenergy crops maize, oil seed rape, grass (grass-clover, without N-fertilizer) and short rotation coppice (SRC, poplar hybrid) at two sites in Central Germany (near Göttingen and in Thuringia). The nitrous oxide and methane (CH4) fluxes from these sites have been determined by weekly chamber measurements since May 2011. The N2O emissions from all fields were low and without extreme peaks during the first five months of measurement (222 to 687 g N2O-N ha-1 for 5 months). The rape field near Göttingen emitted less N2O than the SRC, probably because SRC was newly established in spring 2011 and the rape has not been fertilized during the measurement period (cumulative emission over 5 months: rape seed 366 ± 188 g N2O-N ha-1, grassland 497 ± 153 g N2O-N ha-1, SRC 687 ± 124 g N2O-N ha-1). The maize field in Thuringia emitted more N2O than the SRC due to emission peaks related to the fertilization of maize (cumulative emission over 5 months: maize 492 ± 140 g N2O-N ha-1, grasslands 253 ± 87 and 361 ± 135 g N2O-N ha-1, new SRC 222 ± 90 g N2O-N ha-1, 4 years old SRC 340 ± 264 g N2O-N ha-1). All sites showed a net uptake of atmospheric methane throughout the summer season (104 to 862 g CH4-C ha-1 for 5 months). However, net-exchange of CH4 is of little importance for the greenhouse

  1. NREL National Bioenergy Center Overview

    ScienceCinema

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2016-07-12

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  2. Switchgrass for forage and bioenergy

    USDA-ARS?s Scientific Manuscript database

    Switchgrass is a native warm-season grass that has been used for hay, forage, and conservation purposes for decades and switchgrass research in Nebraska has been ongoing since 1936. Recently, switchgrass has been identified as a model perennial grass for bioenergy in the Great Plains and Midwest. Si...

  3. NREL National Bioenergy Center Overview

    SciTech Connect

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  4. Bioenergy in a Multifunctional Landscape

    SciTech Connect

    Watts, Chad; Negri, Cristina; Ssegane, Herbert

    2015-10-23

    How can our landscapes be managed most effectively to produce crops for food, feed, and bioenergy, while also protecting our water resources by preventing the loss of nutrients from the soil? Dr. Cristina Negri and her team at the U.S. Department of Energy’s Argonne National Laboratory are tackling this question at an agricultural research site located in Fairbury, Illinois.

  5. NREL National Bioenergy Center Overview

    SciTech Connect

    2012-01-01

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  6. Bioenergy and Biodiversity: Key Lessons from the Pan American Region to be part of Special Issue on Biofuels in the Americas

    SciTech Connect

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camilia Ortolan F.; Sparovek, Gerd; Walter, Arnaldo Cesar de Silva; Venier, Lisa A.

    2015-01-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  7. Tweak, adapt, or transform: Policy scenarios in response to emerging bioenergy markets in the U.S

    Treesearch

    Ryan. C. Atwell; Lisa. A. Schulte; Lynne M. Westphal

    2011-01-01

    Emerging bioenergy markets portend both boon and bane for regions of intensive agricultural production worldwide. To understand and guide the effects of bioenergy markets on agricultural landscapes, communities, and economies, we engaged leaders in the Corn Belt state of Iowa in a participatory workshop and follow-up interviews to develop future policy scenarios....

  8. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition

    Treesearch

    Rose A. Graves; Scott M. Pearson; Monica G. Turner

    2016-01-01

    Rural landscapes face changing climate, shifting development pressure, and loss of agricultural land. Perennial bioenergy crops grown on existing agricultural land may provide an opportunity to conserve rural landscapes while addressing increased demand for biofuels. However, increased bioenergy production and changing land use raise concerns for tradeoffs...

  9. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT.

    PubMed

    Guo, Tian; Cibin, Raj; Chaubey, Indrajeet; Gitau, Margaret; Arnold, Jeffrey G; Srinivasan, Raghavan; Kiniry, James R; Engel, Bernard A

    2017-09-19

    Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeedstock systems. SWAT2012 with a new tile drainage routine and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, and nutrient losses under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. Simulated results from bioenergy crop scenarios were compared with those from the baseline. The results showed that simulated annual crop yields were similar to observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (3.74Mg/ha/yr) with Miscanthus production on highly erodible areas and marginal land (17.49Mg/ha/yr) provided the highest biofeedstock production (279,000Mg/yr). Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of bioenergy crops on highly erodible areas and marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment and nutrient losses under corn stover removal could be offset with the combination of other bioenergy crops. Potential areas for bioenergy crop production when meeting the criteria above were small (10.88km(2)), thus the ability to produce biomass and improve water quality was not substantial. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile

  10. Eddy covariance measurements of net C exchange in the CAM bioenergy crop, Agave tequiliana

    NASA Astrophysics Data System (ADS)

    Owen, Nick A.; Choncubhair, Órlaith Ní; Males, Jamie; del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-04-01

    Bioenergy crop cultivation may focus more on low grade and marginal lands in order to avoid competition with food production for land and water resources. However, in many regions, this would require improvements in plant water-use efficiency that are beyond the physiological capacity of most C3 and C4 bioenergy crop candidates. Crassulacean acid metabolism (CAM) plants, such as Agave tequiliana, can combine high above-ground productivity with as little as 20% of the water demand of C3 and C4 crops. This is achieved through temporal separation of carboxylase activities, with stomata opening at night to allow gas exchange and minimise transpirational losses. Previous studies have employed 'bottom-up' methodologies to investigate carbon (C) accumulation and productivity in Agave, by scaling leaf-level gas exchange and titratable acidity (TA) with leaf area index or maximum productivity. We used the eddy covariance (EC) technique to quantify ecosystem-scale gas exchange over an Agave plantation in Mexico ('top-down' approach). Measurements were made over 252 days, including the transition from wet to dry periods. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Net ecosystem exchange of CO2 displayed a CAM rhythm that alternated from a net C sink at night to a net C source during the day and partitioned canopy fluxes (gross C assimilation, FA,EC) showed a characteristic four-phase CO2 exchange pattern. The projected ecosystem C balance indicated that the site was a net sink of -333 ± 24 g C m-2 y-1, comprising cumulative soil respiration of 692 ± 7 g C m-2 y-1 and FA,EC of -1025 ± 25 g C m-2 y-1. EC-estimated biomass yield was 20.1 Mg ha-1 y-1. Average integrated daily FA,EC was -234 ± 5 mmol CO2 m-2 d-1 and persisted almost unchanged after 70 days of drought conditions. Our results suggest that the carbon acquisition strategy of drought avoidance employed by Agave

  11. Successful implementation of biochar carbon sequestration in European soils requires additional benefits and close collaboration with the bioenergy sector

    NASA Astrophysics Data System (ADS)

    Hauggaard-Nielsen, Henrik; Müller-Stöver, Dorette; Bruun, Esben W.; Petersen, Carsten T.

    2014-05-01

    Biochar soil application has been proposed as a measure to mitigate climate change and on the same time improve soil fertility by increased soil carbon sequestration. However, while on tropical soils the beneficial effects of biochar application on crop growth often become immediately apparent, it has been shown to be more difficult to demonstrate these effects on the more fertile soils in temperate regions. Therefore and because of the lack of carbon credits for farmers, it is necessary to link biochar application to additional benefits, both related to agricultural as well as to bioenergy production. Thermal gasification of biomass is an efficient (95% energy efficiency) and flexible way (able to cope with many different and otherwise difficult-to-handle biomass fuels) to generate bioenergy, while producing a valuable by-product - gasification biochar, containing recalcitrant carbon and essential crop nutrients. The use of the residual char product in agricultural soils will add value to the technology as well as result in additional soil benefits such as providing plant nutrients and improving soil water-holding capacity while reducing leaching risks. From a soil column (30 x 130 cm) experiment with gasification straw biochar amendment to coarse sandy subsoil increased root density of barley at critical depths in the soil profile reducing the mechanical resistance was shown, increasing yields, and the soil's capacity to store plant available water. Incorporation of residuals from a bioenergy technology like gasification show great potentials to reduce subsoil constraints increasing yield potentials on poor soils. Another advantage currently not appropriately utilized is recovery of phosphorus (P). In a recent pot experiments char products originating from low-temperature gasification of various biofuels were evaluated for their suitability as P fertilizers. Wheat straw gasification biochar generally had a low P content but a high P plant availability. To improve

  12. Energy expenditure, productivity, and physical work capacity of sugarcane loaders.

    PubMed

    Spurr, G B; Maksud, M G; Barac-Nieto, M

    1977-10-01

    VO2, E and heart rates (fH) were measured in 28 Colombian sugarcane loaders while loading cane and in the laboratory during a VO2max test. Productivity (metric tons-day-1) of the workers was also obtained. During work, VO2 was 1.251-min-1, VE 38.81 min-1, and fH 120 beats-min-1. The subjects worked at 42% of VO2max (6.3 +/- 1.0 kcal-min-1) during the field measurement periods. Energy expenditure was estimated to average 3,281 kcal-24 hr-1. Productivity was higher in men with lower fat content, resting fH and fH at VO2 = 1.25 1-min-1, indicating a positive relationship between productivity and physical fitness. Productivity was not related to age but, since VO2max decreased with age, the relative effort required to maintain productivity increased in the older workers. Efficiency (kg cane loaded-1 VO2-1) and estimated sustained effort (percent VO2max) were not significantly correlated with productivity in this type of discontinuous, moderate work.

  13. Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks.

    PubMed

    Zhu, Xiaoyan; Yao, Qingzhu

    2011-12-01

    It is technologically possible for a biorefinery to use a variety of biomass as feedstock including native perennial grasses (e.g., switchgrass) and agricultural residues (e.g., corn stalk and wheat straw). Incorporating the distinct characteristics of various types of biomass feedstocks and taking into account their interaction in supplying the bioenergy production, this paper proposed a multi-commodity network flow model to design the logistics system for a multiple-feedstock biomass-to-bioenergy industry. The model was formulated as a mixed integer linear programming, determining the locations of warehouses, the size of harvesting team, the types and amounts of biomass harvested/purchased, stored, and processed in each month, the transportation of biomass in the system, and so on. This paper demonstrated the advantages of using multiple types of biomass feedstocks by comparing with the case of using a single feedstock (switchgrass) and analyzed the relationship of the supply capacity of biomass feedstocks to the output and cost of biofuel.

  14. Watershed scale impacts of bioenergy, landscape changes, and ecosystem response

    NASA Astrophysics Data System (ADS)

    Chaubey, Indrajeet; Cibin, Raj; Chiang, Li-Chi

    2013-04-01

    In recent years, high US gasoline prices and national security concerns have prompted a renewed interest in alternative fuel sources to meet increasing energy demands, particularly by the transportation sector. Food and animal feed crops, such as corn and soybean, sugarcane, residue from these crops, and cellulosic perennial crops grown specifically to produce bioenergy (e.g. switchgrass, Miscanthus, mixed grasses), and fast growing trees (e.g. hybrid poplar) are expected to provide the majority of the biofeedstock for energy production. One of the grand challenges in supplying large quantities of grain-based and lignocellulosic materials for the production of biofuels is ensuring that they are produced in environmentally sustainable and economically viable manner. Feedstock selection will vary geographically based on regional adaptability, productivity, and reliability. Changes in land use and management practices related to biofeedstock production may have potential impacts on water quantity and quality, sediments, and pesticides and nutrient losses, and these impacts may be exacerbated by climate variability and change. We have made many improvements in the currently available biophysical models (e.g. Soil and Water Assessment Tool or SWAT model) to evaluate sustainability of energy crop production. We have utilized the improved model to evaluate impacts of both annual (e.g. corn) and perennial bioenergy crops (e.g. Miscanthus and switchgrass at) on hydrology and water quality under the following plausible bioenergy crop production scenarios: (1) at highly erodible areas; (2) at agriculturally marginal areas; (3) at pasture areas; (4) crop residue (corn stover) removal; and (5) combinations of above scenarios. Overall results indicated improvement in water quality with introduction of perennial energy crops. Stream flow at the watershed outlet was reduced under energy crop production scenarios and ranged between 0.3% and 5% across scenarios. Erosion and sediment

  15. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  16. Advancing sustainable bioenergy: evolving stakeholder interests and the relevance of research.

    PubMed

    Johnson, Timothy Lawrence; Bielicki, Jeffrey M; Dodder, Rebecca S; Hilliard, Michael R; Kaplan, P Ozge; Miller, C Andrew

    2013-02-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different-and potentially conflicting-values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote "sustainable" bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  17. Advancing Sustainable Bioenergy: Evolving Stakeholder Interests and the Relevance of Research

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence; Bielicki, Jeffrey M.; Dodder, Rebecca S.; Hilliard, Michael R.; Ozge Kaplan, P.; Andrew Miller, C.

    2013-02-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different—and potentially conflicting—values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote "sustainable" bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  18. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    SciTech Connect

    Johnson, Timothy L; Bielicki, Dr Jeffrey M; Dodder, Rebecca; Hilliard, Michael R; Kaplan, Ozge; Miller, C. Andy

    2013-01-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  19. Soft wheat and flour products methods review: solvent retention capacity equation correction

    USDA-ARS?s Scientific Manuscript database

    This article discusses the results of a significant change to calculations made within AACCI Approved methods 56-10 and 56-11, the Alkaline Water Retention Capacity (AWRC) test and the Solvent Retention Capacity (SRC) test. The AACCI Soft Wheat and Flour Products Technical Committee reviewed propos...

  20. Regional softwood sawmill processing variables as influenced by productive capacity

    Treesearch

    P. H. Steele; F. G. Wagner; K. E. Skog

    The relationship between annual softwood sawmill production and lumber processing variables was examined using data from Sawmill Improvement Program (SIP) studies of 650 softwood mills. The variables were lumber recovery factor (LRF); headrig and resaw kerf width; total sawing variation, rough green size, and oversizing-undersizing for 4/4 and 8/4 lumber; planer...

  1. Human capacity for explosive force production: neural and contractile determinants.

    PubMed

    Folland, J P; Buckthorpe, M W; Hannah, R

    2014-12-01

    This study assessed the integrative neural and contractile determinants of human knee extension explosive force production. Forty untrained participants performed voluntary and involuntary (supramaximally evoked twitches and octets - eight pulses at 300 Hz that elicit the maximum possible rate of force development) explosive isometric contractions of the knee extensors. Explosive force (F0-150 ms) and sequential rate of force development (RFD, 50-ms epochs) were measured. Surface electromyography (EMG) amplitude was recorded (superficial quadriceps and hamstrings, 50-ms epochs) and normalized (quadriceps to Mmax, hamstrings to EMGmax). Maximum voluntary force (MVF) was also assessed. Multiple linear regressions assessed the significant neural and contractile determinants of absolute and relative (%MVF) explosive force and sequential RFD. Explosive force production exhibited substantial interindividual variability, particularly during the early phase of contraction [F50, 13-fold (absolute); 7.5-fold (relative)]. Multiple regression explained 59-93% (absolute) and 35-60% (relative) of the variance in explosive force production. The primary determinants of explosive force changed during the contraction (F0-50, quadriceps EMG and Twitch F; RFD50-100, Octet RFD0-50; F100-150, MVF). In conclusion, explosive force production was largely explained by predictor neural and contractile variables, but the specific determinants changed during the phase of contraction.

  2. Role of arthropod communities in bioenergy crop litter decomposition†.

    PubMed

    Zangerl, Arthur R; Miresmailli, Saber; Nabity, Paul; Lawrance, Allen; Yanahan, Alan; Mitchell, Corey A; Anderson-Teixeira, Kristina J; David, Mark B; Berenbaum, May R; DeLucia, Evan H

    2013-10-01

    The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release.

  3. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individualsÆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  4. Influence of Protein-Phenolic Complex on the Antioxidant Capacity of Flaxseed (Linum usitatissimum L.) Products.

    PubMed

    Guimarães Drummond E Silva, Fernanda; Miralles, Beatriz; Hernández-Ledesma, Blanca; Amigo, Lourdes; Iglesias, Amadeu Hoshi; Reyes Reyes, Felix Guillermo; Netto, Flavia Maria

    2017-02-01

    The impact of the naturally present phenolic compounds and/or proteins on the antioxidant capacity of flaxseed products (phenolic fraction, protein concentrates, and hydrolysates) before and after simulated gastrointestinal digestion was studied. For that, whole and phenolic reduced products were assessed. Four glycosylated phenolic compounds (secoisolariciresinol and ferulic, p-coumaric, and caffeic acids) were identified in flaxseed products. Phenolic fraction exerts the highest antioxidant capacity that increased by alkaline hydrolysis and by simulated gastrointestinal digestion. The action of Alcalase and digestive enzymes resulted in an increase of the antioxidant capacity of whole and phenolic reduced products. Principal component analysis showed that proteinaceous samples act as antioxidant is by H(+) transfer, while those samples containing phenolic compounds exert their effects by both electron donation and H(+) transfer mechanisms. Protein/peptide-phenolic complexation, confirmed by fluorescence spectra, exerted a positive effect on the antioxidant capacity, mainly in protein concentrates.

  5. World bauxite and alumina production capacity in the mid-1990`s

    SciTech Connect

    Sehnke, E.D.

    1996-10-01

    A comprehensive review indicates that total worldwide in place capacity for the production of bauxite and bauxite-alternative ores currently is approximately 133 million metric tons per year. This includes the annual capacity to produce 123 million metric tons of metallurgical grade bauxite, 7 million metric tons of bauxite used for nonmetal applications, and 3 million metric tons of alumina equivalent non-bauxitic materials (alunite and nepheline) for alumina production. Current total world alumina production capacity amounts to about 51 million metric tons per year. This includes the annual capacity to provide approximately 47 million metric tons per year of smelter-grade alumina for the production of primary aluminum metal and nearly 4 million metric tons for nonmetal specialty applications.

  6. [Preface for special issue on bioenergy].

    PubMed

    Liu, Dehua

    2011-03-01

    More and more attentions have been being paid to seeking alternatives for fossil fuels. Bioenergy, as a renewable energy, is one of the best solutions. Bioenergy has been developed rapidly in China, which became the third largest producer and consumer of fuel ethanol. In order to promote the research of bioenergy technology in China, this special issue includes latest reports and articles on the fields of bioethanol, biodiesel, microbial lipid and biofuel system analysis.

  7. Lipopeptide surfactants: Production, recovery and pore forming capacity.

    PubMed

    Inès, Mnif; Dhouha, Ghribi

    2015-09-01

    Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi and yeast. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin and fengycin of Bacillus subtilis are among the most studied lipopeptides. This review will present the main factors encountering lipopeptides production along with the techniques developed for their extraction and purification. Moreover, we will discuss their ability to form pores and destabilize biological membrane permitting their use as antimicrobial, hemolytic and antitumor agents. These open great potential applications in biomediacal, pharmaceutic and agriculture fields.

  8. Uncertainty in Bioenergy Scenarios for California: Lessons Learned in Communicating with Different Stakeholder Groups

    NASA Astrophysics Data System (ADS)

    Youngs, H.

    2013-12-01

    Projecting future bioenergy use involves incorporating several critical inter-related parameters with high uncertainty. Among these are: technology adoption, infrastructure and capacity building, investment, political will, and public acceptance. How, when, where, and to what extent the various bioenergy options are implemented has profound effects on the environmental impacts incurred. California serves as an interesting case study for bioenergy implementation because it has very strong competing forces that can influence these critical factors. The state has aggressive greenhouse gas reduction goals, which will require some biofuels, and has invested accordingly on new technology. At the same time, political will and public acceptance of bioenergy has wavered, seriously stalling bioenergy expansion efforts. We have constructed scenarios for bioenergy implementation in California to 2050, in conjunction with efforts to reach AB32 GHG reduction goals of 80% below 1990 emissions. The state has the potential to produce 3 to 10 TJ of biofuels and electricity; however, this potential will be severely limited in some scenarios. This work examines sources of uncertainty in bioenergy implementation, how uncertainty is or is not incorporated into future bioenergy scenarios, and what this means for assessing environmental impacts. How uncertainty is communicated and perceived also affects future scenarios. Often, there is a disconnect between scenarios for widespread implementation and the actual development of individual projects, resulting in "artificial uncertainty" with very real impacts. Bringing stakeholders to the table is only the first step. Strategies to tailor and stage discussions of uncertainty to stakeholder groups is equally important. Lessons learned in the process of communicating the Calfornia's Energy Future biofuels assessment will be discussed.

  9. Yearbook 1993: Bioenergy Research Programme. Utilization of bioenergy and biomass conversion

    NASA Astrophysics Data System (ADS)

    Alakangas, Eija

    BIOENERGIA Research Programme is one of the energy technology programs of the Finnish Ministry of Trade and Industry. The aim of the program is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. R&D projects will also develop new economically competitive biofuels and new equipment and methods for production, handling, and utilization of biofuels. The total funding for 1993 was 45 million FIM and the number of projects 50. The research area of biomass conversion consists of 7 projects in 1993, and the research area of bioenergy utilization of 10 projects. The results of these projects carried out in 1993 and the plans for 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well as wood processing industry and power plants than it is possible at present day appliances. The conversion research in 1993 was pointed at refining of the waste liquors of pulping industry and the extraction of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and combustion tests. The target of the bioenergy utilization research is to demonstrate three to four new utilization technologies or methods. Each of these plants should have a potential of 0.2 - 0.3 million toe. The 1993 projects consisted of three main categories: reduction of emissions from small-scale combustion equipment, development of different equipment and methods for new power plant technologies, and the studies concerning additional usage of wood fuels in forest industry.

  10. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott E.; Thykaer, Jette; Adney, William S.; Brettin, T.; Brockman, Fred J.; D'haeseleer, Patrik; Martinez, Antonio D.; Miller, R. M.; Rokhsar, Daniel S.; Schadt, Christopher W.; Torok, Tamas; Tuskan, Gerald; Bennett, Joan W.; Berka, Randy; Briggs, Steve; Heitman, Joseph; Taylor, John; Turgeon, Barbara G.; Werner-Washburne, Maggie; Himmel, Michael E.

    2008-09-30

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  11. Bioenergy in a Multifunctional Landscape

    ScienceCinema

    Watts, Chad; Negri, Cristina; Ssegane, Herbert

    2016-11-02

    How can our landscapes be managed most effectively to produce crops for food, feed, and bioenergy, while also protecting our water resources by preventing the loss of nutrients from the soil? Dr. Cristina Negri and her team at the U.S. Department of Energy’s Argonne National Laboratory are tackling this question at an agricultural research site located in Fairbury, Illinois.

  12. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  13. Biomass for energy in the European Union - a review of bioenergy resource assessments.

    PubMed

    Bentsen, Niclas Scott; Felby, Claus

    2012-04-30

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor.

  14. Trade-offs of different land and bioenergy policies on the path to achieving climate targets

    SciTech Connect

    Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page; Patel, Pralit L.; Clarke, Leon E.; Edmonds, James A.

    2013-10-16

    Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument—the carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.

  15. Selecting Metrics for Sustainable Bioenergy Feedstocks

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Mulholland, Patrick J; Downing, Mark; Graham, Robin Lambert; Wright, Lynn L

    2009-01-01

    Key decisions about land-use practices and dynamics in biofuel systems affect the long-term sustainability of biofuels. Choices about what crops are grown and how are they planted, fertilized, and harvested determine the effects of biofuels on native plant diversity, competition with food crops, and water and air quality. Those decisions also affect economic viability since the distance that biofuels must be transported has a large effect on the market cost of biofuels. The components of a landscape approach include environmental and socioeconomic conditions and the bioenergy features [type of fuel, plants species, management practices (e.g., fertilizer and pesticide applications), type and location of production facilities] and ecological and biogeochemical feedbacks. Significantly, while water (availability and quality) emerges as one of the most limiting factors to sustainability of bioenergy feedstocks, the linkage between water and bioenergy choices for land use and management on medium and large scales is poorly quantified. Metrics that quantify environmental and socioeconomic changes in land use and landscape dynamics provide a way to measure and communicate the influence of alternative bioenergy choices on water quality and other components of the environment. Cultivation of switchgrass could have both positive and negative environmental effects, depending on where it is planted and what vegetation it replaces. Among the most important environmental effects are changes in the flow regimes of streams (peak storm flows, base flows during the growing season) and changes in stream water quality (sediment, nutrients, and pesticides). Unfortunately, there have been few controlled studies that provide sufficient data to evaluate the hydrological and water quality impacts of conversion to switchgrass. In particular, there is a need for experimental studies that use the small watershed approach to evaluate the effects of growing a perennial plant as a biomass crop

  16. The Influence of Climate on Sustainable North American Bioenergy Potential

    NASA Astrophysics Data System (ADS)

    Bagley, J. E.; Cuadra, S.; Drewry, D.; VanLoocke, A. D.; Bernacchi, C.

    2013-12-01

    Bioenergy agroecosystems are increasingly being investigated and implemented as an important source of sustainable and secure liquid fuel. In the U.S. the current bioenergy market is dominated by ethanol derived from maize, which has limited carbon benefits and multiple environmental concerns. In 2012, a record ~40% of the maize crop went to ethanol production despite persistent drought conditions reducing yields across much of the growing region. This has led to questions of the future value of devoting such a large fraction of the most valuable arable land to ethanol production with the frequency of these extreme conditions expected to increase with climate change. A proposed solution is the development of 2nd-generation bioenergy crops including miscanthus, switchgrass, and energy cane on marginal or abandoned croplands that have limited value for food production. However, the future potential for these lands to provide sufficient bioenergy production has uncertainty associated with changing climate. In this study, we use a newly available suite of dynamically downscaled climate data sets, estimates of marginal and abandoned cropland derived in part from satellite observations, and an extended version of the Agro-IBIS LSM to estimate the impact of climate change on North American bioenergy potential. In particular, we assess how temperature and precipitation are likely to change over marginal and abandoned croplands, and how these changes may impact the range and yields of maize, miscanthus, switchgrass, and energy cane. We extend the Agro-IBIS model with mechanistic multilayer vegetation, and validate the model using published yield, leaf area, and surface flux observations. The extended Agro-IBIS model is driven with weather conditions from the near-past (1971-2000) and future (2041-2070) using 30-year dynamically downscaled climate estimates from the North American Regional Climate Change Assessment Program (NARCCAP), and CO2 concentrations specified from

  17. Bioenergy Feedstock Development Program Status Report

    SciTech Connect

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  18. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Klein, David; Bauer, Nico; Krause, Michael; Beringer, Tim; Gerten, Dieter; Edenhofer, Ottmar

    2011-07-01

    Biomass from cellulosic bioenergy crops is expected to play a substantial role in future energy systems, especially if climate policy aims at stabilizing greenhouse gas concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements and land availability for biomass plantations. This letter, by applying a modelling framework with detailed economic representation of the land and energy sector, explores the cost-effective contribution of bioenergy to a low-carbon transition, paying special attention to implications for the land system. In this modelling framework, bioenergy competes directly with other energy technology options on the basis of costs, including implicit costs due to biophysical constraints on land and water availability. As a result, we find that bioenergy from specialized grassy and woody bioenergy crops, such as Miscanthus or poplar, can contribute approximately 100 EJ in 2055 and up to 300 EJ of primary energy in 2095. Protecting natural forests decreases biomass availability for energy production in the medium, but not in the long run. Reducing the land available for agricultural use can partially be compensated for by means of higher rates of technological change in agriculture. In addition, our trade-off analysis indicates that forest protection combined with large-scale cultivation of dedicated bioenergy is likely to affect bioenergy potentials, but also to increase global food prices and increase water scarcity. Therefore, integrated policies for energy, land use and water management are needed.

  19. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

    PubMed

    Wang, Victor Bochuan; Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say; Yang, Liang

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1:9 (v:v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  20. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields

    PubMed Central

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.

    2011-01-01

    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply

  1. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields.

    PubMed

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K

    2011-12-01

    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a "food first" approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO(2) on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y(-1), depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply.

  2. BioEnergy Feasibility in South Africa

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  3. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.

    PubMed

    Graves, Rose A; Pearson, Scott M; Turner, Monica G

    2016-03-01

    Rural landscapes face changing climate, shifting development pressure, and loss of agricultural land. Perennial bioenergy crops grown on existing agricultural land may provide an opportunity to conserve rural landscapes while addressing increased demand for biofuels. However, increased bioenergy production and changing land use raise concerns for tradeoffs within the food-energy-environment trilemma. Heterogeneity of climate, soils, and land use complicate assessment of bioenergy potential in complex landscapes, creating challenges to evaluating future tradeoffs. The hypothesis addressed herein is that perennial bioenergy production can provide an opportunity to avoid agricultural land conversion to development. Using a process-based crop model, we assessed potential bioenergy crop growth through 2100 in a southern Appalachian Mountain region and asked: (1) how mean annual yield differed among three crops (switchgrass Panicum virgatum, giant miscanthus Miscanthus x giganteus, and hybrid poplar Populus x sp.) under current climate and climate change scenarios resulting from moderate and very high greenhouse gas emissions; (2) how maximum landscape yield, spatial allocation of crops, and bioenergy hotspots (areas with highest potential yield) varied among climate scenarios; and (3) how bioenergy hotspots overlapped with current crop production or lands with high development pressure. Under both climate change scenarios, mean annual yield of perennial grasses decreased (-4% to -39%), but yield of hybrid poplar increased (+8% to +20%) which suggests that a switch to woody crops would maximize bioenergy crop production. In total, maximum landscape yield increased by up to 90 000 Mg/yr (6%) in the 21st century due to increased poplar production. Bioenergy hotspots (> 18 Mg x ha(-1) x yr(-1)) consistently overlapped with high suburban/exurban development likelihood and existing row crop production. If bioenergy production is constrained to marginal (non-crop) lands

  4. The DOE Bioenergy Research Centers: History, Operations, and Scientific Output

    SciTech Connect

    Slater, Steven C.; Simmons, Blake A.; Rogers, Tamara S.; Phillips, Margaret F.; Nordahl, Kristy; Davison, Brian H.

    2015-08-20

    Over the past 7 years, the US Department of Energy's Office of Biological and Environmental Research has funded three Bioenergy Research Centers (BRCs). These centers have developed complementary and collaborative research portfolios that address the key technical and economic challenges in biofuel production from lignocellulosic biomass. All three centers have established a close, productive relationship with DOE's Joint Genome Institute (JGI). This special issue of Bioenergy Research samples the breadth of basic science and engineering work required to underpin a diverse, sustainable, and robust biofuel industry. In this report, which was collaboratively produced by all three BRCs, we discuss the BRC contributions over their first 7 years to the development of renewable transportation fuels. In additon, we also highlight the BRC research published in the current issue and discuss technical challenges in light of recent progress.

  5. The DOE Bioenergy Research Centers: History, Operations, and Scientific Output

    DOE PAGES

    Slater, Steven C.; Simmons, Blake A.; Rogers, Tamara S.; ...

    2015-08-20

    Over the past 7 years, the US Department of Energy's Office of Biological and Environmental Research has funded three Bioenergy Research Centers (BRCs). These centers have developed complementary and collaborative research portfolios that address the key technical and economic challenges in biofuel production from lignocellulosic biomass. All three centers have established a close, productive relationship with DOE's Joint Genome Institute (JGI). This special issue of Bioenergy Research samples the breadth of basic science and engineering work required to underpin a diverse, sustainable, and robust biofuel industry. In this report, which was collaboratively produced by all three BRCs, we discuss themore » BRC contributions over their first 7 years to the development of renewable transportation fuels. In additon, we also highlight the BRC research published in the current issue and discuss technical challenges in light of recent progress.« less

  6. Electric utility capacity expansion and energy production models for energy policy analysis

    SciTech Connect

    Aronson, E.; Edenburn, M.

    1997-08-01

    This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

  7. [Preface for special issue on bioenergy (2013)].

    PubMed

    Liu, Dehua

    2013-03-01

    Bioenergy, as a renewable energy, is one of the best solutions to substitute part of fossil fuels. Based on the 6th World Bioenergy Symposium, this special issue includes latest reports and articles on the fields of bioethanol, biodiesel, microbial lipid, biofuel standard and aviation biofuels.

  8. Grasses and Legumes for Cellulosic Bioenergy

    USDA-ARS?s Scientific Manuscript database

    Human life has been dependent on renewable sources of bioenergy for many thousands of years, from the time that humans first learned to control fire and utilize wood as the earliest source of bioenergy. Ironically, forage crops represent the next major technological breakthrough in renewable bioene...

  9. Growing and Sustaining Communities with Bioenergy

    SciTech Connect

    Havill, Alice; Schultz, Donny; Falcon, Nigel; Reetz, Harold; Rowden, Jack; Van Horn, Ruth; Nordling, Debbie; Naig, Mike

    2015-10-21

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping America’s rural economies grow and thrive.

  10. An Assessment of Bio-Energy Crops Use in Illinois

    NASA Astrophysics Data System (ADS)

    Jain, A.; Khanna, M.; Barman, R.; Yang, X.; Dhungana, B.; Chen, X.

    2007-12-01

    Growing concern about climate change and energy security has led to increasing interest in developing domestically available renewable energy sources for meeting the electricity, heating and fuel needs in the United States. Illinois has a significant potential to grow perennial grasses that can provide bio-energy. Two perennial grasses, Switchgrass and Miscanthus, have been identified as among the best choices for low input bio-energy production in the US and Europe. The purpose of this talk is two fold. First, we will examine the optimal areas in Illinois to locate perennial grasses as feedstocks. These areas will be determined based on biophysical conditions (such as heterogeneity in soil quality and climatic factors) and costs of production and costs of land that differ across locations. Second, we will determine the CO2 mitigation benefits to be provided by bioenergy crops, both in the form of soil carbon sequestration and displacement of carbon emissions from gasoline. This analysis will be undertaken using detailed GIS data on soil quality, climate and land use for 0.1deg by 0.1deg grid cells in Illinois. This data will be used together with the Integrated Science Assessment Model (ISAM), a terrestrial ecosystem model, to estimate the yields of Switchgrass and Miscanthus as well as their potential to sequester carbon in the soil. Yield for row crops will be based on historical data and will be used to determine the opportunity cost of converting land currently under corn and soybean production to perennial grasses. Costs of production for the alternative crops here include expenses incurred by farmers on fertilizer inputs, machinery, harvesting and transportation and will be used to determine the profitability of alternative land uses in each grid cell. The framework developed here will be used to examine the optimal locations to grow bio-energy crops to achieve various carbon mitigation targets cost-effectively.

  11. Primary productivity and the carrying capacity for herring in NE Pacific marine ecosystems

    NASA Astrophysics Data System (ADS)

    Perry, R. Ian; Schweigert, Jacob F.

    2008-05-01

    The carrying capacity for Pacific herring ( Clupea pallasi) and its relationship to primary productivity was examined for eight populations in the NE Pacific and eastern Bering Sea. Data on biomass (ages 3 and older) and catches of herring in British Columbia (Georgia Strait, west coast Vancouver Island, Central Coast, Queen Charlotte Islands, Prince Rupert) and Alaska (Sitka, Prince William Sound, eastern Bering Sea) during the second half of the 20th Century derived from analytical stock assessments were used to calculate annual surplus production of herring. There was considerable interannual variability in herring productivity among all populations, however, only three (Georgia Strait, Prince Rupert, Prince William Sound) showed significant differences in mean productivity on decadal time scales (productivity regimes). Carrying capacity for the most recent productivity regime for each population was estimated using the Schaefer surplus production model. Mean annual primary productivity was estimated from remotely-sensed (SeaWiFS) chlorophyll data for British Columbia and Sitka ecosystems, and from in situ chlorophyll data for Prince William Sound and the eastern Bering Sea. The carrying capacity for herring populations in the NE Pacific ranged from 28,000 to 250,000 tonnes, and to 325,000 tonnes in the eastern Bering Sea. When considered on the basis of their distributional area, the west coast of Vancouver Island and Georgia Strait populations had the highest carrying capacity per unit area (9.3-13.8 tonnes km -2) and the eastern Bering Sea had the lowest (0.7 tonnes km -2). There is a significant positive linear relationship between the productivity of herring populations at carrying capacity and primary productivity on a per unit area basis. Although similar direct relationships have been observed between phytoplankton standing stock (as chlorophyll biomass) and total catches of resident fish populations from these regions, such a direct relationship was

  12. Estimating the Capacity of Gross Primary Production from Global Observation Satellite

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Soyama, Noriko; Thanyaparaneedkul, Juthasinee; Furumi, Shinobu; Daigo, Motomasa

    2012-07-01

    Estimation of Gross Primary Production with high accuracy is important for understanding the carbon cycle. For estimating gross primary production, photosynthesis process was considers into two parts. One is the capacity and another is the reduction which is influenced by environmental conditions such as weather conditions of vapor pressure difference and soil moisture. The capacity estimation part is reported in this conference. For a leaf, it is well known photosynthesis capacity is mainly depend on amount of chlorophyll and enzyme. Chlorophyll contents reflect the color of a leaf. Since we focus on the chlorophyll contents for estimating the capacity of the gross primary production. It was reported by J. Thanyapraneedkul (2012) that vegetation index of the ratio of green band and near infrared was linear relationship with chlorophyll contents of a leaf, and was a linear relationship with the maximum photosynthesis at light saturation of light response curve with less stress conditions using flux data. The index is suitable for global observing satellite, because the spectral bands are available. Using the index and empirical relationship developed by J. Thanyapraneedkul, the light response curve with less stress can be estimated from the vegetation index. In this study, firstly, the global distribution of the index was studied. The regions of high index value in winter time were correspond to tropical rainforest. Next, the capacity of gross primary production was estimated using the light response curve using the index. The GPP capacity of the almost all regions was higher than MODIS GPP. For the tropical rain forest regions, the GPP capacity value was similar with MODIS GPP product.

  13. Alfalfa: bioenergy and more

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  14. Functional genomics of bio-energy plants and related patent activities.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  15. Indicators for assessing socioeconomic sustainability of bioenergy systems. A short list of practical measures

    SciTech Connect

    Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.; Langholtz, Matthew H.; Leiby, Paul Newsome; Oladosu, Gbadebo A.; Davis, Maggie R.; Downing, Mark E.; Hilliard, Michael R.

    2012-10-16

    Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, calibrated with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement, and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten of those 16 indicators are proposed to be the minimum list of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally-prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.

  16. Evaluation of Bioenergy Crop Growth and the Impacts Of Bioenergy Crops on Streamflow, Tile Drain Flow and Nutrient Losses Using SWAT

    NASA Astrophysics Data System (ADS)

    Guo, T.; Raj, C.; Chaubey, I.; Gitau, M. W.; Arnold, J. G.; Srinivasan, R.; Kiniry, J. R.; Engel, B.

    2016-12-01

    Bioenery crops are expected to produce large quantities of biofuel at a national scale to meet US biofuel goals. It is important to study bioenergy crop growth and the impacts on water quantity and quality to identify environment-friendly and productive biofeedstocks. In this study, SWAT2012 with a new tile drainage routine (DRAINMOD routine) and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, total nitrogen, nitrate load in flow, nitrate in tile flow, soluble nitrogen, organic nitrogen, total phosphorus, mineral phosphorus and organic phosphorus under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. The results showed that simulated annual crop yields matched with observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (66,439 Mg/yr) with Miscanthus production on highly erodible areas and marginal land (19,039 Mg/yr) provided the highest biofeedstock production. Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of Miscanthus, switchgrass, and hybrid poplar on highly erodible areas, marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment load and nutrient losses under corn stover removal could be offset with production of other bioenergy crops. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to hydrology and water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile-drained watershed in the Midwestern U.S.

  17. Bioenergy Technologies Office FY 2017 Budget At-A-Glance

    SciTech Connect

    2016-03-01

    The Bioenergy Technologies Office (BETO) is accelerating the commercialization of first-of-a-kind technologies that use our nation’s abundant renewable biomass resources for the production of advanced biofuels and biobased products. Non-food sources of biomass, such as algae, agricultural residues and forestry trimmings, and energy crops like switchgrass, are being used in BETO-supported, cutting-edge technologies to produce drop-in biofuels, including renewable gasoline, diesel, and jet fuels. BETO is also investigating how to improve the economics of biofuel production by converting biomass into higher-value chemicals and products that historically have always been derived from petroleum.

  18. Laurentian Bioenergy Project

    SciTech Connect

    Berguson, William Evan; Buchman, Daniel; Rack, Jim; Gallagher, Tom; McMahon, Bernard; Hedke, Dale

    2015-03-30

    Work performed under this contract involves development of forest management guidelines related to removal of forest harvest residues from forested sites and brushlands in Minnesota, assessments of biomass availability from forests and brushlands and logistics and equipment associated with handling woody biomass with emphasis on evaluation of a trailer-mounted bundling system. Also, work on hybrid poplar breeding, field testing and yield analysis is included. Evaluation of the production of aspen and red pine along with opportunities to procure woody biomass through thinning operations in red pine is described. Finally, an assessment of issues related to increasing biomass usage at the Laurentian Energy Authority generation facilities is discussed.

  19. Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial

    NASA Astrophysics Data System (ADS)

    McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan

    2013-04-01

    Climate change impacts resulting from fossil fuel combustion and concerns about the diversity of energy supply are driving interest to find low-carbon energy alternatives. As a result bioenergy is receiving widespread scientific, political and media attention for its potential role in both supplying energy and mitigating greenhouse (GHG) emissions. It is estimated that the bioenergy contribution to EU 2020 renewable energy targets could require up to 17-21 million hectares of additional land in Europe (Don et al., 2012). There are increasing concerns that some transitions into bioenergy may not be as sustainable as first thought when GHG emissions from the crop growth and management cycle are factored into any GHG life cycle assessment (LCA). Bioenergy is complex and encapsulates a wide range of crops, varying from food crop based biofuels to dedicated second generation perennial energy crops and forestry products. The decision on the choice of crop for energy production significantly influences the GHG mitigation potential. It is recognised that GHG savings or losses are in part a function of the original land-use that has undergone change and the management intensity for the energy crop. There is therefore an urgent need to better quantify both crop and site-specific effects associated with the production of conventional and dedicated energy crops on the GHG balance. Currently, there is scarcity of GHG balance data with respect to second generation crops meaning that process based models and LCAs of GHG balances are weakly underpinned. Therefore, robust, models based on real data are urgently required. In the UK we have recently embarked on a detailed program of work to address this challenge by combining a large number of field studies with state-of-the-art process models. Through six detailed experiments, we are calculating the annual GHG balances of land use transitions into energy crops across the UK. Further, we are quantifying the total soil carbon gain or

  20. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.

  1. Periodical capacity setting methods for make-to-order multi-machine production systems.

    PubMed

    Altendorfer, Klaus; Hübl, Alexander; Jodlbauer, Herbert

    2014-08-18

    The paper presents different periodical capacity setting methods for make-to-order, multi-machine production systems with stochastic customer required lead times and stochastic processing times to improve service level and tardiness. These methods are developed as decision support when capacity flexibility exists, such as, a certain range of possible working hours a week for example. The methods differ in the amount of information used whereby all are based on the cumulated capacity demand at each machine. In a simulation study the methods' impact on service level and tardiness is compared to a constant provided capacity for a single and a multi-machine setting. It is shown that the tested capacity setting methods can lead to an increase in service level and a decrease in average tardiness in comparison to a constant provided capacity. The methods using information on processing time and customer required lead time distribution perform best. The results found in this paper can help practitioners to make efficient use of their flexible capacity.

  2. Periodical capacity setting methods for make-to-order multi-machine production systems

    PubMed Central

    Altendorfer, Klaus; Hübl, Alexander; Jodlbauer, Herbert

    2014-01-01

    The paper presents different periodical capacity setting methods for make-to-order, multi-machine production systems with stochastic customer required lead times and stochastic processing times to improve service level and tardiness. These methods are developed as decision support when capacity flexibility exists, such as, a certain range of possible working hours a week for example. The methods differ in the amount of information used whereby all are based on the cumulated capacity demand at each machine. In a simulation study the methods’ impact on service level and tardiness is compared to a constant provided capacity for a single and a multi-machine setting. It is shown that the tested capacity setting methods can lead to an increase in service level and a decrease in average tardiness in comparison to a constant provided capacity. The methods using information on processing time and customer required lead time distribution perform best. The results found in this paper can help practitioners to make efficient use of their flexible capacity. PMID:27226649

  3. Bioenergy/Biotechnology projects

    SciTech Connect

    Napper, Stan; Palmer, James; Wilson, Chester; Guilbeau, Eric; Allouche, Erez

    2012-06-30

    This report describes the progress of five different projects. The first is an enzyme immobilization study of cellulase to reduce costs of the cellulosic ethanol process. High reusability and use of substrates applicable to large scale production were focus areas for this study. The second project was the development of nanostructured catalysts for conversion of syngas to diesel. Cobalt nanowire catalyst was used in Fischer-Tropsch synthesis. The third project describes work on developing a microfluidic calorimeter to measure reaction rates of enzymes. The fourth project uses inorganic polymer binders that have the advantage of a lower carbon footprint than Portland cement while also providing excellent performance in elevated temperature, high corrosion resistance, high compressive and tensile strengths, and rapid strength gains. The fifth project investigates the potential of turbines in drop structures (such as sewer lines in tall buildings) to recover energy.

  4. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    PubMed

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  5. An algorithm of gross primary production capacity from GCOM-C1/SGLI

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Soyama, Noriko; Furumi, Shinobu; Daigo, Motomasa; Mineshita, Yukiko

    An algorithm of gross primary production (GPP) capacity from GCOM-C1/SGLI is presented. GCOM-C1 satellite will be launched in 2016. The characteristics of this method corresponds to photosynthesis process, and was to use light-response curves. The photosynthesis velocity depends on it's capacity and depression because of weather conditions. The capacity part depends on one of plant physiological parameters of chlorophyll contents of a leaf. In the previous study ( J. Thanyapraneedkul et al., 2013 ), the framework of estimation method was developed how to determine the two parameters, initial slope and maximum of GPP capacity in the light saturation, of light-response curves of GPP capacity using FLUX data and satellite data. The initial slope was used as fixed values for each plant functional types. The maximum of GPP capacity at the light saturation was determined from the linear relationship between GPP capacity at 2000 (mumol/m2/s) and Chlorophyll index (CIgreen) using green band developed by Gitelson et al. (1996). The relationship determined for five plant functional types of needleleaf deciduous trees, broadleaf deciduous trees, needleleaf evergreen trees, C3 grass, and crops were determined. For applying the method, other plant functional types were needed. In this study, additional four plant functional types were studied for open shrub, closed shrub, mixed forest and tropical rain forest, and the initial slopes and the relationship between GPP capacity at 2000 (umol/m2/s) and CIgreen for each plant functional types were determined. From the results, the relationship were divided into three groups. One was grass, and open shrubs, and second one was forest types except for tropical rain forest, and third one was tropical rain forest. For each group, the slope of the relationship was almost same value, and only the intercept was different. Whether the rules were extracted for determination of the intercept was discussed and the estimation results of GPP

  6. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    SciTech Connect

    1996-02-09

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included.

  7. 43 CFR 5040.5 - How does BLM determine and declare the annual productive capacity?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How does BLM determine and declare the annual productive capacity? 5040.5 Section 5040.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR FOREST MANAGEMENT (5000) SUSTAINED-YIELD FOREST UNITS § 5040.5 How does BLM...

  8. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... developed by the bank for banking purposes or to support its banking business; and (2) Electronic databases... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Sale of excess electronic capacity and by-products. 7.5004 Section 7.5004 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE...

  9. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... developed by the bank for banking purposes or to support its banking business; and (2) Electronic databases... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Sale of excess electronic capacity and by-products. 7.5004 Section 7.5004 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE...

  10. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... developed by the bank for banking purposes or to support its banking business; and (2) Electronic databases... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Sale of excess electronic capacity and by-products. 7.5004 Section 7.5004 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE...

  11. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... developed by the bank for banking purposes or to support its banking business; and (2) Electronic databases... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Sale of excess electronic capacity and by-products. 7.5004 Section 7.5004 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE...

  12. U.S. Ethanol Industry Production Capacity Outlook: Update of 2001 Survey Results

    SciTech Connect

    MaDonald, Tom; Yowell, Gary; McCormack, Mike

    2002-07-18

    California Energy Commission staff conducted a survey of the U.S. ethanol industry between May and August 2001. This survey was designed to develop a complete and accurate inventory of the country’s existing and planned ethanol production capacity during the period California is looking to increase its use of ethanol as a substitute for the gasoline additive MTBE.

  13. Antioxidant capacity of flaxseed products: the effect of in vitro digestion.

    PubMed

    Silva, F G D; O'Callagahan, Y; O'Brien, N M; Netto, F M

    2013-03-01

    This study evaluated the effect of in vitro digestion of flaxseed products on Folin-Ciocalteu reagent reducing substances (FCRRS), its antioxidant capacity and prevention of oxidative DNA damage in human monocyte cell line U937. Flaxseed protein isolate was obtained from defatted flaxseed meal and the protein hydrolysate with high antioxidant capacity was obtained from hydrolysis of the protein isolate with Alcalase in a two factor central composite rotatable design (pH 8.5 and enzyme: substrate 1:90, w/w). The FCRRS content and antioxidant capacity measured by FRAP and ORAC in aqueous and 70 % methanol extracts were the highest in protein hydrolysate, followed by protein isolate, while the defatted meal showed the lowest values. After in vitro gastrointestinal digestion, the FCRRS content of protein isolate and hydrolysate reached similar values, however the hydrolysate had the highest antioxidant capacity, measured by FRAP while the isolate had the highest ORAC values. The defatted meal showed the lowest capacity in all assays (p < 0.05). The hydrolysate did not protect against DNA damage induced by H2O2 in U937 cells under the conditions of the present study. The results suggest that flaxseed protein isolate and hydrolysate are potential functional food ingredients with antioxidant capacity.

  14. Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.

    PubMed

    Zou, Bo; Guo, Feng; Guo, Jinyu

    2016-01-01

    While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.

  15. Sustainability analysis of bioenergy based land use change under climate change and variability

    NASA Astrophysics Data System (ADS)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water

  16. Efficient and sustainable deployment of bioenergy with carbon capture and storage in mitigation pathways

    NASA Astrophysics Data System (ADS)

    Kato, E.; Moriyama, R.; Kurosawa, A.

    2016-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise well below 2°C above pre-industrial, which would require net negative carbon emissions at the end of the 21st century. Also, in the Paris agreement from COP21, it is denoted "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century" which could require large scale deployment of negative emissions technologies later in this century. Because of the additional requirement for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of large-scale BECCS. In this study, we present possible development strategies of low carbon scenarios that consider interaction of economically efficient deployment of bioenergy and/or BECCS technologies, biophysical limit of bioenergy productivity, and food production. In the evaluations, detailed bioenergy representations, including bioenergy feedstocks and conversion technologies with and without CCS, are implemented in an integrated assessment model GRAPE. Also, to overcome a general discrepancy about yield development between 'top-down' integrate assessment models and 'bottom-up' estimates, we applied yields changes of food and bioenergy crops consistent with process-based biophysical models; PRYSBI-2 (Process-Based Regional-Scale Yield Simulator with Bayesian Inference) for food crops, and SWAT (Soil and Water Assessment Tool) for bioenergy crops in changing climate conditions. Using the framework, economically viable strategy for implementing sustainable BECCS are evaluated.

  17. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas

    NASA Astrophysics Data System (ADS)

    Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  18. Livestock waste-to-bioenergy generation opportunities.

    PubMed

    Cantrell, Keri B; Ducey, Thomas; Ro, Kyoung S; Hunt, Patrick G

    2008-11-01

    The use of biological and thermochemical conversion (TCC) technologies in livestock waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. These products can meet heating and power needs or serve as transportation fuels. The primary objective of this work is to present established and emerging energy conversion opportunities that can transform the treatment of livestock waste from a liability to a profit center. While biological production of methanol and hydrogen are in early research stages, anaerobic digestion is an established method of generating between 0.1 to 1.3m3m(-3)d(-1) of methane-rich biogas. The TCC processes of pyrolysis, direct liquefaction, and gasification can convert waste into gaseous fuels, combustible oils, and charcoal. Integration of biological and thermal-based conversion technologies in a farm-scale hybrid design by combining an algal CO2-fixation treatment requiring less than 27,000m2 of treatment area with the energy recovery component of wet gasification can drastically reduce CO2 emissions and efficiently recycle nutrients. These designs have the potential to make future large scale confined animal feeding operations sustainable and environmentally benign while generating on-farm renewable energy.

  19. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  20. Total source mask optimization: high-capacity, resist modeling, and production-ready mask solution

    NASA Astrophysics Data System (ADS)

    Fakhry, Moutaz; Granik, Yuri; Adam, Kostas; Lai, Kafai

    2011-11-01

    As the demand for taking Source Mask Optimization (SMO) technology to the full-chip level is increasing, the development of a flow that overcomes the limitations which hinder this technology's moving forward to the production level is a priority for Litho-Engineers. The aim of this work is to discuss advantages of using a comprehensive novel SMO flow that outperforms conventional techniques in areas of high capacity simulations, resist modeling and the production of a final manufacturable mask. We show results that indicate the importance of adding large number of patterns to the SMO exploration space, as well as taking into account resist effects during the optimization process and how this flow incorporates the final mask as a production solution. The high capacity of this flow increases the number of patterns and their area by a factor of 10 compared to other SMO techniques. The average process variability band is improved up to 30% compared to the traditional lithography flows.

  1. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum.

    PubMed

    Noro, N; Sugano, Y; Shoda, M

    2004-04-01

    Acetobacter xylinum BPR2001 produces water-insoluble bacterial cellulose (BC). Using a pH sensor for the accurate control of pH, which is one of the most critical factors for efficient BC production, is difficult especially in a baffled shake-flask and an airlift reactor. The buffering capacity of corn steep liquor (CSL) was estimated by measuring beta (buffering capacity) values in advance and was used to maintain the pH within the optimal range during the production of BC. When CSL was added to either a shake-flask, a stirred-tank reactor or an airlift reactor, BC production was almost the same as that in cultivations where pH was controlled manually or by a pH sensor.

  2. 2013 Bioenergy Technologies Office Peer Review Report

    SciTech Connect

    None, None

    2014-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2013 U.S. Department of Energy Bioenergy Technologies Office's Peer Review meeting.

  3. Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity.

    PubMed

    Love, Kerry Routenberg; Politano, Timothy J; Panagiotou, Vasiliki; Jiang, Bo; Stadheim, Terrance A; Love, J Christopher

    2012-01-01

    Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of these biologic drugs requires a robust host organism for generating high titers of protein during fermentation. Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR, microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded protein through the ER. This combination of single-cell measurements and computational modelling shows that protein trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve productivity.

  4. Confessions of a bioenergy advocate.

    PubMed

    Bungay, Henry R

    2004-02-01

    Feedstocks that deserve serious consideration for fuels and chemicals are sugarcane, corn, trees and algae. Commercialization of biomass refining is imminent but the wild claims of those who think that bioenergy can replace much of our dependence on foreign oil are appalling. It is naive to view biomass as the panacea for the coming energy crisis because there is not enough in practical locations and the costs involved in retrieving and refining it will be relatively high. The world will not run out of energy, but cheap energy might disappear, with its economics clouded by a myriad of subsidies for the competing energy sources and by world politics. This assessment of biomass supply and conversion technologies provides global perspectives and exposes some alternatives to be so impractical that they are almost fraudulent.

  5. Agronomic Suitability of Bioenergy Crops in Mississippi

    SciTech Connect

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: • Which areas in the state are best for bioenergy crop production? • How much could these areas produce sustainably? • How can bioenergy crops impact carbon sequestration and carbon credits? âÂÃÃÂ

  6. An assessment of the potential of drylands in eight sub-Saharan African countries to produce bioenergy feedstocks.

    PubMed

    Watson, H K; Diaz-Chavez, R A

    2011-04-06

    This paper synthesizes lessons learnt from research that aimed to identify land in the dryland regions of eight sub-Saharan African study countries where bioenergy feedstocks production has a low risk of detrimental environmental and socio-economic effects. The methodology involved using geographical information systems (GISs) to interrogate a wide range of datasets, aerial photograph and field verification, an extensive literature review, and obtaining information from a wide range of stakeholders. The GIS work revealed that Africa's drylands potentially have substantial areas available and agriculturally suitable for bioenergy feedstocks production. The other work showed that land-use and biomass dynamics in Africa's drylands are greatly influenced by the inherent 'disequilibrium' behaviour of these environments. This behaviour challenges the sustainability concept and perceptions regarding the drivers, nature and consequences of deforestation, land degradation and other factors. An assessment of the implications of this behaviour formed the basis for the practical guidance suggested for bioenergy feedstock producers and bioenergy policy makers.

  7. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives—reducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  8. Growing and Sustaining Communities with Bioenergy

    ScienceCinema

    Havill, Alice; Schultz, Donny; Falcon, Nigel; Reetz, Harold; Rowden, Jack; Van Horn, Ruth; Nordling, Debbie; Naig, Mike

    2016-10-19

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping America’s rural economies grow and thrive.

  9. Bioenergy

    DTIC Science & Technology

    2012-03-06

    from electrode and then catalyzing O2 reduction. • Approach: Various MCO were linked to carbon nanotubes (CNT) using a chemical “tethering” reagent (1...Portable H2 Fuel Generated from H2O or Cellulose : - Cheap, self-healing inorganic catalysts split water into H2 and O2 - Engineered...chlorophyll light Sugar/ Cellulose Synthesis Light Reactions PSI and PSII Dark Reactions Triglyceride (Oil) Lipid Synthesis Microalgae

  10. Establishment of pandemic influenza vaccine production capacity at Bio Farma, Indonesia.

    PubMed

    Suhardono, Mahendra; Ugiyadi, Dori; Nurnaeni, Ida; Emelia, Imelda

    2011-07-01

    In Indonesia, avian influenza A(H5N1) virus started to spread in humans in June 2005, with an alarming case-fatality rate of more than 80%. Considering that global influenza vaccine production capacity would barely have covered 10% of the world's pandemic vaccine needs, and that countries with no production facilities or prearranged contracts would be without access to a vaccine, the Government of Indonesia embarked on a programme to increase its readiness for a future influenza pandemic. This included the domestic production of influenza vaccine, which was entrusted to Bio Farma. This health security strategy consists of developing trivalent influenza vaccine production capacity in order to be able to convert immediately to monovalent production of up to 20 million pandemic doses for the Indonesian market upon receipt of the seed strain from the World Health Organization (WHO). For this purpose, a dedicated production facility is being constructed within the Bio Farma premises in Bandung. As an initial stage of influenza vaccine development, imported seasonal influenza bulk has been formulated and filled in the Bio Farma facility. Following three consecutive batches and successful clinical trials, the product was licensed by the Indonesian National Regulatory Authority and distributed commercially for the Hajj programme in 2009. With continued support from its technology transfer partners, Bio Farma is now advancing with the development of upstream processes to produce its own bulk for seasonal and pandemic use.

  11. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes.

    PubMed

    Werling, Ben P; Dickson, Timothy L; Isaacs, Rufus; Gaines, Hannah; Gratton, Claudio; Gross, Katherine L; Liere, Heidi; Malmstrom, Carolyn M; Meehan, Timothy D; Ruan, Leilei; Robertson, Bruce A; Robertson, G Philip; Schmidt, Thomas M; Schrotenboer, Abbie C; Teal, Tracy K; Wilson, Julianna K; Landis, Douglas A

    2014-01-28

    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands--farmland suboptimal for food crops--could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks--primarily annual grain crops--on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services.

  12. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    PubMed Central

    Werling, Ben P.; Dickson, Timothy L.; Isaacs, Rufus; Gaines, Hannah; Gratton, Claudio; Gross, Katherine L.; Liere, Heidi; Malmstrom, Carolyn M.; Meehan, Timothy D.; Ruan, Leilei; Robertson, Bruce A.; Robertson, G. Philip; Schmidt, Thomas M.; Schrotenboer, Abbie C.; Teal, Tracy K.; Wilson, Julianna K.; Landis, Douglas A.

    2014-01-01

    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands—farmland suboptimal for food crops—could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks—primarily annual grain crops—on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services. PMID:24474791

  13. Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar

    2013-11-01

    Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production capabilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other "omic" approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in the development of genetically engineered microalgal strains with optimum lipid content. In this review, we summarize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of "omics" in optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics resources available to gain a more complete understanding of lipid metabolism across algal species, along with the recent contributions of "omic" approaches in the metabolic pathway studies for microalgal biofuel production.

  14. Agrigenomics for Microalgal Biofuel Production: An Overview of Various Bioinformatics Resources and Recent Studies to Link OMICS to Bioenergy and Bioeconomy

    PubMed Central

    Misra, Namrata; Parida, Bikram Kumar

    2013-01-01

    Abstract Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production capabilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other “omic” approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in the development of genetically engineered microalgal strains with optimum lipid content. In this review, we summarize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of “omics” in optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics resources available to gain a more complete understanding of lipid metabolism across algal species, along with the recent contributions of “omic” approaches in the metabolic pathway studies for microalgal biofuel production. PMID:24044362

  15. How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise

    PubMed Central

    Clarke, Donna; Jablonski, Sophie; Moran, Brighid; Anandarajah, Gabrial; Taylor, Gail

    2009-01-01

    Background This work explores the potential contribution of bioenergy technologies to 60% and 80% carbon reductions in the UK energy system by 2050, by outlining the potential for accelerated technological development of bioenergy chains. The investigation was based on insights from MARKAL modelling, detailed literature reviews and expert consultations. Due to the number and complexity of bioenergy pathways and technologies in the model, three chains and two underpinning technologies were selected for detailed investigation: (1) lignocellulosic hydrolysis for the production of bioethanol, (2) gasification technologies for heat and power, (3) fast pyrolysis of biomass for bio-oil production, (4) biotechnological advances for second generation bioenergy crops, and (5) the development of agro-machinery for growing and harvesting bioenergy crops. Detailed literature searches and expert consultations (looking inter alia at research and development needs and economic projections) led to the development of an 'accelerated' dataset of modelling parameters for each of the selected bioenergy pathways, which were included in five different scenario runs with UK-MARKAL (MED). The results of the 'accelerated runs' were compared with a low-carbon (LC-Core) scenario, which assesses the cheapest way to decarbonise the energy sector. Results Bioenergy was deployed in larger quantities in the bioenergy accelerated technological development scenario compared with the LC-Core scenario. In the electricity sector, solid biomass was highly utilised for energy crop gasification, displacing some deployment of wind power, and nuclear and marine to a lesser extent. Solid biomass was also deployed for heat in the residential sector from 2040 in much higher quantities in the bioenergy accelerated technological development scenario compared with LC-Core. Although lignocellulosic ethanol increased, overall ethanol decreased in the transport sector in the bioenergy accelerated technological

  16. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays.

    PubMed

    López-Alarcón, Camilo; Denicola, Ana

    2013-02-06

    Oxidative stress is associated with several pathologies like cardiovascular, neurodegenerative, cancer and even aging. It has been suggested that a diet rich in antioxidants would be beneficial to human health and a lot of interest is focused on the determination of antioxidant capacity of natural products. Different chemical methods have been developed including the popular ORAC that evaluates the potential of a sample as inhibitor of a target molecule oxidation. Chemical-based methods are useful for screening, they are low cost, high-throughput and yield an index value (expressed as equivalents of Trolox) that allows comparing and ordering different products. More recently, nanoparticles-based assays have been developed to sense the antioxidant power of natural products. However, the antioxidant capacity indexes obtained by chemical assays cannot extrapolate the performance of the sample in vivo. Considering that antioxidant action is not limited to scavenging free radicals but includes upregulation of antioxidant and detoxifying enzymes, modulation of redox cell signaling and gene expression, it is necessary to move to cellular assays in order to evaluate the potential antioxidant activity of a compound or extract. Animal models and human studies are more appropriate but also more expensive and time-consuming, making the cell culture assays very attractive as intermediate testing methods. Cellular antioxidant activity (CAA) assays, activation of redox transcription factors, inhibition of oxidases or activation of antioxidant enzymes are reviewed and compared with the classical in vitro chemical-based assays for evaluation of antioxidant capacity of natural products.

  17. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    USGS Publications Warehouse

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  18. Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System

    Treesearch

    Hongmei Gu; Richard Bergman

    2016-01-01

    Expanding bioenergy production from woody biomass has the potential to decrease net greenhouse gas (GHG) emissions and improve the energy security of the United States. Science-based and internationally accepted life-cycle assessment (LCA) is an effective tool for policy makers to make scientifically informed decisions on expanding renewable energy production from...

  19. Maximizing Production Capacity from an Ultrafiltration Process at the Hanford Department of Waste Treatment Facility

    SciTech Connect

    Foust, Henry C.; Holton, Langdon K.; Demick, Laurence E.

    2005-12-31

    The Department of Energy has contracted Bechtel National, Inc. to design, construct and commission a Waste Treatment and Immobilization Plant (WTP) to treat radioactive slurry currently stored in underground waste storage tanks. A critical element of the waste treatment capacity for the WTP is the proper operation of an ultrafiltration process (UFP). The UFP separates supernate solution from radioactive solids. The solution and solid phases are separately immobilized. An oversight review of the UFP design and operation has identified several methods to improve the capacity of the ultrafiltration process, which will also improve the capacity of the WTP. Areas explored were the basis of design, an analysis of the WTP capacity, process chemistry within the UFP, and UFP process control. This article discusses some of the findings of this oversight review in terms of sodium and solid production, which supports the treatment of low activity waste (LAW) associated with the facility, and solid production, which supports the treatment of high level waste (HLW) associated with the facility.

  20. Phenolic Content, Antioxidant Capacity and Quality of Chokeberry (Aronia melanocarpa) Products

    PubMed Central

    Jurčević, Irena Landeka; Krbavčić, Ines Panjkota; Marković, Ksenija; Vahčić, Nada

    2015-01-01

    Summary Chokeberries (Aronia melanocarpa) are rarely used in diet in Croatia but they have high content of polyphenolic compounds and one of the highest in vitro antioxidant activities among fruits. The aim of this study is to compare the quality, phenolic content and antioxidant capacity of different chokeberry products (juices, powders, fruit tea, capsules and dried berries). It can be expected that processing influences antioxidant activity and phenolic content of final products reaching consumers. Characterisation of phenolic compounds was carried out by using spectroscopic methods (Folin–Ciocalteu and pH differential methods). Antioxidant activity of chokeberry products was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. The results show that the investigated products contain high amount of phenols (3002 to 6639 mg per L and 1494 to 5292 mg per 100 g of dry matter) and lower amount of total anthocyanins (150 to 1228 mg per L and 141 to 2468 mg per 100 g of dry matter). The examined juices and other chokeberry products possess high antioxidant capacity (12.09 to 40.19 mmol per L or 58.49 to 191.31 mmol per 100 g of dry matter, respectively) and reducing power (38.71 to 79.86 mmol per L or 13.50 to 68.60 mmol per 100 g of dry matter, respectively). On the basis of phenolic content and antioxidant activity, capsules and powders stand out among other products. The study indicates that there are significant differences (p<0.05) in the quality, phenolic content and antioxidant capacity among examined products. PMID:27904346

  1. Reliability of urine lactate as a novel biomarker of lactate production capacity in maximal swimming.

    PubMed

    Nikolaidis, Stefanos; Karpouzi, Christina; Tsalis, George; Kabasakalis, Athanasios; Papaioannou, Konstantinos G; Mougios, Vassilis

    2016-01-01

    Postexercise urine lactate may be a novel biomarker of lactate production capacity during exercise. To evaluate the reliability and utility of the urine lactate concentration after maximal swimming trials between different training protocols (6 × 50 m and 3 × 100 m) and training states (active and nonactive swimmers). Lactate and creatinine were determined by spectrophotometry in blood and urine. Blood and urine lactate concentrations were correlated in-between training protocols and in participants of different training states. The reliability of the urine lactate concentration was moderate for one of the training protocols and good or moderate for the two training states. Additionally, it was lower than that of the blood lactate concentration, and did not improve after normalizing to the urine creatinine concentration. Although promising as a biomarker of lactate production capacity, urine lactate requires further research to improve its reliability.

  2. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil.