Sample records for bioenergy technology implementation

  1. Uncertainty in Bioenergy Scenarios for California: Lessons Learned in Communicating with Different Stakeholder Groups

    NASA Astrophysics Data System (ADS)

    Youngs, H.

    2013-12-01

    Projecting future bioenergy use involves incorporating several critical inter-related parameters with high uncertainty. Among these are: technology adoption, infrastructure and capacity building, investment, political will, and public acceptance. How, when, where, and to what extent the various bioenergy options are implemented has profound effects on the environmental impacts incurred. California serves as an interesting case study for bioenergy implementation because it has very strong competing forces that can influence these critical factors. The state has aggressive greenhouse gas reduction goals, which will require some biofuels, and has invested accordingly on new technology. At the same time, political will and public acceptance of bioenergy has wavered, seriously stalling bioenergy expansion efforts. We have constructed scenarios for bioenergy implementation in California to 2050, in conjunction with efforts to reach AB32 GHG reduction goals of 80% below 1990 emissions. The state has the potential to produce 3 to 10 TJ of biofuels and electricity; however, this potential will be severely limited in some scenarios. This work examines sources of uncertainty in bioenergy implementation, how uncertainty is or is not incorporated into future bioenergy scenarios, and what this means for assessing environmental impacts. How uncertainty is communicated and perceived also affects future scenarios. Often, there is a disconnect between scenarios for widespread implementation and the actual development of individual projects, resulting in "artificial uncertainty" with very real impacts. Bringing stakeholders to the table is only the first step. Strategies to tailor and stage discussions of uncertainty to stakeholder groups is equally important. Lessons learned in the process of communicating the Calfornia's Energy Future biofuels assessment will be discussed.

  2. Efficient and sustainable deployment of bioenergy with carbon capture and storage in mitigation pathways

    NASA Astrophysics Data System (ADS)

    Kato, E.; Moriyama, R.; Kurosawa, A.

    2016-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise well below 2°C above pre-industrial, which would require net negative carbon emissions at the end of the 21st century. Also, in the Paris agreement from COP21, it is denoted "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century" which could require large scale deployment of negative emissions technologies later in this century. Because of the additional requirement for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of large-scale BECCS. In this study, we present possible development strategies of low carbon scenarios that consider interaction of economically efficient deployment of bioenergy and/or BECCS technologies, biophysical limit of bioenergy productivity, and food production. In the evaluations, detailed bioenergy representations, including bioenergy feedstocks and conversion technologies with and without CCS, are implemented in an integrated assessment model GRAPE. Also, to overcome a general discrepancy about yield development between 'top-down' integrate assessment models and 'bottom-up' estimates, we applied yields changes of food and bioenergy crops consistent with process-based biophysical models; PRYSBI-2 (Process-Based Regional-Scale Yield Simulator with Bayesian Inference) for food crops, and SWAT (Soil and Water Assessment Tool) for bioenergy crops in changing climate conditions. Using the framework, economically viable strategy for implementing sustainable BECCS are evaluated.

  3. Strategic plan for bioenergy research, 1998--2003, the Canadian Forest Service five-year plan: Implementing the Canadian bioenergy research strategy (in English;French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    This document supersedes the previous one, taking into account changes that have taken place in the CFS Science and Technology (S and T) program structure and organization, and in the structure of the Program of Energy Research and Development, the source of funding for CFS bioenergy research. It explains the rationale and overall objective for the bioenergy research program and briefly reviews the accomplishments to date. It indicates the planning context within which the program operates, states the specific objectives for the period of the plan, and details the strategic priorities developed for this period. Finally, it outlines the implementationmore » process for the plan.« less

  4. Sustainable BECCS pathways evaluated by an integrated assessment model

    NASA Astrophysics Data System (ADS)

    Kato, E.

    2017-12-01

    Negative emissions technologies, particularly Bioenergy with Carbon Capture and Storage (BECCS), are key components of mitigation strategies in ambitious future socioeconomic scenarios analysed by integrated assessment models. Generally, scenarios aiming to keep mean global temperature rise below 2°C above pre-industrial would require net negative carbon emissions in the end of the 21st century. Also, in the context of Paris agreement which acknowledges "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century", RD&D for the negative emissions technologies in this decade has a crucial role for the possibility of early deployment of the technology. Because of the requirement of potentially extensive use of land and water for producing the bioenergy feedstock to get the anticipated level of gross negative emissions, researches on how to develop sustainable scenarios of BECCS is needed. Here, we present BECCS deployment scenarios that consider economically viable flow of bioenergy system including power generation and conversion process to liquid and gaseous fuels for transportation and heat with consideration of sustainable global biomass use. In the modelling process, detailed bioenergy representations, i.e. various feedstock and conversion technologies with and without CCS, are implemented in an integrated assessment (IA) model GRAPE (Global Relationship Assessment to Protect the Environment). Also, to overcome a general discrepancy about assumed future agricultural yield between 'top-down' IA models and 'bottom-up' estimates, which would crucially affect the land-use pattern, we applied yields change of food and energy crops consistent with process-based biophysical crop models in consideration of changing climate conditions. Using the framework, economically viable strategy for implementing sustainable bioenergy and BECCS flow are evaluated in the scenarios targeting to keep global average temperature rise below 2°C and/or 1.5°C above pre-industrial.

  5. Bioenergy for sustainable development: An African context

    NASA Astrophysics Data System (ADS)

    Mangoyana, Robert Blessing

    This paper assesses the sustainability concerns of bioenergy systems against the prevailing and potential long term conditions in Sub-Saharan Africa with a special attention on agricultural and forestry waste, and cultivated bioenergy sources. Existing knowledge and processes about bioenergy systems are brought into a “sustainability framework” to support debate and decisions about the implementation of bioenergy systems in the region. Bioenergy systems have been recommended based on the potential to (i) meet domestic energy demand and reduce fuel importation (ii) diversify rural economies and create employment (iii) reduce poverty, and (iv) provide net energy gains and positive environmental impacts. However, biofuels will compete with food crops for land, labour, capital and entrepreneurial skills. Moreover the environmental benefits of some feedstocks are questionable. These challenges are, however, surmountable. It is concluded that biomass energy production could be an effective way to achieve sustainable development for bioenergy pathways that (i) are less land intensive, (ii) have positive net energy gains and environmental benefits, and (iii) provide local socio-economic benefits. Feasibility evaluations which put these issues into perspective are vital for sustainable application of agricultural and forest based bioenergy systems in Sub-Saharan Africa. Such evaluations should consider the long run potential of biofuels accounting for demographic, economic and technological changes and the related implications.

  6. 2015 Bioenergy Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Ethan; Moriarty, Kristi; Lewis, John

    This report is an update to the 2013 report and provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of 2015. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This version features details on the two major bioenergy markets: biofuels and biopower and an overview of bioproducts that enable bioenergy production. The information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of themore » key energy and regulatory drivers of bioenergy markets.« less

  7. ACMECS Bioenergy Network: Implementing a transnational science-based policy network on bioenergy

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor J.; Haruthaithanasan, Maliwan; Kraxner, Florian; Brenner, Anna

    2017-04-01

    Despite the currently low prices for fossil energy resulting from a number of geopolitical reasons, intergovernmental efforts are being made towards a transition to a sustainable bio-economy. The main reasons for this include climate change mitigation, decreasing dependencies fossil fuel imports and hence external market fluctuations, diversification of energy generation and feedstock production for industrial processes. Since 2012, the ACMECS bioenergy network initiative leads negotiations and organizes workshops to set up a regional bioenergy network in Indochina, with the aim to promote biomass and -energy markets, technology transfer, rural development and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO) Task Force "Sustainable Forest Bioenergy Network". In this paper, we highlight the achievements so far and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDP's). We found that traditional fuelwood is still the most important resource for generating thermal energy in the region, especially in rural settings, and it will remain an important resource even in 25 years. However, less fuelwood will be sourced from natural forests as compared to today. NBDP's have a focus on market development, technology transfer and funding possibilities of a regional bioenergy strategy, while the responses of the questionnaire favored more altruistic goals, i.e. sustainable resource management, environmental protection and climate change mitigation, generation of rural income and community involvement etc. This is surprising, since a sub-population of the (anonymous) questionnaire respondents was actually responsible drafting the NBDP's. We therefore suggest the following measures to ensure regulations that represent the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use, diversification of energy generation): i) More communication between policy makers and the other stakeholders, ii) Invitation of stakeholders representing rural communities to participate in this process, iii) development of sustainability criteria, vi) feedback cycles ensuring more intensive discussion of policy drafts, v) association of an international board of experts to provide scientifically sound feedback and input and vi) establishment of a local demonstration region, containing various steps in the biomass/bioenergy supply chain including transboundary collaboration in the ACMECS region.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO’s Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a result, the area is critical to achieving BETO’s overall goals.

  9. Sustainable Biofuels Development Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production andmore » utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.« less

  10. 2015 Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    In the spring and summer of 2015, the Bioenergy Technologies Office (BETO or the Office) of the U.S. Department of Energy (DOE) implemented an external peer review of the projects in its research, development and demonstration (RD&D) portfolio. The Office manages a diverse portfolio of technologies across the spectrum of applied RD&D within the dynamic context of changing budgets and Administration priorities. The Office portfolio is organized according to the biomass-to-bioenergy supply chain—from the feedstock source to the end user (see Figure 1)—with major focus on feedstock supply and biomass conversion. The 2015 Project Peer Review took place March 23-27,more » 2015, outside of Washington, D.C., in Alexandria, Virginia, and evaluated most of the publicly funded projects in BETO’s portfolio. The subsequent Program Management Review took place on June 25, 2015, in Washington, D.C., and provided an Office- level assessment of strategic planning and programmatic initiatives. The peer review process enables external stakeholders to provide feedback on the responsible use of taxpayer funding and develop recommendations for the most efficient and effective ways to accelerate the development of an advanced bioenergy industry. The planning and execution of these reviews was completed over the course of 10 months, and this report includes the results of both events.« less

  11. Bioenergy and African transformation.

    PubMed

    Lynd, Lee R; Sow, Mariam; Chimphango, Annie Fa; Cortez, Luis Ab; Brito Cruz, Carlos H; Elmissiry, Mosad; Laser, Mark; Mayaki, Ibrahim A; Moraes, Marcia Afd; Nogueira, Luiz Ah; Wolfaardt, Gideon M; Woods, Jeremy; van Zyl, Willem H

    2015-01-01

    Among the world's continents, Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern bioenergy production in Africa. Here we consider bioenergy as an enabler for development, and provide an overview of modern bioenergy technologies with a comment on application in an Africa context. Experience with bioenergy in Africa offers evidence of social benefits and also some important lessons. In Brazil, social development, agricultural development and food security, and bioenergy development have been synergistic rather than antagonistic. Realizing similar success in African countries will require clear vision, good governance, and adaptation of technologies, knowledge, and business models to myriad local circumstances. Strategies for integrated production of food crops, livestock, and bioenergy are potentially attractive and offer an alternative to an agricultural model featuring specialized land use. If done thoughtfully, there is considerable evidence that food security and economic development in Africa can be addressed more effectively with modern bioenergy than without it. Modern bioenergy can be an agent of African transformation, with potential social benefits accruing to multiple sectors and extending well beyond energy supply per se. Potential negative impacts also cut across sectors. Thus, institutionally inclusive multi-sector legislative structures will be more effective at maximizing the social benefits of bioenergy compared to institutionally exclusive, single-sector structures.

  12. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-01

    This is the November 2014 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  13. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2015-03-01

    This is the March 2015 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  14. Bioenergy: America's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Bruce; Volz, Sara; Male, Johnathan

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  15. Bioenergy: America's Energy Future

    ScienceCinema

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2018-01-16

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  16. Chapter 10: Research and Deployment of Renewable Bioenergy Production from Microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M; Glasser, Melodie

    Recent progress towards the implementation of renewable bioenergy production has included microalgae, which have potential to significantly contribute to a viable future bioeconomy. In a current challenging energy landscape, where an increased demand for renewable fuels is projected and accompanied by plummeting fossil fuels' prices, economical production of algae-based fuels becomes more challenging. However, in the context of mitigating carbon emissions with the potential of algae to assimilate large quantities of CO2, there is a route to drive carbon sequestration and utilization to support a sustainable and secure global energy future. This chapter places international energy policy in the contextmore » of the current and projected energy landscape. The contribution that algae can make, is summarized as both a conceptual contribution as well as an overview of the commercial infrastructure installed globally. Some of the major recent developments and crucial technology innovations are the results of global government support for the development of algae-based bioenergy, biofuels and bioproduct applications, which have been awarded as public private partnerships and are summarized in this chapter.« less

  17. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negri, M. Cristina; Ssegane, H.

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  18. Successful implementation of biochar carbon sequestration in European soils requires additional benefits and close collaboration with the bioenergy sector

    NASA Astrophysics Data System (ADS)

    Hauggaard-Nielsen, Henrik; Müller-Stöver, Dorette; Bruun, Esben W.; Petersen, Carsten T.

    2014-05-01

    Biochar soil application has been proposed as a measure to mitigate climate change and on the same time improve soil fertility by increased soil carbon sequestration. However, while on tropical soils the beneficial effects of biochar application on crop growth often become immediately apparent, it has been shown to be more difficult to demonstrate these effects on the more fertile soils in temperate regions. Therefore and because of the lack of carbon credits for farmers, it is necessary to link biochar application to additional benefits, both related to agricultural as well as to bioenergy production. Thermal gasification of biomass is an efficient (95% energy efficiency) and flexible way (able to cope with many different and otherwise difficult-to-handle biomass fuels) to generate bioenergy, while producing a valuable by-product - gasification biochar, containing recalcitrant carbon and essential crop nutrients. The use of the residual char product in agricultural soils will add value to the technology as well as result in additional soil benefits such as providing plant nutrients and improving soil water-holding capacity while reducing leaching risks. From a soil column (30 x 130 cm) experiment with gasification straw biochar amendment to coarse sandy subsoil increased root density of barley at critical depths in the soil profile reducing the mechanical resistance was shown, increasing yields, and the soil's capacity to store plant available water. Incorporation of residuals from a bioenergy technology like gasification show great potentials to reduce subsoil constraints increasing yield potentials on poor soils. Another advantage currently not appropriately utilized is recovery of phosphorus (P). In a recent pot experiments char products originating from low-temperature gasification of various biofuels were evaluated for their suitability as P fertilizers. Wheat straw gasification biochar generally had a low P content but a high P plant availability. To improve the fertilizer value while keeping a high carbon content in the char, the gasification of a combination of sewage sludge and wheat straw was implemented, resulting in a char product with a promising performance as a fertilizer and soil amendment. To implement gasification-biochar as a promising soil improver on the marked, independently of potential carbon market developments and CO2 certificates, stakeholder involvement is strongly required. In a newly established project consortium Bregentved Estate (one of Europe's largest agriculture companies) and the DONG Energy company (one of the leading energy groups in Northern Europe) are in a joint effort trying to integrate the economic matrix of i) biomass needed for bioenergy, ii) profit from energy generation and iii) soil advantages gained from biochar application. Experiments are conducted with a 6MW biomass gasification demonstration plant producing straw biochar used in field plots (12 m x 250 m).

  19. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    PubMed Central

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences.— Undertake further exploration of land efficiency levers and visions for multiply-beneficial bioenergy deployment. This should be unconstrained by current practices, since we cannot hope to achieve a sustainable and a secure future by continuing the practices that have led to the unsustainable and insecure present. It should also be approached from a global perspective, based on the best science available, and consider the diverse realities, constraints, needs and opportunities extant in different regions of the world.The future trajectory of the GSB project is also briefly considered. PMID:22419984

  20. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project.

    PubMed

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-04-06

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: - Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.- Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.- Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences.- Undertake further exploration of land efficiency levers and visions for multiply-beneficial bioenergy deployment. This should be unconstrained by current practices, since we cannot hope to achieve a sustainable and a secure future by continuing the practices that have led to the unsustainable and insecure present. It should also be approached from a global perspective, based on the best science available, and consider the diverse realities, constraints, needs and opportunities extant in different regions of the world.The future trajectory of the GSB project is also briefly considered.

  1. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topicsmore » in further detail.« less

  2. 2016 Bioenergy Industry Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Kristen L.; Milbrandt, Anelia R.; Warner, Ethan

    This report provides a snapshot of the bioenergy industry status at the end of 2016. The report compliments other annual market reports from the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy offices and is supported by DOE’s Bioenergy Technologies Office (BETO). The 2016 Bioenergy Industry Status Report focuses on past year data covering multiple dimensions of the bioenergy industry and does not attempt to make future market projections. The report provides a balanced and unbiased assessment of the industry and associated markets. It is openly available to the public and is intended to compliment Internationalmore » Energy Agency and industry reports with a focus on DOE stakeholder needs.« less

  3. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  4. United States biomass energy: An assessment of costs and infrastructure for alternative uses of biomass energy crops as an energy feedstock

    NASA Astrophysics Data System (ADS)

    Morrow, William Russell, III

    Reduction of the negative environmental and human health externalities resulting from both the electricity and transportation sectors can be achieved through technologies such as clean coal, natural gas, nuclear, hydro, wind, and solar photovoltaic technologies for electricity; reformulated gasoline and other fossil fuels, hydrogen, and electrical options for transportation. Negative externalities can also be reduced through demand reductions and efficiency improvements in both sectors. However, most of these options come with cost increases for two primary reasons: (1) most environmental and human health consequences have historically been excluded from energy prices; (2) fossil energy markets have been optimizing costs for over 100 years and thus have achieved dramatic cost savings over time. Comparing the benefits and costs of alternatives requires understanding of the tradeoffs associated with competing technology and lifestyle choices. As bioenergy is proposed as a large-scale feedstock within the United States, a question of "best use" of bioenergy becomes important. Bioenergy advocates propose its use as an alternative energy resource for electricity generation and transportation fuel production, primarily focusing on ethanol. These advocates argue that bioenergy offers environmental and economic benefits over current fossil energy use in each of these two sectors as well as in the U.S. agriculture sector. Unfortunately, bioenergy research has offered very few comparisons of these two alternative uses. This thesis helps fill this gap. This thesis compares the economics of bioenergy utilization by a method for estimating total financial costs for each proposed bioenergy use. Locations for potential feedstocks and bio-processing facilities (co-firing switchgrass and coal in existing coal fired power plants and new ethanol refineries) are estimated and linear programs are developed to estimate large-scale transportation infrastructure costs for each sector. Each linear program minimizes required bioenergy distribution and infrastructure costs. Truck and rail are the only two transportation modes allowed as they are the most likely bioenergy transportation modes. Switchgrass is chosen as a single bioenergy feedstock. All resulting costs are presented in units which reflect current energy markets price norms (¢/kWh, $/gal). The use of a common metric, carbon-dioxide emissions, allows a comparison of the two proposed uses. Additional analysis is provided to address aspects of each proposed use which are not reflected by a carbon-dioxide reduction metric. (Abstract shortened by UMI.)

  5. Scaling laws and technology development strategies for biorefineries and bioenergy plants.

    PubMed

    Jack, Michael W

    2009-12-01

    The economies of scale of larger biorefineries or bioenergy plants compete with the diseconomies of scale of transporting geographically distributed biomass to a central location. This results in an optimum plant size that depends on the scaling parameters of the two contributions. This is a fundamental aspect of biorefineries and bioenergy plants and has important consequences for technology development as "bigger is better" is not necessarily true. In this paper we explore the consequences of these scaling effects via a simplified model of biomass transportation and plant costs. Analysis of this model suggests that there is a need for much more sophisticated technology development strategies to exploit the consequences of these scaling effects. We suggest three potential strategies in terms of the scaling parameters of the system.

  6. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration.

    PubMed

    Woolf, Dominic; Lehmann, Johannes; Lee, David R

    2016-10-21

    Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg -1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg -1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred.

  7. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration

    PubMed Central

    Woolf, Dominic; Lehmann, Johannes; Lee, David R.

    2016-01-01

    Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg−1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg−1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred. PMID:27767177

  8. IEA Bioenergy Countries' Report: Bioenergy policies and status of implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacovsky, Dina; Ludwiczek, Nikolaus; Pointner, Christian

    2016-08-05

    This report was prepared from IEA statistical data, information from IRENA, and IEA Bioenergy Tasks’ country reports, combined with data provided by the IEA Bioenergy Executive Committee. All individual country reports were reviewed by the national delegates to the IEA Bioenergy Executive Committee, who have approved the content. In the first section of each country report, national renewable energy targets are presented (first table in each country report), and the main pieces of national legislation are discussed. In the second section of each country report the total primary energy supply (TPES) by resources and the contribution of bioenergy are presented.more » All data is taken from IEA statistics for the year 2014. Where 2014 data was not available, 2013 data was used. It is worth noting that data reported in national statistics can differ from the IEA data presented, as the reporting categories and definitions are different. In the third section of each country report, the research focus related to bioenergy is discussed. Relevant funding programs, major research institutes and projects are described. In the fourth section, recent major bioenergy developments are described. Finally, in the fifth section, links to sources of information are provided.« less

  9. The potential impacts of biomass feedstock production on water resource availability.

    PubMed

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy feedstocks in the US and throughout the world should carefully consider water resource limitations and their critical connections to ecosystem integrity and sustainability of human food. Published by Elsevier Ltd.

  10. NREL National Bioenergy Center Overview

    ScienceCinema

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2018-01-16

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  11. Incorporating bioenergy into sustainable landscape designs

    DOE PAGES

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.; ...

    2015-12-30

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along themore » bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.« less

  12. Incorporating bioenergy into sustainable landscape designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along themore » bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.« less

  13. Bioenergy Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Bioenergy Technologies Office (BETO) is accelerating the commercialization of first-of-a-kind technologies that use our nation’s abundant renewable biomass resources for the production of advanced biofuels and biobased products. Non-food sources of biomass, such as algae, agricultural residues and forestry trimmings, and energy crops like switchgrass, are being used in BETO-supported, cutting-edge technologies to produce drop-in biofuels, including renewable gasoline, diesel, and jet fuels. BETO is also investigating how to improve the economics of biofuel production by converting biomass into higher-value chemicals and products that historically have always been derived from petroleum.

  14. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    PubMed

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns.

    PubMed

    Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan

    2018-07-15

    The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Age-dependent population dynamics of the bioenergy crop Miscanthus x giganteus in Illinois

    USDA-ARS?s Scientific Manuscript database

    Rising global demand for liquid fuels, coupled with new technologies for converting biomass to ethanol, have generated intense interest in the development of herbaceous perennial bioenergy crops. Some plant species being considered as biofeedstocks share traits with invasive species and have histori...

  17. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    USDA-ARS?s Scientific Manuscript database

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  18. Bioenergy production and sustainable development: science base for policymaking remains limited.

    PubMed

    Robledo-Abad, Carmenza; Althaus, Hans-Jörg; Berndes, Göran; Bolwig, Simon; Corbera, Esteve; Creutzig, Felix; Garcia-Ulloa, John; Geddes, Anna; Gregg, Jay S; Haberl, Helmut; Hanger, Susanne; Harper, Richard J; Hunsberger, Carol; Larsen, Rasmus K; Lauk, Christian; Leitner, Stefan; Lilliestam, Johan; Lotze-Campen, Hermann; Muys, Bart; Nordborg, Maria; Ölund, Maria; Orlowsky, Boris; Popp, Alexander; Portugal-Pereira, Joana; Reinhard, Jürgen; Scheiffle, Lena; Smith, Pete

    2017-03-01

    The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited scientific basis for policymaking. Our results indicate that knowledge on the sustainable development impacts of bioenergy production is concentrated in a few well-studied countries, focuses on environmental and economic impacts, and mostly relates to dedicated agricultural biomass plantations. The scope and methodological approaches in studies differ widely and only a small share of the studies sufficiently reports on context and/or baseline conditions, which makes it difficult to get a general understanding of the attribution of impacts. Nevertheless, we identified regional patterns of positive or negative impacts for all categories - environmental, economic, institutional, social and technological. In general, economic and technological impacts were more frequently reported as positive, while social and environmental impacts were more frequently reported as negative (with the exception of impacts on direct substitution of GHG emission from fossil fuel). More focused and transparent research is needed to validate these patterns and develop a strong science underpinning for establishing policies and governance agreements that prevent/mitigate negative and promote positive impacts from bioenergy production.

  19. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.

  20. Legal framework for a sustainable biomass production for bioenergy on Marginal Lands

    NASA Astrophysics Data System (ADS)

    Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    The EU H2020 funded project SEEMLA is aiming at the sustainable exploitation of biomass for bioenergy from marginal lands in Europe. Partners from Germany, Italy, Ukraine and Greece are involved in this project. Whereas Germany can be considered as well-established and leading country with regard to the production of bioenergy, directly followed by Italy and Greece, Ukraine is doing its first steps in becoming independent from fossil energy resources, also heading for the 2020+ goals. A basic, overarching regulation is the Renewable Energy Directive (RED) which has been amended in 2015; these amendments will be set in force in 2017. A new proposal for the period after 2020, the so called RED II, is under preparation. With cross-compliance and greening, the Common Agricultural Policy (CAP) offers measures for an efficient and ecological concept for a sustainable agriculture in Europe. In country-specific National Renewable Energy Action Plans (NREAP) a concept for 2020 targets is given for practical implementation until 2030 which covers e.g. individual renewable energy targets for electricity, heating and cooling, and transport sectors, the planned mix of different renewables technologies, national policies to develop biomass resources, and measures to ensure that biofuels are used to meet renewable energy targets are in compliance with the EU's sustainability criteria. While most of the NREAP have been submitted in 2010, the Ukrainian NREAP was established in 2014. In addition, the legal framework considering the protection of nature, e.g. Natura 2000, and its compartments soil, water, and atmosphere are presented. The SEEMLA approach will be developed in agreement with this already existing policy framework, following a sustainable principle for growing energy plants on marginal lands (MagL). Secondly, legislation regarding bioenergy and biomass potentials in the EU-28 and partner countries is introduced. For each SEEMLA partner an overview of regulatory authorities and principal laws in the field of bioenergy is given, supplemented by national biomass potentials and bioenergy use as well as by the German, Greek, Italian and Ukrainian NREAP. The overall target of all EU-28 countries - and Ukraine - is to create a more efficient bioeconomy, to increase the amount of biomass produced for bioenergy purposes, to avoid an increased competition between food/feed production on arable land and energy plant production, and decrease imports of fossil energy sources, i.e. [crude] oil, aiming at an independent, domestically based (bio)energy supply. Whereas in Germany the national policy framework regarding bioenergy is well-defined, there are only few specific national and/or regional policies in Greece, Italy or Ukraine. Moreover, the German legislation offers a higher potential for designing and modifying already existing regulations and laws, e.g. soil protection, EEG, etc. with respect to the use of MagL for bioenergy production, than in other SEEMLA partner countries. Although the biomass potential of each SEEMLA partner country varies a lot and the 2020 targets remain ambitious, the exploitation of sustainable biomass production on MagL may offer a suitable approach to fill the gaps of future biomass demands and accelerate the growth of an independent bioenergy based society.

  1. Life-Cycle Inventory Analysis of Bioproducts from a Modular Advanced Biomass Pyrolysis System

    Treesearch

    Richard Bergman; Hongmei Gu

    2014-01-01

    Expanding bioenergy production has the potential to reduce net greenhouse gas (GHG) emissions and improve energy security. Science-based assessments of new bioenergy technologies are essential tools for policy makers dealing with expanding renewable energy production. Using life cycle inventory (LCI) analysis, this study evaluated a 200-kWe...

  2. The global technical potential of bio-energy in 2050 considering sustainability constraints

    PubMed Central

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-01-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets (‘technical potential’). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160–270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization (‘cascade utilization’) of biomass flows. PMID:24069093

  3. Bioenergy costs and potentials with special attention to implications for the land system

    NASA Astrophysics Data System (ADS)

    Popp, A.; Lotze-Campen, H.; Dietrich, J.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.

    2011-12-01

    In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for agricultural products, goals of nature conservation, and changing production conditions due to climate change. Especially biomass from cellulosic bioenergy crops, such as Miscanthus or poplar, is being proposed to play a substantial role in future energy systems if climate policy aims at stabilizing greenhouse gas (GHG) concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements, land availability for biomass plantations, and implications for the land system. In order to explore the cost-effective contribution of bioenergy to a low carbon transition with special attention to implications for the land system, we present a modeling framework with detailed biophysical and economic representation of the land and energy sector: We have linked the global dynamic vegetation and water balance model LPJmL (Bondeau et al. 2007, Rost et al. 2008), the global land and water use model MAgPIE (Lotze-Campen et al. 2008, Popp et al. 2010), and the global energy-economy-climate model ReMIND (Leimbach et al. 2009). In this modeling framework LPJmL supplies spatially explicit (0.5° resolution) agricultural yields as well as carbon and water stocks and fluxes. Based on this biophysical input MAgPIE delivers cost-optimized land use patterns (0.5° resolution), associated GHG emissions and rates of future yield increases in agricultural production. Moreover, shadow prices are calculated for irrigation water (as an indicator for water scarcity), food commodities, and bioenergy (as an indicator for changes in production costs) under different land use constraints such as forest conservation for climate change mitigation and as a contribution to biodiversity conservation. The energy-economy-climate model ReMIND generates the demand for bioenergy, taking into account the direct competition with other energy technology options for GHG mitigation, based on economic costs of bioenergy production. As a result, we find that bioenergy from specialized grassy and woody bioenergy crops can contribute approximately 100 EJ in 2055 and up to 300 EJ of primary energy in 2095. Protecting natural forests decreases biomass availability for energy production in the medium run, but not in the long run. Reducing the land available for agricultural use can partially be compensated for by higher rates of technological change in agriculture; however, bioenergy crops will occupy large shares of available cropland in both scenarios. In addition, our trade-off analysis indicates that forest protection combined with large-scale cultivation of dedicated bioenergy is likely to affect bioenergy potentials, but also to increase global food prices and increase water scarcity.

  4. Large-scale bioenergy production: how to resolve sustainability trade-offs?

    NASA Astrophysics Data System (ADS)

    Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag

    2018-02-01

    Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the SDG agenda. Based on this, we argue that the development of policies for regulating externalities of large-scale bioenergy production should rely on broad sustainability assessments to discover potential trade-offs with the SDG agenda before implementation.

  5. How can land-use modelling tools inform bioenergy policies?

    PubMed Central

    Davis, Sarah C.; House, Joanna I.; Diaz-Chavez, Rocio A.; Molnar, Andras; Valin, Hugo; DeLucia, Evan H.

    2011-01-01

    Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID:22482028

  6. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    NASA Astrophysics Data System (ADS)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional-scale mitigation capacity considering wide-scale deployment and potential wildfire feedback effects of harvest, highlighting the relative importance of supply chain, conversion technology, ecological, and epistemological uncertainties in realizing wide-scale negative emissions in this region.

  7. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  8. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    NASA Astrophysics Data System (ADS)

    Rhodes, James S., III

    2007-12-01

    Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("MtC"), equivalent to roughly 3% of U.S. GHG emissions. In the medium or longer term, integration of carbon capture and storage technologies with advanced bio-energy conversion technologies ("biomass-CCS"), in both liquid fuels production and electric sector applications, will likely be feasible. These systems are capable of generating useful energy products with negative net atmospheric carbon emissions at carbon prices between 100 and 200 per tC. Negative emissions from biomass-CCS could be applied to offset emissions sources that are difficult or expensive to abate directly. Such indirect mitigation may prove cost competitive and provide important flexibility in achieving stabilization of atmospheric GHG concentrations at desirable levels. With increasing deployments, alternate bio-energy systems will eventually compete for limited biomass resources and inputs to agricultural production--particularly land. In this context, resource allocation decisions will likely turn on the relative economic performance of alternate bio-energy systems in their respective energy markets. The relatively large uncertainty in forecasts of energy futures confounds reliable prediction of economically efficient uses for available biomass resources. High oil prices or large valuation of energy security benefits will likely enable bio-fuels production to dominate electric-sector options. In contrast, low oil prices and low valuation of energy security benefits will likely enable electric-sector applications to dominate. In the latter scenario, indirect mitigation of transportation-sector emissions via emissions offsets from electric-sector biomass-CCS could prove more efficient than direct fuel substitution with biofuels, both economically and in terms of the transportation-sector mitigation of available biomass resources [tC tbiomass-1]. The policy environment surrounding industrial bio-energy development is systematically examined. Specifically, the policy objectives that may be advanced with bio-energy and the challenges constraining deployment are examined to understand the extent to which public policy support is justified to accelerate development. Policy frameworks and specific policy instruments that have been proposed or enacted to support industrial bio-energy are evaluated to understand their current and potential future roles in shaping bio-energy development. This analysis indicates that deployment of industrial bio-energy systems to advance specified policy objectives has been compromised by inefficient and inconsistent public policies. Amending existing policies could substantially accelerate bio-energy deployment. More generally, public policies that set even prices across the economy for advancing targeted policy objectives should be developed. Industrial bio-energy systems can be expected to compete favorably in the context of such policies, including those valuing deep reductions in anthropogenic GHG emissions.

  9. Woody biomass for bioenergy and biofuels in the United States -- a briefing paper

    Treesearch

    Eric M. White

    2010-01-01

    Woody biomass can be used for the generation of heat, electricity, and biofuels. In many cases, the technology for converting woody biomass into energy has been established for decades, but because the price of woody biomass energy has not been competitive with traditional fossil fuels, bioenergy production from woody biomass has not been widely adopted. However,...

  10. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, thismore » project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.« less

  11. Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts

    NASA Astrophysics Data System (ADS)

    Wang, M.; Kamarianakis, Y.; Georgescu, M.

    2017-12-01

    A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.

  12. Watershed-scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model

    DOE PAGES

    Cibin, Raj; Trybula, Elizabeth; Chaubey, Indrajeet; ...

    2016-01-08

    Cellulosic bioenergy feedstock such as perennial grasses and crop residues are expected to play a significant role in meeting US biofuel production targets. Here, we used an improved version of the Soil and Water Assessment Tool (SWAT) to forecast impacts on watershed hydrology and water quality by implementing an array of plausible land-use changes associated with commercial bioenergy crop production for two watersheds in the Midwest USA. Watershed-scale impacts were estimated for 13 bioenergy crop production scenarios, including: production of Miscanthus 9 giganteus and upland Shawnee switchgrass on highly erodible landscape positions, agricultural marginal land areas and pastures, removal ofmore » corn stover and combinations of these options. We also measured water quality as erosion and sediment loading; this was forecasted to improve compared to baseline when perennial grasses were used for bioenergy production, but not with stover removal scenarios. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet was reduced between 0 and 8% across these bioenergy crop production scenarios compared to baseline across the study watersheds. Our results indicate that bioenergy production scenarios that incorporate perennial grasses reduced the nonpoint source pollutant load at the watershed outlet compared to the baseline conditions (0–20% for nitrate-nitrogen and 3–56% for mineral phosphorus); but, the reduction rates were specific to site characteristics and management practices.« less

  13. Biofuels, bioenergy, and bioproducts from sustainable agricultural and forest crops: proceedings of the short rotation crops international conference

    Treesearch

    Ronald S., Jr. Zalesny; Rob Mitchell; Jim, eds. Richardson

    2008-01-01

    The goal of this conference was to initiate and provide opportunities for an international forum on the science and application of producing both agricultural and forest crops for biofuels, bioenergy, and bioproducts. There is a substantial global need for development of such systems and technologies that can economically and sustainably produce short rotation crops...

  14. Engineering Photosynthetic Organisms for the Production of Renewable Energy Products and Environmental Remediation

    DTIC Science & Technology

    2016-11-25

    and education in bioenergy and environmental biotechnology at West Virginia State University (WVSU). Bioenergy and environmental biotechnology research...and education affected by the acquisition of this new equipment and instrumentations includes development of new technology to produce biofuels...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Biofuels, STEM education , environmental biotechnology

  15. BioEnergy Feasibility in South Africa

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural production, and commercial forestry. The issues include the dispersed nature of some of the waste (increasing costs of transport and reducing economy of scale), and the fact that some of these are already applied in energy generation. (4) Rural firewood use is problematic. This is a significant resource, plays a large role in the energy budget of poor and rural households, and current use means that it will have little impact on the GHG emissions balance. Data availability and quality is poor, and needs improvement. (5) Process technologies are not all mature: We have investigated 52 different process technologies in respect of costs, economy of scale, energy efficiency, greenhouse gas emission and job creation impacts, and maturity of technology. Many attractive options are not mature, and unlikely to be commercially useful in the next decade - essentially excluding them from consideration for medium-term implementation. (6) Solutions are probably 'packages'. One has to balance the diversity of available resource streams and processing technologies against the need to focus resources on development of critical mass (workforce skills, support industries, expertise). Combining feedstocks and aligning with other government initiatives or subsidies can achieve such critical mass more easily. (7) Solutions must be robust in future too. Feasibility studies that focus on the current situation only ignore the fact that future sustainability is strongly dependent on assumptions on relative economic growth (influences household and industrial energy consumption, and the limiting cost for energy), cost of capital and inflation (affects choices of labour- or capital-intensive industries), exchange rates and fossil fuel prices (huge effect on selection of alternatives). (8) The most promising biomass source is medium-term mining and eradication of invasive alien plants, but this source is limited in time and, if exploited as proposed, will not be available after about 20 years. The paper discusses methodology, availability of biomass and potentials, and the feasibility results of four case studies in respect of biomass application: (1) co-firing of woody biomass for electricity generation; (2) use of sugar-producing crops for the production of fuel alcohol, (3) applications for organic components of domestic solid waste and wastewater; and (4) use of woody biomass as a feedstock for an existing GTL refinery.

  16. Soil carbon sequestration and biochar as negative emission technologies.

    PubMed

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  17. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Reed, Sasha C.; Smith, William K.; Cleveland, Cory C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    Background/Question/Methods Currently, the United States (U.S.) supplies roughly half the world’s biofuel (secondary bioenergy), with the Energy Independence and Security Act of 2007 (EISA) stipulating an additional three-fold increase in annual production by 2022. Implicit in such energy targets is an associated increase in annual biomass demand (primary bioenergy) from roughly 2.9 to 7.4 exajoules (EJ; 1018 Joules). Yet, many of the factors used to estimate future bioenergy potential are relatively unresolved, bringing into question the practicality of the EISA’s ambitious bioenergy targets. Here, our objective was to constrain estimates of primary bioenergy potential (PBP) for the conterminous U.S. using satellite-derived net primary productivity (NPP) data (measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S) as the most geographically explicit measure of terrestrial growth capacity. Results/Conclusions We show that the annual primary bioenergy potential (PBP) of the conterminous U.S. realistically ranges from approximately 5.9 (± 1.4) to 22.2 (± 4.4) EJ, depending on land use. The low end of this range represents current harvest residuals, an attractive potential energy source since no additional harvest land is required. In contrast, the high end represents an annual harvest over an additional 5.4 million km2 or 75% of vegetated land in the conterminous U.S. While we identify EISA energy targets as achievable, our results indicate that meeting such targets using current technology would require either an 80% displacement of current croplands or the conversion of 60% of total rangelands. Our results differ from previous evaluations in that we use high resolution, satellite-derived NPP as an upper-envelope constraint on bioenergy potential, which removes the need for extrapolation of plot-level observed yields over large spatial areas. Establishing realistically constrained estimates of bioenergy potential seems a critical next step for effectively incorporating bioenergy into future U.S. energy portfolios.

  18. Life cycle assessment of bioenergy systems: state of the art and future challenges.

    PubMed

    Cherubini, Francesco; Strømman, Anders Hammer

    2011-01-01

    The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most LCAs found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Willow bioenergy plantation research in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E.H.; Abrahamson, L.P.; Kopp, R.F.

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are nowmore » being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.« less

  20. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    PubMed

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  1. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    PubMed Central

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. PMID:23576836

  2. Technology Systems Analysis | Energy Analysis | NREL

    Science.gov Websites

    RD&D areas in terms of potential costs, benefits, risks, uncertainties, and timeframes. For examples of our technology systems analysis work, see these research areas: Bioenergy Buildings Grid

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, Amy

    The Bioenergy Technologies Office is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy. This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office (the Office). It identifies the research, development, and demonstration (RD&D), and market transformation and crosscutting activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Officemore » manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.« less

  4. Sustainable Biofuel Crops Project, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juhn, Daniel; Grantham, Hedley

    2014-05-28

    Over the last six years, the Food and Agriculture Organization of the United Nations (FAO) has developed the Bioenergy and Food Security (BEFS) Approach to help countries design and implement sustainable bioenergy policies and strategies. The BEFS Approach consists of two sets of multidisciplinary and integrated tools and guidance (the BEFS Rapid Appraisal and the BEFS Detailed Analysis) to facilitate better decision on bioenergy development which should foster both food and energy security, and contribute to agricultural and rural development. The development of the BEFS Approach was for the most part funded by the German Federal Ministry of Food andmore » Agriculture. Recognizing the need to provide support to countries that wanted an initial assessment of their sustainable bioenergy potential, and of the associated opportunities, risks and trade offs, FAO began developing the BEFS-RA (Rapid Appraisal). The BEFS RA is a spreadsheet–based assessment and analysis tool designed to outline the country's basic energy, agriculture and food security context, the natural resources potential, the bioenergy end use options, including initial financial and economic implications, and the identification of issues that might require fuller investigation with the BEFS Detailed Analysis.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cibin, Raj; Trybula, Elizabeth; Chaubey, Indrajeet

    Cellulosic bioenergy feedstock such as perennial grasses and crop residues are expected to play a significant role in meeting US biofuel production targets. Here, we used an improved version of the Soil and Water Assessment Tool (SWAT) to forecast impacts on watershed hydrology and water quality by implementing an array of plausible land-use changes associated with commercial bioenergy crop production for two watersheds in the Midwest USA. Watershed-scale impacts were estimated for 13 bioenergy crop production scenarios, including: production of Miscanthus 9 giganteus and upland Shawnee switchgrass on highly erodible landscape positions, agricultural marginal land areas and pastures, removal ofmore » corn stover and combinations of these options. We also measured water quality as erosion and sediment loading; this was forecasted to improve compared to baseline when perennial grasses were used for bioenergy production, but not with stover removal scenarios. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet was reduced between 0 and 8% across these bioenergy crop production scenarios compared to baseline across the study watersheds. Our results indicate that bioenergy production scenarios that incorporate perennial grasses reduced the nonpoint source pollutant load at the watershed outlet compared to the baseline conditions (0–20% for nitrate-nitrogen and 3–56% for mineral phosphorus); but, the reduction rates were specific to site characteristics and management practices.« less

  6. Functional Genomics of Drought Tolerance in Bioenergy Crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hengfu; Chen, Rick; Yang, Jun

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understandingmore » of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.« less

  7. A methodology and decision support tool for informing state-level bioenergy policymaking: New Jersey biofuels as a case study

    NASA Astrophysics Data System (ADS)

    Brennan-Tonetta, Margaret

    This dissertation seeks to provide key information and a decision support tool that states can use to support long-term goals of fossil fuel displacement and greenhouse gas reductions. The research yields three outcomes: (1) A methodology that allows for a comprehensive and consistent inventory and assessment of bioenergy feedstocks in terms of type, quantity, and energy potential. Development of a standardized methodology for consistent inventorying of biomass resources fosters research and business development of promising technologies that are compatible with the state's biomass resource base. (2) A unique interactive decision support tool that allows for systematic bioenergy analysis and evaluation of policy alternatives through the generation of biomass inventory and energy potential data for a wide variety of feedstocks and applicable technologies, using New Jersey as a case study. Development of a database that can assess the major components of a bioenergy system in one tool allows for easy evaluation of technology, feedstock and policy options. The methodology and decision support tool is applicable to other states and regions (with location specific modifications), thus contributing to the achievement of state and federal goals of renewable energy utilization. (3) Development of policy recommendations based on the results of the decision support tool that will help to guide New Jersey into a sustainable renewable energy future. The database developed in this research represents the first ever assessment of bioenergy potential for New Jersey. It can serve as a foundation for future research and modifications that could increase its power as a more robust policy analysis tool. As such, the current database is not able to perform analysis of tradeoffs across broad policy objectives such as economic development vs. CO2 emissions, or energy independence vs. source reduction of solid waste. Instead, it operates one level below that with comparisons of kWh or GGE generated by different feedstock/technology combinations at the state and county level. Modification of the model to incorporate factors that will enable the analysis of broader energy policy issues as those mentioned above, are recommended for future research efforts.

  8. Environmental and economic evaluation of bioenergy in Ontario, Canada.

    PubMed

    Zhang, Yimin; Habibi, Shiva; MacLean, Heather L

    2007-08-01

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO2 equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial lightduty vehicle fleet emissions between 1.3 and 2.5 million t of CO2 equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO2 equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO2 equivalent). The economics of biomass cofiring benefits from existing capital, whereas the cellulosic ethanol scenario does not. Notwithstanding this result, there are several factors that increase the attractiveness of ethanol. These include uncertainty in crude oil prices, potential for marked improvements in cellulosic ethanol technology and economics, the province's commitment to 5% ethanol content in gasoline, the possibility of ethanol production benefiting from existing capital, and there being few alternatives for moderate-to-large-scale GHG emissions reductions in the transportation sector.

  9. Feedstock Supply and Logistics: Biomass as a Commodity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-05-06

    The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.

  10. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  11. Environmental and economic evaluation of bioenergy in Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yimin Zhang; Shiva Habibi; Heather L. MacLean

    2007-08-15

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO{sub 2} equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial light-duty vehicle fleet emissions between 1.3 and 2.5 million t of CO{sub 2} equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices (more » $70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($$22/t of CO{sub 2} equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($$92/t of CO{sub 2} equivalent). 67 refs., 5 figs., 7 tabs.« less

  12. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    United States (U.S.) energy policy includes an expectation that bioenergy will be a substantial future energy source. In particular, the Energy Independence and Security Act of 2007 (EISA) aims to increase annual U.S. biofuel (secondary bioenergy) production by more than 3-fold, from 40 to 136 billion liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2.9 to 7.4 EJ yr–1. However, our understanding of many of the factors used to establish such energy targets is far from complete, introducing significgant uncertainty into the feasibility of current estimates of bioenergy potential. Here, we utilized satellite-derived net primary productivity (NPP) data—measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S.—to estimate primary bioenergy potential (PBP). Our results indicate that PBP of the conterminous U.S. ranges from roughly 5.9 to 22.2 EJ yr–1, depending on land use. The low end of this range represents the potential when harvesting residues only, while the high end would require an annual biomass harvest over an area more than three times current U.S. agricultural extent. While EISA energy targets are theoretically achievable, we show that meeting these targets utilizing current technology would require either an 80% displacement of current crop harvest or the conversion of 60% of rangeland productivity. Accordingly, realistically constrained estimates of bioenergy potential are critical for effective incorporation of bioenergy into the national energy portfolio.

  13. DOE-INES New Planet Bioenergy Technical Report Final Public Version 7-22-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niederschulte, Mark; Russell, Kelly; Connors, Keith

    INEOS Bio and New Planet Energy Florida formed a joint venture company called INEOS New Planet BioEnergy (“INPB”) in 2009. This venture’s intent was to demonstrate at commercial scale INEOS Bio’s third-generation technology (the “Bio Process”) that converts a variety of lignocellulosic feedstocks into bioethanol and renewable electricity. INPB applied for and was awarded a $50,000,000 Department of Energy (“DOE”) grant in 2009 to support the construction of the commercial demonstration plant. The grant was a cost-sharing arrangement requiring at least 50% equity participation by the grantee. INPB completed construction of the Indian River BioEnergy Center in Vero Beach, Floridamore » in June, 2012. The facility is designed to produce 8 million gallons per year of fuel-grade bioethanol and 6MW of electrical power, with upwards of 2MW exported to the electrical grid. Construction of the Indian River BioEnergy Center was completed on-time and within its capital budget of $121 million.« less

  14. Life Cycle Assessment of Bioenergy from Lignocellulosic Crops Cultivated on Marginal Land in Europe

    NASA Astrophysics Data System (ADS)

    Rettenmaier, Nils; Schmidt, Tobias; Gärtner, Sven; Reinhardt, Guido

    2017-04-01

    Population growth and changing diets due to economic development lead to an additional demand for land for food and feed production. Slowly but surely turning into a mass market, also the cultivation of non-food biomass crops for fibre (bio-based products) and fuel (biofuels and bioenergy) is increasingly contributing to the pressure on global agricultural land. As a consequence, the already prevailing competition for land might even intensify over the next decades. Against this background, the possibilities of shifting the cultivation of non-food biomass crops to so-called 'marginal lands' are investigated. The EC-funded project 'Sustainable exploitation of biomass for bioenergy from marginal lands in Europe' (SEEMLA) aims at the establishment of suitable innovative land-use strategies for a sustainable production of bioenergy from lignocellulosic crops on marginal lands while improving general ecosystem services. For a complete understanding of the environmental benefits and drawbacks of the envisioned cultivation of bioenergy crops on marginal land, life cycle assessments (LCA) have proven to be a suitable and valuable tool. Thus, embedded into a comprehensive sustainability assessment, a screening LCA is carried out for the entire life cycles of the bioenergy carriers researched in SEEMLA. Investigated systems, on the one hand, include the specific field trials carried out by the SEEMLA partners in Ukraine, Greece and Germany. On the other hand, generic scenarios are investigated in order to derive reliable general statements on the environmental impacts of bioenergy from marginal lands in Europe. Investigated crops include woody and herbaceous species such as black locust, poplar, pine, willow and Miscanthus. Conversion technologies cover the use in a domestic or a district heating plant, power plant, CHP as well as the production of Fischer-Tropsch diesel (FT diesel) and lignocellulosic ethanol. Environmental impacts are compared to conventional reference systems such as heat and/or power as well as transport fuels from fossil energy carriers. Results are obtained for various environmental impact categories including climate change, non-renewable energy use, acidification and eutrophication. Preliminary results show that all investigated bioenergy carriers are associated with environmental advantages and disadvantages compared to the conventional reference systems. Nevertheless, bioenergy carriers showing most environmental benefits could be identified. However, it also became clear that LCA is less suited to address local environmental impacts (e.g. on biodiversity and water). Therefore, the classical LCA approach is supplemented with a separate life cycle environmental impact assessment (LC-EIA). Final results will indicate the best performing crops and conversion technologies, the process steps and parameters that strongly determine the results and the optimisation potentials. From these results, recommendations will be made to various stakeholders including policy makers and farmers, e.g. regarding the criteria that should be met in order to advocate bioenergy production from biomass cultivated on marginal land in Europe.

  15. The impact of biotechnological advances on the future of US bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, Brian H.; Brandt, Craig C.; Guss, Adam M.

    Modern biotechnology has the potential to substantially advance the feasibility, structure, and efficiency of future biofuel supply chains. Advances might be direct or indirect. A direct advance would be improving the efficiency of biochemical conversion processes and feedstock production. Direct advances in processing may involve developing improved enzymes and bacteria to convert lignocellulosic feedstocks to ethanol. Progress in feedstock production could include enhancing crop yields via genetic modification or the selection of specific natural variants and breeds. Other direct results of biotechnology might increase the production of fungible biofuels and bioproducts, which would impact the supply chain. Indirect advances mightmore » include modifications to dedicated bioenergy crops that enable them to grow on marginal lands rather than land needed for food production. This study assesses the feasibility and advantages of near-future (10-year) biotechnological developments for a US biomass-based supply chain for bioenergy production. We assume a simplified supply chain of feedstock, logistics and land use, conversion, and products and utilization. The primary focus is how likely developments in feedstock production and conversion technologies will impact bioenergy and biofuels in the USA; a secondary focus is other innovative uses of biotechnologies in the energy arenas. The assessment addresses near-term biofuels based on starch, sugar, and cellulosic feedstocks and considers some longer-term options, such as oil-crop and algal technologies.« less

  16. The impact of biotechnological advances on the future of US bioenergy

    DOE PAGES

    Davison, Brian H.; Brandt, Craig C.; Guss, Adam M.; ...

    2015-05-14

    Modern biotechnology has the potential to substantially advance the feasibility, structure, and efficiency of future biofuel supply chains. Advances might be direct or indirect. A direct advance would be improving the efficiency of biochemical conversion processes and feedstock production. Direct advances in processing may involve developing improved enzymes and bacteria to convert lignocellulosic feedstocks to ethanol. Progress in feedstock production could include enhancing crop yields via genetic modification or the selection of specific natural variants and breeds. Other direct results of biotechnology might increase the production of fungible biofuels and bioproducts, which would impact the supply chain. Indirect advances mightmore » include modifications to dedicated bioenergy crops that enable them to grow on marginal lands rather than land needed for food production. This study assesses the feasibility and advantages of near-future (10-year) biotechnological developments for a US biomass-based supply chain for bioenergy production. We assume a simplified supply chain of feedstock, logistics and land use, conversion, and products and utilization. The primary focus is how likely developments in feedstock production and conversion technologies will impact bioenergy and biofuels in the USA; a secondary focus is other innovative uses of biotechnologies in the energy arenas. The assessment addresses near-term biofuels based on starch, sugar, and cellulosic feedstocks and considers some longer-term options, such as oil-crop and algal technologies.« less

  17. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  18. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, Etsushi; Yamagata, Yoshiki

    2014-09-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socioeconomic scenarios that aim to keep mean global temperature rise below 2°C above preindustrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high-fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full postprocess combustion CO2 capture is deployed with a high-fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required; however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise, a conflict of land use with food production is inevitable.

  19. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production.

    PubMed

    Gaunt, John L; Lehmann, Johannes

    2008-06-01

    The implications for greenhouse gas emissions of optimizing a slow pyrolysis-based bioenergy system for biochar and energy production rather than solely for energy production were assessed. Scenarios for feedstock production were examined using a life-cycle approach. We considered both purpose grown bioenergy crops (BEC) and the use of crop wastes (CW) as feedstocks. The BEC scenarios involved a change from growing winter wheat to purpose grown miscanthus, switchgrass, and corn as bioenergy crops. The CW scenarios consider both corn stover and winter wheat straw as feedstocks. Our findings show that the avoided emissions are between 2 and 5 times greater when biochar is applied to agricultural land (2--19 Mg CO2 ha(-1) y(-1)) than used solely for fossil energy offsets. 41--64% of these emission reductions are related to the retention of C in biochar, the rest to offsetting fossil fuel use for energy, fertilizer savings, and avoided soil emissions other than CO2. Despite a reduction in energy output of approximately 30% where the slow pyrolysis technology is optimized to produce biochar for land application, the energy produced per unit energy input at 2--7 MJ/MJ is greater than that of comparable technologies such as ethanol from corn. The C emissions per MWh of electricity production range from 91-360 kg CO2 MWh(-1), before accounting for C offset due to the use of biochar are considerably below the lifecycle emissions associated with fossil fuel use for electricity generation (600-900 kg CO2 MWh(-1)). Low-temperature slow pyrolysis offers an energetically efficient strategy for bioenergy production, and the land application of biochar reduces greenhouse emissions to a greater extent than when the biochar is used to offset fossil fuel emissions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2013 U.S. Department of Energy Bioenergy Technologies Office's Peer Review meeting.

  1. Breeding and Selection of New Switchgrass Varieties for Increased Biomass Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taliaferro, C.M.

    2003-05-27

    Switchgrass breeding and genetics research was conducted from 1992-2002 at the Oklahoma State University as part of the national DOE-Bioenergy Feedstock Development Program (BFDP) effort to develop the species as a bioenergy feedstock crop. The fundamental objective of the program was to implement and conduct a breeding program to increase biomass yield capability in switchgrass and develop cultivars for the central and southern United States. Supporting research objectives included: (1) switchgrass germplasm collection, characterization, and enhancement; (2) elucidation of cytogenetic and breeding behavior; and (3) identification of best breeding procedures.

  2. Biotechnology: Impact on sugarcane agriculture and industry

    USDA-ARS?s Scientific Manuscript database

    Of the nine key technology issues that affect the sustainability of the sugar- or bio-energy- cane industry, namely: land, fertility, water, variety, planting density, crop protection, cultural practices, harvesting and processing, and lately, information technology, growing the right varieties rema...

  3. Systems Based Approaches for Conversion of Biomass to Bioenergy and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Steve; McDonald, Timothy; Adhikari, Sushil

    The research provided data on applicability of agricultural energy crops and forest biomass production and logistics models. While much of the overall research effort was focused on lignocellulosic feedstocks, the research also recognized that there are important opportunities for the production and use of starch-based agricultural crops to serve as alternative regionally-appropriate biofuel feedstocks. Also, the research identified fractionation techniques that can be used to separate biomass feedstocks into their basic chemical constituents and then streamline the biorefining industry by developing commodity products for cellulose, hemicellulose, and lignin. Finally, models and techniques were developed to determine economically feasible technologies formore » production of biomass-derived synthesis gases that can be used for clean, renewable power generation and for production of liquid transportation fuels through Fischer-Tropsch Synthesis. Moreover, this research program educated the next generation of engineers and scientists needed to implement these technologies.« less

  4. A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M. L.; Chen-Glasser, Melodie; McMillan, James D.

    There has been substantial technical progress in developing algae-based bioenergy in recent years and a large part of industry and academic research and deployment projects have pivoted away from a pure biofuels strategy. This letter summarizes the findings of a recently completed, comprehensive report, that represents a collaborative effort of at least 20 co-authors, where we analyzed the prospects for using microalgae and macroalgae as feedstocks for biofuels and bioenergy production. The scope of this report includes a discussion of international activities advancing bioenergy and non-energy bioproducts from algae, progress on the use of macroalgae (both cast and cultivated seaweeds)more » for biogas applications, distinct biochemical and thermochemical conversion pathways, multi-product biorefining opportunities, as well as a thorough review of process economics and sustainability considerations. It is envisioned that a higher value algal biomass-based bioproducts industry will provide the additional revenue needed to reduce the net cost of producing algae-based biofuels. As such, a biorefinery approach that generates multiple high-value products from algae will be essential to fully valorize algal biomass and enable economically viable coproduction of bioenergy. Furthermore, to accelerate the implementation of algae-based production, minimizing energy, water, nutrients and land use footprints of integrated algae-based operations needs to be a primary objective of larger scale demonstrations and future research and development.« less

  5. A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts

    DOE PAGES

    Laurens, Lieve M. L.; Chen-Glasser, Melodie; McMillan, James D.

    2017-04-15

    There has been substantial technical progress in developing algae-based bioenergy in recent years and a large part of industry and academic research and deployment projects have pivoted away from a pure biofuels strategy. This letter summarizes the findings of a recently completed, comprehensive report, that represents a collaborative effort of at least 20 co-authors, where we analyzed the prospects for using microalgae and macroalgae as feedstocks for biofuels and bioenergy production. The scope of this report includes a discussion of international activities advancing bioenergy and non-energy bioproducts from algae, progress on the use of macroalgae (both cast and cultivated seaweeds)more » for biogas applications, distinct biochemical and thermochemical conversion pathways, multi-product biorefining opportunities, as well as a thorough review of process economics and sustainability considerations. It is envisioned that a higher value algal biomass-based bioproducts industry will provide the additional revenue needed to reduce the net cost of producing algae-based biofuels. As such, a biorefinery approach that generates multiple high-value products from algae will be essential to fully valorize algal biomass and enable economically viable coproduction of bioenergy. Furthermore, to accelerate the implementation of algae-based production, minimizing energy, water, nutrients and land use footprints of integrated algae-based operations needs to be a primary objective of larger scale demonstrations and future research and development.« less

  6. Bioenergy Potential Based on Vinasse From Ethanol Industrial Waste to Green Energy Sustainability

    NASA Astrophysics Data System (ADS)

    Harihastuti, Nani; Marlena, Bekti

    2018-02-01

    The waste water from alcohol industry is called vinasse has a high organic content, with BOD5 = 109.038 mg / l, COD = 353.797 mg / l and TSS = 7200 mg / l, pH 4-5 with a temperature of around 40-50ºC. The current treatment of alcohol waste water, most still using facultative anaerobic technology with open ponds that are only covered with HDPE plastics. This technology produces less optimal biogas and has a weakness that is the hydraulic residence time (HRT) for long (40-50 days), wide land needs, low COD reduction efficiency as well as high risk of fire and leakage of biogas release high to trigger the occurrence of greenhouse gas and global warming effects. Development of technology with innovation reactor integration model Fixed Dome-Hybrid Anaerobic Filter aims to expand the contact area between the substrate and microbial with modification of the substrate flow system and the area of the filter and integrate with the gas accumulator. The design of this Fixed Dome-Hybrid Anaerobic filter integration model technology, has the advantage of producing optimal bioenergy with CH4 more than 50% content with decrease of COD more than 85% and hydraulic residence time of about 10 (ten) days, bioenergy result is renewable energy made from raw material vinasse from alcohol industrial waste which can be utilized for fuel substitution on the distillation process or boiler process of the industry in a sustainable and cleaner environment.

  7. The role of bioenergy in a climate-changing world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Glaucia Mendes; Ballester, Maria Victoria R.; de Brito Cruz, Carlos Henrique

    Bioenergy has been under intense scrutiny over the last ten years with significant research efforts in many countries taking place to define and measure sustainable practices. We describe here the main challenges and policy issues and provide policy recommendations for scaling up sustainable bioenergy approaches globally. The 2016 Intended Nationally Determined Contributions (INDCs defined under the UN Framework Convention on Climate Change) (UNFCCC) Conference of the Parties (COP21) will not reach global Greenhouse Gas (GHG) emission targets of 2 °C. Sustainable biomass production can make a significant contribution. Substantive evidence exists that many bioenergy cropping systems can bring multiple benefitsmore » and off-set environmental problems associated with fossil fuels usage as well as intensive food production and urbanization. We provide evidence that there are many approaches to land use for bioenergy expansion that do not lead to competition for food or other needs. We should focus on how to manage these approaches on a synergistic basis and how to reduce tradeoffs at landscape scales. Priorities include successful synergies between bioenergy and food security (integrated resource management designed to improve both food security and access to bioenergy), investments in technology, rural extension, and innovations that build capacity and infrastructure, promotion of stable prices to incentivize local production and use of double cropping and flex crops (plants grown for both food and non-food markets) that provide food and energy as well as other services. The sustainable production of biomass requires appropriate policies to secure long-term support to improve crop productivity and also to ensure environmental as well as economic and social benefits of bioenergy cropping systems. Continuous support for cropping, infrastructure, agricultural management and related policies is needed to foster positive synergies between food crops and bioenergy production. In comparison to fossil fuels, biofuels have many positive environmental benefits. Potential negative effects caused by land-use change and agriculture intensification can be mitigated by agroecological zoning, best management practices, the use of eco-hydrology and biodiversity-friendly concepts at field, watershed and landscape scales. Global climate and environmental changes related to the use of fossil fuels and inequitable development make it unethical not to pursue more equitable energy development that includes bioenergy. Here, to achieve sustainable development, competitiveness and costs of bioenergy production need to be addressed in a manner that considers not only economic gains but also development of local knowledge and social and environmental benefits.« less

  8. The role of bioenergy in a climate-changing world

    DOE PAGES

    Souza, Glaucia Mendes; Ballester, Maria Victoria R.; de Brito Cruz, Carlos Henrique; ...

    2017-02-24

    Bioenergy has been under intense scrutiny over the last ten years with significant research efforts in many countries taking place to define and measure sustainable practices. We describe here the main challenges and policy issues and provide policy recommendations for scaling up sustainable bioenergy approaches globally. The 2016 Intended Nationally Determined Contributions (INDCs defined under the UN Framework Convention on Climate Change) (UNFCCC) Conference of the Parties (COP21) will not reach global Greenhouse Gas (GHG) emission targets of 2 °C. Sustainable biomass production can make a significant contribution. Substantive evidence exists that many bioenergy cropping systems can bring multiple benefitsmore » and off-set environmental problems associated with fossil fuels usage as well as intensive food production and urbanization. We provide evidence that there are many approaches to land use for bioenergy expansion that do not lead to competition for food or other needs. We should focus on how to manage these approaches on a synergistic basis and how to reduce tradeoffs at landscape scales. Priorities include successful synergies between bioenergy and food security (integrated resource management designed to improve both food security and access to bioenergy), investments in technology, rural extension, and innovations that build capacity and infrastructure, promotion of stable prices to incentivize local production and use of double cropping and flex crops (plants grown for both food and non-food markets) that provide food and energy as well as other services. The sustainable production of biomass requires appropriate policies to secure long-term support to improve crop productivity and also to ensure environmental as well as economic and social benefits of bioenergy cropping systems. Continuous support for cropping, infrastructure, agricultural management and related policies is needed to foster positive synergies between food crops and bioenergy production. In comparison to fossil fuels, biofuels have many positive environmental benefits. Potential negative effects caused by land-use change and agriculture intensification can be mitigated by agroecological zoning, best management practices, the use of eco-hydrology and biodiversity-friendly concepts at field, watershed and landscape scales. Global climate and environmental changes related to the use of fossil fuels and inequitable development make it unethical not to pursue more equitable energy development that includes bioenergy. Here, to achieve sustainable development, competitiveness and costs of bioenergy production need to be addressed in a manner that considers not only economic gains but also development of local knowledge and social and environmental benefits.« less

  9. Role of Bioreactors in Microbial Biomass and Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liang; Zhang, Biao; Zhu, Xun

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems aremore » described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.« less

  10. 2017 Project Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2017 U.S. Department of Energy Bioenergy Technologies Office's Peer Review meeting.

  11. Reconciling food security and bioenergy: priorities for action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L.; Msangi, Siwa; Dale, Virginia H.

    Addressing the challenges of understanding and managing complex interactions among food security, biofuels, and land management requires a focus on specific contextual problems and opportunities. The United Nations 2030 Sustainable Development Goals prioritize food and energy security and bioenergy links these two priorities. Effective food security programs begin by clearly defining the problem and asking, What options will be effective to assist people at high risk? Headlines and cartoons that blame biofuels for food insecurity reflect good intentions but mislead the public and policy makers because they obscure or miss the main drivers of local food insecurity and opportunities formore » biofuels to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near- and long- term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy do not compete for land but food and bioenergy systems can and do work together to improve resource management, (3) investing in innovations to build capacity and infrastructure such as rural agricultural extension and technology, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders in identifying and assessing specific opportunities for biofuels to improve food security. In conclusion, systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.« less

  12. Reconciling food security and bioenergy: priorities for action

    DOE PAGES

    Kline, Keith L.; Msangi, Siwa; Dale, Virginia H.; ...

    2016-06-14

    Addressing the challenges of understanding and managing complex interactions among food security, biofuels, and land management requires a focus on specific contextual problems and opportunities. The United Nations 2030 Sustainable Development Goals prioritize food and energy security and bioenergy links these two priorities. Effective food security programs begin by clearly defining the problem and asking, What options will be effective to assist people at high risk? Headlines and cartoons that blame biofuels for food insecurity reflect good intentions but mislead the public and policy makers because they obscure or miss the main drivers of local food insecurity and opportunities formore » biofuels to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near- and long- term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy do not compete for land but food and bioenergy systems can and do work together to improve resource management, (3) investing in innovations to build capacity and infrastructure such as rural agricultural extension and technology, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders in identifying and assessing specific opportunities for biofuels to improve food security. In conclusion, systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.« less

  13. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification scenario" under which more biomass feedstock can be produced and harvested, so that less area would be affected by harvesting and other management activities. Intensification through optimal forest management can lead to a substantial reduction of the area necessary for bioenergy feedstock supply. This in turn means that the "spared" area and the associated ecosystem services can be designated for conservation or other uses. This insight provides support to policy and decision makers in considering the optimal "mix" or "co-existence" of different ecosystem services and economic demands from a modern landscape management approach.

  14. Integrated Biorefinery Research Facility | Bioenergy | NREL

    Science.gov Websites

    industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard intellectual property and helping industrial partners commercialize technologies. Testing Facilities and

  15. Environmental assessment of bioenergy technologies application in Russia, including their impact on the balance of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Andreeva, Irina; Vasenev, Ivan

    2017-04-01

    In recent years, Russia adopted a policy towards increasing of the share of renewable energy in total amount of used energy, albeit with some delay comparing to the EU countries and the USA. It was expected that the use of biofuels over time will reduce significantly the dependency of Russian economy on fossil fuels, increase its competitiveness, and increase Russian contribution to the prevention of global climate changes. Russia has significant bio-energy potential and resources which are characterized by great diversity due to the large extent of the territory, which require systematic studies and environmental assessment of used bio-energy technologies. Results of research carried at the Laboratory of agroecological monitoring, modeling and prediction of ecosystems RSAU-MTAA demonstrated significant differences in the assessment of the environmental, economic and social effects of biofuel production and use, depending on the species of bio-energy crops, regional soil-ecological and agro-climatic characteristics, applied farming systems and production processes. The total area of temporarily unused and fallow land, which could be allocated to the active agricultural use in Russia, according to various estimates, ranges from 20 to 33 million hectares, which removes the problem, typical of most European countries, of adverse agro-ecological changes in land use connected with the expansion of bio-energy crops cultivation. However, the expansion of biofuel production through the use of fallow land and conversion of natural lands has as a consequence the problem of greenhouse gas emissions due to land use changes, which, according to FAO, could be even higher than CO2 emission from fossil fuels for some of bio-energy raw materials and production systems. Assessment of the total impacts of biofuels on greenhouse gas emissions in the Russian conditions should be based on regionally adapted calculations of flows throughout the entire life cycle of production, taking into account conditions of the particular type of agricultural landscape, possible changes in the characteristics and structure of land use, direct and indirect effects on the ecosystem components and biodiversity. North-Western, Central and Southern regions of the European part of Russia have great potential to produce biofuels. While there is a clearly expressed zonal agroclimatic potential of growing bio-energy crops (1.5 times increase of PAR in the forest-steppe zone in comparison with the area of the southern taiga) and there is a steady trend of further growth with a parallel increase in the amount of rainfall and the amount of active temperatures for the XXI century forecast. Particular attention should be payed to areas with high population density and industrial production with the possibility of combining the cultivation of oilseed rape for the bio-energy purpose with phytoremediation and soil improving effect of the contaminated and unproductive soils. The increasing potential of atmospheric carbon's temporary binding in the biomass of the bio-energy crops and consequently in the biofuels produced from them can significantly reduce total emissions of greenhouse gases in the conditions of the European part of Russia, but there is the need for more detailed balance calculation for specific soil and climatic conditions and land-use systems.

  16. Research and Technology Development for Genetic Improvement of Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kausch, Albert; Rhodes, Richard

    This research adds to the understanding of switchgrass genetics and the increasing of biomass relevant to production of bioenergy. Switchgrass, Panicum virgatum L., and its related species are well known as potential bioenergy crops since the early 1990s. There are global economic, political, US national security and environmental pressures to increase renewable biofuel production and utilization to offset gasoline and diesel fuel use and climate change, especially in the liquid fuel transportation sector. To realize the potential of bioenergy crops, rapid genetic improvement of the most promising perennial grass feedstocks, such as switchgrass, are anticipated by current genomics, association genetics,more » marker assisted breeding, hybrid plant development, advanced tissue culture, conventional genetics and other approaches to increase yield, processability, and regional adaptation. The technical effectiveness and economic feasibility of the methods or techniques investigated are demonstrated by several publications, presentations and patents produced as an outcome and deliverable of this research. This project is of a broad benefit to the public not only through the dissemination of this information but also to the development of new methods which will be applied to future bioenergy crop improvement as well as other crops.« less

  17. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE PAGES

    Borole, Abhijeet P.

    2015-08-25

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  18. Bioenergetics | Bioenergy | NREL

    Science.gov Websites

    technologies, and working to understand the capture of solar energy in photosynthetic systems and the and attached to sensors, hoses, and valves Photosynthetic Energy Transduction Woman working with a

  19. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an importantmore » technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant fraction of petroleum based fuels with advanced biofuels, leading to increased energy security and decreased carbon footprint; and (2) establishment of a new biofuel industry segment, leading to the creation of U.S. engineering, manufacturing, construction, operations and agricultural jobs. PNNL development of CHG progressed at two levels. Initial tests were made in the laboratory in both mini-scale and bench-scale continuous flow reactor systems. Following positive results, the next level of evaluation was in the scaled-up engineering development system, which was operated at PNNL.« less

  20. Feedstock Supply and Logistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Providing biomass for conversion into high-quality biofuels, biopower, and bioproducts represents an economic opportunity for communities across the nation. The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) and its partners are developing the technologies and systems needed to sustainably and economically deliver a diverse range of biomass in formats that enable efficient use in biorefineries.

  1. Financial performance of a mobile pyrolysis system used to produce biochar from sawmill residues

    Treesearch

    Dongyeob Kim; Nathaniel McLean Anderson; Woodam Chung

    2015-01-01

    Primary wood products manufacturers generate significant amounts of woody biomass residues that can be used as feedstocks for distributed-scale thermochemical conversion systems that produce valuable bioenergy and bioproducts. However, private investment in these technologies is driven primarily by financial performance, which is often unknown for new technologies with...

  2. Greenhouse gas implications of a 32 billion gallon bioenergy landscape in the US

    NASA Astrophysics Data System (ADS)

    DeLucia, E. H.; Hudiburg, T. W.; Wang, W.; Khanna, M.; Long, S.; Dwivedi, P.; Parton, W. J.; Hartman, M. D.

    2015-12-01

    Sustainable bioenergy for transportation fuel and greenhouse gas (GHGs) reductions may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Here, we implemented an integrated approach to planning bioenergy landscapes by combining spatially-explicit ecosystem and economic models to predict a least-cost land allocation for a 32 billion gallon (121 billion liter) renewable fuel mandate in the US. We find that 2022 GHG transportation emissions are decreased by 7% when 3.9 million hectares of eastern US land are converted to perennial grasses supplemented with corn residue to meet cellulosic ethanol requirements, largely because of gasoline displacement and soil carbon storage. If renewable fuel production is accompanied by a cellulosic biofuel tax credit, CO2 equivalent emissions could be reduced by 12%, because it induces more cellulosic biofuel and land under perennial grasses (10 million hectares) than under the mandate alone. While GHG reducing bioenergy landscapes that meet RFS requirements and do not displace food are possible, the reductions in GHG emissions are 50% less compared to previous estimates that did not account for economically feasible land allocation.

  3. Challenges in scaling up biofuels infrastructure.

    PubMed

    Richard, Tom L

    2010-08-13

    Rapid growth in demand for lignocellulosic bioenergy will require major changes in supply chain infrastructure. Even with densification and preprocessing, transport volumes by mid-century are likely to exceed the combined capacity of current agricultural and energy supply chains, including grain, petroleum, and coal. Efficient supply chains can be achieved through decentralized conversion processes that facilitate local sourcing, satellite preprocessing and densification for long-distance transport, and business models that reward biomass growers both nearby and afar. Integrated systems that are cost-effective and energy-efficient will require new ways of thinking about agriculture, energy infrastructure, and rural economic development. Implementing these integrated systems will require innovation and investment in novel technologies, efficient value chains, and socioeconomic and policy frameworks; all are needed to support an expanded biofuels infrastructure that can meet the challenges of scale.

  4. 78 FR 69998 - Approval and Promulgation of Air Quality Implementation Plans; Rescission of Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... application of the PSD permitting requirements to biogenic carbon dioxide (CO 2 ) emissions from bioenergy and... rule does not change the balance of power between Wyoming and EPA as provided for in the CAA. Thus...

  5. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Steven

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests onmore » forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.« less

  6. Bioprose: Building the Bioeconomy through Technology & Communication Factsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Bioenergy Technologies Office (BETO) Bioprose blog is a key re- source for scientific information on the U.S. bioeconomy. The blog posts will provide technical knowledge that shows how BETO sustainably deve- lops biofuels and bioproducts; they will also communicate how resear- chers are making progress in enha- ncing U.S. energy security and com- petitive advantage.

  7. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  8. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  9. Biotechnology at the Cutting Edge - Keasling

    ScienceCinema

    Keasling, Jay

    2018-05-11

    Jay Keasling, Berkeley Lab ALD for Biosciences and CEO of the Joint BioEnergy Institute, appears in a video on biotechnology at the Smithsonian's National Museum of American History. The video is part of en exhibit titled "Science in American Life," which examines the relationship between science, technology, progress and culture through artifacts, historical photographs and multimedia technology.

  10. Biochemical Conversion: Using Enzymes, Microbes, and Catalysis to Make Fuels and Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-26

    This fact sheet describes the Bioenergy Technologies Office's biochemical conversion work and processes. BETO conducts collaborative research, development, and demonstration projects to improve several processing routes for the conversion of cellulosic biomass.

  11. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.

    PubMed

    Zhou, Minghua; Yang, Jie; Wang, Hongyu; Jin, Tao; Xu, Dake; Gu, Tingyue

    2013-01-01

    Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.

  12. A mini review on renewable sources for biofuel.

    PubMed

    Ho, Dang P; Ngo, Huu Hao; Guo, Wenshan

    2014-10-01

    Rapid growth in both global energy demand and carbon dioxide emissions associated with the use of fossil fuels has driven the search for alternative sources which are renewable and have a lower environmental impact. This paper reviews the availability and bioenergy potentials of the current biomass feedstocks. These include (i) food crops such as sugarcane, corn and vegetable oils, classified as the first generation feedstocks, and (ii) lignocellulosic biomass derived from agricultural and forestry residues and municipal waste, as second generation feedstocks. The environmental and socioeconomic limitations of the first generation feedstocks have placed greater emphasis on the lignocellulosic biomass, of which the conversion technologies still faces major constraints to full commercial deployment. Key technical challenges and opportunities of the lignocellulosic biomass-to-bioenergy production are discussed in comparison with the first generation technologies. The potential of the emerging third generation biofuel from algal biomass is also reviewed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. 7 CFR 3430.903 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... bioenergy research and applied research; (4) Have a proven record of development and implementation of... 7 Agriculture 15 2010-01-01 2010-01-01 false Eligibility. 3430.903 Section 3430.903 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION...

  14. Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks.

    PubMed

    Zhu, Xiaoyan; Yao, Qingzhu

    2011-12-01

    It is technologically possible for a biorefinery to use a variety of biomass as feedstock including native perennial grasses (e.g., switchgrass) and agricultural residues (e.g., corn stalk and wheat straw). Incorporating the distinct characteristics of various types of biomass feedstocks and taking into account their interaction in supplying the bioenergy production, this paper proposed a multi-commodity network flow model to design the logistics system for a multiple-feedstock biomass-to-bioenergy industry. The model was formulated as a mixed integer linear programming, determining the locations of warehouses, the size of harvesting team, the types and amounts of biomass harvested/purchased, stored, and processed in each month, the transportation of biomass in the system, and so on. This paper demonstrated the advantages of using multiple types of biomass feedstocks by comparing with the case of using a single feedstock (switchgrass) and analyzed the relationship of the supply capacity of biomass feedstocks to the output and cost of biofuel. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. 2016 National Algal Biofuels Technology Review Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  16. The Elum Project: A Network of UK Sites to Understand Land-Use Transitions to Bioenergy and Their Implications for Greenhouse Gas Balance and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Harris, Z. M.; Alberti, G.; Bottoms, E.; Rowe, R.; Parmar, K.; Marshall, R.; Elias, D.; Smith, P.; Dondini, M.; Pogson, M.; Richards, M.; Finch, J.; Ineson, P.; Keane, B.; Perks, M.; Wilkinson, M.; Yamulki, S.; Donnison, I.; Farrar, K.; Massey, A.; McCalmont, J.; Drewer, J.; Sohi, S.; McNamara, N.; Taylor, G.

    2014-12-01

    Rising anthropogenic greenhouse gas (GHG) emissions coupled with an increasing need to address energy security are resulting in the development of cleaner, more sustainable alternatives to traditional fossil fuel sources. Bioenergy crops have been proposed to be able to mitigate the effects of climate change as well as provide increased energy security. The aim of this project is to assess the impact of land conversion to second generation non-food bioenergy crops on GHG balance for several land use transitions, including from arable, grassland and forest. A network of 6 sites was established across the UK to assess the processes underpinning GHG balance and to provide input data to a model being used to assess the sustainability of different land use transitions. Monthly analysis of soil GHGs shows that carbon dioxide contributes most to the global warming potential of these bioenergy crops, irrespective of transition. Nitrous oxide emissions were low for all crops except arable cropping and methane emissions were very low for all sites. Nearly all sites have shown a significant decrease in CO2 flux from the control land use. Eddy flux approaches, coupled with soil assessments show that for the transition from grassland to SRC willow there is a significant reduction in GHG emissions from soil and a negative net ecosystem exchange due to increased GPP and ecosystem respiration. These results suggest for this land use transition to bioenergy in a UK specific context, there may be a net benefit for ecosystem GHG exchange of transition to bioenergy Finally we are developing a meta-modelling tool to allow land use managers to make location-specific, informed decisions about land use change to bioenergy. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). This project is co-ordinated by the Centre for Ecology & Hydrology (www.elum.ac.uk).

  17. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    Growing crops for bioenergy is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. The debate should shift from "food or fuel" to the more challenging target: how the increasing demand for food and energy can be met in the future, particularly when water and land availability will be limited. As for food crops, also for bioenergy crops it is questioned whether it is preferable to manage cultivation to enhance ecosystem services ("land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand ("land sparing" strategy). Energy crop production systems differ greatly in the supply of ecosystem services. The use of perennial biomass (e.g. Switchgrass, Mischantus, Giant reed) for energy production is considered a promising way to reduce net carbon emissions and mitigate climate change. In addition, regulating and supporting ecosystem services could be provided when specific management of bioenergy crops is implemented. The idea of HEDGE-BIOMASS* project is to convert the arable field margins to bioenergy crop production fostering a win-win strategy at landscape level. Main objective of the project is to improve land management to generate environmental benefits and increase farmer income. The various options available in literature for an improved field boundary management are presented. The positive/unknown/negative effects of growing perennial bioenergy crops on field margins will be discussed relatively to the following soil-related ecosystem services: (I) biodiversity conservation and enhancement, (II) soil nutrient cycling, (III) climate regulation (reduction of GHG emissions and soil carbon sequestration/stabilization, (IV) water regulation (filtering and buffering), (V) erosion regulation, (VI) pollination and pest regulation. From the analysis of available data, it emerges that production of biomass for bioenergy on field margins improves ecosystem services, depending upon the soil/agroecosystem health status of arable land displaced by the bioenergy crop. Considering that climate change is a dominant driver for agroecosystem health and perennial bionergy crops tend to stabilize soil C in arable land, it will be necessary to focus our attention to the improvement of climate regulation ecosystem service value in ecologically-degraded arable field margins. This management option seems to be the most sustainable strategy to enhance a win-win strategy: namely, sequestering carbon, producing biomasses for energetic purposes, improving the whole set of ecosystem services affected by soil organic matter, leaving, at the same time, more arable land for food and fiber crops. * The HEDGE-BIOMASS project is funded by Italian Minister of Agriculture for the period 2013-2016 and is being followed by BIOMASS Research Center at Università Cattolica del Sacro Cuore (Piacenza, Italy).

  18. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    PubMed

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, L.; Schell, D.; Davis, R.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costsmore » only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.« less

  20. Bioenergy Sustainability in China: Potential and Impacts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Gentry, Randall W.; Yu, Gui-Rui; Sayler, Gary S.; Bickham, John W.

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China’s bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  1. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits

    PubMed Central

    2012-01-01

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities. PMID:23122416

  2. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits.

    PubMed

    Feltus, Frank Alex; Vandenbrink, Joshua P

    2012-11-02

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities.

  3. Scenarios of global agricultural biomass harvest reveal conflicts and trade-offs for bioenergy with CCS

    NASA Astrophysics Data System (ADS)

    Powell, Tom; Lenton, Tim

    2013-04-01

    We assess the quantitative potential for future land management to help rebalance the global carbon cycle by actively removing carbon dioxide (CO2) from the atmosphere with simultaneous bio-energy offsets of CO2 emissions, whilst meeting global food demand, preserving natural ecosystems and minimising CO2 emissions from land use change. Four alternative future scenarios are considered out to 2050 with different combinations of high or low technology food production and high or low meat diets. Natural ecosystems are protected except when additional land is necessary to fulfil the dietary demands of the global population. Dedicated bio-energy crops can only be grown on land that is already under management but is no longer needed for food production. We find that there is only room for dedicated bio-energy crops if there is a marked increase in the efficiency of food production (sustained annual yield growth of 1%, shifts towards more efficient animals like pigs and poultry, and increased recycling of wastes and residues). If there is also a return to lower meat diets, biomass energy with carbon storage (BECS) as CO2 and biochar could remove up to 4.0 Pg C per year in 2050. With the current trend to higher meat diets there is only room for limited expansion of bio-energy crops after 2035 and instead BECS must be based largely on biomass residues, removing up to 1.5 Pg C per year in. A high-meat, low-efficiency future would be a catastrophe for natural ecosystems (and thus for the humans that depend on their services) with around 8.5 Gha under cultivation in 2050. When included in a simple earth system model with a technological mitigation CO2 emission baseline these produce atmospheric CO2 concentrations of ~ 450-525ppm in 2050. In addition we assess the potential for future biodiversity loss under the scenarios due to three interacting factors; energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. Forecasts of committed global biodiversity loss in 2050 (from 2000 levels) vary by more than a factor of two across the scenarios. The greatest biodiversity loss is forecast in the 'high meat low efficiency' scenario with roughly equal contributions from biomass harvest and climate change, and a smaller land-use change contribution. The smallest biodiversity loss is forecast in the 'high meat high efficiency' scenario and is mostly due to biomass harvest, followed by climate change. Climate change is lowest in the 'low meat high efficiency' efficiency scenario thanks to BECCS based on bio-energy crops, but the resulting withdrawal of energy from ecosystems has a greater negative impact on biodiversity than the positive effect of less climate change. This suggests that using bio-energy to tackle climate change in order to limit biodiversity loss would instead have the opposite effect.

  4. Sugarcane Diseases: Futuristic Management Strategies

    USDA-ARS?s Scientific Manuscript database

    Sugarcane pathology and disease control practices are changing due to social, economic and technological events. Sugarcane is becoming more important economically because of the increasing price and demand for sugar and its use for bio-energy. These pressures make the control of diseases more import...

  5. Advanced Algal Systems Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  6. 78 FR 13497 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Deferral for CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... defers until July 21, 2014 the application of the Prevention of Significant Deterioration (PSD... Other Biogenic Sources Under the Prevention of Significant Deterioration Program AGENCY: Environmental... July 21, 2014 the application of PSD permitting requirements to biogenic CO 2 emissions from bioenergy...

  7. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction: Update of the 2016 State-of-Technology Cases and Design Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hao; Dunn, Jennifer; Pegallapati, Ambica

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.

  9. MSU-Northern Bio-Energy Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kegel, Greg; Alcorn-Windy Boy, Jessica; Abedin, Md. Joynal

    2014-09-30

    MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy dutymore » diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.« less

  10. Rewiring the Carbon Economy: Engineered Carbon Reduction Listening Day Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illing, Lauren; Natelson, Robert; Resch, Michael

    On July 8, 2017, the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) sponsored the Engineered Carbon Reduction Listening Day: Advanced Strategies to Bypass Land Use for the Emerging Bioeconomy in La Jolla, California. This event explored non-photosynthetic carbon dioxide–reduction technologies, including electrocatalytic, thermocatalytic, photocatalytic, and biocatalytic approaches. BETO has summarized stakeholder input from the listening day in a summary report.

  11. Assessing the interactions among U.S. climate policy, biomass energy, and agricultural trade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Marshall A.; McJeon, Haewon C.; Calvin, Katherine V.

    Energy from biomass is potentially an important contributor to U.S. climate change mitigation efforts. However, an important consideration to large-scale implementation of bioenergy is that the production of biomass competes with other uses of land. This includes traditionally economically productive uses, such as agriculture and forest products, as well as storage of carbon in forests and non-commercial lands. In addition, in the future, biomass may be more easily traded, meaning that increased U.S. reliance on bioenergy could come with it greater reliance on imported energy. Several approaches could be implemented to address these issues, including limits on U.S. biomass importsmore » and protection of U.S. and global forests. This paper explores these dimensions of bioenergy’s role in U.S. climate policy and the relationship to these alternative measures for ameliorating the trade and land use consequences of bioenergy. It first demonstrates that widespread use of biomass in the U.S. could lead to imports; and it highlights that the relative stringency of domestic and international carbon mitigation policy will heavily influence the degree to which it is imported. Next, it demonstrates that while limiting biomass imports would prevent any reliance on other countries for this energy supply, it would most likely alter the balance of trade in other agricultural products against which biomass competes; for example, it might turn the U.S. from a corn exporter to a corn importer. Finally, it shows that increasing efforts to protect both U.S. and international forests could also affect the balance of trade in other agricultural products.« less

  12. Greater transportation energy and GHG offsets from bioelectricity than ethanol.

    PubMed

    Campbell, J E; Lobell, D B; Field, C B

    2009-05-22

    The quantity of land available to grow biofuel crops without affecting food prices or greenhouse gas (GHG) emissions from land conversion is limited. Therefore, bioenergy should maximize land-use efficiency when addressing transportation and climate change goals. Biomass could power either internal combustion or electric vehicles, but the relative land-use efficiency of these two energy pathways is not well quantified. Here, we show that bioelectricity outperforms ethanol across a range of feedstocks, conversion technologies, and vehicle classes. Bioelectricity produces an average of 81% more transportation kilometers and 108% more emissions offsets per unit area of cropland than does cellulosic ethanol. These results suggest that alternative bioenergy pathways have large differences in how efficiently they use the available land to achieve transportation and climate goals.

  13. Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial

    NASA Astrophysics Data System (ADS)

    McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan

    2013-04-01

    Climate change impacts resulting from fossil fuel combustion and concerns about the diversity of energy supply are driving interest to find low-carbon energy alternatives. As a result bioenergy is receiving widespread scientific, political and media attention for its potential role in both supplying energy and mitigating greenhouse (GHG) emissions. It is estimated that the bioenergy contribution to EU 2020 renewable energy targets could require up to 17-21 million hectares of additional land in Europe (Don et al., 2012). There are increasing concerns that some transitions into bioenergy may not be as sustainable as first thought when GHG emissions from the crop growth and management cycle are factored into any GHG life cycle assessment (LCA). Bioenergy is complex and encapsulates a wide range of crops, varying from food crop based biofuels to dedicated second generation perennial energy crops and forestry products. The decision on the choice of crop for energy production significantly influences the GHG mitigation potential. It is recognised that GHG savings or losses are in part a function of the original land-use that has undergone change and the management intensity for the energy crop. There is therefore an urgent need to better quantify both crop and site-specific effects associated with the production of conventional and dedicated energy crops on the GHG balance. Currently, there is scarcity of GHG balance data with respect to second generation crops meaning that process based models and LCAs of GHG balances are weakly underpinned. Therefore, robust, models based on real data are urgently required. In the UK we have recently embarked on a detailed program of work to address this challenge by combining a large number of field studies with state-of-the-art process models. Through six detailed experiments, we are calculating the annual GHG balances of land use transitions into energy crops across the UK. Further, we are quantifying the total soil carbon gain or loss after land use change at 100 fieldsites which encapsulate a range of UK climates and soil types. Our overall objective is to use our measured data to parameterise and validate the models that we will use to predict the implications of bioenergy crop deployment in the UK up to 2050. The resultant output will be a meta-model which will help facilitate decision making on the sustainable development of bioenergy in the UK, with potential deployment in other temperate climates around the world. Here we report on the outcome of the first of three years of work. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). Don et al. (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4, 372-379.

  14. Global potential for and limits to widespread implementation of bioenergy with carbon capture and storage (BECCS)

    NASA Astrophysics Data System (ADS)

    Smith, P.

    2017-12-01

    A majority of Integrated Assessment Models (IAMs) use, often very significant amounts (20 Gt CO2e/yr), of negative emissions technologies (NETs) to reach a 2°C target by 2100, among which BECCS is often selected as the most cost-effective NET. Given that most models fail to reach a 2°C target without NETs, it seems impossible that the aspirational target of 1.5°C of the Paris Agreement could be met without NETs, with BECCS suggested as a major NET. It is therefore essential that the potential, feasibility and impacts of BECCS are better defined. Potential limits to widespread application of BECCS could include land competition, greenhouse gas emissions, physical climate feedbacks (e.g. albedo), water requirements, nutrient use, energy and cost, all of which are explored in this presentation, and compared to the impacts of other land-based NETs.

  15. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will likely benefit grassland bird populations, and bioenergy landscapes could be designed to maximize biodiversity benefits while meeting targets for biomass production.

  16. Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.

    There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations increased in groundwater post-treatment to < 2 mg N L -1, and these concentrations were below the U.S. drinking water standard (10 mg N L -1). Applied pesticides were almost always below detection in streams and groundwater. Overall, these findings highlight that current forestry BMPs can protect stream water quality from intensive pine management for bioenergy in the first 3.5 years. However, groundwater quality and transit times need to be considered in these low-gradient watersheds of the southeastern U.S. that are likely to become an important location for woody bioenergy feedstock production.« less

  17. Developing tools to identify marginal lands and assess their potential for bioenergy production

    NASA Astrophysics Data System (ADS)

    Galatsidas, Spyridon; Gounaris, Nikolaos; Dimitriadis, Elias; Rettenmaier, Nils; Schmidt, Tobias; Vlachaki, Despoina

    2017-04-01

    The term "marginal land" is currently intertwined in discussions about bioenergy although its definition is neither specific nor firm. The uncertainty arising from marginal land classification and quantification is one of the major constraining factors for its potential use. The clarification of political aims, i.e. "what should be supported?" is also an important constraining factor. Many approaches have been developed to identify marginal lands, based on various definitions according to the management goals. Concerns have been frequently raised regarding the impacts of marginal land use on environment, ecosystem services and sustainability. Current tools of soil quality and land potentials assessment fail to meet the needs of marginal land identification and exploitation for biomass production, due to the lack of comprehensive analysis of interrelated land functions and their quantitative evaluation. Land marginality is determined by dynamic characteristics in many cases and may therefore constitute a transitional state, which requires reassessment in due time. Also, marginal land should not be considered simply a dormant natural resource waiting to be used, since it may already provide multiple benefits and services to society relating to wildlife, biodiversity, carbon sequestration, etc. The consequences of cultivating such lands need to be fully addressed to present a balanced view of their sustainable potential for bioenergy. This framework is the basis for the development of the SEEMLA tools, which aim at supporting the identification, assessment, management of marginal lands in Europe and the decision-making for sustainable biomass production of them using appropriate bioenergy crops. The tools comprise two applications, a web-based one (independent of spatial data) and a GIS-based application (land regionalization on the basis of spatial data), which both incorporate: - Land resource characteristics, restricting the cultivation of agricultural crops but effectively sustaining bioenergy plants (soil, climate, topography, vegetation, etc.) - Bioenergy plant characteristics and their ability to grow on marginal lands - Needs and concerns on environmental issues and ecosystem benefits and services (biodiversity, carbon sequestration potential, soil organic carbon trend, etc.) - Sustainability assessments (incl. e.g. LCA) of biomass production at market scale - Analysis results of generic scenarios for biomass production, harvesting, logistics and conditioning, as well as biomass conversion and use from pilot cases growing various crops The SEEMLA approach of marginal lands evaluation will provide private and public stakeholders with necessary guidance for selecting suitable lands and implementing efficient exploitation strategies for bioenergy production, on the basis of sound environmental and socio-economic criteria.

  18. Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States

    DOE PAGES

    Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.; ...

    2017-06-12

    There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations increased in groundwater post-treatment to < 2 mg N L -1, and these concentrations were below the U.S. drinking water standard (10 mg N L -1). Applied pesticides were almost always below detection in streams and groundwater. Overall, these findings highlight that current forestry BMPs can protect stream water quality from intensive pine management for bioenergy in the first 3.5 years. However, groundwater quality and transit times need to be considered in these low-gradient watersheds of the southeastern U.S. that are likely to become an important location for woody bioenergy feedstock production.« less

  19. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification

    USDA-ARS?s Scientific Manuscript database

    The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatme...

  20. Comparative study of switchgrass cultivars using RNA sequencing technology

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a C4 perennial grass, identified as a promising bioenergy crop. Switchgrass exists in two ecotypes, upland and lowland, which are heterotic, or genetically complementary to each other. The objectives of this study are to assess the potential of SNP markers as a b...

  1. Accuracy of genomic prediction in switchgrass (Panicum virgatum L.) improved by accounting for linkage disequilibrium

    USDA-ARS?s Scientific Manuscript database

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection is an attractive technology to generate rapid genetic gains in switchgrass and ...

  2. BIOWINOL TECHNOLOGIES: A HYBRID GREEN PROCESS FOR BIOFUEL PRODUCTION

    EPA Science Inventory

    The ability of the unique bacteria to produce ethanol by utilizing H2 and CO2 will be determined. The project will be used to educate the community about advances and importance of bioenergy while building consumer confidence in biofuels in addressing...

  3. Life cycle environmental and economic tradeoffs of using fast pyrolysis products for power generation

    USDA-ARS?s Scientific Manuscript database

    Bio-oils produced from small-scale pyrolysis technology may have economic and environmental benefits for both densifying agricultural biomass and supplying local bio-energy markets (e.g., Renewable Portfolio Standards). This study presents a life cycle assessment (LCA) of a farm-scale bio-oil produ...

  4. Systems Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. Formore » the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.« less

  5. BioEnergy Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The BioEnergy Science Center, led by Oak Ridge National Laboratory, has been making advances in biofuels for over a decade. These achievements in plant genomics, microbial engineering, biochemistry, and plant physiology will carry over into the Center for Bioenergy Innovation, a new Department of Energy bioenergy research center.

  6. A life-cycle approach to low-invasion potential bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for energy has increased economic incentives to develop and deploy novel bioenergy crops for biomass production. Similarities in plant traits between many candidate bioenergy crops and known invasive species have raised concerns about the potential for bioenergy crops to escape pro...

  7. Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production

    PubMed Central

    Reza, M. Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan

    2014-01-01

    Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only. PMID:24962786

  8. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to corn fields. The bioenergy crops used in this study were miscanthus, switchgrass and native prairie grasses. Results indicated that growing bioenergy crops in buffer strips mitigated nutrient runoff and reduced nitrate concentrations in groundwater to below EPA’s mandated drinking water limit (10 mg/l). Additionally, nitrous oxide emissions in these systems were reduced by 50-90% when compared to corn fields without the bioenergy buffer strips. While all the bioenergy crop buffers had significant positive environmental benefits, switchgrass performed the best with respect to minimizing nutrient runoff and nitrous oxide emissions. The findings of this research have important implications with respect to land management for agriculture and bioenergy.

  9. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae.

    PubMed

    Ndimba, Bongani Kaiser; Ndimba, Roya Janeen; Johnson, T Sudhakar; Waditee-Sirisattha, Rungaroon; Baba, Masato; Sirisattha, Sophon; Shiraiwa, Yoshihiro; Agrawal, Ganesh Kumar; Rakwal, Randeep

    2013-11-20

    Sustainable energy is the need of the 21st century, not because of the numerous environmental and political reasons but because it is necessary to human civilization's energy future. Sustainable energy is loosely grouped into renewable energy, energy conservation, and sustainable transport disciplines. In this review, we deal with the renewable energy aspect focusing on the biomass from bioenergy crops to microalgae to produce biofuels to the utilization of high-throughput omics technologies, in particular proteomics in advancing our understanding and increasing biofuel production. We look at biofuel production by plant- and algal-based sources, and the role proteomics has played therein. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Confocal fluorescence assessment of bioenergy/redox status of dromedary camel (Camelus dromedarius) oocytes before and after in vitro maturation.

    PubMed

    Russo, Roberto; Monaco, Davide; Rubessa, Marcello; El-Bahrawy, Khalid A; El-Sayed, Ashraf; Martino, Nicola A; Beneult, Benedicte; Ciannarella, Francesca; Dell'Aquila, Maria E; Lacalandra, Giovanni M; Filioli Uranio, Manuel

    2014-02-18

    Reproductive biotechnologies in dromedary camel (Camelus dromedarius) are less developed than in other livestock species. The in vitro maturation (IVM) technology is a fundamental step for in vitro embryo production (IVP), and its optimization could represent a way to increase the success rate of IVP. The aim of the present study was to investigate the bioenergy/oxidative status of dromedary camel oocytes before and after IVM by confocal microscopy 3D imaging. Oocytes were retrieved by slicing ovaries collected at local slaughterhouses. Recovered oocytes were examined before and after IVM culture for nuclear chromatin configuration and bioenergy/oxidative status, expressed as mitochondria (mt) distribution and activity, intracellular Reactive Oxygen Species (ROS) levels and distribution and mt/ROS colocalization. The mean recovery rate was 6 oocytes/ovary. After IVM, 61% of oocytes resumed meiosis and 36% reached the Metaphase II stage (MII). Oocyte bioenergy/redox confocal characterization revealed changes upon meiosis progression. Immature oocytes at the germinal vesicle (GV) stage were characterised by prevailing homogeneous mt distribution in small aggregates while MI and MII oocytes showed significantly higher rates of pericortical mt distribution organized in tubular networks (P<0.05). Increased mt activity in MI (P<0.001) and MII (P<0.01) oocytes compared to GV stage oocytes was also observed. At any meiotic stage, homogeneous distribution of intracellular ROS was observed. Intracellular ROS levels also increased in MI (P<0.01) and MII (P<0.05) oocytes compared to GV stage oocytes. The mt/ROS colocalization signal increased in MI oocytes (P<0.05). This study provides indications that qualitative and quantitative indicators of bioenergy and oxidative status in dromedary camel oocytes are modified in relation with oocyte meiotic stage. These data may increase the knowledge of camel oocyte physiology, in order to enhance the efficiency of IVP procedures.

  11. Confocal fluorescence assessment of bioenergy/redox status of dromedary camel (Camelus dromedarius) oocytes before and after in vitro maturation

    PubMed Central

    2014-01-01

    Background Reproductive biotechnologies in dromedary camel (Camelus dromedarius) are less developed than in other livestock species. The in vitro maturation (IVM) technology is a fundamental step for in vitro embryo production (IVP), and its optimization could represent a way to increase the success rate of IVP. The aim of the present study was to investigate the bioenergy/oxidative status of dromedary camel oocytes before and after IVM by confocal microscopy 3D imaging. Methods Oocytes were retrieved by slicing ovaries collected at local slaughterhouses. Recovered oocytes were examined before and after IVM culture for nuclear chromatin configuration and bioenergy/oxidative status, expressed as mitochondria (mt) distribution and activity, intracellular Reactive Oxygen Species (ROS) levels and distribution and mt/ROS colocalization. Results The mean recovery rate was 6 oocytes/ovary. After IVM, 61% of oocytes resumed meiosis and 36% reached the Metaphase II stage (MII). Oocyte bioenergy/redox confocal characterization revealed changes upon meiosis progression. Immature oocytes at the germinal vesicle (GV) stage were characterised by prevailing homogeneous mt distribution in small aggregates while MI and MII oocytes showed significantly higher rates of pericortical mt distribution organized in tubular networks (P < 0.05). Increased mt activity in MI (P < 0.001) and MII (P < 0.01) oocytes compared to GV stage oocytes was also observed. At any meiotic stage, homogeneous distribution of intracellular ROS was observed. Intracellular ROS levels also increased in MI (P < 0.01) and MII (P < 0.05) oocytes compared to GV stage oocytes. The mt/ROS colocalization signal increased in MI oocytes (P < 0.05). Conclusions This study provides indications that qualitative and quantitative indicators of bioenergy and oxidative status in dromedary camel oocytes are modified in relation with oocyte meiotic stage. These data may increase the knowledge of camel oocyte physiology, in order to enhance the efficiency of IVP procedures. PMID:24548378

  12. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels

    PubMed Central

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-01-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group. PMID:26664147

  13. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels.

    PubMed

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-11-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group.

  14. The Importance of Seedlings Quality in Timber and Bio-energy Production on marginal lands

    NASA Astrophysics Data System (ADS)

    Fragkiskakis, Nikitas; Kiourtsis, Fotios; Keramitzis, Dimitrios; Papatheodorou, Ioannis; Georgiadou, Margarita; Repmann, Frank; Gerwin, Werner

    2017-04-01

    One of the main issues that the forest sector is facing is to achieve a balance between the demand for biomass &wood production and the need to preserve the sustainability and biodiversity of forest ecosystems. The purposes of the new approaches are to ensure more efficient management of ecosystems and implement intensive forestry that will increase biomass production & timber yields. To achieve this, we need to determine the macroeconomic potential of the various options available, including the use of biotechnology and genetics. The success of the forests plantations capacity may be solved through forest certification, based on: a) Stabilization of the forests and soils structure. b) Hierarchy of biomass production in the forest's management process. c) Οrganization and implementation of effective plantation on marginal lands. d) Maintenance or increase of forest productivity by introducing new items as and when they are required. It is important to evaluate of the influence of factors such as the quality of soils of plantation areas, the utilization of the genetic resources and the management of forest operations with the environmental economic criteria such as net present value of benefits (NPV) and the corresponding flow annuities (EACF).The existing evaluations studies showed that the quality of the plantation areas has the most influence and through validated quality seed production can generate an increase in the NPV up to 73%. The importance of seedlings quality in timber and bio-energy production on marginal lands based on the literature it is estimated according to the heredity of the characteristics of the wood structure (except shrinkage). This clearly indicate that seedlings with the appropriate morphological characteristics can significantly improve the growth performance and help to support the development of biomass plantations oriented in tailor-made timber and bio-energy production.

  15. Techno-economic analysis of a biomass depot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Jacob Jordan; Lamers, Patrick; Roni, Mohammad Sadekuzzaman

    2014-10-01

    The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) promotes the production of an array of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the technical, economic, and environmental performance of different feedstock supply systems and their impacts on the downstream conversion processes.

  16. Air Force Science and Technology Plan

    DTIC Science & Technology

    2011-01-01

    charged particles and guide high- power microwaves and radiofrequency waves in the air • Bioenergy – developing renewable biosolar hydrogen...Aeronautical sciences, control sciences, structures and integration Directed Energy High- power microwaves , lasers, beam control, space situational...Propulsion Turbine and rocket engines, advanced propulsion systems , system -level thermal management, and propulsion fuels and propellants Sensors Air

  17. Enhancing forest value productivity through fiber quality

    Treesearch

    D. Briggs

    2010-01-01

    Developing markets for carbon storage and bioenergy, shifting of the pulp and paper industry to biorefineries, and the potential of new technologies present the forest sector with exciting transformative opportunities and challenges. One of these challenges will be to understand the implications for fiber (wood) quality. This article provides a definitional context for...

  18. AFOSR Overview

    DTIC Science & Technology

    2012-03-05

    alloy and tailor micro- structure for turbine blade RZ – Development of scramjet propulsion RW - Developing new fuse and sensors technologies RB...High peak power, ultrashort laser ablation of solids 5. Sustainable alloy design: Rare earth materials challenge 6. Catalytic reactions in...Structural materials & mechanics • Decrease emphasis: – Bioenergy/Biofuels – Thermosetting polymers/surface adherents – Adaptive, self-healing

  19. Biochemical Conversion Techno-Economic Analysis | Bioenergy | NREL

    Science.gov Websites

    dotted line separates the two sides) separates out the conversion technologies with Balance of Plant in , Distillation and Solids Recovery = $0.14, and Balance of Plant = $0.77; 2008: Feedstock = $1.04, Prehydrolysis Recovery = $0.14, and Balance of Plant = $0.76; 2009: Feedstock = $0.95, Prehydrolysis/Treatment = $0.78

  20. Decision support framework for evaluating the operational environment of forest bioenergy production and use: Case of four European countries.

    PubMed

    Pezdevšek Malovrh, Špela; Kurttila, Mikko; Hujala, Teppo; Kärkkäinen, Leena; Leban, Vasja; Lindstad, Berit H; Peters, Dörte Marie; Rhodius, Regina; Solberg, Birger; Wirth, Kristina; Zadnik Stirn, Lidija; Krč, Janez

    2016-09-15

    Complex policy-making situations around bioenergy production and use require examination of the operational environment of the society and a participatory approach. This paper presents and demonstrates a three-phase decision-making framework for analysing the operational environment of strategies related to increased forest bioenergy targets. The framework is based on SWOT (strengths, weaknesses, opportunities and threats) analysis and the Simple Multi-Attribute Rating Technique (SMART). Stakeholders of four case countries (Finland, Germany, Norway and Slovenia) defined the factors that affect the operational environments, classified in four pre-set categories (Forest Characteristics and Management, Policy Framework, Technology and Science, and Consumers and Society). The stakeholders participated in weighting of SWOT items for two future scenarios with SMART technique. The first scenario reflected the current 2020 targets (the Business-as-Usual scenario), and the second scenario contained a further increase in the targets (the Increase scenario). This framework can be applied to various problems of environmental management and also to other fields where public decision-making is combined with stakeholders' engagement. The case results show that the greatest differences between the scenarios appear in Germany, indicating a notably negative outlook for the Increase scenario, while the smallest differences were found in Finland. Policy Framework was a highly rated category across the countries, mainly with respect to weaknesses and threats. Intensified forest bioenergy harvesting and utilization has potentially wide country-specific impacts which need to be anticipated and considered in national policies and public dialogue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Role of Technology for Achieving Climate Policy Objectives: Overview of the EMF 27 Study on Technology Strategies and Climate Policy Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegler, Elmar; Weyant, John; Blanford, Geoffrey J.

    2014-04-01

    This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 19 energy-economy and integrated assessment models. The study investigated the value of individual mitigation technologies such as energy intensity improvements, carbon capture and sequestration (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Achieving atmospheric greenhouse gas concentration targets at 450 and 550 ppm CO2 equivalent requires massive greenhouse gas emissions reductions. A fragmented policy approach at the level of current ambition is inconsistent with these targets. The availability of a negative emissions technology, in most models biofuels withmore » CCS, proved to be a key element for achieving the climate targets. Robust characteristics of the transformation of the energy system are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy have largest value, due in part to their combined ability to produce negative emissions. The individual value of low-carbon power technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology variability. Mitigation costs roughly double when moving from 550 ppm to 450 ppm CO2e, but remain below 3% of GDP for most models.« less

  2. Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios

    PubMed Central

    Bennett, Ashley B.; Meehan, Timothy D.; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation. PMID:25365559

  3. Consensus, uncertainties and challenges for perennial bioenergy crops and land use.

    PubMed

    Whitaker, Jeanette; Field, John L; Bernacchi, Carl J; Cerri, Carlos E P; Ceulemans, Reinhart; Davies, Christian A; DeLucia, Evan H; Donnison, Iain S; McCalmont, Jon P; Paustian, Keith; Rowe, Rebecca L; Smith, Pete; Thornley, Patricia; McNamara, Niall P

    2018-03-01

    Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land-use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost-effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence-based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land-use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land-use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life-cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.

  4. How willing are landowners to supply land for bioenergy crops in the Northern Great Lakes Region?

    DOE PAGES

    Swinton, Scott M.; Tanner, Sophia; Barham, Bradford L.; ...

    2016-04-30

    Land to produce biomass is essential if the United States is to expand bioenergy supply. Use of agriculturally marginal land avoids the food vs. fuel problems of food price rises and carbon debt that are associated with crop and forestland. Recent remote sensing studies have identified large areas of US marginal land deemed suitable for bioenergy crops. Yet the sustainability benefits of growing bioenergy crops on marginal land only pertain if land is economically available. Scant attention has been paid to the willingness of landowners to supply land for bioenergy crops. Focusing on the northern tier of the Great Lakes,more » where grassland transitions to forest and land prices are low, this contingent valuation study reports on the willingness of a representative sample of 1124 private, noncorporate landowners to rent land for three bioenergy crops: corn, switchgrass, and poplar. Of the 11% of land that was agriculturally marginal, they were willing to make available no more than 21% for any bioenergy crop (switchgrass preferred on marginal land) at double the prevailing land rental rate in the region. At the same generous rental rate, of the 28% that is cropland, they would rent up to 23% for bioenergy crops (corn preferred), while of the 55% that is forestland, they would rent up to 15% for bioenergy crops (poplar preferred). Regression results identified deterrents to land rental for bioenergy purposes included appreciation of environmental amenities and concern about rental disamenities. In sum, like landowners in the southern Great Lakes region, landowners in the Northern Tier are reluctant to supply marginal land for bioenergy crops. If rental markets existed, they would rent more crop and forestland for bioenergy crops than they would marginal land, which would generate carbon debt and opportunity costs in wood product and food markets.« less

  5. How willing are landowners to supply land for bioenergy crops in the Northern Great Lakes Region?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinton, Scott M.; Tanner, Sophia; Barham, Bradford L.

    Land to produce biomass is essential if the United States is to expand bioenergy supply. Use of agriculturally marginal land avoids the food vs. fuel problems of food price rises and carbon debt that are associated with crop and forestland. Recent remote sensing studies have identified large areas of US marginal land deemed suitable for bioenergy crops. Yet the sustainability benefits of growing bioenergy crops on marginal land only pertain if land is economically available. Scant attention has been paid to the willingness of landowners to supply land for bioenergy crops. Focusing on the northern tier of the Great Lakes,more » where grassland transitions to forest and land prices are low, this contingent valuation study reports on the willingness of a representative sample of 1124 private, noncorporate landowners to rent land for three bioenergy crops: corn, switchgrass, and poplar. Of the 11% of land that was agriculturally marginal, they were willing to make available no more than 21% for any bioenergy crop (switchgrass preferred on marginal land) at double the prevailing land rental rate in the region. At the same generous rental rate, of the 28% that is cropland, they would rent up to 23% for bioenergy crops (corn preferred), while of the 55% that is forestland, they would rent up to 15% for bioenergy crops (poplar preferred). Regression results identified deterrents to land rental for bioenergy purposes included appreciation of environmental amenities and concern about rental disamenities. In sum, like landowners in the southern Great Lakes region, landowners in the Northern Tier are reluctant to supply marginal land for bioenergy crops. If rental markets existed, they would rent more crop and forestland for bioenergy crops than they would marginal land, which would generate carbon debt and opportunity costs in wood product and food markets.« less

  6. Biofuels on the landscape: Is "land sharing" preferable to "land sparing"?

    NASA Astrophysics Data System (ADS)

    DeLucia, E. H.; Anderson-Teixeira, K. J.; Duval, B. D.; Long, S. P.

    2012-12-01

    Widespread land use changes—and ensuing effects on biodiversity and ecosystem services—are expected as a result of expanding bioenergy production. Although almost all US production of ethanol today is from corn, it is envisaged that future ethanol production will also draw from cellulosic sources such as perennial grasses. In selecting optimal bioenergy crops, there is debate as to whether it is preferable from an environmental standpoint to cultivate bioenergy crops with high ecosystem services (a "land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand (a "land sparing" strategy). Here, we develop a simple model to address this question. Assuming that bioenergy crops are competing with uncultivated land, our model calculates land requirements to meet a given bioenergy demand intensity based upon the yields of bioenergy crops and combines fractional land cover of each ecosystem type with its associated ecosystem services to determine whether land sharing or land sparing strategies maximize ecosystem services at the landscape level. We apply this model to a case in which climate protection through GHG regulation—an ecosystem's greenhouse gas value (GHGV)—is the ecosystem service of interest. We consider five bioenergy crops competing for land area with five unfarmed ecosystem types in the central and eastern US. Our results show that the relative advantages of land sparing and land sharing depend upon the type of ecosystem with which the bioenergy crop is competing for land; as the GHGV value of the unfarmed land increases, the preferable strategy shifts from land sharing to land sparing. This implies that, while it may be preferable to replace ecologically degraded land with high-GHGV, lower yielding bioenergy crops, average landscape GHGV will most often be maximized through high yielding bioenergy crops that leave more land for uncultivated, high-GHGV ecosystems. While our case study focuses on GHGV, the same principles will be generally applicable to any ecosystem service whose value does not depend upon the spatial configuration of the landscape. Whenever bioenergy crops have substantially lower ecosystem services than the ecosystems with which they are competing for land, the most effective strategy for meeting bioenergy demand while maximizing ecosystem services on a landscape level is one of land sparing—that is, focusing simultaneously on maximizing the yield of bioenergy crops while preserving or restoring natural ecosystems.

  7. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios

    NASA Astrophysics Data System (ADS)

    Vaughan, Naomi E.; Gough, Clair; Mander, Sarah; Littleton, Emma W.; Welfle, Andrew; Gernaat, David E. H. J.; van Vuuren, Detlef P.

    2018-04-01

    Biomass Energy with Carbon Capture and Storage (BECCS) is heavily relied upon in scenarios of future emissions that are consistent with limiting global mean temperature increase to 1.5 °C or 2 °C above pre-industrial. These temperature limits are defined in the Paris Agreement in order to reduce the risks and impacts of climate change. Here, we explore the use of BECCS technologies in a reference scenario and three low emission scenarios generated by an integrated assessment model (IMAGE). Using these scenarios we investigate the feasibility of key implicit and explicit assumptions about these BECCS technologies, including biomass resource, land use, CO2 storage capacity and carbon capture and storage (CCS) deployment rate. In these scenarios, we find that half of all global CO2 storage required by 2100 occurs in USA, Western Europe, China and India, which is compatible with current estimates of regional CO2 storage capacity. CCS deployment rates in the scenarios are very challenging compared to historical rates of fossil, renewable or nuclear technologies and are entirely dependent on stringent policy action to incentivise CCS. In the scenarios, half of the biomass resource is derived from agricultural and forestry residues and half from dedicated bioenergy crops grown on abandoned agricultural land and expansion into grasslands (i.e. land for forests and food production is protected). Poor governance of the sustainability of bioenergy crop production can significantly limit the amount of CO2 removed by BECCS, through soil carbon loss from direct and indirect land use change. Only one-third of the bioenergy crops are grown in regions associated with more developed governance frameworks. Overall, the scenarios in IMAGE are ambitious but consistent with current relevant literature with respect to assumed biomass resource, land use and CO2 storage capacity.

  8. Bioenergy as a Mitigation Measure

    NASA Astrophysics Data System (ADS)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these properties are managed. Simulated bioenergy potentials from 1901 to 2098 correspond to a significant percentage of the global energy demand and thus could potentially bring about considerable savings in carbon emissions. These potentials will be reported and compared to the energy demand. Analysis of their sensitivities to different land management scenarios will be presented as well.

  9. Biomass, Bioenergy and the Sustainability of Soils and Climate: What Role for Biochar?

    NASA Astrophysics Data System (ADS)

    Sohi, Saran

    2013-04-01

    Biochar is the solid, carbon rich product of heating biomass with the exclusion of air (pyrolysis). Whereas charcoal is derived from wood, biochar is a co-product of energy capture and can derive from waste or non-waste, virgin or non-virgin biomass resources. But also, biochar is not a fuel - rather it is intended for the beneficial amendment of soil in agriculture, forestry and horticulture. This results in long-term storage of plant-derived carbon that could improve yield or efficiency of crop production, and/or mitigate trace gas emissions from the land. Life cycle analysis (LCA) shows that pyrolysis bioenergy with biochar production should offer considerably more carbon abatement than combustion, or gasification of the same feedstock. This has potential to link climate change mitigation to bioenergy and sustainable use of soil. But, in economic terms, the opportunity cost of producing biochar (reflecting the calorific value of its stored carbon) is inflated by bioenergy subsidies. This, combined with a lack of clear regulatory position and no mature pyrolysis technologies at large scale, means that pyrolysis-biochar systems (PBS) remain largely conceptual at the current time. Precise understanding of its function and an ability to predict its impact on different soils and crops with certainty, biochar should acquire a monetary value. Combining such knowledge with a system that monetizes climate change mitigation potential (such as carbon markets), could see schemes for producing and using biochar escalate - including a context for its deployment in biomass crops, or through pyrolysis of residues from other bioenergy processes. This talk explores the opportunity, challenges and risks in pursuing biochar production in various bioenergy contexts including enhanced sustainability of soil use in biomass crop production, improving the carbon balance and value chain in biofuel production, and using organic waste streams more effectively (including the processing of clean agricultural residues). Research knowledge that has emerged since 2005, when the term "biochar" was coined will be summarized (and currently resulting in over 200 research papers per year), highlighting the limits of predictability and certainty for biochar function and the extent to which these may ultimately be addressed. The policy context will be highlighted, including some recommendations and priorities for potential next steps.

  10. The global economic long-term potential of modern biomass in a climate-constrained world

    NASA Astrophysics Data System (ADS)

    Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann

    2014-07-01

    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at 5 GJ-1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by 5 GJ-1 in 2055 and by 10 GJ-1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha-1 yr-1 with and without tax.

  11. Bioenergy Knowledge Discovery Framework Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Bioenergy Knowledge Discovery Framework (KDF) supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner.

  12. Review of NASA programs in applying aerospace technology to energy

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  13. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    NASA Astrophysics Data System (ADS)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  14. Bioenergy and biodiversity: Key lessons from the Pan American region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the Unitedmore » States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. Lastly, we propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.« less

  15. Science and Technology Text Mining: Electric Power Sources

    DTIC Science & Technology

    2004-04-01

    Transactions of Power Systems), Thermal Engineering (Applied Thermal Engineering, JSME International Journal Series B – Fluids Thermal Engineering...Renewables ( International Journal of Hydrogen Energy, Biomass and Bioenergy, Solar Energy), Electrochemistry (Solid State Ionics, Journal of the...pollutants, with balanced emphasis given to solar and biomass systems. The papers in International Journal of Energy Research focus on performance of total

  16. Carbon accounting of forest bioenergy: from model calibrations to policy options (Invited)

    NASA Astrophysics Data System (ADS)

    Lamers, P.

    2013-12-01

    Programs to stimulate biomass use for the production of heating/cooling and electricity have been implemented in many countries as part of their greenhouse gas emission reduction strategies. Critiques claim however that the use of forest biomass, e.g. as a replacement of hard-coal in large-scale power plants or mineral oil fuelled residential heating boilers, countervails carbon saving and thus also climate change mitigation strategies, at least in the short-term, as forest biomass combustion releases previously stored biogenic carbon back into the atmosphere. While there seems general agreement that carbon emitted from bioenergy combustion was and will again be sequestered from the atmosphere given a sustainable biomass management system, there is inherent concern that carbon release and sequestration rates may not be in temporal balance with each other and eventually jeopardize mid-century carbon/temperature/climate targets. So far, biomass carbon accounting systems (including those that are part of regulatory standards) have not incorporated this potential temporal imbalance or ';carbon debt'. The potential carbon debt caused by wood harvest and the resulting time spans needed to reach pre-harvest carbon levels (payback) or those of a reference case (parity) have become important parameters for climate and bioenergy policy developments. The present range of analyses however varies in assumptions, regional scopes, and conclusions. Policy makers are confronted with this portfolio while needing to address the temporal carbon aspect in current regulations. In order to define policies for our carbon constrained world, it is critical to better understand the dimensions and regional differences of these carbon cycles. This paper/presentation discusses to what extent and under which circumstances (i.e. bioenergy systems) a temporal forest carbon imbalance could jeopardize future temperature and eventually climate targets. It further reviews the current state of knowledge in the field by comparing different state-of-the-art temporal forest carbon modeling efforts, and discusses whether or to what extent a deterministic ';carbon debt' accounting is possible and appropriate. It concludes upon the possible scientific and eventually political choices in temporal carbon accounting for regulatory frameworks including alternative options to address unintentional carbon losses within forest ecosystems/bioenergy systems.

  17. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    PubMed

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG emission reductions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT

    USDA-ARS?s Scientific Manuscript database

    Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeeds...

  19. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT.

    PubMed

    Guo, Tian; Cibin, Raj; Chaubey, Indrajeet; Gitau, Margaret; Arnold, Jeffrey G; Srinivasan, Raghavan; Kiniry, James R; Engel, Bernard A

    2018-02-01

    Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeedstock systems. SWAT2012 with a new tile drainage routine and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, and nutrient losses under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. Simulated results from bioenergy crop scenarios were compared with those from the baseline. The results showed that simulated annual crop yields were similar to observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (3.74Mg/ha/yr) with Miscanthus production on highly erodible areas and marginal land (17.49Mg/ha/yr) provided the highest biofeedstock production (279,000Mg/yr). Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of bioenergy crops on highly erodible areas and marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment and nutrient losses under corn stover removal could be offset with the combination of other bioenergy crops. Potential areas for bioenergy crop production when meeting the criteria above were small (10.88km 2 ), thus the ability to produce biomass and improve water quality was not substantial. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile-drained watershed in the Midwestern U.S. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pathways to Carbon-Negative Liquid Biofuels

    NASA Astrophysics Data System (ADS)

    Woolf, D.; Lehmann, J.

    2017-12-01

    Many climate change mitigation scenarios assume that atmospheric carbon dioxide removal will be delivered at scale using bioenergy power generation with carbon capture and storage (BECCS). However, other pathways to negative emission technologies (NETs) in the energy sector are possible, but have received relatively little attention. Given that the costs, benefits and life-cycle emissions of technologies vary widely, more comprehensive analyses of the policy options for NETs are critical. This study provides a comparative assessment of the potential pathways to carbon-negative liquid biofuels. It is often assumed that that decarbonisation of the transport sector will include use of liquid biofuels, particularly for applications that are difficult to electrify such as aviation and maritime transport. However, given that biomass and land on which to grow it sustainably are limiting factors in the scaling up of both biofuels and NETs, these two strategies compete for shared factors of production. One way to circumvent this competition is carbon-negative biofuels. Because capture of exhaust CO2 in the transport sector is impractical, this will likely require carbon capture during biofuel production. Potential pathways include, for example, capture of CO2 from fermentation, or sequestration of biochar from biomass pyrolysis in soils, in combination with thermochemical or bio-catalytic conversion of syngas to alcohols or alkanes. Here we show that optimal pathway selection depends on specific resource constraints. As land availability becomes increasingly limiting if bioenergy is scaled up—particularly in consideration that abandoned degraded land is widely considered to be an important resource that does not compete with food fiber or habitat—then systems which enhance land productivity by increasing soil fertility using soil carbon sequestration become increasingly preferable compared to bioenergy systems that deplete or degrade the land resource on which they depend.

  1. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States

    PubMed Central

    Baik, Ejeong; Turner, Peter A.; Mach, Katharine J.; Field, Christopher B.; Benson, Sally M.

    2018-01-01

    Bioenergy with carbon capture and storage (BECCS) is a negative-emissions technology that may play a crucial role in climate change mitigation. BECCS relies on the capture and sequestration of carbon dioxide (CO2) following bioenergy production to remove and reliably sequester atmospheric CO2. Previous BECCS deployment assessments have largely overlooked the potential lack of spatial colocation of suitable storage basins and biomass availability, in the absence of long-distance biomass and CO2 transport. These conditions could constrain the near-term technical deployment potential of BECCS due to social and economic barriers that exist for biomass and CO2 transport. This study leverages biomass production data and site-specific injection and storage capacity estimates at high spatial resolution to assess the near-term deployment opportunities for BECCS in the United States. If the total biomass resource available in the United States was mobilized for BECCS, an estimated 370 Mt CO2⋅y−1 of negative emissions could be supplied in 2020. However, the absence of long-distance biomass and CO2 transport, as well as limitations imposed by unsuitable regional storage and injection capacities, collectively decrease the technical potential of negative emissions to 100 Mt CO2⋅y−1. Meeting this technical potential may require large-scale deployment of BECCS technology in more than 1,000 counties, as well as widespread deployment of dedicated energy crops. Specifically, the Illinois basin, Gulf region, and western North Dakota have the greatest potential for near-term BECCS deployment. High-resolution spatial assessment as conducted in this study can inform near-term opportunities that minimize social and economic barriers to BECCS deployment. PMID:29531081

  2. Spatial and temporal dynamics of agricultural residue resources in the last 30 years in China.

    PubMed

    Yang, Yanli; Zhang, Peidong; Yang, Xutong; Xu, Xiaoning

    2016-12-01

    The availability and distribution of biomass resources are important for the development of the bioenergy industry in a region. Biomass resources are abundant in China; however, the raw material is severely deficient, which makes the Chinese bioenergy industry an embarrassment and a contradiction. Unclear reserves and distribution and changing trends of biomass resources are the reason for this situation. A collection coefficient model of Chinese agricultural residue resources was established and the spatial and temporal pattern dynamics of agricultural residue resources in the last 30 years were analyzed. The results show that agricultural residue resources increased in stages from 1978 to 2011, including a rapid increase from 1978 to 1999, a significant fall from 2000 to 2004, and a slow increase from 2004 to 2011. Crops straw and livestock manure are the main ingredients of agricultural residue resources with proportions of 53-59% and 31-38%, respectively. However, the former has gradually decreased, while the latter is increasing. This mainly resulted from the strategic reorganization of the Chinese agriculture structure and the rapid development of large-scale livestock breeding and agricultural mechanization. Large regional differences existed in Chinese agricultural residue resources, and three distribution types formed, including resource-rich areas in North China, Northeast and Inner Mongolia, resource-limited areas in Central and Southwest China, and resource-poor areas along Northwest and Southeast coasts. This pattern is a reverse of the distributions of climatic conditions, water resources, economic development, human resources, and technological levels. Finally, it can be predicted that livestock manure and biomass conversion technology at low temperature will play increasingly significant roles in bioenergy industry development. © The Author(s) 2016.

  3. Implications of Limiting CO2 Concentrations for Land Use and Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Marshall A.; Calvin, Katherine V.; Thomson, Allison M.

    2009-05-29

    This paper is the first to simultaneously examine the implications of extending the concept of placing a value on carbon beyond fossil fuel and industrial emissions to all sources, including those associated with land use and land use change. The paper reports a variety of results that have bearing on recent discussions in the literature regarding the role of bioenergy and the indirect emission of carbon through land-use change as well as the burgeoning literature on interactions between bioenergy and crop prices. This paper goes beyond results currently in the literature by using an integrated assessment model to assess energymore » use and supply, atmospheric composition, land use, and terrestrial carbon in the context of limiting the concentration of atmospheric CO2. We find that when the concept of valuing carbon emissions is extended to all carbon emissions, regardless of origin, that in contrast to a mitigation scenario where only fossil fuel and industrial carbon emissions are valued, deforestation is replaced by afforestation and expanded unmanaged ecosystems; the cost of limiting CO2 concentrations falls; crop prices rise; and human diets are transformed as people shift away from consumption of beef and other carbon-intensive protein sources. The increase in crop prices flows directly from the consideration of land-use change emissions in a comprehensive emissions mitigation program and occurs even in the absence of the use of purpose-grown bioenergy. Finally, we find that the assumed rate of improvement in food and fiber crop productivity (e.g. wheat, rice, corn) has a strong influence on land-use change emissions, making the technology for growing crops potentially as important for limiting atmospheric CO2 concentrations as energy technologies such as CO2 capture and storage.« less

  4. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    NASA Astrophysics Data System (ADS)

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  5. Effects of bioenergy production on European nature conservation options

    NASA Astrophysics Data System (ADS)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    To increase security of energy supply and reduce greenhouse gas (GHG) emissions the European Commission set out a long-term strategy for renewable energy in the European Union (EU). Bioenergy from forestry and agriculture plays a key role for both. Since the last decade a significant increase of biomass energy plantations has been observed in Europe. Concurrently, the EU agreed to halt the loss of biodiversity within its member states. One measure is the Natura2000 network of important nature sites that actually covers about 20% of the EU land surface. However, to fulfil the biodiversity target more nature conservation and restoration sites need to be designated. There are arising concerns that an increased cultivation of bioenergy crops will decrease the land available for nature reserves and for "traditional" agriculture and forestry. In the following the economic and ecological impacts of structural land use changes are demonstrated by two examples. First, a case study of land use changes on the Eiderstedt peninsula in Schleswig-Holstein/Germany evaluates the impacts of grassland conversion into bioenergy plantations under consideration of selected meadow birds. Scenarios indicate not only a quantitative loss of habitats but also a reduction of habitat quality. The second study assesses the role of bioenergy production in light of possible negative impacts on potential wetland conservation sites in Europe. By coupling the spatial wetland distribution model "SWEDI" (cf. SCHLEUPNER 2007) to the European Forest and Agricultural Sector Optimization Model (EUFASOM; cf. SCHNEIDER ET AL. 2008) economic and environmental aspects of land use are evaluated simultaneously. This way the costs and benefits of the appropriate measures and its consequences for agriculture and forestry are investigated. One aim is to find the socially optimal balance between alternative wetland uses by integrating biological benefits - in this case wetlands - and economic opportunities - here agriculture and forestry including bioenergy options. Results reveal that bioenergy targets have significant effects on conservation planning and nature conservation. The additional land utilization demands driven by bioenergy targets influence not only the restoration costs of wetland areas. Also wetland conservation targets in one place stimulate land use intensification elsewhere due to market linkages. It also implies that environmental stresses (to wetlands) may be transferred to other countries. In all the results show that an integrated modelling of environmental and land use changes in European scale is able to estimate the impacts of policy decisions in nature conservation and agriculture. As shown by the case study, the implementation of any targets concerning resource utilization need to be followed by adequate land use planning. References Schleupner C. (2007). Estimation of wetland distribution potentials in Europe. FNU-135, Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. Schneider U.A., J Balkovic, S. De Cara, O. Franklin, S. Fritz, P. Havlik, I. Huck, K. Jantke , A.M.I. Kallio, F. Kraxner, A. Moiseyev, M. Obersteiner, C.I. Ramos, C. Schleupner, E. Schmid, D. Schwab & R. Skalsky (2008). The European Forest and Agricultural Sector Optimization Model - EUFASOM. FNU-156, Hamburg University and Centre for Marine and Atmospheric Science, Hamburg.

  6. Cellulose factories: advancing bioenergy production from forest trees.

    PubMed

    Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A

    2012-04-01

    Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.

  7. Quantifying the climate effects of bioenergy – Choice of reference system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koponen, Kati; Soimakallio, Sampo; Kline, Keith L.

    In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presentsmore » guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. As a result, it can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments.« less

  8. Quantifying the climate effects of bioenergy – Choice of reference system

    DOE PAGES

    Koponen, Kati; Soimakallio, Sampo; Kline, Keith L.; ...

    2017-06-27

    In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presentsmore » guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. As a result, it can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments.« less

  9. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Aaron T; Movva, Sunil; Karthik, Rajasekar

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which ismore » an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.« less

  10. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    PubMed Central

    Blank, Peter J.; Sample, David W.; Williams, Carol L.; Turner, Monica G.

    2014-01-01

    Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes. PMID:25299593

  11. NREL: News - Director of National Bioenergy Center Named

    Science.gov Websites

    coordinating NREL's activities with bioenergy research at Oak Ridge National Laboratory (ORNL) and other organizations. Pacheco will represent the NBC, NREL, ORNL, DOE, and the interests of bioenergy programs to

  12. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

    PubMed

    Wang, Victor Bochuan; Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say; Yang, Liang

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1:9 (v:v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  13. Determination of Indonesian palm-oil-based bioenergy sustainability indicators using fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Arkeman, Y.; Rizkyanti, R. A.; Hambali, E.

    2017-05-01

    Development of Indonesian palm-oil-based bioenergy faces an international challenge regarding to sustainability issue, indicated by the establishment of standards on sustainable bioenergy. Currently, Indonesia has sustainability standards limited to palm-oil cultivation, while other standards are lacking appropriateness for Indonesian palm-oil-based bioenergy sustainability regarding to real condition in Indonesia. Thus, Indonesia requires sustainability indicators for Indonesian palm-oil-based bioenergy to gain recognition and easiness in marketing it. Determination of sustainability indicators was accomplished through three stages, which were preliminary analysis, indicator assessment (using fuzzy inference system), and system validation. Global Bioenergy partnership (GBEP) was used as the standard for the assessment because of its general for use, internationally accepted, and it contained balanced proportion between environment, economic, and social aspects. Result showed that the number of sustainability indicators using FIS method are 21 indicators. The system developed has an accuracy of 85%.

  14. The Giant Knotweed (Fallopia sachalinensis var. Igniscum) as a new plant resource for biomass production for bioenergy

    NASA Astrophysics Data System (ADS)

    Lebzien, S.; Veste, M.; Fechner, H.; Koning, L.; Mantovani, D.; Freese, D.

    2012-04-01

    The cultivation of bioenergy crop for energetic biomass production and biogas will increase in the next decades in Europe and the world. In Germany maize is the most commonly used energy crops for biogas. To optimize the sustainability of bioenergy crop production new land management systems and crop species are needed. Herbaceous perennials have a great potential to fulfill this requirement. A new species for bioenergy production is the Giant Knotweed or Sakhalin Knotweed (Fallopia sachalinensis F. Schmidt ex Maxim., Fam. Polygonaceae) The knotweed is originated from Sakhalin, Korea and Japan .The plant is characterized by a high annual biomass production and can reach heights up to 3-4 m. As a new bioenergy crop the new cultivars IGNISCUM Basic (R) and IGNISCUM Candy (R) were cultured from the wild form and commercially used. Important is that both cultivars are not invasive. IGNISCUM Basic is used for combined heat and power plants. IGNISCUM Candy can be harvested 2-3 times during the growing season and the green biomass can be used for biogas production. Comprehensive test series are carried out to analyze the biogas. First results from lab investigations and experiments in biogas plants show that fresh matter of IGNISCUM Candy can well substitute maize as substrate in biogas power plants. Yields per hectare and the amount of biogas per ton of organic dry matter can be considered as almost equal to maize. Concerning the wooden biomass of IGNISCUM Basic values of combustion can be compared with wood chips from forest trees. For a sustainable and optimal production of biomass we develop cultivation technology for this species. Field experiments are arranged under different climatic and soil conditions across Germany from Schleswig-Holstein to southern Germany to investigate the plant growth and biomass production on the field scale. Physiological parameters are determined for the relations between growth stages, chlorophyll content, photosynthesis and plant nutrients status. Furthermore, in greenhouse experiments and in lysimeter we investigate (i) the water consumption; (ii) the interrelations between nutrient supply, biomass production, and transpiration; and (iii) the optimization of the biomass production.

  15. Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps report, published by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) provides an overview of the current state of alternative aviation fuels, based upon findings from recent peer-reviewed studies, scientific working groups, and BETO stakeholder input provided during the Alternative Aviation Fuel Workshop.

  16. A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation

    Treesearch

    Ying Ouyang; Jiaen Zhang; Theodor D. Leininger; Brent R. Frey

    2015-01-01

    Although short-rotation woody crop biomass production technology has demonstrated a promising potential to supply feedstocks for bioenergy production, the water and nutrient processes in the woody crop planation ecosystem are poorly understood. In this study, a computer model was developed to estimate the dynamics of water and nitrogen (N) species (e.g., NH4...

  17. A Spectroscopic study on the fuel value of softwoods in relation to chemical composition

    Treesearch

    Chi-Leung So; Thomas L. Eberhardt; Les Groom; Todd F. Shupe

    2012-01-01

    The recent focus on bioenergy has led to interest in developing alternative technologies for assessing the fuel value of available biomass resources. In this study, both near- and mid-infrared spectroscopic datawere used to predict fuel value in relation to extractives and lignin contents for longleaf pine wood. Samples were analyzed both before and after extraction....

  18. Livestock waste-to-bioenergy generation opportunities.

    PubMed

    Cantrell, Keri B; Ducey, Thomas; Ro, Kyoung S; Hunt, Patrick G

    2008-11-01

    The use of biological and thermochemical conversion (TCC) technologies in livestock waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. These products can meet heating and power needs or serve as transportation fuels. The primary objective of this work is to present established and emerging energy conversion opportunities that can transform the treatment of livestock waste from a liability to a profit center. While biological production of methanol and hydrogen are in early research stages, anaerobic digestion is an established method of generating between 0.1 to 1.3m3m(-3)d(-1) of methane-rich biogas. The TCC processes of pyrolysis, direct liquefaction, and gasification can convert waste into gaseous fuels, combustible oils, and charcoal. Integration of biological and thermal-based conversion technologies in a farm-scale hybrid design by combining an algal CO2-fixation treatment requiring less than 27,000m2 of treatment area with the energy recovery component of wet gasification can drastically reduce CO2 emissions and efficiently recycle nutrients. These designs have the potential to make future large scale confined animal feeding operations sustainable and environmentally benign while generating on-farm renewable energy.

  19. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    PubMed

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  1. Bioenergy Feedstock Development Program Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energymore » crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.« less

  2. Functional genomics of bio-energy plants and related patent activities.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koponen, Kati; Soimakallio, Sampo; Kline, Keith L.

    In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presentsmore » guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. As a result, it can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments.« less

  4. Optimal policy for mitigating emissions in the European transport sector

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Piera, Patrizio; Sennai, Mesfun; Igor, Staritsky; Berien, Elbersen; Tijs, Lammens; Florian, Kraxner

    2017-04-01

    A geographic explicit techno-economic model, BeWhere (www.iiasa.ac.at/bewhere), has been developed at the European scale (Europe 28, the Balkans countries, Turkey, Moldavia and Ukraine) at a 40km grid size, to assess the potential of bioenergy from non-food feedstock. Based on the minimization of the supply chain from feedstock collection to the final energy product distribution, the model identifies the optimal bioenergy production plants in terms of spatial location, technology and capacity. The feedstock of interests are woody biomass (divided into eight types from conifers and non-conifers) and five different crop residuals. For each type of feedstock, one or multiple technologies can be applied for either heat, electricity or biofuel production. The model is run for different policy tools such as carbon cost, biofuel support, or subsidies, and the optimal mix of technologies and biomass needed is optimized to reach a production cost competitive against the actual reference system which is fossil fuel based. From this approach, the optimal mix of policy tools that can be applied country wide in Europe will be identified. The preliminary results show that high carbon tax and biofuel support contribute to the development of large scale biofuel production based on woody biomass plants mainly located in the northern part of Europe. Finally the highest emission reduction is reached with low biofuel support and high carbon tax evenly distributed in Europe.

  5. Joint BioEnergy Institute

    ScienceCinema

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2018-05-11

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  6. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    DOE PAGES

    Dickson, Timothy L.; Gross, Katherine L.

    2015-09-11

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studiesmore » of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments to bioenergy plantings should consider the role of seeding density.« less

  7. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Timothy L.; Gross, Katherine L.

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studiesmore » of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments to bioenergy plantings should consider the role of seeding density.« less

  8. Synergistic Microbial Consortium for Bioenergy Generation from Complex Natural Energy Sources

    PubMed Central

    Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1 : 9 (v : v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs. PMID:25097866

  9. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work indicates that anaerobic processes should be considered the core technology to treat stillage, based mainly on the attractive relation energy generation-financial return and on the possibility to keep the advantages inherent to the common fertigation when using the treated effluent in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A bioenergy feedstock/vegetable double-cropping system

    USDA-ARS?s Scientific Manuscript database

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  11. Creating dedicated bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    Bioenergy is one of the current mechanisms of producing renewable energy to reduce our use of nonrenewable fossil fuels and to reduce carbon emissions into the atmosphere. Humans have been using bioenergy since we first learned to create and control fire - burning manure, peat, and wood to cook food...

  12. Holistic processes and practices for clean energy in strengthening bioeconomic strategies (INDO-NORDEN)

    NASA Astrophysics Data System (ADS)

    Shurpali, Narasinha J.; Parameswaran, Binod; Raud, Merlin; Pumpanen, Jukka; Sippula, Olli; Jokiniemi, Jorma; Lusotarinen, Sari; Virkajarvi, Perttu

    2017-04-01

    We are proud to introduce the project, INDO-NORDEN, funded in response to the Science and Technology call of the INNO INDIGO Partnership Program (IPP) on Biobased Energy. The project is scheduled to begin from April 2017. The proposed project aims to address both subtopics of the call, Biofuels and From Waste to Energy with research partners from Finland (coordinating unit), India and Estonia. The EU and India share common objectives in enhancing energy security, promoting energy efficiency and energy safety, and the pursuit of sustainable development of clean and renewable energy source. The main objective of INDO-NORDEN is to investigate, evaluate and develop efficient processes and land use practices of transforming forest and agricultural biomass, agricultural residues and farm waste into clean fuels (solid, liquid or gas), by thermochemical or biochemical conversions. Forestry and agriculture are the major bioenergy sectors in Finland. Intensive forest harvesting techniques are being used in Finland to enhance the share of bioenergy in the total energy consumption in the future. However, there are no clear indications how environmentally safe are these intensive forestry practices in Finland. We address this issue through field studies addressing the climate impacts on the ecosystem carbon balance and detailed life cycle assessment. The role of agriculture in Finland is expected to grow significantly in the years to come. Here, we follow a holistic field experimental approach addressing several major issues relevant to Nordic agriculture under changing climatic conditions - soil nutrient management, recycling of nutrients, farm and agricultural waste management, biogas production potentials, greenhouse gas inventorying and entire production chain analysis. There is a considerable potential for process integration in the biofuel sector. This project plans to develop biofuel production processes adopted in Estonia and India with a major aim of enhancing biofuel yields. Additionally, the effects of biomass raw material on ash characteristics and behavior as well as on the fine particle and gas emissions in biomass-fired combustion plants will be evaluated. Thus, the project goes an extra mile in addressing both technological and environmental effects of bioenergy production with combustion processes. Finally, with a voluntary participation of companies with excellent track record in biogas production and CHP technology in participating countries, the project aims to bridge the gap between science, technology and industries.

  13. Science You Can Use Bulletin: Burgeoning biomass: Creating efficient and sustainable forest biomass supply chains in the Rockies, Part II

    Treesearch

    Sue Miller; Maureen Essen; Nathaniel Anderson; Deborah Page-Dumroese; Dan McCollum; Rick Bergman; Tom Elder

    2015-01-01

    Woody biomass could be used to generate renewable bioenergy and bioproducts in the western U.S. and has the potential to offer environmental and societal benefits. The purpose of the Rocky Mountain Research Station-led Biomass Research and Development Initiative (BRDI) project is to research and develop technologies, approaches, and new science that will help...

  14. Short term impacts provide a management window for minimizing invasions from bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    In anticipation of the expansion of perennial bioenergy cultivation, we experimentally introduced Miscanthus sinensis and Miscanthus × giganteus (two non-native candidate bioenergy species) into two different non-crop habitats (old field and flood-plain forest) to evaluate their establishment succes...

  15. Advancing Sustainable Bioenergy; Evolving Stakeholder Interests and the Relevance of Research

    EPA Science Inventory

    Sustainable bioenergy production depends on the resolution of both scientific and nontechnical barriers to its development. We focus on the need to recognize and manage stakeholder diversity as an example of the latter. As a complex issue domain, bioenergy involves a disparate se...

  16. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Miae; Wu, May

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) wasmore » employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.« less

  17. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    DOE PAGES

    Ha, Miae; Wu, May

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) wasmore » employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.« less

  18. Overview of IEA biomass combustion activities

    NASA Astrophysics Data System (ADS)

    Hustad, J. E.

    1994-07-01

    The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).

  19. Soils and water [Chapter 18

    Treesearch

    Goran Berndes; Heather Youngs; Maria Victoria Ramos Ballester; Heitor Cantarella; Annette L. Cowie; Graham Jewitt; Luiz Antonio Martinelli; Dan Neary

    2015-01-01

    Bioenergy production can have positive or negative impacts on soil and water. To best understand these impacts, the effects of bioenergy systems on water and soil resources should be assessed as part of an integrated analysis considering environmental, social and economic dimensions. Bioenergy production systems that are strategically integrated in the landscape to...

  20. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    USDA-ARS?s Scientific Manuscript database

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for b...

  1. Indicators for assessing socioeconomic sustainability of bioenergy systems. A short list of practical measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.

    2012-10-16

    Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, calibrated with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement,more » and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten of those 16 indicators are proposed to be the minimum list of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally-prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.« less

  2. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentousmore » ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.« less

  3. Modeling carbon dynamics and social drivers of bioenergy agroecosystems

    NASA Astrophysics Data System (ADS)

    Hunt, Natalie D.

    Meeting society's energy needs through bioenergy feedstock production presents a significant and urgent challenge, as it can aid in achieving energy independence goals and mitigating climate change. With federal biofuel production standards to be met within the next decade, and with no commercial scale production or markets currently in place, many questions regarding the sustainability and social feasibility of bioenergy still persist. Clarifying these uncertainties requires the incorporation of biogeochemical, biophysical, and socioeconomic modeling tools. Chapter 2 validated the biogeochemical cycling model AGRO-BGC by comparing model estimates with empirical observations from corn and perennial C4 grass systems across Wisconsin and Illinois. AGRO-BGC, in its first application to an annual cropping system, was found to be a robust model for simulating carbon dynamics of an annual cropping system. Chapter 3 investigated the long-term implications of bioenergy feedstock harvest on soil productivity and erosion in annual corn and perennial switchgrass agroecosystems using AGRO-BGC and the soil erosion model RUSLE2. Modeling environments included biophysical landscape characteristics and management practices of bioenergy feedstock production systems. This study found that intensifying aboveground residue harvest reduces soil productivity over time, and the magnitude of these losses is greater in corn than in switchgrass systems. Results of this study will aid in the design of sustainable bioenergy feedstock management practices. Chapter 4 provided evidence that combining biophysical crop canopy characteristics with satellite-derived vegetation indices offers suitable estimates of crop canopy phenology for corn and soybeans in Southwest Wisconsin farms. LANDSAT based vegetation indices, when combined with a light use efficiency model, provide yield estimates in agreement with farmer reports, providing an efficient and accurate means of estimating crop yields from satellite data. The most important stakeholder in bioenergy sustainability and feasibility research is the farmer. Chapter 5 identified and measured the influence of bioenergy feedstock choice drivers using logistic regression choice models constructed from survey and geospatial data. The strongest choice drivers among farmers willing to participate in a proposed bioenergy feedstock production program included socioeconomic, biophysical, and environmental attitudes. Outcomes of this research will be useful in designing further bioenergy policy and economic incentives.

  4. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capareda, Sergio; El-Halwagi, Mahmoud; Hall, Kenneth R.

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previousmore » findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields significantly exceed those of multiple-cut high biomass sorghum systems. Our agronomic yield and quality data will be uploaded to the Bioenergy KDF Website before the end of February 2013, with a date for public access to be determined pending peer-reviewed publication of our findings.« less

  5. Catalytic Deoxygenation of Biomass Pyrolysis Vapors to Improve Bio-oil Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayton, David C.

    2016-12-22

    The President’s Advanced Energy Initiative called for a change in the way Americans fuel their vehicles to promote improved energy security. Increasing biofuels production from domestic lignocellulosic resources requires advanced technology development to achieve the aggressive targets set forth to reduce motor gasoline consumption by 20% in ten years (by 2017). The U.S. Department of Energy (USDOE) Office of the Biomass Program (currently Bioenergy Technologies Office) is actively funding research and development in both biochemical and thermochemical conversion technologies to accelerate the deployment of biofuels technologies in the near future to meet the goals of the Advanced Energy Initiative. Thermochemicalmore » conversion technology options include both gasification and pyrolysis to enable the developing lignocellulosic biorefineries and maximize biomass resource utilization for production of biofuels.« less

  6. Investigating hydrometeorological impacts of perennial bioenergy crops under realistic scenario expansions

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Wang, M.; Miguez-Macho, G.; Miller, J. N.; Bagley, J. E.; Bernacchi, C.; Georgescu, M.

    2016-12-01

    Perennial bioenergy crops, such as switchgrass and miscanthus, have been posed as a more sustainable energy pathway relative to annual bioenergy crops due to their reduced carbon footprint and ability to grow on abandoned and degraded land, thereby, avoiding competition with food crops. Previous studies that replaced annual bioenergy crops with perennial crops noted regional cooling associated with enhanced ET due to their deeper rooting systems extracting deeper soil moisture. This study provides a more realistic assessment by (1) analyzing perennial bioenergy expansion only in suitable abandoned and degraded farmlands, and (2) using field scale measurements of albedo in conjunction with known vegetation fraction and leaf area index (LAI) values. High-resolution (2 km grid spacing) simulations were performed using a state-of-the-art atmospheric model (Weather Research and Forecasting system) dynamically coupled to a land surface model system over the Southern Plains of the U.S., during a normal precipitation year (2007) and a drought year (2011). Our results show that perennial bioenergy crop expansion leads to regional cooling (1-2 oC), that is driven primarily by enhanced reflection of shortwave radiation, and secondarily, by enhanced ET. Perennial bioenergy crop expansion was also shown to mitigate drought impacts through moistening and cooling of the near-surface environment. These impacts, however, were reduced during the drought year as a result of differential environmental conditions, when compared to those of the normal cimate year. This study serves as a major step towards assessing the sustainability of perennial bioenergy crop expansion under diverse hydrometeorological conditions by highlighting the driving mechanisms and processes associated with this energy pathway.

  7. Bioenergy Sustainability Analysis | Bioenergy | NREL

    Science.gov Websites

    and bioenergy systems produce benefits and also impacts to air, water, and land locally, regionally overlap are photos of water, a tree branch with a city in the background, two children walking in a field photo and contains the text: Environmental Sustainability: Climate, Soil quality, Water quality and

  8. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition

    Treesearch

    Rose A. Graves; Scott M. Pearson; Monica G. Turner

    2016-01-01

    Rural landscapes face changing climate, shifting development pressure, and loss of agricultural land. Perennial bioenergy crops grown on existing agricultural land may provide an opportunity to conserve rural landscapes while addressing increased demand for biofuels. However, increased bioenergy production and changing land use raise concerns for tradeoffs...

  9. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    PubMed

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  10. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas

    NASA Astrophysics Data System (ADS)

    Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  11. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields

    PubMed Central

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.

    2011-01-01

    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply. PMID:22211004

  12. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods J, Lynd LR; Laser, M; Batistella M, De Castro D

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr inmore » 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.« less

  13. Review of enhanced processes for anaerobic digestion treatment of sewage sludge

    NASA Astrophysics Data System (ADS)

    Liu, Xinyuan; Han, Zeyu; Yang, Jie; Ye, Tianyi; Yang, Fang; Wu, Nan; Bao, Zhenbo

    2018-02-01

    Great amount of sewage sludge had been produced each year, which led to serious environmental pollution. Many new technologies had been developed recently, but they were hard to be applied in large scales. As one of the traditional technologies, anaerobic fermentation process was capable of obtaining bioenergy by biogas production under the functions of microbes. However, the anaerobic process is facing new challenges due to the low fermentation efficiency caused by the characteristics of sewage sludge itself. In order to improve the energy yield, the enhancement technologies including sewage sludge pretreatment process, co-digestion process, high-solid digestion process and two-stage fermentation process were widely studied in the literatures, which were introduced in this article.

  14. Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report draws together activities related to wet and gaseous waste feedstocks into a single document. It enables an amplified focus on feedstocks in the relevant technology and potential markets category. Also, this report helps to inform and support ongoing wet and gaseous resource recovery activities in the Bioenergy Technologies Office (BETO) and in the broader federal space. Historically, the office has identified wet and gaseous waste feedstocks as potentially advantageous, but has not pursued them with a sustained focus. This document seeks to position these waste streams appropriately alongside more traditional feedstocks in BETO efforts.

  15. New membranes could speed the biofuels conversion process and reduce cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Michael

    2014-07-23

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  16. New membranes could speed the biofuels conversion process and reduce cost

    ScienceCinema

    Hu, Michael

    2018-01-26

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  17. The High School Students' Perceptions and Attitudes toward Bioenergy

    ERIC Educational Resources Information Center

    Özbas, Serap

    2016-01-01

    This research, which was tried with 217 high school students, was carried out to determine the perceptions and attitudes related to the usage of bioenergy. The research results showed that the students had the perception that there would be lack of food due to global warming, but bioenergy would prevent the world from global warming. Moreover,…

  18. Ecological Modernisation and Discourses on Rural Non-Wood Bioenergy Production in Finland from 1980 to 2005

    ERIC Educational Resources Information Center

    Huttunen, Suvi

    2009-01-01

    Rural bioenergy production is currently a much debated question worldwide. It is closely connected to questions of environmental protection and rural development in both developing and industrial world. In Finland, rural bioenergy production has traditionally meant the production of wood fuels for heating purposes. The utilisation of forest…

  19. 76 FR 62050 - Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... DEPARTMENT OF ENERGY Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for... 2005 (EPAct 2005) to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa) for construction and start-up... combination of biomass feedstocks, such as corn stover and wheat straw, to produce cellulosic ethanol and to...

  20. Growing and Sustaining Communities with Bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havill, Alice; Schultz, Donny; Falcon, Nigel

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping America’s rural economies grow and thrive.

  1. Accounting for Human Health and Ecosystems Quality in Developing Sustainable Energy Products: The Implications of Wood Biomass-based Electricity Strategies to Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Weldu, Yemane W.

    The prospect for transitions and transformations in the energy sector to mitigate climate change raises concerns that actions should not shift the impacts from one impact category to another, or from one sustainability domain to another. Although the development of renewables mostly results in low environmental impacts, energy strategies are complex and may result in the shifting of impacts. Strategies to climate change mitigation could have potentially large effects on human health and ecosystems. Exposure to air pollution claimed the lives of about seven million people worldwide in 2010, largely from the combustion of solid fuels. The degradation of ecosystem services is a significant barrier to achieving millennium development goals. This thesis quantifies the biomass resources potential for Alberta; presents a user-friendly and sector-specific framework for sustainability assessment; unlocks the information and policy barriers to biomass integration in energy strategy; introduces new perspectives to improve understanding of the life cycle human health and ecotoxicological effects of energy strategies; provides insight regarding the guiding measures that are required to ensure sustainable bioenergy production; validates the utility of the Environmental Life Cycle Cost framework for economic sustainability assessment; and provides policy-relevant societal cost estimates to demonstrate the importance of accounting for human health and ecosystem externalities in energy planning. Alberta is endowed with a wealth of forest and agricultural biomass resources, estimated at 458 PJ of energy. Biomass has the potential to avoid 11-15% of GHG emissions and substitute 14-17% of final energy demand by 2030. The drivers for integrating bioenergy sources into Alberta's energy strategy are economic diversification, technological innovation, and resource conservation policy objectives. Bioenergy pathways significantly improved both human health and ecosystem quality from coal fuel. Bioenergy alternatives have higher economic cost than the prevailing scenario of coal-fired generation system. Although coal fuel is the most cost effective way of electricity generation, its combustion results in the loss of 123.5 billion USD per year for Alberta due to societal life cycle cost. This research demonstrated that bioenergy can support the transformation of a fossil-based energy system to a more sustainable power production system; however, respiratory effects is a concern.

  2. Sustainability analysis of bioenergy based land use change under climate change and variability

    NASA Astrophysics Data System (ADS)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water quality benefits due to land use change were generally greater than the effects of climate change variability.

  3. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    PubMed

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  4. A platform for high-throughput bioenergy production phenotype characterization in single cells

    PubMed Central

    Kelbauskas, Laimonas; Glenn, Honor; Anderson, Clifford; Messner, Jacob; Lee, Kristen B.; Song, Ganquan; Houkal, Jeff; Su, Fengyu; Zhang, Liqiang; Tian, Yanqing; Wang, Hong; Bussey, Kimberly; Johnson, Roger H.; Meldrum, Deirdre R.

    2017-01-01

    Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers. PMID:28349963

  5. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tews, Iva J.; Zhu, Yunhua; Drennan, Corinne

    The purpose of this work was to assess the competitiveness of two biomass to transportation fuel processing routes, which were under development in Finland, the U.S. and elsewhere. Concepts included fast pyrolysis (FP), and hydrothermal liquefaction (HTL), both followed by hydrodeoxygenation, and final product refining. This work was carried out as a collaboration between VTT (Finland), and PNNL (USA). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an update of the earlier comparative technoeconomic assessment performed by the IEA Bioenergy Directmore » Biomass Liquefaction Task in the 1980s. New developments in HTL and the upgrading of the HTL biocrude product triggered the interest in reinvestigating this comparison of these biomass liquefaction processes. In addition, developments in FP bio-oil upgrading had provided additional definition of this process option, which could provide an interesting comparison.« less

  6. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products

    PubMed Central

    Hosseini, Seyed Ali; Shah, Nilay

    2011-01-01

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops. PMID:22482032

  7. Forest Carbon Accounting Considerations in US Bioenergy Policy

    Treesearch

    Reid A. Miner; Robert C. Abt; Jim L. Bowyer; Marilyn A. Buford; Robert W. Malmsheimer; Jay O' Laughlin; Elaine E. Oneil; Roger A. Sedjo; Kenneth E. Skog

    2014-01-01

    Four research-based insights are essential to understanding forest bioenergy and “carbon debts.” (1) As long as wood-producing land remains in forest, long-lived wood products and forest bioenergy reduce fossil fuel use and long-term carbon emission impacts. (2) Increased demand for wood can trigger investments that increase forest area and forest productivity and...

  8. Growing and Sustaining Communities with Bioenergy

    ScienceCinema

    Havill, Alice; Schultz, Donny; Falcon, Nigel; Reetz, Harold; Rowden, Jack; Van Horn, Ruth; Nordling, Debbie; Naig, Mike

    2018-06-12

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping America’s rural economies grow and thrive.

  9. Land-Use and Environmental Pressures Resulting from Current and Future Bioenergy Crop Expansion: A Review

    ERIC Educational Resources Information Center

    Miyake, Saori; Renouf, Marguerite; Peterson, Ann; McAlpine, Clive; Smith, Carl

    2012-01-01

    Recent energy and climate policies, particularly in the developed world, have increased demand for bioenergy as an alternative, which has led to both direct and indirect land-use changes and an array of environmental and socio-economic concerns. A comprehensive understanding of the land-use dynamics of bioenergy crop production is essential for…

  10. Tweak, adapt, or transform: Policy scenarios in response to emerging bioenergy markets in the U.S

    Treesearch

    Ryan. C. Atwell; Lisa. A. Schulte; Lynne M. Westphal

    2011-01-01

    Emerging bioenergy markets portend both boon and bane for regions of intensive agricultural production worldwide. To understand and guide the effects of bioenergy markets on agricultural landscapes, communities, and economies, we engaged leaders in the Corn Belt state of Iowa in a participatory workshop and follow-up interviews to develop future policy scenarios....

  11. 78 FR 42546 - Notice of Lodging of Proposed Consent Decree Under the Comprehensive Environmental Response...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... hazardous substances at the BioEnergy of Colorado Superfund Site located on 821 West 56th Avenue, City and Adams County, Colorado 80216. BioEnergy of Colorado, LLC, now defunct, operated a bio-diesel production... pH, caustic materials and methanol used by BioEnergy in the production of bio-fuel that had been...

  12. 78 FR 56264 - Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc., South Texas Oil Co., and Synova Healthcare Group, Inc... concerning the securities of Four Rivers BioEnergy, Inc. because it has not filed any periodic reports since...

  13. Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems

    NASA Astrophysics Data System (ADS)

    Fortier, M. O. P.

    2017-12-01

    Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.

  14. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    PubMed Central

    Werling, Ben P.; Dickson, Timothy L.; Isaacs, Rufus; Gaines, Hannah; Gratton, Claudio; Gross, Katherine L.; Liere, Heidi; Malmstrom, Carolyn M.; Meehan, Timothy D.; Ruan, Leilei; Robertson, Bruce A.; Robertson, G. Philip; Schmidt, Thomas M.; Schrotenboer, Abbie C.; Teal, Tracy K.; Wilson, Julianna K.; Landis, Douglas A.

    2014-01-01

    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands—farmland suboptimal for food crops—could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks—primarily annual grain crops—on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services. PMID:24474791

  15. Challenge clusters facing LCA in environmental decision-making-what we can learn from biofuels.

    PubMed

    McManus, Marcelle C; Taylor, Caroline M; Mohr, Alison; Whittaker, Carly; Scown, Corinne D; Borrion, Aiduan Li; Glithero, Neryssa J; Yin, Yao

    Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy's sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policy-facing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large.

  16. Synthetic Biology: Applications in the Food Sector.

    PubMed

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  17. Membranes for bioelectrochemical systems: challenges and research advances.

    PubMed

    Dhar, Bipro Ranjan; Lee, Hyung-Sool

    2013-01-01

    Increasing energy demand has been a big challenge for current society, as the fossil fuel sources are gradually decreasing. Hence, development of renewable and sustainable energy sources for the future is considered one of the top priorities in national strategic plans. Bioenergy can meet future energy requirements - renewability, sustainability, and even carbon-neutrality. Bioenergy production from wastes and wastewaters is especially attractive because of dual benefits of energy generation and contaminant stabilization. There are several bioenergy technologies using wastes and wastewaters as electron donor, which include anaerobic digestion, dark biohydrogen fermentation, biohydrogen production using photosynthetic microorganisms, and bioelectrochemical systems (BESs). Among them BES seems to be very promising as we can produce a variety of value-added products from wastes and wastewaters, such as electric power, hydrogen gas, hydrogen peroxide, acetate, ethanol etc. Most ofthe traditional BES uses a membrane to separate the anode and cathode chamber, which is essential for improving microbial metabolism on the anode and the recovery of value-added products on the cathode. Performance of BES lacking a membrane can be seriously deteriorated, due to oxygen diffusion or substantial loss of synthesized products. For this reason, usage of a membrane seems essential to facilitate BES performance. However, a membrane can bring several technical challenges to BES application compared to membrane-less BES. These challenges include poor proton permeability, substrate loss, oxygen back diffusion, pH gradient, internal resistance, biofouling, etc. This paper aims to review the major technical barriers associated with membranes and future research directions for their application in BESs.

  18. Advancing Sustainable Bioenergy: Evolving Stakeholder Interests and the Relevance of Research

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence; Bielicki, Jeffrey M.; Dodder, Rebecca S.; Hilliard, Michael R.; Ozge Kaplan, P.; Andrew Miller, C.

    2013-02-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different—and potentially conflicting—values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote "sustainable" bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  19. Advancing sustainable bioenergy: evolving stakeholder interests and the relevance of research.

    PubMed

    Johnson, Timothy Lawrence; Bielicki, Jeffrey M; Dodder, Rebecca S; Hilliard, Michael R; Kaplan, P Ozge; Miller, C Andrew

    2013-02-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different-and potentially conflicting-values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote "sustainable" bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  20. Algal Biofuels Strategy. Proceedings from the March 26-27, 2014, Workshop, Charleston, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-06-01

    This report is based on the proceedings of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office’s Algal Biofuel Strategy Workshop on March 26-27, 2014, in Charleston, South Carolina. The workshop objective was to convene stakeholders to engage in discussion on strategies over the next 5 to 10 years to achieve affordable, scalable, and sustainable algal biofuels.

  1. The Vermont Bioenergy Initiative: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Chris; Sawyer, Scott; Kahler, Ellen

    The purpose of the Vermont Bioenergy Initiative (VBI) was to foster the development of sustainable, distributed, small-scale biodiesel and grass/mixed fiber industries in Vermont in order to produce bioenergy for local transportation, agricultural, and thermal applications, as a replacement for fossil fuel based energy. The VBI marked the first strategic effort to reduce Vermont’s dependency on petroleum through the development of homegrown alternatives.

  2. An assessment of the influence of bioenergy and marketed land amenity values on land uses in the midwestern US

    Treesearch

    Suk-Won Choi; Brent Sohngen; Ralph Alig

    2011-01-01

    There is substantial concern that bioenergy policies could swamp other considerations, such as environmental values, and lead to large-scale conversions of land from forest to crops. This study examines how bioenergy and marketed environmental rents for forestland potentially influence land use in the Midwestern US. We hypothesize that current land uses reflect market...

  3. Modeling Joint Climate and Bioenergy Policies: Challenges of integrating economic and environmental data. (Invited)

    NASA Astrophysics Data System (ADS)

    Hellwinckel, C. M.; West, T. O.; de La Torre Ugarte, D.; Perlack, R.

    2010-12-01

    In the coming decades agriculture will be asked to play a significant role in reducing carbon emissions and reducing our use of foreign oil. The Renewable Fuels Standard combined with possible climate legislation will alter the economic landscape effecting agricultural land use decisions. The joint implementation of these two policies could potentially work against one another. We have integrated biogeophysical data into the POLYSYS economic model to analyze the effects of climate change and bioenergy legislation upon regional land-use change, soil carbon, carbon emissions, biofuel production, and agricultural income. The purpose of the analysis was to use the integrated model to identify carbon and bioenergy policies that could act synergistically to meet Renewable Fuel Standard goals, reduce net emissions of carbon, and increase agricultural incomes. The heterogeneous nature of soils, crop yields, and management practices presented challenges to the modeling process. Regional variation in physical data can significantly affect economic land use decisions and patterns. For this reason, we disaggregated the economic component of the model to the county level, with sub-county soils and land-use data informing the county level decisions. Modeling carbon offset dynamics presented unique challenges, as the physical responses of local soils impact the economic incentives offered, and conversely, the resulting land-use changes impact characteristics of local soils. Additionally, using data from different resolution levels led to questions of appropriate scale of analysis. This presentation will describe the integrated model, present some significant results from our analysis, and discuss appropriate steps forward given what we learned.

  4. Correcting a fundamental error in greenhouse gas accounting related to bioenergy.

    PubMed

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-06-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of 'additional biomass' - biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy - can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.

  5. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning.

    PubMed

    Hiloidhari, Moonmoon; Baruah, D C; Singh, Anoop; Kataki, Sampriti; Medhi, Kristina; Kumari, Shilpi; Ramachandra, T V; Jenkins, B M; Thakur, Indu Shekhar

    2017-10-01

    Sustainability of a bioenergy project depends on precise assessment of biomass resource, planning of cost-effective logistics and evaluation of possible environmental implications. In this context, this paper reviews the role and applications of geo-spatial tool such as Geographical Information System (GIS) for precise agro-residue resource assessment, biomass logistic and power plant design. Further, application of Life Cycle Assessment (LCA) in understanding the potential impact of agro-residue bioenergy generation on different ecosystem services has also been reviewed and limitations associated with LCA variability and uncertainty were discussed. Usefulness of integration of GIS into LCA (i.e. spatial LCA) to overcome the limitations of conventional LCA and to produce a holistic evaluation of the environmental benefits and concerns of bioenergy is also reviewed. Application of GIS, LCA and spatial LCA can help alleviate the challenges faced by ambitious bioenergy projects by addressing both economics and environmental goals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Net land-atmosphere flows of biogenic carbon related to bioenergy: towards an understanding of systemic feedbacks.

    PubMed

    Haberl, Helmut

    2013-07-01

    The notion that biomass combustion is carbon neutral vis-a-vis the atmosphere because carbon released during biomass combustion is absorbed during plant regrowth is inherent in the greenhouse gas accounting rules in many regulations and conventions. But this 'carbon neutrality' assumption of bioenergy is an oversimplification that can result in major flaws in emission accounting; it may even result in policies that increase, instead of reduce, overall greenhouse gas emissions. This commentary discusses the systemic feedbacks and ecosystem succession/land-use history issues ignored by the carbon neutrality assumption. Based on recent literature, three cases are elaborated which show that the C balance of bioenergy may range from highly beneficial to strongly detrimental, depending on the plants grown, the land used (including its land-use history) as well as the fossil energy replaced. The article concludes by proposing the concept of GHG cost curves of bioenergy as a means for optimizing the climate benefits of bioenergy policies.

  7. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.

    PubMed

    Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M

    2010-10-01

    Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.

  8. Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest.

    PubMed

    SooHoo, William M; Wang, Cuizhen; Li, Huixuan

    2017-04-01

    Agricultural land use change, especially corn expansion since 2000s, has been accelerating to meet the growing bioenergy demand of the United States. This study identifies the environmentally sensitive lands (ESLs) in the U.S. Midwest using the distance-weighted Revised Universal Soil Loss Equation (RUSLE) associated with bioenergy land uses extracted from USDA Cropland Data Layers. The impacts of soil erosion to downstream wetlands and waterbodies in the river basin are counted in the RUSLE with an inverse distance weighting approach. In a GIS-ranking model, the ESLs in 2008 and 2011 (two representative years of corn expansion) are ranked based on their soil erosion severity in crop fields. Under scenarios of bioenergy land use change (corn to grass and grass to corn) on two land types (ESLs and non-ESLs) at three magnitudes (5%, 10% and 15% change), this study assesses the potential environmental impacts of bioenergy land use at a basin level. The ESL distributions and projected trends vary geographically responding to different agricultural conversions. Results support the idea of re-planting native prairie grasses in the identified High and Severe rank ESLs for sustainable bioenergy management in this important agricultural region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.

    PubMed

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of "precipitation of the warmest quarter" and "annual mean temperature" were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.

  10. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy L; Bielicki, Dr Jeffrey M; Dodder, Rebecca

    2013-01-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts tomore » define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.« less

  11. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    USGS Publications Warehouse

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals to consider when crafting lists of focal species for bioenergy impact assessments at the landscape scale.

  12. Land-use legacies regulate decomposition dynamics following bioenergy crop conversion

    DOE PAGES

    Kallenbach, Cynthia M.; Stuart Grandy, A.

    2014-07-14

    Land-use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land-use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land-use legacies with current management and litter quality. To evaluate how land-use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape-scale litterbag decomposition experiment. We proposed land-use legacies regulate decomposition, but their effects are weakened under higher quality litter andmore » when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and magnitude of decomposition responses to bioenergy crop conversion and therefore should be considered a key influence on litter and soil C cycling under bioenergy crop management.« less

  13. Exploring the Potential for Sustainable Future Bioenergy Production in the Arkansas-White-Red River Basin

    NASA Astrophysics Data System (ADS)

    Baskaran, L.; Jager, H.; Kreig, J.

    2016-12-01

    Bioenergy production in the US has been projected to increase in the next few years and this has raised concerns over environmentally sustainable production. Specifically, there are concerns that managing lands to produce bioenergy feedstocks in the Mississippi-Atchafalaya River Basin (MARB) may have impacts over the water quality in the streams draining these lands and hamper with efforts to reduce the size of the Gulf of Mexico's "Dead Zone" (hypoxic waters). However, with appropriate choice of feedstocks and good conservation practices, bioenergy production systems can be environmentally and economically sustainable. We evaluated opportunities for producing 2nd generation cellulosic feedstocks that are economically sustainable and improve water quality in the Arkansas-White-Red (AWR) river basin, which is major part of the MARB. We generated a future bioenergy landscape by downscaling county-scale projections of bioenergy crop production produced by an economic model, POLYSYS, at a market price of $60 per dry ton and a 1% annual yield increase. Our future bioenergy landscape includes perennial grasses (switchgrass and miscanthus), short-rotated woody crops (poplar and willow) and annual crops (high yield sorghum, sorghum stubble, corn stover and wheat straw). Using the Soil and Water Assessment Tool (SWAT) we analyzed changes in water quality and quantity by simulating a baseline scenario with the current landscape (2014 land cover) and a future scenario with the bioenergy landscape. Our results over the AWR indicate decreases in median nutrient and sediment loadings from the baseline scenario. We also explored methods to evaluate if conservation practices (such as reducing fertilizer applications, incorporating filter strips, planting cover crops and moving to a no-till system) can improve water quality, while maintaining biomass yield. We created a series of SWAT simulations with varying levels of conservation practices by crop and present our methods towards identifying future scenarios that may minimize water quality and maximize biomass yields.

  14. 2016 National Algal Biofuels Technology Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Amanda; Wolfe, Alexis; English, Christine

    The Bioenergy Technologies Office (BETO) of the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, is committed to advancing the vision of a viable, sustainable domestic biomass industry that produces renewable biofuels, bioproducts, and biopower; enhances U.S. energy security; reduces our dependence on fossil fuels; provides environmental benefits; and creates economic opportunities across the nation. BETO’s goals are driven by various federal policies and laws, including the Energy Independence and Security Act of 2007 (EISA). To accomplish its goals, BETO has undertaken a diverse portfolio of research, development, and demonstration (RD&D) activities, in partnership with nationalmore » laboratories, academia, and industry.« less

  15. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    NASA Astrophysics Data System (ADS)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-01-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base-case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  16. Validation Process Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John E.; English, Christine M.; Gesick, Joshua C.

    This report documents the validation process as applied to projects awarded through Funding Opportunity Announcements (FOAs) within the U.S. Department of Energy Bioenergy Technologies Office (DOE-BETO). It describes the procedures used to protect and verify project data, as well as the systematic framework used to evaluate and track performance metrics throughout the life of the project. This report also describes the procedures used to validate the proposed process design, cost data, analysis methodologies, and supporting documentation provided by the recipients.

  17. Life-Cycle Analysis of Energy Use, Greenhouse Gas Emissions, and Water Consumption in the 2016 MYPP Algal Biofuel Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Edward; Pegallapati, Ambica; Davis, Ryan

    2016-06-16

    The Department of Energy (DOE) Bioenergy Technologies Office (BETO) Multi-year Program Plan (MYPP) describes the bioenergy objectives pursued by BETO, the strategies for achieving those objectives, the current state of technology (SOT), and a number of design cases that explore cost and operational performance required to advance the SOT towards middle and long term goals (MYPP, 2016). Two options for converting algae to biofuel intermediates were considered in the MYPP, namely algal biofuel production via lipid extraction and algal biofuel production by thermal processing. The first option, lipid extraction, is represented by the Combined Algae Processing (CAP) pathway in whichmore » algae are hydrolyzed in a weak acid pretreatment step. The treated slurry is fermented for ethanol production from sugars. The fermentation stillage contains most of the lipids from the original biomass, which are recovered through wet solvent extraction. The process residuals after lipid extraction, which contain much of the original mass of amino acids and proteins, are directed to anaerobic digestion (AD) for biogas production and recycle of N and P nutrients. The second option, thermal processing, comprises direct hydrothermal liquefaction (HTL) of the wet biomass, separation of aqueous, gas, and oil phases, and treatment of the aqueous phase with catalytic hydrothermal gasification (CHG) to produce biogas and to recover N and P nutrients.« less

  18. Optimal Management of DoD Lands for Military Training, Ecosystem Services, and Renewable Energy Generation: Framework and Data Requirements

    DTIC Science & Technology

    2013-01-01

    by at least 25% by 2025. To achieve this ambitious goal, DoD is considering a diverse energy portfolio that includes wind , solar, geothermal...generated power (bioenergy). wind , solar, and bioenergy sources each have significant land-management implications, so this third land-use re- quirement...production, the adverse impacts of conflicting requirements can be minimized. The regional differences in wind , solar, and bioenergy potential

  19. Evaluating the effects of woody biomass production for bioenergy on water quality and hydrology in the southeastern United States

    Treesearch

    Natalie Griffiths; C. Rhett Jackson; Menberu Bitew; Enhao Du; Kellie Vache' ; Jeffrey J. McDonnell; Julian Klaus; Benjamin M. Rau

    2016-01-01

    Forestry is a dominant industry in the southeastern United States, and there is interest in sustainably growing woody feedstocks for bioenergy in this region. Our project is evaluating the environmental sustainability (water quality, quantity) of growing and managing short-rotation (10-12 yrs) loblolly pine for bioenergy using watershed-scale experimental and modeling ...

  20. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions.

    PubMed

    Schulze, Jule; Frank, Karin; Priess, Joerg A; Meyer, Markus A

    2016-01-01

    Meeting the world's growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape. This indicates that SRCs negligibly affect trade-offs between individual ESS. Coupling spatially explicit economic simulation models with environmental and ESS assessment models can contribute to a comprehensive impact assessment of bioenergy feedstocks that have not yet been planted.

  1. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions

    PubMed Central

    Schulze, Jule; Frank, Karin; Priess, Joerg A.; Meyer, Markus A.

    2016-01-01

    Meeting the world’s growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape. This indicates that SRCs negligibly affect trade-offs between individual ESS. Coupling spatially explicit economic simulation models with environmental and ESS assessment models can contribute to a comprehensive impact assessment of bioenergy feedstocks that have not yet been planted. PMID:27082742

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManus, Marcelle C.; Taylor, Caroline M.; Mohr, Alison

    Purpose: Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods: The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expertmore » submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policy-facing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion: The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions: The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large.« less

  3. Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels

    DOE PAGES

    McManus, Marcelle C.; Taylor, Caroline M.; Mohr, Alison; ...

    2015-08-07

    Purpose: Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods: The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expertmore » submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policy-facing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion: The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions: The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large.« less

  4. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds.

    PubMed

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-07-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.

  5. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    PubMed

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  6. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds

    PubMed Central

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-01-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union. PMID:26681982

  7. Predicting the Impacts of Climate Change on the Potential Distribution of Major Native Non-Food Bioenergy Plants in China

    PubMed Central

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of “precipitation of the warmest quarter” and “annual mean temperature” were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China. PMID:25365425

  8. Environmental and economic suitability of forest biomass-based bioenergy production in the Southern United States

    NASA Astrophysics Data System (ADS)

    Dwivedi, Puneet

    This study attempts to ascertain the environmental and economic suitability of utilizing forest biomass for cellulosic ethanol production in the Southern United States. The study is divided into six chapters. The first chapter details the background and defines the relevance of the study along with objectives. The second chapter reviews the existing literature to ascertain the present status of various existing conversion technologies. The third chapter assesses the net energy ratio and global warming impact of ethanol produced from slash pine (Pinus elliottii Engelm.) biomass. A life-cycle assessment was applied to achieve the task. The fourth chapter assesses the role of emerging bioenergy and voluntary carbon markets on the profitability of non-industrial private forest (NIPF) landowners by combining the Faustmann and Hartmann models. The fifth chapter assesses perceptions of four stakeholder groups (Non-Government Organization, Academics, Industries, and Government) on the use of forest biomass for bioenergy production in the Southern United States using the SWOT-AHP (Strength, Weakness, Opportunity, and Threat-Analytical Hierarchy Process) technique. Finally, overall conclusions are made in the sixth chapter. Results indicate that currently the production of cellulosic ethanol is limited as the production cost of cellulosic ethanol is higher than the production cost of ethanol derived from corn. However, it is expected that the production cost of cellulosic ethanol will come down in the future from its current level due to ongoing research efforts. The total global warming impact of E85 fuel (production and consumption) was found as 10.44 tons where as global warming impact of an equivalent amount of gasoline (production and consumption) was 21.45 tons. This suggests that the production and use of ethanol derived from slash pine biomass in the form of E85 fuel in an automobile saves about 51% of carbon emissions when compared to gasoline. The net energy ratio of ethanol produced at the mill was found to be 3.2. The unit cost of production of ethanol was estimated to be $2.05 per gasoline gallon energy equivalent. The study also found that the emerging bioenergy and voluntary carbon markets will significantly increase land expectation values and, thus, the profitability of landowners. Results suggest that the optimal rotation age is insensible to alternate management scenarios. Finally, it was found that all stakeholder groups perceive that the overall benefits of forest biomass-based bioenergy development were higher than its weaknesses.

  9. Policies to Enable Bioenergy Deployment: Key Considerations and Good Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolinksi, Sharon; Cox, Sadie

    2016-05-01

    Bioenergy is renewable energy generated from biological source materials, and includes electricity, transportation fuels and heating. Source materials are varied types of biomass, including food crops such as corn and sugarcane, non-edible lignocellulosic materials such as agricultural and forestry waste and dedicated crops, and municipal and livestock wastes. Key aspects of policies for bioenergy deployment are presented in this brief as part of the Clean Energy Solutions Center's Clean Energy Policy Brief Series.

  10. Growing America's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to create a healthier environment for current and future generations.

  11. Sustainable Development for Whom and How? Exploring the Gaps between Popular Discourses and Ground Reality Using the Mexican Jatropha Biodiesel Case.

    PubMed

    Banerjee, Aparajita; Halvorsen, Kathleen E; Eastmond-Spencer, Amarella; Sweitz, Sam R

    2017-06-01

    In the last decade, jatropha-based bioenergy projects have gotten significant attention as a solution to various social, economic, and environmental problems. Jatropha's popularity stemmed out from different discourses, some real and some perceived, in scientific and non-scientific literature. These discourses positioned jatropha as a crop helpful in producing biodiesel and protecting sustainability by reducing greenhouse gas emissions compared to fossil fuels and increasing local, rural development by creating jobs. Consequently, many countries established national policies that incentivized the establishment of jatropha as a bioenergy feedstock crop. In this paper, we explore the case of jatropha bioenergy development in Yucatan, Mexico and argue that the popular discourse around jatropha as a sustainability and rural development tool is flawed. Analyzing our results from 70 semi-structured interviews with community members belonging to a region where plantation-scale jatropha projects were introduced, we found that these projects did not have many significant social sustainability benefits. We conclude from our case that by just adding bioenergy projects cannot help achieve social sustainability in rural areas alone. In ensuring social sustainability of bioenergy projects, future policymaking processes should have a more comprehensive understanding of the rural socioeconomic problems where such projects are promoted and use bioenergy projects as one of the many solutions to local problems rather than creating such policies based just on popular discourses.

  12. Sustainable Development for Whom and How? Exploring the Gaps between Popular Discourses and Ground Reality Using the Mexican Jatropha Biodiesel Case

    NASA Astrophysics Data System (ADS)

    Banerjee, Aparajita; Halvorsen, Kathleen E.; Eastmond-Spencer, Amarella; Sweitz, Sam R.

    2017-06-01

    In the last decade, jatropha-based bioenergy projects have gotten significant attention as a solution to various social, economic, and environmental problems. Jatropha's popularity stemmed out from different discourses, some real and some perceived, in scientific and non-scientific literature. These discourses positioned jatropha as a crop helpful in producing biodiesel and protecting sustainability by reducing greenhouse gas emissions compared to fossil fuels and increasing local, rural development by creating jobs. Consequently, many countries established national policies that incentivized the establishment of jatropha as a bioenergy feedstock crop. In this paper, we explore the case of jatropha bioenergy development in Yucatan, Mexico and argue that the popular discourse around jatropha as a sustainability and rural development tool is flawed. Analyzing our results from 70 semi-structured interviews with community members belonging to a region where plantation-scale jatropha projects were introduced, we found that these projects did not have many significant social sustainability benefits. We conclude from our case that by just adding bioenergy projects cannot help achieve social sustainability in rural areas alone. In ensuring social sustainability of bioenergy projects, future policymaking processes should have a more comprehensive understanding of the rural socioeconomic problems where such projects are promoted and use bioenergy projects as one of the many solutions to local problems rather than creating such policies based just on popular discourses.

  13. Simulation of Biomass Yield and Soil Organic Carbon under Bioenergy Sorghum Production

    PubMed Central

    Dou, Fugen; Wight, Jason P.; Wilson, Lloyd T.; Storlien, Joseph O.; Hons, Frank M.

    2014-01-01

    Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0–50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha−1, while the simulated SOC was from 56.3 to 67.3 Mg C ha−1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management. PMID:25531758

  14. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study.

    PubMed

    Hansen, Veronika; Müller-Stöver, Dorette; Imparato, Valentina; Krogh, Paul Henning; Jensen, Lars Stoumann; Dolmer, Anders; Hauggaard-Nielsen, Henrik

    2017-01-15

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped with winter wheat (Triticum aestivum L.), winter oilseed rape (Brassica napus L.) and winter wheat, respectively, to assess the potential effects on the soil carbon pool, soil microorganisms, earthworms, soil chemical properties and crop yields. The application of GB did not increase the soil organic carbon content significantly and had no effect on crop yields. The application of straw and GB had a positive effect on the populations of bacteria and protists, but no effect on earthworms. The high rate of GB increased soil exchangeable potassium content and soil pH indicating its potassium bioavailability and liming properties. These results suggest, that recycling GB into agricultural soils has the potential to be developed into a system combining bioenergy generation from agricultural residues and crop production, while maintaining soil quality. However, future studies should be undertaken to assess its long-term effects and to identify the optimum balance between straw removal and biochar application rate. Copyright © 2016. Published by Elsevier Ltd.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, Paul

    Cellulosic ethanol is an emerging biofuel that will make strong contributions to American domestic energy needs. In the US midwest the standard method for pretreatment of biomass uses hot acid to deconstruct lignocellulose. While other methods work, they are not in common use. Therefore it is necessary to work within this context to achieve process improvements and reductions in biofuel cost. Technology underlying this process could supplement and even replace commodity enzymes with engineered microbes to convert biomass-derived lignocellulose feedstocks into biofuels and valueadded chemicals. The approach that was used here was based on consolidated bioprocessing. Thermoacidophilic microbes belonging tomore » the Domain Archaea were evaluated and modfied to promote deconvolution and saccharification of lignocellulose. Biomass pretreatment (hot acid) was combined with fermentation using an extremely thermoacidophilic microbial platform. The identity and fate of released sugars was controlled using metabolic blocks combined with added biochemical traits where needed. LC/MS analysis supported through the newly established Nebraska Bioenergy Facility provided general support for bioenergy researchers at the University of Nebraska. The primary project strategy was to use microbes that naturally flourish in hot acid (thermoacidophiles) with conventional biomass pretreatment that uses hot acid. The specific objectives were: to screen thermoacidophilic taxa for the ability to deconvolute lignocellulose and depolymerize associated carbohydrates; evaluate and respond to formation of “inhibitors” that arose during incubation of lignocellulose under heated acidic conditions; identify and engineer “sugar flux channeling and catabolic blocks” that redirect metabolic pathways to maximize sugar concentrations; expand the hydrolytic capacity of extremely thermoacidophilic microbes through the addition of deconvolution traits; and establish the Nebraska Bioenergy Facility (NBF) at the University of Nebraska-Lincoln.« less

  16. Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications.

    PubMed

    Cao, Yucheng; Pawłowski, Artur

    2013-01-01

    A "cradle-to-grave" life cycle assessment was conducted to examine the energy and greenhouse gas (GHG) emission footprints of two emerging sludge-to-energy systems. One system employs a combination of anaerobic digestion (AD) and fast pyrolysis for bioenergy conversion, while the other excludes AD. Each system was divided into five process phases: plant construction, sludge pretreatment, sludge-to-bioenergy conversion, bioenergy utilizations and biochar management. Both systems achieved energy and GHG emission benefits, and the AD-involving system performed better than the AD-excluding system (5.30 vs. 0.63 GJ/t sludge in net energy gain and 0.63 vs. 0.47 t CO(2)eq/t sludge in emission credit for base case). Detailed contribution and sensitivity analyses were conducted to identify how and to what degree the different life-cycle phases are responsible for the energy and emission impacts. The energy and emission performances were significantly affected by variations in bioenergy production, energy requirement for sludge drying and end use of bioenergy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    PubMed Central

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K.; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-01-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy. PMID:23576835

  18. A framework for selecting indicators of bioenergy sustainability

    DOE PAGES

    Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.; ...

    2015-05-11

    A framework for selecting and evaluating indicators of bioenergy sustainability is presented. This framework is designed to facilitate decision-making about which indicators are useful for assessing sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability indicators in the United States and Europe are reviewed. The first steps of the framework for indicator selection are defining the sustainability goals and other goals for a bioenergy project or program, gaining an understanding of the context, and identifying the values of stakeholders. From the goals, context, and stakeholders, the objectives for analysis and criteria for indicator selection can be developed.more » The user of the framework identifies and ranks indicators, applies them in an assessment, and then evaluates their effectiveness, while identifying gaps that prevent goals from being met, assessing lessons learned, and moving toward best practices. The framework approach emphasizes that the selection of appropriate criteria and indicators is driven by the specific purpose of an analysis. Realistic goals and measures of bioenergy sustainability can be developed systematically with the help of the framework presented here.« less

  19. The global potential of bioenergy on abandoned agriculture lands.

    PubMed

    Campbell, J Elliott; Lobell, David B; Genova, Robert C; Field, Christopher B

    2008-08-01

    Converting forest lands into bioenergy agriculture could accelerate climate change by emitting carbon stored in forests, while converting food agriculture lands into bioenergy agriculture could threaten food security. Both problems are potentially avoided by using abandoned agriculture lands for bioenergy agriculture. Here we show the global potential for bioenergy on abandoned agriculture lands to be less than 8% of current primary energy demand, based on historical land use data, satellite-derived land cover data, and global ecosystem modeling. The estimated global area of abandoned agriculture is 385-472 million hectares, or 66-110% of the areas reported in previous preliminary assessments. The area-weighted mean production of above-ground biomass is 4.3 tons ha(-1) y(-1), in contrast to estimates of up to 10 tons ha(-1) y(-1) in previous assessments. The energy content of potential biomass grown on 100% of abandoned agriculture lands is less than 10% of primary energy demand for most nations in North America, Europe, and Asia, but it represents many times the energy demand in some African nations where grasslands are relatively productive and current energy demand is low.

  20. The Endurance Bioenergy Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laible, Philip; Michaund, Matt

    2012-07-03

    Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor—a device that contains bacteria that can convert energy from the sun into fuel molecules.

  1. Facilities | Bioenergy | NREL

    Science.gov Websites

    Facilities Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design options. Photo of interior of industrial, two-story building with high-bay, piping, and large processing

  2. Bioenergy | NREL

    Science.gov Websites

    Bioenergy Two men in a laboratory, one is holding a plastic bottle. An international research team plastics. Read more about improving plastic-degrading enzymes One man stands behind some laboratory

  3. The underestimated potential of solar energy to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Agoston, Peter; Goldschmidt, Jan Christoph; Luderer, Gunnar; Nemet, Gregory; Pietzcker, Robert C.

    2017-09-01

    The Intergovernmental Panel on Climate Change's fifth assessment report emphasizes the importance of bioenergy and carbon capture and storage for achieving climate goals, but it does not identify solar energy as a strategically important technology option. That is surprising given the strong growth, large resource, and low environmental footprint of photovoltaics (PV). Here we explore how models have consistently underestimated PV deployment and identify the reasons for underlying bias in models. Our analysis reveals that rapid technological learning and technology-specific policy support were crucial to PV deployment in the past, but that future success will depend on adequate financing instruments and the management of system integration. We propose that with coordinated advances in multiple components of the energy system, PV could supply 30-50% of electricity in competitive markets.

  4. Microbial Fuel Cells and Microbial Electrolyzers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borole, Abhijeet P

    2015-01-01

    Microbial Fuel Cells and microbial electrolyzers represent an upcoming technology for production of electricity and hydrogen using a hybrid electrocatalytic-biocatalytic approach. The combined catalytic efficiency of these processes has potential to make this technology highly efficient among the various renewable energy production alternatives. This field has attracted electrochemists, biologists and many other disciplines due to its potential to contribute to the energy, water and environment sectors. A brief introduction to the technology is provided followed by current research needs from a bioelectrochemical perspective. Insights into the operation and limitations of these systems achieved via cyclic voltammetry and impedance spectroscopy aremore » discussed along with the power management needs to develop the application aspects. Besides energy production, other potential applications in bioenergy, bioelectronics, chemical production and remediation are also highlighted.« less

  5. Valorisation of softwood bark through extraction of utilizable chemicals. A review.

    PubMed

    Jablonsky, M; Nosalova, J; Sladkova, A; Haz, A; Kreps, F; Valka, J; Miertus, S; Frecer, V; Ondrejovic, M; Sima, J; Surina, I

    2017-11-01

    Softwood bark is an important source for producing chemicals and materials as well as bioenergy. Extraction is regarded as a key technology for obtaining chemicals in general, and valorizing bark as a source of such chemicals in particular. In this paper, properties of 237 compounds identified in various studies dealing with extraction of softwood bark were described. Finally, some challenges and perspectives on the production of chemicals from bark are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Analysis and Characterization | Bioenergy | NREL

    Science.gov Websites

    Analysis and Characterization Analysis and Characterization NREL's team of bioenergy analysts takes equipment in a lab Biomass Characterization Photo of NRELs Biochemical Process Development Unit showing a

  7. Global land-use and market interactions between climate and bioenergy policies

    NASA Astrophysics Data System (ADS)

    Golub, A.; Hertel, T. W.; Rose, S. K.

    2011-12-01

    Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG mitigation potential in non-US forests (8.9 GtCO2yr-1 at $27/tCO2eq). Furthermore, a carbon tax could lead to input substitution in agricultural production away from land and fertilizer (e.g., in China, an approximate 20% reduction in paddy rice acreage and 10% reduction in crop production fertilizer use at the same GHG price). Both results run counter to the changes in land-use induced by biofuels. However, given the energy security benefits for bioenergy, this study also evaluate whether a land GHG policy could manage international indirect land-use leakage concerns for bioenergy. In addition to a global perspective, a US perspective is taken to evaluate the implications of joint and separate bioenergy and climate policies on domestic offset and bioenergy supplies. Preliminary results indicate that US biofuels mandate reduces the global abatement potential for agriculture and forestry and thereby imposes an additional cost on society. There are regional comparative advantages in biofuels production (as well as non-biofuels crops and timber production). There are also regional comparative advantages in land-based GHG mitigation. By modeling bioenergy and climate policies separately and simultaneously, this study assess the net comparative advantage regions have in meeting these two sets of goals.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page

    Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument—the carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reducemore » land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.« less

  9. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adom, Felix K.; Cai, Hao; Dunn, Jennifer B.

    2016-03-01

    The Department of Energy’s (DOE) Bioenergy Technology Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels. These assessments evaluate feedstock production, logistics of transporting the feedstock, and conversion of the feedstock to biofuel. There are two general types of TEAs. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables identification of data gaps and research andmore » development needs, and provides goals and targets against which technology progress is assessed. On the other hand, a state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available.« less

  10. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derivedmore » sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.« less

  11. A Pilot Study.

    PubMed

    Running, Alice; Hildreth, Laura

    2017-03-01

    To examine the effectiveness of a bio-energy intervention on self-reported stress for a convenience sample of University students, faculty, and staff during finals week. We hypothesized that participants would report a decrease in stress after a 20 minute bio-energy intervention. A quasi-experimental, single-group, pretest-posttest design was used. Thirty-nine faculty, staff, and students participated. Participants served as their own controls. A specific technique was provided by each bio-energy practitioner for 20 minutes after participants had completed a visual analogue scale identifying level of stress and listing two positive and negative behaviors they were currently using in response to stress. A one-sample t test indicates that bio-energy therapy significantly reduces stress, t(35) = 7.74, p < .0001. A multiple regression analysis further indicates that the decrease in stress levels is significantly greater for higher initial stress levels, t(31) = 4.748, p < .0001); decreases in stress are significantly greater for faculty and staff compared to students, t(31) = -2.223, p = .034; and decreases in stress levels are marginally significantly higher for older participants, t(31) =1.946, p = .061. Bio-energy therapy may have benefit in reducing stress for faculty, staff, and students during final examination week. Further research is needed.

  12. Sustainable biomass production on Marginal Lands (SEEMLA)

    NASA Astrophysics Data System (ADS)

    Barbera, Federica; Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    Sustainable biomass production on Marginal Lands (SEEMLA) The main objective of the H2020 funded EU project SEEMLA (acronym for Sustainable Exploitation of Biomass for Bioenergy from Marginal Lands in Europe) is the establishment of suitable innovative land-use strategies for a sustainable production of plant-based energy on marginal lands while improving general ecosystem services. The use of marginal lands (MagL) could contribute to the mitigation of the fast growing competition between traditional food production and production of renewable bio-resources on arable lands. SEEMLA focuses on the promotion of re-conversion of MagLs for the production of bioenergy through the direct involvement of farmers and forester, the strengthening of local small-scale supply chains, and the promotion of plantations of bioenergy plants on MagLs. Life cycle assessment is performed in order to analyse possible impacts on the environment. A soil quality rating tool is applied to define and classify MagL. Suitable perennial and woody bioenergy crops are selected to be grown in pilot areas in the partner countries Ukraine, Greece and Germany. SEEMLA is expected to contribute to an increasing demand of biomass for bioenergy production in order to meet the 2020 targets and beyond.

  13. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level

    NASA Astrophysics Data System (ADS)

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-09-01

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health.

  14. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level.

    PubMed

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-09-12

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health.

  15. Design and development of synthetic microbial platform cells for bioenergy

    PubMed Central

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588

  16. The changing nature of life cycle assessment

    PubMed Central

    McManus, Marcelle C.; Taylor, Caroline M.

    2015-01-01

    LCA has evolved from its origins in energy analysis in the 1960s and 70s into a wide ranging tool used to determine impacts of products or systems over several environmental and resource issues. The approach has become more prevalent in research, industry and policy. Its use continues to expand as it seeks to encompass impacts as diverse as resource accounting and social well being. Carbon policy for bioenergy has driven many of these changes. Enabling assessment of complex issues over a life cycle basis is beneficial, but the process is sometimes difficult. LCA's use in framing is increasingly complex and more uncertain, and in some cases, irreconcilable. The charged environment surrounding biofuels and bioenergy exacerbates all of these. Reaching its full potential to help guide difficult policy discussions and emerging research involves successfully managing LCA's transition from attributional to consequential and from retrospective to prospective. This paper examines LCA's on-going evolution and its use within bioenergy deployment. The management of methodological growth in the context of the unique challenges associated with bioenergy and biofuels is explored. Changes seen in bioenergy LCA will bleed into other LCA arenas, especially where it is important that a sustainable solution is chosen. PMID:26664146

  17. Bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Kevin; Gresham, Garold

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  18. Bioenergy

    ScienceCinema

    Kenney, Kevin; Gresham, Garold

    2018-06-06

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  19. Energy Department Announces National Bioenergy Center

    Science.gov Websites

    Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colo., and Oak Ridge National Laboratories (ORNL) in Oak Ridge, Tenn. will lead the Bioenergy Center. The center will link DOE-funded biomass

  20. Using corngrass1 to engineer poplar as a bioenergy crop

    DOEpatents

    Meilan, Richard; Rubinelli, Peter Marius; Chuck, George

    2016-05-10

    Embodiments of the present invention relate generally to new bioenergy crops and methods of creating new bioenergy crops. For example, genes encoding microRNAs (miRNAs) are used to create transgenic crops. In some embodiments, over-expression of miRNA is used to produce transgenic perennials, such as trees, with altered lignin content or composition. In some embodiments, the transgenic perennials are Populus spp. In some embodiments, the miRNA is a member of the miR156 family. In some embodiments, the gene is Zea mays Cg1.

  1. Bioenergy production and forest landscape change in the southeastern United States

    USGS Publications Warehouse

    Costanza, Jennifer K.; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime A.

    2016-01-01

    Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose-grown woody crops grown on marginal lands. Results reveal trade-offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business-as-usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose-grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose-grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land-use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for biodiversity, and point to the challenges associated with evaluating bioenergy sustainability.

  2. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy

    NASA Astrophysics Data System (ADS)

    Booth, Mary S.

    2018-03-01

    Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.

  3. Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA

    PubMed Central

    Jungers, Jacob M.; Fargione, Joseph E.; Sheaffer, Craig C.; Wyse, Donald L.; Lehman, Clarence

    2013-01-01

    Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha−1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg−1 and the concentration of plant N was 7.1 g kg−1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic viability of harvesting conservation grasslands for bioenergy. PMID:23577208

  4. Synaptic Activity and Bioenergy Homeostasis: Implications in Brain Trauma and Neurodegenerative Diseases

    PubMed Central

    Khatri, Natasha; Man, Heng-Ye

    2013-01-01

    Powered by glucose metabolism, the brain is the most energy-demanding organ in our body. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries. PMID:24376435

  5. On the usage of agricultural raw materials--energy or food? An assessment from an economics perspective.

    PubMed

    Lenk, Fabian; Bröring, Stefanie; Herzog, Philipp; Leker, Jens

    2007-12-01

    Bioenergies are promoted across the globe as the answer for global warming and the chance to reduce dependency from fossil energy sources. Despite the fact that renewable energy sources offer the opportunity to reduce CO2 emission and present a chance to increase agricultural incomes, they also come along with some drawbacks that have been mostly neglected in the current discussion. This paper seeks to build a basis for discussing the impacts of the growing subsidization of bioenergy and the resulting usage competition of agricultural raw materials between foods and energy. To assess the usage competition and the subsidization of bioenergy, this article employs a welfare economics perspective associated with an emphasize on the construct of externalities. This will help to foster the discussion on the further subsidization of bioenergy, where funding for R&D on new ways of using non-food raw materials ought to play a significant role.

  6. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    NASA Astrophysics Data System (ADS)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate technologies that could be applied to perennial grass feedstocks for biocontainment are discussed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, Dries, E-mail: Dries.Maes@uhasselt.be; Van Passel, Steven, E-mail: Steven.Vanpassel@uhasselt.be

    Innovative bioenergy projects show a growing diversity in biomass pathways, transformation technologies and end-products, leading to complex new processes. Existing energy-based indicators are not designed to include multiple impacts and are too constrained to assess the sustainability of these processes. Alternatively, indicators based on exergy, a measure of “qualitative energy”, could allow a more holistic view. Exergy is increasingly applied in analyses of both technical and biological processes. But sustainability assessments including exergy calculations, are not very common and are not generally applicable to all types of impact. Hence it is important to frame the use of exergy for inclusionmore » in a sustainability assessment. This paper reviews the potentials and the limitations of exergy calculations, and presents solutions for coherent aggregation with other metrics. The resulting approach is illustrated in a case study. Within the context of sustainability assessment of bioenergy, exergy is a suitable metric for the impacts that require an ecocentric interpretation, and it allows aggregation on a physical basis. The use of exergy is limited to a measurement of material and energy exchanges with the sun, biosphere and lithosphere. Exchanges involving services or human choices are to be measured in different metrics. This combination provides a more inclusive and objective sustainability assessment, especially compared to standard energy- or carbon-based indicators. Future applications of this approach in different situations are required to clarify the potential of exergy-based indicators in a sustainability context. -- Highlights: • Innovative bioenergy projects require more advanced sustainability assessments to incorporate all environmental impacts. • Exergy-based indicators provide solutions for objective and robust measurements. • The use of exergy in a sustainability assessment is limited to material exchanges, excluding exchanges with society. • The combination of exergy-based indicators with other indicators is very appropriate. • But this is only rarely applied.« less

  8. Climate, economic, and environmental impacts of producing wood for bioenergy

    NASA Astrophysics Data System (ADS)

    Birdsey, Richard; Duffy, Philip; Smyth, Carolyn; Kurz, Werner A.; Dugan, Alexa J.; Houghton, Richard

    2018-05-01

    Increasing combustion of woody biomass for electricity has raised concerns and produced conflicting statements about impacts on atmospheric greenhouse gas (GHG) concentrations, climate, and other forest values such as timber supply and biodiversity. The purposes of this concise review of current literature are to (1) examine impacts on net GHG emissions and climate from increasing bioenergy production from forests and exporting wood pellets to Europe from North America, (2) develop a set of science-based recommendations about the circumstances that would result in GHG reductions or increases in the atmosphere, and (3) identify economic and environmental impacts of increasing bioenergy use of forests. We find that increasing bioenergy production and pellet exports often increase net emissions of GHGs for decades or longer, depending on source of feedstock and its alternate fate, time horizon of analysis, energy emissions associated with the supply chain and fuel substitution, and impacts on carbon cycling of forest ecosystems. Alternative uses of roundwood often offer larger reductions in GHGs, in particular long-lived wood products that store carbon for longer periods of time and can achieve greater substitution benefits than bioenergy. Other effects of using wood for bioenergy may be considerable including induced land-use change, changes in supplies of wood and other materials for construction, albedo and non-radiative effects of land-cover change on climate, and long-term impacts on soil productivity. Changes in biodiversity and other ecosystem attributes may be strongly affected by increasing biofuel production, depending on source of material and the projected scale of biofuel production increases.

  9. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy

    PubMed Central

    Brenton, Zachary W.; Cooper, Elizabeth A.; Myers, Mathew T.; Boyles, Richard E.; Shakoor, Nadia; Zielinski, Kelsey J.; Rauh, Bradley L.; Bridges, William C.; Morris, Geoffrey P.; Kresovich, Stephen

    2016-01-01

    With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production. PMID:27356613

  10. Scaling up microbial fuel cells and other bioelectrochemical systems.

    PubMed

    Logan, Bruce E

    2010-02-01

    Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m(3) (reactor volume) and to 6.9 W/m(2) (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.

  11. Helena Chum | NREL

    Science.gov Websites

    systems, and international renewable energy activities including agriculture, forestry, bioenergy : Lead author of the Energy Systems Chapter and contributing author of the Agriculture, Forestry and , addressing climate change, sustainability certification of bioenergy and biomass, and integrated systems

  12. Biomass Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis,

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  13. Biomass Research Program

    ScienceCinema

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2017-12-09

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  14. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    NASA Astrophysics Data System (ADS)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-07-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products (HWP) model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. There was a trade-off between short-term and long-term goals, in that maximizing short-term emissions reduction could reduce the forest sector's ability to contribute to longer-term objectives. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  15. Chapter 14 -- Case studies

    USDA-ARS?s Scientific Manuscript database

    Production and use of bioenergy have increased significantly during the past few years, motivated by the global need to reduce greenhouse gas (GHG) emissions, ensure energy security, and strengthen rural economies. Public policies have been created to enable bioenergy expansion by indicating to inve...

  16. A model for deploying switchgrass for bioenergy in an intensive agricultural landscape

    USDA-ARS?s Scientific Manuscript database

    Switchgrass bioenergy research has been conducted in Nebraska since 1990. In that time, significant progress has been made in switchgrass breeding and genetics, molecular genetics, establishment, fertility management, production economics, production energetics, harvest and storage management, ecos...

  17. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.

    PubMed

    El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D

    2018-06-04

    Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.

  18. Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, John B.; Nassauer, Joan I.; Currie, William S.

    Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less

  19. Food supply and bioenergy production within the global cropland planetary boundary.

    PubMed

    Henry, R C; Engström, K; Olin, S; Alexander, P; Arneth, A; Rounsevell, M D A

    2018-01-01

    Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be converted to cropland. Bioenergy production for land-based climate mitigation places additional pressure on limited land resources. Here we test normative targets of food supply and bioenergy production within the cropland planetary boundary using a global land-use model. The results suggest supplying the global population with adequate food is possible without cropland expansion exceeding the planetary boundary. Yet this requires an increase in food production, especially in developing countries, as well as a decrease in global crop yield gaps. However, under current assumptions of future food requirements, it was not possible to also produce significant amounts of first generation bioenergy without cropland expansion. These results suggest that meeting food and bioenergy demands within the planetary boundaries would need a shift away from current trends, for example, requiring major change in the demand-side of the food system or advancing biotechnologies.

  20. Food supply and bioenergy production within the global cropland planetary boundary

    PubMed Central

    Olin, S.; Alexander, P.; Arneth, A.; Rounsevell, M. D. A.

    2018-01-01

    Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be converted to cropland. Bioenergy production for land-based climate mitigation places additional pressure on limited land resources. Here we test normative targets of food supply and bioenergy production within the cropland planetary boundary using a global land-use model. The results suggest supplying the global population with adequate food is possible without cropland expansion exceeding the planetary boundary. Yet this requires an increase in food production, especially in developing countries, as well as a decrease in global crop yield gaps. However, under current assumptions of future food requirements, it was not possible to also produce significant amounts of first generation bioenergy without cropland expansion. These results suggest that meeting food and bioenergy demands within the planetary boundaries would need a shift away from current trends, for example, requiring major change in the demand-side of the food system or advancing biotechnologies. PMID:29566091

  1. Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area

    DOE PAGES

    Graham, John B.; Nassauer, Joan I.; Currie, William S.; ...

    2017-03-25

    Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less

  2. Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and {sup 14}C-based methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, G.K.P., E-mail: Graham.Muir@glasgow.ac.uk; Hayward, S.; Tripney, B.G.

    2015-01-15

    Highlights: • Compares industry standard and {sup 14}C methods for determining bioenergy content of MSW. • Differences quantified through study at an operational energy from waste plant. • Manual sort and selective dissolution are unreliable measures of feedstock bioenergy. • {sup 14}C methods (esp. AMS) improve precision and reliability of bioenergy determination. • Implications for electricity generators and regulators for award of bio-incentives. - Abstract: {sup 14}C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were convertedmore » to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). {sup 14}C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.« less

  3. Land use impacts of low-carbon energy system transition - the case of UK bioenergy deployment under the Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Lupton, R.; Skelton, S.

    2015-12-01

    The UK Department of Energy and Climate Change has developed four low-carbon energy transition pathways - the Carbon Plan - towards achieving the legally binding 80% territorial greenhouse gas emissions reduction, stipulated in the 2008 Climate Change Act by 2050. All the pathways require increase in bioenergy deployment, of which a significant amount could be indigenously sourced from crops. But will increased domestic production of energy crops conflict with other land use and ecosystem priorities? To address this question, a coupled analysis of the four energy transition pathways and land use has been developed using an integrated resource accounting platform called ForeseerTM. The two systems are connected by the bioenergy component, and are projected forward in time to 2050, under different scenarios of energy crop composition and yield, and accounting for various constraints on land use for agriculture and ecosystem services. The results show between 7 and 61% of UK agricultural land could be required to meet bioenergy deployment projections under different combinations of crop yield and compositions for the transition pathways. This could result in competition for land for food production and other socio-economic and ecological land uses. Consequently, the potential role of bioenergy in achieving UK emissions reduction targets may face significant deployment challenges.

  4. Whole system analysis of second generation bioenergy production and Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2017-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy that has higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by current climate change. It is important to establish how second generation bioenergy crops (Miscanthus, SRC willow and poplar) can contribute by closing the gap between reducing fossil fuel use and increasing the use of other renewable sources in a sustainable way. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). We will present estimated yields for the above named crops in Europe using the ECOSSE, DayCent, SalixFor and MiscanFor models. These yields will be brought into context with a whole system analysis, detailing trade-offs and synergies for land use change, food security, GHG emissions and soil and water security. Methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be used to estimate and visualise the impacts of increased use of second generation bioenergy crops on the above named ecosystem services. The results will be linked to potential yields to generate "inclusion or exclusion areas" in Europe in order to establish suitable areas for bioenergy crop production and the extent of use possible. Policy is an important factor for using second generation bioenergy crops in a sustainable way. We will present how whole system analysis can be used to create scenarios for countries or on a continental scale. As an example, we will present two scenarios for the whole system on a country basis, based on current renewable energy policy, to visualise the impact of changing policy on the use of bioenergy crops. This will include the economic implications which are directly linked to renewable energy policy, best practice management recommendations, impacts on land use change and food security as well as synergies and trade-offs on other ecosystem services (GHG emission, soil C, nitrogen, water and air security). The aim is to show how second generation bioenergy crops can be used sustainably and what is needed to do this successfully on a large scale. The results can form a basis for future policy development in order to reach the goals of the Paris 2015 agreement.

  5. Comparing Effects of Feedstock and Run Conditions on Pyrolysis Products Produced at Pilot-Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, Timothy C; Gaston, Katherine R; Wilcox, Esther

    2018-01-19

    Fast pyrolysis is a promising pathway for mass production of liquid transportable biofuels. The Thermochemical Process Development Unit (TCPDU) pilot plant at NREL is conducting research to support the Bioenergy Technologies Office's 2017 goal of a $3 per gallon biofuel. In preparation for down select of feedstock and run conditions, four different feedstocks were run at three different run conditions. The products produced were characterized extensively. Hot pyrolysis vapors and light gasses were analyzed on a slip stream, and oil and char samples were characterized post run.

  6. Comparing soil functions for a wide range of agriculture soils focusing on production for bioenergy using a combined isotope-based observation and modelling approach

    NASA Astrophysics Data System (ADS)

    Leistert, Hannes; Herbstritt, Barbara; Weiler, Markus

    2017-04-01

    Increase crop production for bioenergy will result in changes in land use and the resulting soil functions and may generate new chances and risks. However, detailed data and information are still missing how soil function may be altered under changing crop productions for bioenergy, in particular for a wide range of agricultural soils since most data are currently derived from individual experimental sites studying different bioenergy crops at one location. We developed a new, rapid measurement approach to investigate the influence of bioenergy plants on the water cycle and different soil functions (filter and buffer of water and N-cycling). For this approach, we drilled 89 soil cores (1-3 m deep) in spring and fall at 11 sites with different soil properties and climatic conditions comparing different crops (grass, corn, willow, poplar, and other less common bioenergy crops) and analyzing 1150 soil samples for water content, nitrate concentration and stable water isotopes. We benchmarked a soil hydrological model (1-D numerical Richards equation, ADE, water isotope fractionation including liquid and vapor composition of isotopes) using longer-term climate variables and water isotopes in precipitation to derive crop specific parameterization and to specifically validate the differences in water transport and water partitioning into evaporation, transpiration and groundwater recharge among the sites and crops using the water isotopes in particular. The model simulation were in good agreement with the observed isotope profiles and allowed us to differentiate among the different crops. We defined different indicators for the soil functions considered in this study. These indicators included the proportion of groundwater recharge, transit time of water (different percentiles) though the upper 2m and nutrient leaching potential (e.g. nitrate) during the dormant season from the rooting zone. The parameterized model was first used to calculate the indicators for the sampled locations and to derive the changes in soil functions by altering the land cover among the different bioenergy crops in comparison to the grassland as a reference. We could show that percolation is strongly influenced by the crops and climate, the transit time is influenced by a combination of soil type, climate and land use, but the effect of soil type is very strong and the nitrate leaching is strongly influenced by soil type. The high variability of transit times and nitrate leaching are due to high variability of the temporal distribution of precipitation. Finally, the model was used to regionalized the indicators to a wide range of soils in the state of Baden-Württemberg and to assess if there are locations where bioenergy crops may improve the considered soil function. Our idea behind this was to propose location where specific bioenergy crops may be highly suitable to improve the current soil function to increase for example the protection of groundwater for drinking water, reduce erosion risk or increase water availability. The proposed method allows to assess the influence of different bioenergy crops on soil functions without costly multi-year measurement systems for assessing the soil functions using soil water content measurements or/and soil water suction devices.

  7. The Biogeochemistry of Bioenergy Landscapes: Carbon, Nitrogen, and Water Considerations

    USDA-ARS?s Scientific Manuscript database

    The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well-known, increasingl...

  8. Root biomass and soil carbon response to growing perennial grasses for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Dedicated bioenergy crops such as switchgrass (Panicum virgatum L.), miscanthus [Miscanthus x giganteus (Mxg)], indiangrass [Sorghastrum nutans (L.) Nash], and big bluestem (Andropogon gerardii Vitman) can provide cellulosic feedstock for biofuel production while maintaining or improving soil and en...

  9. Soil quality impacts of perennial bioenergy crops on marginally-productive lands

    USDA-ARS?s Scientific Manuscript database

    Dedicated perennial energy crops grown on marginally-productive croplands can provide a sustainable supply of bioenergy feedstock while improving soil quality and enhancing ecosystem services. Because marginally-productive croplands typically are at higher risk of degradation, growing highly produc...

  10. Sorghum as a Versatile Feedstock for Bioenergy Production

    USDA-ARS?s Scientific Manuscript database

    World economy development, population increase, and urban expansion accelerate the depletion of naturally preserved energy (fossil fuel), reduction in arable land, and trend of global climate change. Bioenergy, the forms of energy produced from materials of living organisms, holds special promise in...

  11. Waste biorefineries - integrating anaerobic digestion and microalgae cultivation for bioenergy production.

    PubMed

    Chen, Yi-di; Ho, Shih-Hsin; Nagarajan, Dillirani; Ren, Nan-Qi; Chang, Jo-Shu

    2018-04-01

    Commercialization of microalgal cultivation has been well realized in recent decades with the use of effective strains that can yield the target products, but it is still challenged by the high costs arising from mass production, harvesting, and further processing. Recently, more interest has been directed towards the utilization of waste resources, such as sludge digestate, to enhance the economic feasibility and sustainability of microalgae production. Anaerobic digestion for waste disposal and phototrophic microalgal cultivation are well-characterized technologies in both fields. However, integration of anaerobic digestion and microalgal cultivation to achieve substantial economic and environmental benefits is extremely limited, and thus deserves more attention and research effort. In particular, combining these two makes possible an ideal 'waste biorefinery' model, as the C/N/P content in the anaerobic digestate can be used to produce microalgal biomass that serves as feedstock for biofuels, while biogas upgrading can simultaneously be performed by phototrophic CO 2 fixation during microalgal growth. This review is thus aimed at elucidating recent advances as well as challenges and future directions with regard to waste biorefineries associated with the integration of anaerobic waste treatment and microalgal cultivation for bioenergy production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Expert assessment concludes negative emissions scenarios may not deliver

    NASA Astrophysics Data System (ADS)

    Vaughan, Naomi E.; Gough, Clair

    2016-09-01

    Many integrated assessment models (IAMs) rely on the availability and extensive use of biomass energy with carbon capture and storage (BECCS) to deliver emissions scenarios consistent with limiting climate change to below 2 °C average temperature rise. BECCS has the potential to remove carbon dioxide (CO2) from the atmosphere, delivering ‘negative emissions’. The deployment of BECCS at the scale assumed in IAM scenarios is highly uncertain: biomass energy is commonly used but not at such a scale, and CCS technologies have been demonstrated but not commercially established. Here we present the results of an expert elicitation process that explores the explicit and implicit assumptions underpinning the feasibility of BECCS in IAM scenarios. Our results show that the assumptions are considered realistic regarding technical aspects of CCS but unrealistic regarding the extent of bioenergy deployment, and development of adequate societal support and governance structures for BECCS. The results highlight concerns about the assumed magnitude of carbon dioxide removal achieved across a full BECCS supply chain, with the greatest uncertainty in bioenergy production. Unrealistically optimistic assumptions regarding the future availability of BECCS in IAM scenarios could lead to the overshoot of critical warming limits and have significant impacts on near-term mitigation options.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldu, Yemane W., E-mail: ywweldem@ucalgary.ca; Assefa, Getachew; Athena Chair in Life Cycle Assessment in Design

    A roadmap for a more sustainable energy strategy is complex, as its development interacts critically with the economic, social, and environmental dimensions of sustainable development. This paper applied an impact matrix method to evaluate the environmental sustainability and to identify the desirable policy objectives of biomass-based energy strategy for the case of Alberta. A matrix with the sustainability domains on one axis and areas of environmental impact on the other was presented to evaluate the nexus effect of policy objectives and bioenergy production. As per to our analysis, economic diversification, technological innovation, and resource conservation came up as the desirablemore » policy objectives of sustainable development for Alberta because they demonstrated environmental benefits in all environmental impact categories, namely climate change, human health, and ecosystem. On the other hand, human health and ecosystem impacts were identified as trade-offs when the policy objectives for sustainability were energy security, job creation, and climate change. Thus, bioenergy can mitigate climate change but may impact human health and ecosystem which then in turn can become issues of concern. Energy strategies may result in shifting of risks from one environmental impact category to another, and from one sustainable domain to another if the technical and policy-related issues are not identified.« less

  14. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    PubMed

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Assessment of the emissions and air quality impacts of biomass and biogas use in California.

    PubMed

    Carreras-Sospedra, Marc; Williams, Robert; Dabdub, Donald

    2016-02-01

    It is estimated that there is sufficient in-state "technically" recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality. This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California.

  16. Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops.

    PubMed

    Chen, Zhaojin; Zheng, Yuan; Ding, Chuanyu; Ren, Xuemin; Yuan, Jian; Sun, Feng; Li, Yuying

    2017-11-01

    Two energy crops (maize and soybean) were used in the remediation of cadmium-contaminated soils. These crops were used because they are fast growing, have a large biomass and are good sources for bioenergy production. The total accumulation of cadmium in maize and soybean plants was 393.01 and 263.24μg pot -1 , respectively. The rhizosphere bacterial community composition was studied by MiSeq sequencing. Phylogenetic analysis was performed using 16S rRNA gene sequences. The rhizosphere bacteria were divided into 33 major phylogenetic groups according to phyla. The dominant phylogenetic groups included Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes. Based on principal component analysis (PCA) and unweighted pair group with arithmetic mean (UPGMA) analysis, we found that the bacterial community was influenced by cadmium addition and bioenergy cropping. Three molecular ecological networks were constructed for the unplanted, soybean- and maize-planted bacterial communities grown in 50mgkg -1 cadmium-contaminated soils. The results indicated that bioenergy cropping increased the complexity of the bacterial community network as evidenced by a higher total number of nodes, the average geodesic distance (GD), the modularity and a shorter geodesic distance. Proteobacteria and Acidobacteria were the keystone bacteria connecting different co-expressed operational taxonomic units (OTUs). The results showed that bioenergy cropping altered the topological roles of individual OTUs and keystone populations. This is the first study to reveal the effects of bioenergy cropping on microbial interactions in the phytoremediation of cadmium-contaminated soils by network reconstruction. This method can greatly enhance our understanding of the mechanisms of plant-microbe-metal interactions in metal-polluted ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States.

    PubMed

    Le, Phong V V; Kumar, Praveen; Drewry, Darren T

    2011-09-13

    To meet emerging bioenergy demands, significant areas of the large-scale agricultural landscape of the Midwestern United States could be converted to second generation bioenergy crops such as miscanthus and switchgrass. The high biomass productivity of bioenergy crops in a longer growing season linked tightly to water use highlight the potential for significant impact on the hydrologic cycle in the region. This issue is further exacerbated by the uncertainty in the response of the vegetation under elevated CO(2) and temperature. We use a mechanistic multilayer canopy-root-soil model to (i) capture the eco-physiological acclimations of bioenergy crops under climate change, and (ii) predict how hydrologic fluxes are likely to be altered from their current magnitudes. Observed data and Monte Carlo simulations of weather for recent past and future scenarios are used to characterize the variability range of the predictions. Under present weather conditions, miscanthus and switchgrass utilized more water than maize for total seasonal evapotranspiration by approximately 58% and 36%, respectively. Projected higher concentrations of atmospheric CO(2) (550 ppm) is likely to decrease water used for evapotranspiration of miscanthus, switchgrass, and maize by 12%, 10%, and 11%, respectively. However, when climate change with projected increases in air temperature and reduced summer rainfall are also considered, there is a net increase in evapotranspiration for all crops, leading to significant reduction in soil-moisture storage and specific surface runoff. These results highlight the critical role of the warming climate in potentially altering the water cycle in the region under extensive conversion of existing maize cropping to support bioenergy demand.

  18. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.

    PubMed

    Brenton, Zachary W; Cooper, Elizabeth A; Myers, Mathew T; Boyles, Richard E; Shakoor, Nadia; Zielinski, Kelsey J; Rauh, Bradley L; Bridges, William C; Morris, Geoffrey P; Kresovich, Stephen

    2016-09-01

    With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production. Copyright © 2016 by the Genetics Society of America.

  19. Global impacts of U.S. bioenergy production and policy: A general equilibrium perspective

    NASA Astrophysics Data System (ADS)

    Evans, Samuel Garner

    The conversion of biomass to energy represents a promising pathway forward in efforts to reduce fossil fuel use in the transportation and electricity sectors. In addition to potential benefits, such as greenhouse gas reductions and increased energy security, bioenergy production also presents a unique set of challenges. These challenges include tradeoffs between food and fuel production, distortions in energy markets, and terrestrial emissions associated with changing land-use patterns. Each of these challenges arises from market-mediated responses to bioenergy production, and are therefore largely economic in nature. This dissertation directly addresses these opportunities and challenges by evaluating the economic impacts of U.S. bioenergy production and policy, focusing on both existing and future biomass-to-energy pathways. The analysis approaches the issue from a global, economy-wide perspective, reflecting two important facts. First, that large-scale bioenergy production connects multiple sectors of the economy due to the use of agricultural land resources for biomass production, and competition with fossil fuels in energy markets. Second, markets for both agricultural and energy commodities are highly integrated globally, causing domestic policies to have international effects. The reader can think of this work as being comprised of three parts. Part I provides context through an extensive review of the literature on the market-mediated effects of conventional biofuel production (Chapter 2) and develops a general equilibrium modeling framework for assessing the extent to which these phenomenon present a challenge for future bioenergy pathways (Chapter 3). Part II (Chapter 4) explores the economic impacts of the lignocellulosic biofuel production targets set in the U.S. Renewable Fuel Standard on global agricultural and energy commodity markets. Part III (Chapter 5) extends the analysis to consider potential inefficiencies associated with policy-induced competition for biomass between the electricity and transportation fuel sectors.

  20. Rightsizing expectations for carbon dioxide removal towards ambitious climate goals

    NASA Astrophysics Data System (ADS)

    Mach, K. J.; Field, C. B.

    2017-12-01

    Proven approaches for reducing heat-trapping emissions are increasingly cost competitive and feasible at scale. Such approaches include renewable-energy technologies, energy efficiency, reduced deforestation, and abatement of industrial and agricultural emissions. Their pace of deployment, though, is far from sufficient to limit warming well below 2°C above preindustrial levels, the goal of the Paris Agreement. Against this backdrop, technologies for carbon removal are increasingly asserted as key to climate policy. Carbon dioxide removal (CDR), or negative emissions, technologies can compensate for ongoing emissions, helping keep ambitious warming limits in reach. The dramatic rise of CDR approaches in analysis and planning towards ambitious climate goals, however, has stirred up discomfort and debate. Focusing on rightsizing CDR expectations, this presentation will first briefly reflect on the status of the suite of CDR possibilities. The options include strategies grounded in improved ecosystem stewardship (e.g., reforestation and afforestation, conservation agriculture); strategies that are also biomass-based but with more engineering and more trade-offs (e.g., biochar additions to soils, bioenergy with carbon capture and storage); and engineered, nonbiological approaches (e.g., enhanced weathering, direct air capture). Second, the presentation will evaluate constraints surrounding CDR deployment at large scale and in peak-and-decline scenarios. These constraints involve, for example, unprecedented rates of land transformation in climate change mitigation pathways limiting warming to 2°C with high probability. They also entail the substantial, little studied risks of scenarios with temperatures peaking and then declining. Third, the presentation will review emerging lessons from CDR implementation to date, such as in legally enforceable forest-offset projects, along with near-term opportunities for catalyzing CDR, such as through low-cost opportunities for carbon capture and storage.

  1. Field windbreaks for bioenergy production and carbon sequestration

    USDA-ARS?s Scientific Manuscript database

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  2. Mineral nutrient recovery from pyrolysis systems

    USDA-ARS?s Scientific Manuscript database

    Bioenergy crops such as high-energy sorghum (HES), bioenergy rice, corn stover, and switchgrass can be thermo-chemically converted by pyrolysis to produce bio-oil, synthesis gas from non-condensable gases, and biochar. The biochar fraction can be recycled back to the production field to improve soil...

  3. Associations with flowering time, latitude, and climate in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Switchgrass is a North American perennial grass and emerging bioenergy feedstock, and increasing biomass yields will improve the economic viability of switchgrass as a bioenergy crop. Flowering time is an important determinant of biomass yields in switchgrass because the majority of biomass accumula...

  4. Assessing the Global Potential and Regional Implications of Promoting Bioenergy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  5. Assessing the global potential and regional implications of promoting bio-energy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  6. Bioenergy Research | Bioenergy | NREL

    Science.gov Websites

    range of research from exploring biomass at the molecular level through biorefinery process optimization Bioenergetics We work at the molecular and cellular level to understand and optimize microbial production of biofuels and bioproducts. fanciful illustration of fuel nozzle with molecular structures drawn in

  7. Switchgrass for forage and bioenergy

    USDA-ARS?s Scientific Manuscript database

    Switchgrass is a native warm-season grass that has been used for hay, forage, and conservation purposes for decades and switchgrass research in Nebraska has been ongoing since 1936. Recently, switchgrass has been identified as a model perennial grass for bioenergy in the Great Plains and Midwest. Si...

  8. Dual-Use Bioenergy-Livestock Feed Potential of Giant Miscanthus, Giant Reed, and Miscane

    USDA-ARS?s Scientific Manuscript database

    High yielding perennial grasses could integrate bioenergy-livestock operations, thereby, offsetting diversions of cropland to lignocellulosic crops, but research is needed to determine chemical composition and digestibility of leaf and stem fractions that might affect downstream uses. The objective...

  9. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential.

    PubMed

    Ahmad, Muhammad Sajjad; Mehmood, Muhammad Aamer; Al Ayed, Omar S; Ye, Guangbin; Luo, Huibo; Ibrahim, Muhammad; Rashid, Umer; Arbi Nehdi, Imededdine; Qadir, Ghulam

    2017-01-01

    The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin -1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol -1 . The activation energy (E) values were shown to be ranging from 103 through 233 kJmol -1 . Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol -1 and 168 to 172kJmol -1 , calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion.

    PubMed

    Ventura, Jey-R S; Yang, Benqin; Lee, Yong-Woo; Lee, Kisay; Jahng, Deokjin

    2013-06-01

    With a target production of 1000 ton of dry algae/yr, lipid content of 30 wt.%, and productivity of 30 g/m(2)-d in a 340-day annual operation, four common scenarios of microalgae bioenergy routes were assessed in terms of cost, energy, and CO2 inputs and outputs. Scenario 1 (biodiesel production), Scenario 2 (Scenario 1 with integrated anaerobic digestion system), Scenario 3 (biogas production), and Scenario 4 (supercritical gasification) were evaluated. Scenario 4 outperformed other scenarios in terms of net energy production (1282.42 kWh/ton algae) and CO2 removal (1.32 ton CO2/ton algae) while Scenario 2 surpassed the other three scenarios in terms of net cost. Scenario 1 produced the lowest energy while Scenario 3 was the most expensive bioenergy system. This study evaluated critical parameters that could direct the proper design of the microalgae bioenergy system with an efficient energy production, CO2 removal, and economic feasibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Investment risk in bioenergy crops

    DOE PAGES

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; ...

    2015-11-18

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.

    A framework for selecting and evaluating indicators of bioenergy sustainability is presented. This framework is designed to facilitate decision-making about which indicators are useful for assessing sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability indicators in the United States and Europe are reviewed. The first steps of the framework for indicator selection are defining the sustainability goals and other goals for a bioenergy project or program, gaining an understanding of the context, and identifying the values of stakeholders. From the goals, context, and stakeholders, the objectives for analysis and criteria for indicator selection can be developed.more » The user of the framework identifies and ranks indicators, applies them in an assessment, and then evaluates their effectiveness, while identifying gaps that prevent goals from being met, assessing lessons learned, and moving toward best practices. The framework approach emphasizes that the selection of appropriate criteria and indicators is driven by the specific purpose of an analysis. Realistic goals and measures of bioenergy sustainability can be developed systematically with the help of the framework presented here.« less

  13. Investment risk in bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  14. Bioenergy Watershed Restoration in Regions of the West: What are the Environmental/Community Issues?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, R.L.; Huff, D.D.; Kaufmann, M.R.

    Throughout the western mountainous regions, wildfire risks are elevated due to both fire suppression activities which have changed the forest structure making it more susceptible to stand-killing fires and the expansion of human structures (houses, light commercial) into these same forests, By providing a market for currently noncommercial but flammable materials (small trees, tops, and branches), new and existing bioenergy industries could be a key factor in reducing the regional forest fuel loads. Although bioenergy would appear to be an ideal answer to the problem in many ways, the situation is complicated and numerous issues need resolution. A public fearfulmore » of logging in these regions needs assurance that harvesting for bioenergy is an environmentally and socially responsible solution to the current fuel build up in these forests. This is especially important given that biomass harvesting cannot pay its own way under current energy market conditions and would have to be supported in some fashion.« less

  15. Improvement of the Davydov theory of bioenergy transport in protein molecular systems.

    PubMed

    Pang, X F

    2000-11-01

    The Hamiltonian and the wave function in the Davydov theory have simultaneously been improved and extended, based on some physical and biological grounds and on results from other models. The equations of motion for the improved Davydov model with a quasicoherent two-quanta state and a new interaction term in the Hamiltonian describe bioenergy transport along the molecular chains in protein molecules by a soliton mechanism. Some elementary properties of the soliton, including the nonlinear coupling energy and greatly increased binding energy of the soliton, are also given. The results obtained suggest that the model could be a candidate for a bioenergy transport mechanism in protein molecules.

  16. MSU-Northern Bio-Energy Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kegel, Greg; Windy Boy, Jessica; Maglinao, Randy Latayan

    The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additivesmore » considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally-grown oilseed crop was developed through a chemical process for converting the oil extracted into jet fuel. Promising methods of synthesizing heterogeneous metal complex catalyst that support the chemical conversion process were likewise developed. Breaking-down lignin to valuable chemicals using a metal complex catalyst was also investigated. Lignin is an organic polymer that binds around cellulose and hemicellulose fibers which strengthen cell walls in woody biomass. Test results showed promise and could lead to further exploration of using lignin for fuels and fuel additives. These findings could create another value-added product from lignin that can be sourced from beetle kill trees and product residues from cellulose ethanol plants. Coupled with these research discoveries was the provision of technical support to businesses in terms of product development and commercialization of bio-based products. This in turn opened new avenues for advancing the bio-energy industry in the region and helped support the regional agricultural-based economy through developing biofuels derived from feedstock that are grown locally. It assisted in developing biofuels that reduce exhaust emissions and improve engine performance.« less

  17. Sustainable corn stover harvest strategies for Midwest agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    To support emerging U.S. cellulosic bioenergy industries, 239 site-years of data from field studies at 36 sites in seven states were recently summarized in BioEnergy Research by the ARS Resilient Economic Agricultural Practices (REAP) team [formerly the Renewable Energy Assessment Project (REAP) tea...

  18. The impacts of lignin modifications on fungal pathogen and insect interactions in sorghum

    USDA-ARS?s Scientific Manuscript database

    Sorghum (Sorghum bicolor (L.) Moench) is currently being developed as a dedicated bioenergy feedstock. Modifying lignin content and composition are major targets for bioenergy feedstock improvement. However, lignin has long been implicated as playing a critical role in plant defense responses agains...

  19. Dissecting the genetics of rhizomatousness: Towards sustainable food, forage, and bioenergy

    USDA-ARS?s Scientific Manuscript database

    Rhizomatousness is a key trait influencing both the perenniality and biomass partitioning of plants. Increased understanding of the genetic control of rhizome growth offers potential towards the creation of more sustainable grain, forage, and bioenergy cropping systems. It is also applicable to th...

  20. Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of dedicated bioenergy crops is in its infancy; however, there are numerous advantages to the use of these tools to improve crops used for biofuels. Potential improved traits through genetic engineering (GE) include herbicide resistance, pest, drought, cold and salt tolerance, l...

  1. Managing water resources for biomass production in a biofuel economy

    USDA-ARS?s Scientific Manuscript database

    One goal of our national security policy is to become more energy independent using biofuels. The expanded production of agricultural crops for bioenergy production has introduced new challenges for management of water. Water availability has been widely presumed in the discussion of bioenergy crop ...

  2. Next steps in determining the overall sustainability of perennial bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    Perennial bioenergy crops are being developed and evaluated in the United States to partially offset petroleum transport fuels. Accurate accounting of upstream and downstream greenhouse gas (GHG) emissions is necessary to measure the overall carbon intensity of new biofuel feedstocks. For example, c...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    DOE-EERE's Bioenergy Technologies Office (BETO) works to accelerate the development of a sustainable, cost-competitive, advanced biofuel industry that can strengthen U.S. energy security, environmental quality, and economic vitality, through research, development, and demonstration projects in partnership with industry, academia, and national laboratory partners. BETO’s Advanced Algal Systems Program (also called the Algae Program) has a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels. The team works with partners to develop new technologies, to integrate technologies at commercially relevant scales, and to conduct crosscutting analyses to better understand the potential andmore » challenges of the algal biofuels industry. Research has indicated that this industry is capable of producing billions of gallons of renewable diesel, gasoline, and jet fuels annually. R&D activities are integrated with BETO’s longstanding effort to accelerate the commercialization of lignocellulosic biofuels.« less

  4. Renewable Energy

    NASA Astrophysics Data System (ADS)

    Boyle, Godfrey

    2004-05-01

    Stimulated by recent technological developments and increasing concern over the sustainability and environmental impact of conventional fuel usage, the prospect of producing clean, sustainable power in substantial quantities from renewable energy sources arouses interest around the world. This book provides a comprehensive overview of the principal types of renewable energy--including solar, thermal, photovoltaics, bioenergy, hydro, tidal, wind, wave, and geothermal. In addition, it explains the underlying physical and technological principles of renewable energy and examines the environmental impact and prospects of different energy sources. With more than 350 detailed illustrations, more than 50 tables of data, and a wide range of case studies, Renewable Energy, 2/e is an ideal choice for undergraduate courses in energy, sustainable development, and environmental science. New to the Second Edition ·Full-color design ·Updated to reflect developments in technology, policy, attitides ·Complemented by Energy Systems and Sustainability edited by Godfrey Boyle, Bob Everett and Janet Ramage, all of the Open University, U.K.

  5. Identification of bioconversion quantitative trait loci in the interspecific cross Sorghum bicolor × Sorghum propinquum.

    PubMed

    Vandenbrink, Joshua P; Goff, Valorie; Jin, Huizhe; Kong, Wenqian; Paterson, Andrew H; Feltus, F Alex

    2013-09-01

    For lignocellulosic bioenergy to be economically viable, genetic improvements must be made in feedstock quality including both biomass total yield and conversion efficiency. Toward this goal, multiple studies have considered candidate genes and discovered quantitative trait loci (QTL) associated with total biomass accumulation and/or grain production in bioenergy grass species including maize and sorghum. However, very little research has been focused on genes associated with increased biomass conversion efficiency. In this study, Trichoderma viride fungal cellulase hydrolysis activity was measured for lignocellulosic biomass (leaf and stem tissue) obtained from individuals in a F5 recombinant inbred Sorghum bicolor × Sorghum propinquum mapping population. A total of 49 QTLs (20 leaf, 29 stem) were associated with enzymatic conversion efficiency. Interestingly, six high-density QTL regions were identified in which four or more QTLs overlapped. In addition to enzymatic conversion efficiency QTLs, two QTLs were identified for biomass crystallinity index, a trait which has been shown to be inversely correlated with conversion efficiency in bioenergy grasses. The identification of these QTLs provides an important step toward identifying specific genes relevant to increasing conversion efficiency of bioenergy feedstocks. DNA markers linked to these QTLs could be useful in marker-assisted breeding programs aimed at increasing overall bioenergy yields concomitant with selection of high total biomass genotypes.

  6. An integrated policy framework for the sustainable exploitation of biomass for bioenergy from marginal lands

    NASA Astrophysics Data System (ADS)

    Panoutsou, Calliope

    2017-04-01

    Currently, there are not sufficiently tailored policies focusing on biomass and bioenergy from marginal lands. This paper will provide an integrated policy framework and recommendations to facilitate understanding for the market sectors involved and the key principles which can be used to form future sustainable policies for this issue. The work will focus at EU level policy recommendations and discuss how these can interrelate with national and regional level policies to promote the usage of marginal lands for biomass and bioenergy. Recommended policy measures will be based on the findings of the Biomass Policies (www.biomasspolicies.eu) and S2Biom (www.s2biom.eu) projects and will be prepared taking into account the key influencing factors (technical, environmental, social and economic) on biomass and bioenergy from marginal lands: • across different types of marginality (biophysical such as: low temperature, dryness, excess soil moisture, poor chemical properties, steep slope, etc., and socio-economic resulting from lack of economic competitiveness in certain regions and crops, abandonment or rural areas, etc.) • across the different stages of the biomass value chain (supply, logistics, conversion, distribution and end-use). The aim of recommendations will be to inform policy makers on how to distinguish key policy related attributes across biomass and bioenergy from marginal lands, measure them and prioritise actions with a 'system' based approach.

  7. Global land and water grabbing for food and bioenergy

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.

    2014-12-01

    The increasing demand for food, fibers and biofuels, the consequently escalating prices of agricultural products, and the uncertainty of international food markets have recently drawn the attention of governments and corporations toward investments in productive agricultural land, mostly in developing countries. Since 2000 more than 37 million hectares of arable land have been purchased or leased by foreign investors worldwide. The targeted regions are typically located in areas where crop yields are relatively low because of lack of modern technology. It is expected that in the long run large scale investments in agriculture and the consequent development of commercial farming will bring the technology required to close the existing crop yield gaps. Recently, a number of studies and reports have documented the process of foreign land acquisition, while the associated appropriation of land based resources (e.g., water and crops) has remained poorly investigated. The amount of food this land can produce and the number of people it could feed still needs to be quantified. It is also unclear to what extent the acquired land will be used to for biofuel production and the role played by U.S. and E.U. bioenergy policies as drivers of the ongoing land rush. The environmental impacts of these investments in agriculture require adequate investigation. Here we provide a global quantitative assessment of the rates of water and crop appropriation potentially associated with large scale land acquisitions. We evaluate the associated impacts on the food and energy security of both target and investors' countries, and highlight the societal and environmental implications of the land rush phenomenon.

  8. The Effect of Five Biomass Cropping Systems on Soil-Saturated Hydraulic Conductivity Across a Topographic Gradient

    Treesearch

    Usman Anwar; Lisa A. Schulte; Matthew Helmers; Randall K. Kolka

    2017-01-01

    Understanding the environmental impact of bioenergy crops is needed to inform bioenergy policy development. We determined the effects of five biomass cropping systems—continuous maize (Zea mays), soybean (Glycine max)-triticale (Triticosecale ×)/soybean-maize, maize-switchgrass (Panicum virgatum...

  9. A Conversation with Blake Simmons, Vice President, Deconstruction Division, and Jon Magnuson, Director, Fungal Biotechnology Group, Joint BioEnergy Institute, Emeryville, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Blake A.; Magnuson, Jon

    An interview of myself and Blake Simmons conducted by Vicki Glaser, Executive Editor of Industrial Biotechnology. The subject of the interview was the relatively new PNNL led Fungal Biotechnology Group within the Joint BioEnergy Institute (JBEI).

  10. Candidate perennial bioenergy grasses have a higher albedo than annual row crops in the Midwestern US

    USDA-ARS?s Scientific Manuscript database

    The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observati...

  11. Establishment and yield of perennial grass monocultures and binary mixtures for bioenergy in North Dakota

    USDA-ARS?s Scientific Manuscript database

    To develop appropriate bioenergy production systems to match site-specific situations, establishment and yield were evaluated for switchgrass, intermediate wheatgrass, tall wheatgrass, and three binary mixtures at four sites in North Dakota from 2006 to 2011. Canopy cover at harvest for intermediat...

  12. 78 FR 45441 - Sugar Program; Feedstock Flexibility Program for Bioenergy Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... sugarcane processors may borrow from CCC, pledging their sugar production as collateral for any such loan... sugar for bioenergy production under FFP as a proactive means for CCC to avoid forfeitures. FFP is... production. In addition, CCC will make quarterly announcements of revised estimates of such quantity. CCC's...

  13. On the long-term hydroclimatic sustainability of perennial bioenergy crop expansion over the United States

    USDA-ARS?s Scientific Manuscript database

    Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switchgrass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy)...

  14. Biomass and nutrient mass of Acacia dealbata and Eucalyptus globulus bioenergy plantations

    Treesearch

    Timothy J. Albaugh; Rafael A. Rubilar; Chris A. Maier; Eduardo A. Acuña; Rachel L. Cook

    2017-01-01

    We quantified biomass and nutrient accumulation of Acacia dealbata Link and Eucalyptus globulus Labill. planted at stem densities of 5000 and 15000 ha-1 in a bioenergy plantation in Chile. We tested the hypotheses that species and stocking will not affect biomass or nutrient accumulation. Species and...

  15. Modifying lignin composition and content of sorghum biomass for improved bioenergy conversion

    USDA-ARS?s Scientific Manuscript database

    Sorghum (Sorghum bicolor) is an opportune crop for bioenergy due to its high yield potential, and lower nitrogen and water requirements. Transgenic constructs expressing monolignol biosynthetic genes under control of 35S promoter have been developed and used for sorghum transformation to examine the...

  16. Cellulosic ethanol production from warm-season perennial grasses

    USDA-ARS?s Scientific Manuscript database

    Warm-season (C4) perennial grasses are able to produce large quantities of biomass, and will play a key role in bioenergy production, particularly in areas with long warm growing seasons. Several different grass species have been studied as candidate bioenergy crops for the Southeast USA, and each ...

  17. Bioenergy News | Bioenergy | NREL

    Science.gov Websites

    . April 13, 2018 News Release: Research Team Engineers a Better Plastic-Degrading Enzyme A breakthrough in enzyme research led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and the United Kingdom's University of Portsmouth has led to an improved variant of an enzyme that can

  18. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    USDA-ARS?s Scientific Manuscript database

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demands on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustaina...

  19. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Muth, Jr.; Jared Abodeely; Richard Nelson

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice datamore » required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.« less

  20. Status and prospects for renewable energy using wood pellets from the southeastern United States

    DOE PAGES

    Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.; ...

    2017-04-20

    The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?' To addressmore » this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Furthermore, long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.« less

  1. Status and prospects for renewable energy using wood pellets from the southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.

    The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?' To addressmore » this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Furthermore, long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.« less

  2. Ecological objectives can be achieved with wood-derived bioenergy

    DOE PAGES

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; ...

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO 2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbonmore » pollution from power plants.« less

  3. Ecological objectives can be achieved with wood-derived bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO 2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbonmore » pollution from power plants.« less

  4. Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective

    DOE PAGES

    Gilna, Paul; Lynd, Lee R.; Mohnen, Debra; ...

    2017-11-30

    The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are then the result of deeper biological understanding and can be combined with other advanced biotechnology improvements in biomass conversion to improve bioenergy processes and markets. This article provides an overview of key accomplishments in overcoming recalcitrance via better plants, better microbes, and better tools and combinations. Finally, we present a perspective on the aspects of successful centermore » operation.« less

  5. Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilna, Paul; Lynd, Lee R.; Mohnen, Debra

    The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are then the result of deeper biological understanding and can be combined with other advanced biotechnology improvements in biomass conversion to improve bioenergy processes and markets. This article provides an overview of key accomplishments in overcoming recalcitrance via better plants, better microbes, and better tools and combinations. Finally, we present a perspective on the aspects of successful centermore » operation.« less

  6. Wood to energy: using southern interface fuels for bioenergy

    Treesearch

    C. Staudhammer; L.A. Hermansen; D. Carter; Ed Macie

    2011-01-01

    This publications aims to increase awareness of potential uses for woody biomass in the southern wildland-urban interface (WUI) and to disseminate knowledge about putting bioenergy production systems in place, while addressing issues unique to WUI areas. Chapter topics include woody biomass sources in the wildland-urban interface; harvesting, preprocessing and delivery...

  7. Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System

    Treesearch

    Hongmei Gu; Richard Bergman

    2016-01-01

    Expanding bioenergy production from woody biomass has the potential to decrease net greenhouse gas (GHG) emissions and improve the energy security of the United States. Science-based and internationally accepted life-cycle assessment (LCA) is an effective tool for policy makers to make scientifically informed decisions on expanding renewable energy production from...

  8. Selection signatures in four lignin genes from switchgrass populations divergently selected for in vitro dry matter digestibility

    USDA-ARS?s Scientific Manuscript database

    Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system, or to volatile fatty acids in a livestock production system, is strongly and negatively influenced by lignification of cell walls. This study dete...

  9. Cover crop and nitrogen fertilization influence soil carbon and nitrogen under bioenergy sweet sorghum

    USDA-ARS?s Scientific Manuscript database

    Cover crop and N fertilization may maintain soil C and N levels under sweet sorghum (Sorghum bicolor [L.] Moench) biomass harvested for bioenergy production. The effect of cover crops (hairy vetch [Vicia villosa Roth], rye [Secaele cereale L.], hairy vetch/rye mixture, and the control [no cover crop...

  10. Cover crops for enriching soil carbon and nitrogen under bioenergy sorghum

    USDA-ARS?s Scientific Manuscript database

    Soil carbon (C) and nitrogen (N) can be enriched with cover crops under agronomic crops, but little is known about their enrichment under bioenergy crops. Legume (hairy vetch [Vicia villosa Roth]), nonlegume (rye [Secaele cereale L.]), a mixture of legume and nonlegume (hairy vetch and rye) and a co...

  11. Carbon debt and carbon sequestration parity in forest bioenergy production

    Treesearch

    S.R. Mitchell; M.E. Harmon; K.B. O' Connell

    2012-01-01

    The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...

  12. Wood bioenergy and soil productivity research

    Treesearch

    D. Andrew Scott; Deborah S. Page-Dumroese

    2016-01-01

    Timber harvesting can cause both short- and long-term changes in forest ecosystem functions, and scientists from USDA Forest Service (USDA FS) have been studying these processes for many years. Biomass and bioenergy markets alter the amount, type, and frequency at which material is harvested, which in turn has similar yet specific impacts on sustainable productivity....

  13. Enhancing biomass utilization for bioenergy-crop rotation systems and alternative conversion processes

    USDA-ARS?s Scientific Manuscript database

    Biomass for bioenergy has a great deal of potential for decreasing our dependence upon fossil fuels and decreasing the net CO2 accumulation in the atmosphere. Crop residues are often promoted as a means of meeting the total biomass goals to provide sufficient amounts of materials for liquid fuel pro...

  14. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    USDA-ARS?s Scientific Manuscript database

    Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study was to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed perennial grasses from Conservation Reserve Program de...

  15. Best management practices: Managing cropping systems for soil protection and bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  16. Land conversion to bioenergy production: water budget and sediment output in a semiarid grassland

    USDA-ARS?s Scientific Manuscript database

    Switchgrass based bioenergy production has been considered a feasible alternative of land use for the mixed-grass prairie and marginal croplands in the High Plains. However, little is known of the effect of this land use change on the water cycle and associated sediment output in this water controll...

  17. Energycane production for biomass and bioenergy feedstocks in Louisiana

    USDA-ARS?s Scientific Manuscript database

    The poster discusses the results of the first two years of energycane production research conducted in Winnsboro, LA, and Houma, LA, as part of the USDA NIFA AFRI grant. Energycane can contribute greatly to a year around bioenergy industry in Louisiana and other areas of the SE United States. As par...

  18. Environmental factors affecting the spatial distribution and trophic interactions of arthropod communities at a bioenergy farm in the Southeastern Plains, USA

    USDA-ARS?s Scientific Manuscript database

    The abundance and composition of arthropod communities in agricultural landscapes vary across space and time, responding to environmental features, resources and behavioral cues. As “second-generation” bioenergy feedstocks continue to develop, knowledge is needed about the broader scale ecological i...

  19. Topographic and soil influences on root productivity of three bioenergy cropping systems

    Treesearch

    Todd A. Ontl; Kirsten S. Hofmockel; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka

    2013-01-01

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern...

  20. Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of dedicated bioenergy crops, such as switchgrass, will play a major role in crop improvement for a wide range of beneficial traits specific to biofuels. One obstacle that arises regarding transgenic improvement of perennials used for biofuels is the propensity of these plants t...

  1. The influence of drought-heat stress on long term carbon fluxes of bioenergy crops grown in the Midwestern US

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses are promising feedstocks for bioenergy production in the Midwestern US. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscan...

  2. An outlook for sustainable forest bioenergy production in the Lake States

    Treesearch

    Dennis R. Becker; Kenneth Skog; Allison Hellman; Kathleen E. Halvorsen; Terry Mace

    2009-01-01

    The Lake States region of Minnesota, Wisconsin and Michigan offers significant potential for bioenergy production. We examine the sustainability of regional forest biomass use in the context of existing thermal heating, electricity, and biofuels production, projected resource needs over the next decade including existing forest product market demand, and impacts on...

  3. Greenhouse gas fluxes and root productivity in a switchgrass and loblolly pine intercropping system for bioenergy production

    Treesearch

    Paliza Shrestha; John R. Seiler; Brian D. Strahm; Eric B. Sucre; Zakiya H. Leggett

    2015-01-01

    This study is part of a larger collaborative effort to determine the overall environmental sustainability of intercropping pine (Pinus taeda L.) and switchgrass (Panicum virgatum L.), both of which are promising feedstock for bioenergy production in the Lower Coastal Plain in North Carolina.

  4. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana.

    PubMed

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Sieverts Nielsen, Per; Pedro Nunes, Clemente

    2014-12-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana's energy demands. Major rice growing regions of Ghana have 70-90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5 MWe straw combustion plant were 39.01, 47.52 and 47.89 USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25 MWe husk gasification plant (with roundtrip distance 10 km) was 2.64 USD/t in all regions. Capital cost (66-72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46-48% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. More food, more bioenergy and fewer greenhouse gas emissions (GHGe) - is it possible?

    NASA Astrophysics Data System (ADS)

    Long, S. P.

    2012-12-01

    Global demand for our four major food and feed crops is beginning to out-strip supply, at a time when year-on-year yield per unit area increases are stagnating and while emerging climate trends may further threaten supply. In this context it seems unlikely that in the medium term the continued use of land suited to food and feed production for bioenergy will be either socially acceptable or economically viable. It will be argued that the use of food crops, which have been developed to meet nutritional needs, for bioenergy is environmentally flawed and sub-optimal with respect to net GHGe. It will be shown that using Miscanthus, canes, agave and poplars as examples, there are many opportunities, some partially realized, to achieve very substantial quantities of bioenergy on abandoned or non-agricultural land, globally, with positive GHGe benefits and without unsustainable impacts on food production. Achieving all three goals will depend on new policies based on a holistic view of these demands on land rather than the disaggregated policy development based on single issues, which has characterised this arena in recent years.

  6. Implications of Postharvest Food Loss/Waste Prevention to Energy and Resources Conservation

    NASA Astrophysics Data System (ADS)

    Cai, X.; Shafiee-Jood, M.

    2015-12-01

    World's growing demand for food is driven by population and income growth, dietary changes, and the ever-increasing competition between food, feed and bioenergy challenges food security; meanwhile agricultural expansion and intensification threats the environment by the various detrimental impacts. Researchers have attempted to explore strategies to overcome this grand challenge. One of the promising solutions that have attracted considerable attention recently is to increase the efficiency of food supply chain by reducing food loss and waste (FLW). According to recent studies conducted by Food and Agriculture Organization (FAO), United Nation, almost one third of the food produced for human consumption globally is lost or wasted along the food supply chain. This amount of food discarded manifests a missing, yet potential, opportunity to sustainably enhance both food security and environmental sustainability. However, implementing the strategies and technologies for tackling FLW does not come up as an easy solution since it requires economic incentives, benefit and cost analysis, infrastructure development, and appropriate market mechanism. In this presentation I will provide a synthesis of knowledge on the implications of postharvest food loss/waste prevention to energy and resource conservation, environmental protection, as well as food security. I will also discuss how traditional civil and environmental engineering can contribute to the reduction of postharvest food loss, an important issue of sustainable agriculture.

  7. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production

    PubMed Central

    Ribeiro, Bernardo Dias; de Castro, Aline Machado; Coelho, Maria Alice Zarur; Freire, Denise Maria Guimarães

    2011-01-01

    Lipases represent one of the most reported groups of enzymes for the production of biofuels. They are used for the processing of glycerides and fatty acids for biodiesel (fatty acid alkyl esters) production. This paper presents the main topics of the enzyme-based production of biodiesel, from the feedstocks to the production of enzymes and their application in esterification and transesterification reactions. Growing technologies, such as the use of whole cells as catalysts, are addressed, and as concluding remarks, the advantages, concerns, and future prospects of enzymatic biodiesel are presented. PMID:21785707

  8. Harvesting of microalgae biomass from the phycoremediation process of greywater.

    PubMed

    Atiku, Hauwa; Mohamed, R M S R; Al-Gheethi, A A; Wurochekke, A A; Kassim, Amir Hashim M

    2016-12-01

    The wide application of microalgae in the field of wastewater treatment and bioenergy source has improved research studies in the past years. Microalgae represent a good source of biomass and bio-products which are used in different medical and industrial activities, among them the production of high-valued products and biofuels. The present review focused on greywater treatment through the application of phycoremediation technique with microalgae and presented recent advances in technologies used for harvesting the microalgae biomass. The advantages and disadvantages of each method are discussed. The microbiological aspects of production, harvesting and utilization of microalgae biomass are viewed.

  9. Chapter 9: Implications of Air Pollutant Emissions from Producing Agricultural and Forestry Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Ethan; Zhang, Yi Min; Inman, Daniel J

    The 2016 Billion-Ton Report (BT16), Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1, jointly released by the U.S. Department of Energy's Bioenergy Technologies Office (BETO) and Oak Ridge National Laboratory (ORNL), is a pioneering effort to analyze a range of potential environmental effects associated with illustrative near-term and long-term biomass-production scenarios from the 2016 Billion-Ton Report, Volume 1. This chapter of the 2016 Billion-Ton Report, Volume 2, was authored by NREL researchers Ethan Warner, Yimin Zhang, Danny Inman, Annika Eberle, Alberta Carpenter, Garvin Heath, and Dylan Hettinger.

  10. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  11. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river drainage, USA

    DOE PAGES

    Jager, Henriette I.; Baskaran, Latha M.; Schweizer, Peter E.; ...

    2014-05-15

    We study that the mid-section of the Arkansas-White-Red (AWR) river basin near the 100 th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implicationsmore » remain a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.« less

  12. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    NASA Astrophysics Data System (ADS)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  13. Yield Response to Mexican Rice Borer (Lepidoptera: Crambidae) Injury in Bioenergy and Conventional Sugarcane and Sorghum.

    PubMed

    Vanweelden, M T; Wilson, B E; Beuzelin, J M; Reagan, T E; Way, M O

    2015-10-01

    The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae) is an invasive stem borer of sugarcane, Saccharum spp., and sorghum, Sorghum bicolor (L.), and poses a threat against the production of dedicated bioenergy feedstocks in the U.S. Gulf Coast region. A 2-yr field study was conducted in Jefferson County, TX, to evaluate yield losses associated with E. loftini feeding on bioenergy and conventional cultivars of sugarcane and sorghum under natural and artificially established E. loftini infestations. Bioenergy sugarcane (energycane) 'L 79-1002' and 'Ho 02-113' and sweet sorghum 'M81E' exhibited reduced E. loftini injury; however, these cultivars, along with high-biomass sorghum cultivar 'ES 5140', sustained greater losses in fresh stalk weight. Negative impacts to sucrose concentration from E. loftini injury were greatest in energycane, high-biomass sorghum, and sweet sorghum cultivars. Even under heavy E. loftini infestations, L 79-1002, Ho 02-113, and 'ES 5200' were estimated to produce more ethanol than all other cultivars under suppressed infestations. ES 5200, Ho 02-113, and L 79-1002 hold the greatest potential as dedicated bioenergy crops for production of ethanol in the Gulf Coast region; however, E. loftini management practices will need to be continued to mitigate yield losses. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Changes in Soil Carbon Turnover after Five Years of Bioenergy Cropping Systems from a Long-Term Incubation Experiment and Radiocarbon Measurements.

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Sanford, G. R.; Heckman, K. A.; Jackson, R. D.; Marin-Spiotta, E.

    2016-12-01

    In the face of climate change, the global production of bioenergy crops has increased in response to policies calling for non-fossil energy sources as a means to mitigate rising atmospheric carbon (C) concentrations. To provide overall C sequestration benefits, identifying biomass crops that can maintain or enhance soil resources is desirable for sustainable bioenergy production. The objective of our study was to compare the effects of four bioenergy cropping systems on SOM dynamics in two agricultural soils: Mollisols at the University of Wisconsin Agricultural Research Station in Arlington, Wisconsin and Alfisols at Kellogg Biological Station in Hickory Corners, Michigan, USA. We used fresh soils collected in 2013 and archived soils collected in 2008 to measure differences among biofuel crops after 5 years of management. Using a 365-day laboratory soil incubation and radiocarbon measurements of bulk soil and respired C, we separated soils into three SOM pools and determined their corresponding turnover times. Total soil C respired from surface soils increased in the order: mixed species perennials > monoculture perennials > monoculture annuals. More C was associated with the active fraction in the sandy loam Alfisol and with the slow-cycling fraction in the silt loam Mollisol. Radiocarbon content of respired CO2 did not differ between corn and switchgrass, but did differ between 2008 and 2013. The respiration of more radiocarbon-depleted C after 5 years of cultivation may be due to an initial flux of young C following tillage in 2008 or to depletion of labile plant inputs with continued harvest. All bioenergy cropping systems lost soil C after 5 years. Monoculture perennial switchgrass systems did not provide significant C sequestration benefits, as expected, compared to monoculture annual corn systems. Bioenergy crop land-use change affects soil C dynamics, with implications for assessing C costs associated with biofuel production.

  15. Conversion of Grazed Pastures to Energy Cane as a Biofuel Feedstock Alters Soil GHG Fluxes

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; DeLucia, N.; Bernacchi, C.; DeLucia, E. H.

    2013-12-01

    Changes in land use profoundly affect climate through variations in soil Greenhouse Gas (GHG) exchange. The need for alternative energies is accelerating land use change as marginal land or managed ecosystems are being converted to highly productive second-generation bioenergy crops such as energy cane (Saccharum spp. L). Although the deployment of energy cane is a promising strategy to meet global bioenergy industry demands, few studies have investigated soil GHG fluxes in these crops and sub-tropical low-intensity grazing pasture (bahiagrass, Paspalum notatum L., as forage for cattle, Bos taurus L.) with which they are competing for land. Here, we showed that soil N2O fluxes in bioenergy crops were higher (>250%) than those observed in pastures following fertilization when soil moisture and temperature were high. In the absence of recent fertilization, the N2O source strength in energy cane and pasture sites was similar. Under drier and cooler soil conditions, both pastures and bioenergy crops were weak sources of N2O even when energy cane plots were recently fertilized. Soils on grazed pastures were sources of CH4 during the wet season but became sinks under drier, colder conditions. Energy cane plantations were weak sources of CH4 over a complete wet-dry seasonal cycle. The heterotrophic component of soil respiration was larger (139-155%) in pastures than in energy cane crops, suggesting lower decomposition of SOC in bioenergy crops. In terms of global warming potential, grazed pastures were stronger (120-150%) soil GHG emitters than energy cane crops over a complete wet-dry seasonal cycle. Moreover, pastures became a substantial source of GHG emitters when including estimates of CH4 flux from cattle. Our results suggest that the conversion of pasture to energy cane will be beneficial in relation to GHGs emitted from soils and cattle. Improved understanding of land use impact on soil GHG dynamics will provide valuable information for decision makers debating sustainable bioenergy policies.

  16. Effects on aquatic and human health due to large scale bioenergy crop expansion.

    PubMed

    Love, Bradley J; Einheuser, Matthew D; Nejadhashemi, A Pouyan

    2011-08-01

    In this study, the environmental impacts of large scale bioenergy crops were evaluated using the Soil and Water Assessment Tool (SWAT). Daily pesticide concentration data for a study area consisting of four large watersheds located in Michigan (totaling 53,358 km²) was estimated over a six year period (2000-2005). Model outputs for atrazine, bromoxynil, glyphosate, metolachlor, pendimethalin, sethoxydim, triflualin, and 2,4-D model output were used to predict the possible long-term implications that large-scale bioenergy crop expansion may have on the bluegill (Lepomis macrochirus) and humans. Threshold toxicity levels were obtained for the bluegill and for human consumption for all pesticides being evaluated through an extensive literature review. Model output was compared to each toxicity level for the suggested exposure time (96-hour for bluegill and 24-hour for humans). The results suggest that traditional intensive row crops such as canola, corn and sorghum may negatively impact aquatic life, and in most cases affect the safe drinking water availability. The continuous corn rotation, the most representative rotation for current agricultural practices for a starch-based ethanol economy, delivers the highest concentrations of glyphosate to the stream. In addition, continuous canola contributed to a concentration of 1.11 ppm of trifluralin, a highly toxic herbicide, which is 8.7 times the 96-hour ecotoxicity of bluegills and 21 times the safe drinking water level. Also during the period of study, continuous corn resulted in the impairment of 541,152 km of stream. However, there is promise with second-generation lignocellulosic bioenergy crops such as switchgrass, which resulted in a 171,667 km reduction in total stream length that exceeds the human threshold criteria, as compared to the base scenario. Results of this study may be useful in determining the suitability of bioenergy crop rotations and aid in decision making regarding the adaptation of large-scale bioenergy cropping systems. Published by Elsevier B.V.

  17. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    PubMed

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing the inverse cascade. Finally, biohydrogen, biomethane and bioelectricity could contribute to significant improvements for solid organic waste management in agricultural regions, as well as in urban areas.

  18. Multi-criteria decision analysis for bioenergy in the Centre Region of Portugal

    NASA Astrophysics Data System (ADS)

    Esteves, T. C. J.; Cabral, P.; Ferreira, A. J. D.; Teixeira, J. C.

    2012-04-01

    With the consumption of fossil fuels, the resources essential to Man's survival are being rapidly contaminated. A sustainable future may be achieved by the use of renewable energies, allowing countries without non-renewable energy resources to guarantee energetic sovereignty. Using bioenergy may mean a steep reduction and/or elimination of the external dependency, enhancing the countries' capital and potentially reducing of the negative effects that outcome from the use of fossil fuels, such as loss of biodiversity, air, water, and soil pollution, … This work's main focus is to increase bioenergy use in the centre region of Portugal by allying R&D to facilitate determination of bioenergy availability and distribution throughout the study area.This analysis is essential, given that nowadays this knowledge is still very limited in the study area. Geographic Information Systems (GIS) was the main tool used to asses this study, due to its unseeingly ability to integrate various types of information (such as alphanumerical, statistical, geographical, …) and various sources of biomass (forest, agricultural, husbandry, municipal and industrial residues, shrublands, used vegetable oil and energy crops) to determine the bioenergy potential of the study area, as well as their spatial distribution. By allying GIS with multi-criteria decision analysis, the initial table-like information of difficult comprehension is transformed into tangible and easy to read results: both intermediate and final results of the created models will facilitate the decision making process. General results show that the major contributors for the bioenergy potential in the Centre Region of Portugal are forest residues, which are mostly located in the inner region of the study area. However, a more detailed analysis should be made to analyze the viability to use energy crops. As a main conclusion, we can say that, although this region may not use only this type of energy to be completely independent in terms of energy, it will certainly reduce the amount of consumed fossil fuels, leading to a substantial reduction of the importation of this product.

  19. The availability and economic analyses of using marginal land for bioenergy production in China

    NASA Astrophysics Data System (ADS)

    Yuqi, Chen; Xudong, Guo; Chunyan, Lv

    2017-04-01

    In recent years, China has witnessed rapid increase in the dependence of foreign oil import. In 2015, the primary energy consumption of China is 543 million tons, of which 328 million tons was imported. The total amount of imported foreign oil increased from 49.8% in 2008 to 60.41% in 2016. To address the national energy security and GHG emission reduction, China has made considerable progress in expanding renewable energy portfolio, especially liquid biofuels. However, under the pressure of high population and vulnerable food security, China's National Development and Reform Commission (NDRC) ruled that bioenergy is only allowed to be produced using non-cereal feedstock. In addition, the energy crops can only be planted on marginal land, which is the land not suitable for growing field crops due to edaphic and/or climatic limitations, and other environmental risks. Although there have been a number of studies about estimating the marginal land for energy plants' cultivation in China, as to the different definition of marginal land and land use data, the results are quite different. Furthermore, even if there is enough marginal land suitable for energy plants' cultivation, economic viability of cultivating energy plants on marginal land is critical. In order to analyze the availability and economic analyses of the marginal land for bioenergy production strategy, firstly, by using of the latest and most authoritative land use data, this study focused on the assessment of marginal land resources and bioenergy potential by planting five species of energy plants including Cassava, Jatropha curcas, Helianthus tuberous L, Pistacia chinensis, Xanthoceras sorbifolia Bunge. The results indicate that there are 289.71 million ha marginal land can be used for these five energy plants' cultivation, which can produce 24.45 million tons bioethanol and 8.77 million tons of biodiesel. Secondly, based on field survey data and literature reviews, we found that, from the farmers' perspective, low income led to none incentive of energy plants' cultivation. From the bioenergy plants' perspective, unstable supply and high cost of feedstock constrained the normal operation. In China, both energy crop' s cultivation and bioenergy production depend too much on government subsidies. It was impossible to develop bioenergy based on marginal land if only rely on the market at present.

  20. Impacts of Past Land Use Changes on Water Resources: An Analog for Assessing Effects of Proposed Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Schilling, K.; Young, M.; Duncan, I. J.; Gerbens-Leenes, P.

    2011-12-01

    Interest is increasing in renewable energy sources, including bioenergy. However, potential impacts of bioenergy crops on water resources need to be better understood before large scale expansion occurs. This study evaluates the potential for using past land use change impacts on water resources as an analog for assessing future bioenergy crop effects. Impacts were assessed for two cases and methods: (1) changes from perennial to annual crops in the Midwest U.S. using stream hydrograph separation; and (2) changes from perennial grasses and shrubs to annual crops in the Southwest U.S. using unsaturated zone and groundwater data. Results from the Midwest show that expanding the soybean production area by 80,000 km2 increased stream flow by 32%, based on data from Keokuk station in the Upper Mississippi River Basin. Using these relationships, further expansion of annual corn production for biofuels by 10 - 50% would increase streamflow by up to 40%, with related increases in nitrate, phosphate, and sediment pollutant transport to the Gulf of Mexico. The changes in water partitioning are attributed to reducing evapotranspiration, increasing recharge and baseflow discharge to streams. Similar results were found in the southwestern US, where changes from native perennial grasses and shrubs to annual crops increased recharge from ~0.0 to 24 mm/yr, raising water tables by up to 7 m in some regions and flushing accumulated salts into underlying aquifers in the southern High Plains. The changes in water partitioning are related to changes in rooting depth from deep rooted native vegetation to shallow rooted crops and growing season length. Further expansion of annual bioenergy crops, such as changes from Conservation Reserve Program to corn in the Midwest, will continue the trajectory of reducing ET, thereby increasing recharge and baseflow to streams and nutrient export. We hypothesize that changing bioenergy crops from annual crops to perennial grasses, such as switchgrass and Miscanthus, will reverse these changes in water partitioning, increasing ET, and decreasing recharge, baseflow and nutrient transport to streams. These changes occur primarily because of the deeper roots and longer growing season of the grasses, capturing water percolating downward. These projected changes in water resources are supported by high water footprints for perennial grasses relative to annual crops globally. While reducing pollution from nutrient loading is an obvious benefit, reducing recharge may have negative ramifications for groundwater and surface water resources. Our research shows that there are water quantity and quality consequences of cultivating various bioenergy crops that should be considered before large scale expansion occurs. Data from past land use changes provide valuable information that can be used as a guide to evaluate potential impacts of future land use changes related to bioenergy crops.

  1. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana.

    PubMed

    Gross, Stephen M; Martin, Jeffrey A; Simpson, June; Abraham-Juarez, María Jazmín; Wang, Zhong; Visel, Axel

    2013-08-19

    Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development.

  2. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana

    PubMed Central

    2013-01-01

    Background Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Results Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Conclusions Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development. PMID:23957668

  3. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels☆

    PubMed Central

    Mohr, Alison; Raman, Sujatha

    2013-01-01

    Aims The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. Scope We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Conclusions Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic). PMID:24926117

  4. Pretreatment of Hardwood and Miscanthus with Trametes versicolor for Bioenergy Conversion and Densification Strategies.

    PubMed

    Kalinoski, Ryan M; Flores, Hector D; Thapa, Sunil; Tuegel, Erin R; Bilek, Michael A; Reyes-Mendez, Evelin Y; West, Michael J; Dumonceaux, Tim J; Canam, Thomas

    2017-12-01

    The pretreatment of plant biomass negatively impacts the economics of many bioenergy and bioproduct processes due to the thermochemical requirements for deconstruction of lignocelluluose. An effective strategy to reduce these severity requirements is to pretreat the biomass with white-rot fungi, such as Trametes versicolor, which have the innate ability to deconstruct lignocellulose with a suite of specialized enzymes. In the present study, the effects of 12 weeks of pretreatment with a wild-type strain (52J) and a cellobiose dehydrogenase-deficient strain (m4D) of T. versicolor on hardwood and Miscanthus were explored. Both strains of T. versicolor led to significant decreases of insoluble lignin and significant increases of soluble lignin after acid hydrolysis, which suggests improved lignin extractability. The glucose yields after saccharification using an enzyme cocktail containing chitinase were similar or significantly higher with 52J-treated biomass compared to untreated hardwood and Miscanthus, respectively. The fungal treated biomass, regardless of the strain used, also showed significant increases in energy content and compressive strength of pellets. Overall, the use of T. versicolor as a pretreatment agent for hardwood and Miscanthus could be an environmentally friendly strategy for conversion technologies that require delignification and saccharification, and/or processes that require densification and transport.

  5. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels.

    PubMed

    Mohr, Alison; Raman, Sujatha

    2013-12-01

    The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic).

  6. Does soil C accrual under perennial grasses managed for bioenergy offset fertilizer induced N2O emission?

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses (e.g., switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are often touted as being low input and as having a C-neutral foot print, but managing them as bioenergy feedstock means adding nitrogenous fertilizer or inter-cropping with legumes, which can i...

  7. Woody energy crops in the southeastern United States: two centuries of practitioner experience

    Treesearch

    Keith L. Kline; Mark D. Coleman

    2010-01-01

    Forest industry experts were consulted on the potential for hardwood tree species to serve as feedstock for bioenergy in the southeastern United States. Hardwoods are of interest for bioenergy because of desirable physical qualities, genetic research advances, and growth potential. Yet little data is available regarding potential productivity and costs. This paper...

  8. The South's outlook for sustainable forest bioenergy and biofuels production

    Treesearch

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  9. Forest bioenergy system to reduce the hazard of wildfires: White Mountains, Arizona

    Treesearch

    Daniel G. Neary; Elaine J. Zieroth

    2007-01-01

    In an innovative effort, the USDA Forest Service is planning to reduce the long-term threat of catastrophic wildfires by inaugurating a series of forest thinnings for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache-Sitgreaves National Forest. ''The Nutrioso Wildland/Urban Interface Fuels Reduction Project'...

  10. Best practices guidelines for managing water in bioenergy feedstock production

    Treesearch

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  11. Impact of second-generation biofuel agriculture on greenhouse gas emissions in the corn-growing regions of the US

    USDA-ARS?s Scientific Manuscript database

    Land use for bioenergy crops is controversial because terrestrial resources that supply food, livestock feed, and ecosystem services already compete for geographical space in some regions of the world. Currently, in the US, both feed and bioenergy are produced from the food crop Zea mays L. (corn), ...

  12. Sustainable bioenergy production from Missouri's Ozark forests

    Treesearch

    Henry E. Stelzer; Chris Barnett; Verel W. Bensen

    2008-01-01

    The main source of wood fiber for energy resides in Missouri's forests. Alternative bioenergy systems that can use forest thinning residues are electrical energy, thermal energy, and liquid bio-fuel. By applying a thinning rule and accounting for wood fiber that could go into higher value wood products to all live biomass data extracted from the U.S. Forest...

  13. Logistic regression models of factors influencing the location of bioenergy and biofuels plants

    Treesearch

    T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu

    2011-01-01

    Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...

  14. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Treesearch

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  15. Maintaining site productivity during biofuel harvest operations

    Treesearch

    Deborah Page-Dumoese; Mark Kimsey

    2012-01-01

    Demand for forest biomass for bioenergy production and other uses is expected to increase to four times the current level in the next one to five years. The search for alternative energy sources, including forest bioenergy, increases pressure on the productive capacity of our western forestlands. The questions are: Can forest soils in the western U.S. support more...

  16. Effect of Bioenergy Demands and Supply Response on Markets, Carbon, and Land Use

    Treesearch

    Karen L. Abt; Robert C. Abt; Christopher Galik

    2012-01-01

    An increase in the demand for wood for energy, including liquid fuels, bioelectricity, and pellets, has the potential to affect traditional wood users, forestland uses, management intensities, and, ultimately, carbon sequestration. Recent studies have shown that increases in bioenergy harvests could lead to displacement of traditional wood-using industries in the short...

  17. Field-based estimates of global warming potential in bioenergy systems of Hawaii: Crop choice and deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Replacing fossil fuel with biofuel is environmentally viable only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level bal...

  18. The role of simulation models in monitoring soil organic carbon storage and greenhouse gas mitigation potential in bioenergy cropping systems

    USDA-ARS?s Scientific Manuscript database

    There is an increased demand on agricultural systems worldwide to provide food, fiber, and feedstock for the emerging bioenergy industry, raising legitimate concerns on the associated impacts of such intensification on the environment. Of the many ecosystem services that could be impacted by the la...

  19. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    Treesearch

    Ronald S. Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Donald E. Riemenschneider

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently...

  20. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show howmore » these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.« less

  1. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    PubMed

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated that this systems approach is powerful enough to complement the functional metabolic annotation of bioenergy grasses.

  2. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses

    PubMed Central

    de Oliveira Dal'Molin, Cristiana G.; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P.; Chrysanthopoulos, Panagiotis; Plan, Manuel R.; McQualter, Richard; Palfreyman, Robin W.; Nielsen, Lars K.

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated that this systems approach is powerful enough to complement the functional metabolic annotation of bioenergy grasses. PMID:27559337

  3. Integrating Algae with Bioenergy Carbon Capture and Storage (ABECCS) Increases Sustainability

    NASA Astrophysics Data System (ADS)

    Beal, Colin M.; Archibald, Ian; Huntley, Mark E.; Greene, Charles H.; Johnson, Zackary I.

    2018-03-01

    Bioenergy carbon capture and storage (BECCS) has been proposed to reduce atmospheric CO2 concentrations, but concerns remain about competition for arable land and freshwater. The synergistic integration of algae production, which does not require arable land or freshwater, with BECCS (called "ABECCS") can reduce CO2 emissions without competing with agriculture. This study presents a technoeconomic and life-cycle assessment for colocating a 121-ha algae facility with a 2,680-ha eucalyptus forest for BECCS. The eucalyptus biomass fuels combined heat and power (CHP) generation with subsequent amine-based carbon capture and storage (CCS). A portion of the captured CO2 is used for growing algae and the remainder is sequestered. Biomass combustion supplies CO2, heat, and electricity, thus increasing the range of sites suitable for algae cultivation. Economic, energetic, and environmental impacts are considered. The system yields as much protein as soybeans while generating 61.5 TJ of electricity and sequestering 29,600 t of CO2 per year. More energy is generated than consumed and the freshwater footprint is roughly equal to that for soybeans. Financial break-even is achieved for product value combinations that include 1) algal biomass sold for 1,400/t (fishmeal replacement) with a 68/t carbon credit and 2) algal biomass sold for 600/t (soymeal replacement) with a 278/t carbon credit. Sensitivity analysis shows significant reductions to the cost of carbon sequestration are possible. The ABECCS system represents a unique technology for negative emissions without reducing protein production or increasing water demand, and should therefore be included in the suite of technologies being considered to address global sustainability.

  4. Moisture content prediction in poultry litter using artificial intelligence techniques and Monte Carlo simulation to determine the economic yield from energy use.

    PubMed

    Rico-Contreras, José Octavio; Aguilar-Lasserre, Alberto Alfonso; Méndez-Contreras, Juan Manuel; López-Andrés, Jhony Josué; Cid-Chama, Gabriela

    2017-11-01

    The objective of this study is to determine the economic return of poultry litter combustion in boilers to produce bioenergy (thermal and electrical), as this biomass has a high-energy potential due to its component elements, using fuzzy logic to predict moisture and identify the high-impact variables. This is carried out using a proposed 7-stage methodology, which includes a statistical analysis of agricultural systems and practices to identify activities contributing to moisture in poultry litter (for example, broiler chicken management, number of air extractors, and avian population density), and thereby reduce moisture to increase the yield of the combustion process. Estimates of poultry litter production and heating value are made based on 4 different moisture content percentages (scenarios of 25%, 30%, 35%, and 40%), and then a risk analysis is proposed using the Monte Carlo simulation to select the best investment alternative and to estimate the environmental impact for greenhouse gas mitigation. The results show that dry poultry litter (25%) is slightly better for combustion, generating 3.20% more energy. Reducing moisture from 40% to 25% involves considerable economic investment due to the purchase of equipment to reduce moisture; thus, when calculating financial indicators, the 40% scenario is the most attractive, as it is the current scenario. Thus, this methodology proposes a technology approach based on the use of advanced tools to predict moisture and representation of the system (Monte Carlo simulation), where the variability and uncertainty of the system are accurately represented. Therefore, this methodology is considered generic for any bioenergy generation system and not just for the poultry sector, whether it uses combustion or another type of technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Edward; Pegallapati, Ambica K.; Davis, Ryan

    The Department of Energy (DOE) Bioenergy Technologies Office (BETO) Multi-year Program Plan (MYPP) describes the bioenergy objectives pursued by BETO, the strategies for achieving those objectives, the current state of technology (SOT), and a number of design cases that explore cost and operational performance required to advance the SOT towards middle and long term goals (MYPP, 2016). Two options for converting algae to biofuel intermediates were considered in the MYPP, namely algal biofuel production via lipid extraction and algal biofuel production by thermal processing. The first option, lipid extraction, is represented by the Combined Algae Processing (CAP) pathway in whichmore » algae are hydrolyzed in a weak acid pretreatment step. The treated slurry is fermented for ethanol production from sugars. The fermentation stillage contains most of the lipids from the original biomass, which are recovered through wet solvent extraction. The process residuals after lipid extraction, which contain much of the original mass of amino acids and proteins, are directed to anaerobic digestion (AD) for biogas production and recycle of N and P nutrients. The second option, thermal processing, comprises direct hydrothermal liquefaction (HTL) of the wet biomass, separation of aqueous, gas, and oil phases, and treatment of the aqueous phase with catalytic hydrothermal gasification (CHG) to produce biogas and to recover N and P nutrients. The present report describes a life cycle analysis of energy use and greenhouse gas (GHG) emissions of the CAP and HTL options for the three scenarios just described. Water use is also reported. Water use during algal biofuel production comes from evaporation during cultivation, discharge to bleed streams to control pond salinity (“blowdown”), and from use during preprocessing and upgrading. For scenarios considered to date, most water use was from evaporation and, secondarily, from bleed streams. Other use was relatively small at the level of fidelity being modeled now.« less

  6. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE PAGES

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; ...

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  7. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  8. Nitrogen Fertilization Elevated Spatial Heterogeneity of Soil Microbial Biomass Carbon and Nitrogen in Switchgrass and Gamagrass Croplands

    NASA Astrophysics Data System (ADS)

    Jian, S.; Li, J.; Guo, C.; Hui, D.; Deng, Q.; Yu, C. L.; Dzantor, K. E.; Lane, C.

    2017-12-01

    Nitrogen (N) fertilizers are widely used to increase bioenergy crop yield but intensive fertilizations on spatial distributions of soil microbial processes in bioenergy croplands remains unknown. To quantify N fertilization effect on spatial heterogeneity of soil microbial biomass carbon (MBC) and N (MBN), we sampled top mineral horizon soils (0-15cm) using a spatially explicit design within two 15-m2 plots under three fertilization treatments in two bioenergy croplands in a three-year long fertilization experiment in Middle Tennessee, USA. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha-1 in urea) and high N input (HN: 168 kg N ha-1 in urea). The two crops were switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.). Results showed that N fertilizations little altered central tendencies of microbial variables but relative to LN, HN significantly increased MBC and MBC:MBN (GG only). HN possessed the greatest within-plot variances except for MBN (GG only). Spatial patterns were generally evident under HN and LN plots and much less so under NN plots. Substantially contrasting spatial variations were also identified between croplands (GG>SG) and among variables (MBN, MBC:MBN > MBC). No significant correlations were identified between soil pH and microbial variables. This study demonstrated that spatial heterogeneity is elevated in microbial biomass of fertilized soils likely by uneven fertilizer application, the nature of soil microbial communities and bioenergy crops. Future researchers should better match sample sizes with the heterogeneity of soil microbial property (i.e. MBN) in bioenergy croplands.

  9. Modelling energy efficiency of an integrated anaerobic digestion and photodegradation of distillery effluent using response surface methodology.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2016-10-01

    Anaerobic digestion (AD) is efficient in organic load removal and bioenergy recovery when applied in treating distillery effluent; however, it is ineffective in colour reduction. In contrast, ultraviolet (UV) photodegradation post-treatment for the AD-treated distillery effluent is effective in colour reduction but has high energy requirement. The effects of operating parameters on bioenergy production and energy demand of photodegradation were modelled using response surface methodology (RSM) with a view of developing a sustainable process in which the biological step could supply energy to the energy-intensive photodegradation step. The organic loading rate (OLRAD) and hydraulic retention time (HRTAD) of the initial biological step were the variables investigated. It was found that the initial biological step removed about 90% of COD and only about 50% colour while photodegradation post-treatment removed 98% of the remaining colour. Maximum bioenergy production of 180.5 kWh/m(3) was achieved. Energy demand of the UV lamp was lowest at low OLRAD irrespective of HRTAD, with values ranging between 87 and 496 kWh/m(3). The bioenergy produced formed 93% of the UV lamp energy demand when the system was operated at OLRAD of 3 kg COD/m(3) d and HRT of 20 days. The presumed carbon dioxide emission reduction when electricity from bioenergy was used to power the UV lamp was 28.8 kg CO2 e/m(3), which could reduce carbon emission by 31% compared to when electricity from the grid was used, leading to environmental conservation.

  10. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    NASA Astrophysics Data System (ADS)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-01

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O3) and fine particulate matter (PM2.5) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O3 increases of 5-27 ppb in India, 1-9 ppb in China, and 1-6 ppb in the United States, with peak PM2.5 increases of up to 2 μg m-3. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10-100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    On June 16–17, 2015, the U.S. Department of Energy (DOE) convened the Optima Stakeholder Listening ay to share information on an emerging effort to concurrently investigate the optimization of fuels and vehicles. At the time of the stakeholder listening day, this effort was referred to as “Optima.” The revised name of the effort is Co-Optimization of Fuels & Engines (Co-Optima). The effort and the listening day will use the term “Co-Optima” hereafter in this report.Co-Optima officially began in FY 2016 and is a collaboration of the DOE Vehicle Technologies Office, Bioenergy Technologies Office, and the DOE national laboratories. In FYmore » 2015, DOE invited industry stakeholders to the listening day to obtain critical input on the opportunities and challenges of this effort. The meeting was held in Golden, Colorado, and hosted by the National Renewable Energy Laboratory.« less

  12. Impacts of managing perennial grasses in the northern Midwest United States for bioenergy on soil organic C and nitrous oxide emission

    USDA-ARS?s Scientific Manuscript database

    In the USA perennial grasses [e.g., switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman)] are proposed as cellulosic feedstock. Perennial grasses are often touted as being low input and as having a C-neutral foot print, but managing them as bioenergy feedstock means addin...

  13. A synthesis of biomass utilization for bioenergy production in the Western United States.

    Treesearch

    David L. Nicholls; Robert A. Monserud; Dennis P. Dykstra

    2008-01-01

    We examine the use of woody residues, primarily from forest harvesting or wood products manufacturing operations (and to a limited degree from urban wood wastes), as a feedstock for direct-combustion bioenergy systems for electrical or thermal power applications. We examine opportunities for utilizing biomass for energy at several scales, with an emphasis on larger...

  14. Social acceptability of bioenergy in the U.S

    Treesearch

    J. Peter Brosius; John Schelhas; Sarah Hitchner

    2013-01-01

    Global interest in bioenergy development has increased dramatically in recent years, due to its promise to reduce dependence on fossil fuel energy supplies, its contribution to global and national energy security, its potential to produce a carbon negative or neutral fuel source and to mitigate climate change, and its potential as a vehicle for rural development....

  15. Root and soil total carbon and nitrogen under bioenergy perennial grasses with various nitrogen rates

    USDA-ARS?s Scientific Manuscript database

    Information is scanty about root and soil C and N under bioenergy perennial grasses with various N fertilization rates in semiarid regions. We evaluated the effect of perennial grasses and N rates on root biomass C and N and soil total C (STC) and total N (STN) stocks at the 0-120 cm depth from 2011...

  16. Simulated effects of converting pasture to energy cane for bioenergy with the daycent model: predicting changes to greenhouse gas emissions and soil carbon

    USDA-ARS?s Scientific Manuscript database

    Bioenergy related land use change will likely alter biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L.) is a sugarcane variety and an emerging biofuel feedstock for cellulosic bio-ethanol production. It has a potential for high yields and can be grown on f...

  17. Biomass production of herbaceous energy crops in the United States: Field trial results and yield potential maps from the multiyear regional feedstock partnership

    USDA-ARS?s Scientific Manuscript database

    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform at the farm...

  18. Bioenergy in a Multifunctional Landscape

    ScienceCinema

    Watts, Chad; Negri, Cristina; Ssegane, Herbert

    2018-06-12

    How can our landscapes be managed most effectively to produce crops for food, feed, and bioenergy, while also protecting our water resources by preventing the loss of nutrients from the soil? Dr. Cristina Negri and her team at the U.S. Department of Energy’s Argonne National Laboratory are tackling this question at an agricultural research site located in Fairbury, Illinois.

  19. Snake oil, silver buckshot, and people who hate us: metaphors and conventional discourses of wood-based bioenergy in the rural southeastern United States

    Treesearch

    Sarah Hitchner; John Schelhas; J. Peter  Brosius

    2016-01-01

    Multiple experiences and sources of information influence ideas about wood-based bioenergy, and people often use similar language to reference various discourses (e.g., energy independence, rural development, environmental sustainability). We collected data during ethnographic research in three primary and three secondary field sites in the southeastern...

  20. Profitability potential for Pinus taeda L. (loblolly pine) short-rotation bioenergy plantings in the southern USA

    Treesearch

    James H. Perdue; John A. Stanturf; Timothy M. Young; Xia Huang; Derek Dougherty; Michael Pigott; Zhimei Guo

    2017-01-01

    The use of renewable resources is important to the developing bioenergy economy and short rotation woody crops (SRWC) are key renewable feedstocks. A necessary step in advancing SRWC is defining regions suitable for SRWC commercial activities and assessing the relative economic viability among suitable regions. The goal of this study was to assess the potential...

  1. Harvest residue removal and soil compaction impact forest productivity and recovery: Potential implications for bioenergy harvests

    Treesearch

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Understanding the effects of management on forest structure and function is increasingly important in light of projected increases in both natural and anthropogenic disturbance severity and frequency with global environmental change. We examined potential impacts of the procurement of forest-derived bioenergy, a change in land use that has been suggested as a climate...

  2. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient

    Treesearch

    Todd A. Ontl; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka

    2015-01-01

    Bioenergy crops have the potential to enhance soil carbon (C) pools from increased aggregation and the physical protection of organic matter; however, our understanding of the variation in these processes over heterogeneous landscapes is limited. In particular, little is known about the relative importance of soil properties and root characteristics for the physical...

  3. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  4. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    PubMed

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulatedmore » a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.« less

  6. The impact of cultivar diversity in bioenergy feedstock production systems on soil carbon sequestration rates

    NASA Astrophysics Data System (ADS)

    De Graaff, M.; Morris, G.; Jastrow, J. D.; SIX, J. W.

    2013-12-01

    Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt, particularly when grown in diverse mixtures, by enhancing soil C sequestration upon land-use change. Native bioenergy candidate species, switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) show extensive within-species variation, and our preliminary data show that increased cultivar diversity can enhance yield. We aim to assess how shifting C3-dominated nonnative perennial grasslands to C4-dominated native perennial grasslands for use as bioenergy feedstock affects soil C stocks, and how within-species diversity in switchgrass and big bluestem affects soil C sequestration rates. Our experiment is conducted at the Fermilab National Environmental Research Park, and compares different approaches for perennial feedstock production ranging across a biodiversity gradient, where diversity is manipulated at both the species- and cultivar level, and nitrogen (N) is applied at two levels (0 and 67 kg/ha). Preliminary results indicate that switchgrass and big bluestem differentially affect soil C sequstration, and that increasing diversity may enhance soil C sequestration rates.

  7. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.

    PubMed

    Waclawovsky, Alessandro J; Sato, Paloma M; Lembke, Carolina G; Moore, Paul H; Souza, Glaucia M

    2010-04-01

    An increasing number of plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops. Research is increasingly focused on how to design crops specifically for bioenergy production and increased biomass generation for biofuel purposes. The most important biofuel to date is bioethanol produced from sugars (sucrose and starch). Second generation bioethanol is also being targeted for studies to allow the use of the cell wall (lignocellulose) as a source of carbon. If a crop is to be used for bioenergy production, the crop should be high yielding, fast growing, low lignin content and requiring relatively small energy inputs for its growth and harvest. Obtaining high yields in nonprime agricultural land is a key for energy crop development to allow sustainability and avoid competition with food production. Sugarcane is the most efficient bioenergy crop of tropical and subtropical regions, and biotechnological tools for the improvement of this crop are advancing rapidly. We focus this review on the studies of sugarcane genes associated with sucrose content, biomass and cell wall metabolism and the preliminary physiological characterization of cultivars that contrast for sugar and biomass yield.

  8. Evaluation on community tree plantations as sustainable source for rural bioenergy in Indonesia

    NASA Astrophysics Data System (ADS)

    Siregar, U. J.; Narendra, B. H.; Suryana, J.; Siregar, C. A.; Weston, C.

    2017-05-01

    Indonesia has forest plantation resources in rural areas far from the national electricity grid that have potential as feedstock for biomass based electricity generation. Although some fast growing tree plantations have been established for bioenergy, their sustainability has not been evaluated to date. This research aimed to evaluate the growth of several tree species, cultivated by rural communities in Jawa Island, for their sustainability as a source for bio-electricity. For each tree species the biomass was calculated from diameter and height measurements and an estimate made for potential electricity generation based on density of available biomass and calorific content. Species evaluated included Acacia mangium, A. auriculiformis, A. crasicarpa, Anthocephalus cadamba, Calliandra calothirsus, Eucalyptus camaldulensis, Falcataria moluccana, Gmelina arborea, Leucaena leucochephala and Sesbania grandiflora. Among these species Falcataria moluccana and Anthocephalus cadamba showed the best potential for bioenergy production, with up to 133.7 and 67.1 ton/ha biomass respectively, from which 160412 and 80481 Kwh of electricity respectively could be generated. Plantations of these species could potentially meet the estimated demand for biomass feedstock to produce bioenergy in many rural villages, suggesting that community plantations could sustainably provide much needed electricity.

  9. Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater.

    PubMed

    Feng, Wei; Xiao, Kai; Zhou, Wenbing; Zhu, Duanwei; Zhou, Yiyong; Yuan, Yu; Xiao, Naidong; Wan, Xiaoqiong; Hua, Yumei; Zhao, Jianwei

    2017-01-01

    Eichhornia crassipes (EC, water hyacinth) has gained attention due to its alarming reproductive capacity, which subsequently leads to serious ecological damage of water in many eutrophic lakes in the world. The traditional mechanical removal methods have disadvantages. They squander this valuable lignocellulosic resource. Meanwhile, there is a bottleneck for the subsequently reasonable and efficient utilization of EC biomass on a large scale after phytoremediation of polluted water using EC. As a result, the exploration of effective EC utilization technologies has become a popular research field. After years of exploration and amelioration, there have been significant breakthroughs in this research area, including the synthesis of excellent EC cellulose-derived materials, innovative bioenergy production, etc. This review organizes the research of the utilization of the EC biomass among several important fields and then analyses the advantages and disadvantages for each pathway. Finally, comprehensive EC utilization technologies are proposed as a reference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation?

    PubMed

    Vo Hoang Nhat, P; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Nguyen, P D; Bui, X T; Zhang, X B; Guo, J B

    2018-05-01

    Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L -1 ) compared to fossil fuel's price of $1 L -1 , it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals.

    PubMed

    Morgan, Hervan Marion; Bu, Quan; Liang, Jianghui; Liu, Yujing; Mao, Hanping; Shi, Aiping; Lei, Hanwu; Ruan, Roger

    2017-04-01

    Lignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bio-energy by a bio-refinery. From the various techniques available for biomass thermo-chemical conversion; microwave assisted pyrolysis (MAP) seems to be the very promising. The principles of microwave technology were reviewed and the parameters for the efficient production of bio-oil using microwave technology were summarized. Microwave technology by itself cannot efficiently produce high quality bio-oil products, catalysts are used to improve the reaction conditions and selectivity for valued products during MAP. The catalysts used to optimize MAP are revised in the development of this article. The origins for bio-oils that are phenol rich or hydrocarbon rich are reviewed and their experimental results were summarized. The kinetics of MAP is discussed briefly in the development of the article. Future prospects and scientific development of MAP are also considered in the development of this article. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    NASA Astrophysics Data System (ADS)

    Cherubini, F.

    2015-12-01

    Bioenergy is the most important renewable energy option in studies designed to align with future RCP projections, reaching approximately 250 EJ/yr in RCP2.6, 145 EJ/yr in RCP4.5 and 180 EJ/yr in RCP8.5 by the end of the 21st century. However, many questions enveloping the direct carbon cycle and climate response to bioenergy remain partially unexplored. Bioenergy systems are largely assessed under the default climate neutrality assumption and the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation is usually ignored. Emission metrics of CO2 from forest bioenergy are only available on a case-specific basis and their quantification requires processing of a wide spectrum of modelled or observed local climate and forest conditions. On the other hand, emission metrics are widely used to aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.), but a spatially explicit analysis of emission metrics with global forest coverage is today lacking. Examples of emission metrics include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Here, we couple a global forest model, a heterotrophic respiration model, and a global climate model to produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy. We show their applications to global emissions in 2015 and until 2100 under the different RCP scenarios. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation), 0.05 ± 0.05 kgCO2-eq. kgCO2-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for GWP, GTP and aSET, respectively. We also present results aggregated at a grid, national and continental level. The metrics are found to correlate with the site-specific turnover times and local climate variables like annual mean temperature and precipitation. Simplified equations are derived to infer metric values from the turnover time of the biomass feedstock and the fraction of forest residues left on site after harvest. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales.

  13. Potential Impact of Bioenergy Demand on the Sustainability of the Southern Forest Resource

    Treesearch

    Karen L. Abt; Robert C. Abt

    2012-01-01

    The use of woody biomass for the production of domestic bioenergy to meet policy-driven demands could lead to significant changes in the forest resource. These impacts may be limited if woody biomass from forests is defined as only the residues from logging. Yet, if only residue is used, the contribution of woody biomass to a renewable energy portfolio will also be...

  14. Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration

    Treesearch

    Kristin McElligott; Debbie Dumroese; Mark Coleman

    2011-01-01

    Bioenergy production from forest biomass offers a unique solution to reduce wildfire hazard fuel while producing a useful source of renewable energy. However, biomass removals raise concerns about reducing soil carbon and altering forest site productivity. Biochar additions have been suggested as a way to mitigate soil carbon loss and cycle nutrients back into forestry...

  15. The financial feasibility of delivering forest treatment residues to bioenergy facilities over a range of diesel fuel and delivered biomass prices

    Treesearch

    Greg Jones; Dan Loeffler; Edward Butler; Susan Hummel; Woodam Chung

    2013-01-01

    Forest treatments have the potential to produce significant quantities of forest residue biomass, which includes the tops and limbs from merchantable trees and smaller trees removed to meet management objectives. We spatially analyzed the sensitivity of financially feasible biomass volumes for delivery to a bioenergy facility across 16 combinations of delivered biomass...

  16. Technoeconomic and policy drivers of project performance for bioenergy alternatives using biomass from beetle-killed trees

    Treesearch

    Robert M. Campbell; Nathaniel M. Anderson; Daren E. Daugaard; Helen T. Naughton

    2018-01-01

    As a result of widespread mortality from beetle infestation in the forests of the western United States, there are substantial stocks of biomass suitable as a feedstock for energy production. This study explored the financial viability of four production pathway scenarios for the conversion of beetle-killed pine to bioenergy and bioproducts in the Rocky Mountains....

  17. Fostering sustainable feedstock production for advanced biofuels on underutilised land in Europe

    NASA Astrophysics Data System (ADS)

    Mergner, Rita; Janssen, Rainer; Rutz, Dominik; Knoche, Dirk; Köhler, Raul; Colangeli, Marco; Gyuris, Peter

    2017-04-01

    Background In context of growing competition between land uses, bioenergy development is often seen as one of possible contributors to such competition. However, the potential of underutilized land (contaminated, abandoned, marginal, fallow land etc.) which is not used or cannot be used for productive activities is not exhausted and offers an attractive alternative for sustainable production of different biomass feedstocks in Europe. Depending on biomass feedstocks, different remediation activities can be carried out in addition. Bioenergy crops have the potential to be grown profitably on underutilized land and can therefore offer an attractive source of income on the local level contributing to achieving the targets of the Renewable Energy Directive (EC/2009). The FORBIO project The FORBIO project demonstrates the viability of using underutilised land in EU Member States for sustainable bioenergy feedstock production that does not affect the supply of food, feed and land currently used for recreational or conservation purposes. Project activities will serve to build up and strengthen local bioenergy value chains that are competitive and that meet the highest sustainability standards, thus contributing to the market uptake of sustainable bioenergy in the EU. Presented results The FORBIO project will develop a methodology to assess the sustainable bioenergy production potential on available underutilized lands in Europe at local, site-specific level. Based on this methodology, the project will produce multiple feasibility studies in three selected case study locations: Germany (lignite mining and sewage irrigation fields in the metropolis region of Berlin and Brandenburg), Italy (contaminated land from industrial activities in Sulcis, Portoscuso) and Ukraine (underutilised marginal agricultural land in the North of Kiev). The focus of the presentation will be on the agronomic and techno-economic feasibility studies in Germany, Italy and Ukraine. Agronomic feasibility studies consider agronomic performances in different climatic zones, soil conditions, land morphology, availability of irrigation infrastructures and limitations due to anthropic soil contamination. The outcomes of the techno-economic feasibility studies for the biomasses selected as potentially feasible for underutilized lands in the selected case study locations will be presented.

  18. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential

    PubMed Central

    Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M. Cata

    2014-01-01

    Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet. PMID:26479885

  19. Domestication and Breeding of Jatropha curcas L.

    PubMed

    Montes, Juan M; Melchinger, Albrecht E

    2016-12-01

    Jatropha curcas L. (jatropha) has a high, untapped potential to contribute towards sustainable production of food and bioenergy, rehabilitation of degraded land, and reduction of atmospheric carbon dioxide. Tremendous progress in jatropha domestication and breeding has been achieved during the past decade. This review: (i) summarizes current knowledge about the domestication and breeding of jatropha; (ii) identifies and prioritizes areas for further research; and (iii) proposes strategies to exploit the full genetic potential of this plant species. Altogether, the outlook is promising for accelerating the domestication of jatropha by applying modern scientific methods and novel technologies developed in plant breeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jong -Jin; Yoo, Chang Geun; Flanagan, Amy

    The development of genome editing technologies offers new prospects in improving bioenergy crops like switchgrass (Panicum virgatum). Switchgrass is an outcrossing species with an allotetraploid genome (2n = 4x = 36), a complexity which forms an impediment to generating homozygous knock-out plants. Lignin, a major component of the plant cell wall and a contributor to cellulosic feedstock’s recalcitrance to decomposition, stands as a barrier to efficient biofuel production by limiting enzyme access to cell wall polymers during the fermentation process.

Top